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Background

Lets begin with a little background from Appendix C.3 of
Wooldridge

We are worried about what happens to OLS estimators as our
sample gets large

The first concept to think about is Consistency which
Wooldridge defines as
Consistency
Let WN be an estimator of θ based on a sample y1, y2, ..., yN of
size N. Then WN is a consistent estimator of θ if for every ε > 0

Pr (|WN − θ| > ε)→ 0

as N → 0.



Not particularly intuitive.

What it means is that as N gets large WN gets closer and
closer to θ.

Wooldridge also uses the notation that consistency means that

plim (Wn) = θ.



Law of Large Numbers

The most important property for consistency is the Law of
Large Numbers

This states that
Law of Large Numbers.
Let y1, y2, ..., yN be independent, identically distributed random
variables with mean µ. Then

plim (ȳ) = µ.



This is really useful and also quite intuitive.

It says if you rolled a die forever and kept taking the mean value
you would get closer and closer to 3.5.

Lets look at an example in stata.



The key result is that for OLS:
Theorem 5.1 (Consistency of OLS)

Under Assumptions MLR.1 through MLR.4 the OLS estimator β̂j
is consistent for βj , for all j = 0,1,2, ...,K .

This basically is just a result of the law of large numbers and
Assumption MLR.4.



To see why, focus on the slope coefficient from the simple
regression model

We know that

β̂1 = β1 +
1
N
∑N

i=1 (xi1 − x̄1) ui
1
N
∑N

i=1 (xi1 − x̄1)2

Now using the law of large numbers

plim

[
1
N

N∑
i=1

(xi1 − x̄1) ui

]
= E [(xi1 − x̄1) ui ]

= cov(x1,u)

plim

[
1
N

N∑
i=1

(xi1 − x̄1)2

]
= E

[
(xi1 − x̄1)2

]
= Var (x1)



Putting it together

plim
(
β̂1

)
= β1 +

cov(x1,u)

var(x1)

Under Assumption SLR.4, cov(x1,u) = 0 so β̂1 is consistent.

However, note as well that if cov(x1,u1) 6= 0 then β̂1 will not be
consistent.

Again, we can look at this in stata.



Central Limit Theorem

While I think the law of large numbers is intuitive, the central
limit theorem is not.

I will use the notation

θ̂ ≈ N(0, σ2)

to mean that as the sample size gets large, θ̂ is approximately
normally distributed with expected value 0 and variance σ2.

It turns out that under the assumptions above
√

N (y − µ) ≈ N(0, σ2)

This is the central limit theorem



Lets just think of this as a gift and not try to understand it.

We can look at this in stata as well.

To do this I used the following procedure

1 Start with a Uniform distribution
2 Draw a sample of size N
3 Take the sample mean of that
4 Repeat steps 1-3 many times to get a sample where each

observation is a mean
5 Lets plot the distribution of these



The OLS estimator is a bit more complicated, but is like a mean
because

β̂1 = β1 +
1
N
∑N

i=1 (xi1 − x̄1) ui
1
N
∑N

i=1 (xi1 − x̄1)2

It turns out that we can use the central limit theorem

We state it as in Wooldridge



Theorem 5.2 (Asymptotic Normality of OLS)
Under the Gauss-Markov Assumptions MLR.1 through MLR.5,

1
√

N
(
β̂j − βj

)
≈ N(0, σ2/a2

j ), where σ2/a2
j > 0 is the

asymptotic variance of
√

N
(
β̂j − βj

)
; defined in the text.

We say that β̂j is asymptotically normally distributed.
2 σ̂2 is a consistent estimator of σ2 = var(u).

3 For each j ,
β̂j − βj

se
(
β̂j

) ≈ N(0,1)

where se
(
β̂j

)
is the usual OLS standard error (which stata

also produces)



While this may be difficult to understand, it is really really useful.

This means that we can relax the normality assumption which
seemed really strong, but we can still use the normal
distribution to construct confidence intervals and test null
hypotheses.



I did something to give you an idea how this works.

1 Assume that
y = β0 + β1x + u

where x and u both have a uniform distribution.
2 Draw a sample of size N on x and y
3 Regress y on x and keep track of β̂1

4 Repeat steps 1-3 many times to get a sample where each
observation is a β̂1

5 Lets plot the distribution of these


