
Final Exam

Economics 401
Fri., May 15, 2008
Show All Work. Only partial credit will be given for correct answers if we can not figure

out how they were derived.
Points:

Problem 1: 30
Problem 2: 15
Problem 3: 20
Problem 4: 15
Problem 5: 20

Total: 100



Problem 1: Consider a job training program that gives training to poor workers on basic
skills and how to find jobs. You have data on high school dropouts from Chicago from
2005-2007. In particular you have the following three variables:

h2007i : Number of Weeks worked in 2007

Ti : A dummy variable for whether the person received job training in 2006 (it takes
value 1 if person i took training, and value 0 otherwise)

h2005i : Number of weeks worked in 2005

You first run the regression

h2007i = β0 + β1Ti + ui

You get the results

Variable Parameter Standard Error

Intercept
≥

bβ0

¥
23.45 7.84

Ti

≥
bβ1

¥
-3.44 2.11

a) Intepret the point estimate of the slope coefficient
≥

bβ1

¥
from this regression in a

descriptive way. What does it mean?

The coefficient of -3.44 means that people who received job training worked 3.44
fewer weeks in 2007 than workers that did not take job training.

b) Worrying about precision of the estimate how does that modify your interpretation
of a) (that is how confident are you)?

The standard error of this coefficient is 2.11 meaning the 95% confidence interval
is

(−3.44− 1.96× 2.11,−3.44 + 1.96× 2.11) = (−7.58, 0.70).

I am confident that the difference in weeks worked between trained and untrained
individuals lies somewhere between -7.58 and 0.70.

c) Explain the meaning of the point estimate of the intercept
≥

bβ0

¥
from a descriptive

perspective.

We know that
E(h2007i | Ti = 0) = β0.

Thus the average number of weeks worked for workers who did not receive the
training is estimated to be 23.45.

d) Now suppose you want to interpret the coefficient β1 causally. What is the biggest
problem with this interpretation?

The key assumption of causality is that Ti is uncorrelated with ui which is the
error term in the regression model. This would mean that whether people receive
training or not is uncorrelated with unobservable variables that determine weeks



worked. There are many reasons to think that training would be related, and it
could be either positive or negative. For example, people who have good stable
jobs will have high ui and will not need job training. This would lead to a negative
correlation. Alternatively, one might think lazy people will tend to work relatively
little and would also be unlikely to enter job training. This would yield a positive
correlation.

Now consider the new regression

h2007i = β0 + β1Ti + β2h2005i + ui

e) Does this help the problem you described in d)? What would you expect to happen
to the point estimates and why?

It helps for either case. It would work particularly well for my first concern. If
the problem is that people with steady jobs tend to work a lot and are unlikely
to take training, controlling for weeks worked in 2005 should help the problem
substantially.

Now suppose you get the regression results.

Variable Parameter Standard Error

Intercept ( bβ0) 2.15 1.73

Ti(bβ1) 8.44 1.88

h2005i(cβ2) 0.96 0.33

f) Interpret what you learn about the effect of training
≥

bβ1

¥
I have left this question

intentionally vague. Please give a complete answer of what you think we learn
about the effectiveness of training from this.

In this case it looks like training has a positive effect on hours worked. If I just
interpret this as a descriptive number it says that if we compare two people who
worked the same amount in 2005, the person who received the training works
about 8.44 more weeks in 2007. The confidence interval on this effect is

(8.44− 1.96× 1.88, 8.44 + 1.96× 1.88) = (4.76, 12.12)

The lower end of the confidence interval is 4.76 which still seems pretty big. Thus
it looks like the difference between those that got training and those that did
not is large. If one interpreted the point estimate as a causal effect, one would
say that training increases work hours by 8.44 weeks per year. This requires the
assumption that training is uncorrelated with the error term. While controlling
for hours worked in 2005 helps get rid of some of the omitted variable bias, I
would think that there are still others to worry about, so I would be a bit cautios
in interpreting this effect as causal.



Problem 2: Suppose you have data on height of men and women from France and England.

Let

Fi : Dummy variable for a person from France

mi : Dummy variable for male

Hi : Height of person i (in centimeters)

Consider the following two regressions:

Hi = γ0 + γ1Fi + γ2mi + γ3 (Fi ×mi) + εi

Derive γ0, γ1, γ2, and γ3 in terms of the underlying conditional expectations.

E(Hi | French Male) = γ0 + γ1 + γ2 + γ3

E(Hi | English Male) = γ0 + γ2

E(Hi | French Female) = γ0 + γ1

E(Hi | English Female) = γ0

So

γ0 =E(Hi | English Female)

γ1 =E(Hi | French Female)− E(Hi | English Female)

γ2 =E(Hi | English Male)− E(Hi | English Female)

γ3 =E(Hi | French Male)− E(Hi | French Female)

− [E(Hi | English Male)− E(Hi | English Female)]



Problem 3: Suppose you have monthly data on stock prices and the unemployment rate
in the U.S. over the last 10 years.

Consider the regression:

Stockt = β0 + β1unempt + vt.

Assume there is not omitted variable bias so that E(vt | unempt) = 0.

Suppose you estimate it in stata in the following 4 ways

• reg stock unemp

• reg stock unemp, robust

• arima stock unemp, ar(1 2) ma(1 2)

• newey stock unemp, l(5)

Discuss the advantages and disadvantages of the approaches. Which are biased, which
give correct standard errors, which work best under the correct assumptions?

Methods (1),(2), and (4) will give the exact same point estimates, but different standard
errors. Method (1) requires homoskedasticity and no serial correlation. Method (2)
allows for heteroskedasticity but not serial correlation. Method (4) allows for both
serial correlation and heteroskeasticity. Method (3) will be efficient when the model is
correctly specified. That is if the model is truly an ARMA(2,2) the estimates will be
correct and efficient, and the other models will not be. However, if those assumptions
are violated the estimates will be wrong.



Problem 4: Think about estimating the causal effect of private school on wages.

You have the following 4 variables

wi : log of wage at age 30

PSi : years attended private high school

Colli : years of college attended

PEi : Parent’s earnings when respondant was 16

Consider the following three regressions:

wi = β0 + β1PSi + β2Colli + ui(A)

wi = γ0 + γ1PSi + γ2PEi + vi(B)

wi = δ0 + δ1PSi + δ2Colli + δ3PEi + εi(C)

Which regression makes the most sense? Why do you prefer this to the other two?

I prefer model (B). The problem is that college is endogenous. That is one of the major
advantages of attending a private school is that one would be able to get into college.
Thus I would not want to control for it. I can not make the same argument about
Parent’s earnings so controlling for this is sensible.



Problem 5: Consider the following regression model

Yi = β0 + β1wi + β2xi + ui

Suppose we know that

E (ui) = 0

E(ui | zi) = 0

E(ui | xi) = 0

where zi is another variable you have in your data.

(A) What three equations would you use to derive estimates of β0,β1, and β2?

I would write the three population equations as:

E(ui) = 0

E(ziui) = 0

E(xiui) = 0

Translating to sample analogoues yields

1

N

NX

i=1

Yi − bβ0 − bβ1wi − bβ2xi = 0

1

N

NX

i=1

zi(Yi − bβ0 − bβ1wi − bβ2xi) = 0

1

N

NX

i=1

xi(Yi − bβ0 − bβ1wi − bβ2xi) = 0

(B) Now suppose you replace those equations with

E (ui) = 3

E(ui − 4zi | zi) = 2

E(ui − 3x2
i |xi) = 0

what equations would you use in this case?

I would use the three population equations as:

E(ui) = 3

E(zi[ui − 4zi]) = 2

E(xi[ui − 3x2
i ]) = 0

The sample analogues are:



1

N

NX

i=1

Yi − bβ0 − bβ1wi − bβ2xi = 3

1

N

NX

i=1

zi(Yi − bβ0 − bβ1wi − bβ2xi − 4zi) = 2

1

N

NX

i=1

xi(Yi − bβ0 − bβ1wi − bβ2xi − 3x2
i ) = 0


