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Lets go back to thinking about the causal model with the simple
regression model

yi = β0 + β1xi + ui

To remind you what we did we started with the condition

E (ui | xi) = 0

which yielded the two conditions

0 = E(xiui)

= E (xi (yi − β0 − β1xi))

0 = E (ui)

= E (yi − β0 − β1xi)



We then wrote down the sample analogue of these equations:

1
N

N∑
i=1

xi

(
yi − β̂0 − β̂1xi

)
= 0

1
N

N∑
i=1

(
yi − β̂0 − β̂1xi

)
= 0

and derived the estimator.

However, as we have talked about throughout the course, we
are very nervous about the assumption that E(ui | xi) = 0.

Lets think about some examples



Returns to schooling again

log(Wi) = β0 + β1Si + Ai + ui

where Ai is ability

What are the issues with this?



Openess and Inflation

Romer thinks more open economies have lower inflation rates

infi = β0 + β1openi + β2log(pcinci) + ui

Problem is that openness is endogenous and could depend on
inflation



Smoking and Birth Weight again

Lets go back to the smoking and birth weight example

bwghti = β0 + β1packsi + ui

Does it make sense to assume that packs is uncorrelated with
ui?

We controlled for a bunch of stuff, but was that enough?



Fixing this problem is the most important thing in econometrics.
So what can we do?

Suppose we have some other variable, call it zi and we believe
that

E [ui | zi ] = 0

This is called an instrumental variable

It turns out that we can do essentially the same thing that we
did before.



We get the two equations

0 = E(ziui)

= E (zi (yi − β0 − β1xi))

0 = E (ui)

= E (yi − β0 − β1xi)

So the intuitive way to estimate this model would be to use the
two equations

1
N

N∑
i=1

zi

(
yi − β̂0 − β̂1xi

)
= 0

1
N

N∑
i=1

(
yi − β̂0 − β̂1xi

)
= 0



Lets see where this goes.

The second equation is the same as before:

0 =
1
N

N∑
i=1

(
yi − β̂0 − β̂1xi

)

=
1
N

N∑
i=1

yi −
1
N

N∑
i=1

β̂0 −
1
N

N∑
i=1

β̂1xi

1
N

N∑
i=1

β̂0 =
1
N

N∑
i=1

yi − β̂1
1
N

N∑
i=1

xi

or
β̂0 = ȳ − β̂1x̄

Just as before.



Now the new equation

0 =
1
N

N∑
i=1

zi

(
yi − β̂0 − β̂1xi

)

=
1
N

N∑
i=1

zi

(
yi −

[
ȳ − β̂1x̄

]
− β̂1xi

)

=
1
N

N∑
i=1

zi

(
[yi − ȳ ]− β̂1 [xi − x̄ ]

)

=
1
N

N∑
i=1

zi (yi − ȳ)− 1
N

N∑
i=1

zi

(
β̂1 [xi − x̄ ]

)



This can be written as

1
N

N∑
i=1

zi (yi − ȳ) = β̂1
1
N

N∑
i=1

zi (xi − x̄)

or

β̂1 =
1
N
∑N

i=1 zi (yi − ȳ)
1
N
∑N

i=1 zi (xi − x̄)

=
1
N
∑N

i=1(zi − z̄) (yi − ȳ)
1
N
∑N

i=1(zi − z̄) (xi − x̄)

Note that this is just like OLS when

zi = xi



Look at the bottom term 1
N
∑N

i=1(zi − z̄) (xi − x̄)

Notice that this is basically the sample covariance between zi
and xi

If this is close to zero we are going to be dividing by something
close to zero which is not a good idea

Thus we need our instrument to really have two properties:

It should be uncorrelated with ui

It should be correlated with zi and the higher correlated it
is, the better



Lets think about whether this estimator is consistent

First notice that we can rewrite

β̂1 =
1
N
∑N

i=1(zi − z̄) (yi − ȳ)
1
N
∑N

i=1(zi − z̄) (xi − x̄)

=
1
N
∑N

i=1(zi − z̄) [β0 + β1xi + ui − β0 − β1x̄ − ū]
1
N
∑N

i=1(zi − z̄) (xi − x̄)

=
1
N
∑N

i=1(zi − z̄)β1 (xi − x̄)
1
N
∑N

i=1(zi − z̄) (xi − x̄)
+

1
N
∑N

i=1(zi − z̄) (ui − ū)
1
N
∑N

i=1(zi − z̄) (xi − x̄)

= β1 +
1
N
∑N

i=1(zi − z̄) (ui − ū)
1
N
∑N

i=1(zi − z̄) (xi − x̄)



But now lets apply the Law of large numbers to the numerator
and denominator

1
N

N∑
i=1

(zi − z̄) (ui − ū) ≈ cov(zi ,ui)

= 0

but

1
N

N∑
i=1

(zi − z̄) (xi − x̄) ≈ cov(zi , xi)

6= 0

Thus this model is consistent since

β̂1 ≈ β1 +
cov (zi ,ui)

cov(zi , xi)

≈ β1



One can calculate standard errors in manner similar to what we
did before.

Doing this in stata is straight forward we say

ivreg y (x=z)

Lets return to the examples



Returns to schooling

log(Wi) = β0 + β1Si + Ai + ui

Mroz uses number of siblings arguing that father’s education
should be correlated with schooling but not with wages



Openess and Inflation

Romer uses land as an instrument: smaller countries are more
likely to be open

No reason for land to directly influence inflation



Smoking and Birth Weight

bwghti = β0 + β1packsi + ui

Key new potential instruments:

cigtax: cig. tax in home state, 1988
cigprice: cig. price in home state, 1988



Now what if we have other regressors in the model?

I want to distinguish between different kinds of right hand side
variables so I will use different notation.

I also don’t particularly like Wooldridge’s notation, so I will use
my own.

Lets define
yi = β0 + β1wi + β2xi + ui .

The difference between wi and xi is that we will assume that

E (ui | xi) = 0

but we are not willing to assume that E(ui | wi) = 0.



Instead we assume that

E(ui | zi) = 0

and
cov(zi ,wi) 6= 0.



The difference between all of these kinds of variables:

Variable Enters Model Correlated with ui

wi yes yes
xi yes no
zi no no



To implement this we use the three equations

1
N

N∑
i=1

yi − β̂0 − β̂1wi − β̂2xi = 0

1
N

N∑
i=1

zi

(
yi − β̂0 − β̂1wi − β̂2xi

)
= 0

1
N

N∑
i=1

xi

(
yi − β̂0 − β̂1wi − β̂2xi

)
= 0

This gives us three equations in the three unknowns β̂0, β̂1, and
β̂2.

In stata we can estimate this using the command

ivreg y (w=z) x

Lets see how this works



There is nothing special about only having one xi .

We can easily generalize this to

yi = β0 + β1wi + β2x2i + ...+ βkxki + ui .

with
E(ui | xji) = 0

for j = 2, ..., k



We then implement this solving

1
N

N∑
i=1

yi − β̂0 − β̂1wi − β̂2x2i − ...− β̂ixki = 0

1
N

N∑
i=1

zi

(
yi − β̂0 − β̂1wi − β̂2xi − ...− β̂ixki

)
= 0

1
N

N∑
i=1

x2i

(
yi − β̂0 − β̂1wi − β̂2xi − ...− β̂ixki

)
= 0

...
...

1
N

N∑
i=1

xki

(
yi − β̂0 − β̂1wi − β̂2xi − ...− β̂ixki

)
= 0

Now we have k + 2 equations and k + 2 unknowns so this will
work



We implement in stata as

ivreg y (w=z) x2...xk

Lets look at a number of examples



We can also generalize this to have multiple endogenous
variables

yi = β0+β1w1i +β2w2i +...+βswsi +βs+1xs+1i +...+βs+kxs+ki +ui .

Now how do we do this?

If we only have one zi we have k+2 equations but s + k + 1
parameters.

This isn’t going to work.

We need more equations, how do we get them?

We need more z ′s.

In particular we need at least s z’s.



Lets assume we have ` z’s.

In the simple world ` = s and things are as before

If ` > s it is slightly more complicated.

You implement this in stata saying

ivreg y (w1...ws = z1...z`)xs+1...xs+k

Lets see how to do this.



Simultaneous Equations
Quite often in economics more than one variable is being
determined at a time

Classic Example: Supply and Demand, prices and quantities
being determined simultaneously

A given consumer takes price as given and decides how much
to buy gives demand curve:

log(Yt ) = αd log(Pt ) + βXt + udt

Firms set price given demand for product yielding supply curve:

log(Pt ) = αs log(Yt ) + γZt + ust .

Note that we are assuming that we only have one variable (Xt )
that affects demand and another (Zt ) that affects supply. I could
easily add more but that doesn’t change any of the basic points.



Can we just run OLS to estimate αd?

Problem: We can substitute first equation into second:

log(Pt ) =αs(αd log(Pt ) + βXt + udt ) + γZt + ust .

=αs(αd log(Pt ) + βXt ) + γZt + αsudt + ust .

Notice that log(Pt ) depends on udt directly

OLS for demand curve

log(Yt ) = αd log(Pt ) + βXt + udt

clearly won’t work because the idea that E(udt | Pt ) = 0 seems
crazy.



This problem is much more general than this, there are many
cases in which variables are determined simultaneously:

GNP,Inflation
Schooling,Earnings
Firm A price, Firm B Price
Husband Labor Supply, Wife Labor Supply
Production function inputs
Consumption goods (e.g. Peanut Butter and Jelly)



Lets think more generally of the equations as:

Y0i = α0Y1i + βXi + δ0Wi + u0i

Y1i = α1Y0i + γZi + δ1Wi + u1i

The distinction between W, X and Z is that

Xi only affects Y0i

Zi only affects Y1i

Wi affects both Y0i and Y1i

I will write everything as if there is only one element of each,
but it is easy to generalize beyond that



We will assume that Wi ,Xi and Zi are “exogenous” or
uncorrelated with (u0i ,u1i)

(Y0i ,Y1i) are endogenous or correlated with (u0i ,u1i)

Our goal is estimation of α0 (or α1, or both).

OLS will not work because u0i helps determine Y1i therefore
they are correlated

The primary assumption underlying OLS is violated because
Y1i is correlated with u0i



It turns out that there is a nice solution to this problem

Notice that we can write

Y1i = α1 (α0Y1i + βXi + δ0Wi + u0i) + γZi + δ1Wi + u1i

= α1α0Y1i + α1βXi + γZi + (α1δ0 + δ1) Wi + (α1u0i + u1i)

=
1

1− α1α0
(α1βXi + γZi + (α1δ0 + δ1) Wi + (α1u0i + u1i))

≡ β∗Xi + γ∗Zi + δ∗Wi + u∗i

But now comes the part that will turn out nice,

plug this into the other equation to get

Y0i = α0Y1i + X ′i β + W ′
i δ0 + u0i

= α0 (β∗Xi + γ∗Zi + δ∗Wi + u∗i ) + βXi + δ0Wi + u0i

= α0 (β∗Xi + γ∗Zi + δ∗Wi) + βXi + δ0Wi + u0i + α0u∗i



If we knew (β∗, γ∗, δ∗) we could run a regression of Y0i on
(β∗Xi + γ∗Zi + δ∗Wi), Xi and Wi .

As long as u0i or u1i are uncorrelated with (Xi ,Zi ,Wi) we can
get consistent estimates of the parameters from this regression

The coefficient on the big term is α0 so we would be done.



The problem is that we don’t know (β∗, γ∗, δ∗) but we can
estimate them

Regress Y1i on Xi , Zi and Wi to get estimates of β∗, γ∗,
and δ∗.
use these estimates (hats mean estimates) to form

Ŷ ∗1i = β̂∗Xi + γ̂∗Zi + δ̂∗Wi

Regress Y0i on Xi , Wi and Ŷ ∗1i .

The coefficient on Ŷ ∗1i gives us a consistent estimate of α0



This is called “Two staged least squares”

It gives consistent estimates of the parameters

However standard errors are not right if you do it directly
because it doesn’t deal with the fact that β̂∗ is estimated.

Lets dig a little deeper into this problem



Under what conditions can I run the second regression?

It has to be the case that I have a Zi that affects Y1i but not Y0i ,
otherwise there will be a collinearity problem.

This is not a small problem since this is fundamental for
identification.

To see this suppose γ∗ = 0 then our regression would be

Y0i = α0 (β∗Xi + δ∗Wi) + βXi + δ0Wi + u0i + α0u∗i

we would have a perfect multicollinearity problem



Relationship between 2SLS and IV

The fact that you need a variable that is correlated with Y1i and
doesn’t affect Y0i makes 2SLS sound a lot like IV

In fact they are the same thing when there are exactly as many
instruments as endogenous variable

I am not going to show this mathematically, but I’ll show you in
stata



Now lets look at a number of example of simultaneous equation
models


