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The model we considered before with omitted variable bias was

yi = β0 + β1xi + ui

and
ui = β2zi + εi

then we can write this as

yi = β0 + β1xi + β2zi + εi .



We were assuming that

E (εi | xi , zi) = 0.

The fact that we are calling this εi rather than ui should not
make any real difference.

Lets try to estimate this model.

We have three parameters to estimate β̂0, β̂1, and β̂2.



How can we do this?

The natural thing to do is based on what we did before except
now we know the following three things

E(εi) = 0
E (xiεi) = 0
E (ziεi) = 0

We write the sample regression function as

yi = β̂0 + β̂1xi + β̂2zi + ε̂i



We can take the sample analogue of this as before.

1
N

N∑
i=1

ε̂i = 0

1
N

N∑
i=1

xi ε̂i = 0

1
N

N∑
ii=1

zi ε̂i = 0



We can write this as

1
N

N∑
i=1

(
yi − β̂0 − β̂1xi − β̂2zi

)
= 0

1
N

N∑
i=1

xi

(
yi − β̂0 − β̂1xi − β̂2zi

)
= 0

1
N

N∑
ii=1

zi

(
yi − β̂0 − β̂1xi − β̂2zi

)
= 0

This gives us three equations in the three unknowns β̂0, β̂1, and
β̂2.



One could go through the algebra and solve explicitly these
three equations for the three unknowns, but we are not going to
bother to do that.

Instead we will just use stata

Rather than saying

reg y x

we say

reg y x z



Lets go back and look at the examples we thought about before
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Adding Many Variables

Now we may be worried about more than one omitted variable
at a time.

You can handle that in a straight forward way.

Lets write the model more generally with K different regressors
as

yi = β0 + β1xi1 + β2xi2 + ...+ βK xiK + ui .

The interpretation here is the same as before for the causal
model

“If I increase xi1 by one unit, yi increases by β1 units”



Estimation

How do we estimate this model?

It really is exactly the same thing once again.

We assume that
E (ui | xi1, ..., xiK ) = 0

We now have K + 1 parameters, we need K + 1 equations for
estimation.



We start with the K+1 conditions

E (ui) = 0
E (xi1ui) = 0
E (xi2ui) = 0

...
E (xiK ui) = 0



Terminology

We define the sample regression function as

yi = β̂0 + β̂1xi1 + β̂2xi2 + ...+ β̂K xiK + ûi .

We will talk about and use the same notation for “fitted value”

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + ...+ β̂K xiK

and “residual”

ûi = yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK .



We start with the K + 1 conditions

1
N

N∑
i=1

ûi = 0

1
N

N∑
i=1

xi1ûi = 0

1
N

N∑
i=1

xi2ûi = 0

...

1
N

N∑
i=1

xiK ûi = 0



And you can rewrite these as

1
N

N∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)
= 0

1
N

N∑
i=1

xi1

(
yi − β̂0 − β̂1xi1 − β̂2xi2...− β̂K xiK

)
= 0

1
N

N∑
i=1

xi2

(
yi − β̂0 − β̂1xi1 − β̂2xi2...− β̂K xiK

)
= 0

...

1
N

N∑
i=1

xiK

(
yi − β̂0 − β̂1xi1 − β̂2xi2...− β̂K xiK

)
= 0



Figuring out the algebra is extremely tedious, so once again we
will let stata do it.

We just say

reg y x1 x2 ... xK



Lets look at some examples in which we control for a number of
variables at the same time.



Descriptive Interpretation

We are focusing on the causal interpretation of this, but one
can interpret it in a descriptive way as well

We just interpret the model as

E (y | x1, x2, ..., xK ) = β0 + β1x1 + ...+ βK xK



Forecasting

We talked before of forecasting with one variable, but that is
kind of crazy.

Generally we have a lot of variables to forecast with so lets
think about using them

We will use the same sort of notation from before, we want to
choose β̂0,β̂1,...,β̂K to minimize

N∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)2



How do we do this?

As before we take the derivative of this expression with respect
to each β̂j and set it to zero.

That will give us K+1 equations in K+1 unknowns

Lets look at them



First consider the derivative with respect to β̂0

0 =
∂
∑N

i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)2

∂β̂0

=
N∑

i=1

∂
(

yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)2

∂β̂0

=
N∑

i=1

−2
(

yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)
which after dividing each side by -2N we get

0 =
1
N

N∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)
This is the first expression from above.



Next take the derivative with respect to β̂j

This will have the same form for j = 1, ...,K

0 =
∂
∑N

i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)2

∂β̂j

=
N∑

i=1

∂
(

yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)2

∂β̂j

=
N∑

i=1

−2xij

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)



which after dividing each side by -2N we get

0 =
1
N

N∑
i=1

xij

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xKi

)
There are K different expressions like this

They are the other K expressions we had from above

Thus we won’t explicitly derive the OLS estimator for this case

However, you get exactly the same answer as if you did it the
other way



Normal Equations

Also the normal equations hold exactly as before

Now there are K+1 of them rather than just 2



That is we know that for any given sample

1
N

N∑
i=1

ûi = 0

1
N

N∑
i=1

xi1ûi = 0

1
N

N∑
i=1

xi2ûi = 0

...

1
N

N∑
i=1

xiK ûi = 0
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Wooldridge talks about three facts about these Models

They all come from the Normal Equations

Lets go through them



1. Sample average of the predicted values

Notice that

ŷ =
1
N

N∑
i=1

ŷi

=
1
N

N∑
i=1

(
yi − ûi

)
=

1
N

N∑
i=1

yi −
1
N

N∑
i=1

ûi

= y



2. Sample covariance of predicted value and residual
is zero

This comes immediately

1
N − 1

N∑
i=1

ŷi ûi

=
1

N − 1

N∑
i=1

(
β̂0 + β̂1xi1 + β̂2xi2 + ...+ β̂K xiK

)
ûi

=
1

N − 1

[
N∑

i=1

β̂0ûi +
N∑

i=1

β̂1xi1ûi +
N∑

i=1

β̂2xi2ûi + ...+
N∑

i=1

β̂K xiK ûi

]

=
1

N − 1

[
β̂0

N∑
i=1

ûi + β̂1

N∑
i=1

xi1ûi + β̂2

N∑
i=1

xi2ûi + ...+ β̂K

N∑
i=1

xiK ûi

]
= 0



3. Mean of Regressors and Regression Line

First recall that in the simple regression model we showed that

β̂0 = y − β̂1x

Which also can be written as

y = β̂0 + β̂1x

Do we get something similar here?

The answer is yes.



Lets take the equation

0 =
1
N

N∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂K xiK

)

=
1
N

N∑
i=1

yi −
1
N

N∑
i=1

β̂0 −
1
N

N∑
i=1

β̂1xi1 −
1
N

N∑
i=1

β̂2xi2 − ...−
1
N

N∑
i=1

β̂K xKi

=y − β̂0 − β̂1x1 − β̂2x2 − ...− β̂K xK

or
y = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂K xK

This means that this point must be on the OLS regression line
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Goodness of Fit
Recall that before we defined

SST =
N∑

i=1

(yi − y)2

SSE =
N∑

i=1

(
ŷi − y

)2

SSR =
N∑

i=1

û2
i

We define them exactly the same was for the multiple
regression model

It is straight forward to show that once again

SST = SSE + SSR.



We can still use the

R2 =
SSE
SST

= 1− SSR
SST

However there is an interesting property here

What happens to the R2 when we add a regressor to the
model?



Intuitively it seems like it should go up-in fact that is
mathematically true.

Consider the sample regression functions:

yi = β̂0 + β̂1xi1 + ûi

yi = γ̂0 + γ̂1xi1 + γ̂2xi2 + v̂i



Both models have the same SST, consider the two residual
sum of squares

N∑
i=1

(
yi − β̂0 − β̂1xi1

)2

N∑
i=1

(yi − γ̂0 − γ̂1xi1 − γ̂2xi2)
2



How do they compare?

Recall that γ̂0, γ̂1,and γ̂2 were chosen to minimize this sum of
squares.

I could pick

γ̂0 = β̂0

γ̂1 = β̂1

γ̂2 = 0

If that was the case then the SSR would be the same



However, I can almost certainly do better in which case the
SSR would be lower in the second model and thus the R2

would be higher.

This means if you choose your regression model by choosing
the one with the highest R2 you will always add more variables



Adjusted R2

This is the justification of the adjusted R2. It is described in
Wooldridge chapter 6 and is defined as

R
2

= 1− SSR/(N − K − 1)

SST/(N − 1)

= 1− (1− R2) (N − 1)

N − K − 1

Notice that holding the R2 fixed, when K rises the R
2
falls

Thus there is a “penalty” for adding parameters

Some people choose their models by maximizing the adjusted
R-squared

This is not something economists worry about much at all



It is important to note that the argument included only nested
models

That is the variables in the first model were a subset of the
variables in the second model

This argument would not work if we compared the two models

N∑
i=1

(
yi − β̂0 − β̂1xi1

)2

N∑
i=1

(yi − γ̂0 − γ̂2xi2 − γ̂3xi3)
2

In this case we can’t say anything about which is better

Lets look at some examples
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Before we derived the fact that OLS was unbiased.

We can use similar conditions here

Lets go through them
Assumption MLR.1-Linear in Parameters
The model in the population can be written as

y = β0 + β1x1 + β2x2 + ...+ βK xK + u,

where β0,β1, .., βK are the unknown parameters (constants) of
interest and u is an unobservable random error or disturbance
term.



Assumption MLR.2-Random Sampling

We have a random sample of n observations,
{(xi1, x i2, ..., xiK , yi)}, i = 1, ...,n following the population model
defined in MLR.1.



Assumption MLR.3-No Perfect Collinearity
In the sample (and therefore in the population), none of the in-
dependent variables is constant, and there are no exact linear
relationships among the independent variables.

This one is different but related to the assumption that there is
variation in x . Now not only do we need variation, but we need
them to vary separately.



One case which is clearly a problem is if

yi = β0 + β1xi + β2xi + ui

How could you possibly tell β1 apart from β2?

This generalizes and is still a problem if

yi = β0 + β1xi1 + β2xi2 + ui

and
xi2 = α0 + α1xi1.



To see why note that we could just rewrite this model as

yi = β0 + β1xi1 + β2xi2 + ui

= β0 + β1xi1 + β2 (α0 + α1xi1) + ui

= (β0 + β2α0) + (β1 + β2α1) xi1 + ui

which is really just a univariate regression.



Assumption MLR.4-Zero Conditional Mean
The error u has an expected value of zero given any value of the
independent variables. In other words

E (u | x1, x2, ..., xK ) = 0.



Putting these together we get
Theorem 3.1 Unbiasedness of OLS
Under Assumptions MLR.1 through MLR.4,

E
(
β̂j

)
= βj , j = 0,1, ...,K ,

for any values of the population parameters βj .In other words
the OLS estimators are unbiased estimators of the population
parameters.
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Omitted Variable Bias

Wooldridge talks about omitted variables in the more general
model.

I want to do it a somewhat different manner

Think about omitted variables in the following way

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ui

where
E (ui | xi1, xi2, xi3) = 0



What happens if we don’t have data on xi3?

Think about regressing xi3 on xi2 and xi3.

Write this as
xi3 = δ0 + δ1xi1 + δi2xi2 + ξi

where
E (ξi | xi1, xi2) = 0



then

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ui

= β0 + β1xi1 + β2xi2 + β3 (δ0 + δ1xi1 + δi2xi2 + ξi) + ui

= (β0 + β3δ0) + (β1 + β3δ1) xi1 + (β2 + β3δ2) xi2 + (β3ξi + ui)



Thus the omitted variable bias is close to what it is before: β3δ1

The only real difference is that δ1 is more complicated because
it comes from a multiple regression rather than a simple one.
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Gauss Markov

There is an important theorem to look at, but we need one
more assumption first
Assumption MLR.5 Homoskedasticity
The error u has the same variance given any values of the ex-
planatory variables. In other words, Var(u | x1, ..., xK ) = σ2.

When We combine all of these assumptions we get the
Gauss-Markov Theorem
Theorem 3.4 Gauss-Markov Theorem

Under Assumptions MLR.1-MLR.5, β̂0, β̂1, ..., β̂K are the Best
Linear Unbiased Estimators (BLUEs) of β0, β1, ..., βK , respec-
tively.
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