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In this set of lecture notes we will deal with some additional
odds and ends to deal with with OLS

This follows chapter 6 of Wooldridge



Data Scaling in Multiple Regression Model
We talked about data scaling for the simple regression model it
turns out that the same thing is true for multiple regression
models

Take the classic model

yi = β0 + β1xi1 + β2xi2 + ...+ βK xiK + ui .

Now suppose that rather than measuring the dependent
variable as yi we use the new variable y∗

i = αyi .

Notice that

y∗
i = αyi

= α [β0 + β1xi1 + β2xi2 + ...+ βK xiK + ui ]

= (αβ0) + (αβ1) xi1 + (αβ2) xi2 + ...+ (αβK ) xiK + αui .



Thus we just scale the parameters by α just as in the simple
regression model

For example if you measure things in ounces rather than
pounds, the estimates with be 16 times larger

Similarly, if we use an alternative measure of one of the
independent variables x∗

i1 = αxi1.

Then we can write the

yi = β0 + β1xi1 + β2xi2 + ...+ βK xiK + ui

= β0 +
β1

α
αxi1 + β2xi2 + ...+ βK xiK + ui

= β0 +
β1

α
x∗

i1 + β2xi2 + ...+ βK xiK + ui

Again just as before.

Lets see how this works in practice



Functional form

Again think of the model

yi = β0 + β1xi1 + β2xi2 + ...+ βK xiK + ui .

As before we can take any function of y or any of the x’s that
we want.



However, there is some other stuff.

We can estimate more interesting functions of x by taking
quadratics and cubics, etc.

Consider a simple regression model

E (y | x) = β0 + β1x .

Rather than taking this to be linear we could allow it to be
quadratic

E (y | x) = β0 + β1x + β2x2.

We can just estimate this in the standard multiple regression
way by treating x and x2 as different regressors.



You could use a cubic as well

E (y | x) = β0 + β1x + β2x2 + β3x3

or even higher order terms.

Lets look at some examples.



Interactions

We also might be interested in interactions

For example suppose that we have two important variables

yi = β0 + β1xi1 + β2xi2 + ui .

We are interested in β1 which is the causal effect of changing
xi1 on yi .

However note that this causal value can not vary with xi2.

We can allow this by estimating the model

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + ui .



Then in this case the causal effect:

∂y
∂xi1

= β1 + β3xi2

As an example continue to consider the effects of going to class
on the final

You might think that the value of attending class is different for
people of different GPAs.

It is not obvious what interaction you would expect-it kind of
depends on whether it is an easy or hard class

Lets look at what we find



Overfitting

One can also overfit the data

First consider this problem for the forecasting problem

As we add more and more parameters we will fit the current
data better and better

However, the regression model my be too tailored to the current
data, and might not forecast very well.

Lets see an example



There is no perfect way to deal with this problem.

One possibiity is splitting the data.

We do the following

1 Divide the data into two different samples
2 Estimate a bunch of model based on sample 1
3 Check sample 2 to see how they fit



For example suppose there are two regressors in our model.
Based on sample 1 we estimate β̂0, β̂1 and β̂2.

For sample 2 we construct the fitted values as

Ŷi = β̂0 + β̂1X1i + β̂2X2i

We can then judge the fit only using sample 2 as

N2∑
i=1

(
Yi − Ŷi

)2

Lets do this in Stata



Too many control variables in the Causal World

In the causal world, we do not always want to control for
anything

Suppose we want to measure the causal effect of changing x
on y .



However, suppose that changing x changes y both directly and
indirectly by affecting z.

In this case do we want to control for z?

Typically we do not



The most extreme cases are those in which x affects y only by
changing z.

Suppose you want to estimate the effects of Lipitor on the
chances of having a heart attack

Lipitor works by lowering cholesterol which will lower the
chances of having a heart attack.



thus consider the following regression

Days alive = β0 + β1Lipitor + β2Cholesterol + ui .

What should β1 be in this case?

It should be zero, because Lipitor only affects mortality by
lowering Cholesterol. Thus conditional on the cholesterol
level, the effect is zero.

However the full causal effect or the overall causal effect is not
zero.

Lets look at an example.


