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Normality Assumption

We need to add one more assumption to get the final part of
the Classical Linear Regression Model
Assumption MLR 6 (Normality)
The population error u is independent of the explanatory vari-
ables x1, x2, ..., xk and is normally distributed with zero mean and
variance σ2 : u ∼ N(0, σ2)



What do you think of this assumption?

It is awfully strong-why should we believe the error term is
normally distributed?

Many distributions look like “bell curves” but that does not
necessarily mean normality is a good assumption.

When we worry about OLS asymptotics we will see a better
way of handling this problem



Why is this assumption useful?

Remember the simple regression model

β̂1 = β1 +

∑N
i=1(xi − x̄)ui∑N
i=1(xi − x̄)2

This is a linear combination of normal random variables so it is
normally distributed.



Putting the assumption into action gives the following result
Theorem 4.1 (Normal Sampling Distributions)

Under the CLM assumptions MLR.1 through MLR.6, conditional
on the sample values of the independent variables

β̂j ∼ N(βj ,Var(β̂j)),

where Var(β̂j) was given in Chapter 3 [equation(3.51)]. There-
fore, (

β̂j − βj

)
sd(β̂j)

∼ N(0,1).



We never actually looked at equation 3.51 in the lecture notes,
so let me give it now
Theorem 3.2 (Sampling Variance of the OLS Slope Estimators)

Var
(
β̂j

)
=

σ2

SSTj

(
1− R2

j

)
for 1,2, ...,K where SSTj =

∑N
i=1
(
xij − x̄j

)2 is the total sample
variation in xj , and R2

j is the R-squared from regression xj on all
other independent variables (and including an intercept).



A fly in the Ointment

This is all fine, except for one thing

We don’t know σ2!

We can estimate it in the way you might expect (well close to it)

σ̂2 =
1

N − K − 1

N∑
i=1

û2
i .

This turns out to be an unbiased estimate of σ2.

We define the standard error of β̂j as

se
(
β̂j

)
=

√√√√ σ̂2

SSTj

(
1− R2

j

)



Then we have the result that
Theorem 4.2 (t Distribution for the Standardized Estimators)
Under the CLM assumptions MLR.1 through MLR.6 ,

β̂j − βj

se(β̂j)
∼ tN−K−1

where K + 1 is the number of unknown parameters in the popu-
lation model y = β0 + β1x1 + ...+ βkxk + u (K slope parameters
and the intercept β0).

Now we don’t know βj , but this won’t be particularly important
for what we are doing.

Note as well that if N-K-1 is large then the t-distribution is
almost identical to the normal distribution



How is this all useful?

Lets forget about regression now and think more generally
about inference.

We have talked about how to construct regression estimators
and their distribution, but not about statistical inference.

I want to think about this generally and it should be clear that
what you learned in your statistics class carries over to the
regression model

Lets first think about why we care



Example 1

You want to decide whether to be a doctor or a lawyer.

You have a sample of earnings of people in the population

For Doctors Y = $123,452
For Lawyers Y = $112,935

Should you be a doctor or a lawyer? How confident are you?



Example 2

Basketball Scoring: You go to one basketball game

Carlos Delfino scores 32 points
Lebron James scores 17 points

Who is a better?



Example 3

You are a firm thinking about switching to a new mode of
production.

It saves about $1100 on average, but costs $1000.

Should you buy it?



Example 4

You are trying to predict the stock market.

You think unemployment might be important.

You run a regression of stock gains on unemployment and find
b2 = 0.01.

Should you necessarily invest all your money in the stock
exchange?

You would like to test formally whether b2 > 0.



Example 5

You want to know whether crime in Chicago is related to the
temperature. You run a regression where

At : Arrests in Chicago at date t

Tt : Temperature in Chicago at date t

You find that
At = 143 + 1.3Tt + εt

It looks like there are more arrests when the temperature is
higher, but are you sure?



Example 6

You are interested in how much cars depreciate. You have
information on their age and their price.

Pi : Price of car i in $1000

Ai : Age of car i

Pi = 1.5− 1.2Ai + εi

How do you interpret this? How confident are you?
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Lets forget about regression or sample means or anything else
and just assume that we have some estimator θ̂ that is a
function of the data.

This estimator is normally distributed and is an unbiased
estimate of θ.

θ̂ ∼ N
(
θ, σ2

θ

)



Lets also not worry about T distributions for now, but assume
that N − K − 1 is large enough that the distribution is
approximately normal.

There is a little trick with normal random variables that makes
them easy to deal with.

What is the distribution of

θ̂ − θ
σθ

?



First note that θ and σθ are nonstochastic while θ̂ is normally
distributed.

Therefore this must be normally distributed.

If we know its expectation and we know its variance we know
everything there is to know about it.



E

(
θ̂ − θ
σθ

)
=

1
σθ

(
E
(
θ̂
)
− θ
)

= 0

Var

(
θ̂ − θ
σθ

)
= var

(
1
σθ

(
θ̂ − θ

))
=

1
σ2

θ

var
(
θ̂
)

=
σ2

θ

σ2
θ

= 1



This means that
θ̂ − θ
σθ
∼ N (0,1)

This is true for any normally distributed random variable.



The distribution N(0,1) is called a “standard normal”

You can find tables in the back of the book that gives its
distribution.

What the tables will show is that for any variable, say Z , that is
a standard normal

Pr (−1.96 ≤ Z ≤ 1.96) = 0.95

That is 95% of the time a standard normal random variable will
lie between -1.96 and 1.96.



This is true for any standard normal so it has to be true for bθ−θ
σθ
,

thus

Pr

(
−1.96 ≤ θ̂ − θ

σθ
≤ 1.96

)
= 0.95

Now after doing some algebra, we will get a nice expression

.95 = Pr(−1.96 ≤ θ̂ − θ
σθ
≤ 1.96)

= Pr(−1.96σθ ≤ θ̂ − θ ≤ 1.96σθ)

= Pr(−1.96σθ − θ̂ ≤ −θ ≤ 1.96σθ − θ̂)

= Pr(−1.96σθ + θ̂ ≤ θ ≤ 1.96σθ + θ̂)

We call this a 95% confidence interval.



If you construct it in this way, it will cover the “true” θ 95% of the
time.

It is important to remember that what is random here is θ̂ and
not θ.

Thus it is the interval that is random, not the variable inside it.



Constructing a Confidence Interval for the expected
value of a Normal Distribution

Let’s start with the case of Yi ∼ N(µY , σ
2
Y ) and Yi and Yj are

independent for i 6= j , so cov(Yi ,Yj) = 0.

The sample mean Y is

Y =
1
N

N∑
i=1

Yi

Y is a random variable; what is its distribution?



Since it is a linear combination of normal random variables, it’s
normal. Its mean is

E(Y ) = µY

Its variance is

Var(Y ) =
σ2

Y
N



The standard error of an estimator is its standard deviation (i.e.
the square root of its variance), so we also have:

se(Y ) =
σY√

N

Thus

Y ∼ N

(
µY ,

σ2
Y

N

)
This is just a special case of what we learned above with Y
taking the place of θ̂ and µY taking the place of θ.

Thus
Pr(−1.96

σY√
N

+ Y ≤ µY ≤ 1.96
σY√

N
+ Y )



Confidence Intervals for Regression Coefficients

Now we want to construct confidence intervals for regression
coefficients.

Once again these are just special cases of θ̂.

Take β1 :
β̂1 ∼ N(β1,Var(β̂1)),

Now β1 takes the place of θ and β̂1 takes the place of θ̂ so that

.95 = Pr(−1.96se(β̂1) + β̂1 ≤ β1 ≤ 1.96se(β̂1) + β̂1)

Similarly for any of the other regression coefficients

.95 = Pr(−1.96se(β̂j) + β̂j ≤ β1 ≤ 1.96se(β̂1) + β̂1)

Lets look at some examples



Our first example is from the “RDCHEM” data set.

Lets just try the simple regression of profits on Research and
Development expenditure

We find that

β̂1 = 2.437

se
(
β̂1

)
= 0.1426

N = 32
K = 1

We want to construct a 95% confidence interval.

N-K-1=30



The critical value for a 2-tailed T test with 30 degrees of
freedom is 2.042

The confidence interval is

(−2.042se
(
β̂1

)
+ β̂1,2.042se

(
β̂1

)
+ β̂1)

= (−2.042× 0.1426 + 2.437,2.042× 0.1426 + 2.437)

= (2.146,2.728)

Which is what stata shows.



Now consider a regression of the hours worked in a year

Lets think about a 95% confidence interval for the hourly wage

β̂1 = −22.132

se
(
β̂1

)
= 11.727

N = 428
K = 5

This gives us 422 degrees of freedom which is large enough
that this is approximately normal



(−1.96se
(
β̂1

)
+ β̂1,1.96se

(
β̂1

)
+ β̂1)

= (−1.96× 11.72− 22.13,1.96× 11.72− 22.13)

= (−45.12,0.84)



Next lets get a 90% confidence interval for the number of kids
less than 6.

Again we will be approximately normal, but for a 10% interval
the critical value is 1.645.

(−1.645se
(
β̂4

)
+ β̂4,1.645se

(
β̂4

)
+ β̂4)

= (−1.645× 99.50− 337.48,1.645× 99.50− 337.48)

= (−501.16,−173.80)

Note that this is smaller than the 95% interval

That makes sense
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Hypothesis Testing

First lets think more generally what Hypothesis testing is and
then worry about statistical inference

Let H0 be some hypothesis that you want to test.

Suppose that it is true. We then ask whether the world seems
consistent with it.

Specifically: we perform some experiment and see if the results
of the experiment are consistent with the hypothesis



Examples

1 There is no gravity
2 I only have one set of keys and I left them in the car
3 I always wear socks

We can easily design experiments and test these hypotheses



In statistics life isn’t so easy

We can almost never reject for sure

That is we very rarely know for sure that the null is definitely
wrong

For example, consider the hypothesis H0 : µx = 0

Even if x̄ = 1000000 it is still possible (although unlikely) that
the true value is 0



In doing hypothesis testing we formalize these ideas

We must deal with the following:

Type 1 error=α = Probability of rejecting H0 even when it is true

We would like this to be zero, but it statistics it generally can not
be



Now we need to construct a test statistic that has to have two
features:

1 Depends on the data in a known way
2 We know its distribution when the null hypothesis is true

We then choose an acceptance region A so that when t /∈ A we
reject the null hypothesis

We choose A in such a way that

Pr(reject H0 | H0 true) = α



Lets look at some examples



Example 1: Probability of Getting a Job

Suppose you are out trying to get a job and you think that the
probability of getting a job offer is one half.

That is
H0 : Pr (J) = 0.5

Now you go out and interview with a bunch of different firms
until you get a job.

You want to test the null hypothesis that the probability of
getting a job was really 0.5 depending on how long it takes you
to find one

Lets define a test statistic t to be the number of jobs for which
you interview until you get one



Is this a legitimate test statistic?

It depends on the data.
I know its distribution when the null hypothesis is true



To see the last part notice that

Prob. Job at first interview(t = 1) 0.5
Prob Job at second interview(t = 2) 0.25
Prob. Job at third interviews(t = 3) 0.125
Prob. Job at fourth interview(t = 4) 0.0625
Prob. Job at fiifth interview(t = 5) 0.03125
Prob. Job after more than 5 interviews(t ≥ 6) 0.03125



How do we do this?

Set α = 0.0625 and choose our acceptance region

A = {1,2,3,4}

Thus we reject when we reach our fifth interview

Probability of getting to fifth interview
= Probability of being rejected after 4 interviews
= 0.0625
= α



Example 2: Sample Mean

Suppose
xi ∼ N

(
µx , σ

2
x

)
Take the null hypothesis to be that µx is some particular value,

H0 : µx = x∗

Now set
t =

x̄ − x∗

ŝe(x̄)



Does this satisfy our criteria?

It depends on the data. We know x∗ and we can estimate

x̄ and ŝe(x̄).

We know its distribution under the null hypothesis. Under
the null

xi ∼ N(x∗, σ2
x )

So we know that

x̄ ∼ N
(

x∗,
σ2

x
N

)
and from statistics class you learned that

t ∼ TN−1

(that is a T distribution with N-1 degrees of freedom)



Example 3: Regression Coefficient

Suppose we want to test something about β1.

In particular suppose we want to test that

H0 : β1 = β∗1



What should we use as our test statistic?

It needs to depend on the data. That is given a set of X’s
and Y’s, I need to be able to get the test statistic
I need to know its distribution under the null hypothesis.

We know that under the assumption of the classical linear
regression model and under the null hypothesis

β̂1 ∼ N(β∗1, se(β̂1)2)

so
β̂1 − β∗1
se(β̂1)

∼ N(0,1)

and

t =
β̂1 − β∗1
ŝe(β̂1)

∼ TN−K−1



There is still an issue we have not dealt with at all

We have talked about how hypothesis testing works and what
we need to do it.

However, we have not talked at all about how we choose the
acceptance region

At this point anything will work as long as the probability of
rejection is α.

In particular if we know that our distribution is TN−K−1there are
many ways to choose the region that will work.

How do we choose the right one?











Power

Our main criterion for picking the right region is

β = Pr(Reject H0 | H0 false)

We want to choose the region so that fixing the size= α, the
power is as large as possible Lets focus on the null hypothesis
that

β∗1 = 0

Suppose in reality that the null is false and that instead

β1 = 3



What is the distribution of the test statistic under this
alternative?

t =
β̂1

ŝe(β̂1)

=
3

ŝe(β̂1)
+
β̂1 − 3

ŝe(β̂1)

∼ 3

ŝe(β̂1)
+ TN−K−1

This is going to be a T distribution shifted to the right.



Lets think about the following four 95% acceptance regions

A = {−1.96 ≤ t ≤ 1.96}
B = {t ≤ 1.64}
C = {−1.64 ≤ t}
D = {t ≤ −0.06, t ≥ 0.06}

Assuming that N-K-1 is large so this is approximately normal,
all 4 have the same size α = 0.05.



That is under the null hypothesis

Pr(A | H0) = Pr (−1.96 ≤ t ≤ 1.96 | H0) = 0.95
Pr(B | H0) = Pr (t ≤ 1.64 | H0) = 0.95
Pr(C | H0) = Pr (−1.64 ≤ t | H0) = 0.95
Pr(D | H0) = Pr (t ≤ −0.06, t ≥ 0.06 | H0) = 0.95











For this example which region gives us the most power?

Answer: region B

What about if under the alternative β1 = −3?

Region C

What if you are not really sure whether β1 is positive or
negative under the null?

Then you would probably choose region A.

Would you ever choose D?

Not for any reason I can think of

Lets look at a couple of examples.



Cigarette Smoking

Do a higher price of cigarettes lead people to smoke less?

We can write the null hypothesis as

Ho : β1 = 0

The interesting alternative is β1 < 0 so it makes sense to use a
one sided test.

N-K-1 is large enough that we will use the normal distribution
(degrees of freedom=∞)



Thus the critical value is -1.645. We reject if

−1.64 >T

=
−.0317
0.100

=− 0.32

We fail to reject the null.

Alternatively we could use a two-sided test. Then we reject if
t < −1.96 or if t > 1.96

We don’t reject either of these



We can also try a one-sided test at the 10% level

The critical value here is -1.282

We are still nowhere close

You can see from stata that the p-value is 0.751

You would never use one that large



Wine and Death

Lets look at the relationship between wine consumed and
death.

Here you would not really know what to think, so a two sided
test makes more sense.

We have 21 observations so the degrees of freedom is 19.

This gives the critical value of a 95% test at 2.093. Calculate

t =
−16.26

8.19
= 1.98

We fail to reject the null.



What about a 90% test. In that case the critical value is 1.729

Again we can look at the p-value which is 0.062

This means that

we would reject a test of size 0.061
we would fail to reject with a size of 0.063



Even if you reject the null does that mean that you should drink
a lot of wine?

Suppose (and I do not know the exact numbers but am making
them up), you can either drink wine or do yoga

Say that the doctor tells you running will save 30 lives per
100,000

Is drinking wine as effective?



The null hypothesis now is

β1 = −30

The test statistic is now

t =
β̂1 + 30

ŝe(β̂1)

=
−16.26 + 30

8.20
= 1.68

The critical values are the same as before so we fail to reject
the null both at the 5% and 10% level



Testing linear combination of parameters

Sometimes we want to test more complicated tests about more
than parameters at once

One really nice example is work by Kane and Rouse

They want to ask, what is worth more, a year in community
college or a year at a four year college.

They look at the regression

log(wage)i = β0 + β1jci + β2univi + β3experi + ui

where jci is the number of years of junior college while univi is
the number of years of university training and experi is
experience.



It is interesting to test the null hypothesis

Ho : β1 = β2

How do we do this?

Note that we can write this as

Ho : β1 − β2 = 0

Now it looks a bit like what we did before



Remember that
β̂1 − β̂2

is a sum of normal random variables, so it is normal

E
(
β̂1 − β̂2

)
= β1 − β2

var
(
β̂1 − β̂2

)
= var

(
β̂1

)
+ var

(
β̂2

)
− 2cov

(
β̂1, β̂2

)
Thus under the null hypothesis

β̂1 − β̂2√
var

(
β̂1 − β̂2

) ∼ N(0,1)



and when we deal with the fact that we estimate the standard
error

β̂1 − β̂2√
̂

var
(
β̂1 − β̂2

) ∼ TN−K−1



There is no easy way to do this in stata, but there are two other
ways to do it.

The first way is to redefine the model slightly.

What we care about testing is β1 − β2 so lets define

θ1 = β1 − β2.

Also define
totcol = jc + univ

which is just the total number of years of college that a person
has.



Then think about the population regression function

log(wage)i = β0 + β1jci + β2univi + β3exper + ui

= β0 + (θ1 + β2) jci + β2univi + β3exper + ui

= β0 + θ1jci + β2 (jc + univi) + β3exper + ui

= β0 + θ1jci + β2totcol + β3exper + ui

This gives us a nice way of testing the restriction

It also makes sense intuitively.
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The other test one might want to do is to test more than one
null hypothesis at a time.

For example in the previous example you might be interested in
testing the joint null hypothesis

H0 : β1 = 0
β2 = 0.

We don’t know how to do this yet.



To get some intuition lets think about comparing a restricted
regression model with the unrestricted model.

Lets write the unrestricted model as

log(wage)i = βu
0 + βu

1 jci + βu
2 univi + βu

3 experi + uu
i

The restricted model is

log(wage)i = βr
0 + βr

3experi + ur
i .

Under the null hypothesis these models are equivalent.



Intuitively

If the null hypothesis is true the two models are the same.
That means when we include jci and univi into the model,
the sum of squared residuals should not change much.
However, if the null hypothesis is false that means that at
least one of β1or β2 is nonzero and the sum of squared
residuals should fall when we include these new variables.

This seems like it could be the basis of a test.



If the sum of squared residuals changes a lot we reject the null
hypothesis.

It only makes sense to to this as a one sided test.

It turns out it works the following statistic

F =
(SSRr − SSRu) /q
SSRu/(N − K − 1)

works.



Here q is the difference in degrees of freedom in the restricted
model versus the unrestricted model

Equivalently it is the number of restrictions that you are testing
in the null hypothesis.

In the case we are looking at, q = 2

Note that it increases with SSRr so we reject when it is a big
number.





We call this an F distribution with q degrees of freedom in the
numerator and N − K − 1 degrees of freedom in the
denominator.

We can also write it in terms of R2,

F =
(SSRr − SSRu) /q
SSRu/(N − K − 1)

=

(
SSRr
SST −

SSRu
SST

)
/q

SSRu
SST /(N − K − 1)

=

(
R2

u − R2
r
)
/q(

1− R2
u
)
/(N − K − 1)



This gives us a really easy way to test the joint hypothesis that
all of the coefficients in the regression are zero other than the
intercept.

That is the null hypothesis

H0 : β1 = β2 = ... = βK = 0.

What is the R2 in the restricted model?

It has to be zero.

Thus the test statistic for this regression is just

F =
R2/q(

1− R2
)
/(N − K − 1)



Now back to the two year college example.

I said there was another way to do it.

Well there is nothing that says you can’t use an F-test when you
only have one restriction (q = 1).

For the community college model the restricted model would
have β1 = β2 so we can write this as

log(wage)i = β0 + β1jci + β2univi + β3exper + ui

= β0 + β1jci + β1univi + β3exper + ui

= β0 + β1 (jci + univi) + β3exper + ui

= β0 + β1totcol + β3exper + ui



We have

SSRu = 1250.54352
SSRr = 1250.94205

q = 1
N − K − 1 = 6760

Thus we get

F =
(SSRr − SSRu) /q
SSRu/(N − K − 1)

=
(1250.94205− 1250.54352) /1

1250.54352/6760
= 2.15

The critical value for an F-test with 1 degree of freedom in the
numerator and∞ in the denominator is 3.84 so we fail to reject
the null hypothesis.



Relationship between F and T tests

It turns out that this F-test is closely related to the t-test

In fact the the t-statistic squared has an F distribution with 1
degree of freedom in the numerator.

Note that 1.962 = 3.84 the critical value of the F-test.



Testing in stata

Stata does things slightly different than the way I presented it.

Lets look at a number of examples
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Example 1: Baseball Salaries

Use the data mlb1 from Wooldridge

First test the overall significance of the regression

F =
R2/q(

1− R2
)
/(N − K − 1)

=
0.6278/5

(0.3722) /(347)

= 117.06

You can see that stata did it for you already



Test whether the performance variables are jointly zero That is

H0 : β3 = β4 = β5 = 0

Run the restricted model which gives an R2 = 0.5791 Then you
get

F =

(
R2

u − R2
r
)
/q(

1− R2
u
)
/(N − K − 1)

=
(0.6278− 0.5971) /3

(0.3722) /(347)

= 9.54

The critical value is 2.6 so we reject



Example 2: Firm size and participation rate

Lets look at the relationship between various things and
participation rates in 401K plans

Does type of plan matter?

Does size of firm matter?

Even though firm size is statistically significant it is not
“economically significant.”



Example 3: The Death Penalty

The death penalty is an extremely controversial policy

Proponents claim it deters crime

Opponents claim there is no evidence of this

Lets look at the evidence using death.do and murder.raw

Key variables:

mrdrte murders per 100,000 population
exec total executions, past 3 years



One conclusion from this is that there is no evidence that the
death penalty deters crime

In fact point estimates go other way, murder rises with
executions



Therefore there is no argument for it

This is exactly the type of argument about which one has to be
very careful

Just because a coefficient is insignificant doesn’t mean it is zero

Confidence interval is (-.218, .0.548)

Lower bound is about -0.2

Interpreting this number as causal would mean that one
execution every three years would save 0.2 lives for every
100,000 people each year



Lets try to figure out whether this is a big number or not

The state of Wisconsin is about 5,600,000

That -0.5 would mean that every execution saves about

5,600,000
100,000

× 0.2× 3 = 33.6

lives

This seems like a big number to me



Can’t reject that deterrent effect is zero
Also can’t reject that it is really powerful
Also can’t reject that is is really powerful, but goes in other
direction
In other words this analysis is completely uninformative

I suspect gun control works in exactly the same way (but
opposite politically)
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