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Regression Model

We are actually going to derive the linear regression model in 3
very different ways

While the math for doing it is identical, conceptually they are
very different ideas
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Descriptive Analysis

Here our goal is simply to estimate E(y | x)

However, when x is continuous we can’t do it directly

thus, we need a model for what this looks like

The easiest model I can think of is

E(y | x) = β0 + β1x



To interpret it notice that

E(y | x = 0) = β0

you can also see that β1 is the slope coefficient

∂E(y | x = 0)

∂x
= β1



Estimation

Now we need some way to estimate it
It will be useful to define

u = y − β0 − β1x

What do we know about u?
The fact that E(y | x) = β0 + β1x means that

E(u | x) =E(y − β0 − β1x | x)

=E(y | x)− β0 − β1x
=β0 + β1x − β0 − β1x
=0



The fact that E(u | x) = 0 means two important things:

1

E(u) = 0

2 The expected value of u does not change when we change
x .
This second thing has a number of implications, but the
most useful (and intuitive) is that

0 = cov(u, x)

= E(ux)− E(u)E(x)



Putting this together we have two conditions:

E(u) = 0
E(ux) = 0



What was the point of all of that?

To estimate an expectation we use a sample mean.

What if replace the expectations above with sample mean
expressions?

Before doing this lets be clear what we mean the sample.

Assume that I observe a sample size of N

Let i = 1, ...,N index the people in the data

Lets look at this for the voting data set



We will write the population regression model as

yi = β0 + β1xi + ui

where (for example) yi is the value of y for individual i .

Now lets go back to the equations.

To think about estimation lets define the sample regression
model

yi = β̂0 + β̂1xi + ûi

where

β̂0 and β̂1 are our estimates of β0 and β1 from the sample
ûi is defined as

ûi = yi − β̂0 − β̂1xi



How do we want to estimate this model?

Well if β̂0 and β̂1are like β0 and β1, then ûi should be like ui .

We know that in the population E(ui) = 0 so it makes sense to
force this to be approximately true in the sample

This is the idea of a sample analogue

If the sample looks like the population, then lets force things to
be true in the sample which we know would be true in the
population



0 =
1
N

N∑
i=1

ûi

=
1
N

N∑
i=1

(
yi − β̂0 − β̂1xi

)

=
1
N

N∑
i=1

yi −
1
N

N∑
i=1

β̂0 −
1
N

N∑
i=1

β̂1xi

=
1
N

N∑
i=1

yi − β̂0 − β̂1
1
N

N∑
i=1

xi

= y − β̂0 − β̂1x

Which I can write as
β̂0 = y − β̂1x



Now we have two unknowns an one equation, we need one
more.

The population expression is

E(uixi) = 0.



The sample analogue of this is

0 =
1
N

N∑
i=1

ûixi

=
1
N

N∑
i=1

(
yi − β̂0 − β̂1xi

)
xi

=
1
N

N∑
i=1

[
yixi − β̂0xi − β̂1x2

i

]

=
1
N

N∑
i=1

yixi −
1
N

N∑
i=1

β̂0xi −
1
N

N∑
i=1

β̂1x2
i

=
1
N

N∑
i=1

yixi − β̂0
1
N

N∑
i=1

xi − β̂1
1
N

N∑
i=1

x2
i



now lets take this equation and plug in the fact that β̂0 = y − β̂1x

0 =
1
N

N∑
i=1

yixi − β̂0
1
N

N∑
i=1

xi − β̂1
1
N

N∑
i=1

x2
i

=
1
N

N∑
i=1

yixi −
(

y − β̂1x
) 1

N

N∑
i=1

xi − β̂1
1
N

N∑
i=1

x2
i

=
1
N

N∑
i=1

yixi −
1
N

N∑
i=1

yxi + β̂1
1
N

N∑
i=1

xix − β̂1
1
N

N∑
i=1

xixi

=
1
N

N∑
i=1

(yi − y) xi − β̂1
1
N

N∑
i=1

xi (xi − x)



Next we will use a result about means that we discussed in the
statistics review

N∑
i=1

xi (xi − x) =
N∑

i=1

xi (xi − x)−
N∑

i=1

x (xi − x)

=
N∑

i=1

(xi − x)2

N∑
i=1

(yi − y) xi =
N∑

i=1

(yi − y) xi −
N∑

i=1

(yi − y) x

=
N∑

i=1

(yi − y) (xi − x̄)



Using that we can solve for β̂1

β̂1 =
1
N
∑N

i=1 (yi − y) (xi − x̄)
1
N
∑N

i=1 (xi − x)2

and we still know that

β̂0 = y − β̂1x

And we are done.



Note that since

β̂1 =
1
N
∑N

i=1 (yi − y) (xi − x̄)
1
N
∑N

i=1 (xi − x)2

it is essentially the sample covariance between x and y divided
by the sample variance of x .

The sample variance must be positive therefore:

The regression coefficient, the covariance, and the
correlation coefficient must all have the same sign
They will only be zero if all of them are zero



Voting Example

Lets use this to think about the voting example

We can say nothing about causality.

There is a clear positive relationship, but it could be due to
anything

x → y Spending a lot of money gets people to like you
which leads to more votes

z → x , z → y People who are popular attract a lot of money
and get a lot of votes

y → x Its all about influence. I only give money to the
people who are going to win so I can influence
their future votes.



CEO example

As another example lets consider the relationship between
CEO salary and the Return on Equity

This comes from the data set CEOSAL1 in Wooldridge

We know that CEOs make tons of money, but is it just a scam
or are they actually worth something?

The key variable is return on equity (roe) defined as “net
income as a percentage of common equity”

A number of 10 means if I invest a $100 in equity in a firm I
earn $10 each year

Salary is measured in terms of $1000 per year



We will write the conditional expectation as

E(salary | roe) = β0 + β1roe

We can run this regression in stata

For every point higher in return on equity CEO salary raised by
$18,501 per year

Really not that much if you think about it.



Is this causal?

Again we have all of the three possibilities

x → y When stock price does well, CEOs get a raise
z → x , z → y Good CEOs tend to make a lot of money and

their companies perform well
y → x By paying my CEO more I get her to work harder

and push the stock price up
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To really say something about causality we need to make some
more assumptions

This involves writing down a “structural data generating model”

This will look similar to what we have been doing, but
conceptually is very different

For the conditional expectation data we started with the
data and then asked which model could help summarize it
For the structural case we start with the model and then
use it to say what the data will look like



OK we need a model to do this

We will use the same regression model:

y = β0 + β1x + u

and think about it this way:

1 β0 and β1are real number which are out there in nature
and we want to uncover them

2 you choose x
3 Nature (or God) chose u in a way that is unrelated to your

choice of x

This is now a real causal model



suppose that

y is your annual income
x is your education
β0 = 10,000
β1 = 5000
u = −5000

So what does this mean?



Suppose I choose different levels of education, here is the
earnings I will get

Education Earnings
0 $5000
12 $65,000
16 $85,000
18 $95,000



It might seem a little goofy to assume that u were known as you
might think that you make your college going decision without
knowing u

Actually, it kind of doesn’t really matter

If you know the model you know that graduating college (16)
versus not going to college (12) is worth about $20,000 per year

Probably a pretty good investment



What is u?

It is things that affect your earnings other than education.

Examples:

Intelligence
Work Effort
Smoothness
Family Connections
race
gender
age



Estimation

Now we need a way to estimate our model In particular we
want to estimate β0 and β1

The question is how is u determined?

The standard assumption (at least the one to start with) is that
u is essentially assigned at random

We can write this as
E (u | x) = 0



Note that this is the same as what we did before, but
conceptually very different

Before u was defined simply as y − β0 − β1x it didn’t
actually mean anything
Now we think of u as this real thing that is actually out there
and means something-it is just that we can’t observe it



As before, the fact that we have assumed E (u | x) = 0 really
means two separate things one of which is a big deal the other
isn’t:

1 E (u | x) does not vary with x
2 E(u) = 0 (as opposed to some other number)

The first is a really important assumption.



The second really isn’t. Suppose we instead assumed that

E (u | x) = 6

with the model
β0 + β1x + u

This is equivalent to another model

γ0 + γ1x + ν

with

γ0 =β0 + 6
γ1 =β1

ν =u − 6



Notice that now

E (ν | x) = E (u − 6 | x)

= E (u | x)− 6
= 6− 6
= 0

β1and γ1 are the same and that is really what we care
about (remember the education model above)
Thus, the fact that we pick zero is really a Normalization. It
makes the model well defined (identified) without any real
imposition on the data
However, the fact that E (u | x) does not vary with x is
much more than a normalization. It has real content.



Now that we have a model how do we estimate it?

Now nothing is really any different than before

We can write down the sample regression function as

yi = β̂0 + β̂1xi + ûi

we know that

E(ui) =0
E (uixi) =0



So it makes sense to use the sample analogues

1
N

N∑
i=1

ûi =0

1
N

N∑
i=1

ûixi =0

which will give you

β̂1 =
1
N
∑N

i=1 (yi − y) (xi − x̄)
1
N
∑N

i=1 (xi − x)2

β̂0 =y − β̂1x

exactly as before

It is only the interpretation that has changed.



Lets look back on some of our models and interpret things in
this way.

Let me be very clear about something: the question of whether
this additional assumption is reasonable or not is definitely
questionable in all of these cases

Lets worry about that later.

For now, just take the assumption as given and worry about the
interpretation.



Voting Example

For the voting example we get the sample regression function

voteA = 26.812 + 0.463shareA + ûi

As usual the β̂0 parameter is not very interesting. It tells me the
fraction of the votes I would get if I spent no money.

I would get about 27% of the vote on average if I spent no
money (thats actually pretty good if you think about it)

The key thing is that for every 1% that I outspend my opponent,
my votes increase by 0.463.



Suppose that currently I am spending the same amount as my
opponent, then

shareA = 50

If I double my spending (and my opponent does not react) then

shareA = 67

I would get
17× 0.463 = 7.8

more of the vote

Is it worth it? (I don’t know the answer to this, but this is the
economic question)



CEO Example

For the CEO model we got

salary = 963.191 + 18.501roe + ûi

I would interpret this as the CEO’s pay schedule

If the CEO can get the return on Equity to increase by 10
percentage points more, she will earn an extra $185,010 next
year

This really is not that much money given how large a 10
percentage point increase is



Schooling Example

Lets think about the schooling example

In some ways income is better, but Wooldridge used hourly
wage instead so lets use that

The sample regression model is

wagei = β̂0 + β̂1educi + ûi

We use the data set wage1 which gives data from 1976

we got
wagei = −0.90 + 0.54educi + ûi

For every extra year of education I get, my wage increase by
about 50 cents an hour



Thus four years of education is worth

4× 0.54 = 2.16

an hour.

To get this into annual income figure if I am full time, I work
about 2000 hours per year (50 weeks ×40hours per week).

This works out to about $4,320 a year

Was it worth it?
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Lets completely shift gears

Imagine the following

You have a bunch of data on xi and yi now
You know the value of x∗ tomorrow and want to predict
what the value of y will be tomorrow



Examples

Inflation Rate this year, Unemployment Rate next year
Corporate Profits Today, Stock Price Tomorrow
SAT Scores, College GPA



We are going to use the sample regression model.

In order to do prediction we need a model.

Lets once again use the linear model

yi = β̂0 + β̂1xi + ûi

except now we also want to define a predicted value as

ŷi = β̂0 + β̂1xi

Our goal is to predict

ŷ∗ = β̂0 + β̂1x∗

It is important to note that this is a very different question than
the causal model question in that WE DO NOT CHOOSE x∗



Think about the inflation/unemployment example to see the
difference between the following two questions:

I am Ben Bernanke. If I change the inflation rate to 2.3%
what will happen to the unemployment rate next year
I observe the current inflation rate is 2.3%, given that what
is my best guess of the unemployment rate next year

The second question is much less ambitious (which doesn’t
mean it isn’t hard) This second question is the forecasting
question

How might I do this?



Well, I want y to be close to ŷ∗ so for a good model we want the
ŷi ’s “close” to the yi ’s.

How do we decide what close means?

We want some function to measure the “distance” between ŷi
and yi

One obvious example is just how far apart they are from each
other

The first thing to try is just the absolute difference between the
two ∣∣yi − ŷi

∣∣



The problem is the absolute value is a really ugly function



A much smoother function is(
yi − ŷi

)2

This looks much nicer



We have shown what the difference is for one data point, but
we want to do it for all of the data points

N∑
i=1

(
yi − ŷi

)2
=

N∑
i=1

(
yi − β̂0 − β̂1xi

)2

This says how close our model is to the data.

We want it as close as possible so we want to choose β̂0 and
β̂1 to minimize this function.

To do this we take the derivative of this function with respect to
β̂0 and β̂1 and set to zero



First consider β̂0,

0 =
∂
∑N

i=1

(
yi − β̂0 − β̂1xi

)2

∂β̂0

=
N∑

i=1

∂
(

yi − β̂0 − β̂1xi

)2

∂β̂0

=
N∑

i=1

−2
(

yi − β̂0 − β̂1xi

)

=
1
N

N∑
i=1

(
yi − β̂0 − β̂1xi

)

=
1
N

N∑
i=1

yi −
1
N

N∑
i=1

β̂0 −
1
N

N∑
i=1

β̂1xi

= y − β̂0 − β̂1x



or
β̂0 = y − β̂1x

which is exactly what we got before



Next consider β̂1

0 =
∂
∑N

i=1

(
yi − β̂0 − β̂1xi

)2

∂β̂1

=
N∑

i=1

∂
(

yi − β̂0 − β̂1xi

)2

∂β̂1

=
N∑

i=1

−2xi

(
yi − β̂0 − β̂1xi

)

=
1
N

N∑
i=1

xi

(
yi − β̂0 − β̂1xi

)



=
1
N

N∑
i=1

xiyi −
1
N

N∑
i=1

xi β̂0 −
1
N

N∑
i=1

xi β̂1xi

=
1
N

N∑
i=1

xiyi − β̂0
1
N

N∑
i=1

xi − β̂1
1
N

N∑
i=1

x2
i



Now lets plug in the value for β̂0

0 =
1
N

N∑
i=1

xiyi −
(

y − β̂1x
) 1

N

N∑
i=1

xi − β̂1
1
N

N∑
i=1

x2
i

=
1
N

N∑
i=1

xi (yi − y)− β̂1
1
N

N∑
i=1

xi (xi − x)

for the same reasons as before we can write this as

β̂1 =
1
N
∑N

i=1 (xi − x) (yi − y)
1
N
∑N

i=1 (xi − x)2

again exactly the same as before



Again we have another way of thinking about the same
regression model.

Lets use stata to think about a few examples

Inflation and Unemployment
SAT scores and college GPA



Since we got

β̂0 =1.2792

β̂1 =0.0008918

Thus suppose I have two applicants, one with SAT scores of
1000, the other with 12000

what is my forecast of their GPAs

1.2792 + 0.0008918× 1000 = 2.17
1.2792 + 0.0008918× 1200 = 2.35
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