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Next we will address some properties of the regression model

Forget about the three different motivations for the model, none
are relevant for these properties
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Consider the following terminology from Wooldridge



Graphically the model is defined in the following way

Population Model



Sample Model



Also when we have the regression model

yi = β̂0 + β̂1xi + ûi

we call this a regression of “y on x”



Normal Equations

It must be the case that

0 =
1
N

N∑
i=1

ûi

=
1
N

N∑
i=1

(
yi − β̂0 − β̂1xi

)

0 =
1
N

N∑
i=1

xi ûi

=
1
N

N∑
i=1

xi

(
yi − β̂0 − β̂1xi

)



This is not approximately true, this is exactly true

This really is not surprising

These are the equations we started with when we derived β̂0
and β̂1



Goodness of Fit

We want to say something about how well our model fits the
data



We will make use of the following three things

Total Sum of Squares (SST)

SST =
N∑

i=1

(yi − ȳ)2

Explained Sum of Squares (SSE)

SSE =
N∑

i=1

(ŷi − ȳ)2

Residual Sum of Squares (SSR)

SSR =
N∑

i=1

û2
i



It turns out that there is a nice relationship between these
concepts

SST =
N∑

i=1

(yi − ȳ)2

=
N∑

i=1

((yi − ŷi) + (ŷi − ȳ))2

=
N∑

i=1

(ûi + (ŷi − ȳ))2

=
N∑

i=1

[
û2

i + (ŷi − ȳ)2 + 2ûi (ŷi − ȳ)
]



=
N∑

i=1

û2
i +

N∑
i=1

(ŷi − ȳ)2 +
N∑

i=1

2ûi (ŷi − ȳ)

=SSR + SSE +
N∑

i=1

2ûi (ŷi − ȳ)



So this is really nice except for that last part. Lets deal with it

N∑
i=1

2ûi (ŷi − ȳ) =2
N∑

i=1

ûi

({
β̂0 + β̂1xi

}
−
{
β̂0 + β̂1x

})

=2
N∑

i=1

ûi

(
β̂1xi − β̂1x

)

=2β̂1

N∑
i=1

ûixi − 2β̂1x
N∑

i=1

ûi

=0

Thus
SST = SSE + SSR



This gives us a really nice way of describing the goodness of fit
of the model

R2 =
SSE
SST

= 1− SSR
SST



Lets look at examples of models that fit well versus those that
don’t
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Units

What happens when we change the units of measurement of a
variable?

Lets think about the smoking example we looked at in the
Statistics Review

Before we looked at whether someone smoked on Birthweight

Instead lets look at the number of cigarettes per day on
birthweight from the data set bwght

The units here are sort of arbitrary, we can look at at cigarettes
per day and weight in ounces

We could have just as easily looked at packs per day and
weight in pounds.

Hopefully this shouldn’t change the basic results



Lets define the following four variables:

O Weight in Ounces
L Weight in Pounds
C Cigarettes per day
P Packs per day

Notice that

O =16L
C =20P



Next think about the following three Conditional Expectations:

E (O | C) =β1
0 + β1

1C

E (L | C) =β2
0 + β2

1C

E (O | P) =β3
0 + β3

1P

What is the relationship between these things?



It should be the case that

β1
0 + β1

1C =E (O | C)

=E (16L | C)

=16E (L | C)

=16β2
0 + 16β2

1C

Thus it should be the case that

β1
0 =16β2

0

β1
1 =16β2

1

It turns out that this is exactly true when you run the regression



Along Similar lines

β3
0 + β3

3p =E (O | P = p)

=E (O | C = 20p)

=β1
0 + β1

1 (20p)

Then it should be the case that

β3
0 = β1

0

β3
1 = 20β1

1

Once again it turns out that this is precisely true in the data.



Functional Form

A really important assumption that we have made is that the
model is linear

However that is really not as strong as an assumption as you
might think because we can pick y and x to be whatever we
want



For example consider the following figure



This clearly isn’t linear, wages are growing exponentially with
education

However, this is easy to fix if wages are growing exponentially
with education, then the logarithm of wages are growing
linearly with wages

Rather than regressing wages on schooling we regress the log
of wages on schooling

log(wagei) = β0 + β1Edi + ui



Figuring out exactly how to do this involves playing with the data

Here are some specifications and what they are called

Lets look at a number of different examples
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Classical Linear Regression

In this section I will follow section 2.5 of Wooldridge very closely

Our goal is to derive the mean and variance of the OLS
estimator

In doing so we need to make some assumptions about the
population and the sample.

This set of assumptions is often referred to as the Classical
Linear Regression Model



First we need to define the basic model.

Assumption (SLR.1-Linear in Parameters)

In the population model, the dependent variable, y , is related to
the independent variable, x, and the error (or disturbance), u,
as

y = β0 + β1x + u,

where β0 and β1 are the population intercept and slope
parameters, respectively.

Notice that in making this assumption we have really moved to
the “structural world.” That is we are really saying that this is the
actual data generating process and our goal is to uncover the
true parameters.



Now we need to assume something about the sample

Assumption (SLR.2-Random Sampling)

We have a random sample of size n, (xi , yi), i = 1, ...,n
following the population model defined in SLR.1.

This now defines the basic environment.



Next we need an assumption that allows us to estimate the
model

Assumption (SLR.3-Sample Variation in the Explanatory
Variable)

The sample outcomes on x , namely, {xi , i = 1, ...,n} , are not all
the same value.



Without this assumption we would have real trouble.

Practically the denominator for β̂1 is
∑N

i=1 (xi − x)2 .

This would be zero if there is no variation in xi .



Further suppose that the data looked like this:

How would you estimate the slope?



Assumption (SLR.4-Zero Conditional Mean)

The error u has an expected value of zero given any value of
the explanatory variable. In other words

E (u | x) = 0.

This will turn out to be the most important assumption for
causal work.



Our goal now is to figure out

E
(
β̂0

)
and

E
(
β̂1

)
I am now going to be explicit about something that Wooldridge
is a bit loose about.

We need to use the law of iterated expectations which states
that for random variables W and Z ,

E [E (Z |W )] = E [Z ]

This can kind of give you a headache to think about. Rather
than trying to derive it and get into details, lets just see why it is
useful.



This means that

E
[
E
(
β̂1 | x1, ..., xn

)]
= E

(
β̂1

)
Which further means that if we can show that

E
(
β̂1 | x1, ..., xn

)
= β1

then
E
(
β̂1

)
= β1.

This is what we will do (and what Wooldridge does as well).



First we will make use of the fact that

β̂1 =

∑N
i=1 (xi − x̄) (yi − ȳ)∑N

i=1 (xi − x̄)2

=

∑N
i=1 (xi − x̄) (β0 + β1xi + ui − β0 − β1x̄ − ū)∑N

i=1 (xi − x̄)2

=

∑N
i=1 (xi − x̄) (β1xi − β1x̄)∑N

i=1 (xi − x̄)2 +

∑N
i=1 (xi − x̄) (ui − ū)∑N

i=1 (xi − x̄)2

= β1

∑N
i=1 (xi − x̄) (xi − x̄)∑N

i=1 (xi − x̄)2 +

∑N
i=1 (xi − x̄) (ui − ū)∑N

i=1 (xi − x̄)2

= β1 +

∑N
i=1 (xi − x̄) (ui − ū)∑N

i=1 (xi − x̄)2



Then notice that

E
(
β̂1 | x1, ..., xN

)
=E

(
β1 +

∑N
i=1 (xi − x̄) (ui − ū)∑N

i=1 (xi − x̄)2 | x1, ..., xN

)

=β1 +

∑N
i=1 (xi − x̄) E (ui − ū | x1, ..., xN)∑N

i=1 (xi − x̄)2

=β1

This means that β̂1 is UNBIASED



This is a really nice property

Thinking about it, the only assumption that was really important
for this was SLR.4

Lets go through a number of examples and think about
causality and think about whether we believe this assumption
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Omitted Variable Bias

In general the problem is that there is some other variable out
there that affects y other than x .

(The material I am discussing here is covered in Wooldridge in
Chapter 3 rather than Chapter 2)

To see why this is a problem suppose that in reality the
unobserved variable depends on two things x and z so that it is
still true that

y = β0 + β1x + u,

but now suppose that

u = β2z + ε

and further we are worried that x and z are related.



Lets think of this as determined by the model

z = δ1x + ξ

Now make the following assumptions about these new error
terms

E (ε | x) = E (ξ | x) = 0.

Does this satisfy the assumptoins of the classical linear
regression model?

We are assuming all of them except SLR.4



For that one notice that

E (u | x) = E (β2z + ε | x)

= β2E (z | x) + E (ε | x)

= β2E (δ1x + ξ | x)

= β2δ1x



Lets think about the bias of OLS again

E
(
β̂1 | x1, ..., xn

)
=E

(
β1 +

∑n
i=1 (xi − x̄) ui∑n
i=1 (xi − x̄)2 | x1, ..., xn

)

=β1 +

∑n
i=1 (xi − x̄) E (ui | x1, ..., xn)∑n

i=1 (xi − x̄)2

=β1 +

∑n
i=1 (xi − x̄)β2δ1xi∑n

i=1 (xi − x̄)2

=β1 + β2δ1

∑n
i=1 (xi − x̄) xi∑n
i=1 (xi − x̄)2

=β1 + β2δ1



Lets think about the sign of the bias

β2 δ1 Bias
+ + +
+ - -
- + -
- - +



What is the best solution for omitted variable bias?

Don’t omit the variable.

That is the motivation for the Multiple Regression model that we
will consider next.
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