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In this set of lecture notes we will learn about heteroskedasticity
and serial correlation.

They are closely related problems so I will deal with them
together



Lets go back to think about the classic regression model.

I think Wooldridge makes this point best in Chapter 10 which is
on Time Series

Details of time series is not important but the difference is

So far we have only thought about random sampling. That
is we have assumed that there is a population and we have
a random sample of that population.
In time series we think of each observation coming as a
point in time. For example we could have data where an
observation is a year (and we have had examples of that
kind of data such as when we looked at forecasting or the
fish market).



It is not particularly important, but we will index an observation
by t (for time) rather than i (for individual).

This notation could refer to either time series or individual data
and we do not need to distinguish at these points.

Here are the assumptions:



Assumption TS.1 (Linear in parameters)
The stochastic process

{(xt1, xt2, ..., xtk , yt ) : t = 1,2, ...,T}

follows the linear model

yt = β0 + β1xt1 + ...+ βkxtk + ut

where {ut : t = 1,2, ...,T} is the sequence of errors or distur-
bances. Here T is the number of observations (time periods).



Assumption TS.2 (No Perfect Collinearity)
In the sample (and therefore in the underlying time series pro-
cess), no independent variable is constant nor a perfect linear
combination of the others
Assumption TS.3 (Zero Conditional Mean)
For each t , the expected value of the error ut , given the explana-
tory variables for all time periods is zero. Mathematically,

E(ut | X ) = 0, t = 1,2, ...,T



We use these to get unbiasedness (and also consistency)
Theorem 10.1 (Unbiasedness of OLS)
Under Assumption TS.1,TS.2, and TS.3, the OLS estimators are
unbiased conditional on X ,and therefore unconditionally as well:
E
(
β̂j

)
= βj , j = 0,1, ..., k



We then used the following assumptions to get asymptotic
normality and to do inference.
Assumption TS.4 (Homoskedasticity)
Conditional on X the variance of ut is the same for all t:

Var(ut | X ) = var(ut ) = σ2

for t = 1,2, ...,T

Assumption TS.5 (No Serial Correlation)
Conditional on X , the errors in two different time periods are
uncorrelated:

cov(ut ,us | X ) = 0

for all t 6= s.



From these two we get two additional results
Theorem 10.2 (OLS Sampling Variances)

Under the time series Gauss-Markov Assumptions TS.1 through
TS.5, the variance of β̂j , conditional on X , is

var
(
β̂j | X

)
=

σ2

SSTj

(
1− R2

j

)
where SSTj is the total some of squares of xtj and R2

j is the
R-squared from the regression of xj on the other independent
variables.
Theorem 10.4 (Gauss-Markov Theorem)
Under Assumptions TS.1 through TS.5, the OLS estimators are
the best linear unbiased estimators conditional on X .



The key thing that I want you to understand is how the different
assumptions are important for how we construct the standard
errors

To see where it comes from think about the variance of the
estimate of the slope coefficient in a simple regression model

var
(
β̂1 | X

)



Recalling that

β̂1 = β1 +
1
T
∑T

t=1 (xt − x̄) ut
1
T
∑T

t=1 (xt − x̄)2

so that

var
(
β̂1 | X

)
= var

(
β1 +

1
T
∑T

t=1 (xt − x̄) ut
1
T
∑T

t=1 (xt − x̄)2 | X

)

=
var

(
1
T
∑T

t=1 (xt − x̄) ut | X
)

[
1
T
∑T

t=1 (xt − x̄)2
]2



In General

Var

(
1
T

T∑
t=1

(xt − x̄) ut | X

)
=

1
T 2 Var

(
N∑

t=1

(xt − x̄) ut | X

)

=
1

T 2

N∑
t=1

Var ((xt − x̄) ut | X )

+
1

T 2 2
T∑

t=1

T∑
s=t+1

Cov ((xt − x̄) ut , (xs − x̄) us | X )



In the case we have been dealing with the data is independently
distributed (no serial correlation) with Var(ut | xt ) = σ2.

The no serial correlation assumption means that

Cov ((xt − x̄) ut , (xs − x̄) us | X ) = 0

for all of the t and s

This gets rid of a ton of terms



The homoskedasticity assumption means that

1
T 2

T∑
t=1

Var ((xt − x̄) ut ) =
1

T 2

T∑
t=1

(xt − x̄)2 Var (ut | X )

=
σ2

T 2

T∑
t=1

(xt − x̄)2



Then

Var
(
β̂1 | X

)
=

var
(

1
T
∑T

t=1 (xt − x̄) ut | X
)

[
1
T
∑T

t=1 (xt − x̄)2
]2

=
σ2

T 2

∑T
t=1 (xt − x̄)2[

1
T
∑T

t=1 (xt − x̄)2
]2

=
σ2∑T

t=1 (xt − x̄)2



We can obtain a consistent estimate of this using

σ2 ≈ 1
T − 2

T∑
t=1

û2
t

where ût is the residuals from the regression



What happens if no autocorrelation and/or homoskedasticity
assumptions are violated?

1 The estimate is still unbiased (and consistent)
2 Our estimate of the standard errors are wrong
3 OLS is no longer BLUE



There are basically two different approaches we can take to
deal with this

1 Continue to run OLS since it is consistent, but correct the
standard errors to allow for heteroskedasticity or serial
correlation (that is deal with 2 but not 3)

2 Run something other than OLS which is BLUE and figure
out what the right standard errors are for that (that is deal
with both 2 and 3)

If I taught this class 20 years ago I would probably only teach
the second approach, however for heteroskedasticity people
only tend to use the first

For serial correlation, both are used
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Heteroskedasticity

First lets think about relaxing Heteroskedasticity but not the no
autocorrelation assumption.

Everything here pertains to cross section data as well, not just
time series.

Suppose that Var(ut ) depends on Xt . However we will still
assume that each individual is drawn at random.



Then

Var

(
1
T

T∑
t=1

(xt − x̄) ut | X

)
=

1
T 2

T∑
t=1

Var ((xt − x̄) ut | X )

=
1

T 2

T∑
t=1

E
(

(xt − x̄)2 u2
t | X

)

=
1

T 2

T∑
t=1

(xt − x̄)2 E
(

u2
t | X

)

≈
E
(

(xt − x̄)2 E
(
u2

t | X
))

T



We can just approximate this object as

E
(

(xt − x̄)2 E
(

u2
t | X

))
≈ 1

T

T∑
t=1

(xt − x̄)2 û2
t

and use
1

T 2

∑T
t=1 (xt − x̄)2 û2

t[
1
T
∑T

t=1 (xt − x̄)2
]2

this for standard errors in regression.



Something similar works in general for multiple regression

There is really no reason not to do this

In stata you just say

regress y x1, robust



You can’t do F-tests in the simple way we learned before, but
stata knows how to do it the more complicated way

In my experience this doesn’t really matter much

Here are some examples



This is only the first of two approaches we talked about

This is OLS so the standard errors are right

However it is not BLUE

There are a bunch of different ways to come up with a BLUE
estimate

Wooldridge talks about this if you are interested, but I don’t
think it is that important so I am not going to worry about it
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Relaxing the Serial Correlation Assumption

Can we do something similar to deal with serial correlation?

Since

var

(
1
T

T∑
t=1

(xt − x̄) ut | X

)
=

1
T 2

N∑
t=1

Var ((xt − x̄) ut | X )

+
1

T 2 2
T∑

t=1

T∑
s=t+1

Cov ((xt − x̄) ut , (xs − x̄) us | X )



It sort of seems like we might be able to approximate this well
as

Var

(
1
T

T∑
t=1

(xt − Ex) ut | X

)
≈ 1

T 2

T∑
t=1

(xt − x̄)2 û2
t

+
1

T 2 2
T∑

t=1

T∑
s=t+1

(xt − x̄) (xt − x̄) ût ûs

var

(
1
T

T∑
t=1

(xt − x̄) ut | X

)
≈ 1

T 2

N∑
t=1

(xt − x̄) û2
t

+
1

T 2 2
T∑

t=1

T∑
s=t+1

(xt − x̄) ût (xs − x̄) ûs



This does not work well at all (both in practice and for technical
reasons)

The problem is that while for the first term there are T terms
and we are dividing by T 2

For the second there are like T 2 terms and we are dividing by
T 2

This turns out to be a problem both in defining the actual
covariance and in approximating it



Essentially if

1
T

2
T∑

t=1

T∑
s=t+1

Cov ((xt − x̄) ut , (xs − x̄) us | X )

blows up you have real problems

Relatedly, the estimator I suggested above will not settle down
in the data

There are two different approaches to fix the problem.



AR Models

The first solution to this type of problem is to construct a model
for the error terms

We can then estimate the parameters of the model and figure
out the standard errors

The most common model for the error terms is called an AR(1)

Here we suppose that

ut = ρut−1 + εt

where εt is iid (or white noise) with E(εt ) = 0, and

−1 < ρ < 1.



Lets think about the properties of the AR(1)

Since εt is iid, ut will be correlated with current and lagged
values of εt , but not future values.

If the time series has been going on forever

ut = ρut−1 + εt

= ρ2ut−2 + ρεt−1 + εt

= ρK ut−K + ρK−1εt−(K−1) + ...+ εt

=
∞∑

j=0

ρjεt−j



But then

E(ut ) = E

 ∞∑
j=0

ρjεt−j


=
∞∑

j=0

ρjE(εt−j)

= 0



and

var(ut ) = var

 ∞∑
j=0

ρjεt−j


=
∞∑

j=0

ρ2jvar(εt−j)

= var(εt )
∞∑

j=0

ρ2j

=
Var(εt )

1− ρ2



Under these conditions the model is “covariance stationary”
because

Cov(ut ,ut+1) = Cov(ut , ρut + εt+1)

= ρVar(ut )

Cov(ut ,ut+2) = Cov(ut , ρut+1 + εt+2)

= Cov(ut , ρ (ρut + εt+1) + εt+2)

= ρ2Var(ut )



More generally

Cov(ut ,ut+h) = ρhVar(ut )

It turns out that this solves the problem of the Variance blowing
up described above (I will spare you the algebra, but its
straightforward to show this)



This model is called AR(1) for a simple reason:

there is 1 autoregressive term

It easily generalizes to an AR(2),

ut = ρ1ut−1 + ρ2ut−2 + εt

with εt iid

Or even more generally an AR(p)

ut = ρ1ut−1 + ρ2ut−2 + ...+ ρput−p + εt



MA Models

The other really common representation is what is called a
moving average or MA process

In this case we can write

ut = εt + αεt−1

where εt is iid.



If E(εt ) = 0 and Var(εt ) = σ2
ε

E (ut ) = E (εt ) + αE (εt−1)

= 0

Var(ut ) = Var(εt ) + α2Var(εt−1)

=
(

1 + α2
)
σ2
ε

Cov(ut ,ut+1) = Cov(εt + αεt−1, εt+1 + αεt )

= ασ2
ε

Cov(ut ,ut+2) = Cov(εt + αεt−1, εt+2 + αεt+1)

= 0

Thus the MA(1) is covariance stationary



This can be generalized to an MA(2)

ut = εt + α1εt−1 + α2εt−2

and further to an MA(q)

ut = εt + α1εt−1 + α2εt−2 + ...+ αqεt−q



The MA and AR specifications are not mutually exclusive

You can stick them together

An ARMA(p,q) is written as

ut = ρ1ut−1+ρ2ut−2+...+ρput−p+εt +α1εt−1+α2εt−2+...+αqεt−q

with εt iid.



Using ARMA Models

In practice what do we do with this?

One possibility is to just run OLS and correct the model for the
fact that the error terms are correlated

It turns out that there is a better (more efficient) way to estimate
the parameters

It is called GLS and is discussed in Wooldridge

Stata does something quite similar to this, but not quite

It performs maximum likelihood which is similar to GLS but
assumes that the error terms are normally distributed

Stata is not the best package for time series data, but will work

Lets look at some examples



Newey West Standard Errors

There is another approach one can take

Rather than trying to model the dependence, we can try to
estimate the variance of β̂ directly

Lets go back to thinking about estimating

Var

(
1
T

T∑
t=1

(xt − Ex) εt | X

)
=

1
T 2

T∑
t=1

Var ((xt − Ex) εt | X )

+
1

T 2 2
T∑

t=1

T∑
s=t+1

Cov ((xt − Ex) εt , (xs − Ex) εs | X )

directly



There are 2 problems

There are too many terms as a result of the double sum
which will mess things up (as I have said before)
A practical problem is that the approximated terms might
not match well together. In that case we might not be able
to get reasonable standard errors



There turns out to be a fairly simple solution

Don’t use so many terms
Weight in such a way that it works OK

Newey and West show that for some L you can approximate

Var(β̂1) =
1
T

L∑
`=1

T∑
t=`+1

W`utut−` (x̃t x̃t−` − x̃t−`x̃t )

where

W` =
`

L + 1
x̃t = xt − x̄



The question is how do you pick L

This is pretty arbitrary

If your sample was really big, you would pick L to be really big

In Stata you just say

newey Y X , lag(L)

If you put in lag(0) this is equivalent to using Heteroskedasticity
robust standard errors
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Panel Data

Another type of data is panel data

It is like cross-sectional data in that we assume there is a
population and that we randomly sample people from the
population
However, we assume that we have more than one
observation per individual

Here is an example



It is useful to use two subscripts so that Yit means the outcome
for individual i at time t .

We can write the model as

Yit = β0 + β1Xit1 + ...+ βkXitk + uit

We can run a regression with all of the data as usual and under
the standard assumption that E(uit | Xit ) = 0 we can obtain
unbiased and consistent estimates.



The question is do we believe Assumption TS.5 which in this
case would take the form:

Conditional on X , the errors for two different observations are
uncorrelated:

Corr(uit ,ujτ ) = 0

for all (i , t) 6= (j , τ).



There are really three different cases

i = j , t 6= τ :
Corr(uit ,uiτ )

i 6= j , t = τ
Corr(uit ,ujt )

i 6= j , t 6= τ
Corr(uit ,ujτ )

Invoking the assumption in the first case seems nuts as we
probably think:

Corr(uit ,uiτ ) > 0

The other two don’t seem unreasonable



As in all the other cases there are two things to do:

Run OLS and correct the standard errors (like robust and
newey)
Write down a model and do things more efficiently



The Cluster Command

There turns out to be a really nice way to do the first thing.

To use the “cluster” command in stata we need to assume that

Corr(uit ,ujτ ) = 0

whenever j 6= i for any t and τ

We don’t need to make any assumption about Corr(uit ,uiτ )

We also don’t need to make any assumption about var(uit )
either so it is “heteroskeasticity robust” as well



The key to doing this in STATA is that you need some variable
that uniquely identifies people (such as idcode)

You then would say:

regress y x, cluster(idcode)

Here are some examples.



Random Effect

The other common model people use is a “random effect”
model.

We model the error term as

uit = θi + εit

Where

cov(εit , εiτ ) = 0
cov(θi , εiτ ) = 0



This means that

cov(uit ,uiτ ) = cov(θi + εit , θi + εiτ )

= cov(θi , θi) + cov(θi , εiτ ) + cov(εit , θi) + cov(εit , εiτ )

= var(θi)

We estimate this model using Generalized Least Squares
which is more efficient than OLS.

In stata just say

xtreg y x, re i(idcode)

Lets see some examples



Fixed Effects

However there is something even cooler about this

Note that we can write the single regressor version of the
model as

Yit = β0 + β1Xit + θi + εit

Suppose we only have two periods of data t = 1,0 then notice
that we can write

∆Yi =Yi1 − Yi0

=β0 + β1Xi1 + θi + εi1

− (β0 + β1Xit0 + θi + εi0)

=β1∆Xi + ∆εi



We can estimate this model by regression ∆Yi on ∆Xi

The really nice thing about this is that we didn’t need to assume
anything about the relationship between X and θ.

Here is a couple examples



More than 2 time periods

What do we do when we have more than 2 time periods?

We could still construct ∆Y .That is if we had three periods we
could construct Yi1 − Yi0 and Yi2 − Yi1.

It turns out that there is something that is often better.

Note that

Ȳi =
1
T

T∑
t=1

Yit

=
1
T

T∑
t=1

[β0 + β1Xit + θi + εit ]

= β0 + β1X̄i + θi + ε̄i



Then

Yit − Ȳi =β0 + β1Xit + θi + εit

−
(
β0 + β1X̄i + θi + ε̄i

)
=β1

(
Xit − X̄i

)
+ εit − ε̄i

To estimate this model we just regress Yit − Ȳi on Xit − X̄i

This is what is typically referred to as “fixed effects”



In STATA

xtreg y x, fe i(idcode)

Lets see some examples



Thats all I have to say
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