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Data-Driven Control for Interlinked AC/DC
Microgrids via Model-Free Adaptive Control and

Dual-Droop Control
Huaguang Zhang,Fellow, IEEE, Jianguo Zhou, Qiuye Sun,Member, IEEE, Josep M. Guerrero,Fellow, IEEE, and

Dazhong Ma

Abstract—This paper investigates the coordinated power shar-
ing issues of interlinked ac/dc microgrids. An appropriatecontrol
strategy is developed to control the interlinking converter (IC) to
realize proportional power sharing between ac and dc microgrids.
The proposed strategy mainly includes two parts: the primary
outer-loop dual-droop control method along with secondary
control; the inner-loop data-driven model-free adaptive voltage
control. Using the proposed scheme, the interlinking converter,
just like the hierarchical controlled DG units, will have the
ability to regulate and restore the dc terminal voltage and ac
frequency. Moreover, the design of the controller is only based on
input/output (I/O) measurement data but not the model any more,
and the system stability can be guaranteed by the Lyapunov
method. The detailed system architecture and proposed control
strategies are presented in this paper. Simulation and experi-
mental results are given to verify the proposed power sharing
strategy.

Index Terms—Interlinked microgrids, interlinking converter,
power sharing, dual-droop control, data-driven model-free adap-
tive control.

NOMENCLATURE

∆ωIC,pu Secondary control frequency signal sent to the pri-
mary control level

∆PLac Increased active powers of the ac microgrids at the
time of tk

∆PLdc Increased active powers of the dc microgrids at the
time of tk

∆vIC,dc,pu Secondary control voltage signal sent to the pri-
mary control level

η Threshold of the deviation
ω∗

ac,pu Nominal frequency of the ac microgrid
ω∗

IC,pu,tk+1
Reference frequency of the IC

u (·) Unit step function
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V ∗

dc,pu Nominal voltage of the dc microgrid
V ∗

IC,dc,pu,tk+1
Reference dc voltage of the IC

ω̄ac,pu The average frequency of the ac microgrid
V̄dc,pu The average voltage of the dc microgrid
Λσ Update factor of the droop coefficient when the power

transferred to the ac microgrid
Λk Update factor of the droop coefficient when the power

transferred to the dc microgrid
ωac,pu,tk+1

Measured terminal ac frequency at the time of
tk+1

σ̃IC,tk
Droop coefficient of the IC when the power transferred
to the ac microgrid

k̃IC,tk
Droop coefficients of the IC when the power trans-
ferred to the dc microgrid

ϕac Active power that should be shared by the ac micro-
grids

ϕdc Active power that should be shared by the dc micro-
grids

Cdc Dc-link capacitance of the IC
CIC f Filter capacitance of the IC
du Unknown input order of the IC system
dy Unknown output order of the IC system
fi (·) Unknown nonlinear function vectors of the IC system
iIC abc Ac currents of filter inductance of the IC
iIC dc Dc-link input current of the IC
kac Combined droop coefficient of the ac microgrid
kdc Combined droop coefficient of the dc microgrid
kiω The integral gain of the secondary frequency con-

troller
kiV The integral gain of the secondary dc voltage con-

troller
kpω The proportional gain of the secondary frequency

controller
kpV The proportional gain of the secondary dc voltage

controller
LIC f Filter inductance of the IC
PIC,tK

Active power transferred by the IC at the time oftk
RIC f Filter resistance of the IC
uabc ave Average switching signals of the IC
Vdc,pu,tk+1

Measured dc microgrid voltage at the the time of
tk+1

VIC,dc Dc-link voltage of the IC
vIC o abc Ac voltages of filter capacitor of the IC

I. I NTRODUCTION
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DUE to the fast proliferation of distributed generators
(DGs) in power systems, managing the power of different

DGs and the grid has become crucial, and microgrid provides
a promising solution. Therefore, focus on ac and dc microgrids
has grown rapidly with their architectural [1], [2], modeling
[3], stability analysis and enhancement [4]-[6], power quality
improvement [7]-[9], power sharing control [10]-[13], and
other issues. Most developments mentioned above on micro-
grids are, however, directed at DG control mainly within one
microgrid.

Enforcing ac and dc microgrids intertied by an interlinking
power converter is a promising topology in future power
networks, and has in fact been discussed recently due to
some benefits, such as greater security and reliability, and
reduced transmission and distribution losses [14]. Autonomous
operation and modified droop control schemes of such hybrid
microgrids were discussed in [15], [16] and extended in
[17], [18] by integrating an energy storage system to the dc
microgrid. Another droop control scheme was followed in [19]
for bidirectional power flow between the intertied microgrids.
In [20], hierarchical control of multiple parallel ac-dc converter
interfaces between ac and dc buses was proposed to achieve
proportional current sharing.

Despite the progress mentioned above, some drawbacks of
the previous methods can also be found. (i) The majority of the
existing inner loop control techniques are greatly dependent on
mathematical model. These techniques cannot give satisfactory
results when suffering poor model. Uncertainty dynamics and
disturbances [21], [22] widely exist in inverter-based micro-
grids, and it is difficult to obtain the accurate model. Although
robust control [23], predictive control [24], variable-structure
control [25], and neural network [26] -based control have been
proposed for power converters, some challenges still exist.
Partial mathematical model and uncertainty dynamics should
be known for design of robust controller and variable-structure
controller. While predictive control has good performanceand
strong robustness, the model or structure of the plant also
should be known. (ii) Proportional power sharing and voltage
(frequency) regulation cannot be achieved at the same time.
Interlinking converters in [14] and [18] can be viewed as
voltage sources, but proportional power sharing between two
microgrids cannot be achieved accurately. On the other hand,
in [16], [17] and [19], interlinking converters can be viewed
as current sources since they are current controlled converters,
which implies these interlinking converters cannot participate
in voltage and frequency regulation. (iii) Although various
secondary control schemes have been developed to restore the
frequency and voltage to their nominal values, the restoration
of ac frequency and dc voltage has not been considered in the
previous literatures for the interlinked ac and dc microgrids,
such as [15]-[19]. Therefore, a new appropriate control scheme
should be further developed for interlinking converts to address
these issues mentioned above.

Obtaining the system model information that is accurate
enough is very difficult in such complicated interlinked mi-
crogrid systems. It is more important and meaningful to take
advantage of the large amount of the process data produced
by the system to boost the operating efficiency and cut the

costs. Data-driven model-free adaptive control (DDMFAC)
does not require any model information of the controlled
plant and the required control performance can be achieved
by using the input/output (I/O) data. It is of great significance
to take advantage of the process data in such complex system
particularly for the future smart grid and energy internet.

This paper presents a data-driven control (DDC) structure
for interlinking converters in interlinked ac and dc hybrid
microgrids. One important reason that we try to use the
data-driven MFAC method to design the controller of the IC
in the paper is to take the most advantage of the process
data, boost the efficiency, and cut the costs on the basis of
achieving required control performance. The proposed control
scheme employs a data-driven model-free adaptive voltage
controller (DDMFAVC) for fast and robust voltage tracking
and a dual-droop controller with a secondary controller for
proportional coordinated power sharing between ac and dc
microgrids and restoration of frequency and dc voltage. Con-
sidering the voltage controller, model-free adaptive control
(MFAC) perhaps is the best solution. Firstly, MFAC does not
require a mathematical model, order, structure information
or time delay of the controlled plant but only input/output
(I/O) measurement data [27], which implies that a generic
controller can be designed and developed independently for
interlinking converters in practice. Secondly, the pseudopartial
derivative (PPD) behavior of MFAC may not be sensitive to the
variations of the parameter, structure, or delay of the controlled
system. Therefore, MFAC scheme has strong robustness which
is the key requirement of interlinking converters. Finally, DDC
(MFAC) has been successfully implemented in some practical
fields [28]-[31]. Based on the aforementioned consideration,
a newly designed data-driven MFAC scheme is proposed for
the interlinking converter.

A dual-droop controller is also proposed in this paper, and
the main reasons are kindly summarized as: (i) In the wider
scope of power sharing, source capabilities can be shared
among different types of microgrids, and individual source
variations can be always kept small regardless of where the
load transients are triggered. These advantages cannot be
realized by just relying on the droop-controlled DGs within
each microgrid. It would certainly rely on the coordinated
operation of dc sources, ac sources, and interlinking con-
verters. Emphasis should be equally given to the interlinking
converter. (ii) More complex supply-demand scenarios should
be considered when the interlinked microgrids operate in the
islanding mode since the infinite mains is no longer there to
cushion any unbalance and load variations. In the islanding
mode, sources can no longer produce maximum or optimal
powers continuously. They should not only share the load
power but also participate in the frequency and voltage reg-
ulation which is extremely important for the stable operation
of the interlinked microgrids. It is, therefore, necessaryand
significant to allow the interlinking converter to regulatethe
frequency and voltage. (iii) Some droop control schemes
have been proposed [14]-[19]. However, proportional power
sharing, dc voltage and ac frequency regulation cannot be
achieved at the same time by using the previous droop meth-
ods. Interlinking converters in [14] and [18] can be viewed as
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voltage sources, but proportional power sharing between two
microgrids cannot be achieved accurately. On the other hand,
in [16], [17] and [19], interlinking converters can be viewed
as current sources, which implies these interlinking converters
cannot participate in voltage and frequency regulation. The
proposed dual droop control method in our paper can address
these problems, allowing the interlinking converter to regulate
the ac voltage and frequency and dc voltage while keeping
proportional power sharing. The main contribution of this
paper can be summarized as follows:

1) A novel data-driven model-free adaptive voltage control
(DDMFAVC) scheme is introduced for interlinking converters
in interlinked ac and dc hybrid microgrids. The model, struc-
ture, uncertainty dynamics, and unmodeled dynamics are not
required in this scheme.

2) Dynamic dual-droop control scheme is proposed to
achieve proportional power sharing between ac and dc micro-
grids. This droop scheme, along with the voltage controller,
enables proportional power sharing and voltage/frequencyreg-
ulation realized simultaneously like DGs in microgrids.

3) A novel secondary control strategy is proposed for the
interlinked ac and dc microgrids, which is different from that
of DGs in microgrids.

The remainder of this paper is structured as follows. The in-
terlinked ac and dc hybrid microgrids are presented in Section
II. The proposed control scheme is presented in Section III.
Simulation and experimental results are presented in Section
IV and Section V, respectively. Conclusions are finally drawn
in Section VI.

II. SYSTEM STRUCTURE AND MODELING OF

INTERLINKING CONVERTER

A. System Structure and Operation Modes

The considered interlinked ac and dc microgrids are shown
in Fig. 1, in which an interlinking converter (IC) is utilized to
link the ac and dc microgrids together. Each microgrid has its
own sources, storages and loads. The interlinking converter,
between the two microgrids, is to provide bidirectional power
transfer depending on present generating and loading condi-
tions of each microgrid. The formed interlinked microgrids
can be tied to the utility grid through a solid state transformer
(SST) based energy router [32]. In the grid-connected mode,
the energy router can operate as a constant power source [18]
seen from the main utility grid side, injecting (or absorbing)
constant active power to (or from) the utility grid so as to not
to disturb the main utility grid unnecessarily. It means that
for the main utility grid, the distributed energy sources will
become “controllable”, which is great beneficial to the stability
of the main utility grid. The interlinking converter, in both
grid-connected and islanded modes, will provide bidirectional
power transfer to participate in proportional power sharing
between the two microgrids by using the proposed dual-droop
control. Sources should decide on the right amount of energy
to produce to meet the load demand rather than produce max-
imum or optimal powers continuously in both grid-connected
and islanded modes. In this paper, three operation modes of
the interlinking converter are considered as follows.

D C D Cd c � D G d c 	 L o a d
S S T � b a s e dE n e r g y R o u t e r C I C _ fC d c v I C _ o _ a b c D C A Ca c 3 D Ga c 3 m i c r o g r i da c 3 L o a dd c ? m i c r o g r i d m a i n u t i l i t y g r i dI n t e r l i n k i n gC o n v e r t e rL I C _ f R I C _ fV I C , d c i I C _ o _ a b ci I C _ a b ci I C _ d cL i n e � 1 L i n e � 2 L i n e � 3 L i n e � 4V d c

Fig. 1. An example of interlinked ac/dc microgrids.

Mode-1: If the determined active power is negative, it means
that theVIC,dc −P droop is selected and that the interlinking
converter will absorb the power from the ac microgrid and
then inject into the dc microgrid. The interlinking converter,
seen from the dc-link side, just acts as a “dc DG” unit in this
mode.

Mode-2: If the determined active power is positive, it means
that theωIC − P droop is selected and that the interlinking
converter will inject the power to the corresponding ac micro-
grid. The interlinking converter takes the same role of an “ac
DG” as that in the ac microgrid in this mode.

Mode-3: There will be no power transferred by the interlink-
ing converter when both the ac and dc microgrids are under-
loaded or over-loaded, or some faults occur, or deviation of
the per-unit values of dc voltage and ac frequency is less than
threshold.

B. Dynamic Linearization Data Model of IC

Usually, a voltage source inverter (VSI) can be adopted
for the interlinking converter. And a sample configuration is
shown in Fig. 1. In natural reference frame, considering the
dc-link voltage dynamics and ignoring conducting resistances
of the switching devices in the IC, the complete average
switching dynamics of the interlinking converter can be given
by

V̇IC,dc = (1/Cdc) iIC dc − (1/CdcVIC,dc)u
T
abc aveiIC abc

i̇IC abc = (−RIC f/LIC f ) iIC abc

+ (1/LIC f ) (VIC,dcuabc ave − vIC o abc)
v̇IC o abc = (1/CIC f ) (iIC abc − iIC o abc)

(1)
whereiIC abc, vIC o abc, uabc ave, and iIC o abc are ac cur-
rents of filter inductance, ac voltages of filter capacitor, average
switching signals and ac output currents of the interlinking
converter, respectively.VIC,dc and iIC dc are dc-link voltage
and input current, respectively.LIC f , RIC f , CIC f and
Cdc are the filter inductance, filter resistance, filter capaci-
tance, and dc-link capacitance, respectively. We chooseVIC,dc

and vIC o abc as the system outputs when the interlinking
converter operates in mode-1 and mode-2, respectively, and
uabc ave as the system control inputs. Then the dynamics, for
digital implementation, can be expressed in a discrete-time
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domain with the conversionH (s) =
(
1 − e−sT

)/
s as

vIC o abc (k + 1) =f1 (vIC o abc (k) , · · · ,vIC o abc (k − dy1)

, uabc ave (k) , ) , · · · ,uabc ave (k − du))

VIC,dc (k + 1) =f2 (VIC,dc (k) · · · , VIC,dc (k − dy2) ,

uabc ave (k) , · · · ,uabc ave (k − du))
(2)

where vIC o abc = [vIC o a, vIC o b, vIC o c]
T , uabc ave =

[ua ave, ub ave, uc ave]
T . Let V1 = vIC o abc,V2 = VIC,dc,

u = uabc ave, and f2 = f2, then the dynamics in (2) can be
expressed as

Vi (k + 1) =fi (Vi (k) , · · · ,Vi (k − dy) ,u (k) ,

· · · ,u (k − du)) , i = 1, 2 (3)

where dy and du are the unknown orders, andfi (·) are
unknown nonlinear function vectors.

As mentioned in the previous section, uncertainty dynamics,
unmodeled dynamics, and disturbances widely exist in the
interlinked microgrids, and it is difficult to obtain the unknown
nonlinear function vectorfi (·). Therefore, data-driven-based
partial form dynamic linearization (PFDL) can be the best
to be adopted in this paper to obtain the equivalent dynamic
linearization data model of system (3).

The implementation of the data-driven MFAC method is
usually based on two assumptions: 1) The partial derivatives
of with respect to control inputs are continuous; 2) System
(2) is generalized Lipschitz. These assumptions imposed on
the controlled system are reasonable and acceptable from a
practical viewpoint. Assumption 1 is a typical condition of
control system design for general nonlinear systems. Assump-
tion 2 limits the rates of changes of the system outputs driven
by the changes of the control inputs. From the ‘energy’ point
of view, the output energy change rates inside a system cannot
go to infinity if the changes of the control input energy are ina
finite altitude. According to these assumptions and Theorem1
in [27], for the nonlinear system (3), there must be parameters
Φi (k) , ∀i = 1, 2 called (pseudo partitioned Jacobian matrix,
PPJM), and system (3) can be transformed into the following
PFDL description when‖∆U (k)‖ 6= 0:

∆Vi (k + 1) = Φi (k)∆U (k) , ∀i = 1, 2 (4)

where each variable is given in Appendix A.

III. PROPOSEDCONTROL SCHEME

A. Data-Driven Model-Free Adaptive Voltage Controller

Based on the PFDL system (4), the DDMFAVC controller
for the interlinking converter can be designed in the following.
Before giving out the controller, an observer is proposed to
estimate the parametersΦi (k) (PPJM), and the observer and
the adaptive update law forΦi (k) are given by

V̂i (k + 1) = V̂i (k) + Φ̂i (k)∆U (k) + KiṼi (k)

Φ̂
T
i (k + 1) = Φ̂

T
i (k) + Γi (k)

(

Ṽi (k + 1) − FiṼi (k)
)

∆U (k) I1×3L

(5)

where all the variables are given in Appendix A.

Upon the parametersΦi (k) estimated, the DDMFAVC
controller can be designed as

u (k) = u (k − 1) + Φ̂
T
i (k)

[

αi + Φ̂i (k) Φ̂T
i (k)

]
−1

×
[

V
∗

i (k + 1) − V̂i (k) − KiṼi (k)
]

, for ‖∆U (k)‖ ≤ δ

u (k) = u (k − 1) + δ · sign (∆u (k)) , for ‖∆U (k)‖ > δ

(6)

whereαi = diag (α1, α2, α3), α2 = α4, andV
∗

i (k) are the
reference trajectories.

The stability of the proposed DDMFAVC closed-loop con-
trol system (6) can be guaranteed by using the Lyapunov-based
stability theory. Detailed proof can be found in [31].

It is worthwhile to remark here that the designed voltage
controller (5) and (6), unlike the robust controller [23], pre-
dictive controller [24], et al., can be obtained and implemented
easily only by using input-output data through the data-driven
control theory. Mathematical models are not required in the
design of the proposed controller. The controller is a lowercost
controller since it does not require any external testing signals
and any training process. It is simple and implemented easily
and flexibly with small computational burden. It is also suit-
able to complex and large-scale practical systems particularly
for the interlinked microgrids since the structure of the plant
is often difficult to determine and the parameters are hard to
identify and necessary process information that the data-driven
MFAC needs can be directly extracted from huge amounts of
process data. On the other hand, the voltage controller can
be implemented flexibly under different operation modes that
are determined by the dual-droop controller discussed in detail
in the following subsection. Additionally, with respect tothe
voltage controller design, complex coordinate transformation
can be avoided.

B. Dual-Droop Controller

Proportional power sharing is necessary. In this paper, all
the DGs in each microgrid are seen as a larger equivalent
controllable distributed generator by summing all their re-
spective source characteristics. The power ratings and loads
of microgrids are usually different in practice. Consequently,
this allows back-up reserve with each microgrid to be reduced
considerably and overstress of each microgrid to be avoided
as well, resulting in greater reliability.

Despite the well-recognized droop control strategies in stan-
dalone ac or dc microgrids, proper power sharing among multi-
ple microgrids tied together through the interlinking converter
cannot be achieved by the conventional droop methods. Con-
sidering the statements in Section I, to achieve proportional
power sharing between the interlinked microgrids and partic-
ipate in voltage and/or frequency regulation simultaneously
just like DGs in microgrids, a dynamical dual-droop control
scheme with power management and distribution is proposed
in this paper. The proposed dual-droop control characteristics
of the interlinking converter for active power sharing are drawn
in Fig. 2. Their mathematical representations are given as

PIC,tk
=

{ (
ω∗

IC,pu,tk
− ωIC,pu,max

)/
σ̃IC,tk(

V ∗

IC,dc,pu,tk
− VIC,dc,pu max

)/

k̃IC,tk

(7)
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p o w e r i n j e c t e d t o d c m i c r o g r i d p o w e r i n j e c t e d t o a c m i c r o g r i d P I CP I C , m a x
V I C , d c , p u , m a x = 1

P I C , m a xv I C , d c , p u , t k +Ñ
I C , p u , m a x = 1V I C , d c , p u , m i n= I C , p u , m i n = ñ 1* I C , p u , t k*P I C , t k P I C , t k

Fig. 2. The proposed dual-droop control characteristics ofthe interlinking
converter.

P I C
V d c , p u

P a cP d c
ω a c , p u 0ω a c , p u , t0V d c , p u , t 0s , t0P I C , tks , t kω a c , p u , tk + 1V d c , p u , t k + 1s , t P I C , t kP I C , t k + 1

V I C , d c , p u ω I C , p u
d c q m i c r o g r i d a c q m i c r o g r i dI n t e r l i n k i n g c o n v e r t e r

Fig. 3. Illustration of proportional power sharing processrealized within the
intertied ac and dc microgrids.

where σ̃IC,tk
and k̃IC,tk

are the active droop coefficients,
and “pu” represents the per-unit values that are defined by
applying the expressions in [17].

For the appropriate power flow decisions using only vari-
ables measured locally, different thresholds can then be set
for the frequencies and voltages to distinguish when the mi-
crogrids are under-loaded (UL), normal-loaded (NL), or over-
loaded (OL) in terms of active powers. Using the proposed
dual-droop control, the interlinking converter will have three
operation modes defined in Section II, and at any instant it
just operates at one mode.

Conventionally, within the ac microgrid for example, active
and reactive powers at the source terminals are measured for
determining reference values for its frequency and voltage
magnitude. However, the active power command of the in-
terlinking converter in this paper is determined by the pro-
posed power management and distribution module. Underlying
principles of this new droop control scheme can better be
understood by referring to the example drawn in Fig. 3. In that
figure, the droop lines drawn in the left and right sides are for
representing the normalized consolidated droop responsesof
the ac and dc microgrids given as

ωac,pu = ωo,pu − kacPac

Vdc,pu = Vo,pu − kdcPdc
(8)

wherekac andkdc are droop coefficients.
When the interlinking converter starts to operate at first

time, the interlinking converter will “know” the operatingcon-
ditions of the two microgrids by measuring the local terminal
ac frequencies and dc voltages. For instance, they initially
operate atωac,pu,t0 andVdc,pu,t0 , respectively, corresponding

to the black dots shown in Fig. 3. According to droop control
principle, achieving proportional power sharing between the ac
and dc microgrids means maintainingωac,pu = Vdc,pu = ξs,
corresponding to the red dashed horizontal line drawn in Fig.
3. Therefore, equation (9) can be obtained.

ωac,pu,t0 + kacPIC,t0 = Vdc,pu,t0 − kdcPIC,t0 (9)

wherePIC,t0 is the determined active power to be transferred
through the interlinking converter for proportional powershar-
ing at t = t0. PIC,t0 can be rewritten as

PIC,t0 =
Vdc,pu,t0 − ωac,pu,t0

kac + kdc

(10)

Upon reaching the steady state, proportional active power
sharing between different types of microgrids in the interlink-
ing converter enabled system can be realized due to the same
vertical axis values (ωac,pu = Vdc,pu = ξs) of the consolidated
droop lines.

After that, when the loads in the ac and dc microgrids
changes, the active power command will be updated using
the following equation

PIC,tk+1
= PIC,tk

−
kac

kac+kdc

∆PLac

︸ ︷︷ ︸

ϕdc

+
kdc

kac+kdc

∆PLdc

︸ ︷︷ ︸

ϕac

= 1
kac+kdc

(
Vdc,pu,tk+1

− ωac,pu,tk+1

)
, k ≥ 0

(11)

wherePIC,tk
represents the active power to be transferred by

the interlinking converter when loads changed at the timet =
tk, ∆PLac and∆PLdc represent the increased active powers of
the ac and dc microgrids at the timet = tk+1, respectively,ϕac

andϕdc represent the active power that should be shared by the
ac and dc microgrids, respectively, andωac,pu,tk+1

, Vdc,pu,tk+1

are the measured terminal ac frequency and dc voltage at the
present timet = tk+1.

Considering the defined operation modes and thresholds, a
more general expression of (11) can be given as

PIC,tk
=







0, when Vdc,pu,tk
, ωac,pu,tk

∈ (ξUL, ξmax] ∪ [ξmin, ξOL]
1

kdc+kac
(Vdc,pu,tk

− ωac,pu,tk
) , others

. (12)

Seen from equation (7) and (12), the interlinking converter
monitors the operating of the ac and dc microgrids, and
updates the active power command in real time only using
the measured ac frequency and dc microgrid voltage. Upon
the determined active powerPIC,tk+1

transferred by the inter-
linking converter, proportional active power sharing between
the ac and dc microgrids can be realized. However, it should
be noted that using Eq. (12) will cause almost continuous
operation of the interlinking converter for any load variations
that will result in more power loss in the converter. Moreover,
when the deviation is small enough, it is not necessary for
the interlinking converter to transfer the active power. The
main reason can be summarized as: 1) the determined active
power is too small and much of that will be loosed in the
converter under this condition; 2) reliable operation of the
system cannot be affected even if the determined active power
is not transferred by the interlinking converter. Therefore, to
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avoid this, threshold of the deviation is introduced into Eq.
(12), and then Eq. (12) can be rewritten as follows:

PIC,tk
= 1

kac+kdc
(Vdc,pu,tk

− ωac,pu,tk
)

u (|Vdc,pu,tk
− ωac,pu,tk

| − η)
(13)

where u (·), is the unit step function,η is the thresh-
old of the deviation and it can be expressed asη =
f (Vdc,pu,tk

, ωac,pu,tk
). Eq. (13) can be better and more eas-

ily illustrated by using Fig. 8 which is a three-dimensional
space Cartesian coordinate reference frame constructed by
Vdc,pu, ωac,pu and η. As shown in Fig. 8, the surface
SABCD represents the absolute value of the deviationηe =
|Vdc,pu,tk

− ωac,pu,tk
|, andSBEJI andSFCHG represent the

over-load and light-load conditions of both the ac and dc
microgrids, respectively.SEFGHIJ can be the considered area
in some other operation conditions, where active power could
not be transferred due to the small deviation. Taking the above
into consideration, the surfaceSB1E1F1C1H1I1 is designed to
be the thresholdη = f (Vdc,pu,tk

, ωac,pu,tk
) of the deviation

in this paper. Thus, when both the ac and dc microgrids
are operating in light-load (SFCHG) or over-load (SBEJI )
condition, none active power would be transferred from one
microgrid to the other due toηe < η. On the other hand,
when the microgrids are operating in the area ofSEFGHIJ ,
the interlinking converter would not transfer any active power
due to the small deviation andηe < η. Therefore, continuous
operation of the interlinking converter can be avoided. It is
worthy to remark here that the thresholdη (SB1E1F1C1H1I1 )
can be flexibly designed according to the requirements of
practical applications by using Fig. 7.

As discussed in the literature [16], [17], [19], current-source,
rather than voltage-source, characteristics are exhibited by the
interlinking converter. In order to participate in voltageand
frequency regulation, data-driven model-free adaptive voltage
controller is proposed in this paper for the interlinking con-
verter. Therefore, dynamical tuning of the proposed dual-droop
lines is indispensable, making the determined reference value
ω∗

IC,pu,tk+1
or V ∗

IC,dc,pu,tk+1
equal to ξs,tk+1

. This can be
realized by updating the coefficients of the dual-droop lines
using the following equation

σ̃IC,tk+1
= Λσσ̃IC,tk

, PIC,tk+1
> 0

k̃IC,tk+1
= Λkk̃IC,tk

, PIC,tk+1
< 0

(14)

whereΛσ andΛk are given in Appendix B.
The updating process of the active power command and

coefficients is also illustrated in Fig. 3.
It can be seen that using the proposed dynamical dual-droop

control strategy (7), along with the active power command
management and distribution method (13) and the coefficients
updating scheme (14), proportional power sharing between
the ac and dc microgrids can be realized by the interlinking
converter as well as participating in voltage and frequencyreg-
ulation. The interlinking converter will update the activepower
commandPIC,tk+1

and coefficients̃σIC,tk+1
and k̃IC,tk+1

if
it “finds” the frequencyωac,pu,tk+1

of the ac microgrid and/or
dc voltageVdc,pu,tk+1

of the dc microgrid deviate from the
present consensus valueξs,tk

mainly due to load changing and
source changing, reaching at a new consensus stateξs,tk+1

.
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Fig. 4. Illustration of the flow chart of the dual-droop control.

And if the frequencyωac,pu,tk+1
and dc voltageVdc,pu,tk+1

don’t change, the active power commandPIC,tk+1
and coeffi-

cientsσ̃IC,tk+1
, k̃IC,tk+1

will be maintained atPIC,tk
, σ̃IC,tk

and k̃IC,tk
, respectively.

Therefore, we could find that the dual-droop control pro-
posed in our paper mainly includes two stages. The first stage
is to guarantee the proportional power sharing which can be
realized by calculatingPIC using equation (13) according
to the present load condition of each microgrid. And the
second stage is to realize accurate dc voltage and ac frequency
regulation which can be achieved by using equation (7) and
(14). We admit that droop characteristics similar to [19] and
[34] may be obtained if we eliminatePIC from the equation,
but it really has some differences. These could be the reason
that we use the determined active powerPIC as a medium to
calculate the referencesω∗

IC,pu andV ∗

IC,dc,pu of the IC. This
concept is shown in the flow chart depicted in Fig. 4.

C. Secondary Controller Design

Although droop control method has been widely studied
and applied in ac and dc microgrids, conventional droop con-
trol can cause frequency and voltage deviation, reducing the
reliability and the performance of power sharing. Therefore,
various secondary control schemes have been developed to
restore the frequency and voltage to their nominal values.
Although droop control is used as primary control and non-
proportional power sharing schemes are discussed in some
papers recently, it should be noted that these works concentrate
only on DG control within one microgrid. Regarding the
interlinked ac and dc microgrids, the secondary and tertiary
control and non-proportional power sharing control used for
interlinked microgrids have not been previously investigated
by other researchers. In this paper, dual-droop control method
is also used as primary control and secondary control scheme
are proposed and discussed to achieve proportional power
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Fig. 5. Details of the secondary controller for the interlinking converter in
the hybrid microgrids.

sharing among microgrids, and the distributed secondary con-
trol schemes developed in [33] are adopted, which elimi-
nates the design of new secondary controllers for DGs in
microgrids. It should be noted that the secondary controller
can be avoided in [34] due to its cascaded frequency, angle
and virtual torque control topology which makes the VSC
emulate the mechanical behavior of a synchronous machine.
Thus the VSC can offer synchronization power to eliminate
the need for a PLL. Let∆Vdc,pu = V ∗

IC,dc,pu − V̄dc,pu

and ∆ωac,pu = ω∗

IC,pu − ω̄ac,pu. The distributed secondary
controller for the interlinking converter can be expressedas
follows:

∆vIC,dc,pu = kpV ∆Vdc,pu + kiV

∫
∆Vdc,pu

∆ωIC,pu = kpω∆ωac,pu + kiω

∫
∆ωac,pu

(15)

wherekpV , kpω , kiV andkiω are the PI controller parameters,
ω∗

IC,pu and V ∗

IC,dc,pu are the frequency and voltage of the
ac and dc microgrids, respectively, when the synchronization
is achieved,ω̄ac,pu and V̄dc,pu are the average frequency
and voltage obtained through the communication network,
∆ωIC,pu and∆vIC,dc,pu are the secondary control signals sent
to the primary control level. A detailed block diagram of the
secondary controller of the interlinking converter is shown in
Fig. 5.

It is worth noting that the IC can cooperate with the
secondary controllers of DGs in each microgrid. It is de-
termined by the logic signals generated by the logic signal
generator of the secondary controllers. Details of the flow
chart of the logic signal generator is shown in Fig. 6. It is
shown that if the dc and ac microgrids are interlinked by
the interlinking converter, the secondary controller of DGs in
microgrids will be started to restore the dc voltages and ac

frequency to their nominal values by cooperating with the IC
when some active power is transferred. When each microgrid
is operating in islanded mode or no active power is transferred
by the interlinking converter, the secondary controllers of DGs
will remain working. The deviations of dc voltage and ac
frequency will be introduced by droop control when the load
changes, resulting in deteriorated power sharing. The power
sharing could be improved by restoring the dc voltage and ac
frequency through the secondary controller.

The idea of [34] is to develop a cascaded frequency,
angle and virtual torque control topology to emulate the
mechanical behavior of a synchronous machine which offers
synchronization power to eliminate the need for a PLL. Then
the VSC dc-link can be viewed as a virtual rotor and some
inerter is introduced. Therefore, the VSC has the ability to
synchronize with the grid and the frequency can be restored
to the preset value under the action of the inerter, which
allows the secondary controller to be avoided. The control
idea of our paper is based on principle of droop control.
The droop controlled DG does not have the inerter existed
in the synchronous machine. Therefore, the dc voltage and ac
frequency could not be restored to the rated values without the
help of the secondary controller. The idea of our paper may
be different from that of paper [34].

For the control of dc voltage and omega, due to their de-
pendence [35],the IC can generate the synchronized reference
value and send it to the microgrids to be the reference value of
the secondary controller. With the help of the secondary con-
trollers of each microgrid, the dc voltage or the ac frequency
can be kept stable and almost constant. Thus the dc voltage
and omega could be controlled relatively independently to
transfer active power. Particularly, the performance willbe
better if the steady state of the secondary controller can be
achieved within fast finite time. Similar method can be found
in [36]. When the synchronization between the dc and ac
microgrids is achieved, the IC will again generate reference
value for the secondary controllers to restore the dc voltages
and frequency to their nominal values. In addition, data-
driven control method is developed in this paper, which has a
good robustness and is not sensitive to the system parameter
variation. Therefore, with the help of the secondary controllers,
the cooperation between the IC and secondary controllers,
and the data-driven method, the dc voltage and omega could
be controlled relatively independently. The benefit is thatthe
control could be relatively flexible and that the provision of
frequency and dc voltage would be better.

D. Overall Control Diagram

The overall control block diagram showing the realization of
the proposed dual-droop control for the interlinking converter
can be found in Fig. 7, in which the secondary controller
is not included. Firstly, the interlinking converter control is
realized by measuring the local ac frequency and dc terminal
voltage. These measured variables upon normalized by using
the method proposed in [16] are then used to determine the
active power commandPIC,tk+1

(Eq. (13)) for the interlinking
converter. According to the determined active power command
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Fig. 6. Flow chart of the logic signal generator of the secondary
controllers.
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Fig. 7. Overall control diagram for the interlinking converter.

PIC,tk+1
, the operation mode of the interlinking converter can

be selected and then the corresponding coefficient updating
signal σ̃IC,tk+1

or k̃IC,tk+1
(Eq. (14)) can also be generated.

Secondly, using the proposed dual-droop controller (7), along
with the active power commandsPIC,tk+1

and coefficient
updating signal̃σIC,tk+1

or k̃IC,tk+1
, the referencesω∗

IC,pu

or V ∗

IC,dc,pu will be determined. Finally, these references will
be given into the inner data-driven model-free adaptive voltage
controller.

According to the control diagram, a PLL is used to detect
ac frequency for the dual-droop controller. For the inner
loop controller, a data driven model-free adaptive controller
is designed, which, unlike the conventional PI controller,
does not require the ac voltage and current obtained from
the coordinate transformation by using the frequency from
the PLL. The dynamic I/O data that the DDMFAC requires
could be extracted directly from huge amounts of the recorded
process data or observer. Maybe, this has nothing to do with
PLL directly. The system and controller would not be evidently
affected by the PLL that just provides the frequency for the
dual-droop controller.

frequency vs.Vdc droop in [19] and [34] can be sum-
marized as follows. (i) Compared with [19] where the IC
operates in current-controlled mode, the IC with the proposed
method in our paper can provide dc voltage and ac frequency
support since it is not current-controlled mode. Additionally,
communication is adopted in our manuscript to obtain the
variables from and send information to the microgrids, respec-
tively. (ii) In [34], the control method was developed from
the perspective of SMs, and the dc voltage was controlled
by both the frequency and load angle. In our paper, the
control method is developed from the perspective of droop
control and hierarchical control, and we could control the
dc voltage and ac frequency relatively independently with
the help of the secondary controllers in each microgrid. (iii)

Compared with [19] and [34], accurate active power sharing
and synchronization reference signals can be quantitatively
guaranteed in theory in this paper. The former is realized by
the coefficient(kac + kdc)

−1 in equation (13) and the latter
is realized through equation (7) and (14). (iv) The IC can
generate the synchronization reference values to establish the
cooperation between the IC and the secondary controllers in
each microgrid. Thus both the active power sharing and the
restoration of the dc voltage and ac frequency can be realized.

The main advantage of [19] is that it eliminates the need
for any communication between microgrids, resulting in rel-
atively fast response, and flexible and convenient design and
applications. The advantage of [34] is that the system stability
is enhanced due to the introduced virtual inertia and the PLL
and secondary controllers are avoided by designing the control
topology to emulate the behavior of an SM. However, the
advantage of our paper is that the IC can properly provide
dc voltage and ac frequency support while keeping accurate
proportional active power sharing, which is helpful for the
stable operation of the system especially when the system is
not connected to the utility grid. The IC can also cooperate
with the secondary controllers of DGs in each microgrid by
generating synchronization reference values for the secondary
controllers thereby helping the microgrid to restore the dc
voltages and ac frequency to their nominal values. Another
one is that DDC method is adopted in the paper which has a
good robustness.

IV. SIMULATION RESULTS

To validate the performance of the proposed control scheme
for the interlinked ac/dc microgrids, the interlinked system,
depicted in Fig. 1 has been simulated in MATLAB/Simulink
environment. The ac and dc microgrids have its own DGs
and loads, and are emulated with a dc-ac inverter and a
boost converter, respectively. A six-switch dc-ac converter with
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LC filters serving as the interlinking converter is adopted
to interface the ac and dc microgrids. Parameters of the
system and controllers are presented in Appendix C. To verify
the feasibility of the proposed controller, different operating
conditions have been considered. From case 1 to case 4, the
secondary controllers of the ac and dc microgrids are not
considered while this is considered in case 5. Some results
are presented and discussed in detail in the following.

A. Case 1

In this case, both the ac and dc microgrids are initially
experiencing a load demand of 2 kW each; this means that the
two microgrids are initially operating in light load condition.
According to the proposed control strategy (13), along with
the equal measured per-unit values (Vdc,pu = ωac,pu = 0.6)
of the voltage at dc side and the frequency at ac side, no
active power (PIC,tk

=0 kW) is transferred by the interlinking
converter in this condition. The interlinking converter operates
in mode-3. Fig. 9 shows the power responses and the per-
unit values of the dc side voltage and the ac side frequency.
After t=2 s, loads in the ac and dc microgrids are increased
to 5 kW and 7 kW, respectively. In this condition, both the
ac and dc microgrids are operating in normal load condition.
Thus the per-unit values of the ac side frequency and dc side
voltage drop to 0 p.u and -0.4 p.u, respectively. According
to (13), ηe > η = 0.2, the active power transferred by the
interlinking converter is updated to -1 kW, which means the
interlinking converter transfers 1 kW from the ac microgridto
the dc microgrid. The operation mode is changed from mode-
3 to mode-1. Upon reaching steady-state, the ac and dc source
generations are noted to be the same at about 6 kW each. And
the ac and dc microgrids have the same normalized value of
-0.2 p.u (Vdc,pu = ωac,pu = −0.2), resulting in proportional
power sharing of the total load between the two microgrids.

B. Case 2

Similar to case 1, in this case, the initial load conditions
are set to 5 kW for the ac microgrid and 7 kW for the dc
microgrid. The interlinking converter transfers 1 kW from the
ac microgrid to the dc microgrid in the steady-state described
in case 1 to achieve proportional power sharing. At t=3 s, the
load demands of the ac and dc microgrids are changed to 8 kW
and 6 kW, respectively. Then normalized values of the ac side
frequency and dc side voltage are changed to -0.6 p. u and -0.2
p. u, respectively. Upon sensing the mismatch in normalized
values, the amount of the active power to be transferred by the
interlinking converter is updated to 1 kW according to (13),
resulting in the interlinking converter to reverse the power
flow with 1 kW shifted from the dc to ac microgrid. Thus
the ωIC,pu − P droop is selected and updated to control the
frequency. The operation mode of the interlinking converter is
changed from mode-1 to mode-2 now. Fig. 10 shows the power
responses and the normalized values of the ac side frequency
and the dc side voltage. It can be seen that the total load is
proportionally shared between the ac and dc microgrids. In the
steady-state, the ac and dc source generations are noted to be
the same at about 7 kW each. And the ac and dc microgrids
have the same normalized value of -0.4 p. u.

C. Case 3

The over load condition of both the ac and dc microgrids
is considered in this case. The initial conditions are set to
8 kW for the ac microgrid and 6 kW for the dc microgrid,
respectively. That means the ac microgrid is initially operating
in over load condition while the dc microgrid is operating in
normal load condition. In the steady state, the interlinking
converter transfers 1 kW from the dc microgrid to the ac
microgrid, which is discussed in case 2 in detail. At t=3
s, the ac and dc microgrids are changed to 9.5 kW and 9
kW, respectively, which makes both the ac and dc microgrids
over loaded. This can also be demonstrated by the measured
normalized values (-0.9 p. u and -0.8 p. u). According to
(13), the active power to be transferred by the interlinking
converter is updated to 0 kW, which means the interlinking
converter transfers no power and each microgrid is responsible
for the power sharing in this load condition. Fig. 11 shows
the power and the normalized values of the ac side frequency
and the dc side voltage. It can be seen that the interlinking
converter can reasonably manage the power sharing and has
a good performance. It is necessary to mention that a loading
shedding system may be activated in this condition in practice
to guarantee the system stability.

D. Case 4

In this case, the initial conditions are set to 8 kW for the
ac microgrid and 6 kW for the dc microgrid, respectively.
That means the ac and dc microgrids are initially operating
in over load and normal load condition, respectively. In the
steady state, the interlinking converter transfers 1 kW from
the dc microgrid to the ac microgrid according to Eq. (13).
At t=3 s, the ac microgrid is changed to 6.5 kW and the dc
microgrid remains 6 kW. Although the ac and dc microgrids
are operating at normal load condition, according to (13), the
active power to be transferred by the interlinking converter
is updated to 0 kW (PIC,tk

=0 kW) since the deviation is
less than the threshold (ηe < η), which means the interlinking
converter transfers no power and each microgrid is responsible
for the power sharing in this load condition. Fig. 12 shows the
power and the normalized values of the ac side frequency and
the dc side voltage. It can be seen that small deviation of
the per-unit values exists between the ac and dc microgrids,
and that the interlinking converter can reasonably manage the
power sharing and has a good performance.

E. Case 5

Based on case 4, the secondary control scheme is added
in this case. The load conditions considered in this sim-
ulation is the same as that in case 4. Fig. 13 shows the
simulation results, from which it can be seen that the per-
unit values of the ac frequency and dc voltage are restored to
zero corresponding to their nominal values with help of the
secondary controllers. Specifically, at t=2.1 s, synchronization
is achieved between the ac and dc microgrids, and the per-
unit values of dc voltage and ac frequency meet the condition
of |Vdc,pu,tk

− ωac,pu,tk
| < ε = 0.1. Therefore, the IC sends
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Fig. 8. The schematic diagram of design of the
threshold.
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Active power (W). (b) per-unit values of the dc side
voltage and ac side frequency.
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Fig. 10. Power responses and per-unit values. (a)
Active power (W). (b) per-unit values of the dc side
voltage and ac side frequency.
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Fig. 11. Power responses and per-unit values. (a)
Active power (W). (b) per-unit values of the dc side
voltage and ac side frequency.
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Fig. 12. Power responses and per-unit values. (a)
Active power (W). (b) per-unit values of the dc side
voltage and ac side frequency.
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Fig. 13. Power responses and per-unit values. (a)
Active power (W). (b) per-unit values of the dc side
voltage and ac side frequency.

signals to the ac and dc microgrids to change the reference
values of the secondary controllers. Then, the secondary
controllers of the DGs in microgrids are started to restore the
dc voltage and ac frequency to their nominal values. At t=3 s,
the ac microgrid is changed to 6.5 kW and the dc microgrid
remains 6 kW. In this load condition, no active power is
transferred by the interlinking converter since the deviation is
less than the threshold (ηe < η), which means each microgrid
is responsible for the power sharing. Therefore, the secondary
controller of the interlinking converter is stopped to workand
the secondary controllers in each ac and dc microgrid remain
working. The dc voltages and the ac frequency in dc and ac
microgrids can be kept at their nominal values, respectively.

V. EXPERIMENTAL RESULTS

For verifying the practicality of the proposed scheme, a test
interlinked ac and dc microgrid system shown in Fig. 14 was
built in the laboratory, comprising an ac microgrid and a dc
microgrid. The ac microgrid and the dc microgrid is connected
through the interlinking converter. The ac microgrid consists

 !" #$ % & '( )* + , - ./ 0 1 2 3 4 5 6 7 8 9: ; < = > ? @ A B CD E F G H I J K L M N O P Q RS T U V W X Y Z [ \ ]^ _ ` a bc d e f g h i j k l m n op q r s t u vw x y
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Fig. 14. The tested interlinked ac and dc microgrids.

of 10 kW PV arrays, meanwhile the dc microgrid consists of
5 kW PV arrays and two 5 kW horizontal axis WTs. The light
load condition, normal load condition and overload condition
are considered for two interlinked microgrids.

Note that ratings of the two microgrids were intentionally
set the same with that of the simulation to demonstrate
their equally satisfactory responses. Under proportionalactive
power sharing, the p.u. values of the ac frequency and dc
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voltage, normalized with respect to their ratings, were always
the same in the steady state. The experiment was divided into
four stages:

Firstly, the load in the ac microgrid is 5 kW and the
load in the dc microgrid is 7 kW which means the two
microgrids are operated under normal load condition and the
ac microgrid should transfer 1 kW from ac microgrid to dc
microgrid through the interlinking conventer; Secondly, the
load in ac microgrid is changed to 8 kW and the load in dc
microgrid is changed to 6 kW which means the two microgrid
are also operated under normal load condition and the dc
microgrid should transfer 1 kW to ac microgrid through the
interlinking conventer; Thirdly, the load in ac microgrid is
changed to 9.5 kW and the load in dc microgrid is changed
to 9 kW which means the two microgrid are also operated
under overload condition and there is no power through the
interlinking conventer; Fourthly, the load in ac microgridis
changed to 6.5 kW and the load in dc microgrid is changed
to 6 kW which means the two microgrid are also operated
under normal load condition; because the deviation is less
than the threshold , there is also no transfer power through
the interlinking converter.

Fig. 15 shows the experimental power waveforms about the
output active power from ac and dc microgrids respectively.
From the Fig, it can be found that at the first and second stage,
the two microgrids can share the load in average and at the
third and fourth stage, the two microgrids are not necessary
to share the load in average. Fig. 16 shows the experimental
power waveforms about the active power transferred by the
interlinking converter. Fig. 17 and Fig. 18 show the per-unit
values of the ac microgrid frequency and dc microgrid voltage,
and the ac grid voltage, respectively. It could be easily found
that proportional active power sharing was achieved and thep.
u. values were also always the same and they can be restored
to their nominal values.

It is worthwhile to remark here that the computation burden
of the proposed DDMFAC scheme in our manuscript could be
not really larger than other adaptive methods such as robust
adaptive control, neural network adaptive control. In addition
to the update equations, the uncertainty dynamics should be
estimated for the robust adaptive control and large trainings
are required in the neural adaptive control method. These also
need considerable computational burden. Data driven MFAC
method does not require a priori physical and mathematical
knowledge of the system, training process, which allows small
computational burden, easy implementation and application. In
order to cut the computational burden, the parametersdy and
du could be selected properly according to practical scenarios.

VI. CONCLUSION

This paper investigates on coordinated power sharing issues
of interlinked ac and dc microgrids. To realize proportional
power sharing between ac and dc microgrids, a novel primary
controller including a dual-droop controller and a data-driven
model-free adaptive voltage controller has been firstly pro-
posed in this paper. Following, a secondary control scheme
has also been proposed to cooperate with each microgrid to

0 1 2 3 4 5 6 7 83456
7891 01 11 2

T i m eA cti vepowerout put of each mi crogrid(kW) P a c
P d c

Fig. 15. The output active powers of the ac microgrid and the dc microgrid
(W).

0 1 2 3 4 5 6 7 8� 2 . 5� 2� 1 . 5� 1� 0 . 500 . 5 11 . 522 . 5
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Fig. 16. The transferred active power by the interlinking converter (W).
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Fig. 17. The ac grid frequency and dc grid voltage (p.u.).

restore the dc voltages and the ac frequency to their nominal
values. Using the proposed scheme, the interlinking converter,
just like the hierarchical controlled DG units, will have the
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Fig. 18. The ac grid voltage (V).

ability to regulate and restore the dc terminal voltages and
the ac frequency while keeping proportional power sharing.
Moreover, the design of the controller is only based on
input/output (I/O) measurement data but not the model any
more. Simulation and experimental results have been given to
verify the proposed power sharing strategy.

APPENDIX A

Variables in equation (4):
∆U (k) =

[
∆u

T (k) , · · · ,∆u
T (k − L+ 1)

]T
,

∆Vi (k + 1) = Vi (k + 1) − Vi (k),
∆u (k − i+ 1) = u (k − i+ 1) − u (k − i) , i = 1, · · · , L,
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] , and

‖Φi (k)‖ ≤ Ci, Ci > 0 are constants,L is a positive constant
called control input length constant of linearization for the
discrete-time nonlinear system.

Variables in equation (5):K1 = diag (k1, k2, k3), K2 =
K2, Γ2 (k) = Γ4 (k), Γ1 (k) = diag (Γ1 (k) ,Γ2 (k) ,Γ3 (k)),

Γi (k) = 2
(

‖∆U (k)‖
2
+ µi

)
−1

, i = 1, 2, 3, 4, F1 =

diag (F1, F2, F3), F2 = F4, andṼi (k) = Vi (k) − V̂i (k).

APPENDIX B

Variables in equation (14):

Λσ =
kIC∆ξOL,tk

−
kdc
kac

∆ωs,tk+1
−∆Vs,tk+1

kIC∆ξOL,tk
+∆Vω,tk+1

σ̃IC,tk

, kIC = kac+kdc,

Λk =
kIC∆ξmin,tk

−
kdc
kac

∆ωs,tk+1
−∆Vs,tk+1

kIC∆ξmin,tk
+∆Vω,tk+1

k̃IC,tk

,

∆ξOL,tk
= ξs,tk

− ξOL, ∆ξmin,tk
= ξs,tk

− ξmin,
∆ωs,tk+1

= ξs,tk
−ωac,pu,tk+1

, ∆Vs,tk+1
= ξs,tk

−Vdc,pu,tk+1
,

∆Vω,tk+1
= Vdc,pu,tk+1

− ωac,pu,tk+1
.

APPENDIX C

TABLE I
SIMULATION TESTSYSTEM PARAMETERS

dc-microgrid
Line-1 0.1 Ω
Line-2 0.1 Ω

Nominal voltage 650 V
ac-microgrid

Line-3 0.05Ω 0.25 mH
Line-4 0.05Ω 0.25 mH

Nominal frequency 50 Hz
Nominal voltage 380 V (L-L)

Interlinking converter
Filter inductance 3 mH
Filter capacitance 500 µF

dc-link capacitance 2200µF
Parasitic resistance 0.01 Ω

TABLE II
SIMULATION PARAMETERS AND RANGES

dc-microgrid
Maximum active 10 kW
powerPdc−max

Voltage rangeVdc 640 V < Vdc < 660 V
Droop coefficientkdc 0.0002W−1

Secondary controller gains kpV = 0.01, kiV = 4 s−1

ac-microgrid
Maximum active 10 kW
powerPac−max

Maximum reactive 5 kVAr
powerQac−max

Frequency rangefac 49 Hz≤ fac ≤ 51 Hz
Droop coefficientkac 0.0002W−1

Secondary controller gains kpω = 0.01, kiω = 0.6 s−1

Interlinking converter
50.5 Hz≤ fIC ≤ 51 Hz

(0.5 p. u.≤ fIC,pu ≤ 1 p. u.) (UL)
49.5 Hz≤ fIC ≤ 50.5 Hz

Frequency range (-0.5 p. u.≤ fIC,pu ≤ 0.5 p. u.) (NL)
49 Hz≤ fIC ≤ 49.5 Hz

(-1 p. u.≤ fIC,pu ≤ -0.5 p. u.) (OL)
655 V ≤ VIC,dc ≤ 660 V

(0.5 p. u.≤ VIC,dc,pu ≤ 1 p. u.) (UL)
645 V ≤ VIC,dc ≤ 655 V

Voltage range (-0.5 p. u.≤ VIC,dc,pu ≤ 0.5 p. u.) (NL)
640 V ≤ VIC,dc ≤ 645 V

(-1 p. u.≤ VIC,dc,pu ≤ -0.5 p. u.) (OL)
L = 3

diag (k1, k2, k3) = diag (0.9, 0.9, 0.9)
Controller parameters K2 = 0.9

diag (α1, α2, α3) = diag (0.3, 0.3, 0.3)
α4 = 0.15
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