
Mobile Process Description and Execution

Christian P. Kunze, Sonja Zaplata, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
[kunze|zaplata|lamersdorf]@informatik.uni-hamburg.de

Abstract. Mobile devices are increasingly aware of their respective loca-
tions and vicinity and tend to communicate rather loosely with each other;
therefore asynchronous communication paradigms are used predominately
so far for corresponding mobile applications. However, while such communi-
cation mechanisms are suitable for simple activities, they may become insuf-
ficient for more complex tasks which consist of longer sequences of related
activities tied together in application-oriented processes. This is of particular
importance if the resulting operating sequence spans several mobile devices
in frequently changing vicinities.

Therefore, the work presented here provides a concept for integrating explicit
support for such mobile processes into mobile system infrastructures and
for distributing their execution over different nodes in the network. For this
purpose, a corresponding middleware platform (extension) for context-aware
mobile applications is proposed. It supports such migrating processes and
helps to execute them under the restrictions typically imposed by realistic
mobile applications. In particular, this paper proposes a corresponding pro-
cess description language and an execution model for mobile and distributed
(business) processes in the context of the project DEMAC (Distributed En-
vironment for Mobility-Aware Computing).

1 Introduction

Due to the constraints of mobile computing environments, mobile systems, in gen-
eral, cannot provide the same degree of distribution transparency as systems in
statically wired environments [4]. Just in contrast to those, the restrictions of re-
sources in comparison to static devices, the increased variability in performance
and reliability of wireless connections, the finite energy sources to rely on, and the
hazard of mobility itself [13] lead to the perception that mobile environments should
be aware of the changing vicinity and also should react and adapt to it accordingly.

However, in current systems this so-called context awareness and adaptability is,
in most cases, still restricted to support more or less monolithic and ad-hoc static
applications in fulfilling their momentary tasks. In general, that means that most
existing middleware systems are rather application centric and thus restricted to
offer assistance for basic but rather simple tasks. But, in order to approach the
vision of pervasive computing [16, 17] more closely, also much more complex and
eventually even unknown tasks and thus more generality must be supported by new
mobile middleware systems.

Such complex application tasks can be regarded as sequences of related simple
tasks tied together in a (business) process which is managed by a mobile client on
behalf of a user. This means that a mobile client is required to reach and invoke all
the services needed to execute such a process. It must also be capable of handling
all intermediate results – regardless of their size and relevance to the expected
final output. As a consequence, it may become a single point of failure and also a

bottleneck during execution time. Altogether, this means that the capabilities of a
mobile client limit the quantity of possible processes to be executed.

But since the user is, in most cases, just interested in some specific effects of a
process (and not in its execution or intermediate results), this effect could be eased
by transferring the control flow – and with it the whole process – to other devices,
if possible. In combination with the possibilities of mobile computing middleware
systems to utilise context information and to cooperate, such long-time mobile pro-
cesses and their distributed execution provide additional efficiency to application
process execution in mobile computing. Accordingly, this paper presents an out-
line of the system platform Distributed Environment for Mobility-Aware Computing
(DEMAC) – which realises such an extension – with a special focus on a new de-
scription language and execution model for such mobile processes.

The following subsections of the paper introduce the definition of mobile pro-
cesses, section 2 addresses related work, and section 3 provides a closer look at
the coarse system architecture, the process definition language, and the execution
engine. Finally, section 4 concludes the paper with a summary and an outline of
future work.

1.1 Integrating Processes into Mobile Computing Systems

The work presented aims to extend the capabilities of mobile devices through co-
operation with other devices in their vicinity and thus increase of their potential.
This is achieved by integrating distributed (business) processes into an adequate
mobile system infrastructure. Such an approach is different to most existing ones of
integrating processes with mobile computing devices which just extend their tradi-
tional process infrastructure by including mobile device as process participants (cp.
e.g. [12]). Accordingly, in our context, the term mobile process is defined and used
as followed:

A mobile process is a sequence of (remote) services which may last over
a longer period of time and span several devices during its execution. The
results of the process are the effects the initiator expects from it.

In traditional mobile middleware, a process executes the application logic by explic-
itly assigning local or remote services to the processs activities and by invoking them
directly. In contrast to that, in our view, such application processes may (partly)
diffuse into the mobile middleware: They just form a stub which collects informa-
tion from the user to assemble the process and its general conditions and to pass
the mobile process to the middleware.

In addition, as activities of mobile processes can last very long (like hours, days,
or weeks) the changes of the device environment can be dramatic between the
executions of adjacent activities. Therefore, a late binding strategy to assign services
is – certainly – essential but not always sufficient. Consequently, the mobile processes
as proposed here are executed based on an opportunistic strategy : As long as the
process engine of a device is able to bind local or remote services to it’s currently
activity, it is responsible for the mobile process. However, in cases of failures or lack
of respective service instances the engine is able to try to find other devices which
are able to execute the mobile process and then transfers the remaining process and
its execution to one of them.

Such a process distribution is especially advantageous in (realistic) heteroge-
neous and frequently changing mobile environments where device capabilities may
highly differ. Thus, such process transfer opens up additional services which were
not accessible according to the traditional execution approach. This also means that
likelihood of a mobile process to be executed successfully increases substantially.

1.2 Requirements for Descriptions of Mobile Processes

In order to describe processes in ways which allow for execution strategies as de-
scribed above, an abstract process description language has to be designed: In such
a view, mobile processes have rather similar requirements for their description as
traditional (business) processes, these are among others: the need for the ability to
express the business logic with its data and control flow, the participating parties
(as roles or individuals), and routines to recover from failures [9].

But they also have some specific requirements based on the nature of mobile
environments and the opportunistic and distributed execution strategy (cp. section
1.1): E.g. mobile process descriptions must be lean and simple to process in order to
save memory, CPU power, and energy resources, it must also include mechanisms to
handle communication failures and the distribution of the process itself. This means
especially that the state of the process and the user’s non-functional conditions for
the execution of the process must be expressible. The (late) binding mechanism to
assign service instances to process activities as late as possible must be integrated
into the description language by using a preferably very abstract notation of the
desired services [13, 7].

Based on these ”related work” is briefly reviewed in section 2 and for mobile
process description languages in section 3.2.

2 Related Work

Since this paper concentrates specifically on the description and execution of mo-
bile processes, some specific aspects of our approach are pointed out first - before,
after that, related work in the area of mobile process descriptions is reviewed more
extensively.

System Infrastructure Since mobile process execution always relies on contextual
information, the context modelling and context data acquisition are crucial for the
respective developed concept and system infrastructure. The abstract and generic
definition of context and its data as used in the Context Toolkit [5] by Dey is mainly
suited for the mostly a priori unknown demands of mobile processes. Whereas the
understanding provided by Schilit [14] or Schmidt [15] turned out to be too narrow
to support the wide range of possible processes as required in our approach. The
idea of the NEXUS project [6] to ensemble the context of an entity by federating
local context clippings of entities within particular vicinity is used in the system
infrastructure to construct a global context representation efficiently.

The mobile process infrastructure as addressed here also relates to recent re-
search in the area of mobile agents [3]. However, in relation to that it differs in
some important aspects: In contrast to an agent a mobile process does not contain
executable code. In fact, mobile processes only provide meta-data about the struc-
ture of the described application and, thus, the estimated effects but not the way
how this behaviour is achieved. In addition, they do not have a social behaviour
either, nor could they act autonomously or proactively. Nevertheless, some parts,
e.g. security and privacy concerns or the need to determine the execution state,
have, in principal, similar requirements and, thus, solutions.

Process Description A process description language for mobile processes has to
consider aspects of distribution as well as support for high level flexibility and fault
tolerance. An analysis of most prominent existing process description languages,
such as XPDL, BPEL4WS, WSCI, JPDL, and ebBPSS, shows that the concepts

and constructs provided by these languages are not in total adequate to describe
highly dynamic processes on mobile distributed computing systems [18].

Closest to the required concepts as mentioned above is the meta-model language
XPDL [10], which was developed as an abstract interchange format for different
workflow engines. It provides a very general view on processes, is open for extensions
and ready for all kind of automated and manual services. On the other hand, due
to its high level of abstraction, it does not provide sufficient concepts to perform
distributed process execution and handle errors as well as transactions.

In contrast, BPEL4WS [1] as a language for the orchestration of activities de-
fined as web services, offers very specific and powerful elements to link tasks and
to deal with unexpected circumstances as well. Processes defined with BPEL4WS
are ready to be executed but limit cooperations between business partners using
the Web Service protocol stack. Furthermore, process descriptions tend to be-
come rather complex due to possible combinations of sequential blocks with graph-
structured elements in order to express parallel behaviour. Again, the definition
language is developed for running on a central workflow engine and does not pro-
vide concepts for distributed process execution.

The Web Service Choreography Interface (WSCI) [2] is an add-on of WSDL and
concentrates on the choreography of web services by describing a task from the
individual perspective of its participating services. Therefore, the description itself
is lean because each one is intended for only one single participant. The disadvantage
of WSCI, however, is that all possible participants have to be determined in advance
so the processes’ information can be distributed and a fixed compatible interface can
be implemented within the WSDL description of each participant. Also dynamic
processes or ad-hoc workflows as well as often changing vicinities of mobile devices
cannot be handled with WSCI.

A very lean description language is provided by JPDL [8], which is an integral
part of the Java Business Process Management (JBPM). JPDL supports manual
tasks, but the description of automated function logic is matched to the Java pro-
gramming language and the composition of web services is not provided at all. For
error handling, JPDL also relies on the JAVA platform and, therefore, cannot be
considered to be totally platform-independent.

EbBPSS is the Business Process Specification Scheme of the EbXML framework
[11]. In particular, it is designed to describe business transactions and therefore it
focuses on the aspect of binary collaboration between several companies. Although
EbBPSS has the ability to describe quality and security issues as fixed requirements
for the scheduled cooperation, it depends highly on the ebXML framework which
is in itself too complex for most of today’s mobile computing systems. Standing
alone, it does not support the description of required control flow constructs, such
as error handling mechanisms or the possibility to integrate users and different kind
of services.

So, in summary, none of the considered approaches supports transfers of process
descriptions and allows a completely distributed administration of mobile processes.
Late binding of participants is often possible, but there are no adequate concepts
to choose participants by their respective quality or by other non-functional crite-
ria. In most cases, the description of activities and their dependencies within the
process is very extensive or requires a lot of computing power to work on it. This,
however, is not suitable for relatively weak mobile devices. Finally, concepts for
handling faults are insufficient for the error-prone mobile computing systems and
the handling of connection resets and security issues has not been considered at all
since these process description languages have been developed basically for reliable
central workflow engines.

3 A Mobile Process Integration Service

These deficiencies of already established approaches for describing mobile processes
(cp. section 2) adequately motivate the development of an enhanced description
language which fulfils all of the specified requirements. Accordingly, this section
presents relevant features such an approach based on (a) a process description
language for distributed processes and (b) a corresponding mobile process execution
engine. But as such an engine cannot be realised without an underlying system
infrastructure, subsection 3.1 first provides an outline of the middleware architecture
as developed for that purpose in the DEMAC project.

3.1 A Middleware Architecture for Supporting Distributed and
Mobile Processes

The decision to design a tailored system infrastructure for supporting a seamless
integration of mobile processes into a mobile computing middleware evolved from
an analysis of the processes’ requirements and the respective features as offered
by existing middleware approaches. Especially the close cooperation between the
mobile processes and the context model to distribute and execute the processes
lead to the need of a specifically adjusted model and service architecture.

The resulting system architecture is based on four basic service components
(see figure 1) which are briefly described overview before section 3 introduces the
integration of mobile processes in more detail.

Figure 1. The DEMAC Abstract Architecture

The Communication Basis The asynchronous transport service and the event
service form the communication platform of the architecture and provide commu-
nication with both push and pull semantics. This service abstracts from concrete
transport protocols – like TCP/IP, Bluetooth or IrDA. To be independent from
the underpinning protocols, the transport service uses its own addressing schema.
These addresses are bound to a device and translated into concrete protocol specific
addresses by the transport service. If the device is reachable by different protocols,

non-functional aspects, like e.g. quality of service attributes, can be used to make
an optimal choice.

The Context Service The context service collects and maintains all information
about the context of the device. It acquires its knowledge either by events from the
event service or by direct message exchange using the transport service. Towards the
entities which use the service, it filters and partitions the information and provides
only the amount of data they need. These are next to quality of service parameters
also information about reachable devices and their services, location parameters
and data about other users and their identity. To acquire the context information, a
federated approach is chosen. Every device provides only local context information.
To get the overall context, the information of the devices in the environment is
merged. To find and resolve devices and services in the vicinity, the context service
contains a distributed registry which uses peer-to-peer mechanisms to obtain its
knowledge.

The Process Service The process service realises the integration of process man-
agement into the DEMAC architecture. It is comprised of two parts: The first one
is a definition language in order to describe the mobile process as well as the users’
and applications’ non-functional demands (cp. section 3.2). Using this language, an
application is able to define a sequence of activities, intermediary results which must
be achieved, and constraints for the execution. The second part of the service is an
execution engine for process definitions. This unit resolves and executes processes
(cp. section 3.3). It can either invoke the activities locally or delegate the process to
a remote process service. When delegating a process, the description and all neces-
sary data is transferred to the remote unit by use of the transport service. Thereby
the process service relies on the information provided by the context service to find
a device providing the needed service and to enforce the non-functional demands
and constraints. The execution engine’s architecture provides the ability to extend
a compact core by plugging in functional modules to adapt to the capabilities of
the underlying device.

3.2 DEMAC Process Description Language

The DEMAC Process Description Language1 (DPDL) is an XML-based descrip-
tion language to integrate distributed long-time processes into mobile computing
systems. DPDL follows the meta-description language XPDL [10] and inherits the
structure and those constructs of XPDL which turned out to be suitable for de-
scribing mobile processes.

The basic idea of DPDL is to allow a distributed handling of the process over
heterogeneous systems. An entire process may be passed on to another device to
continue work on the process’s tasks. So devices which are not capable of executing
a particular task of the process can mark its latest execution state and search for
other devices able to carry on at the position established so far. So, by sharing
the potential of several mobile devices, this approach increases the likelihood of
successful process execution - even under the (generally unstable) conditionals which
are typical for mobile devices and applications.

Meta-model and Structure As shown in figure 2, the basic container for the
DPDL process description and all its data is a Package. A Package contains at
least a single WorkflowProcess, which holds all tasks to be worked on (Activities)
1 http://vsis-www.informatik.uni-hamburg.de/projects/demac/dpdl1.0.xsd

and the control flow as a fixed sequence to execute these tasks. Activities can be
atomic or can be grouped to simple reusable blocks (Activity Sets), to a sequence
of activities to be executed as a Transaction or to a set of repeatable actions within
a Loop. Furthermore, an activity can represent an entire Subprocess.

Workflow
Process

Activity Set

Activity

Transition

Block
Activity

Sub-Process

Atomic
Activity

1

1

from to

*

*

*

*
*

Transaction

Transaction
Activity

Loop

Loop
Activity

**

Exception
Handler

Connection
Reset Handler

1

1
1

1

1

*

*

*

**

1
1

*

*

1
1

1
1

1

11

Native XPDL Elements

Additional Constructs in DPDL

in case of exception

Activity Reference

1

1

*

1

1

Package
1

StrategyApplicationWorkflow
Relevant DataParticipant

** *

1 1 1

*

1

1

1

in case of
connection reset

Figure 2. DPDL Meta-model

To integrate non-functional criteria, the Package can also contain definitions
of requirements for service qualities or for quality aspects of devices or networks.
These requirements are modelled as Strategies and can be bound to activities or to
the entire process.

To deal with likely occurrences of errors and connection resets DPDL intro-
duces Exception Handlers and Connection Reset Handlers. These elements refer
to another set of activities which should be executed in cases where the normal
execution fails.

The introduction of ActivityReferences allows reusing the description of activ-
ities within the process, for example as a part of several error handling descrip-
tions. ActivityReferences are linked by Transitions to describe the processes’ control
flow. ActivityReferences are unique within the process. They contain all information
which is relevant for the execution of the activity in dependence of its position in the
control flow, such as references to participants, error handling and non-functional
criteria.

State Concept The state of each single activity within the process is modelled
as a property of its respective unique ActivityReference, so the execution state of
an activity is well-defined and the progress in processing the activities is visible for
every participating device at any time during execution.

Figure 3 shows the potential lifecycle of an ActivityReference. An ActivityRef-
erence is inactive if preliminary activities are not executed or conditions for the
execution of the referenced activity are not checked yet. In case one or more of
these conditions can not be fulfilled, the ActivityReference is set to the error state
skipped. If these conditions evaluate to true or there are no conditions defined, the
ActivityReference is set to the state ready. It may happen that a mobile device is
capable of checking the conditions of an activity, but is not able to perform the
execution itself. In this case, it will possibly take some time to transfer the process
description to another device and it has to be checked close to the execution if the
activity is still valid or if a defined expiration date is exceeded (error state expired).
The states skipped and expired are also relevant for the appliance of a Dead Path
Elimination. If all prerequisites are fulfilled and the actual execution starts, the
ActivityReference is set to the state executing. The appearance of errors during the
execution will result in a general error state in error. An activity is executed when
its execution is successfully completed. It might now be set back to the ready state
to be restarted later (for example if the activity is part of a loop) or it is set to the
state finished which indicates the execution of the ActivityReference is terminated
and finally closed.

inactive ready executing executed finished

skipped expired in error
execution states

error states

Figure 3. Possible States of Activities in DPDL

Furthermore, a particular ActivityReference can be referenced as a start activity
to mark the next task to be executed. This relieves other participating devices of
dealing with tasks which have already been finished.

Description of Activities and External Data Transfer and execution of pro-
cesses on mobile computing systems also require rather efficient use of the available
amount of system memory. This means, one of the most important requirements
of mobile processes is to make process descriptions as lean as possible. DPDL al-
lows describing activities as a short but significant identifier and supports to store
data external to the actual process. For example, huge documents may be kept
completely out of the description until their processing time has arrived. This is
particularly suitable if the data is needed only once or is used in very few activities
within the process. On the other hand the provision of flexibility is essential in this
case because the availability of devices and their connectivity may appear as a bot-
tleneck to the dynamic integration of external features. So, it depends on the kind
of application to decide whether or not obtaining data from a remote location.

Listing 1 shows the declaration of two variables by the use of the DataField
construct and the definition of the corresponding data. While the content for the
variable ”PaintingName” can easily be hold within the process description for im-

mediate access, the data item of the type ”Image” is represented by an External-
Reference in order to save memory and network costs. Furthermore, the generic
Application ”Printer” is abstracted in the example listing by a universal unique
identifier (UUID) which represents the category of adequate services to execute the
respective activity, e.g. printing an image. The data involved in the task, in this
case the painting’s name and the image data itself, is finally called and mapped to
the Formal Parameters of the generic Application.

Listing 1. Description of Data and Activities
<DataFields >

<DataField Id ="PaintingName" >
<DataType >

<BasicType Type ="String"/ >
</ DataType >
<InitialValue >Mona Lisa </ InitialValue >

</ DataField >
<DataField Id ="NewPainting" >

<DataType >
<DeclaredType Type ="Image"/ >

</ DataType >
<ExternalReference Location ="http://www.xyz.com/Very Large Image.bmp"/ >

</ DataField >
</ DataFields >

<Applications >
<Application Id ="Printer" >

<UUID>12345678901234567890123456789012 </ UUID>
<FormalParameters >

<FormalParameter Id ="SomeName" Index ="1" Mode="IN" >
<DataType >

<BasicType Type ="String"/ >
</ DataType >

</ FormalParameter >
<FormalParameter Id ="SomePicture" Index ="2" Mode="IN" >

<DataType >
<DeclaredType Id ="Image"/ >

</ DataType >
</ FormalParameter >

</ FormalParameters >
</ Application >

</ Applications >

...

<Activity Id ="Print" >
<Implementation >

<Tool ApplicationId ="Printer" >
<ActualParameters >

<ActualParameter >PaintingName </ ActualParameter >
<ActualParameter >NewPainting </ ActualParameter >

</ ActualParameters >
</ Tool >

</ Implementation >
</ Activity >

Users and Devices Mobile processes are highly related to tasks which require in-
teraction with mobile participants such as users or devices or a combination of both.
Therefore, special constructs are needed to describe which individuals are involved
in which task and by what kind of communication channels these persons might be
addressed or accessed. In DPDL, a participant is either totally specified or described
in a generic way, e.g. by the declaration of a certain role. Descriptive properties of
users (for example a digital identity) and devices (for example unique identifiers)
can be combined to characterize a participant and help finding the required instance
to execute the upcoming task (see listing 2).

Listing 2. Participants
<Participant Id ="Smith" Name="John Smith" >

<Devices >
<Device Id ="111" Name="Personal Computer" >

<UUID>12345678901234567890123456789012 </ UUID>
</ Device >
<Device Id ="222" Name="Mobile Phone" >

<Devicetype Type ="Cellphone"/ >
</ Device >

</ Devices >
</ Participant >
...
<ActivityRef Id ="1" ActivityId ="Activity1" ParticipantId ="Smith" ... / >

Handling Errors and Connection Resets Due to the high incidence of faults
appearing in mobile computing systems, DPDL provides constructs to handle errors
and unexpected connection resets. The description of Exception Handlers provides
a definition of alternative control flow constructs to be executed when an error
occurs. In case of a connection reset, the communication may be either restarted,
the service partner may be changed, or the activity may be skipped. The actual
behaviour depends on the involved applications and the specific use-case and can
also be modelled as a combination of activities (see listing 3).

Listing 3. Connection Reset Handler
<ConnectionResetHandler Id ="1" >

<ExceptionId >someException </ ExceptionId >
<Retries >2</ Retries >
<NewSearch>true </ NewSearch>

</ ConnectionResetHandler >
...
<ActivityRef Id ="1" ActivityId ="Activity1" ConnectionResetHandlerId ="1" ... / >

Parallel Execution In case there is no relevant data dependency within the control
flow, parallel paths of the process can be executed by different mobile computing
systems. To share a process description, the responsible mobile device decides to
execute an arbitrary parallel path and thereby sets its first ActivityReference to the
state executing. While in this state, it produces a snapshot of the process description
as a copy of its own process and forwards this copy to exactly one other device.
Because the path chosen by the first device is already in the state executing, the
second device can only select one of the remaining parallel paths.

In order to synchronize parallel paths, there has to be a defined meeting point,
for example a stationary device. The participating devices can pass their copies
of the process description to the given address. The service at the meeting point
collects all incoming parallel paths belonging to the shared identifier and merges
the copies to a single process description. If required, this one can be forwarded
again to continue execution.

Modification of Activities In order to provide a maximum of flexibility, the
description considers the possibility that activities may be modified throughout
the execution of the process. For example, the single activity ”Send a new text
by e-mail” may be substituted by a more detailed Activity Set containing the two
activities ”Write text” and ”Send e-mail”. If no suitable service for executing the
entire task can be found, other services may cooperate to compensate this lack
of capability by executing intermediate steps. However, to control the amount of
modification the initiator of the process can protect activities against unintentional
changes by using suitable values for the Activity’s Editable attribute. For example,
the activity may be declared not editable at all, or the modifications might be further
restricted by the definition of non-functional criteria, such that no semantically
dependent activity can be substituted without compromising the overall correctness
of the process.

The responsibility for exchanging or modifying activities resides with the context
service which decides whether or not the upcoming task can be executed locally.
The necessary knowledge about semantic equivalence of services and their exchange-
ability or possible reconfiguration is kept by the distributed registry as part of the
federated context services of all vicinal devices (cp. section 3.1).

Integration of Non-Functional Criteria To narrow the selection of potentially
participating devices and services according to the user’s interests and intentions,
the process description may contain a set of non-functional criteria. The user who
initiated a process can define a Strategy to assert a certain level of quality throughout
the execution of the process. This way, Strategies help to ensure the user’s goals as
they were intended originally. Each Strategy contains a set of requirements which
each hold a key-value-pair consisting of an identification argument and a target
value. Listing 4 shows, exemplarily, how to define a limitation of the factor ”cost”
for the execution of a certain activity.

Listing 4. Description of non functional Criteria
<Strategy Id ="123" Name="ActivityStrategy" >

<StrategyProperty Id ="1" Name="Cost" >
<Requirements >

<Requirement Name ="MaxNetworkCost" Value ="10"/ >
<Requirement Name ="MaxServiceCost" Value ="0"/ >

</ Requirements >
</ StrategyProperty >

</ Strategy >
...
<ActivityRef Id ="1" ActivityId ="TestActivity1" StrategyId ="123"/ >

Before executing an activity with specific requirements, the context service has
to collect the relevant quality information, so the process service can ensure that
only those services and devices are involved in the activity’s execution which meets
the specified requirements.

3.3 Mobile Process Execution

Depending on their intended purpose, mobile devices can have many different prop-
erties and a wide range of capabilities. To integrate most mobile devices and to
benefit from the collaboration of heterogeneous systems, the mobile process execu-
tion engine must support different levels of performance.

Therefore, the execution engine is characterized by a modular design (cp. fig-
ure 4). A Core Module provides basic functionality such as receiving, storing, and
forwarding process descriptions. It can be run independently on less powerful de-
vices, like PDAs or cellphones, which do not provide enough memory or computing
power to execute complex tasks but are useful to transport the process descriptions
to other (different) environments. The core module also provides the interface for
applications to initiate processes by passing the DPDL process description to the
execution engine.

A more powerful Base Module is responsible for executing the described tasks
of the process. It uses the core component to communicate with other devices and
can be enhanced by further task-specific Extension Modules. Extension Modules are
strongly dependent on the characteristics of the device, for example, an additional
component supporting user interaction can only be realised if the respective device
has a proper user interface.

The complete set of all installed components together with the DPDL description
of mobile processes realises the DEMAC process service, which can have different
combinations of execution modules, as shown in figure 4.

Core
Module

Base Module
Extension

Module

Extension
Module

Extension
Module

<Security>

<User
Interaction>

<Transactions>

Receive and forward process
descriptions considering non-
functional criteria

Interprete process descriptions and
execute processes

Enhance the functionality
of devices being more powerful

Figure 4. Modular Execution Engine for Mobile Processes

Finally, the mobile process execution engine cooperates closely with the DEMAC
context service in order to get information about the device’s vicinity, such as avail-
able services, environmental data or its own identity. If a new process description is
received by the core module, the process data is made persistent and the process’s
Strategies are extracted from the Package. In case there is no base module attached
or the proper component to execute the process locally is missing, the context ser-
vice is requested to find a device suitable to the specified constraints to continue
the execution. Otherwise, the execution engine within the responsible mobile device
starts working on the process itself. It picks the upcoming Start Activity, examines
it and requests the context service to find suitable services to process the task, de-
pending on the defined Participants, Strategies and/or Conditions of this activity. If
an adequate service for executing the upcoming activity cannot be found, the local
execution engines marks the latest execution state, stops working on the process
and again requests to find an alternative device to continue. This way, sharing the
different properties and potentials of context aware mobile computing systems even
complex and long-time processes can be executed in a step-by-step-manner.

4 Conclusion

This paper describes an approach to make mobile computing middleware platforms
capable of supporting abstract descriptions as well as new execution models of mo-
bile distributed long-term business processes. Due to (a) distributed and cooperative
nature of such processes and (b) restrictions and specific characteristic of mobile
computing environments, already existing description languages and execution mod-
els for centrally coordinated processes do not suffice. Therefore, an extended, tech-
nology independent description language is proposed and a corresponding execution
platform and its realisation are described in this paper.

Thus, the paper presents the DEMAC Process Description Language which ex-
tends the XPDL meta-model by concepts for distributing and executing processes in
mobile and frequently changing vicinities. It also describes the prototype realisation
of an execution engine for such mobile processes. Thereby the paper argues that the
presented modular design is able to support most of the heterogeneous capabilities
of typical mobile devices.

As a prototypical implementation of the presented architecture has been realised
already, future work includes implementation – on top of this platform – some of the
project’s use cases and sample scenarios. These include, e.g., a prototype of a claim
manager application for an insurance company which creates customised mobile
processes out of a template base and executes them using the DEMAC middleware.
Furthermore, the overall performance of the system is continuously evaluated and
improved. More fundamental questions arise in the fields of integrating privacy
and security mechanisms as well as developing an adequate transaction concept for
distributed and mobile processes.

References

1. Andrews, Tony and Curbera, Francisco and Dholakia, Hitesh and Goland, Yaron and
Klein, Johannes and Leymann, Frank and Liu, Kevin and Roller, Dieter and Smith,
Doug and Thatte, Satish and Trickovic, Ivana and Weerawarana, Sanjiva. Business
Process Execution Language for Web Services Version 1.1. Specification, IBM, BEA
Systems, Microsoft, SAP AG, Siebel Systems, 2003.

2. Arkin, Assaf and Askary, Sid and Fordin, Scott and Jekeli, Scott and Kawaguchi,
Scott and Orchard, David and Pogliani, Stefano and Riemer, Karsten and Struble,
Susan and Takacsi-Nagy, Pal and Trickovic, Ivana and Zimek, Sinisa. Web Service
Choreography Interface (WSCI) 1.0. Specification NOTE-wsci-20020808, World Wide
Web Consortium, 2002.

3. Braun, Peter and Rossak, Wilhelm. Mobile Agents - Basic Concepts, Mobility Models,
and the Tracy Toolkit. Elsevier and Morgan Kaufmann and dpunkt.verlag, 2005.

4. Capra, Licia and Emmerich, Wolfgang and Mascolo, Cecilia. Middleware for Mobile
Computing: Awareness vs. Transparency. In In Proceedings of the 8th Workshop on
Hot Topics in Operating Systems, 2001. extended version.

5. Dey, Anind K. Understanding and Using Context. Personal and Ubiquitous Computing
Journal, 5(1):4–7, 2001.

6. Dürr, Frank and Hönle, Nicola and Nicklas, Daniela and Becker, Christian and Rother-
mel, Kurt. Nexus–A Platform for Context-Aware Applications. In Roth, Jörg, editor,
1. Fachgespräch Ortsbezogene Anwendungen und Dienste der GI-Fachgruppe KuVS,
2004.

7. Forman, Georg H. and Zahorjan, John. The Challenges of Mobile Computing. Tech-
nical Report TR-93-11-03, University of Woshington, 3 1994.

8. JBoss Company. JBoss jBPM 3.0 - Workflow and BPM made practical. Documenta-
tion, JBoss Company, 2005.

9. Leymann, Frank and Roller, Dieter. Production Workflow - Concepts and Techniques.
PTR Prentice Hall, 2000.

10. Norin, Roberta and Marin, Mike. Workflow Process Definition Interface – XML
Process Definition Language. Specification WFMC-TC-1025, Workflow Management
Coalition, 2002.

11. Riemer, K. EbBPSS Business Process Specification Schema, Version 1.01. Specifica-
tion, Oasis ebXML Business Process Project Team, 2001.

12. SAP AG. SAP Mobile Infrastructure: An Open Platform for Enterprise Mobility.
Technical report, SAP AG, 2003.

13. Satyanarayanan, Mahadev. Fundamental Challenges in Mobile Computing. In Pro-
ceedings of the Fifteenth ACM Symposium on Principles of Distributed Computing ,
1996.

14. Schilit, Bill N. and Adams, Norman and Want, Roy . Context-Aware Computing
Applications. In Proceedings of the 1st International Workshop on Mobile Computing
Systems and Applications, pages 85–90, 1994.

15. Schmidt, Albrecht and Beigl, Michael and Gellersen, Hans-W. There is more to Con-
text than Location. In Proceedings of the International Workshop on Interactive Ap-
plications of Mobile Computing, 1998.

16. Weiser, Mark. The Computer for the Twenty-First Century. Scientific American,
256(3):94–104, 1991.

17. Weiser, Mark. Ubiquitous Computing. IEEE Computer Hot Topics, 1993.
18. Zaplata, Sonja. Prozessintegration in Middleware für mobile Systeme. Master’s thesis,

University of Hamburg, 2005.

