
Tools and Standards

Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

University of Hamburg, Department of Computer Science, Distributed and Infor-

mation Systems, {braubach | pokahr | lamersd}@informatik.uni-hamburg.de

Abstract. In this chapter tools, especially agent platforms, and relevant standards

for realizing agent-oriented applications are presented. As there are a plenty of dif-

ferent agent platforms available the objective here is not to present an exhausting

platform comparison but to introduce meaningful platform categories, relate them

to existing standards and illustrate them with typical representatives. The categori-

zation helps to understand the existing heterogeneous agent technology landscape

and is one integral part of a proposed selection method. This method reflects the

fact that different problem domains may demand very different solutions in terms

of the used methodology and underlying agent platform. It sketches the important

steps that can be used to find a suitable methodology and agent platform fitting to

the problem domain at hand.

1 Introduction

This chapter discusses how the concepts of the previous chapters can be

actually realized as part of a larger agent-based project. Given that most

implementation details are to a large extent dependent on the concrete ap-

plication requirements, this chapter can only provide general considera-

tions regarding the selection of appropriate tools and standards. As the

field of Agent Technology matures, tools and standards become an impor-

tant success factor for the development of agent-based applications, as they

allow drawing from the existing experience. Tools, most notably agent

platforms, represent reusable implementations of generic technical re-

quirements. Standards capture state-of-the-art knowledge and best prac-

tices.

2 From the problem domain to the implementation

The reason for selecting agent technology as part of a software project is

mostly driven by the characteristics of the application domain at hand.

[Weis2002] has identified some domain characteristics that advocate the

2 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

use of agent technology in general: Agents are a suitable technology and

metaphor for the problem domain, when

• There is a dynamic number of components, i.e. the system needs to be

open, allowing for new components to be introduced at any time.

• An external control of the entities comprising the system is not possible

or not wanted, i.e. the system components have to be autonomous and

self-dependent.

• The coordination within the system takes place by using complex

communication relationships, i.e. for processes executed by the system

complex interactions between the subcomponents of the system are re-

quired.

Among others, these characteristics are an important factor influencing

the concrete decisions to be taken towards the transition from the require-

ments to an implemented system. Major decisions that have to be made re-

gard the methodology to be followed (cf. Part IV, Chapter 1), and the

agent platform to be used as a basis for the implemented system. The

methodology guides the development process by proposing different de-

velopment steps and the modeling artifacts being produced at each step.

The agent platform forms the runtime environment for the agents that

make up the application.

2.1 Criteria for selecting an agent platform and a
methodology

Problem

Domain

Problem

Domain

MethodologyMethodology

Application

Implementation

Application

Implementation

Agent

Platform

Agent

Platform : influence

Legend

Problem

Domain

Problem

Domain

MethodologyMethodology

Application

Implementation

Application

Implementation

Agent

Platform

Agent

Platform : influence

Legend

Figure 1. Influence relationships for application realizations

Decisions regarding both the methodology and the platform are influenced

by the characteristics of the problem domain. Various catalogs of selection

criteria have been proposed for comparing agent platforms (e.g. in

 Tools and Standards 3

[BDDE2005] [EiMa2002]) and for comparing methodologies (see

[SBPL2004]). The following presents some areas of domain dependant

criteria considered most important as stated in [PoBL2005b]: Concepts,

Standards, Tools, and Applications.

• Criteria in the area of concepts refer to the agent metaphor (e.g.

deliberative entities vs. autonomous processes), and more specifically to

details of the agent model (such as which mental attitudes are supported

by a deliberative agent architecture).

• Relevant standards may come from two sources; on the one hand some

standards are directly relevant to the problem domain (e.g. HL71 for

health applications), on the other hand approved agent related standards

(see Section 2.2) facilitate a consistent and interoperable design and im-

plementation.

• Tool support has to address all phases of the development process start-

ing from modeling the domain and elaborating the requirements to the

system design and implementation. Implementation level tools can be

further subdivided into code-oriented tools such as integrated develop-

ment environments (IDEs), tools for debugging and testing, and tools

for deployment and administration of an implemented system.

• Finally, examples of successful applications provide case studies of how

to apply a certain approach and may reveal certain pitfalls.

Evaluation of these criteria is highly interrelated as these criteria apply

to methodologies and platforms and to the problem domain as well. There-

fore, the choice of an appropriate methodology and agent platform is cru-

cial for the success of a project: The concrete platform determines the

means, i.e. the concepts and supported standards that are available for

system realization. Hence, it prescribes a certain agent philosophy, which

has to be used for system implementation. If this agent philosophy does

not reflect the important properties from the problem domain, a mismatch

between problem domain and agent platform will complicate the realiza-

tion. Such interdependencies also exist between the agent platform and the

methodology. The methodology has to support the same agent philosophy,

otherwise a mismatch between methodology and agent platform occurs,

leading to a gap between modeling and implementation [SBPL2004].

Moreover, tool support not only for a methodology or a platform itself but

also for mapping methodological design artifacts to a platform-specific

implementation (e.g. code generators) further facilitates a smooth transi-

tion from design to implementation. Moreover, existing example applica-

tions of a methodology or platform allow to draw some conclusions perti-

1
 http://www.hl7.org/

4 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

nent to the given problem domain, e.g. regarding the context or size of the

application.

As a result, most of the time a trade-off has to be made regarding con-

cepts and standards. Some of them may match best to the problem domain

but there may be insufficient support with respect to existing methodolo-

gies or agent platforms (see Figure 1). The availability and quality of tool

support, as well as the existence of case studies describing successful (or

failed) applications can further support the decision in favor of or against

some methodology or agent platform. Finally, there is a number of other

selection criteria which can be evaluated independently from the problem

domain, such as the performance, availability (free or commercial), or us-

ability of given tools, or the amount and quality of supplied documentation

materials.

3 Agent platforms

An agent platform has the purpose to simplify the development of agent

applications by providing an infrastructure agents can live in. It consists of

the basic management facilities for hosting agents on a uniform infra-

structure and additionally offers ready-to-use communication means for

the agents. Agent platforms are characterized most notably by the internal

and social architecture (layer 4 resp. 5 of the reference architecture from

Part IV, Chapter 4) they employ. The internal architecture determines the

internal concepts and mechanisms an agent uses to derive its actions

whereas the social architecture is responsible for coordination between

agents and team management. Technically, a platform is characterized by

the programming language it provides for realizing agents and the avail-

able tools for development, administration and debugging.

In the remainder of this section an overview of existing agent platforms

is given. This overview is not intended as an exhaustive list of all available

platforms. For such a list the reader may refer to the “Agent Software”

page of AgentLink2 or (more focused on complete platforms) the agent

platform page of the Jadex project3. Instead, this section will identify

categories of platforms according to the reference architecture, highlight

the important properties of these categories with respect to the above men-

tioned selection criteria, and present some representative platforms for

each category. Finally, some general guidelines exemplify how to apply to

2
 http://www.agentlink.org/

3
 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/links.php

 Tools and Standards 5

selection criteria to choose among the available platforms and methodolo-

gies.

3.1 Categorization of agent platforms with respect to the
reference architecture

Referring to the reference architecture from Part IV, Chapter 4 a

categorization of agent platforms can be done in accordance to the layers

they emphasize (cf. Figure 2).

Considering an agent platform as a middleware for agent based services

implies that at least L1-L3 need to be addressed in an adequate manner.

Middleware platforms therefore provide a solid basis for developing open,

interoperable agent systems, as they primarily tackle interoperability, agent

management and communication means. Anyhow, not all important as-

pects of agent development are supported equally well. One important

point that is not addressed to a satisfactory degree concerns the agent’s

reasoning process. Most middleware platforms rely on a simple task-based

model that allows for programmatically composing complex behaviour out

of simpler pieces.

Reasoning platforms focus on L4 and partly on L3 of the general refer-

ence architecture and hence employ an internal reasoning architecture for

systematically deducing an agent’s actions from some internal world

knowledge. As the internal reasoning process often is intricate, support for

L1-L3 greatly varies for different representatives. Additionally, middle-

ware and reasoning platforms do not conceptually provide means for

structuring and programming agent societies.

Social platforms address this issue by implementing organizational ar-

chitectures (L5). An important question considering this kind of platform

is, if the underlying architecture depends on the concepts provided by the

internal architecture (L4). In this case, the cooperation and coordination

mechanisms of the organizational architecture can be much elaborated al-

lowing complex structures to be realized. On the other hand, the applica-

bility of such an architecture and platform is restricted to agents conform-

ing to a certain kind of agent type, such as BDI, which is undesirable for

open system scenarios.

6 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

(L2) agent-specific infrastructure services

(L3) ontology-based domain model

(L4) agent behavior

(L5) social and economical coordination

(L1) system environment base services

re
a

s
o

n
in

g
 p

la
tfo

rm
s

provides some support

s
o
c
ia

l

p
la

tfo
rm

s

m
id

d
le

w
a

re
 p

la
tfo

rm
s

focuses on layer

(L2) agent-specific infrastructure services

(L3) ontology-based domain model

(L4) agent behavior

(L5) social and economical coordination

(L1) system environment base services

re
a

s
o

n
in

g
 p

la
tfo

rm
s

provides some support

s
o
c
ia

l

p
la

tfo
rm

s

m
id

d
le

w
a

re
 p

la
tfo

rm
s

focuses on layer

Figure 2. Coverage of layers for different categories of agent platforms

A common denominator for all the categories is the need for represent-

ing knowledge in an adequate manner (L3). At first sight this might be

most interesting for reasoning platforms as they use the knowledge for in-

ternal deduction processes, but as communication plays a vital role in most

multi-agent applications the need for exchanging knowledge is a predomi-

nant issue.

To capture the semantics of symbolic representations, ontologies can be

defined. Ontology descriptions follow standards like RDF

(http://www.w3.org/RDF/) and OWL (http://www.w3.org/2004/OWL/)

(see Part IV, Chapter 1 and Chapter 2, Section 3). Ontology modeling tools

such as Protégé (http://protege.stanford.edu/) allow creating and editing

ontology specifications in the various standardized formats. Specialized

reasoning engines such as RACER (http://www.racer-systems.com/) can

be used to operate on the represented world knowledge, to derive new facts

and possible courses of action.

3.1.1 Middleware platforms

In the field of distributed systems, middleware is normally seen as “[...]

network-aware system software, layered between an application, the oper-

 Tools and Standards 7

ating system, and the network transport layers, whose purpose is to facili-

tate some aspect of cooperative processing. Examples of middleware in-

clude directory services, message-passing mechanisms, distributed

transaction processing (TP) monitors, object request brokers, remote pro-

cedure call (RPC) services, and database gateways.”4

As agent orientation builds on concepts and technology of distributed

systems, middleware is equally important for the realization of agent-based

applications. Thereby, the term agent middleware is used to denote com-

mon services such as message passing or persistency management usable

for agents. The paradigm shift towards autonomous software components

in open, distributed environments requires on the one hand new standards

to ensure interoperability between applications. On the other hand new

middleware products implementing these standards are needed to facilitate

fast development of robust and scalable applications. Agents can be seen

as application layer software components using middleware to gain access

to standardized services and infrastructure.

Before concrete examples of middleware platforms will be described the

relevant middleware standards are introduced. Thanks to the FIPA stan-

dards the platform architecture has a common ground and interoperability

between different middleware platforms could be achieved. Supplementary

the MASIF standards define the basic concepts of agent mobility.

FIPA Standards

Agent
Communication

Agent Message
Transport

Agent
Management

Abstract
Architecture

Interaction

Protocols

Communicative

Acts

Content

Languages

ACL

Representation

Envelope

Representation

Transport

Protocols

Agent
Communication

Agent Message
Transport

Agent
Management

Abstract
Architecture

Interaction

Protocols

Communicative

Acts

Content

Languages

ACL

Representation

Envelope

Representation

Transport

Protocols

Figure 3. FIPA specification overview (from FIPA website)

An important foundation for the realization of middleware platforms are

the specifications of the Foundation for Intelligent Physical Agents

4
 http://iishelp.web.cern.ch/IISHelp/iis/htm/core/iigloss.htm

8 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

(FIPA)5 (see [PoCh2001]). The work on specifications considered applica-

tion as well as middleware aspects. Specifications related to applications

provide systematically studied example domains with service and ontology

descriptions. The middleware-related specifications address in detail all

building blocks required for an abstract agent platform architecture (see

Figure 3).

The abstract architecture specification (FIPA00001) defines at a high

level how two agents can find and communicate with each other. For this

purpose a set of architectural elements and their relationships are de-

scribed. Basically, two types of directories, for agents as well as for agent

services, are introduced, which can be used by agents to register them-

selves or search for specific services. The communication between two

agents relies on a message transport component, which has the task to send

a message following the agent communication language (ACL) format.

For agent communication and agent message transport many refining stan-

dards are available.

In the area of agent communication, various standards have been de-

fined for diverse interaction protocols, communicative acts and content

languages. Interaction protocols set up a context which constrains the pos-

sible course of interaction to predefined courses. Examples of interaction

protocols include, besides others, Dutch (FIPA00032) and English

(FIPA00031) auctions as well as the contract-net protocol (FIPA00029).

The communicative act library specification (FIPA00037) describes the set

of allowed performatives, which denote the meaning of a message ac-

cording to speech act theory [Sear1969]. In addition different content lan-

guages can be employed for the representation of the message content. Ex-

amples include the FIPA semantic language (FIPA00008) and RDF

(FIPA00011).

On the other hand the message transport has to deal with the representa-

tion of ACL messages and their envelopes as well as with the underlying

transport protocols. For messages and envelopes different representations

such as XML (FIPA00071/85) and a bit-efficient version (FIPA00069/88)

have been proposed. Transport protocol specifications exist for IIOP

(FIPA00075) and for HTTP (FIPA00084).

5
 http://www.fipa.org

 Tools and Standards 9

Agent Platform

Agent Platform

Message Transport Service

Agent

Agent

Management
System

Directory

Facilitator

Software

Message Transport Service

Agent Platform

Agent Platform

Message Transport Service

Agent

Agent

Management
System

Directory

Facilitator

Software

Message Transport Service

Figure 4. FIPA agent management reference model (from FIPA00023)

Most important for understanding the platform operation according to

FIPA is the agent management specification (FIPA00023) (see Figure 4).

It defines the necessary building blocks of an agent platform and their re-

lationships, including mechanisms for agent management, as well as infra-

structure elements such as directory services and message delivery. In this

respect the agent management system (AMS) is responsible for exerting

supervisory control over access to and the use of the agent platform. It

maintains a directory of all agents living on the platforms. Another impor-

tant component of an agent platform is the directory facilitator (DF) which

provides yellow pages services to other agents. Agents hosted on a plat-

form can access non-agent software and send messages to other agents on

the same or another platform using the message transport service.

The FIPA specifications have been implemented in a number of agent

platforms and interoperability among those platforms has been shown, for

example in the agentcities network [WiCR2002].

MASIF Standards

The Mobile Agent System Interoperability Facility (MASIF) [OMG2000]

is a standard for mobile agent systems proposed by the Object Manage-

ment Group (OMG). The main objective of MASIF is to establish a com-

mon ground that allows MASIF compliant agent frameworks to perform

10 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

agent migration even in heterogeneous environments (assuming a common

platform implementation language). It aims to achieve a first level of in-

teroperability for the transportation of agent information where the infor-

mation format is standardized. This means that once the agent data has

been transferred the platform is responsible for interpreting the informa-

tion. The transmitted data makes explicit the agent profile describing the

language, serialization and further agent requirements on the platform. In

this way MASIF enables an agent system to understand the agent’s de-

mands.

To achieve this kind of mobile agent interoperability MASIF tackles

four different areas in the standard: agent management, agent transfer,

agent / platform naming and agent system type / location syntax. Agent

management concerns the life cycle control of agents including agents

hosted on remote platforms. The management is addressed by standardized

interfaces for agent creation and termination as well as for suspending and

resuming agent execution. Agent transfer underpins the main goal of agent

mobility and aims at a common infrastructure in which agents can freely

move among different platforms. One necessary prerequisite for locating

remote agents possibly hosted on another type of platform is that the syn-

tax and semantics of agent and platform names are also standardized. In

addition the agent system type is of importance as the agent transfer de-

pends on the fact that the system can support the agent. Finally, the loca-

tion syntax is standardized to ensure that platforms can find each other (cf.

[Mil+1998] for details).

In addition to the functional aspects MASIF also tackles security issues

arising in the context of mobile agents. An agent system has the task to

protect its resources from new agents arriving at the platform. For this pur-

pose the platform must be able to identify and verify the authority of an in-

coming agent. This allows for access control and agent authentication.

One big problem of MASIF is that it is based on CORBA and has there-

fore never been widely accepted. The MASIF standard has been used

mainly for specialized mobile agent platforms such as Aglets [ClPE1997].

Nevertheless, also platforms supporting both FIPA and MASIF have been

developed such as Grasshopper [BaMa1999].

JADE

A prominent example of a middleware-oriented agent platform is JADE

(Java Agent DEvelopment Framework) [BCP2005], a Java framework for

the development of distributed multi-agent applications. It represents an

agent middleware providing a set of available and easy-to-use services and

several graphical tools for administration and debugging. One main objec-

 Tools and Standards 11

tive of the platform is to support interoperability by strictly adhering to the

FIPA specifications concerning the platform architecture as well as the

communication infrastructure. Recently, a “Web Services Integration

Gateway” added support for agents acting as client or server in a Web Ser-

vice application. Moreover, JADE is very flexible and can be adapted to be

used also on devices with limited resources like PDAs and cell phones.

The JADE platform is open source software, distributed by TILAB (Tele-

com Italia LABoratories). Since May 2003, an international JADE Board

has the task of supervising the management of the project. Currently the

JADE Board consists of five members: TILAB, Motorola, Whitestein

Technologies AG, Profactor and France Telecom. Many JADE applica-

tions ranging from research prototypes to industrial products have been

developed over the last years (see [BCP2005]). As one example Whitestein

has used JADE to construct an agent-based system for decision making

support in organ transplant centers [CFBB2004].

ADK

The agent development kit (ADK) is a commercial/open-source Java-

based agent platform developed by Tryllian Solutions B.V. The main focus

of the company is in the application integration area, involving all kinds of

legacy system integration. In ADK, agent programming follows a task

framework in which behavior is implemented as a set of simple tasks ar-

ranged in a workflow-like manner. The platform includes a visual design

environment and administrative tools for deployment. The platform is tar-

geted to be used in industrial systems (as opposed to research), and empha-

sizes mobility and security aspects. To facilitate the integration of legacy

systems, interoperability with existing solutions is an important factor for

the platform and a number of accepted industry standards are supported:

SNMP (Simple Network Management Protocol) allows remote manage-

ment of the agent platform. JNDI (Java Naming and Directory Interface)

can be used for agent naming and lookup. Agents can receive messages

sent using JMS (Java Messages Service), FIPA, or the JXTA peer to peer

network. Moreover, agents can act as Web Service or interact with existing

Web Services using the SOAP/WSDL/UDDI stack. Recently a business

rule engine has been added, to support the maintenance of processes di-

rectly at the business level. Several production grade applications have

been developed such as the “ePosit” system for intelligent Web search, or

the “Continuous Auditing” system, which allows monitoring decentralized

organizations and automating routine auditing tasks.

12 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

FIPA-OS

FIPA-OS was one of the first open-source FIPA-compliant software

frameworks originating from research at Nortel Networks Harlow Labo-

ratories in the UK. It is implemented in Java and like JADE uses a simple

task-based approach as internal agent structure. Although development of

FIPA-OS has been discontinued in 2003, the platform is still available for

download. In addition FIPA-OS has been released as a reduced version

suitable to small and mobile devices (MicroFIPA-OS). Tool support is

limited to simple graphical user interfaces for administering and configur-

ing the platform and agents on the platform. Up to now, FIPA-OS has been

used mostly in research and beta stage prototype applications. For example

emorphia Ltd. has developed an agent-based intelligent meeting scheduler

named Friday based on FIPA-OS.

DIET

DIET Agents is a multi-agent platform developed as part of an EU project

under the leadership of British Telecom. The DIET (Decentralized Infor-

mation Ecosystem Technologies) project aimed at developing a light-

weight, scalable, and robust agent platform targeted to peer-to-peer (p2p)

and/or adaptive, distributed applications. Primary application area of the

platform in the course of the project was information retrieval, filtering,

mining and trading. The platform uses bottom-up, nature-inspired tech-

niques from Evolutionary Computation and Artificial Life to provide an

open, robust, adaptive and scalable environment for information process-

ing and management. Tests performed by the project partners showed that

the platform supports up to 100000 agents running on a single computer.

After the project had finished in 2003 the platform was released as Open

Source and is currently continued to be developed as a generic middleware

agent platform. Besides the platform itself, a graphical tool for visualizing

and debugging applications has been made available. Existing applications

have mostly been developed in the course of the research project as proto-

types and proof of concepts, e.g. for a collaborative tool visualizing social

networks, self-organizing communities, and p2p content sharing applica-

tions.

3.1.2 Reasoning platforms

Reasoning platforms are based on specific internal agent architectures.

Such internal agent architectures have been conceived to support the rea-

soning process of agents and therefore systematize the process of how an

agent decides which action it wants to perform in any given situation. Ac-

 Tools and Standards 13

cording to [WoJe2005] these architectures can be categorized into

reactive, deliberative and hybrid architectures.

Reactive architectures abstain from any kind of symbolic knowledge

and do not use symbolic reasoning. The most prominent reactive architec-

ture is Brook’s subsumption architecture [Broo1986] which assumes that

an agent is composed of a hierarchy of task-accomplishing behaviors. Be-

haviors at a lower level in the hierarchy represent primitive actions and

have precedence over higher-level behaviors. Even though the resulting

agents are quite simplistic in nature it could be shown that this kind of ar-

chitecture is well-suited for certain kinds of applications such as the

movement control for robots.

Deliberative architectures require an agent having a symbolic model of

the world and using logical (or at least pseudo-logical) reasoning for its

decisions. Many deliberative architectures are based on a central planner

component which is responsible for deducing reasonable agent actions.

Examples of such architectures are IRMA [BrIP1988] and IPEM

[AmSt1988]. Main drawback of most purely deliberative architectures is

their inefficiency, as symbolic reasoning requires complex computations

and thus cannot guarantee responsive agent behavior under all conditions.

To the rescue, many hybrid architectures have been proposed, which

aim at bringing together the best from both approaches. Hybrid architec-

tures combine reactive and deliberative facets leading to agent behavior

that is responsive as well as intelligent. Even though there are no standards

for reasoning facets of platforms two predominant architectures exist.

Most influential architectures with respect to their practical relevance are

the SOAR [LeLR1996] and the BDI [Brat1987] models of agency.

SOAR is based on Newell’s psychological theory “Unified Theory of

Cognition (UTC)” [Newe1990], which postulates the pursuit for a single

set of mechanisms that account for all aspects of cognition such as mem-

ory, problem solving and learning. “A UTC must explain how intelligent

organisms flexibly react to stimuli from the environment, how they exhibit

goal-directed behavior and acquire goals rationally, how they represent

knowledge (or which symbols they use), and learning.”6

The BDI model was originally conceived by Bratman as a theory of

human practical reasoning [Brat1987]. Its success is based on its simplicity

reducing the explanation framework for complex human behaviour to the

motivational stance [Denn1987]. Following the motivational stance,

causes for actions are only related to desires ignoring other facets of cog-

nition such as emotions. Another advantage of the BDI model is the con-

sistent usage of folk psychological notions that closely correspond to the

6
 http://en.wikipedia.org/wiki/Unified_Theory_of_Cognition

14 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

way people communicate about human behaviour [Norl2004]. Starting

from Bratman’s work, Rao and Georgeff [RaGe1995] conceived a formal

BDI theory, which defines beliefs, desires, and intentions as mental atti-

tudes represented as possible world states. The intentions of an agent are

subsets of the beliefs and desires, i.e., an agent acts towards some of the

world states it desires to be true and believes to be possible. To be compu-

tationally tractable Rao and Georgeff also proposed several simplifications

to the theory, the most important one being that only beliefs are repre-

sented explicitly. Desires are reduced to events that are handled by prede-

fined plan templates, and intentions are represented implicitly by the run-

time stack of executed plans. As a multitude of platforms have been

developed based on the BDI paradigm, only a small selection is presented

here. For a more detailed overview of BDI systems see [MaDA2005].

JACK

The JACK platform is developed as a commercial product by Agent Ori-

ented Software [HRHL2001]. It is based on the BDI architecture and pro-

vides its own programming language called JACK agent language (JAL).

JAL is a conservative extension of Java introducing BDI concepts and

some features of logic languages such as cursors and logical variables. An

agent in JACK is composed of a number of different JAL files, mainly rep-

resenting the agent itself as well as its plans, beliefbase and events. To

execute a JACK agent, its set of JAL files is first precompiled to Java

source code and in a second step compiled to executable Java byte code.

JACK addresses several weaknesses of traditional BDI systems. Most no-

tably, it introduces the notion of a capability for the modularization of

agents [BHRH2000]. Additionally, the SimpleTeams approach (see below)

has been conceived to support the cooperation of agent within BDI teams.

JACK represents an industry-grade product delivering extensive docu-

mentation and supporting tools. Especially, JACK ships with an IDE that

supports the detailed design and implementation phase. The IDE supports

inter alia the project management, the editing of files by syntax highlight-

ing and the compilation and execution from within the IDE. Additionally a

graphical plan editor allows for creating plans visually and observing their

execution at runtime. It has been used in a variety of industrial applications

as well as for many research projects. The application areas include Un-

manned Aerial Vehicles (UAVs), human-like decision making and deci-

sion support systems (details can be found in [Wini2005]).

 Tools and Standards 15

Jadex

Jadex [BrPL2005] [PoBL2005] is an open source software framework de-

veloped at the University of Hamburg. It allows the creation of goal ori-

ented agents following the belief-desire-intention (BDI) model. The

framework is realized as a rational agent layer that sits on top of a middle-

ware agent infrastructure such as JADE [BBCP2005], and supports agent

development with well established technologies such as Java and XML.

Thereby, Jadex avoids intentionally the introduction of a new program-

ming language and subdivides the agent description into structure and be-

havior specification. The structure of an agent is described in an XML file

following a BDI metamodel defined in XML-schema whereas the behavior

is implemented in plans that are ordinary Java files. This has the advantage

that any state-of-the art IDE (offering XML and Java support) can be util-

ized for programming Jadex agents. Jadex introduces the basic concepts

beliefs, plans, goals, events for agent programming and capabilities for

modularization purposes. Besides the focus on middleware support, the

Jadex reasoning engine addresses traditional limitations of BDI systems by

introducing new concepts such as explicit goals and goal deliberation

mechanisms (see e.g. [BPML2004], making results from goal oriented

analysis and design methods (e.g. KAOS or Tropos) more easily transfer-

able to the implementation layer. Besides the framework, additional tools

are included to facilitate administration and debugging of agent applica-

tions. Jadex has been used to realize applications in different domains such

as simulation, scheduling, and mobile computation. For example, Jadex

was used to realize a multi-agent application for negotiation of treatment

schedules in hospitals (see Part III, Chapter 4).

Jason

Jason [BoHV2005] is a platform for programming agents in AgentS-

peak(L) [Rao1996], a logic-based agent-oriented programming language

that is adequate for the realization of reactive planning systems according

to the BDI architecture. In AgentSpeak(L) an agent consists of beliefs, rep-

resented as ground (first-order) atomic formulae, plans comprising basic

actions and subgoal calls, as well as events that represent all kinds of rele-

vant occurrences such as new goals or beliefs. Jason is a relatively slim

BDI system strictly adhering to the formal AgentSpeak(L) semantics. This

enables Jason to be used for model checking and verification purposes.

The platform, which is available as open source, offers means for distrib-

uting an MAS over network and comes with a simple IDE for editing and

starting agent applications. It has been used so far for several small aca-

demic applications.

16 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

SOAR

In contrast to the aforementioned reasoning platforms SOAR is not based

on BDI, but relies on UTC [Newe1990]. The SOAR architecture at its

heart is a typical production system that matches and applies rules on a

working memory. It is enhanced with a learning mechanism called chunk-

ing [LeLR1996] which infers more abstract rules from observing the rule

application process. On top of this production system a goal-driven prob-

lem solver following the problem space hypothesis is placed. SOAR util-

izes an agent deliberation cycle consisting of the five phases: perceptual

input, operator proposal, operator selection, operator application and out-

put. In the perceptual input phase sensory data from the environment is

updated and made available for the system. Next, in the proposal phase,

productions fire to interpret the new data until no new data can be deduced

(quiescence), propose operators for the current situation and to compare

the proposed operators. In the selection phase, the operator to apply is cho-

sen on basis of the proposed set of operators. When no unique operator is

preferred, a so called impasse occurs and a new subgoal is created, which

has the task to resolve the conflict (a process called automatic subgoaling

hypothesis). In the application phase the selected operator is executed and

finally in the output phase output commands are sent to the environment.

The SOAR architecture for single agents is supplemented by a social ar-

chitecture for agent teams (see below). The SOAR platform comes with an

extensive tool support, documentation and example applications. Visual-

Soar is a simple form of an IDE specifically tailored to support writing

SOAR agents and execute them in the runtime environment. In addition a

SOAR debugger tool is provided for observing the internal data and be-

haviour of an agent. SOAR has been used in many projects, ranging from

simple research to complex commercial application scenarios. As an ex-

ample Soar Technology Inc.7 uses SOAR agents for building various (e.g.,

pilot) training applications.

3.1.3 Social platforms

Social agent platforms provide support for expressing group behaviour

within multi-agent systems. These systems build upon different group be-

haviour theories and architectures, which will be discussed next. Funda-

mentally, teamwork involves the structural as well as behavioural dimen-

sion. Nevertheless, current research does not provide integrated theories

covering both dimensions at a satisfactory degree within one coherent

7

 http://www.soartech.com/

 Tools and Standards 17

framework. Hence, in the following both aspects will be discussed sepa-

rately.

One very simple, but nonetheless influential, structuring mechanism for

agent teams is the Agent-Group-Role (AGR) model [Ferb2003]. Basically,

an agent is seen as an active, communicating entity playing roles within

groups. A group in turn is described as a set of agents sharing some com-

mon property. It is used as a context for a pattern of activities, and subdi-

vides organizations. Agents are only allowed to communicate, if they be-

long to the same group. A role is the abstract representation of an agent’s

functional position in a group. An agent must play a role in a group, but an

agent may play arbitrary many roles. One of the basic principles of the

AGR model is that at the organizational level no agent description and

therefore no mental issues should be used. This makes AGR independent

of any particular agent model (in L4) and allows simple agents as well as

very complex agents, possibly employing the intentional stance, being part

of the same organizational structure. There are some approaches to stan-

dardize the structural aspects of teamwork; most notably the role concept

and related terms specified as part of the AUML, which has many simi-

larities to the AGR model (see [OdPF2003] for details).

The most influential framework for describing the behavioural aspects

of teamwork is the joint intentions theory [CoLe1991]. It formulates the

formal principles for describing how agents can pursue a common goal

relying on the basic concepts beliefs, goals and their collective counter-

parts as foundations. The notion of a joint intention is regarded as a joint

commitment of some agents to perform a collective action while being in a

certain shared mental state. The joint commitment to perform some action

is thereby represented as a joint persistent goal shared by all involved

agents. One important property of such a joint goal, in contrast to an indi-

vidual goal, is that the participating agents agree to inform each other

about a possibly changing goal state. This means that each individual agent

accepts responsibility for the pursuit of the common goal and informs the

other if it e.g. finds out that the goal is unachievable allowing others to

share that knowledge. Despite its neatness, the joint intentions theory does

not address some important aspects. It is not discussed how agents can es-

tablish a joint intention towards some action. Also, the defection of a sin-

gle agent causes the entire group task to fail. For these reasons the joint

intentions theory was subject to several extensions which tried to expand

and enhance the basic model. Examples for such extensions are Jennings’

joint responsibility theory [JeMa1992] and Tambe’s STEAM model

[Tamb1997].

18 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

MadKit

MadKit is a modular and scalable multi-agent platform developed by Fer-

ber and colleagues [GuFe2001]. It is built upon the AGR (Agent/Group/

Role) organizational model, in which agents are members of groups and

play certain roles. As the AGR model is independent from the underlying

internal agent model, it allows a high heterogeneity of agent architectures

and communication languages to be used. The MadKit platform is realized

by following three design principles. Firstly, the system is based on a

micro-kernel architecture that provides the basic services for agent resp.

group management and message passing. Secondly, most services within

MadKit are realized as agents making the system structure very flexible.

Thirdly, MadKit provides a component oriented model for displaying

agent GUIs within the platform. The tool support for the platform is quite

extensive and comprises a graphical administration as well as several mo-

nitoring and debugging tools. The platform has been used for the realiza-

tion of various applications such as TurtleKit, an agent simulation environ-

ment and SEdit, a tool for the design and animation of structured diagrams.

STEAM

STEAM [Tamb1997] is a general model of teamwork conceived to support

performing coordinated tasks within some group of agents. It utilizes the

formal joint intentions theory as basic building block, but borrows some

ideas from the SharedPlans theory as well [GrKr1996]. Moreover, STEAM

proposes several improvements regarding practical issues for making the

model efficiently implementable. STEAM introduces team operators (team

activities) and team beliefs as new concepts. Whenever a team activity

needs to be executed, the agents belonging to the relevant team must first

establish a joint intention for this team activity. To achieve a joint inten-

tion, an “establish commitments” protocol is carried out. After the joint

intention has been established, a team operator can only be terminated by

modifying the team state (mutual beliefs within this team). Conditions de-

scribing success and failure states can be specified for team operators indi-

vidually. STEAM automatically takes responsibility for updating the team

state whenever an important change occurs within a local view of a team

belief. In this case the corresponding agent broadcasts this change to all

other team members that update their view accordingly. In case of a failure

during the team activity STEAM provides also means for replanning the

task. For this purpose the contributions of the team members for a team

operator are specified in terms of roles. A role is considered here as the set

of activities an individual or subteam undertakes in service of the team’s

overall task. STEAM allows specific role relationships being specified

 Tools and Standards 19

(and, or, depends on) that are employed to determine the state of a team

operator and possibly to engage into repair operations, e.g. substitute some

critical subteam. STEAM has been implemented for the SOAR agent plat-

form as a set of rules. This implementation has been used for diverse ap-

plication domains, including RoboCup soccer and simulation environ-

ments for training.

JACK SimpleTeams

The JACK SimpleTeams approach [HoRB1999] aims at providing coordi-

nated activities for groups of agents. It is based on the idea that a team is

itself an autonomous entity that can exist without its team members and

can reason about its behavior. The approach is an extension conceived

specifically for BDI agents and adds new team constructs for roles, team

plans and team beliefs to the standard BDI concepts. A team is represented

as an extended BDI agent that is capable to cope also with these new con-

cepts. The structure of a team is described with roles. More precisely, it is

characterized by the roles it performs and the roles it requires others to per-

form. Thereby roles are used as abstract placeholders for arbitrary team in-

stances playing that role at runtime. For this reason roles can be seen as a

kind of interface for teams. Concretely, a role defines the relationship be-

tween teams and subteams in terms of the goal and belief exchanges im-

plied by the relationship. The tasks of a team can be specified via team

plans that extend the plan concept of BDI agents and enable coordinated

task achievement. A team plan can be used to accomplish some task col-

laboratively by a (sub) set of agents belonging to the team. Therefore, a

team plan offers possibilities to influence the actual selection of agents

working on the task and new means for the distribution of subtasks to the

participating members. The distribution of subtasks is done by subgoal

delegation to team members. This allows the team members to decide in

their own responsibility how to accomplish the goal retaining the full

flexibility of multi-agent systems. To enable easy information exchange

between the team members and the team itself, the concept of team beliefs

is introduced. Team beliefs can either distribute data from the team to the

subteams or aggregate data from the members back to the team. At run-

time, a team runs through different phases. In the initial phase, the team

formation is performed. This means that role fillers for all roles within the

team are searched. When this formation ends the team enters the opera-

tional phase, in which the actual task processing is done. JACK Sim-

pleTeams is a general purpose teamwork architecture. Nevertheless, it was

used primarily for military application scenarios so far.

20 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

3.2 Platform summary

 Concepts Standards Tools Applications Availability

JADE M FIPA, WS A, D Production Open source

FIPA-OS M FIPA A Beta Open source

ADK M FIPA, WS,

JMS, …

I, A Production Commercial

DIET M - D Beta Open source

Jadex M, R FIPA, WS,

JMS

A, D Production Open source

Jason R - I, D Beta Open source

JACK

+Simple-

Teams

R

R, S

- I, D Production Commercial

SOAR

+STEAM

R

R, S

- I, D Production Open source/

Commercial

MadKit S - A, D Production Open Source

Table 1. Platform summary

Table 1 shows a summary overview of the presented agent platforms. A

first thing to note is that some of the platforms, although historically per-

taining to only one of the possible agent metaphors (M=middleware,

R=reasoning, S=social) now start to address other areas as well, making

them more generic and suitable for a wide range of application domains.

JACK and SOAR, which started as pure reasoning platforms have been

extended to support social concepts as well, and the Jadex platform pre-

sents an approach to integrate high-level reasoning with existing middle-

ware technology.

Traditionally, only the middleware platforms are directly based on some

existing or new standards. Some of them initially focused only on a single

set of specifications (e.g. JADE, FIPA-OS), other such as ADK tried to

provide support for a wide range of existing standards including FIPA,

Web Services (WS) and others. Middleware support is a serious issue, as

most newly developed applications have to be integrated with one or more

existing systems. Although nowadays for most standards reusable third

party libraries are available, when standards are not supported by the plat-

form directly, the agent programmer has the tedious task of making the ap-

plication to interoperate with other standards-compliant software.

In the recent years tool support has become more and more an issue for

developers of agent platforms, but there is still some way to go until agent

 Tools and Standards 21

technology is supported by development tools of the quality known from

object oriented tools. None of the presented platforms provides all kinds of

tools desirable for efficient application development (I=integrated devel-

opment environments, A=administrative tools, D=debugging tools). For

platforms supporting agents written in pure Java (here the middleware

platforms and MadKit) existing Java-IDEs can still be used, with the ad-

vantage of a development environment already familiar to the program-

mer. In contrast newly developed IDEs (e.g. for the reasoning platforms)

offer the advantage of directly supporting agent-oriented concepts.

Compared to the wide distribution of object oriented application frame-

works (e.g. web containers or application servers) real case studies of ap-

plications developed with agent platforms are still scarce, or at least hard

to find. Nevertheless, they do exist for most of the presented platforms,

proving that successful agent applications can be built. Given that there is

some 10-20 years gap between the first works on object oriented pro-

gramming and the advent of the agent paradigm, it is reasonable to say that

agent technology still has the potential to become as predominant as object

oriented is at the moment.

Finally, the availability column shows if platforms are distributed as

commercial products or open source implementations. Open source plat-

forms are not only free in the sense that one does not have to pay for them,

but also that there is the freedom to modify the platform itself, if needed.

On the other hand, commercial products offer guaranteed support and

should be mature and well tested. Some systems like SOAR are even

available in both flavors. Therefore, different options are available for any

kind of problem domain, and application developers can usually choose

among a set of commercial products and open source implementations.

Although only a small cutout of available agent platforms has been pre-

sented, it should now be evident that there exists a large diversity in the

different platforms. For example, no platform supports all three agent

metaphors (middleware, reasoning, social). Many platforms claim a gen-

eral applicability, but every platform is based on its own interpretation of

the agent paradigm. Therefore, even though it might be somewhat usable

in many domains, a platform would perform best in a domain where it of-

fers a fitting agent metaphor, readily available tools and directly supported

standards. Therefore, an agent developer carefully has to choose among

the available options. In the following, the authors will try to give some

guidelines how this choice can be simplified.

22 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

4 Guidelines for choosing among platforms and
methodologies

One big problem of agent technology nowadays is its strong heterogeneity.

This applies to the agent architectures (internal and social), to the method-

ologies and to the agent programming languages [PoBL2005b]. To further

illustrate this issue one can look closer at the internal agent architecture

BDI. Even though a consensus exits with respect to the basic concepts, the

concrete interpretations and thus architectures and platforms differ consid-

erably. In the field of agent oriented software engineering also a great vari-

ety of agent methodologies emerged. Some of them claim to be agent ar-

chitecture independent such as Gaia [WoJK2000] whereas others are

specifically tailored for some agent philosophy such as Prometheus

[PaWi2004]. Although it might be tempting to use a generally applicable

methodology it should be clear that such a methodology cannot support

agent development with the same concepts as the platform does.

Carrying these considerations to the extreme, it is even contended how

agent programming should be done. Some approaches favor new and spe-

cialized agent languages (e.g. JACK), whereas others employ existing pro-

gramming languages such as Java (e.g. Jadex).

Hence, it becomes clear that the choice of the right combination of an

agent methodology and a suitable platform is crucial for exploiting the

potential of the agent paradigm for a given problem domain. This choice

should start with an analysis of the problem domain gathering initial re-

quirements and bringing to light the essential properties of the planned ap-

plication. From these initial settings it should be discussed which agent

philosophy deems most promising and allows the description of preferably

many domain structures and behaviors. Having agreed on a common agent

philosophy facilitates the selection of an agent platform and a suitable

methodology considerably as it reduces the number of available candi-

dates.

 Tools and Standards 23

II

B

II

I

Set of CriteriaSet of Methodologies Set of Plattforms

A

Platform dependent criteria

Platform independent criteriaII

B

II

II

B

II

II

Set of CriteriaSet of Methodologies Set of PlattformsSet of CriteriaSet of Methodologies Set of Plattforms

AA

Platform dependent criteria

Platform independent criteria

Figure 5. Selection framework

Given that a preselection of platforms and methodologies on basis of the

favored agent philosophy has been carried out, the further selection proc-

ess should not be done in isolation for either of both. Instead, it has to be

found a constellation of methodology and platform that fits to each other.

For this process a general framework has been proposed in [SBPL2004].

It is based on a catalog of criteria that should be measured for both, the

platform and the methodology candidates (cf. Figure 5). The set of criteria

is divided into platform dependent and independent criteria whereby the

independent criteria can be examined in a feature analysis. Categories for

independent criteria include the notation (usability, expressiveness, etc.),

the process (coverage of workflows, complexity, etc.) and pragmatic as-

pects (tool support, documentation, etc.). Independent criteria have been

subject of several methodology comparisons that aimed to rank them with

respect to the aforementioned factors [ShSt2001].

For platform dependent criteria (e.g. regarding the supported agent con-

cepts) it needs to be determined if and how the methodology as well the

platform supports a property. The match between them is analyzed to show

their appropriateness. This means that a match with respect to a property

exists when either platform and methodology support a considered prop-

erty in the same (or a very similar) way or when both do not support the

property. The shared absence of a property is regarded as a match here, be-

cause the absence of a concept in both platform and methodology also

identifies appropriateness.

24 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

To arrive at a final decision, the platform dependent criteria should be

weighted according to the demands of the application domain as some

agent concepts (e.g. mobility) might be irrelevant for a given domain. For

each pair of methodology and platform the overall match quality can be

estimated. The platform and methodology pair with the weighted best

match should be chosen. This selection process can be simplified if the

preselection phase is rather rigid or if for some external reasons (e.g. com-

pany relationships) a certain platform or methodology has to be used.

5 Conclusions

This chapter has presented an overview of agent standards and platforms.

The agent platforms have been categorized by their main architectural fo-

cus leading to three different classes: middleware, reasoning and social

platforms. Middleware platforms address primarily layers L1-L3 of the

reference architecture focusing on support for interoperability with other

FIPA compliant platforms. Secondly, reasoning platforms mainly deal

with the agent internal decision process that leads to concrete agent be-

havior. Thirdly, social platforms highlight organizational structures as well

as coordinated (team) behavior. Based on the criteria Concepts, Standards,

Tools, and Applications typical representatives of the respective categories

have been evaluated.

Given that a vast amount of different platforms belonging to one or an-

other category exists, this chapter also sketches a systematical approach for

choosing a platform for a specific development project. Roughly speaking,

the approach consists of two phases; a domain dependent preselection

phase and a subsequent stage for platform/methodology evaluation. In the

first stage a domain analysis is used to set-up a fitting agent metaphor em-

phasizing the important aspects of the domain. Thereafter, in the second

stage the remaining platforms are evaluated together with possibly fitting

methodologies. The basic assumption in this connection is that an agent

platform and a concomitant methodology are strongly interrelated and

should be chosen together for guaranteeing effective application develop-

ment. As a result, one obtains estimated quality measurements for plat-

form-methodology pairs. The pair exhibiting the best match and the best

criteria coverage should be chosen.

 Tools and Standards 25

Further reading

[UnCK2005] Unland, R.; Calisti, M.; Klusch, M.: Software Agent-Based Ap-

plications, Platforms and Development Kits. Birkhäuser, 2005.

[BDDE2005] Bordini, R.; Dastani, M.; Dix, J.; El Fallah Seghrouchni, A.

(Eds.): Programing Multi-Agent Systems. Kluwer Academic

Publishers, 2005.

[PoBL2005b] Pokahr, A.; Braubach, L.; Lamersdorf, W.: Agenten: Technolo-

gie für den Mainstream? In: it – Information Technology

5(2005), pp.300-307.

[SBPL2004] Sudeikat, J.; Braubach, L.; Pokahr, A.; Lamersdorf, W.: Evalua-

tion of Agent-Oriented Software Methodologies – Examination

of the Gap Between Modeling and Platform. In: Giorgini, P.;

Müller, J.P.; Odell, J. (Eds.): Agent-Oriented Software Engi-

neering V, Fifth International Workshop AOSE 2004. Springer

Verlag, 2004, pp. 126-141.

[WeJa2004] Weiß, G.; Jakob, R.: Agentenorientierte Softwareentwicklung –

Methoden und Tools. Xpert.press Reihe, Springer-Verlag, Sep-

tember 2004. ISBN 3-540-00062-3.

References

[AmSt1988] Ambros-Ingerson, J.; Steel, S.: Integrating Planning, Execution

and Monitoring. In: Proceedings of the Seventh National Con-

ference on Artificial Intelligence (AAAI-88); St. Paul, MN.

AAAI Press, Menlo Park, CA, 1988, pp. 83-88.

[BaMa1999] Baeumer, C.; Magedanz, T.: Grasshopper: A Mobile Agent Plat-

form for Active Telecommunication Networks. In: Proceedings

of the 3rd International Workshop on Intelligent Agents for

Telecommunication Applications (IATA-99). Springer, Berlin,

1999, pp. 19-32.

[BBCP2005] Bellifemine, F.; Bergenti, F.; Caire, G.; Poggi, A.: JADE - A

Java Agent Development Framework. In: Bordini, R.; Dasta-

ni, M.; Dix, J.; El Fallah Seghrouchni, A. (Eds.): Programing

Multi-Agent Systems. Kluwer Academic Publishers, 2005.

[BDDE2005] Bordini, R.; Dastani, M.; Dix, J.; El Fallah Seghrouchni, A.

(Eds.): Programing Multi-Agent Systems. Kluwer Academic

Publishers, 2005.

[BoHV2005] Bordini, R.; Hübner, J.; Vieira, R.: Jason and the Golden Fleece

of Agent-Oriented Programming. In: Bordini, R.; Dastani, M.;

Dix, J.; El Fallah Seghrouchni, A. (Eds.): Programing Multi-

Agent Systems. Kluwer Academic Publishers, 2005.

[BPML2004] Braubach, L.; Pokahr, A.; Moldt, D.; Lamersdorf, W.: Goal

Representation for BDI Agent Systems. In: Bordini, R. et al.

26 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

(Eds.): Proceedings of the 2nd International Workshop on Pro-

gramming Multiagent Systems, Languages and Tools (PRO-

MAS 2004), 3rd International Joint Conference on Autonomous

Agents & Multi-Agent Systems (AAMAS'04), New York, USA.

Lecture Notes in Computer Science. Springer-Verlag, Berlin,

New York, 2005, pp. 46-67.

[Brat1987] Bratman, M.: Intention, Plans, and Practical Reason. Harvard

University Press, 1987.

[BrIP1988] Bratman, M.; Israel, D.; Pollack, M.: Plans and Resource-Boun-

ded Practical Reasoning. In: Computational Intelligence

4(1988)4, pp. 349-355.

[Broo1986] Brooks, R.: A Robust Layered Control System for a Mobile Ro-

bot. In: IEEE Journal of Robotics and Automation 2(1986)1,

pp. 24-30.

[BrPL2005] Braubach, L.; Pokahr, A.; Lamersdorf, W.: Jadex: A BDI Agent

System Combining Middleware and Reasoning. In: Unland, R.;

Calisti, M.; Klusch, M. (Eds.): Software Agent-Based Applica-

tions, Platforms and Development Kits. Birkhäuser, 2005.

[BHRH2000] Busetta, P.; Howden, N.; Rönnquist, R.; Hodgson, A.: Structur-

ing BDI Agents in Functional Clusters. In: Intelligent Agents VI,

Agent Theories, Architectures, and Languages (ATAL’99),

LNCS 1757. Springer, 2000, pp. 277-289.

[CFBB2004] Calisti, M.; Funk, P.; Biellman, S.; Bugnon, T.: A Multi-Agent

System for Organ Transplant Management. In: Applications of

Software Agent Technology in the Health Care Domain. Sprin-

ger, Heidelberg, 2004.

[ClPE1997] Clement, P.; Papaioannou, T.; Edwards, J.: Aglets: Enabling the

Virtual Enterprise. In: Proceedings of the International Confer-

ence Managing Enterprises – Stakeholders, Engineering, Logis-

tics and Achievement' (ME-SELA '97), 1997.

[CoLe1991] Cohen, P.; Levesque, H.: Teamwork, SRI International. Tech-

note 504. Menlo Park, CA, 1991.

[Denn1987] Dennett, D.: The Intentional Stance. Bradford Books, 1987.

[EiMa2002] Eiter, T.; Mascardi, V.: Comparing Environments for Develop-

ing Software Agents. In: AI Communications 15(4),

pp. 169-197, 2002.

[Ferb2003] Ferber, J.: From Agents to Organizations: An Organizational

View of Multi-Agent Systems. In: Agent-Oriented Software En-

gineering IV, 4th International Workshop, AOSE 2003, Mel-

bourne, Australia, July 15, 2003. Revised Papers, 2003,

pp. 214-230.

[GrKr1996] Grosz, B.; Kraus, S.: Collaborative Plans for Complex Group

Action. In: Artificial Intelligence 86(1996)2, pp. 269-357.

[GuFe2001] Gutknecht, O.; Ferber, J.: The MADKIT Agent Platform Archi-

tecture. In: Wagner, T.; Rana, O. (Eds.): Revised Papers From

the International Workshop on Infrastructure for Multi-Agent

 Tools and Standards 27

Systems: Infrastructure for Agents, Multi-Agent Systems, and

Scalable Multi-Agent Systems, June 3-7, 2000. Lecture Notes in

Computer Science 1887(2001). Springer-Verlag, London, 2001,

pp. 48-55.

[HoRB1999] Hodgson, A.; Rönnquist, R.; Busetta, P.: Specification of Coor-

dinated Agent Behavior (The SimpleTeam Approach). In:

Proceedings of the Workshop First International Conference on

Team Behaviour and Plan Recognition at IJCAI-99. Stockholm,

Sweden, 1999.

[HRHL2001] Howden, N.; Rönnquist, R.; Hodgson, A.; Lucas, A.: JACK

Intelligent Agents – Summary of an Agent Infrastructure. In:

Proceedings of the 5th ACM International Conference on Auto-

nomous Agents. Canada, 2001.

[JeMa1992] Jennings, N.; Mamdani, E.: Using Joint Responsibility to Coor-

dinate Collaborative Problem Solving in Dynamic Environ-

ments. In: AAAI. 1992, pp. 269-275.

[LeLR1996] Lehman, J.; Laird, J.; Rosenbloom, P.: A gentle introduction to

Soar, an architecture for human cognition. In: Invitation to Cog-

nitive Science 4(1996), MIT Press.

[MaDA2005] Mascardi, V.; Demergasso, D.; Ancona, D.: Languages for Pro-

gramming BDI-style Agents: an Overview. In: Corradini, F.; De

Paoli, F.; Merelli, E.; Omicini, A. (Eds.): Proceedings of WOA

2005 dagli Oggetti agli Agenti Simulazione e Analisi Formale di

Sistemi Complessi Pitagora Editrice Bologna, ISBN 88-371-

1590-3. pp. 9-15.

[Mang2002] Mangina, E.: Review of Software Products for Multi-Agent Sys-

tems. In: AgentLink, software report, 2002.

[Mil+1998] Milojicic, D.; Breugst, M.; Busse, I.; Campbell, J.; Covaci, S.;

Friedman, B.; Kosaka, K.; Lange, D.; Ono, K.; Oshima, M.;

Tham, C.; Virdhagriswaran, S.; White, J.: MASIF: The OMG

Mobile Agent System Interoperability Facility. In: Proceedings

of the International Workshop on Mobile Agents (MA'98), 1998.

[Newe1990] Newell, A.: Unified Theories of Cognition. Harvard University

Press, 1990.

[Norl2004] Norling, E.: Folk Psychology for Human Modelling: Extending

the BDI Paradigm. In: Proceedings of in the Third International

Joint Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2004), 2004.

[OdPF2003] Odell, J.; Parunak, H.; Fleischer, M.: The Role of Roles in De-

signing Effective Agent Organizations. In: Software Engineering

for Large-Scale MAS. Springer, Heidelberg, 2003, pp. 27-38.

[OMG2000] Object Management Group (OMG): Mobile Agent Facility

Specification. http://www.omg.org/cgi-bin/doc?formal/2000-01-

02, 2000.

[PaWi2004] Padgham, L.; Winikoff, M.: Developing Intelligent Agent Sys-

tems: A Practical Guide. John Wiley & Sons, New York, 2004.

28 Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

[PoBL2005a] Pokahr, A.; Braubach, L.; Lamersdorf, W.: Jadex: A BDI

Reasoning Engine. In: Bordini, R.; Dastani, M.; Dix, J.; El Fal-

lah Seghrouchni, A. (Eds.): Programing Multi-Agent Systems.

Kluwer Academic Publishers, 2005, pp. 149-174.

[PoBL2005b] Pokahr, A.; Braubach, L.; Lamersdorf, W.: Agenten: Technolo-

gie für den Mainstream? In: it – Information Technology

5(2005), pp.300-307.

[PoCh2001] Poslad, S.; Charlton, P.: Standardizing Agent Interoperability:

The FIPA Approach. In: 9th ECCAI Advanced Course, ACAI

2001 and Agent Links 3rd European Agent Systems Summer

School, EASSS 2001, Prague, Czech Republic. Springer, Hei-

delberg, 2001.

[RaGe1995] Rao, A.; Georgeff, M.: BDI agents: From theory to practice. In:

Proceedings of the 1st International Conference on Multi-Agent

Systems (ICMAS-95). San Francisco, CA, USA, 1995,

pp. 312-319.

[Rao1996] Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical

Computable Language. In: van der Velde, W.; Perram, J. (Eds.):

Agents Breaking Away. Springer, Berlin, Heidelberg, New

York, 1996.

[SBPL2004] Sudeikat, J.; Braubach, L.; Pokahr, A.; Lamersdorf, W.: Evalua-

tion of Agent-Oriented Software Methodologies – Examination

of the Gap Between Modeling and Platform. In: Giorgini, P.;

Müller, J. P.; Odell, J. (Eds.): Agent-Oriented Software Engi-

neering V, Fifth International Workshop AOSE 2004. Springer

Verlag, 2004, pp. 126-141.

[Sear1969] Searle, J. R.: Speech Acts: an essay in the philosophy of lan-

guage. Cambridge University Press, 1969.

[ShSt2001] Shehory, O.; Sturm, A.: Evaluation of modeling techniques for

agent-based systems. In: Proceedings of the fifth international

conference on Autonomous agents (Agents 2001). ACM, Mont-

real, Canada, 2001, pp. 624-631.

[Tamb1997] Tambe, M.: Towards Flexible Teamwork. In: Journal of Artifi-

cial Intelligence Research 7(1997), pp. 83-124.

[Weis2002] Weiß, G.: Agent Orientation in Software Engineering. In:

Knowledge Engineering Review 16(2002)4, pp. 349-373.

[WiCR2002] Willmott, S.; Calisti, M.; Rollon, E.: Challenges in Large-Scale

Open Agent Mediated Economies. In: Proceedings of

AAMAS '02: Revised Papers from the Workshop on Agent Me-

diated Electronic Commerce on Agent-Mediated Electronic

Commerce IV, Designing Mechanisms and Systems. Springer,

Berlin, Heidelberg, New York, 2002.

[Wini2005] Winikoff, M.: JACK Intelligent Agents: An Industrial Strength

Platform. In: Bordini, R.; Dastani, M.; Dix, J.; El Fallah Segh-

rouchni, A. (Eds.): Programing Multi-Agent Systems. Kluwer

Academic Publishers, 2005, pp.175-193.

 Tools and Standards 29

[WoJe1995] Wooldridge, M.; Jennings, N.: Intelligent Agents: Theory and

Practice. In: The Knowledge Engineering Review 10(1995)2,

pp. 115-152.

[WoJK2000] Wooldridge, M.; Jennings, N.; Kinny, D.: The Gaia Methodol-

ogy for Agent-Oriented Analysis and Design. In: Autonomous

Agents and Multi-Agent Systems 3(2000)3, pp. 285-312.

