
A Universal Criteria Catalog for Evaluation of

Heterogeneous Agent Development Artifacts

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{braubach | pokahr | lamersdorf}@informatik.uni-hamburg.de

Abstract. The research discipline of multi-agent systems is character-
ized by a high degree of heterogeneity. This heterogeneity leads to a vast
amount of options (e.g. di�erent architectures and languages) how to em-
ploy agent technology but is also one major source of di�culties for its
adoption. People interested in using multi-agent systems depend on solid
survey articles, which clarify and evaluate these di�erent options and ex-
plain in which situations which choices should be made. A survey should
also propose viable classi�cation means for helping readers to under-
stand which development artifacts broadly exhibit similar properties. To
date, in most cases multi-agent system surveys do without classi�cations
and only address one speci�c type of artifact such as agent languages or
tools. Often, only the characteristics of the representatives are described
without evaluating them. In this work a universal criteria catalog will be
presented that has been de�ned abstractly enough for being usable for
a wide variety of agent development artifacts. It will be shown how this
abstract catalog can be further re�ned with respect to the chosen area
of investigation. In addition to the catalog its general usage as part of
a survey will be explained and a blueprint for survey conduction will be
presented. To demonstrate its usefulness cutouts of extensive evaluations,
performed in the areas of agent architectures, languages, methodologies,
tools and platforms, will be presented.

1 Introduction

The high heterogeneity of the multi-agent systems (MAS) research �eld leads
to many options for realizing agent applications. As many of the available solu-
tions (be it methodologies, platforms or other things) are suitable only in speci�c
application contexts it is very important to have guidelines at hand for the se-
lection of the right option with respect to the given problem [9]. One viable
instrument consists in studying surveys and evaluations about speci�c agent
artifacts such as agent architectures or languages. Regrettably, most existing
surveys do not contain evaluations of the described artifacts and available com-
parisons of artifacts su�er from ad-hoc classi�cations resp. selections as well as
from non-standardized evaluation criteria. Especially, divergent criteria make it
hard to appraise and compare evaluation results, because it remains unclear if
the considered criteria are relevant and if there are others not discussed at all.

To improve this situation in this paper a universal criteria catalog is presented
that has been deduced from established standards and is su�ciently generic for

being utilized for the evaluation of arbitrary agent artifacts. The usage of the
catalog fosters several important aspects. Firstly, evaluations of the same ar-
tifact type become comparable making visible the advances in the multi-agent
research �eld, e.g. platform surveys from nowadays and from 5 years ago could
show in which areas (e.g. operating ability) progress has been achieved. Sec-
ondly, evaluations of di�erent artifact types become comparable. This will allow
identifying how the state-of-the-art with respect to di�erent artifacts is related
and e.g. in which area research should be urged. Thirdly, the criteria catalog has
been conceived to be usable in di�erent scenarios. This only requires conceiving
a suitable weighting scheme, which emphasizes the di�erent criteria according
to their importance with respect to the overall evaluation objective.

Besides the criteria catalog itself it is also sketched what else needs to be done
to obtain signi�cant evaluation results. Therefore, a survey blueprint is presented
highlighting all important aspects that a survey (including an evaluation part)
should possess and also in which order they should roughly be performed.

The rest of this paper is structured as follows. Section 2 introduces the uni-
versal criteria catalog. An abstract evaluation process is described in section 3.
To illustrate the catalog usage, excerpts of evaluations, performed in the area of
agent architectures and programming languages, are presented in sections 4 and
5, respectively. Section 6 concludes the paper with a summary and an outlook.

2 Criteria Catalog

In this section it is described what comprises the proposed universal criteria
catalog, how it was deduced from existing standards and how it relates to other
work in the �eld of agent surveys and evaluations.

In general there are two opposing requirements for the criteria catalog. On
the one hand, the catalog should be universal and apply to all possible kinds of
agent development artifacts. On the other hand, the catalog should be highly
concrete to allow meaningful results, when evaluating speci�c types of artifacts
for speci�c settings. The �rst requirement, i.e. the universality of the catalog, is
essential for achieving comparability of evaluation results by providing a stable
set of criteria, which can also be used in future investigations. Moreover, applying
a single universal set of criteria to many di�erent types of artifacts is the best
way to ensure the completeness of the criteria catalog.

On the other hand, having concrete criteria, as mandated by the second
requirement, is the precondition for obtaining profound and accurate evaluation
results. Detailed and clearly de�ned criteria contribute to the objectiveness of
an evaluation, as they prevent unconscious or ad-hoc assessments. A concrete
and detailed criteria catalog also allows for adapting the evaluation to a speci�c
setting, by weighting di�erent criteria according to their need. When e.g. an
agent platform is searched as a teaching vehicle, one would apply di�erent ratings
to criteria as one would do in an industrial software project.

2.1 Foundations

Our work is based on existing standards such as ISO 9126 and ISO 9241 [16, 17]
and on evaluations of agent-oriented artifacts such as development methodologies

or programming environments [9, 11, 14, 30]. The ISO 9126-1 standard de�nes six
general criteria for evaluating software product quality: functionality, reliability,
usability, e�ciency, maintainability, portability. These criteria (called character-
istics) are subdivided into more speci�c subcharacteristics (e.g. fault-tolerance
as part of reliability). The standard motivates, that subcharacteristics are fur-
ther re�ned by attributes, which can be veri�ed or measured. Those attributes
are speci�c to concrete types of software and not de�ned in the standard. More-
over, the set of ISO 9241 speci�cations describes guidelines for the ergonomics
of human system interaction that can e.g. be used for the further re�nement of
certain (sub)characteristics.

Besides existing standards, another source for relevant evaluation criteria are
the existing surveys in the area of agent-oriented development artifacts. Unfortu-
nately, most of these surveys focus on one speci�c type of artifact and therefore
do not consider the universality of the applied criteria. Nevertheless, the sur-
veys are helpful for identifying criteria that are considered relevant by agent
developers. E.g. Sturm and Shehory [30] propose the criteria categories concepts
and properties, notations and modeling techniques, process, and pragmatics, re-
�ned into numerous subcriteria, for evaluating agent-oriented methodologies. For
evaluating agent development software, such as agent platforms or development
environments, Eiter and Mascardi [14] introduce the categories agent attitudes,
software engineering support, agent and MAS implementation, technical issues,
and economical aspects, together with speci�c characteristics for each category.

2.2 Criteria Catalog Proposal

To meet the requirements of a universal yet concrete criteria catalog, we adopt
the ISO approach of broad criteria categories, re�ned into more detailed, but still
universal subcriteria. Basically, the catalog proposal distinguishes between func-
tional and non-functional requirements. Functional requirements are directly
related to the scope of operation, whereas non-functional requirements consider
the quality of a given artifact and its provided functions. In the criteria catalog
non-functional requirements have been further decomposed into the categories
usability, operating ability and pragmatics, thereby subsuming and generalizing
the six main criteria of ISO 9126-1. Similarly, the subcriteria are obtained from a
uni�cation and generalization of criteria found in standards and existing surveys.
In the following the top-level and subcriteria of the catalog will be presented:
Function: The function encompasses all functional properties of an artifact.
Which concrete functional requirements are important highly depends on the
kind of researched artifact, e.g. in the context of programming languages other
aspects are considered than in the context of architectures. The detailed criteria
can be deduced asking the following typical questions:
� Which are the base concepts of the artifact?
� What does the artifact enable and which restrictions exist (power, missing con-

cepts, capabilities)?
� Is the function of the artifact adequate in the given context (for which contexts

was it conceived/is it usable)?
� Is the function of the artifact adequate with respect to the developer's knowledge

and capabilities (suitable for beginners/experts only)?

Usability: The usability of an artifact refers to its suitability for the construc-
tion of agent applications. The degree of usability is evaluated according to the
following aspects:
� Simplicity/intuitivity: How simple are the underlying artifact's mechanisms

(simplicity vs. power)? Is the artifact intuitive, i.e. can the developer use the arti-
fact in an understandable and anticipatable way?

� Learnability/familarity: What learning curve has the artifact? Is the developer
already familiar with the artifact or its underlying mechanisms from another con-
text?

� Individualization: Can the artifact be tailored towards the user and/or the con-
text?

� Extensibility: Can the artifact be extended with new functionalities?
� Software engineering principles: Does the artifact respect well-known princi-

ples such as modularization, refactoring, veri�cation and/or does it facilitate the
reusability of elements in other contexts?

Operating ability: The operating ability of an artifact encompasses all aspects
that are relevant while the artifact is executed (used), i.e. which properties does
the artifact exhibit during its operation? The operating ability's quality is mea-
sured using the following aspects:
� Performance: How e�cient is the artifact with respect to space- and/or time-

critical operations?
� Robustness: How tolerant is the artifact with respect to (partial) breakdowns?
� Stability: How does the artifact behave if executed during a longer time period?

� Scalability: How does the artifact behave when applied to varying problem sizes?

Pragmatics: Pragmatic aspects refer to external factors that are neither related
to the construction nor to the operation of the artifact. Nonetheless, pragmatic
aspects can exert an important in�uence on the evaluation of the artifact under
consideration (e.g. a software), as they determine to a high degree if an artifact
can be used in practice. In detail, pragmatic aspects are subdivided into the
following criteria:
� Installation/adoption: How easily can the artifact be installed?
� Documentation/examples/support: Is documentation, example code and sup-

port available for the artifact? What quality do they have?
� Popularity: How big is the user community? Are �eld reports available?
� Maturity: How mature is the artifact conceptually as well as technologically?
� Technical boundary conditions: How easily can the artifact be embedded into

existing IT landscapes? How well does the artifact �t to the technological main-
stream?

� Costs: Which costs are related with the artifact (purchase, construction, opera-
tion, working time, training, etc.)?

To conclude, this section has presented a universal criteria catalog, which is based
on established ISO-standards and consists of the four main categories: function,
usability, operating ability and pragmatics. It is general enough to be used for
the evaluation of all important agent development artifacts and provides enough
detailed requirements for producing meaningful and comparable evaluations as
explained in the next sections.

3 Usage of the Catalog

The criteria catalog has been used as a foundation for extensive research in the
�eld of multi-agent systems and was speci�cally used by the authors to describe
and evaluate agent architectures, languages, methodologies, platforms and tools
[8, 21]. In this section it will be shown how the catalog can be embedded as
part of a survey with respect to a speci�c development artifact. Therefore, a
blueprint of such a survey will be sketched and later on example surveys in the
selected areas of agent architectures and languages will be presented. Conducting
a survey naturally requires incorporating related work as much as possible with
respect to other surveys as a whole and also with respect to all important parts
of a survey as explained next.

The survey blueprint we propose consists of the following logical steps: arti-
fact de�nition, classi�cation, selection, catalog re�nement, evaluation and sum-
marizing results. Starting point of each survey should be a discussion of the
meaning of the selected artifact. In this respect the important de�nitions from
literature should be discussed and it should be made clear (if the notion is not
unambiguously de�ned) why a certain de�nition forms the foundation of the fur-
ther explorations. Thereafter, the state-of-the-art should be described. For this
purpose, in a �rst step classi�cations have to be taken from literature or newly
conceived and evaluated with respect to the research objective.

A good classi�cation serves two purposes: �rstly, it should help identifying
structures in the research �eld giving the unfamiliar reader an initial orientation
and secondly it should facilitate the selection of speci�c representatives for a
detailed evaluation as representatives within the same category have similar
properties. Given that a lot of individual representatives are usually available
a detailed discussion of all of them is often neither feasible nor desired and it
is su�cient to select prototypical representatives from each important category.
As last preparing step for the description of the state-of-the-art it is necessary
to perform the already mentioned catalog re�nement with respect to the given
research artifact. In many cases it should be su�cient to elaborate the meaning of
the functional criteria of the catalog as the non-functional aspects are quite stable
and rather independent of the artifact type. Thereafter, the selected individual
representatives should be explained and evaluated with respect to the criteria
catalog. Finally, the individual results should be condensed by abstracting away
from details and calculating key data. The formula for aggregating the results
can vary according to the research objective and should be de�ned in beforehand
of the evaluation (e.g. as part of the catalog re�nement step).

The proposed survey blueprint can be tailored to a concrete evaluation sce-
nario by introducing speci�c evaluation scales. In the following, as an example
a generic scheme will be explained that is easy to apply and additionally fosters
objective evaluation results. The proposed scheme exhibits a neutral weighting
with regard to the criteria, and intends that the evaluation will be done in three
steps. Firstly, each individual subcharacteristic of the criteria catalog (such as
simplicity/intuitivity) should be rated on a coarse scale (+1/-1/0 standing for
yes/no/unde�ned resp. good/bad/neutral). Such a coarse evaluation scale (e.g.

instead of values from 0 to 10) speeds up the evaluation process and also im-
proves objectiveness, because the decision if a criterion is ful�lled or not is less
prone to be in�uenced by personal taste. To add further details, each decision
should be justi�ed by a meaningful textual description of the relevant reasons,
which allows readers of the evaluation to follow or scrutinize the decisions.

In a second step, the rating of a main characteristic (such as usability) can be
calculated as a sum of the individual results. As the number of subcriteria di�ers
for the main characteristics, these summary values should be normalized to a
common scale (e.g. from -2 to +2 meaning from very weak to very strong). As
�nal step, the overall evaluation result can be determined as mean of the main
characteristics, assuming for a generic evaluation, that all main characteristics
are equally important.

4 Architecture Survey

In the following a cutout of the agent architecture evaluation from [8] will be
presented. The presentation here will highlight how the proposed blueprint in
general and criteria catalog in particular can be used for conducting a survey.

Even though there are several surveys that target agent architectures such
as [27, 33] nearly all of them focus on a detailed description and possibly classi-
�cation of the individual representatives, whereas none focuses on an exhaustive
evaluation and comparison of the representatives (in [27] at least some selected
properties are compared). One reason for this might be that architectures are
abstract and in connection with the development of MAS it seems more obvious
to evaluate agent platforms, because these artifacts will directly be used. How-
ever, agent platforms employ agent architectures and therefore inherit a good
deal of their properties. This means that architecture evaluations can e.g. help
to identify the underlying conceptual limitations of agent platforms.

4.1 Architecture Survey: Artifact De�nition

Bass et al. [2] de�ne: �The software architecture of a program or computing
system is the structure or structures of the system, which comprise software ele-
ments, the externally visible properties of those elements, and the relationships
among them.� It therefore has the basic task of making structures of elements
and their relationships visible.

In the area of multi-agent systems it is broadly distinguished between internal
agent architectures and multi-agent (or social) architectures. An internal agent
architecture tackles the question of what comprises an agent, i.e. which building
blocks can be used for its construction and how these concepts are related. On
the other hand, a social agent architecture tries to describe how coordination
between agents, e.g. in the sense of teamwork, can be conceptualized.

4.2 Architecture Survey: Classi�cation

Di�erent kinds of classi�cations have been proposed for internal architectures.
The most in�uential scheme is the one of Wooldridge and Jennings [33], who
introduced a distinction between reactive, deliberative and hybrid architectures.

SOARArchitecture
Ferber‘sAGR

Newell'sUTCIRMA
Taskmodel PsychologyPhilosophy

SociologyBiologyTheoriesArchitectures
PRSArchitectureBratman‘sBDI3-APLAOPInterpreter Shoham‘sAOP Rao's AbstractInterpreter

SubsumptionArchitecture Brook‘sSubsumption
JACKSimple Teams STEAMCohen‘sJointIntentions

Disciplines
JointResponsibilityGrosz‘sSharedPlansConcretness Dörner‘sPSI MicroPSIHübner‘sMOISE+Dignum‘sOperA

ACT-R IcarusAndreson‘sACT
Fig. 1. Architecture overview

In our work [8] we preferred a more general classi�cation scheme that relates ar-
chitectures to the discipline and theory from which they originated (see Fig. 1).
In general, architectures have not been invented per se but rely on a more ab-
stract description in form of an agent theory. This means the scheme basically
distinguishes four di�erent categories according to the disciplines philosophy,
psychology, biology and sociology from which they have been in�uenced. These
base categories are further re�ned towards the relatively abstract descriptions in
the form of agent theories such as the Uni�ed Theories of Cognition (UTC) [20]
and the Belief-Desire-Intention Model (BDI) [7]. Most architectures have been
conceived as an interpretation and concretization of such a theory.

4.3 Architecture Survey: Selection

The selection of representatives then excluded social architectures and also those,
which are not intended as foundation for application construction (e.g. psycho-
logically inspired architectures such as ACT-R that are used for experimentation
only). Concretely, the Subsumption [10], BDI (here speci�cally PRS) [23], Soar
[18], AOP [29], 3APL [12] and Taskmodel (e.g. [13]) architectures have been
evaluated in the context of the criteria catalog.

4.4 Architecture Survey: Catalog Re�nement

The catalog re�nement with respect to internal agent architectures needs to
de�ne what functionality is required from an agent. Therefore, it is necessary
to agree upon a generally accepted agent de�nition. We used the strong notion
of agency as de�ned in [33] for that purpose. It stresses the following agent
properties: autonomy, reactivity, proactivity, social abilities and mentalistic no-
tions. Other abilities that go beyond this de�nition (such as learning) are not
considered as required in our evaluation and can only in�uence it positively.

4.5 Architecture Survey: Evaluation

The descriptions of the individual architectures and their evaluation with regard
to the criteria catalog cannot be presented in full length here due to the space

limitations (see [8] for the whole survey). To get an impression of how the catalog
is used for the evaluation of an artifact instance the detailed evaluation of one
representative with respect to one main characteristic will be further illustrated.
For this purpose the usability of the Soar architecture will be discussed:

Simplicity/intuitivity (=): The basic principles of the Soar architecture
are simple and have been formulated in terms of a few hypotheses (esp. the
physical symbol system and the problem space hypothesis). Foundation of the
behavior control is the search within problem spaces, which relies on the intuitive
concepts of beliefs and goals. The intuitivity is yet reduced by the fact that only
one solution context can be active at the same time which is not in line with the
parallel goal achievement behavior of humans.

Learnability/familarity (-): The learnability of the architecture is rather
low because the architecture concepts cannot directly be used for the realization
of agents, i.e. instead of goals the developer has to deal with di�erent kinds of
low-level production rules. Developers with a solid background on rule-based
approaches will have advantages in learning Soar.

Individualization (-): The architecture does not allow being tailored nei-
ther towards the user nor to the context.

Extensibility (-): Extensibility has not been integrated at the architectural
level of Soar. Therefore, extensions have to be built at the application level, which
e.g. has been successfully done for a teamwork approach in [31]. Extensions
that aim at enhancing the available base mechanisms such as the knowledge
representation or learning method are far more di�cult to realize and require a
deep understanding of the architecture.

Software engineering principles (=): Soar supports the modular soft-
ware development by separation of the overall problem into individual problem
spaces. This allows for constructing the di�erent functionalities of an applica-
tion rather independently of each other. Nevertheless, it does not provide true
reusability of software artifacts among di�erent application contexts as tight cou-
pling between functionalities exists due to direct connections of problem spaces
via common beliefs.

The rating for the usability of the Soar architecture is therefore calculated
as weak (-)1 and underlines that improvements in this direction could further
enhance the acceptance of the approach.

4.6 Architecture Survey: Summarizing Results

The result table is depicted in Fig. 3(A) and shows the evaluations of the four
main characteristics for all analyzed architectures as well as their overall results.
It reveals that none of the architectures was able to achieve very good valuations
in all of the criteria. With respect to the di�erent criteria it is conspicuous that
the operating ability of all architectures is high or even very high meaning that
all architectures can be implemented e�ciently. In contrast, the other criteria
have produced mixed results. In most architectures the function can be further
improved and exhibits weaknesses with respect to the required properties of the

1 Calculated as normalized sum: (0+(-1)+(-1)+(-1)+0)/5*2=-1.2

strong notion of agency. The same applies for the usability which is not as good
as it is often claimed for the agent paradigm, i.e. even though the paradigm
provides intuitive metaphors, it does not automatically lead to understandable
and software-technically sound architectures. Pragmatic aspects mainly depend
on the number and quality of available software implementations, which is best
for widely used approaches such as the Taskmodel, BDI and Soar.

Considering the overall results, BDI, Soar and Taskmodel architectures have
attained good evaluations, whereby the BDI architecture is the only architec-
ture without obvious weaknesses. Nonetheless, all architectures can be improved
especially with respect to the function and usability.

5 Language Survey

This section recapitulates an evaluation of agent-oriented programming lan-
guages performed in [21]. Existing surveys of agent-oriented programming lan-
guages such as [4, 5, 33] have been taken into account primarily for reviewing
existing categorizations, e.g. with regard to the language type (e.g. logic-based
vs. procedural) [4, 5] or aspects of the agent architecture (e.g. deductive, practi-
cal, reactive or hybrid reasoning) [33]. This review made sure that the scope of
the planned survey would be broad enough to incorporate all relevant work in
the area. Moreover speci�c evaluations, e.g. of logic based languages [19], were
investigated as part of the process of �nding suitable re�nements of the criteria
catalog (i.e. the re�nement should make sure that aspects of existing evaluations
are considered).

5.1 Language Survey: Artifact De�nition

In general, a programming language is commonly agreed to be an arti�cial lan-
guage that can be used to instruct machines. E.g. the ACM SIGPLAN group [1]
de�nes programming languages as �[...] languages that permit the speci�cation
of a variety of di�erent computations, thereby providing the user with signi�cant
control (immediate or delayed) over the computer's operation.� In the area of
agent-based systems, programming languages are used for a number of di�er-
ent purposes. We adopt the scheme proposed by Ferber [15], which introduces
subgroups of agent-oriented languages, such as communication languages and
knowledge representation languages. In our evaluation, we focused on languages
for describing the behavior of agent systems.

5.2 Language Survey: Classi�cation

The classi�cation of agent languages is straightforward, as it is based on the
previously presented classi�cation of agent architectures with regard to their
origin. E.g. the PRS language category is introduced for languages implementing
a PRS-like architecture as originating from the philosophical BDI model. It is
noteworthy that the language type �API-based approach� has been identi�ed as
the common way to implement the Taskmodel architecture, where �API-based�
means that instead of conceiving a new language only a programming library
for an existing language (e.g. Java) is provided.

Fig. 2. PRS-like systems and relations

5.3 Language Survey: Selection

During the selection process, social languages have been excluded, as the fo-
cus of our investigation was on programming constructs for individual agents.
Moreover, the Subsumption architecture category has no correspondence in the
language survey. From each of the remaining �ve categories � AOP, 3APL, PRS
(=BDI), Soar, API-based (=Taskmodel) � the most prominent representatives,
based on academic as well as industrial recognition, have been selected for fur-
ther investigation. For some categories such as PRS languages, where a large
number of representatives exists, a pre-analysis of the �eld has been performed
to identify existing relationships (cf. Fig. 2).

Investigated PRS languages are AgentSpeak(L) as implemented in the aca-
demic Jason interpreter [6] and the languages of the commercial JACK agent
toolkit (JAL) [32] and the academic Jadex framework [22]. In the area of AOP
languages, the original work on Agent-0 [29] has been considered, as well as the
languages employed in the commercial AgentBuilder (RADL) [24] and the aca-
demic Agent Factory toolkits (AF-APL) [26]. The JADE platform [3] and the
Living Systems Technology Suite (LS/TS) from Whitestein Technologies [25]
have been selected as representatives of API-based approaches. For 3APL and
Soar, the most recent incarnations (at that time), as described in [12] and [18],
have been evaluated.

5.4 Language Survey: Catalog Re�nement

The re�nement of the criteria catalog introduces relevant areas of functional-
ity for programming languages. The functionality of a programming language
is represented by its programming constructs. Based on general programming
language literature (e.g. [28]) and existing evaluations of agent-oriented pro-
gramming languages (e.g. [19]) three basic functional criteria have been identi-
�ed: concept abstraction, control �ow abstraction, and safety. These criteria are
brie�y explained in the following. For a more detailed explanation see [21].

Concept Abstraction: Concept abstraction means the introduction of pro-
gramming constructs for some kind of high-level concept (e.g. abstract data
types, procedures or � in the agent world � goals or commitments). Concept
abstraction is subdivided into data abstraction, behavior abstraction, and func-

tionality abstraction, which respectively denote the availability of programming
language constructs for representing data (e.g. objects), behavior (e.g. activities),
and functionality (e.g. modules).

Control Flow Abstraction: One main requirement for an agent-oriented
programming language is to provide constructs for specifying independent or
interrelated sequences of activities, i.e. control �ow abstraction. Subcriteria for
control �ow abstraction are concurrency, dynamic behavior, and dynamic exe-
cution. Concurrency constructs (e.g. threads and semaphores) allow to specify
(quasi-) parallel activities and synchronization points between them. Dynamic
behavior means the ability of an agent to dynamically select among di�erent ac-
tions when requested to perform some task. Finally, with concepts for dynamic
execution (e.g. event or exception handlers), behaviors can be activated in a
dynamic (runtime-dependent) way.

Safety: Safety subsumes built-in functionality of a programming language
aimed at reducing the number of programming errors and can be subdivided
into error prevention and error recognition functionality. Error prevention re-
duces possible sources for errors by design (e.g. local name spaces prevent name
con�icts, automatic garbage collection reduces memory management errors). Er-
ror recognition functionality, on the other hand, aims at detecting errors early in
the development process. E.g. with static typing, many errors can be detected at
compile time, which would otherwise occur at runtime, and asserts allow to eas-
ily �nd errors at runtime, which might otherwise stay undetected while leading
to incorrect results.

5.5 Language Survey: Evaluation

The evaluation process for languages follows the generic evaluation scheme al-
ready applied to the architectures, i.e. coming to yes / no decisions about in-
dividual subcriteria, which are then summarized to produce the overall score.
The results for each of the subcriteria have been obtained in analytical and
empirical evaluations. To evaluate criteria such as simplicity/intuitivity, exam-
ple applications have been implemented with all of the languages. Among these
applications, some simple benchmarks, initially implemented for evaluating plat-
form performance (e.g. memory consumption and time needed for creating/de-
stroying a given number of agents) were also useful for evaluating the language
constructs available for these common tasks. As an example, the evaluation of
the functionality of the JACK agent language (JAL) is presented next:

Concept Abstraction (+): JAL is based on Java and therefore allows
data to be represented in an object-oriented fashion. A slight drawback is the
fact, that the internal reasoning of JACK requires some data to be represented
in a simple relational model, which does not �t well with the object-oriented
abstraction. Behavior abstraction is nicely supported by the notion of plans, as
well as functionality abstraction is provided by the so called capability concept.

Control Flow Abstraction (=): The control �ow of a BDI agent is driven
by the practical reasoning process consisting of the steps goal deliberation and
means-end reasoning. The PRS approach, as implemented in JACK, focuses on
means-end reasoning, i.e. selecting plans for achieving goals or reacting to events.

Fig. 3. Evaluation results for architectures and languages

While the language therefore provides very good control �ow abstraction in this
area, the �rst step of practical reasoning, i.e. the selection of goals to pursue,
is not directly supported. This part of the agent behavior therefore needs to be
implemented in a manual, ad-hoc fashion by the agent developer.

Safety (+): The new constructs that JAL introduces as extensions to the
Java language have been designed to allow for compile-time consistency checks
and therefore support the safety of the language. Moreover, Java constructs for
runtime checks, such as asserts, can be used in JAL as well.

As a result, JAL is attested a good (+) functionality score,2 while identifying
also some areas for improvement.

5.6 Language Survey: Summarizing Results

One aim of the survey was comparing programming approaches abstracting away
from concrete language implementations. Therefore, the results of the individual
representatives, such as AgentSpeak or JAL, have been used to compose a uni�ed
result for each approach. To avoid that de�ciencies of a single representative
weaken the score of an approach as a whole, for each main criteria such as
function or usability, the best value has been selected instead of the average.

The accumulated scores of the evaluation are shown in Fig. 3(B). PRS lan-
guages are rated best, followed by API-based approaches and Soar. This result
might also be in�uenced by the fact that these are the language families, where
ongoing commercial development takes place. Another indication for the impor-
tance of commercial development is that the winners achieve their best scores in
the area of operating ability. Nevertheless, it can be seen that still many areas for
improvement exist, e.g. the continued integration of agent-oriented concepts into
useful programming language constructs to further improve the functionality of
agent-oriented programming languages.

6 Conclusion

This paper has tackled the question how a developer can choose among the
many development options when implementing an agent application. One key

2 Calculated as normalized sum: (1+0+1)/3*2=+1.3

aspect here is to understand that agent technology currently o�ers many prob-
lem-speci�c solutions that address only certain types of application domains.
We argue that one important foundation for making accurate choices is the
availability of well-de�ned and comparable surveys and evaluations of artifacts
such as platforms or methodologies. Therefore, we have proposed a new universal
criteria catalog for evaluating many di�erent kinds of agent artifacts. This is
possible because the criteria catalog is two-staged, consisting of an abstract
artifact-agnostic stage and additionally an artifact-speci�c stage, which needs to
be re�ned with respect to the concrete artifact type. The general applicability
of the criteria catalog has been proven by cutouts of two extensive evaluations
in the area of agent architectures and programming languages, but was also
successfully employed for methodologies, platforms and tools [8, 21].

Besides the criteria catalog it has also been shown how it can be used as
one part in a complete survey. For this purpose the integral ingredients of a
survey have been identi�ed and their coarse ordering has been de�ned. In a �rst
step the de�nition of the artifact has to be explained for establishing a common
discussion basis. Thereafter an overview of the available representatives should
be given and a selection of artifact instances should be performed by applying
a meaningful classi�cation. The main part of the survey should then present
the selected representatives and evaluate them against the in beforehand re�ned
criteria catalog. Finally, the detailed results should be summarized and coarsened
to deduce also globally valid statements.

In future work we want to employ the criteria catalog to perform individu-
alized surveys that try to reason about the degree of usefulness of artifact in-
stances with respect to speci�c application scenarios (e.g. which agent platforms
are speci�cally suited for the transportation domain and why). Additionally, we
plan to investigate the applicability of the presented criteria catalog regarding
other non agent-related artifact types (such as component-based approaches).
Finally, a main objective and hope of the paper is that other researchers pick-up
the universal criteria catalog for their planned investigations. This would lead
to many positive e�ects especially with respect to the completeness of the used
criteria and the comparability with other evaluations.

References

1. ACM SIGPLAN. Bylaws of the special interest group on programming languages
of the association for computing machinery. ACM, 2003.

2. L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-
Wesley, 2005.

3. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - A Java Agent Devel-
opment Framework. [5], pages 125�147.

4. R. Bordini, L. Braubach, M. Dastani, A. El Fallah Seghrouchni, J. Gomez-Sanz,
J. Leite, G. O'Hare, A. Pokahr, and A. Ricci. A survey of programming languages
and platforms for multi-agent systems. Informatica, 30:33�44, 2006.

5. R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent Pro-

gramming: Languages, Platforms and Applications. Springer, 2005.
6. R. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece of Agent-

Oriented Programming. [5], pages 3�37.

7. M. Bratman. Intention, Plans, and Practical Reason. Harvard Univ. Press, 1987.
8. L. Braubach. Architekturen und Methoden zur Entwicklung verteilter agentenori-

entierter Softwaresysteme. PhD thesis, Univ. Hamburg, 2007.
9. L. Braubach, A. Pokahr, and W. Lamersdorf. Tools and Standards. In S. Kirn,

O. Herzog, P. Lockemann, and O. Spaniol, editors, Multiagent Systems. Intelligent

Applications and Flexible Solutions, pages 503�530. Springer, 2006.
10. R. A. Brooks. How to build complete creatures rather than isolated cognitive

simulators. In Architectures for Intelligence. Lawrence Erlbaum Associates, 1989.
11. M. Casagni and M. Lyell. Comparison of two component frameworks. In Proc. of

ICSE'03, pages 341�351. IEEE Computer Society, 2003.
12. M. Dastani, B. van Riemsdijk, and J. J. Meyer. Programming Multi-Agent Systems

in 3APL. [5], pages 39�67.
13. S. A. DeLoach. Specifying agent behavior as concurrent tasks. In AGENTS'01.

ACM Press, 2001.
14. T. Eiter and V. Mascardi. Comparing environments for developing software agents.

The European Journal on Arti�cial Intelligence, pages 169�197, 2002.
15. J. Ferber. Multi-Agents Systems - An Introduction to Distributed Arti�cial Intel-

ligence. Addison-Wesley, 1999.
16. International Organization for Standadization (ISO). Software engineering � Prod-

uct quality � Part 1: Quality model, ISO/IEC 9126-1:2001 edition, 2001.
17. International Organization for Standadization (ISO). Ergonomics ofHuman-

System Interaction-Part 110:DialoguePrinciples, ISO 9241-110:2006 edition, 2006.
18. J. F. Lehman, J. Laird, and P. Rosenbloom. A gentle introduction to Soar, an

architecture for human cognition. Technical report, University of Michigan, 2006.
19. V. Mascardi, M. Martelli, and L. Sterling. Logic-based speci�cation languages for

intelligent software agents. CoRR, cs.AI/0311024, 2003.
20. A. Newell. Uni�ed Theories of Cognition. Harvard University Press, 1990.
21. A. Pokahr. Programmiersprachen und Werkzeuge zur Entwicklung verteilter agen-

tenorientierter Softwaresysteme. PhD thesis, Univ. Hamburg, 2007.
22. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:A BDI Reasoning Engine. [5].
23. A. Rao and M. George�. BDI Agents: from theory to practice. In Proc. of IC-

MAS'95, pages 312�319. MIT Press, 1995.
24. Reticular Systems. AgentBuilder User's Guide, version 1.3 edition, 2000.
25. G. Rimassa, D. Greenwood, and M. E. Kernland. The Living Systems Technology

Suite. In In Proc. ICAS'06, 2006.
26. R. Ross, R. Collier, and G. O'Hare. AF-APL - Bridging Principles and Practice in

Agent Oriented Languages. In Proc. of ProMAS'04, pages 66�88. Springer, 2005.
27. M. Scheutz and V. Andronache. The apoc framework for the comparison and

evaluation of agent architectures. In AAAI Workshop. AAAI Press, 2004.
28. R. Sebesta. Concepts of Programming Languages. Addison Wesley, 2005.
29. Y. Shoham. Agent-Oriented Programming. Arti�cial Intelligence, 60(1), 1993.
30. A. Sturm and O. Shehory. A Framework for Evaluating Agent-Oriented Method-

ologies. In Proc. of AOIS'03, pages 94�109. Springer, 2004.
31. M. Tambe. Towards Flexible Teamwork. Art. Intelligence Research, 7, 1997.
32. M. Winiko�. JACK Intelligent Agents: An Industrial Strength Platform. [5].
33. M. Wooldridge and N. Jennings. Agent theories, architectures, and languages: A

survey. In Proc. of ATAL 1994, pages 1�39. Springer Verlag, 1995.

