FROM A RESEARCH TO AN INDUSTRY-STRENGTH
AGENT PLATFORM: JADEX V2

Alexander Pokahr and Lars Braubach 1)

Abstract

Since the beginning of the nineties multi-agent systems have been seen as a promising new software
paradigm that is capable to overcome conceptual weaknesses of mainstream object-oriented soft-
ware solutions. Despite these theoretical advantages, in practice agent software is rarely used and
as software paradigm has been widely superseded by the service-oriented architecture. One key
reason for the slow adoption of agent-based ideas is that existing agent software in most cases does
not provide business-relevant features such as persistency or scalability. Hence, in this paper it is
analyzed which essential business requirements exist and a solution agent platform architecture is
presented. This architecture has been implemented within the Jadex V2 agent platform, which is a
complete overhaul of the V1 architecture.

1. Introduction

In literature agent orientation is often promoted as new software paradigm with which shortcomings
of object-oriented solutions can be solved. Nonetheless, in practice only few agent-based systems
have been successfully deployed and the paradigm is not well recognized by industry practitioners.
One question that will be tackled in this paper is, why this is the case and how this can be changed.

In general, agent orientation brings a new perspective into software engineering and considers an
application of being composed by a multitude of individual agents working together to provide the
required functionalities. The agent paradigm assumes that an agent is an autonomous entity that acts
on its own behalf and communicates with other agents via asynchronous messages. Hence, agent
orientation is a paradigm that naturally fits for the development of loosely-coupled distributed and
concurrent systems. On the one hand, distribution is supported by the fact that agents make no as-
sumptions where other agents are located meaning that the location of an agent is transparent for its
communication partners. This allows a software developer to distribute agents across system bor-
ders as needed without having to change the application logic. On the other hand, concurrency is
supported by the agent’s autonomy, i.e. each agent can work independently from others and thus the
agents of a multi-agent system can in principle be executed in parallel. Therefore, multi-agent sys-
tems provide a clear metaphor for building potentially massively parallel applications.

With respect to current and emerging trends the importance of distribution and concurrency is fur-

ther illustrated. In the following three of the most prevailing trends (cf. e.g. [10]) are sketched:

e Ubiquitous computing is the vision of Weiser [15] and means that computing devices become
smaller and smaller and finally vanish into the environment. In a ubiquitous environment a lot
of independent small devices exist and they often need to build up a heterogeneous service net-

1 Distributed Systems and Information Systems Group, University of Hamburg, Vogt-KoélIn-Str. 30, 22527 Germany.

work in order to fulfill user requirements. Hence, ubiquitous computing needs a programming
paradigm that takes into account distribution as a core concept.

e Autonomic computing [7] puts the administration effort of systems in the focus of attention. The
basic idea here is to build self-* (-heal, -optimize, -configure, -protect) systems, which can
manage themselves by monitoring and adjusting their individual components. Such behavior
can only be achieved when components can act independently from each other and take over
different responsibilities. Typically, in an autonomous system for each business component a
dedicated management component is responsible for controlling the behavior of the first. Hence,
autonomous computing architectures are conceptually agent-based and per-se concurrent.

e Multicore processors [2] have reached the consumer market since 2006 and improve processing
power by providing more than one processing unit on board of a single chip. Nowadays dual or
quadcore processors are common and it seems reasonable that in the near future multicore proc-
essors will be available with a huge number of cores. In order to exploit that processing power
the software has to be programmed in a way that supports multiple processes or threads. This is
feasible using state of the art programming languages. Nevertheless the available concepts for
controlling concurrency such as semaphores and monitors are very low-level and lead to error
prone code that additionally is hard to program. Therefore, a programming paradigm providing
higher-level concurrency concepts is needed.

If agent technology provides solutions for these and other challenges the question arises, why agent
orientation has not yet made it to mainstream software engineering projects and so few systems
have been deployed. In the following some key reasons are presented:

e Heterogeneity of the research field leads to the severe problem that there are no agreed-upon
conceptual frameworks. Therefore it exists a multitude of programming languages, methodolo-
gies and agent platforms making the choice of the right artifacts a hard one.

e The lack of interest of industry players causes too few respectively too expensive industry-grade
agent tools being available. One reason for the low number of companies selling agent-oriented
solutions is the high research and development effort required before agent products can be
sold. Many companies tried to use agent technology in the nineties during the agent hype phase
and failed due to the immatureness of the field. As no immediate return on invest was produc-
ible the paradigm has been abandoned and the current service-oriented architecture hype lets
many companies concentrate on the service wave.

e The lack of integration with existing mainstream technology and tools makes agent technology
risky to use for companies, because they have to decide whether they want to rely on proven
technologies or utilize agent approaches — mostly they cannot have both. But, as agent orienta-
tion has orthogonal advantages with respect to existing paradigms, the choice in such a setting
is always to use the proven technology.

In the following it will be investigated how these challenges can be addressed under a technical
viewpoint, i.e. with respect to adequate infrastructure support. For this purpose in Section 2 the re-
quirements for industry-grade agent software are examined. In Section 3 existing agent solutions
are evaluated from the perspective of a business user. Thereafter, in Section 4 the Jadex V2 archi-
tecture is presented and it is detailed how the architecture helps to address the issues mentioned. In
Section 5 the content is summarized and an outlook to planned future work is given

2. Requirements

Much has been said (cf. [8, 10]) about the advantages of agent technology for building applications
in the context of the current and emerging trends as outlined in the introduction. Many of these ad-
vantages are closely related to functional requirements, such as the ability to adequately react to
changes in a dynamic environment [9] or the necessity of high-level abstractions to support decom-
position and organization of large application structures [8]. For a widespread industrial adoption, a

technology not only has to provide the functional capacities to solve the specific problems at hand,
but also has to answer the question how well it embeds into some given business context.

In [3], a criteria catalog was developed that includes, besides functional aspects, especially also
non-functional requirements that allow assessing how well an artifact under investigation fits to the
peculiarities of an application context. These non-functional requirements (also called software
quality attributes) are the key-factor when moving from research prototypes to industrial quality
software. In the following, the most important criteria are quickly sketched.

e Usability refers to the features of an artifact from the viewpoint of a single user or usage con-
text. Relevant criteria in this category are individualization and extensibility, which state how
easily an artifact can be adapted to a concrete usage context. From a developer perspective, sim-
plicity/intuitivity and learnability/familiarity are important factors that indicate how fast and ef-
ficient an artifact can be put into practice.

e Operating ability criteria are performance, robustness, stability and scalability, which describe
how well the artifact behaves when considering varying system loads (performance), presence
of failures (robustness), long term behavior (stability) and varying problem sizes (scalability).

e Pragmatic aspects are not related to using or operating an artifact, but mostly to the incurred
efforts, costs and risks. Concretely, the maturity of an artifact has a direct effect on the risk of a
software project. Costs are usually comprised of initial (purchase) costs and follow-up costs,
e.g. for operation/maintenance or for training of personnel. Finally, additional efforts typically
arise due to technical boundary conditions of an artifact, such as incompatibilities to other exist-
ing, required or preferable technology.

It should be noted that a simple “the more the better” rating (e.g., of performance) is not suitable for
any concrete software project, because these criteria are highly interrelated. Depending on the busi-
ness context, suitable trade-offs have to be found, e.g. between simplicity, performance and costs.
As a consequence, generic software infrastructures, e.g. for agent based systems, need to be adapt-
able to business needs.

3. Related Work

As outlined in the last section, industrial uptake of agent technology does not directly follow from
the inherent conceptual advantages compared to more conventional software paradigms like ob-
jects, components or services. In addition to those conceptual advantages, agent infrastructures need
to exhibit quality attributes similar to the conventional implementations, such as Java EE applica-
tion servers. These two aspects can be paraphrased as ““having something to add” and ““having
nothing to remove”. Agents have something to add to existing solutions, because they, e.g., facili-
tate more flexibility and quick adaptation to changes and can introduce a higher conceptual level
when considering goals (“what should be done?”) instead of only actions (“how is something
done?”). But agent infrastructures should also have nothing to remove. Especially features, which
are well supported by conventional paradigms, like the support for modular software development,
integration with existing technologies such as databases or user interface frameworks and high op-
erating ability (scalability, robustness, etc.), could be knock-out criteria, when being absent from
agent-based solutions.

Infrastructures for agent development therefore need to balance the two above mentioned aspects.
Existing agent infrastructures can be broadly categorized into two different approaches. The first
approach focuses on the first aspect (“having something to add”), i.e. this approach aims at building
specialized agent-oriented solutions. The second approach tries to “having nothing to remove” by
reusing existing conventional tools and techniques as much as possible and adding agent-oriented
concepts and technology only in a selective way.

The primary advantage of building specialized agent-oriented solutions (first approach) is that
agent-specific characteristics can be taken fully into account. Therefore, the expressive power of the
agent paradigm can be used for building various aspects of an application. The major drawback of
this approach is that these specialized solutions usually do not fit well into existing traditional infra-
structures. This means that existing features of e.g., applications servers, such as persistence, can
not easily be reused in the agent context. As a result, proprietary solutions are implemented to sup-
port these features in a more agent-suitable way. An example of this approach is the widely used
JADE agent platform (see e.g.[1]), which aims at providing agent-oriented middleware services
according to the FIPA specifications [13]. For supporting non-functional requirements, additional
components have been developed that e.g. support agent persistence or reliable messaging. Among
the advantages of JADE is the simplicity, such that JADE can also be used for rapid proto-typing of
agent applications, and the large user base, which results in numerous add-ons of varying quality
being available. JADE has limitations with regard to the seamless integration with mainstream
technology and poor scalability due to the use of a thread-based concurrency model. Further exam-
ples of the first approach are other agent platforms such as 3APL and Jason [1].

The main motivation behind the second approach (reusing existing conventional tools and tech-
niques) is minimizing the gap between agent technology and the software engineering mainstream.
In this approach, the seamless deployment of agents or agent-like features into existing object-
oriented/component infrastructures is seen as the appropriate way to overcome the barriers that cur-
rently hinder the adoption of agent technology in the industry. Besides encouraging industry adop-
tion, a major benefit of this approach is the reduced implementation effort and increase in maturity
due to relying on proven industry grade products. Moreover, due to adherence to industry standard
APIs, developers can choose from the large body of commercial or open source implementations
(e.g. of Java EE application servers), which in turn might offer certain advantages or disadvantages
depending on the application context. The drawback of this approach is that the usage of standard
technologies imposes certain constraints on which and how agent concepts can be implemented.
Depending on the used basis, therefore usually only a subset of existing agent features can be real-
ized without compromising the mainstream integration and as a result, only advantages specific to
those agent features can be obtained. Examples of this approach are agent platforms such as
Whitesteins LS/TS [14] and the Agentis AdaptivEnterprise Suite. Both focus on integration with a
Java EE technology base, but whereas the main aim of the Agentis suite is integrating BDI-style
goal orientation, LS/TS puts more weight on agent concurrency and message passing. Among the
advantages of LS/TS is the ability to run the same application on different execution environments
(Java SE/Java EE) targeted to development vs. production settings and also the availability of dif-
ferent reasoning engines ranging from simple task-based to more high-level goal-oriented agents.
Main criticism with regard to LS/TS is the high complexity, which makes it unsuitable for rapid
prototyping of agent applications and the fact that the platform is closed and therefore no user
community is available. Besides platforms, there are also programming languages like the JACK
agent language [1], extending languages like Java to include agent-oriented constructs.

Both approaches have their merits. The first approach is suitable for contexts in which agent advan-
tages have a big payoff (e.g. logistics domains, [12]) and therefore the easy integration with main-
stream technologies is not so important. On the other hand, the second approach allows integrating
agent-oriented ideas into an existing business IT landscape and is therefore seen as the more prom-
ising approach for achieving mainstream industrial uptake of agent technology.

4. Jadex V2 Architecture

The Jadex agent framework (see e.g. [1]) mainly consists of the agent infrastructure, and tools for
the development of agent systems. The concrete requirements for Jadex V2 have been revealed by
an evaluation of V1 against the criteria catalogue from Section 2. In the following a short review of
the evaluation with respect to the non-functional criteria is given.

e Usability The usability of Jadex V1 has been evaluated to high due to several reasons. First,
Jadex does not introduce a new programming language, but relies completely on a hybrid lan-
guage approach. This approach distinguishes between structural and behavioral aspects, which
are specified in the suitable mainstream languages XML and Java respectively. Second, the BDI
concepts are interpreted in an intuitive way, which is near to their folk-psychological meaning
and includes an explicit representation of goals. This also allows a natural transition from mod-
eling to implementation via existing goal-oriented methodologies like Tropos or Prometheus.
Third, Jadex also fulfills software technical reusability requirements by providing a BDI-based
modularization concept called capabilities.

e Operating ability The operating ability has been identified as one crucial aspect for industrial
exploitation of agent platforms and is hence very well-supported by commercial platforms like
JACK or LS/TS. In V1 operating ability has been evaluated to only fair. In order to assess the
quality of agent platforms in this respect, several small benchmarks have been conducted on a
standard desktop PC as explained in the following. The performance has been tested via agent
creation resp. termination time. In this respect the creation/termination of agents was at a rate of
circa 50 resp. 250 agents/sec. The scalability has been measured by the number of agents that
can be started on a standard Java VM with normal 64MB heap space. The number of agents was
limited to about 200, which is mainly caused by the high 200kb memory footprint of agents.
The robustness and stability are mainly features of the agent platform. Robustness is to some
degree ensured by the isolation of agent execution, which prohibits the propagation of errors to
the platform layer, i.e. a faulty agent cannot easily cause the platform to fail. The stability has
been tested via long-running test-cases, which demonstrate that at the platform as well as the ar-
chitecture layer no memory-leaks are existent.

e Pragmatic aspects This category led to a good evaluation for Jadex V1. The acquisition and
installation of Jadex is unproblematic, because it can be directly downloaded from internet and
also contains extensive documentation material. Furthermore, the technical boundaries are kept
low. This is achieved by a clean separation between the platform and architecture layer and ex-
tension points at both layers.

In general, the evaluation showed that the non-functional aspects usability and pragmatics are al-

ready covered to a sufficient degree in V1. Hence, in Jadex V2 the objectives are keeping the levels

of usability and improvements should especially be targeted to the operating ability area.

The resulting Jadex V2 agent infrastructure is composed of the agent platform and the agent ker-
nel(s) (cf. Figure 1). The responsibility of the agent platform is to ensure the continuous execution
of the agents inhabiting the platform. On the contrary, the agent kernel determines the agent archi-
tecture used, i.e. it defines which concepts can be used for programming agent behavior. The infra-
structure has been designed in such a way that it allows kernels as well as platforms being used in-
terchangeably. On the one hand this means that in combination with a platform different kernel im-
plementations can be used (e.g. BDI and/or rule-based). On the other hand, it is also possible to use
a kernel on different kinds of platforms (e.g. Standalone or JADE). The details of the platform and
kernel architectures will be explained in the following sections. In this respect it will be especially
highlighted how platform and kernel address the requirements from Section 2.

4.1. Platform Architecture

The Jadex platform architecture exhibits two main characteristics:
1. It can execute agents regardless of their internal architecture.
2. It can exploit an arbitrary middleware for reusing available services.

The first aspect is important, because applications differ in the complexity of agents that is required.
If e.g. ant algorithms shall be built it is sufficient to use simple reactive agent architectures, while
problem solving tasks might require cognitive capabilities and therefore deliberative agent architec-

tures are a better fit. One could even argue that it can have advantages to build parts of the applica-
tion using different agent architectures according to the complexity of the agents at hand.

>

________________________ P

ication: L i k=3

Custom Code A_ppllcatlonl FIPA 11 Protocols ! g

Library i i | =

________________________ -

3
Kernel ! Rule-based !t BDI ! =N
o [I S 32
| Bg
= c >
[+ L e T e T o Q@
Platform 1 FiPA 1. : ! Standalone + Middleware =
Service {aMSOF.)it “°% {| | PIRUOM pagom {adaper ||| ® 7
EN
_______________________ Q9 Q
Execution Middleware i JEE i1 Agent 25
! Platform ! Platform | gg
5

Figure 1: Jadex V2 architecture
In order to execute different agent architectures within a single platform it is necessary to define the
responsibilities of the kernel and the platform. A platform has the minimal duties of executing an
agent, delivering messages to the agent, notifying the agent at certain time points and indicating that

an agent should kill itself. Agent kernels must therefore exhibit the following methods for an agent:
public boolean executeAction();
public void messageArrived(IMessageAdapter message);
public void notifyDue();
public void killAgent();

The executeAction() method has the purpose to execute an agent for a single step, i.e. the agent
should perform an action and return the control to the platform in a short period of (CPU) time. If
the agent execution exceeds some platform-defined limit, the platform might decide to abort agent
execution. The boolean return value indicates if the agent wants to be executed again. If this is not
the case it can be reactivated by messages or a timing info. The messageArrived() method delivers a
message to an agent for processing. It is noteworthy here, that the supplied message has to be an
IMessageAdapter, which is an interface that hides platform-specific transport details and allows an
agent to retrieve all information about the message in a generic way. This means that Jadex does not
assume a fixed message structure such as FIPA ACL [13]. Instead, the message adapter provides
access to name-value pairs of the underlying message and additionally to the message type. The
message type contains meta information about the message and can be used to extract the relevant
information from the message. In this way besides FIPA ACL also alternative formats such as
Email can be supported. The notifyDue() method is necessary for allowing an agent to be reawak-
ened at an agent-defined point in time. For this purpose the agent uses the clock service for register-
ing the desired time point. The service then guarantees to call the notifyDue() method on the agent
at this time point. Different clock service implementations allow for running the same application in
simulation as well as real-time execution mode [12]. Finally, the killAgent() method requests the
agent to kill itself and starts its takedown process.

For an agent it is necessary to rely on services of the platform adapter. These basic services are es-
pecially needed for sending messages and, waking resp. cleaning up the agent, and fetching the
platform. A cutout of the adapter interface is shown below:

public void sendMessage(IMessageAdapter message);
public void wakeup();

public void cleanupAgent();

public IPlatform getPlatform();

Using the sendMessage() method an agent can send a message via the platform. The platform is
then responsible for all aspects of the transport, which can be either locally or remotely depending
on the addresses of the target agents. The wakeup() method is needed to ensure that an agent’s proc-

processing can be activated. It is e.g. called when a message is placed in the agent’s inbox or other
(kernel-specific) events happen and requests the platform scheduler to call executeAction() on the
corresponding agent. CleanupAgent() is the platform equivalent to killAgent() on the agent side and
initiates the removal of the agent. An agent can call this method if it wants to be disposed. The plat-
form always has to know when an agent is going to be killed, because it handles the agent’s re-
sources and has to release them afterwards. Finally, the getPlatform() method gives an agent access
to the platform itself and its platform services (cf. Fig. 1). Platform services are a mechanism for
building up the platform’s functionality in an extensible manner. If the platform should e.g. support
the FIPA standards, services for AMS and DF can be added.

Agent platforms in most cases are devised for a specific application scenario, e.g. a lightweight
platform for a mobile device versus a heavyweight platform for back office functionalities. The
second criterion of being able to reuse existing middleware allows developing different kinds of
platforms for Jadex agents and facilitates the integration with proven solutions. Picking up the ex-
ample it makes sense to build a platform for mobile devices with a low resource footprint restricting
its functionalities to a minimum, whereas a platform for back office tasks needs features like high
dependability and hence could be build upon a Java EE server.

Regarding the requirements discussed in Section 2 the platform architecture directly contributes to
the usability and pragmatics and indirectly also to the operating ability criteria. With respect to the
usability it supports individualization and extensibility to a high degree. On the one hand kernels
and platforms are rather independent of each other and on the other hand the flexible service-based
platform infrastructure supports the adaptation of platforms according the application context. Con-
sidering the pragmatic dimension the proposed architecture mainly contributes to the technical
boundary conditions, because it facilitates the integration with existing middleware infrastructures.
Finally, operating ability is indirectly supported by the customizable service approach of the plat-
form, which allows services being tailored to the concrete demands. E.g. if stability and robustness
are crucial, persistent AMS und DF services could be developed.

4.2. Rule Kernel Architecture

To simplify the development of different kernels as part of the Jadex agent infrastructure, a basic
rule kernel has been devised. The goal of this kernel is to form a basis for different concrete reason-
ing kernels that already provides or simplifies the provision of quality attributes. The rule kernel
ensures that concrete kernels can be built rather independently from (non-functional) quality attrib-
utes thereby focusing on functionality (i.e. describing the behavior of agents). It is realized as a ge-
neric rule engine and concrete kernels are specified in terms of a state structure and transition rules
that operate on the state (see Figure 2). The declarative specification of the concrete reasoning en-
gine leaves much more room for optimizing the execution in different directions than what would
be possible with a procedural implementation.

Basis of the rule kernel is the interpreter, which connects the kernel to the underlying platform by
implementing the required Java interface (cf. Section 4.1). The interpreter itself represents a typical
rule engine [5] consisting of an agenda, a pattern matcher and a state or working memory. Rules are
specified in a CLIPS-based [5] condition language, whereby the action part is assumed to be pure
Java. The pattern matcher determines based on the state and a given set of rules at any time the pos-
sible variable assignments to fire some of the rules. The matching rules with corresponding variable
assignments are stored as so called activations in the agenda. In each agent execution step, the in-
terpreter fires one activation from the agenda, and informs the pattern matcher about the incurred
state changes. The pattern matcher then updates the agenda to reflect newly matched or no longer
matched activations. In addition to activations from the agenda, the interpreter has to execute so
called external entries, which represent asynchronous occurrences happening parallel to the agent
execution, such as messages received from other agents. During each execution step, these entries
are copied to the state, leaving details of, e.g., message processing to the concrete kernel rules.

________________________ 0
: o
Programmer‘s Interface (optional) | Flyweights {1 Parsers ! T3
Lo @ o®
o ®
OAV e T e P TTTTTTTRar T TTTTTTTTTA o
i o X
Type i R'\:r;t(;r;e E i Metamodel E ge[nel i Feature 1 E i Feature 2 E Cg
Model memmmotel L ues i} 3
OAV | A Pattern | _ AT o
Java Impl. * 1 J2EE Impl. 1 Rete Impl. '+ Treat Impl. ' .
State Savaimp y SeEE P-4 Matcher | o P gy treatimi - s
X
________________________ 2
Interpreter (Rule Engine) I Agenda |!Ext Entries! .. 3
1

Figure 2: Jadex V2 Rule Kernel Architecture (concretizes kernel layer of Figure 1)

The state uses an OAV (object-attribute-value) triplet representation of data, because this represen-
tation can be easily mapped to different implementations (e.g. Java objects, database tables, RDF,
etc.) that support different quality attributes. The type model describes the structure of data items
that can be stored in the state and is used for data access as well as (optional) runtime consistency
checking in the rule kernel. Usually a separation in metamodel and runtime elements is useful, to
distinguish between data shared among all agent instances of the same type and runtime data that is
private to each agent instance. The kernel rules describe all possible forms of state transition and
thereby determine the behavior according to a specific agent architecture. Different implementa-
tions of the pattern matcher exhibit different performance characteristics. E.g. the Rete algorithm-
based [4] implementation has a higher memory footprint due to caching partial matches, but has
superior execution speed compared to less memory consuming implementations, such as TREAT
[11]. The manipulation of data based on an OAV model and the specification of behavior in form of
rules represent very low-level ways of interfacing with the system. Therefore, concrete kernels will
usually offer a higher level programming interface, which hides low-level details. For example,
flyweights [6] can provide a Java object like access to the data in the state and parsers can hide rule
details behind Java-like expressions.

The rule kernel architecture contributes to achieving desired quality criteria (cf. Section 2) by pro-
viding an efficient base layer for concrete kernels. Operating ability criteria such as scalability and
performance are achieved using proven rule-based technology such as the Rete algorithm. Individu-
alization is supported by providing different implementations of the components. Therefore, differ-
ent state representations allow adequate fulfillment of conflicting requirements depending on the
situation (e.g. efficiency using in-memory objects, vs. robustness using database storage) and dif-
ferent pattern matcher implementations allow to choose between fast execution and low memory
footprint. Also, in the pragmatics area, for technical boundary conditions different implementations
can be developed for concrete execution environments, such as a state representation based on EJB
technology for Java EE execution requirements.

4.3. BDI Architecture

The Jadex BDI architecture has been described extensively in the literature (e.g. in [1]) and it has
been one major objective of Jadex V2 to keep the BDI functionality and the offered programming
interface as similar as possible. Hence, here the Jadex BDI model will only be outlined briefly. In
general, BDI agents are programmed with beliefs (subjective knowledge), goals (desired outcomes)
and plans (procedural code for achieving goals). Jadex distinguishes the procedural knowledge in
plans from the descriptive knowledge and the former is specified in Java classes while the latter is
defined in an XML-based ADF (agent definition file). From within Java plans the developer can
access agent functionality via API calls, which e.g. allow accessing beliefs or dispatching goals.

In order to keep this programming model the same as in V1 a special layer has to be placed on top
of the rule kernel. This layer internally uses the functionalities offered by the rule kernel and adds
Java-based access facilities in the style of the flyweight pattern [6]. This means whenever the user

calls an BDI-based method (such as getBelief()) the new layer will create a flyweight (here Belief-
Flyweight), which exposes the same functionality as in V1 (here e.g. getFact()) and internally trans-
lates calls to OAV state operations.

Internally, the BDI state representation as well as the BDI functionality has been specified in terms
of a rule engine implementation. As already denoted the BDI state representation consists of two
OAYV type models: a metamodel and a runtime model. The metamodel contains elements that can be
used for defining Jadex agent types and therefore allow specifying application-specific agent types
and their beliefs, plans and goals. In addition, a parser has been implemented that reads/writes XML
agent definitions to/from an OAYV state. In contrast, the runtime model contains information about
agent instances, such as the agent’s current belief, goal and plan instances.

In addition to the state representation the BDI functionalities have been rebuilt using production
rules. For this purpose the BDI functionalities have been categorized into different groups such as
belief handling, event processing, goal processing, goal deliberation, and many more and for each
group several rules have been devised. An example rule is illustrated in CLIPS-like notation below:

?plan <- (plan (processingstate “ready”) (lifecyclestate “body”))
?agent <- (agent (plans contains ?plan))
=> // Java code for plan execution

The execute plan body rule states that whenever an agent has a plan that is in processing state
“ready” and in lifecycle state “body” an activation will be created. The action side of this rule con-
tains the concrete Java code for plan execution and in this case just resolves the value of the bound
?plan variable, fetches its plan body and invokes it.

In V2, the existing set of V1 BDI functionalities has been completely rebuilt using the rule-based
approach. Because rules have been grouped according to their functionality, it is now possible, to
use streamlined BDI rule sets, e.g. when some advanced features, such as goal deliberation are not
required. Additionally, new functionalities (e.g. emotions) can much more easily be added to the
existing BDI functionality. Besides the BDI kernel it is planned to also develop a reactive kernel
and a task-model based kernel. While the reactive kernel will consist of a simple API directly on
top of the basic rule kernel (e.g. for ant-like agents), the task-model kernel will not use the rule base
functionality but instead provide a simple object-oriented agent programming model (cf. JADE).

4.4. Evaluation

The new Jadex V2 architecture has been devised in a way that makes the underlying rule kernel
transparent to a high degree for the agent programmer. Hence, the evaluations for usability and
pragmatics are not affected by the changed architecture, whereas the operating ability has been as-
sessed again. In general the V2 operating ability has been evaluated to good, because the perform-
ance and scalability could be improved. Regarding the performance benchmark creation and dele-
tion of agents could be improved by an order of magnitude to 500 resp. 2000 agents/s. Also the
scalability could be improved. The number of agents that can be started on a standard Java VM with
normal 64MB has enhanced to over 2000, each with a footprint of circa 25kb. This shows that the
proposed architecture is able to preserve the advantages of Jadex V1 while the operating ability is
now comparable to commercial solutions available.

5. Conclusions and Future Work

In this paper it has been argued that current trends such as ubiquitous computing and multicore
processors require advanced distribution and concurrency concepts that are covered insufficiently
by established software paradigms like object-orientation. Agent orientation offers solutions for
these problems but is not extensively used in practice. One important reason for this is that the lack
of integration with existing technology and tools. In this respect, only if agent systems “have some-

thing to add” and “have nothing to remove” they will be considered to be used in commercial set-
tings. Nothing to remove means here that functional and in particular non-functional properties of
existing solutions should be kept by agent-based offerings.

To achieve this, the new Jadex V2 framework architecture has been presented. One main character-
istic of this architecture is the strict separation between platform (execution environment) and ker-
nel (agent architecture), which allows both being exchanged independently. In this way, on the one
hand different agent architectures can be used on the same platform (e.g. BDI versus rule-based)
and vice versa one kernel can be used in multiple execution environments (e.g. a mobile- vs. server-
based implementation). The platform architecture itself is characterized by a flexible approach us-
ing pluggable services, facilitating extensibility and adaptability to the application context. For ker-
nel implementations a rule kernel base has been proposed, which offers a rule mechanism and an
OAV state representation. On this (optional) rule kernel concrete kernel implementations such as
BDI can be built. Using the rule kernel has advantages especially concerning non-functional as-
pects, because its usage is independent of its implementation and components can be adapted ac-
cording to the concrete demands (e.g. for a fast execution the Rete rule matcher can be used).

To further improve robustness and stability, future work will focus on the platform level. A Java EE
platform adapter will allow executing agents in the context of application serv-ers, which offer ma-
jor advantages in the area of non-functional requirements by features such as built-in transactional
execution, load management and replication. Furthermore, the standardized deployment procedures
of application servers will lower the barrier for adoption and installation of agent-based solutions.

6. References
[1] Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A., Multi Agent Programming, Springer, 2005.
[2] Borkar, S., Thousand core chips: a technology perspective. In Proc. of (DAC '07), ACM, 2007.

[3] Braubach, L., Pokahr, A., Lamersdorf, W., A Universal Criteria Catalog for Evaluation of Heterogeneous Agent
Development Artifacts, in: From Agent Theory to Agent Implementation (AT2AI-6), 2008.

[4] Forgy, C., Rete: A Fast Algorithm for the Many Patterns/Many Objects Match Problem. Artif. Intell. 19(1), 1982.
[5] Friedman-Hill, E., Jess in Action - Rule-based Systems in Java, Manning, 2003.

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Addison-Wesley, 1995.

[7] 1BM, Autonomic Computing: IBM’s Perspective on the State of Information Technology, IBM, 2001.

[8] Jennings, N., An agent-based approach for building complex software systems. Commun. ACM 44, 4, Apr. 2001.
[9] Kirn, S., Herzog, O., Lockemann, P., Spaniol, O. (Eds.), Multiagent Engineering, Springer 2006.

[10] Luck, M., McBurney,P., Shehory, O., Willmott,S., Agent Technology: Computing as Interaction, AgentLink,
2005.

[11] Miranker, D., TREAT: A Better Match Algorithm for Al Production System Matching, Proc. Of. AAAI’87, 1987.

[12] Pokahr, A., Braubach, L., Sudeikat, J., Renz, W., Lamersdorf, W., Simulation and Implementation of Logistics
Systems based on Agent Technology, in: Hamburg International Conference of Logistics (HICL’08), 2008.

[13] Poslad, S., Charlton, P., Standardizing agent interoperability: the FIPA approach. In Multi-Agents Systems and
Applications, Springer, 2001.

[14] Rimassa, G., Greenwood, D., Kernland, M., The Living Systems Technology Suite. In Proc. ICAS’06, 2006.
[15] Weiser, M., The Computer for the Twenty-First Century, Scientific American, September 1991.

