
EnvSupport: A Framework for Developing Virtual Environments

Kai Jander, Lars Braubach, Alexander Pokahr
University of Hamburg

Distributed Systems and Information Systems
{jander,braubach,pokahr}@informatik.uni-hamburg.de

Abstract

Multi-agent virtual environments combine
the flexibility of agents with rich areas of
practical application such as simulation ex-
periments and gaming. However, the de-
velopment of virtual environments remains
an endeavor of considerable effort. In ad-
dition, while a number of frameworks offer
considerable reductions in development ef-
fort, it comes at the cost of lower flexibil-
ity in areas such as choice of agent archi-
tectures, types of agent interaction and col-
laboration models. This paper demonstrates
an application framework called “EnvSup-
port” for reducing development effort for
multi-agent virtual environments. It offers
agent-environment interaction, configurable
graphical output, statistical monitoring fea-
tures and dynamic environment capabilities
for agents with application in simulation and
beyond.

1 Introduction
Agents acting in virtual environments represent an im-
portant building block of many interesting classes of
agent applications, such as AI testbeds, simulation ex-
periments, or computer games and movies [Weiss et
al., 2010]. Examples range from simple grid environ-
ments such as the well-known Wumpus world from
[Russell and Norvig, 1995] over more complex 2d con-
tinuous spaces like e.g. Cleaner world [Braubach et
al., 2005] to very complex and reality like 3d game
environments in the spirit of Unreal Tournament.

Building agent applications of this type requires
huge efforts on the agent as well as on the environ-
ment side. To simplify the creation of agent applica-
tions that include an environment, the developer has
the option of reusing an existing environment or using
some kind of rapid prototyping tool for developing a
new one. Although sometimes environments are de-
veloped with reusability in mind (e.g. some computer
games offer proprietary programming interfaces), up
to now no general and systematic means for reusing
environments are available. Only recently the idea of
a generic environment interface standard [Behrens et

al., 2009] has been introduced, which aims at easy in-
terfacing of existing environments with different agent
platforms. The second option, rapid prototyping tools
for agent environments, is commonly found in agent
simulation toolkits. Support environment-based agent
application design in a similar fashion is the primary
inspiration for the approach presented in this paper.

The basic idea is to provide a specialized frame-
work for quickly developing spatial agent environ-
ments. The proposed framework “EnvSupport” al-
lows for describing an environment in a declarative
manner. It includes support for the environment do-
main model, the agent-environment interaction, the
graphical presentation and also the evaluation of en-
vironmental data.

In contrast to specialized agent simulation toolkits,
which also do a good job on rapid prototyping simula-
tion models, our approach is intentionally broader and
decouples the agent and environment aspects of devel-
opment. Due to this separation, the non-environment
parts of an application can be developed as in any
other (non-environment-based) application. This ap-
proach has several advantages. Sophisticated agent
architectures (e.g. BDI and task-based agents) as im-
plemented in existing general purpose agent platforms
can be used in simulation experiments as well. Simu-
lated environments can be attached to real agent ap-
plications allowing to benchmark these under different
conditions and using the virtual environment as an in-
tegral application part (e.g. as a coordination layer in
a logistics application).

The remainder of the text is structured as follows.
In the next Section the main concepts of EnvSupport
are explained and in Section 3 its usage is illustrated
by an example application. In Section 4 the approach
is related to existing work and finally in Section 5 a
conclusion and outlook on possible future enhance-
ments is given.

2 EnvSupport Concepts

EnvSupport (“Environment Support”) is an inte-
grated support component of Jadex [Pokahr and
Braubach, 2009a]. The goal of EnvSupport is facilitat-
ing the development of applications using agent envi-
ronments, for example spatial multi-agent simulation
applications. EnvSupports builds upon the applica-



tion descriptor and space concept support described
in [Pokahr and Braubach, 2009b]. The application
descriptor is an XML file which specifies the struc-
ture of an application like agent types and its runtime
configuration. Environments can be declared in the
application descriptor as spaces. Spaces are consid-
ered to be a generalized concept of environments and
can represent any conceivable environment or agent
relationship. The concept of a space is intentionally
abstract, allowing concrete application to define the
space concept required for their specific application.

This extension point is used by EnvSupport to sup-
ply a specific space implementation including con-
cepts, which are geared towards the application do-
main of spatial environments. This means that ap-
plications using EnvSupport can use the application
descriptor to quickly configure the application by con-
figuring an EnvSupport-provided space and declaring
the agent involved in the application. In addition,
extended concepts which are useful for environments
such as a graphical observer tool and an evaluation
tool for data processing, can be declared and config-
ured using the application descriptor.

EnvSupport provides a number of important default
infrastructure components which are already sufficient
for a large class of environment applications by config-
uring them to suit the requirements of the application.
In addition, almost every aspect of EnvSupport is op-
tional and extensible if the application’s requirements
are not met by the default components.

2.1 Environment
EnvSupport currently supports two specialized spaces
for environment development which both represent a
configurable, two-dimensional area. A two-dimension-
al grid space provides the features used in classical
grid-based environments where the environment area
is divided into rectangles of equal area. The second
environment provided by EnvSupport is a continuous
space which does not explicitly quantize the environ-
ment area but instead represents an approximation of
a continuous space environment using floating-point
arithmetic.

Each environment consists of a space which contains
components providing the functionality of the environ-
ment (cf. Figure 1). Central components are the space
objects, which represent entities existing in the envi-
ronment. Space objects are typed structs which can
be nested arbitrarily and include customizable prop-
erties.

Space objects can be ownerless or they can be owned
by one or more agents. A space object which is owned
and controlled by an agent is considered to be an
avatar of the agent. Avatar relationships are defined
by associating a specific kind of agent with a spe-
cific space object type using the agent/avatar map-
ping. This mapping allows also defining the character-
istics of the bi-directional relationship between both
via specific boolean flags (create avatar, create agent,
kill avatar, kill agent). It is thus possible to tie the
creation and termination of each association end to-
gether as needed. This means that if a new agent is

added (and create avatar is true), a space object of
the associated type is automatically created and own-
ership of the object is transferred to the new agent.
The same applies for the removal of an agent or avatar.

In order to express dynamic behavior of the environ-
ment, EnvSupport provides for two different dynamic
components, processes and tasks. Processes are used
to represent global processes such as heat dissipation
and generation of space objects. They have full access
to all components within the environment, including
all environment objects.

As a finer-grained approach to dynamic behavior,
EnvSupport offers a second dynamic component called
tasks. Tasks are part of a specific space object and
are restricted in their access of environment state to
that particular space object. Tasks can modify the
properties of the space object and provide for simple
dynamic behavior such as updating the position of the
object according to a velocity vector or decreasing the
battery charge of the object.

All of the dynamic objects need to be executed and
the correct time for execution needs to be controlled.
This is accompished by the space executor which rep-
resents the active component of the environment.

EnvSupport provides two ready-to-use implementa-
tions of space executors. The first implementation is a
time-based executor which runs the dynamic compo-
nents of the environment whenever the environment
clock updates. This executor is particularly useful
when implementing applications that are based on an
approximately continuous view of time. The second
space executor is a round-based executor which will
perform rounds at regular intervals. This executor
is suited for environments that involve round-based
rules.

The use of a space executor is not mandatory. If
the environment is not supposed to be dynamic and
solely influenced by agents, the space executor can be
omitted. However, omitting the space executor means
that no processes or tasks are executed and therefore
do not provide any function in the environment.

In order to interact with the environment, the
agents need both sensors and effectors. In EnvSup-
port, sensors are represented by the percept system.
An EnvSupport environment has a number of pre-
defined percepts that can occur during execution. Per-
cepts are triggered by an internal event system with
the environment. Dynamic components can create an
internal event, which prompts the percept generator
to instantiate a percept. The percept is passed on to
agent-specific percept processors. Percept processors
are able to pass the information to an agent either by
directly modifying the agent’s state or by using non-
invasive means such as message passing.

Agent effectors are represented by agent actions.
Agent actions, like percepts, are pre-defined in the
environment. They can be invoked by the agents in
order to modify the environment state. EnvSupport
provides two kinds of agent actions. Immediate agent
actions immediately and directly modify the environ-
ment state. This type of agent action can be used
if the agents are allowed to affect the environment at



Space (2D-Grid, 2D-Continuous, ...)Space (2D-Grid, 2D-Continuous, ...)

Agent
(BDI, Micro, ...)

Agent
(BDI, Micro, ...)

EvaluationEvaluation

ObserverObserver

Agent/Avatar
Mapping

Space
Object

Task

Space
Executor
Space

Executor

Process

Data View

Data
Provider

Data
Consumer
(Chart, File ,...)

Timing
Data

Perspective
(2D-Primitives, 2D-Icons, ...)

Percept Generator

Action

Percept

Percept Processor

Functional Component

Percept

Agent Action

Partial Environment Data

Partial Environment Data

Legend

Drawable

Pre-/Post-Layer

Interaction

Domain

Active Component

Figure 1: The EnvSupport Architecture

any time, for example, if the application is solely time-
based and does not have a concepts of rounds.

The second type of agent action is the ordered agent
action. Unlike the immediate agent action, it is not
performed immediately but merely added to a queue.
This queue is then processed the next time the space
executor is invoked. The space executor can reorder
the actions and enforce limits on the number of ac-
tions per agent. This approach is particularly useful
for applications involving rounds, where an agent may
only be allowed a limited number of actions or there
is a specific order in which they are to be performed.

Agent Actions can also have return values, provid-
ing an additional way for the agent to acquire data
from the environment. This path of data acquisition
differs from percepts since the data request is initi-
ated by the agent, while percepts are initiated by a
dynamic component of the environment.

2.2 Observer
The observer allows inspection of the environment
while the application is running and allows graphical
output of the current environment state. However,
displaying the full environment state is not always de-
sirable, for example, if the intent is to display only the
known world state of a single agent, the environment
data has to be restricted.

This is accomplished using data views. Data views
are part of the environment and act as a filter between
the environment and the observer. The observer uses
data views to acquire the environment state that is
supposed to be displayed, while the data view only
passes data about objects that are relevant to the
current view. The exact criteria which specify the
relevance of data in a particular view has to be im-
plemented by the application developer. If a global
view of the environment is sufficient, an EnvSupport-
provided data view that passes all data of the envi-
ronment to the observer can be used.

The representation of space objects in the observer
is specified for each space object type, such that space
objects of the same type have the same graphical rep-
resentation. The specification of the representation is
accomplished through the use of a simplified, single-
level scene graph. Scene graphs are graphs or trees
where the parent nodes influence the appearance of
their child nodes [Rohlf and Helman, 1994]. EnvSup-
port uses a simplified approach, which specifies a con-
tainer of primitives each space object type. This con-
tainer is refered to as drawable and has a number of
attributes associated with it, which define their gen-
eral appearance and position, such as scale in both
dimensions, rotation with regard to three axes, and
position.

In order to specify the exact appearance, the appli-
cation developer has a choice of a number of graph-
ical primitives, such as colored triangles, rectangles,
circles, regular polygons, text outputs and texturized
rectangles which can be added to drawables. Each
primitive has the same attributes as a drawable and
includes some additional attributes specific to it, such
as color, image of the texture and the number of ver-
tices in the case of regular polygons. Attributes which
primitives share with drawables are interpreted like a
scene graph to be relative to the specification in the
drawable.

Both the attributes of primitives and drawables can
either be specified as a fixed value or they can be
bound to properties of the space object they are repre-
senting. The bound value can also refer to an expres-
sion that performs a calculation on space object prop-
erties before returning the resulting value to the ob-
server by introducing a local property of the drawable
which defines the expression. Using property bind-
ings, the representation can dynamically accomodate
environment state, which is critical in cases of object
position but is also useful for implementing graphical
features, such as the representation of objects growing



in size if a space object property increases.
Each of the primitives can have a layer associated

with them. If no layer is specified, the default layer
0 is chosen. The layer specifies when an object is
drawn with lower values indicating that the primitive
is drawn earlier than primitives with a higher layer
value indicating which primitives are allowed to ob-
scure others.

In addition to drawables for space objects, pre-
layers and post-layers are provided by the observer.
Pre-layers and post-layers are environment area-wide
graphical features that are drawn before or after the
space objects are drawn. Therefore pre-layers can be
used to draw backgrounds, such as background im-
ages or grids, while post-layers can be used to draw
foreground features such as a cloud layer.

A set including drawables for the space object types
and a number of pre- and post-layers is called a per-
spective, defining a certain graphical appearance of the
environment. The application developer can specify
multiple perspectives for the observer, which allows
chosing between them while the application is run-
ning. Taken together with multiple data views, this
gives a wide choice of graphical appearances and re-
stricted views on the environment, which can be used
in arbitrary combination while using the observer.

2.3 Evaluation

The evaluation facilities of EnvSupport allow per-
forming statistical evaluation on user defined envi-
ronment data. Conceptually, the evaluation is subdi-
vided into data providers and data consumers. Data
providers have the purpose to collect data from the
space, whereas data consumers can be used to process
the collected data in arbitrary ways.

Data providers allow an application developer to
specify in a declarative way the interesting properties
of the environment that should be gathered during
runtime. A data provider is responsible for executing
a query on demand and deliver the results of this query
(it does not store the values of earlier queries). In
order to simplify the specifcation a table based format
is used, whereby each data provider owns one table.
The query is formulated using data sources (typically
space objects) and column properties. As in relational
data base queries a join operation is performed against
all data sources so that the result set consists of the
cartesian product of values from the sources.

Data consumers employ data providers for fetching
their data. A data consumer is activated via the space
executor and then uses its data consumer for getting
the current data table. It then can process that data
further, e.g. present it visually as chart or histogram
or store it in a csv file. The XML specification of data
consumers depends heavily on their concrete type and
is supported in a generic way via properties.

The conceptual differentiation between data
providers and consumers has several benefits.
Primarily, it introduces a separation of concerns
between collecting and processing data, which
reduces the complexity of the components. This

facilitates usability and fosters future extensions of
evaluation with new components.

3 Example Application

Space Object
Properties

Graphical Output

Space, Object,
Perspective Introspection

Data View and
Perspective Selection

Evaluation

Introspection

Object Tasks

Task
Properties

Producer
Drawable

Selected
Space Object

Figure 2: MarsWorld application in observer window

Jadex includes several example applications which
use EnvSupport. The “MarsWorld” application (cf.
Figure 2) involves the automated search for and min-
ing of ore on mars. This is accomplished by three dif-
ferent robots. The job of the sentry robot is to search
for new mining locations and make them known to the
other robots. The producer robot proceeds to loca-
tions discovered by the sentry and mine the ore until
the location is exhausted. Lastly, the carrier robot
will transport the ore mined by the producer to the
homebase, where it is stored.

The MarsWorld application uses the application de-
scriptor to define the application. The application de-
scriptor is split in sections which describe the type
or structure of an application components such as an
agent or space and a section declaring an applica-
tion instance. The instance defines which components
are involved in the application and the number of in-
stances required. Since the MarsWorld environment is
supposed to be continuous, the two-dimensional, con-
tinuous space provided by EnvSupport is chosen to
represent the environment. In addition, the environ-
ment requires a number of space object types, some of
which represent avatars of agents, others, like the ore,
are ownerless. The space type and its space object
types with their properties are defined in the applica-
tion descriptor (cf. Figure 3).

3.1 Domain Specification
The space used in MarsWorld is defined to have a 1-
by-1 area. For each of the space object properties,
an initial value is defined. In addition to immediate
values, expressions can be added used in properties
wich will be evaluated dynamically during runtime.

MarsWorld does not contain any global processes
but a few tasks are used to help the agents control



Figure 3: Space type definition in application descrip-
tor

their avatars. The first task used is the “move” task.
This task controls the movement of the avatar by set-
ting the new position of the avatar after each interval.
The agent specifies a target location for the avatar and
initializes the task using an action. The task calculates
the correct velocity vector using the avatar’s current
position, the target’s position and the maximum speed
of the avatar. Since the task is executed by the space
executor after each clock update, it can correctly cal-
culate the new position of the avatar by multiplying
this vector with the time interval that has passed. Af-
ter the target has been reached, the task terminates.
This allows the agent to direct its avatar by issuing
a new target location and waiting for the move task
to finish. In addition, three specialized tasks for each
robot type are declared. The “analyze” task is used
by the sentry to explore a new source of ore, the pro-
ducer applies the “produce” task when producing the
ore and the carrier robot can use the “load” task to
load ore for transport.

3.2 Observer Specification

The perspective section describes the perspectives
which are used by the observer. For each of the space
object types a graphical representation needs to be
defined. This is accomplished by declaring a draw-
able and defining the primitives of that drawable (cf.
Figure 4).

Figure 4: Drawable definition of the sentry robot

The description declares a drawable defines the ob-
ject’s general appearance such as overall size. The
drawables contains two primitives, an ellipse to rep-
resent the vision range of the sentry and a textured
rectangle which uses an image to represent the sentry
robot itself. The primitives employ layers to ensure
that the sentry image is not obscured by the vision
ellipse.

3.3 Instance Configuration
In addition to defining the structure of application
components, the application descriptor contains dec-
larations of application instances in different config-
urations. The instances contain different numbers of
components like agents

Finally, an observer instance declared. This starts
an instance of the observer once the application is
started. The observer automatically connects to the
space instance and presents the user with an overview
according to the definition of the graphical represen-
tation discussed earlier.

4 Related Work
The focus of EnvSupport is two-fold. On the one
hand, it provides generic concepts for building many
kinds of environments with clearly defined extension
points for any required additional features. On the
other hand, it achieves a clean separation of agent
and environment design and implementation, support-
ing a multitude of use cases in the areas of simulation,
benchmarking, environment-based coordination, gam-
ing, etc. Thus, in the following we consider simulation
toolkits, which allow building virtual environments, as
well as other work that focuses on the relationship be-
tween agents and the environment.

Many specialized simulation toolkits such as NetL-
ogo1 and Repast Simphony2 offer generic concepts and
tools for building simulation environments in a rapid
prototyping like fashion. Moreover, these systems
commonly offer built-in means for statistical evalua-
tion of simulation runs. In fact, EnvSupport has been
inspired by the functionality and also some concepts
of these systems, e.g. by the ’context’ and ’projec-
tion’ concepts found in Repast Simphony. Yet, unlike
agent platforms such as JADE3 and Jadex, these sys-
tems usually implement simple agent models without
sophisticated means of specifying agent behavior or
message-based agent interaction. Moreover, the im-
plementation of agents and the environment is often
highly intertwined in these toolkits, which facilitates
an easy creation of simulation models but has also
drawbacks with regards to a clean application design.

A clean separation between agent and environment
aspects is considered in work of e.g. [Weyns et al.,
2007], which argues for an explicit representation of
an environment in agent applications (e.g. for co-
ordination purposes). This work is focused on the
generic concept of environment and the nature of

1http://ccl.northwestern.edu/netlogo/
2http://repast.sourceforge.net/
3http://jade.tilab.com/



the agent/environment interaction. It is not geared
towards supporting quick environment implementa-
tions based on reusable components. A specific model
of agent/environment interaction is the A&A model,
which is implemented by the CArtAgO middleware
[Ricci et al., 2007]. Yet, the A&A model proposes
a specific paradigm and is thus less generic than e.g.
general purpose simulation toolkits.

Reusability is also addressed by the Environment
Interface Standard (EIS) initiative [Behrens et al.,
2009], which aims at providing a standardized inter-
face for any kind of agent environment, such that once
developed environments can be easily reused from any
kind of agent platform that implements EIS. EnvSup-
port and EIS share many conceptual similarities (e.g.
avatars, percepts, actions) and can be seen as comple-
ments to each other. EIS is an interface for sharing
(existing) environments, while EnvSupport provides
reusable components for building (new) environments.
Therefore, EIS-compatibility is a long-term goal of
EnvSupport, allowing easy reuse of EnvSupport en-
vironments for other agent platforms beyond Jadex.

In summary, EnvSupport combines concepts and
approaches from different strands of existing work and
tools with the aim at bringing together features from
simulation toolkits (rapid prototyping of spatial envi-
ronments, statistical evaluation) and agent/environ-
ment interaction (environment as first-class abstrac-
tion) with the power of a fully-fledged agent platform.

5 Conclusion

This paper has tackled the problem of constructing
agent applications with spatial environments. It has
been argued that spatial environment types have sim-
ilar characteristics and their specification and func-
tionalities can thus be integrated into a dedicated en-
vironment framework.

Such a framework, called “EnvSupport”, was pro-
posed in this paper. EnvSupport mainly takes care of
handling the environment domain model, the agent
environment interaction, the presentation and also
evaluation aspects. For all those parts of the frame-
work the core concepts have been elaborated and their
specification has been made possible in a declarative
manner. The usage of the approach has been verified
by a reimplementation of all spatial Jadex examples,
from which the MarsWorld has been described here in
more detail.

EnvSupport has been designed with several design
rationales in mind. The first one is the completeness of
the approach, meaning that a broad range of use cases
should be easily realizable. This has been achieved
by offering default implementations for all important
core framework aspects (e.g. a 2d continuous and grid
world, percept generators for local visions, space ex-
ecutors for continuous and round-based processing).
The second one is the extensibility of the approach.
If a use case should not be implementable using the
available means the framework offers clear extension
points, in which new functionalties can be easily de-
ployed (e.g. a 3d world). Finally, EnvSupport allows a

broad range of applications being developed by cleanly
separating the agent from the environmental aspects.
Examples are beyond pure simulation scenarios and
include benchmarking real applications in a simula-
tion testbed and also real applications that make use
of a virtual spatial representation, e.g. for coordina-
tion purposes.

As future work we plan extending EnvSupport in
several directions. One idea is the addition of a poly-
gon space with possibilities for collision detection. An-
other interesting area is the addition of fields for nat-
urally representing environment effects or forces.

References
[Behrens et al., 2009] T. M. Behrens, J. Dix, and

K. V. Hindriks. Towards an environment interface
standard for agent-oriented programming (a pro-
posal for an interface implementation). Technical
report, Clausthal University, 2009.

[Braubach et al., 2005] L. Braubach, A. Pokahr,
D. Moldt, and W. Lamersdorf. Goal Represen-
tation for BDI Agent Systems. In Proceedings of
the 2nd International Workshop on Programming
Multiagent Systems (ProMAS 2004), pages 44–65.
Springer, 2005.

[Pokahr and Braubach, 2009a] A. Pokahr and
L. Braubach. From a research to an industrial-
strength agent platform: Jadex V2. In 9.
Internationale Tagung Wirtschaftsinformatik (WI
2009), pages 769–778. Oesterreichische Computer
Gesellschaft, 2 2009.

[Pokahr and Braubach, 2009b] A. Pokahr and
L. Braubach. The notions of application, spaces
and agents — new concepts for constructing agent
applications. In Multikonferenz Wirtschaftsinfor-
matik 2009, 2009.

[Ricci et al., 2007] A. Ricci, M. Viroli, and
A. Omicini. The A&A programming model
and technology for developing agent environments
in MAS. In Programming Multi-Agent Systems,
5th International Workshop (ProMAS 2007), pages
89–106. Springer Berlin / Heidelberg, 2007.

[Rohlf and Helman, 1994] J. Rohlf and J. Helman.
IRIS performer: a high performance multiprocess-
ing toolkit for real-time 3d graphics. In SIG-
GRAPH ’94: Proceedings of the 21st annual con-
ference on Computer graphics and interactive tech-
niques, pages 381–394, New York, NY, USA, 1994.
ACM.

[Russell and Norvig, 1995] S. Russell and P. Norvig.
Artifical Intelligence: A Modern Approach.
Prentice-Hall, 1995.

[Weiss et al., 2010] G. Weiss, L. Braubach, and
P. Giogini. Intelligent agents. In Handbook of Tech-
nology Management, chapter 22. Wiley, 2010.

[Weyns et al., 2007] D. Weyns, A. Omicini, and
J. Odell. Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-
Agent Systems, 14(1):5–30, 2007.


