
Negotiation-based Patient Scheduling in
Hospitals

Reengineering Message-based Interactions with
Services

Lars Braubach and Alexander Pokahr and Winfried Lamersdorf

Abstract Nowadays, hospitals in Germany and other European countries
are faced with substantial economic challenges stemming from increased costs
and increased demands inter alia resulting from a changing age pyramid. In
this respect, patient scheduling is an interesting parameter that determines
on the one hand the length of the patients stay in the hospital and the
e�ciency of the hospital resource allocation on the other hand. Due to the
speci�c characteristics of hospitals such as unexpectedly arriving emergencies
or unintended complications during treatments the optimization of patient
scheduling is an extraordinary di�cult task that cannot be easily solved using
a typical centralized optimization algorithm. Thus, in this paper a decentral-
ized agent based approach is presented that represents patients as well as
hospital resources as agents with individual goals that negotiate to �nd ap-
propriate solutions. The approach has been extensively studied within the
MedPAge project and also has been implemented using an agent platform.
In this work it will be shown how the traditional message based implemen-
tation, which was di�cult to construct and even more di�cult to maintain,
can be replaced with a service based design.

1 Introduction

In hospitals, patient scheduling deals with the assignment of patients to the
scarce and expensive hospital resources. Optimizing patient scheduling is able
to reduce hospital costs due to a reduced stay time of patients within the hos-
pital and an increased capacity utilization of hospital resources. Despite its

Distributed Systems and Information Systems Group,
Computer Science Department, University of Hamburg,
Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany,
e-mail: braubach|pokahr|lamersdorf@informatik.uni-hamburg.de

1

2

general usefulness, e�cient mechanisms for patient scheduling are di�cult to
devise due to some inherent characteristics of hospitals. Foremost, in hospital
many uncertainties exist that make precise planning ahead for weeks or even
just days very di�cult if not impossible. These uncertainties e.g. result from
unexpectedly arriving emergencies and treatment complications and may re-
quire far-reaching changes with respect to the patient scheduling plans. An-
other important di�erence with respect to other application domains with
rather static work�ows consists in the unpredictability of patient treatment
processes within the hospital. Although approaches like clinical pathways [5]
aim at standardizing the treatment steps of patients for certain kinds of dis-
eases, patient cure remains a task that cannot be preplanned completely in
advance. Thus patient scheduling has to accommodate these characteristics
and provide a �exible and fast mechanism that is able to handle uncertainties
at many levels.

Within the MedPAge project [7, 14, 9], patient scheduling is treated as a
decentralized coordination problem between patients and hospital resources.
Both types of stakeholders are modeled as autonomous decision makers with
their own sel�sh goals that need to come to agreements in order to build up
scheduling plans. In the following, the foundations of patient scheduling in
hospitals will be described in Section 2. Afterwards, in Section 3, the Med-
PAge approach will be introduced by explaining its coordination mechanism,
the general system architecture and its implementation based on multi-agent
system technology. Implementation experiences showed that a message based
realization of the complex coordination protocol is di�cult and error prone.
Hence, in Section 4 an alternative coordination description and implemen-
tation based on service interfaces is proposed and illustrated by dint of the
MedPAge coordination mechanism. Section 5 summarizes and concludes the
chapter.

2 Foundations

Hospitals typically consist of di�erent rather autonomous units that are re-
sponsible for di�erent medical tasks. Patients normally reside at wards and
visit ancillary units according to prescribed treatments. Often, these treat-
ments are prescribed by physicians as part of the ward round taking place
in the morning of each day. The treatment requests are announced to the
di�erent ancillary wards, which decide on their own behalf at what time a
patient will be served. For this purpose the ancillary unit typically employs
a �rst come �rst served principle and calls the patients from the ward in the
order the requests arrived. This scheme is very �exible and allows the ancil-
lary wards to react timely to unexpectedly occurring emergencies by calling
an emergency before normal requests and with respect to complications by
simply delaying the next patient call as long as needed. Besides its �exibility

3

the scheme also incurs drawbacks that derive from the local unit perspective
used. This local view does not take into account global constraints e.g. the
current allocations of other ancillary units or the overall treatment process
of a patient.

Patient scheduling in hospitals aims at optimizing the temporal assignment
of medical tasks for patients to scarce hospital resources with two objectives.
On the one hand the patient's stay time and on the other hand the resource's
idle times should be minimized. As both objectives are not necessarily con-
gruent, a coordination approach can be used, in which both sides try to reach
agreements by making compromises. In order to negotiate about the di�er-
ent time slots at scarce hospital resources the patients need to be able to
quantify their interest in the resources. For this purpose the preferences of
patients should be expressed in terms of the medical priority of the examina-
tions or treatments for the patients. In this respect a concept for opportunity
costs has been developed that is able to assess the di�erence of the patients
health state with and without a potential treatment taking into account the
duration of that treatment. In this way the potential decrease of a patients
health state is used as a measure for the criticality of the treatment for that
patient. As durations of treatments can vary in practice stochastic treatment
durations have been taken into account. Details about the design of medical
utility functions can be found in [7].

3 MedPAge Approach

A major objective of the MedPAge project consisted in �nding an adequate
decentralized coordination approach that on the one hand respects the deci-
sion autonomy of the units and on the other hand is able to generate anytime
solutions that are at least near to pareto-optimal assignments. In order to
come closer to this aim di�erent coordination mechanisms [8, 9, 6] have been
designed and benchmarked with respect to the current practice in hospitals.
The benchmarking was based on a simulation system that used collected real
world hospital data from a middle sized German hospital. The benchmark-
ing revealed that an auction based scheme similar to contract-net performed
best and was able to outperform the current hospital practice from 6 to 10
percent depending on the number of emergencies occurring (the more emer-
gencies the lower the gain) [7]. Furthermore, the approach had been �eld
tested in a hospital and was considered as a helpful decision support system
by the sta� [14]. In the following the details of the conceived coordination
mechanism will be described (cf. [7]).

4

3.1 Coordination Protocol

Fig. 1 MedPAge coordination mechanism

In general, each hospital resource auctions o� timeslots for treatment and
examinations in near real-time, i.e. shortly before the ongoing treatment has
�nished and the resource expects to become available again. A time slot is
assigned to the patient that placed the highest bid according to the health-
state based utility functions introduced in the last section. The coordination
protocol is designed to have four phases (cf. Figure 1).

During subscription phase patients �rst have to �nd resources �tting to
the treatments or examinations currently needed. Due to the fact that mul-
tiple medical units may o�er the same treatments or examinations, a patient
can subscribe at several units at the same time. Although the hospital infras-

5

tructure is considered as quite stable in comparison to the continuous arrival
and dismissal of patients, it is assumed that from time to time changes can
occur, e.g. a new medical unit is added or the operation of a unit is tempo-
rary closed. For this reason patients should always perform a fresh search for
adequate resources and afterwards subscribe at the corresponding resources.
A resource answers to the patient with an estimate of the duration for the
tasks requested. These durations are deduced from historical data and consist
of mean and variance to cope with their stochastic nature.

In the announcement phase a resource initiates a new auction whenever
the ongoing medical task is about to �nish. In this way the �exibility of
the current practice in hospitals is kept and possibly occurring disturbances
caused by emergencies or complications can be addressed in the same way as
before. The resource agent announces the auction by requesting which patient
is currently willing to participate. This could be a subset of the subscribed
patients as some of them could already have won an auction at another
resource.

After having determined the participants, a call for proposal is sent to
them with detailed information about the auctioneered treatment including
the expected duration. Afterwards the patients are expected to send bids ac-
cording to their utility functions, i.e. patients determine their bids according
to the expected utility loss if they would loose the auction. This disutility is
calculated by comparing the health state at the assumed �nished time with
and without the treatment.

The resource collects the incoming bids and sorts them according to the
bid value. It will then start determining the winner in the awarding phase
by notifying the �rst patient from the list. If the patient is still available it
will agree and the resource will inform the other patients about the auction
end. If not, the resource will move on with the next patient from its list and
continue in the same way as before until a winner could be determined or
no more patients are available. In this case the auction has failed and the
resource could start over again with a new one.

3.2 System Implementation

The original MePAge system architecture is depicted in Figure 2 and consists
of three layers with di�erent functionalities. The complexity of the layered
model arises through di�erent aspects. First, as already stated, the system
has been built as simulation for benchmarking di�erent coordination mech-
anisms and also as normal desktop system that could be used in �eld tests
within a hospital. In this respect, it should be possible to reuse as much of
the functional parts as possible when switching from simulation to operation.
Second, MedPAge was part of a higher-level initiative called Agent.Hospital,
in which several projects were integrated into a more complete hospital envi-

6

Fig. 2 System architecture

ronment. Hence, the interoperability of the system was an important aspect
solved by a shared hospital ontology.

Fig. 3 System screenshot

Due to the di�erent use cases, distinct user interfaces have been built for
simulation and real world system testing. The simulation user interface al-
lowed for performing simulation experiments and evaluating the statistical

7

result whereas the user interface for operation was conceived as a decision
support system (cf. Figure 3). It can be seen that di�erent views have been
developed according to the functional roles involved within the hospital. From
an administrative point of view the system allows for entering new patient
and resource master data. This was necessary as the system has not been
directly connected to the hospital server infrastructure, which would have
allowed reusing existing data. Within the ward view, the current health state
according to the diagnosis can be coarsely given and required treatments and
examinations can be added to the patients in correspondence to the medi-
cal prescriptions. The system automatically generates appointment proposals
that become visible within the unit as well as in the ward view. In the unit
view the currently waiting patients are shown to the personnel and it allows
for synchronizing the real hospital resource with the virtual one. For this
purpose it can be entered to system when a medical task begins and ends
or if a disruption exists. In the ward view the system announces treatment
calls for patients according to the internally applied auction mechanism. The
personnel is free to accept or reject the system proposals and send patients
to the resources as they deem appropriate. These choices should be entered
into the system in order to allow for correct future planning.

The core of the MedPAge system is the coordination mechanism that has
been realized using a multi-agent negotiation approach. Hence, patient as well
as resource agents have been modeled and implemented as representatives for
their corresponding stakeholders. Details about the agent based design can
be found in [4]. The coordination mechanism has been realized as message
based interaction protocol in accordance to the sequence diagram shown in
Figure 1. As execution infrastructure the Jadex agent platform [11] has been
used, which originally relied on the JADE agent platform [1]. Hospital data
and scheduling information was stored in a relational database (MySQL),
which had been interfaced with an object-relational mapper (Hibernate). In
order to support the simulation as well as real time execution an additional
execution infrastructure middle layer had been built.

3.3 Weaknesses and Challenges

The experiences gained by implementing the MedPAge system led to several
important research questions that were found to require addressing them also
on a general layer and not only in a project speci�c manner:

• Simulation and Operation of a system should be possible without modify-
ing the functional core of the system. Rebuilding the system from a simu-
lation prototype leads to new failures and much additional implementation
overhead.

• Implementing coordination mechanisms using asynchronous message pass-
ing is a very tedious an error prone task. Even experienced developers

8

struggle in foreseeing all possible protocol states leading to increased de-
velopment e�orts and delays in software production.

In order to address the �rst challenge we worked on the notion of simulation
transparency [12] denoting the fact that a simulation and real system become
indistinguishable from a programmers point of view (except its connection
to a real or virtual environment). The underlying idea consists in introduc-
ing a clock abstraction within the infrastructure that is used for all timing
purposes. Exchanging the type of clock (e.g. from a real time to an event
driven mode) immediately changes the way time is interpreted in the system.
Following this path made obsolete the execution infrastructure layer in case
of the MedPAge system.

The second challenge requires even more fundamental changes in the way
systems are designed and implemented. The proposed solution path consists
in changing the communication means used in the system. On the one hand
the original idea of MedPAge, namely having negotiating patients and re-
sources should be kept, but on the other hand the communications should be
simpli�ed. To achieve this objective, a service oriented perspective is com-
bined with the agent oriented view leading to the notion of active components
described in the following Section. Relying on active components the com-
plex interaction scheme can be largely simpli�ed by using services. It has been
shown that conceptually that agents can be equipped with services without
loosing their special characteristics like autonomy [3].

4 Service-Oriented Interaction Design

In this section, a redesign of the MedPAge system is sketched that takes into
account the lessons learnt from its original implementation. Here, we focus
on the redesign of the coordination mechanism according to the newly de-
veloped active components approach. Therefore, the basic concepts of the
active components approach are shortly presented in the next section. After-
wards, a straight forward method is proposed how to map message-oriented
negotiation protocols to appropriate service interfaces. The resulting service-
oriented redesign of the MedPAge coordination protocol is put forward and
the advantages of the approach are discussed.

4.1 Active Components Approach

The active components approach is a uni�cation of several successful soft-
ware development paradigms, incorporating ideas from object, components,
services and agents [2, 10]. Therefore, it combines features such as the au-
tonomous execution from agents and the explicit speci�cation of provided

9

Fig. 4 Active component structure

and required interfaces from components (cf. Fig. 4). An important charac-
teristic of the approach is that each active component may act as service
provider and service user at the same time. Thus the interaction of active
components is not limited to the client/server model as used in, e.g., web
services, but also naturally supports peer-to-peer communication as found
in multi-agent systems. Regarding the architecture of an application, the re-
quired and provided service interfaces of active components allow making
component dependencies explicit and easily manageable already at design
time. Yet, by supporting dynamic service search and binding, the model al-
lows for adaptive applications that automatically build and change (parts of)
their structure at runtime in response to a dynamically changing environment
(e.g. when service providers disappear or new services become available).

The active components approach has many intentional similarities to the
standardized and industry-supported service component architecture (SCA1).
Yet, there are important di�erences due to the incorporation of agent ideas. In
the active components approach, each active component is an autonomously
executing entity (like an agent) that interacts with other (possibly remote)
active components by calling methods of their provided service interfaces.
For autonomy reasons and also for avoiding consistency issues due to con-
current access to a components internal state, active components follow a
single-thread execution model per component, which means that external re-
quests and internal actions are queued and executed sequentially (cf. [3]). To
respect this execution model and also to support distribution transparency,
i.e. no di�erence in programming for remote vs. local service calls, all ser-
vice operations should use asynchronous method signatures. Asynchronous
methods can be realized using so called futures [13] as return values, i.e.
objects that act as proxies for later results of ongoing operations. Once the
asynchronously invoked operation �nishes, the actual result will be made
available in the future object.

In Jadex2, which is our Java-based reference implementation of the active
components approach, di�erent kinds of futures are provided that capture
recurring interaction patterns in a natural way. In the following, three im-

1 http://www.oasis-opencsa.org/
2 http://jadex-agents.informatik.uni-hamburg.de

10

portant types are introduced by dint of a simple, illustrative example of a
wearable heart rate monitor connected wirelessly to a stationary display de-
vice. The heart monitor service allows retrieving the last observed heart rate
and also creating an electrocardiogram (ECG) plot of the historic heart ac-
tivity according to a speci�able period. In addition, the display can subscribe
to the heart rate monitor for being sent periodic updates of the current heart
rate. As shown in Fig. 5 (line 2), the getHeartRate() method of the mon-
itoring service returns a simple future of type double. Because the service
execution is done asynchronously, the rate value is not immediately avail-
able. Instead, the display component may add a listener to the future (line
3) for being informed, when the service execution is �nished and the result
can be obtained. For long running operations, the terminable future as used
in the generateECGPlot() method (lines 4, 5) allows terminating an ongoing
operation, while it is still in progress (cf. line 7). This kind of interaction
is useful, when service calls may take a long time to complete and allow,
e.g., the user to abort the requested printing of the ECG plot and choose
a shorter period. Finally, for recurrent interactions, the intermediate future
type allows the service implementer to publish intermediate results of po-
tentially long-lasting operations. A special kind of intermediate future is the
subscription future, which resembles a publish/subscribe interaction. For the
subscribeToHeartRates() method (line 9, 10) you can see that the display is
informed about each new heart rate value in the intermediateResultAvail-
able() method. To cancel such a subscription, also the terminate() method
of the future can be used, i.e. every subscription future is also an instance of
the terminable future type.

01: IHeartMonitorService heartservice;
02: IFuture<Double> rate = heartservice.getHeartRate();
03: rate.addResultListener(...);

04: ITerminableFuture<ECGPlot> generateplot
05: = heartservice.generateECGPlot(long period);
06: ...
07: generateplot.terminate();

08: ISubscriptionIntermediateFuture<Double> heartrates
09: = heartservice.subscribeToHeartRates();
10: heartrates.addResultListener(new IntermediateResultListener() {
11: public void intermediateResultAvailable(Decimal rate) {
12: // update display value...
13: }
14: })

Fig. 5 Examples of future types

11

4.2 Modelling Interactions with Services

In message-based interactions, each communicative act is represented as a
simple message. As inspired by speech-act theory, di�erence between those
acts can be identi�ed by using performatives such as query or inform. The
allowed sequences of sent and received messages can be speci�ed in interac-
tion protocols, which can be speci�ed, e.g., in AUML sequence diagrams. The
foundation for intelligent physical agents (FIPA) has proposed a standard-
ized set of performatives and also de�ned several commonly used interaction
protocols like request and contract-net. Despite many attempts for providing
tools or other development support, the current practice of implementing of
message-based interactions still exhibits a large gap between design and the
actual programming. Message-based interaction is not naturally supported
by today's prevalent programming languages like Java and C#. This requires
implementing many aspects of the interaction hidden in application code. As
a result, implementation errors, such as type errors or invalid message se-
quences, can only be detected at runtime, if at all. This makes implementing
message-based interactions a tedious and error-prone, time consuming task.

On the other hand, for the communicative acts in service interactions, dif-
ferent representations exist for, e.g., a service call, its return value or potential
exceptions. The future patterns introduced above allow further types of com-
municative acts, such as termination of ongoing operations or publication of
intermediate results. All these types of interaction are naturally represented
by well-established object-oriented concepts like interfaces, method signa-
tures and futures. Because these constructs are all �rst class entities of current
object oriented programming languages, sophisticated tool support exists for
statically checking the soundness of interaction implementations already at
compile time (e.g. checking number and type of parameters, compatibility of
return values or the types of futures supported for an interaction).

For the above reasons, we consider a service-based implementation of an
interaction advantageous to a message-based one. Still the design of a service-
based interaction is a non-trivial task, because in addition to deciding about
sequences of communicative acts, also each act needs to be mapped to one of
many fundamentally di�erent interaction types, such as service calls, return
values, etc. Therefore we propose an approach starting from a message-based
interaction design and converting it to a service-based design for easier im-
plementation. In this way the decisions about which communicative acts are
required and how these are represented are straightened, thus simplifying the
design process. In addition, the design of message-based interactions is well-
understood and it seems reasonable to reuse the existing concepts, standards
and tools from this area.

As a result from practical experiences in converting message-based designs
to service-based ones, we identi�ed the following recurrent steps:

12

1. Identi�cation of service provider: In almost every case, the initiator of an
interaction acts as client of a participant, i.e. the �rst communicative act
of an interaction is best represented as a service call from the initiator to
the corresponding participant.

2. Mapping of subsequent communicative acts: For each subsequent commu-
nicative acts it needs to be decided how it is represented according to the
following options:

a. Messages from initiator to participant can be represented as service calls
or as termination request to previous service calls.

b. Messages from participant to initiator can be represented as service
result, intermediate service result or as failure (exception) of a previous
service call.

3. Evaluation of the resulting design: The design should be evaluated accord-
ing to the following design criteria

a. Establishing high cohesion of methods in any interface and low coupling
between di�erent interfaces.

b. Minimizing dependencies between methods (e.g. avoid that methods are
only allowed to be called in a special ordering).

c. Avoiding to introduce new communicative acts (e.g. when an act is
mapped to a service call, but there is no message corresponding to the
return value).

4. Splitting Interfaces: If no appropriate design can be found with a single
service interface, the interaction needs to be split up into several interfaces.
Therefore one or more messages in the interaction need to be chosen as
start of a sub-interactions and the process needs to be repeated from step
1 for each sub-interaction.

Of course, in practice these steps should be considered as guidelines and not
as a rigid process. For each concrete interaction, probably di�erent designs
need to be considered to identify advantages and limitations and to decide
on the best option for implementation.

4.3 Redesign of the MedPAge Coordination Mechanism

The service-based redesign process has been applied to the MedPAge coor-
dination mechanism as presented in Section 3.1. The resulting interfaces are
shown in Fig. 6. The design has been obtained by following the process out-
lined in the previous section. The interaction is initiated by a patient, which
has some treatments without a corresponding reservation at a resource, yet.
Therefore the resource is the participant of the interaction and should provide
a service interface to the patient (lines 1-5). During the redesign it became

13

obvious that some of the messages of the original interaction are obsolete, es-
pecially in the announcement phase. Therefore these messages were omitted
during the redesign. In the original interaction protocol, the resource would
periodically start auctions in which the registered patients could bid for an
upcoming time slot. This naturally maps to a service call by the patient to
register a required treatment and in response the resource would provide a
subscription future to publish the start of each auction (lines 2, 3). In or-
der to simplify the interaction and also to allow for dynamic changes in the
resource operation, it was decided, that the stochastic treatment durations
are supplied by the resource to the patient at the start of each auction.
Therefore the subscribeToAuctions() method of the resource service corre-
sponds to the initial request(treatment) message. It should be noted that
the Jadex active components infrastructure automatically makes available
the caller of a service to the service implementation and thus no separate
parameter for identifying the patient that called the resource method is nec-
essary. The subscription future returned by the method represents both the
inform(durations) message as well as the cfp(treatment) message. To include
information about the auctioneered time slot and the corresponding treat-
ment durations, the CFP object type is introduced (lines 9-14) and used as
result type of the subscription future.

01: public interface IResourceService {
02: public ISubscriptionIntermediateFuture<CFP>
03: subscribeToAuctions(String treatmenttype);
04: public ITerminableFuture<Boolean> bid(CFP cfp, double costs);
05: }

06: public interface IPatientService {
07: public IFuture<Boolean> callPatient();
08: }

09: public class CFP {
10: public String treatmenttype;
11: public long startdate;
12: public double duration;
13: public double variance;
14: }

Fig. 6 Redesigned MedPAge coordination mechnism

When a new auction starts, the patient receives this CFP object calculates
its opportunity costs and sends its bid to the resource. This is done using the
bid() method (line 4) corresponding to the propose(bid) message. The result
of the method can be interpreted as corresponding to the query-if(accept-
perform) and reject(bid) message in case of success or failure. Yet, this would

14

leave the three remaining messages refuse(not-available), cancel(treatment)
and agree(perform) to be realized by an isolated method in the resource
interface. This would have violated design criteria 3b (minimizing dependen-
cies), because the required ordering of the three resource interface methods
would not have been obvious from their syntactic structure. Instead it was
decided, that the majority of the awarding phase was better represented by
a separate patient interface (lines 6-8). Here the resource can inform the
winner of an auction using the callPatient() method corresponding to the
query-if(accept-perform) message. The patient may answer with the boolean
result value if it is available or if the resource should prefer another patient.
The advantage of this design is that the call-patient functionality can also be
used independently of the auction mechanism. E.g. a resource that wants to
apply a di�erent scheduling scheme may simply accept registrations in the
subscribeToAuctions() method, but never start any auction and instead call
patients directly as deemed appropriate.

4.4 Discussion

In the following, the speci�c improvements of the MedPAge coordination
algorithm are discussed. In the original message-based MedPAge coordina-
tion protocol, twelve di�erent messages between two roles have been used.
Without the obsolete announcement phase still nine messages remain. The
redesigned service-oriented coordination mechanism captures the same func-
tionality, but only requires a total of three methods spread over two inter-
faces. Thus, the perceived complexity in the service-based interaction design
is much lower than in the message-based design. Furthermore, the object-
oriented service interfaces are conceptually much closer to the implementation
technology, which even more reduces the complexity for the programmer. On
a conceptual level, the new design keeps the agent-oriented view of patient
and resource representatives, which negotiate for �nding bilaterally appro-
priate schedules. Therefore, the autonomy of the di�erent hospital units is
preserved. Yet, the object-oriented design makes dependencies between the
communication acts also syntactically clear. E.g., the subscribeToAuctions()
method needs to be called before the bid() method, because the latter requires
the CFP object supplied by the former method.

5 Conclusion

In this paper patient scheduling has been identi�ed as important area of im-
provement in hospitals. The currently employed technique for patient schedul-
ing is a �rst-come �rst-served scheme that has the advantages of being highly

15

�exible and respecting the autonomy of the hospital units. Within the Med-
PAge project a decentralized auction-based solution has been developed,
which preserves these characteristics but additionally adds a global optimiza-
tion perspective. The MedPAge system has been built as an agent-oriented
solution. Based on the original system design and implementation some of
its weaknesses and resulting challenges have been identi�ed. The active com-
ponents approach and in particular the service-oriented interaction design
have been presented. They address the weakness of the complexity and im-
plementation e�ort that is induced by message-based interaction designs. A
service-oriented redesign of the MedPAge coordination mechanism has been
developed and its advantages have been discussed.

During the course of the MedPAge project, the agent metaphor was found
a highly suitable design approach for decision support systems in the area
of hospital logistics. The agents can act as representatives of the involved
hospital stakeholders, taking into account their respective goals and the typ-
ical local autonomy of existing hospital structures. One remaining obstacle
for putting agent-based systems into productive use is still the gap between
agent technology and established mainstream technologies, such as object-
orientation and, e.g., web services. The service-based approach presented in
this paper supports an easier integration with legacy software, allowing, e.g.,
to use web services for provided or required service calls.

References

1. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems with
JADE. John Wiley & Sons (2007)

2. Braubach, L., Pokahr, A.: Addressing challenges of distributed systems using active
components. In: F. Brazier, K. Nieuwenhuis, G. Pavlin, M. Warnier, C. Badica (eds.)
Intelligent Distributed Computing V - Proceedings of the 5th International Symposium
on Intelligent Distributed Computing (IDC 2011), pp. 141�151. Springer (2011)

3. Braubach, L., Pokahr, A.: Method calls not considered harmful for agent interactions.
International Transactions on Systems Science and Applications (ITSSA) 1/2(7), 51�
69 (2011)

4. Braubach, L., Pokahr, A., Lamersdorf, W.: MedPAge: Rationale Agenten zur Patien-
tensteuerung. Künstliche Intelligenz (2), 33�36 (2004)

5. Dept of Veteran's A�airs, Australia: Clinical Pathway Manual for Geriatric Commu-
nity Nursing (2000).
www.dva.gov.au/health/provider/provider.htm

6. Paulussen, T.: Agent-Based Patient Scheduling in Hospitals. Ph.D. thesis, Universität
Mannheim (2005)

7. Paulussen, T., Zöller, A., Rothlauf, F., Heinzl, A., Braubach, L., Pokahr, A., Lamers-
dorf, W.: Agent-based patient scheduling in hospitals. In: P.L.O.S. S. Kirn O. Herzog
(ed.) Multiagent Engineering - Theory and Applications in Enterprises, pp. 255�275.
Springer (2006)

8. Paulussen, T.O., Heinzl, A., Rothlauf, F.: Konzeption eines koordinationsmechanismus
zur dezentralen ablaufplanung in medizinischen behandlungspfaden (medpaco). In: 5.
Internationale Tagung Wirtschaftsinformatik 2001, pp. 867�880. Physica, Heidelberg
(2001)

16

9. Paulussen, T.O., Zöller, A., Heinzl, A., Pokahr, A., Braubach, L., Lamersdorf, W.:
Dynamic Patient Scheduling in Hospitals. In: M. Bichler, C. Holtmann, S. Kirn,
J. Müller, C. Weinhardt (eds.) Coordination and Agent Technology in Value Networks.
GITO, Berlin (2004)

10. Pokahr, A., Braubach, L.: Active Components: A Software Paradigm for Distributed
Systems. In: Proceedings of the 2011 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2011). IEEE Computer Society (2011)

11. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In:
R. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.) Multi-Agent Program-
ming: Languages, Platforms and Applications, pp. 149�174. Springer (2005)

12. Pokahr, A., Braubach, L., Sudeikat, J., Renz, W., Lamersdorf, W.: Simulation and
implementation of logistics systems based on agent technology. In: T. Blecker, W. Ker-
sten, C. Gertz (eds.) Hamburg International Conference on Logistics (HICL'08): Lo-
gistics Networks and Nodes, pp. 291�308. Erich Schmidt Verlag (2008)

13. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM Queue 3(7),
54�62 (2005)

14. Zöller, A., Braubach, L., Pokahr, A., F. Rothlauf, T.P., Lamersdorf, W., Heinzl, A.:
Evaluation of a multi-agent system for hospital patient scheduling. International Trans-
actions on Systems Science and Applications (ITSSA) 1, 375�380 (2006)

