
TRIANGULAR NUMBERS WHICH ARE SUMS OF TWO
TRIANGULAR NUMBERS

ROBERT PHILLIPS

Professor Ernest Eckert, who taught at USCA in the early 90’s, has writ-
ten several papers on Pythagorean triangles and triangular numbers have
played an important role in his research. He especially became interested
in triangular numbers which are also the sum of two triangular numbers.
When t(z) = 1

2z(z + 1), positive integer solutions to the basic equation
t(z) = t(x) + t(y) produce special numbers z that he and I now call c-
numbers ( EIS entry A012132 )1. Positive numbers that are not c-numbers
we call e-numbers (EIS entry A027861 ). An important open question is
whether there is an infinity of e-numbers. This paper is at most a prelude
to answering that question; here it is our modest goal to simply gain new
information about c-numbers. However, we do show in Section 5 that there
are arbitrarily large gaps in the series of e-numbers. This, together with
figure 5 at the end of this paper, shows that the series of e-numbers shares
properties with the series of prime numbers.

In Section 1 we show that for a fixed positive integer z, the solutions
(x, y) to the basic equation lie on a special circle. By examining this circle we
determine if there are positive integer solutions (x, y) and hence we establish
geometric conditions to decide when a number is, or is not, a c-number. In
Section 2 we show positive integral solutions (x, y) also lie on parabolas.
From this we develop families of sequences of c-numbers. Section 4 expands
on Eckert’s treatment of the surface t(z) = t(x)+ t(y), which it turns out, is
a hyperboloid closely connected to the hyperboloid x2 + y2 = z2 + 1. Other
sections will be devoted to related topics stemming from Sections 1, 2 and
4. The material in this paper is easily accessible requiring little more than
a knowledge of analytic geometry and beginning number theory.

Note: All referenced figures occur at the end of this document.

1. The circles C[n]

A triangular number t(n) is the sum t(n) =
∑n

i=1 i , or equivalently, is
defined as t(n) = 1

2n(n + 1). This latter definition has the advantage of
being defined for all real numbers n, an advantage we are about to exploit.
We call a positive integer n a c-number if t(n) = t(a) + t(b) for positive

Date: January 7, 2006.
1EIS is The Encyclopedia of Integer Sequences [4]

1



TRIANGULAR NUMBERS 2

integers a and b. For example, t(3) = t(2) + t(2) and therefore 3 is a c-
number. In fact, all triangular numbers are c-numbers because if m = t(n),
then t(m) = t(m − 1) + m = t(m − 1) + t(n). On the other hand, one
can check by inspection that 4, 5 and 7 are not c-numbers. The equation
t(8) = t(6) + t(5) makes 8 the first non-triangular c-number. We let C be
the set of all c-numbers and we make the following definition:

Definition 1.1. The equation t(z) = t(x) + t(y) can be rewritten as

(x +
1
2
)2 + (y +

1
2
)2 = z2 + z +

1
2

and this equation defines a circle with center at (−1
2 ,−1

2) passing through
(0, z) and (z, 0) which we call C[z]. The circle C[z] has the polar equation

Pz(θ) = (−1
2

+ R cos(θ),−1
2

+ R sin(θ))

where R = Rz =
√

z2 + z + 1
2 .

In particular, C[n] exists for all positive integers n (Figure 1 shows C[10]);
our interest in this section is to determine properties of the circle which
distinguish between c-numbers and non c-numbers. Non c-numbers we call
e-numbers and we set E to be the set of all e-numbers. We have already
shown that E 6= ∅. By definition, C ∪ E consists of all positive integers.

Ernest Eckert [3], among others, has conjectured that E is infinite. Sier-
pinski [10] presents a proof that this is so; however his proof depends upon
there being an infinite number of primes of the form n2 + (n + 1)2. 2

We are only interested in the upper right quarter of C[n] and this quarter-
circle can be broken down further into the upper eighth-circle consisting
of the points Pn(θ) for 0 < θ ≤ π/4 which we name ure[n] (note that we
include the point Pn(π

4 )) 3. The sector ure[n] can be seen on C[10] in Figure 1
between the two dashed lines. We denote by Λ the fundamental point-lattice
of all pairs of integers. Most importantly, we are only interested in the Λ
points on these circle parts. Hence, we make the following definition:

Definition 1.2. Let Λn be Λ minus the point (n, 0). We use U to select out
exactly the points in ure with positive integer coordinates:

U [n] = ure[n] ∩ Λn.

The importance of U [n] is that its points (a, b) are exactly the positive
integer solutions to the equation t(n) = t(a) + t(b) with a ≥ b. Figure 1
shows the one and only point (9, 4) on U [10]. Figure 2 shows U [n] for the
first 17 c-numbers

3, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 26, 27, 28, 31, 33.

2this would follow from an hypothesis of Schinzel [8], [9], and [11].
3Pn(π

4
) rarely has integer coordinates. 3, 20, 119, 696, 4059, and 23660 are the only such

n between 1 and 100,000. See EIS entry A001652
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The next theorem follows directly from Definitions 1.1 and 1.2.

Theorem 1.1. If a and b are positive integers less than n, then

t(n) = t(a) + t(b) ⇔ (a, b) ∈ C[n].

Hence the integer n ∈ C if and only if U [n] 6= ∅.

Proof. The only comment needed here is that if a and b are positive integers
and (a, b) ∈ C[n], then either (a, b) or (b, a) belongs to U [n]. �

We need the following lemma for the next corollary as well as in Section 3:

Lemma 1.1. For each positive integer n, n2 + (n + 1)2 and all of its prime
factors are of the form 4k+1. Hence, n2+(n+1)2 is composite if and only if
there exist integers p and q, 0 ≤ p < n < q, such that n2+(n+1)2 = p2+q2.

Proof. The lemma follows mainly from two theorems. The first theorem is:
Every prime of the form l = 4k + 1 can be written as the sum p2 + q2 =
l, 0 < p < q in one and only one way; [6] page 56. The second theorem
is: If an odd prime divides the sum of the squares of two relatively prime
integers, then it must be of the form 4k + 1; [11] page 378.

Let m = n2 + (n + 1)2. Note that m = 2n(n + 1) + 1 and thus is of
the form 4k + 1. All prime factors of m must be odd; hence, because n
and n + 1 are relatively prime, all prime factors of m must be of the form
4k+1. To complete the proof, we must show that when m is composite then
it can be represented by a sum of two squares in more than one way. Let
m = p ·q. The formula 4.3 ([6] page 55 ) shows that products of sums of two
squares are also a sum of two squares. Thus let p = a2 + b2 and q = c2 + d2.
Therefore, either q · p = (ac + bd)2 + (bc− ad)2 is a representation different
from p · q or p · q = (ac + bd)2. Either leads to the desired result. �

We can now give a geometric proof of a relevant theorem of Sierpinski
[10].

Corollary 1.1. Sierpinski’s Theorem. n ∈ C ⇔ n2 + (n + 1)2 is composite.

Proof. We note first that

Pn(θ) = (a, b) ⇒ Pn(θ + π/2) = (−b− 1, a).

We position the square inscribed in C[n] so that one corner is at the point
(n, 0). See Figure 1. By our formula above, one side of the square has end
points at (n, 0) and (−1, n); hence this square has area n2 + (n + 1)2.

Suppose n ∈ C. Then there exists a point (a, b) ∈ U [n]. Hence we can
reposition the square so that one side has end points at (a, b) and (−b−1, a).
Thus, the area of the square is now (a + b + 1)2 + (a− b)2. That is,

n2 + (n + 1)2 = (a + b + 1)2 + (a− b)2

and because 0 ≤ a − b < a < n, we have that the value n2 + (n + 1)2 can
be represented as the sum of two squares in two different ways. According
to Lemma 1.1 this shows n2 + (n + 1)2 is composite.



TRIANGULAR NUMBERS 4

Conversely, if n2 + (n + 1)2 is composite then again by Lemma 1.1 there
exist integers p and q such that n2 +(n+1)2 = p2 +q2 where 0 ≤ p < n < q.
For any (a, b) ∈ C[n], we have also that (−b− 1, a) ∈ C[n] and therefore

(a + b + 1)2 + (a− b)2 = n2 + (n + 1)2 = p2 + q2.

We solve the pair of equations a + b + 1 = p, a − b = q to obtain a =
−1

2 + p+q
2 and b = −1

2 + q−p
2 and because both q − p and p + q are odd

positive integers (p and q must have opposite parity), a and b are positive
integers with a > b. Hence, (a, b) ∈ U [n] and thus n ∈ C. �

2. The parabolas P

If one makes a graph of a number of the concentric circles parts ure[n]
imposed on a Λ lattice graph (See Figure 2. ), one will see the lattice points
U [n], for a few n ≥ 3, and one will see that some of the lattice points seem
to lie on parabolas. In fact we will see that all of the lattice points lie
on parabolas as well as on circles (See Figure 3 .4). The lowest parabolic
sequence of points on the graph, one will note, lie on the circles C[t(n)]. This
is the sequence of Λ points (t(n)− 1, n), for n ≥ 2. The points are solutions
to the equation t(t(n)) = t(t(n)− 1) + t(n); this, as we pointed out earlier,
is the equation which proves all triangular numbers are c-numbers.

Lemma 2.1. Let uk = (2k + 1)2 and vk = 8k. Consider the family of
parabolas fk(x) = 1

2(−1 +
√

uk + vkx) Then for all k > 0 and all x > 0,
t(x + k) = t(x) + t(fk(x)).

Proof. The lemma is proved by solving the following equation for y:

t(x + k) = t(x) + t(y).

We set fk(x) equal to the positive solution y = 1
2(−1+

√
1 + 4k + 4k2 + 8kx).

�

It is not difficult to see that f1(t(n)−1) = n. Thus the points (t(n)−1, n)
lie on the parabola f1. The plot in Figure 3 shows the truth of the next
lemma:

Lemma 2.2. The curve

f1(x) =
−1 +

√
9 + 8x

2
, 0 ≤ x

is the lower bound for the set
⋃

3≤n U [n]

Proof. Let (a, b) ∈ C[n] and suppose b < −1+
√

9+8a
2 . Then (2b+1)2 < 9+8a.

From (2b + 1)2 = 8t(a) + 1, we conclude t(a) < a + 1. Hence, t(n) =
t(a)+t(b) < t(a)+a+1 = t(a+1). Thus we have t(a) ≤ t(n) < t(a+1) which
forces t(a) = t(n) and therefore forces b = 0. This proves the lemma. �

4One also sees two lines of points; more about this in Section 5
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We note that according to Lemma 2.1, if (a, b) is a lattice point on the
parabola fk, then a + k is a c-number. This leads us to the next definition:

Definition 2.1. We denote by P[k] the set of lattice points on the parabola
with equation y = fk(x). If (a, b) is a point on P[k], we say P[k] implicitly
defines the c-number a + k. We let N [k] be the set of c-numbers which are
implicitly defined by P[k].

Lemma 2.3. For k ≥ 1, P[k] is an infinite set. This follows from:

P[k] = {( 1
k
(t(n)− t(k)), n) : k | t(n− k)}.

Proof. The point (x, fk(x)) is on P[k] if and only if both x and fk(x) are
positive integers. fk(x) is the integer n if and only if uk + vkx is the square
of 2n + 1. Solving uk + vkx = (2n + 1)2 for x, we have

x =
n2 + n− k2 − k

2k
=

1
k
(t(n)− t(k)).

From t(n − k) = t(n) − t(k) + k2 − nk, we have k | (t(n) − t(k)) ⇔ k |
t(n− k). �

Note: Lemma 2.5 also proves that P[k] is infinite.

We define S =
⋃

n≥3 U [n]. Thus, by definition the family of finite sets
U [n], n ≥ 3, is a partition of S. We show this true for P[k] as well:

Theorem 2.1. The family of the infinite sets P[k], k ≥ 1, is a partition of
S. Thus, C =

⋃
k>0N [k] where C is the set of all c-numbers.

Proof. The equation

fk+1(x)− fk(x) =
4(k + x + 1)

√
uk+1 + vk+1x +

√
uk + vkx

shows that for positive x, fk(x) < fk+1(x), and hence that the family of sets
P[k] is disjoint.

Suppose (i, j) ∈ S. Then for some n, t(n) = t(i) + t(j). Set k = n − i.
Hence, t(n) = t(i + k) = t(i) + t(fk(i)) and thus fk(i) = j and therefore
(i, j) ∈ P[k]. �

In Figure 3 one can see that on P[k], for k = 2,3,4,or 5, the points appear
to be in groups of two. But in Figure 4, which shows P[6], the points are
in groups of four. These groupings, we will show, depend upon the prime
factorization of 2k.

The set C of all c-numbers does not have easily discernible patterns;
however we will show that C is made up of numerous subsequences of simple
composition which we find by studying the sets P[k]. In order to understand
this and the grouping mention in the preceding paragraph, we must explore
in detail the condition

k | (t(n)− t(k)) ⇔ k | t(n− k) ⇔ 2k | (n− k)(n− k + 1).
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Thus, given a positive integer m, we need a general method of finding all
i such that m|i(i + 1). This leads us to the following definitions, examples,
and theorems:

Definition 2.2. set[m] is the set of prime power factors of m and number[m]
is the number of elements of set[m]. That is, if m =

∏n
i=1 pαi

i is the prime
factorization of the positive integer m, we write set[m] = {pαi

i : 1 ≤ i ≤ n}
and number[m] = n.

For example, if m = 100800, set[m] = {9, 64, 25, 7} and number[m] = 4.

If p and q are relatively prime positive integers it is well know that there
are an infinite number of pairs (a, b) such that ap− bq = 1. This set consists
exactly of the pairs (a0 + iq, b0 + ip) where (a0, b0) is an arbitrary solution to
ap− bq = 1 while i varies over all integers. We want to select from this set
the positive integer pair nearest the origin. We do this in the next lemma:

Lemma 2.4. If p and q are relatively prime positive integers, then there
exists exactly one pair of positive integers (a, b) such that ap−bq = 1, a < q,
and b < p. Hence, there also exists exactly one pair of positive integers (c, d)
such that cq − dp = 1, c < p, and d < q. In fact, c = p − b and d = q − a.
Finally, we note for future reference, that bq + dp = pq − 1.

Proof. First we show there exists at least one such pair (a, b). If p and q
are relatively prime, we choose a pair of positive integers (a0, b0) such that
a0p − b0q = 1. Let i0 be the least integer i such that both members of the
pair (a0 + iq, b0 + ip) are positive and set (a, b) = (a0 + i0q, b0 + i0p). Neither
a = q nor b = p is possible because, for example, if p = b then (a− q)p = 1
which is not possible. If a > q then q(p− b) < 1; hence, b > p. But now, if
we set i1 = i0 − 1, both members of the pair (a0 + i1q, b0 + i1p) are positive
contradicting the definition of i0. Thus, 0 < a < q and 0 < b < p.

Now note that if αp − βq = 1, there is an integer i such that α = a + iq
and β = b + ip. If i > 0 then α > q and β > p. If i < 0, then both α and β
are negative. This proves there is no more than one such pair (a, b). Finally,
if we set c = p− b and d = q − a, we have cq − dp = 1, c < p, and d < q.

The last statement of the lemma follows from the computation bq + dp =
bq + (q − a)p = bq + pq − ap = pq − 1. �

Suppose we wish to find all non-negative integers i such that 12|i(i + 1).
By inspection, we see that the first four i are 0, 3, 8, and 11. A little thought
tells us that all other i are obtained by adding multiples of 12 to the first
four numbers. In fact, we can see these numbers in rows and columns as
follows: 

0 3 8 11
12 15 20 23
24 27 32 35
36 39 44 47
48 51 56 59
...

...
...

...


See, also, EIS entry A108752:
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In other words, a matrix which we shall call S[12], of four columns and
an infinity of rows. The entire set is known once we find the first row or in
fact any one row. Rather than by inspection we can find the first row as
follows: set[12] = {3, 4}; hence find positive integers a, b, c, and d satisfying
the previous lemma with p = 3 and q = 4. We see that a = 3, b = 2, c = 1,
and d = 1 gives us 3 · 3− 2 · 4 = 1 and 1 · 4− 1 · 3 = 1. Thus it is the lesser
products bq and dp, in this case, 8 and 3, that lie in the first row. The first
and last numbers in the first row will always be 0 and pq − 1; in this case,
0 and 11. In this example, the elements of the first row come in pairs (α, β)
such that α + β = pq − 1 and we will see this is true in general. Except
for the basic pair (0, pq− 1) all other pairs result from Lemma 2.4 from the
lesser products (bq, dp).

For any positive integer m, where set[m] has two elements, finding all
solutions to m|i(i+1) goes exactly as the preceeding example. When set[m]
has only one element, the situation is quite simple. The matrix of solutions
to m|i(i + 1) will have two infinite columns headed by 0 and m− 1.

These two examples show in essence, given a positive integer m, how we
solve the problem of finding all i such that m|i(i+1). The extra complication
in the general case will be when set[m] has more than two elements.

Theorem 2.2. Suppose number[m] = n. We define S[m] = {i : m |
i · (i + 1)}. S[m] can be written as the matrix of 2n columns and an in-
finite number of rows, with entries S[m](i, j), as follows: S[m](1, 1) = 0,
S[m](1, 2n) = m − 1, and S[m](k + 1, i) = S[m](1, i) + k · m. Hence, the
matrix is completely determined by its first row. The method of determining
the remaining integers S[m](1, i) in the first row is explained in the proof.

Note: The sequence of all first rows of S[m] for m > 1 is EIS entry
A108760.

Proof. Let FR[m] denote the first row of S[m]. The elements of FR[m]
come in non-ordered pairs (as exemplified in the example above) π(i) =
{i,m − 1 − i} where 0 ≤ i < m. We will show these pairs are in one-
to-one correspondence with the partitions of set[m] into two sets provided
we include the set {∅, set[m]} as one partition (which, strictly speaking is
not a partition) that corresponds to the pair π(0). The Stirling number
2n−1 − 1 is the number of ways we can partition set[m] into two non-empty
subsets and therefore the lemma is proven once we demonstrate the one-to-
one correspondence.

Each i in FR[m] determines a partition of set[m]; namely

A1 = {q ∈ set[m] : q|i}, A2 = {q ∈ set[m] : q|(i + 1)}.

It is not difficult to show that m − 1 − i determines the same partition of
set[m]. Hence, π(i) corresponds uniquely to the partition {A1, A2}.

Conversely, let the two sets A and B be a partition of set[m] and let
p =

∏
A (the product of all integers in A) and q =

∏
B. Then according to

lemma 2.4, provided neither set in the partition is empty, there exist four
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positive integers integers a, b, c, and d so that bq + dp = m − 1, and such
that ap = bq + 1 and cq = dp + 1; hence, the pair π(bq) = π(dp) = {bq, dp}
belongs to FR[m]. Thus the partition consisting of the two sets A and B
corresponds uniquely to π(bq). �

From lemma 2.3, we know that

P[k] = {( 1
k
(t(n)− t(k)), n) : k | t(n− k)}.

Hence, we have the following lemma and definitions:

Definition 2.3.
ξ(k, n) =

1
k
(t(n)− t(k))

Lemma 2.5.
P[k] = {(ξ(k, n), n) : n− k ∈ S[2k]}.

Proof. The lemma follows from

k | t(n− k) ⇔ 2k | (n− k)(n− k + 1).

�

The condition n− k ∈ S[2k] means that for some i ≥ 0, n = m + k + 2ki
where m is an element in the first row of S[2k]. This gives rise to the
functions a and b defined in the next definition:

Definition 2.4. For each pair of integers k and m, if 0 < k, 0 < m < 2k,
and if 2k|m(m + 1), we define

b(k,m, i) = k + m + 2ki and a(k,m, i) = ξ(k, b(k, m, i))

The previous definition shows that the matrix S[2k] generates three more
matrices of the same dimensions (the same number of columns and an infinite
number of rows) which we will call R[k], T[k], and W[k]:

Definition 2.5. Let mj be the jth element in the first row of S[2k]. Then
R[k] is the matrix whose jth column is the infinite sequence b(k, mj , i), T[k]
is the matrix whose jth column is the infinite sequence a(k, mj , i), and W[k]
is the matrix whose jth column is the infinite sequence a(k, mj , i) + k.

Theorem 2.3. If A and B are matrices of the same dimension, we define
A?B to be the set of all pairs (A[i, j], B[i, j]) for appropriate i and j. Thus,
we have:

P[k] = T [k] ? R[k]− {(0, k)}
and

N [k] = W [k]− {k}.
Hence, C =

⋃
k>0(W [k]− {k}) where C is the set of all c-numbers.

Note: The two sets {(0, k)} and {k} are removed because they give rise to
the false c-number n satisfying the equation t(n) = t(0) + t(n).
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Proof. The theorem follows from Theorem 2.1, Lemma 2.5, and Definition
2.5. �

Example:

S[12] R[6] T[6] W[6]
| | | |

0 3 8 11
12 15 20 23
24 27 32 35
36 39 44 47
48 51 56 59
...

...
...

...




6 9 14 17
18 21 26 29
30 33 38 41
42 45 50 53
54 57 62 65
...

...
...

...




0 4 14 22
25 35 55 69
74 90 120 140
147 169 209 235
244 272 322 354
...

...
...

...




6 10 20 28
31 41 61 75
80 96 126 146
153 175 215 241
250 278 328 360
...

...
...

...


In general, these matrices serve several important purposes. For example,

the matrices above give reason why the plot of P[6] shows points in groups
of four 5. They also show that for each integer k > 0, if number[2k] = n,
P[k] is partitioned by the 2n sequences of pairs (a(k,mj , i), b(k, mj , i)), for
1 ≤ j ≤ 2n. In addition, N [k] is partitioned by the family of sequences
a(k, mj , i) + k, for 1 ≤ j ≤ 2n.

They automatically provide formulas for simple sequences of points on
P[k]; for example we see in P[6] (Figure 4.) the point sequence

{(25, 18), (74, 30), (147, 42), (244, 54), · · · }
What is important about this sequence is that the right coordinates of these
points is the arithmetic sequence b(k,mj , i) with common difference dk = 2k
(in this case d6 = 12) while the left coordinates are the image of the right
coordinates under the function ξ. This provides a certain order and structure
to P[k] that otherwise, on first viewing in Figure 2 at least, seems a random
jumble of points.

In the next corollary and theorem, we develop a formula for c-numbers
which essentially stands alone making no references to the constructs in this
paper such as C[k], N [k], and P[k]. However it does indirectly call on the
construct S[m] but in such a way that one could use the formula without
knowledge of S[m].

Corollary 2.1. For every c-number n there exists a positive integer k and
non-negative integers m and i such that

t(n) = t(n− k) + t(k + m + 2ki).

Proof. If n ∈ C, then there exists positive integers a and b so that t(n) =
t(a) + t(b). Hence, by Theorem 2.1 there is a k such that (a, b) ∈ P[k].
Thus, by Theorem 2.3 there exists an integer m, 0 ≤ m < 2k, such that
2k|m(m+1) and there exists a non-negative integer i such that a = a(k, m, i)
and b = b(k, m, i). Because n = k + a(k, m, i) and b(k, m, i) = k + m + 2ki,
the corollary is proved. �

5By the same reasoning, the points on P[k], for k = 3 and 5, also occur in groups of
four though this is not readily apparent in Figure 3.
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The corollary above essentially reiterates that every c-number can be
found in at least one matrix W [k]. The next theorem shows that every
c-number n is in fact in the first row of some matrix W [k] where k < n.

Definition 2.6. We define the function w(k, m) for positive integer values
of k and m follows:

w(k, m) =

k + m + m(m+1)
2k if 2k|m(m + 1) and 0 < m < 2k;

0 otherwise.

The value 0 in the second case is arbitrary; we include the second case simply
to have w defined as an integer for all integer values of k, m. Note that k
plus the non-zero outputs of w(k, m) make up the first row of W [k].

Theorem 2.4. When w(k, m) 6= 0, w(k, m) ∈ C. More importantly, if n is
a c-number then there exists a pair of positive integers k < n and m such
that w(k, m) = n. Thus, w maps NxN onto C ∪ {0}.

Proof. For the first assertion, note that if w(k, m) 6= 0 then w(k, m) is in
W [k]− {k} and hence is a c-number.

To prove the second assertion, we start with the identity

n2 − a2 − b2 = 2(n− a)(n− b)− (a + b− n)2

for all numbers a, b, and n. If t(n) = t(a) + t(b) then we also have the
equation

n2 − a2 − b2 = a + b− n.

Therefore combining these two equations we get the identity

(id) : (a + b− n)2 + (a + b− n) = 2(n− a)(n− b).

These calculations were suggested by Professor Eckert. From Corollary 2.1,
we know there exists k, m, and i such that k = n− b and m+2ki = a−k =
a + b− n. Assuming b ≤ a we show that i = 0.

We only need show that m = a + b − n satisfies the first condition of
Definition 2.6. First note that the identity (id) guarantees that 2k|m(m+1).
Since m = n2−a2−b2, we have m > 0. To prove m < 2k = 2(n−b) we show
3(n− b) > a. This can be done analytically by returning to the parametric
equations of C[n] given in Definition 1.1:

a = a(n, θ) = −0.5 + Rn cos θ ; b = b(n, θ) = −0.5 + Rn sin θ

where Rn =
√

n2 + n + 0.5. We then define

f(n, θ) = 3(n− b)− a = 0.5−Rn cos θ + 3(0.5 + n−Rn sin θ).

One can check that f(n, θ) is concave upward for 0 ≤ θ ≤ π/2, that f(n, 0) =
3n+2−Rn > 0, that f(n, θ) = 0 at θ ≈ 0.97, and that f(n, θ) has a minimum
at θ ≈ 1.24. We conclude from this that f(n, θ) > 0 when 0 ≤ θ ≤ π/4 which
proves m < 2k when b ≤ a. �

Summing up and refining is the purpose of the next corollary:
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Corollary 2.2. Every c-number n equals w(k, m) where n+2
5 ≤ k < n.

Furthermore, if t(n) = t(a) + t(b) and b ≤ a, then n = w(n − b, a + b − n).
Conversley, if n = w(k, m) and n > 0, then t(n) = t(m + k) + t(n− k).

Proof. w(k, 2k − 1) = 5k − 2 is the largest value of w(k, m) for a given k.
Thus, we derive the lower bound n+2

5 for k. �

Theorem 2.5. The set E can be obtained by a sieve similar to the “sieve
of Eratosthenes”. For each k > 0, let w[k] be the set of non-zero values of
w(k, m) as 0 < m < 2k. Recursively set:

sieve(0) = N, sieve(k) = sieve(k − 1)− w[k].

Then E = limk→∞sieve(k).

One can use the sieve above to generate initial segments of the set E but
better methods exist. For example, we can use the Mathematica predicate
“PrimeQ[n]”, which is true when n is a prime, and then make use of Sier-
pinski’s Theorem (corollary 1.1). This will of course not prove that E is
infinite but we can use these segments to produce visual evidence in favor of
this proposition. As an example, see Figure 5. Here we have the distribution
function π(n), which is the number of primes not larger than n and we have
the distribution function pi(n), which is the number of e-numbers not larger
than n. The figure shows the graphs of π(n)/n in yellow and of pi(n)/n in
red for 2 ≤ n ≤ 15000. In addition it shows the graph of 1.5

Log(x) in green.
These graphs are certainly consistent with E being infinite.

3. Gauss’s Circle Problem

Gauss studied the problem of how many lattice points lie on a circle; this
problem can be solved for C[n]. Also we want to count the number of points
in U [n]. Corollary 1.1 can be generalized to the following theorem:

Theorem 3.1. For a positive integer n, if τ(n) is the number of ways that
n2 +(n+1)2 can be represented as a sum of the squares of two integers, then
there are τ(n) Λ points lying on C[n]. Furthermore, for each representation

p2 + q2 = n2 + (n + 1)2

the Λ point (a, b) lies on C[n] where a = −1
2 + p+q

2 and b = −1
2 + q−p

2 .

We make use of Gaussian integer theory. We use the formula τ in Theorem
8, Chapter 13.6, [11] to compute the number of representations. We have
this corollary to Theorem 3.1:

Corollary 3.1. If the prime factorization of n2 + (n + 1)2 =
∏

p
αj

j , there
are exactly τ(n) = 4

∏
(αj + 1) Λ points lying on C[n].
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The computation of the formula τ depends upon the fact that, according
to Lemma 1.1, each prime pj in the factorization of n2 +(n+1)2 is a 4k +1
prime. Each such prime is uniquely represented as a sum of two squares
a2

j + b2
j ; therefore the representations of p

αj

j as a sum of two squares can be
computed from the products∏

(aj + ibj)λj (aj − ibj)αj−λj , 0 ≤ λj ≤ αj

where zj = aj + ibj and z′j = aj − ibj are conjugate complex prime factors of
pj . The fact that 0 ≤ λj ≤ αj , gives rise to αj +1 Gaussian integers for each
j. We must also count the four associates z,−z, iz,−iz of each z produced
by the product above; hence the 4 in the formula τ .

For a given z produced by the formula, the associates of z and z′ yield
eight different Gaussian integers provided z 6= z′. Otherwise the associates
of z and z′ yield four different Gaussian integers. For the purpose of counting
points in U [n], we want a formula T which counts only the representations
n2 + (n + 1)2 = x2 + y2 with 0 ≤ x < y. The four, or eight, associates of z
and z′ produce exactly one such Gaussian integer x + iy per z. Hence, the
following lemma:

Lemma 3.1. The number of representations of n2 + (n + 1)2 =
∏

p
αj

j as a
sum of two squares x2 + y2 with 0 ≤ x < y is given by the formula

T (n) =


∏

(αi+1)
2 if

∏
(αi + 1) is even;

1+
∏

(αi+1)
2 if

∏
(αi + 1) is odd.

Therefore, the number of points in U [n] is T (n) − 1. If there are no
representations other than x = n and y = n + 1 (i.e. T (n) = 1), then n is
an e-number.

Proof. Directly one can see that

T (n) =


τ(n)

8 if
∏

(αi + 1) is even;
τ(n)−4

8 + 1 if
∏

(αi + 1) is odd.

We only need note that T counts the Gaussian integer n + i(n + 1) which
gives rise to the representation n2 + (n + 1)2 which in turn gives rise to the
point (n, 0) on C[n]. �

Note: In a paper by Ono, Robins, and Wahl [7], the authors develop the
function δk(n) that counts the number of representations of n as a sum of k
triangular numbers. We are interested in Q(n) = δ2(t(n)) that counts sums
t(x) + t(y) twice because order of summands matter, provided x 6= y, and
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also counts twice the sum t(n) + t(0). Hence it is not difficult to see that

T (n)− 1 =


Q(n)−3

2 + 1 if Q(n) is odd;
Q(n)−2

2 otherwise.

The authors’ results concerning Q and our results concerning T also follow
from the authors’ next lemma, called Proposition 2 in [7]:

Lemma 3.2. If q(n) counts the number of representations of t(n) as a sum
of two odd squares, then

Q(n) = q(8t(n) + 2).

4. Eckert’s Hyperboloid

The equation t(z) = t(x) + t(y) defines the surface we will call “Eckert’s
Hyperboloid”. This is of course the same equation we use in Section 1 to
define the circle C[z] for a fixed real number z and in particular the circle
C[n] for a fixed integer n. The difference in this section is that we obtain the
surface by allowing z to vary over all real numbers. Professor Eckert rewrites
the equation t(z) = t(x)+t(y) in the form (2x+1)2+(2y+1)2 = (2z+1)2+1
and from this we see that the surface defined by the equation t(z) = t(x) +
t(y) is mapped into the hyperboloid H with equation X2 + Y 2 = Z2 + 1
by the function τ(v) = 2v + (1, 1, 1). More precisely we have the following
definition:

Definition 4.1. In this context we define the lattice Λ to be the set of triples
with positive integer coordinates and we define EH (Eckert’s hyperboloid) to
be the set of Λ triples on the surface t(z) = t(x) + t(y). The translator τ ,
defined above, and its inverse, takes us between EH and the Λ points on the
surface H with odd coordinates. In Section 1 notation we can define

EH = {(a, b, n) : (a, b) ∈ U [n] or (b, a) ∈ U [n], n ∈ N+}
where N+ is the set of positive integers.

A Pythagorean triangle (PT ) is a triple of positive integers (a, b, c) such
that a2 + b2 = c2. A primitive Pythagorean triangle (PPT ) is a PT (a, b, c)
such that the integers a, b and c are relatively prime. Eckert in [3], shows
three linear operators, that when applied repeatedly to PPT s, generate
PPT s. Eckert cites, among others, F. J. M. Barning [1] and A. Hall [5]
for proofs that these operators can generate the complete PPT tree. These
operators are described in the next definition.

Definition 4.2. The operators D, A , and U.

D =

−1 2 2
−2 1 2
−2 2 3

 A =

1 2 2
2 1 2
2 2 3

 U =

1 −2 2
2 −1 2
2 −2 3

 .

Also we define the Lorentz norm
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‖ v ‖= v2
1 + v2

2 − v2
3.

The important connection between the operators and the norm is this: If
O is any one of the three operators D, A, or U then for any vector v

‖ O · v ‖=‖ v ‖ .

Hence, as pointed out in [3], the Lorentz norm is invariant under under D,
A, and U.

Note In order to keep everything on the same line, we will write vectors
horizontally as 1× 3 matrices and when multiplying a square matrix A by a
vector v we will write Av horizontally in place of the correct form (AvT )T .

The invariance of the Lorentz norm guarantees that the operators map
PPT s to PPT s. The following partial tree appears in [3] and in [5]:

(3,4,5)

(5,12,13)

(21,20,29)

(15,8,17)

(7,24,25)

(55,48,73)

(45,28,53)

(39,80,89)

(119,120,169)

(77,36,85)

(33,56,65)

(65,72,97)

(35,12,37)

�
�
�
�
�
�

B
B
B
B
B
B

�
�

@
@

�
�

@
@

�
�

@
@

The operators D, A , and U are so named for “down”, “across”, and “up”
with respect to the tree above. Thus U(3, 4, 5) goes “up” to (5, 12, 13) and
so forth.

Our main interest here is in how Eckert applies the operators to the
hyperboloid H. He makes use of the fact that the invariance of the Lorentz
norm guarantees that repeated applications of the operators to a vector on
H produces vectors on H. More specifically, he shows that the operators
map τ(EH) into τ(EH). The following partial tree also appears in [3]:
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(1,1,1)

(1,3,3)

(5,5,7)

(3,1,3)

(1,5,5)

(13,11,17)

(11,7,13)

(9,19,21)

(29,29,41)

(19,9,21)

(7,11,13)

(11,13,17)

(5,1,5)

�
�
�
�
�
�

B
B
B
B
B
B

�
�

@
@

�
�

@
@

�
�

@
@

In order to keep track of what the operators are doing, we define the path
function. An example of how the function works is this: if s is the string
of letters “uad”, then path(s, v) = U(A(D v)). Hence, a path represents a
composition of some combination of the three operators. The definition for
path is recursive:

Definition 4.3.

path(“”, v) = v

path(“u”, v) = U v

path(“a”, v) = A v

path(“d”, v) = D v

path(s, v) = path(head(s)),path(rest(s), v))

where if s is a string of letters, head(s) is the leftmost letter of s and rest(s)
is all of s except the leftmost letter. For example, head(“aeiou”) = “a” and
rest(“aeiou”) = “eiou”.

Because paths are compositions of non-singular linear operators, paths
themselves are non-singular linear operators. Hence we have the next lemma:

Lemma 4.1. The function path is one-to-one with respect to the vector
variable. That is, path(t, v1) = path(t, v2) ⇒ v1 = v2.

The surface H is a hyperboloid of one sheet and is therefore a doubly ruled
surface which means it can be swept out by a moving line in space called a
ruling. In fact it can be swept out by two such rulings. Details can be found
in Eric W. Weisstein’s World of Mathematics [12]. Citing from this work,
these lines are of the form β(u)+ vδ(u) where β is called the base curve and
δ is called the director curve. See figure 6 at the end of this paper; this is a
graphic of H in terms of its rulings. For H we will call these two rulings R1
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and R2 and their equations are as follows:

β(θ) = (cos θ, sin θ, 0)

δ(θ) = (cos θ, sin θ, 1)

R1(θ, z) = β(θ) + zδ(θ + π/2)

R2(θ, z) = β(θ) + zδ(θ − π/2).

The rulings shown in figure 6 are at angles θ spaced 5 degrees apart.

Lemma 4.2. Let v = (p, q, r) ∈ H. Then the equations

R1(θ1, r) = v , R2(θ2, r) = v

have solutions
cos θ1 =

p + rq

r2 + 1
, sin θ1 =

q − pr

r2 + 1

cos θ2 =
p− rq

r2 + 1
, sin θ2 =

q + pr

r2 + 1
Hence, θ1 is in the fourth quadrant and θ2 is in the second quadrant.

Proof. If (p, q, r) = R1(θ1, r), then

p = cos θ1 − r sin θ1 and q = sin θ1 + r cos θ1

while if (p, q, r) = R2(θ2, r), then

p = cos θ2 + r sin θ2 and q = sin θ2 − r cos θ2

The proof follows directly from these equalities. �

There is an important and interesting relationship between the operators
U,A and D, points on τ(EH), and PPT s. Eckert shows in [3] that if the
point P = (p, q, r) ∈ H, then the two vectors P1 = (pr−q, qr+p, r2 +1) and
P2 = (pr + q, qr − p, r2 + 1) are PT s in the direction of the rulings R1 and
R2. This fact is confirmed by the previous lemma. Furthermore, we can see
that P1 is in the direction of R1 and that P2 is in the direction of R2.

What we will show is that P , and the the two PPT s corresponding to P1

and P2 are all produced by the same path. But before continuing we need
to point out the following fact which we put in the form of a lemma:

Lemma 4.3. Although the vectors (1, 0, 1) and (0, 1, 1) are not strictly speak-
ing PPT s, they can be used to generate all PPT s by applying the operators
U,A and D.

Proof. In point of fact, applying these three operators as written to (1, 0, 1)
we obtain respectively (3, 4, 5), (3, 4, 5), and (1, 0, 1). Similarly applying
these three operators as written to (0, 1, 1) we obtain respectively (0, 1, 1),
(4, 3, 5), and (4, 3, 5). From this, one can see that in order to actually pro-
duce all PPT s as triples (order of coordinates matter) then we must start
with the vectors (1, 0, 1) and (0, 1, 1). �



TRIANGULAR NUMBERS 17

Example:

P = path(“d”, (1, 1, 1)) = (3, 1, 3)
and in addition using the same paths we generate two PPT’s

∆1 = path(“d”, (1, 0, 1)) = (1, 0, 1)

∆2 = path(“d”, (0, 1, 1)) = (4, 3, 5).

and we note that

P1 = (8, 6, 10) = 2 ·∆2 and P2 = (10, 0, 10) = 10 ·∆1

Furthermore, Lemma 4.2 shows that

R1(θ1, 3) = P, where θ1 = − arccos(3
5)

R2(θ2, 3) = P, where θ2 = arccos(0
1) = π

2

Figure 7 at the end of this paper provides some geometrical insight into
this example. In order to prove our main theorem, Theorem 4.1, that sum-
marizes the information of this example, we need the next lemma. The
lemma and its proof is due to Professor Eckert:

Lemma 4.4. If P and Q are distinct points on Λ ∩H then P and Q lie on
the same ruling iff P −Q is an integer multiple of a PPT .

Proof. If P and Q are both lattice points on the same ruling of H, say
R1(θ, z), then P − Q = zδ(θ + π/2) which is a PT and hence an integer
multiple of a PPT .

The rulings of H lie on tangent planes to H. Suppose P = (p, q, r). A
tangent plane to H passing through P has equation

z − r =
p

r
(x− p) +

q

r
(y − q)

which, because p2 + q2 = r2 + 1, simplifies to

px + qy − rz = 1.

Letting Q = (x, y, z), if P −Q = n(a, b, c), n ∈ N , where (a, b, c) is a PPT ,
then

(p− x)2 + (q − y)2 − (r − z)2 = n2(a2 + b2 − c2) = 0
and because x2 + y2 = z2 + 1, this simplifies to

px + qy − rz = 1

meaning Q is both on H and a tangent plane to H passing through P .
Therefore, P and Q are on the same ruling. �

Theorem 4.1. If P = path(t, (1, 1, 1)) then director vectors for the two
rulings R1 and R2 through P are the PPT vectors ∆1 and ∆2 given by the
path formulas

∆1 = path(t, (1, 0, 1)) and ∆2 = path(t, (0, 1, 1)).

Conversely, if the director curve δ of a ruling R is a multiple of a PPT ,
then there exists at least one point of Λ ∩H on R.
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Proof. The proof follows from two simple equations and lemma 4.4. The
equations are

P = path(t, (1, 1, 1)) = path(t, (1, 0, 1)) + path(t, (0, 1, 0))

P = path(t, (1, 1, 1)) = path(t, (0, 1, 1)) + path(t, (1, 0, 0))

By setting Q1 = path(t, (0, 1, 0)) and Q2 = path(t, (1, 0, 0)) we know that
P and Qi, i = 1, 2, are on the same rulings and that P − Qi = ∆i are the
director vectors of the respective rulings. By lemma 4.1, we know ∆1 6= ∆2

and thus they are director vectors for two distinct rulings.
Note: Whether ∆i, i = 1 or 2, is the director vector for R1 or R2 seems

to depend on whether the path t has an even number of a’s or an odd number
of a’s.

For the converse, suppose the ruling is R1 and that δ(θ) = z(a, b, c) for
some real number z. Then we calculate that cos θ = b/c and sin θ = −a/c
where (a, b, c) is the PPT in question. Hence

R1(θ, r) = (b/c,−a/c, 0) + r(a/c, b/c, 1) =
(

ra + b

c
,
rb− a

c
, r

)
.

We want to show there are positive integers m and n such that for some
r, ra+b = mc and rb−a = nc. We have the following chain of equivalences:

(ra + b = mc) ∧ (rb− a = nc) ⇔ mbc− b2 = nac + a2 ⇔ mb− na = c.

We know there exists positive integers i and j so that ib − ja = 1. Thus,
(ci)b − (cj)a = c and therefore we set m = ci and n = cj and finally we
choose r so that:

r =
mc− b

a
=

nc + a

b
.

With this value for r we obtain

R1(θ, r) =
(

ra + b

c
,
rb− a

c
, r

)
= (m,n, r).

It remains to show that r is an integer but this follows from

r2 = m2 + n2 − 1.

A similar proof holds if the ruling is R2. �

Corollary 4.1. If R is a ruling whose director curve δ is a multiple of the
PPT ∆ and if P is the point of Λ∩H on the ruling R of minimum distance
from the origin , then

R ∩ Λ ∩H = {P + n∆ : n ∈ N}.

Furthermore, if P is the point of τ(EH) on the ruling R of minimum distance
from the origin , then

R ∩ τ(EH) = {P + 2n∆ : n ∈ N}

where N is the set of non-negative integers.
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Proof. From theorem 4.1 we know there is at least one lattice point on R.
Thus there is one that is nearest the origin; call it P . Hence, by lemma 4.4,
R ∩ Λ ∩ H = {P + n∆ : n ∈ N}. The second part of the corollary follows
from the simple fact that if P ∈ τ(EH) then so to does P + 2n∆. �

5. Special sequences

In Figure 3, amongst the parabolas, one can see two lines and with just a
little effort (tracking down the coordinates of a few points) one can see the
lines have equations 3x− 4y + 2 = 0 and 3x− 4y− 3 = 0. The two lines are
related to two special sequences of c-numbers αn = 3 + 5n and βn = 6 + 5n
defined for all n ≥ 0. These sequences were pointed out by Professor Eckert
who first read about them in Dickson’s History of the Theory of Numbers [2].
The proof that the sequences produce c-numbers is given by the following
two identities:

t(3 + 5n) = t(2 + 4n) + t(2 + 3n) and t(6 + 5n) = t(5 + 4n) + t(3 + 3n).

Setting xn = 2 + 4n and yn = 2 + 3n, we obtain the linear identity
3xn − 4yn + 2 = 0. Similarly, with xn = 5 + 4n and yn = 3 + 3n, we obtain
the identity 3xn−4yn−3 = 0. This begins to explain the two lines in Figure
3. These lines contain positive integer solution points (a, b) to the equation
t(c) = t(a) + t(b) where c = αn for the first equation and c = βn for the
second equation. Again, one can see this by tracking down the coordinates of
a few points on the lines in Figure 3. However, there is a better explanation
for this connection. The sequences above are special cases of a more general
scheme. For this we must return to section 4. From corollary 4.1 we know
that given a ruling R whose director curve δ is a multiple of a PPT ∆, then

R ∩ τ(EH) = {P + 2n∆ : n ∈ N}
where P is the point of R ∩ τ(EH) nearest the origin. This leads to the
following theorem:

Theorem 5.1. Given a PPT ∆ = (a, b, c), there exists a point (x, y, z) ∈
EH such that

t(z + cn) = t(x + an) + t(y + bn).
Therefore, we have an infinite sequence of what we might call c-number
triples (x + an, y + bn, z + cn) and specifically an infinite sequence of c-
numbers z + cn defined for all n ≥ 0.

Proof. Given a PPT ∆ = (a, b, c), there is a path t such that ∆ = path(t, v)
where v is either the vector (1, 0, 1) or (0, 1, 1). According, then, to theorem
4.1, there exists a ruling R whose director curve δ is a multiple of ∆. And
thus by corollary 4.1 we have, as mentioned above, a point (p, q, r) ∈ R ∩
τ(EH) such that

R ∩ τ(EH) = {(p + 2na, q + 2nb, r + 2nc) : n ∈ N}.
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Applying the inverse of the translator function τ to the vector

(p + 2na, q + 2nb, r + 2nc)

we obtain

(x + na, y + nb, z + na) = τ−1(p + 2na, q + 2nb, r + 2nc)

with (x, y, z) = τ−1(p, q, r) ∈ EH. �

The following is a corollary to lemma 4.2 and theorem 4.1.

Corollary 5.1. Theorem 5.1 guarantees that given a PPT ∆ = (a, b, c),
there exists a point (x, y, z) ∈ EH such that

t(z + cn) = t(x + an) + t(y + bn).

There are in fact two such points (xi, yi, zi), i = 1, 2, which are found as
follows: define θ1 = − arccos(b/c) and θ2 = arccos(−b/c). Then, we choose
Pi to be the point of EH on Ri(θi) that is nearest the origin and we set
(xi, yi, zi) = τ−1(Pi), i = 1, 2. By Ri(θi) we mean the set

{Ri(θi, z) : z a real number}.

From this corollary we can generate an infinite number of c-number se-
quences. For example, let ∆ = (5, 12, 13). We set θ1 = − arccos(12/13) and
θ2 = arccos(−12/13). Then one can see by calculation (using Mathematica
perhaps) that

R1(θ1) ∩ τ(EH) = {(9, 19, 21), (19, 43, 47), · · · }
R2(θ2) ∩ τ(EH) = {(11, 29, 31), (21, 53, 57), · · · }

and that (4, 9, 10) = τ−1(9, 19, 21) and (5, 14, 15) = τ−1(11, 29, 31). This
gives rise to the two sequences of c-number triples

(4 + 5n, 9 + 12n, 10 + 13n)

(5 + 5n, 14 + 12n, 15 + 13n)

and the two c-number sequences

10 + 13n and 15 + 13n for n ≥ 0.

The special sequences we have described above are generated by apply-
ing τ−1 to subsets of rulings on H. This observation is the motivation for
corollary 5.3 below.

Corollary 5.2. Each point (x, y, z) on the surface EH defines two distinct
special sequences in EH of the form (x + na, y + nb, z + nc).

Proof. Let (p, q, r) = τ(x, y, z). We return to the constructs

P1 = (pr − q, qr + p, r2 + 1) and P2 = (pr + q, qr − p, r2 + 1)
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used in the proof of lemma 4.2. Pi, for i = 1, 2, are PT s in the direction
of the rulings Ri and hence are integer multiples of two PPT s ∆i. If ∆i =
(ai, bi, ci), then the two special sequences are:

(x + nai, y + nbi, z + nci)

for i = 1, 2. �

Corollary 5.3. The special sequences of c-number triples guaranteed by the
theorem and corollary above lie on special rulings of the hyperboloid defined
by the equation t(z) = t(x) + t(y) or equivalently by the equation

(2x + 1)2 + (2y + 1)2 = (2z + 1)2 + 1.

The special rulings are exactly those that are inverse images, under τ , of
rulings of H whose director curve δ is a multiple of a PPT .

We include figures 8 and 9 showing the two hyperboloids H and the sur-
face t(z) = t(x) + t(y) side-by-side. Figure 8 shows rulings of the two
hyperboloids. We also include figure 10 showing the lattice points (x, y, z)
on the surface t(z) = t(x) + t(y) with x ≥ y and z ≤ 500. One can see a
number of the rulings. Recall here, we are only looking at lattice points on
the rulings, not at all points on the ruling. These lattice points are packed
in a density determined by the size of the PPT that defines them; this
according to theorem 5.1. The most densely packed are the rulings whose
PPT = (3, 4, 5).

*******************
We end this section with an application of special sequences. There are a

number of reasons to think of the e-numbers as being, in some sense, similar
to the set of prime numbers. The distribution function whose graph is in
figure 5 is one reason. The next theorem is offered as another reason. The
set E, like the set of prime numbers, has arbitrarily large gaps. We will
prove this using special sequences that generate arbitrarily large chains of
successive c-numbers. Before stating the theorem we make the following
definition:

Definition 5.1. Special sequences of c-numbers arise from corollary 5.2;
each is determined by a c-number z and a hypotenuse c of a PPT and each
has the form z+nc. We designate a special sequence with the symbol ss[z, c]
and write ss[z, c](n) = z + nc.

Theorem 5.2. The set of e-numbers E has gaps of arbitrary length.

Proof. By induction, we show that for each integer n ≥ 2, there is a set S
of special sequences ss[zk, ck], and a set of positive integers mk such that

ss[zk, ck](mk) = ss[zk+1, ck+1](mk+1) + 1 for k = 1, 2, · · · , n− 1.

The proof proceeds this way: for n = 2, given two special sequences of
c-numbers ss[z1, c1] and ss[z2, c2] so that c1 and c2 are relatively prime, it
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is guaranteed there exist positive integers m1 and m2 such that

ss[z1, c1](m1) = ss[z2, c2](m2) + 1

because this equation reduces to

z1 − z2 − 1 = m2c2 −m1c1.

Now assume that we have a set S of special sequences ss[zk, ck] and a set of
positive integers mk such that

ss[zi, ci](mk) = ss[zi+1, ci+1](mk+1) + 1 for k = 1, 2, · · · , n− 1

and such that the set of ck are mutually relatively prime. First note that if
we define P =

∏
ck and Pk = P/ck then we have

ss[zi, ci](mk + iPk) = ss[zi+1, ci+1](mk+1 + iPk+1)+1 for k = 1, 2, · · · , n− 1

and for all non-negative integers i.
Suppose we now have a special sequence ss[z, c] so that c is relatively

prime to each ck. Then as in the case n = 2, there is a pair of integers (i, j)
such that ss[zn, cn](j) = ss[z, c](i) + 1. In fact there is an infinite family of
such pairs of the form (j+rc, i+rcn) for all non-negative integers r. Because
Pn and c are relatively prime, there exist positive integers r0 and k0 so that
mn + k0Pn = j + r0c. We redefine mk = mk + k0Pk for k = 1, 2, · · · , n and
we define mn+1 = i + r0cn. With this definition, note that mn now equals
j + r0c; hence setting zn+1 = z and cn+1 = c we have

ss[zk, ck](mk) = ss[zk+1, ck+1](mk+1) + 1 for k = 1, 2, · · · , n

which proves the theorem. �

We end this section with some examples of special sequences. In fact,
we list all special sequences possible to the depth of level three in the PPT
tree:

Special sequences from level one, the root (3, 4, 5) of the PPT tree.

t(5n + 3) = t(4n + 2) + t(3n + 2)(1)

t(5n + 1) = t(4n + 1) + t(3n + 0)(2)

Special sequences from the second level of the PPT tree.

t(13n + 10) = t(12n + 9) + t(5n + 4)(3)

t(13n + 2) = t(12n + 2) + t(5n + 0)(4)

t(29n + 8) = t(20n + 5) + t(21n + 6)(5)

t(29n + 20) = t(20n + 14) + t(21n + 14)(6)

t(17n + 10) = t(8n + 4) + t(15n + 9)(7)

t(17n + 6) = t(8n + 3) + t(15n + 5)(8)
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Special sequences from the third level of the PPT tree.

t(169n + 119) = t(120n + 84) + t(119n + 84)(9)

t(169n + 49) = t(120n + 35) + t(119n + 34)(10)

t(97n + 37) = t(72n + 27) + t(65n + 25)(11)

t(97n + 59) = t(72n + 44) + t(65n + 39)(12)

t(73n + 13) = t(48n + 8) + t(55n + 10)(13)

t(73n + 59) = t(48n + 39) + t(55n + 44)(14)

t(85n + 23) = t(36n + 9) + t(77n + 21)(15)

t(85n + 61) = t(36n + 26) + t(77n + 55)(16)

t(37n + 21) = t(12n + 6) + t(35n + 20)(17)

t(37n + 15) = t(12n + 5) + t(35n + 14)(18)

t(53n + 41) = t(28n + 21) + t(45n + 35)(19)

t(53n + 11) = t(28n + 6) + t(45n + 9)(20)

t(89n + 27) = t(80n + 24) + t(39n + 12)(21)

t(89n + 61) = t(80n + 55) + t(39n + 26)(22)

t(65n + 41) = t(56n + 35) + t(33n + 21)(23)

t(65n + 23) = t(56n + 20) + t(33n + 11)(24)

t(25n + 21) = t(24n + 20) + t(7n + 6)(25)

t(25n + 3) = t(24n + 3) + t(7n + 0)(26)

6. Distribution function for the set E

We are going to write recursive definitions for the distribution functions
for both the set of primes and for the the set E of e-numbers. A distribution
function d(n) for a set S counts the number of numbers of S less than or
equal to n. The distribution function for the primes is usually denoted by
π and we will denote the distribution function for E by pi. Besides the
recursive definition for π we give below, the Prime Number Theorem gives
an asymptotic approximation for π of the form

π(n) ∼ n

ln(n)
.

Similarly, we will show that pi has, as well as a recursive definition, a
companion definition; this time in a closed form formula.

First, the recursive definitions:

π(2) = 1

π(n) =

π(n− 1) + 1 if n is prime;

π(n− 1) otherwise.
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pi(2) = 1

pi(n) =

pi(n− 1) + 1 if n2 + (1 + n)2 is prime;

pi(n− 1) otherwise.

We have proven that n is a c-number iff U [n] 6= ∅. This is because if the
natural number pair (a, b) ∈ U [n], then t(n) = t(a) + t(b). Hence, n is an
e-number iff U [n] = ∅. We use this fact to define a closed form definition for
pi. First some preliminary functions:

a(b, n) =
√

(n− b)(n + b + 1) + 0.25− 0.5
The function a(b, n) is the left-coordinate of points on C[n] when b is the
right coordinate. That is: (a(b, n), b) ∈ C[n]. This formula comes directly
from definition 1.1.

lim(n) = −0.5 +
rn

√
2

2
lim(n) is the largest right-coordinate of the points in ure[n].

floor(n) is the greatest integer function
ceiling(n) is the least integer function

The names floor and ceiling are used in Mathematica for the same functions.

p(n) =
lim(n)∏
b=1

(a(b, n)− floor(a(b, n)))

If a(b, n) takes on an integer value then p(n) = 0; otherwise 0 < p(n) < 1.
Hence, ceiling(p(n)) is either 0 if n is a c-number or 1 if n is an e-number.
Finally

pi(k) =
k∑

n=2

ceiling(p(n))

This is our desired closed form formula for pi. Again, we refer the reader
to Figure 5 for a graphical comparison of π and pi.

7. Mathematica Programs

We are including a few Mathematica notebooks that one can down load
to their computer; these will enable the reader to go beyond the figures in
this paper. This of course assumes that one has Mathematica installed on
their computer. If not, it may still be possible to read and execute the files
using Mathreader from Wolfram Research; this utility can be down loaded
for free at http://www.wolfram.com/products/mathreader.

Note: If the different links keep loading the same program, exit Mathe-
matica between opening the programs.
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The programs:
Section1 U [n]. This program produces the contents of U [n] for any n. If

n is an e-number, the program outputs {}. Can be used to generate initial
segments of C and E.

Section2 S[n]. This program outputs each the four matrices S,R,T, and
W as either a set of numbers, a set of rows of numbers, or as a proper matrix.

Section3 counting function τ . This program implements the function
τ(n) which counts the number of lattice points on C[n] and the function
T (n) which counts the number of points in U [n] plus 1 (because it counts
the point (n, 0)). T can also be used to generate initial segments of C and
E.
C[n],U [n] and P[k]. This program overlays C[n], U [n], and P[k] for a

range of n and k; it was used to produce Figure 3.
Sierpinski′s Theorem. This program makes use of Corollary 1.1 to gen-

erate initial segments of E and to plot the distribution function for the
segment. We think this is the most efficient way to produce such segments
when using Mathematica. See the explanation at the end of Section 2. The
program was used to make figure 5.

Section4 path. This program implements the function path(s, v) of Sec-
tion 4 as well as a findpath function.
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Figure 1. C[10]
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Figure 2. Multiple U [n]
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Figure 3. Parabolas superimposed upon U [n]
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Figure 4. P[6]
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Figure 5. Distribution function for e-numbers in red and
for primes in yellow
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Figure 6. H swept out by rulings 5 degrees apart
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Figure 7. Rulings through (3, 1, 3) on H
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Figure 8. Rulings of the surface t(z) = t(x) + t(y) inside of
rulings of H
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Figure 9. The surface t(z) = t(x) + t(y) inside of H
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Figure 10. The lattice points on the surface t(z) = t(x) +
t(y), x ≥ y, z ≤ 500
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