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Abstract

In this article, I describe a renormalization group approach for complex
networks, as applied by Rozenfeld et.al. in[[] A large number of naturally
occuring networks are scale-free, i.e. display a powerlaw degree distribu-
tion 2] Moreover, many of these networks display both the small world
property, and fractal characteristics. The RG approach demonstrates a
transition between fractal and small world networks with increasing scale,
and enables the classification of networks in one of the two universal-
ity classes. Assuming an underlying fractal structure, it also provides
a method for determining the distribution of overlying shortcuts in the
network.

1 Introduction

Many naturally occuring networks are found to be scalefree, i.e. they have
a powerlaw degree distribution. However, these networks display properties of
two seemingly contradictory structures - smallworldness, where the diameter of
the network (longest node-node distance) increases logarithmatically with the
number of nodes, and fractal, where the diameter is expected to increase much
more rapidly, as a powerlaw.

In order to explain this, the authors assume an underlying fractal structure
of the network, with some long distance shortcuts. Depending on the distri-
bution of these shortcuts, the network, which appears locally fractal, may on
larger scales, have a topology similar to either a fractal or a completely con-
nected graph. For example, let r represent the distance between two nodes on
a network. For shortcuts distributed according to p(r) = r~¢, a small « indi-
cates large number of long distance shortcuts. In this case, we may expect, with
renormalization, that the shortcuts connect more of the renormalized nodes, and
hence appear globally small world, ultimately leading to a complete graph. For
a large «, the shortcuts are mostly local, and are lost during renormalization,
so that the renormalized graph is similar to the underlying fractal graph.

The box covering algorithm, as described in [3] is used for renormalizing the
network. The renormalization technique also gives a way of deducing the dis-
tribution of shortcuts in a naturally occuring network, which is a very useful
metric for understanding information/energy flow across these networks. In the



rest of this article, I explain the box covering method, the renormalization tech-
nique and the implementation algorithm as used by the authors. I also try to
apply the technique to the network of neurons in C. elegans.

2 Network RG

Box covering The RG is performed using the box covering technique. All
nodes of the network are boxed so that nodes within each box are at a distance
of up to b from one another. Each of the boxes then acts as a ‘super’'node. Two
supernodes in the renormalized network are connected if there is an edge in the
original network connecting some of their constituent nodes.

Box covering is also used for defining the dimensionality of the network. The
box dimension, dp, is defined by No/N;, = bis

Network structure We assume an underlying fractal network with Ny nodes,
denoted Gy. Shortcuts are added on top of this network, with probability dis-
tribution p(r) = Ar~®. The network with shortcuts is denoted by G'.

Gp = Ryp(G)), the renormalized fractal network, is also a fractal network with
the same structure (degree distribution) as the original network (Ry(Gp) = Go,
up to an overall scaling in the number of nodes). Note that fractal networks
can be defined as those having the above property. Thus, it is sufficient to look
at the shortcuts alone in order to understand the RG flow of the network G'.

RG flow We need to obtain the distribution of shortcuts, py, after the renor-
malization.

py(r) =1 — P(there are no shortcuts at distance r in G})

Which implies, there are no shortcuts at distance br across the b2 nodes in G’
corresponding to the nodes in G}, giving

P(there are no shortcuts at distance r in G}) = (1 — p(br))de*de

po(r) =1 — (1 — A(br)=)¥™"” (1)

In the limit of b — oo, we have

blim py(r) =1 — exp(— Ar—p~t2ds) (2)
— 00

There is, thus, a critical value of s = a/dg = 2, below which p(b) — 1. In
this phase, the network goes towards a fully connected state, implying that
at larger scales, it shows the small world properties. For s > 2, p(b) — 0,
which implies that in this phase, the shortcuts disappear at large scales and the
network returns to its underlying fractal structure. This is in accordance to the
intuitive expectation that if the probability of long distance links is high (small
a), the graph will show small world characteristics. For s = 2, the RG flows
towards another stable fixed point consisting of a fractal network with overlying
shortcuts given by p(r) = 1 — exp(—Ar~298). As a consistency check, for large
7, this probability goes as Ar~28 = p(r) with a = 2dp.



Average degree The average degree (number of connections per node), z,
provides a rough estimate of the efficiancy of information flow on the network.
We can look at the behaviour of z under RG as follows:

Let zp be the average degree of Gy, and correspondingly, zp, 2’ and z; for Ry,(Go),
G', Ry(G).

Let the number of shortcuts between length 1 and L is given by M(L). Thus,
2! — zg = 2M (D) /Ny, where D is the diameter of the network Gy. The factor
of 2 is because each shortcut adds to the degree of two nodes.

M(L) ~ [ p(r)(dprie—tdr)
= dp flL Ar—ords—1gy (3)
A )
Thus, i
V= 12:45 <D B(N:)—l) (@)

After renormalizing by b, shortcuts smaller than b will be within the supernodes,
and will not add to the degree. Also, renormalization does not change average
degree in the pure fractal network. Thus,

2(M(D) — M(b))
Ny

2y — 2 =2, — 20 =

()
In the limit of D — oo, we find 2z} — 2z = (2' — 20)z}, where z;, = b8 and A is
given by:
A= 1 ifs<1
. (6)
= 2—5s5 ifs>1
As observed before, if s > 2, A < 0, and the difference in the degrees of the
renormalized network and pure fractal network goes to 0, i.e. shortcuts are
lost at larger scales. For s < 2, the average degree increases till we get a fully

connected graph. Further, by fitting z; to the scaling function, the value of A
for a network can be obtained.

3 Analysis of a network

In this section, I implement some of the ideas described above for a natrually
occuring network. The network is the neural network of C. elegans, and the
data was obtained from the freely available source at

There are multiple types of edges in the neural network, coresponding to
distinct communication channels, such as electrical impulses, chemical signals
etc. Also, the network is directed. However, in order to simplify the analysis, all
directed edges have been replaced by undirected ones. Further, analysis of only
one type of edge leads to a very small network where the renormalization does
not work well. For that reason, I have treated all kinds of edges equivalently.

Under these assumptions, the network contains 281 nodes and 2405 edges,
with a diameter of 4.



Box covering algorithm In order to compute the box dimensionality of a
graph, it is covered with a minimum possible number of boxes, and the dimen-
sion is given by No/N, = b%2. Song et.al. show that the optimal network
covering problem can be mapped on to a vertex coloring problem as follows:

To cover a network, GG, with boxes of size [, obtain the dual graph G’ of G by
removing all edges in G and connecting nodes that are separated by a distance
greater than [ in G. The vertex coloring problem is to color the vertices of G’
using minimum possible colors in such a way that no edge connects two nodes
of the same color. Clearly, under this scheme, all nodes separated by a distance
larger than [ in G will have a distinct color, and we define boxes as sets of nodes
with the same color.

The vertex coloring, and hence box covering, algorithm is an NP hard prob-
lem, but the authors describe a ’Greedy’ algorithm for obtaining an optimal
solution. The following analysis is based on this algorithm.

Renormalization results Since D = 4, the largest box can be at most of size
4. Figure [I] shows the successive renormalized versions of the network. Figure
shows the fractal dimension, which turns out to be 1.426, by fitting a linear
curve between log(zp) and I,

Figure 1: Successive renormalization of the neural network in C. elegans

(a) No = 281

This renormalization, however, gives only 3 points, from which it is not pos-
sible to make an accurate estimate of the scaling exponent A\, and hence «, the

Figure 2: Computing the dimensionality
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distribution of overlying shortcuts. In the original paper, the authors carry out
what they call (but do not describe) partial renormalization so as to obtain a
more reliable estimate of A

4 Conclusion

The RG procedure applied to networks can be used to extract important topo-
logical information about the network, namely, its dimensionality (and hence
the underlying fractal structure) and the distribution of overlying shortcuts.
Rozenfeld et.al. use this technique to analyze more real world networks such as
the WWW, and biological networks like the metabolism network in E. coli and a
yeast protein interaction network. They find that the WWW and the metabolic
network have s < 2, i.e. they have many long distance shortcuts, and thus,
have higher efficiency for information/energy flow as compared to the other two
networks, which have s > 2, and have a strong fractal character at larger scales.
This technique can thus provide useful insight towards understanding networks.
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http://www.wormatlas.org/neuronalwiring.html

5. http://graph-tool.skewed.de/ is a python library for analysing and visu-
alizing graphs. It was used for generating the images, and computing
metrics such as the average degree, diameter etc.
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