
Scalable Push-Based Real-Time Queries on Top

of Pull-Based Databases

Dissertation with the aim of achieving a doctoral degree at the

Faculty of Mathematics, Informatics, and Natural Sciences

Submitted at the University of Hamburg

by Wolfram Wingerath, 2018

Day of oral defense: May 8th, 2019

The following evaluators recommend the admission of the dissertation:

Prof. Dr.-Ing. Norbert Ritter (Universität Hamburg)

Prof. Dr. Daniela Nicklas (Otto-Friedrich-Universität Bamberg)

Prof. Dr. Erhard Rahm (Universität Leipzig)

“Machen!”

—Anonymous

This document was created on May 18th, 2019.

This thesis and revisions, if any, will bemade available at https://invalidb.info/thesis.

ii

https://invalidb.info/thesis

iii

iv

Acknowledgments

“I love deadlines. I like the whooshing sound they make as they fly by.”

—Douglas Adams

So I guess this is it. After about a quarter of a century, I’m finally leaving my disciple status

behind and move on to actually build things – I’m excited! But as another chapter of my

life is about to close, I feel obliged to stop and think for amoment in order to acknowledge

the amplitude of help I had in getting where I am now.

I’d like to put my colleagues Steffen and Anne first, because they picked up my slack more

times than I dare to admit. I’m sure my studies would have been twice as hard and half

the fun without you two – thank you for everything! Then I’d like to apologize to my ad-

visor Norbert Ritter for driving him out of the pole position in these acknowledgments.

More importantly, though, I want to thank him for providing me the opportunity to un-

dertake this endeavor in the first place and for the various lessons on pragmatism he has

taught me over the years. I’d also like to express my gratitude towards Daniela Nicklas for

assessing my thesis and for inspiring me to put the foot down during the final months,

even though I still did not manage to wrap everything up before Christmas …or Easter …or

midsummer…I’m further supremely thankful to Felix who is not only tall and handsome,

but equally inspiring and frustrating to argue with. You have been – and continue to be! –

an invaluable resource of devastatingly helpful criticism! My gratitude also goes to Fabian

with whom I’ve had many fruitful discussions and countless more that were utterly point-

less: I cannot say which ones I enjoyed more – thank you for them all! Gabriel and Dirk

deserve mentioning, too, not only because they provided occasional distraction through

pleasant chats, but for their most valuable feedback on this dissertation during the critical

phase. And I want to tipmy hat to all the students with whom I have collaborated over the

years, most of all Stephan, Marcel, and Randy, because they contributed to this work with

code as well as clarifying discussions – and simply for being so much fun to work with.

Next, I want to acknowledge the help from the awesomepeople at Baqend, someofwhom

have put as great a deal of sweat and tears into the InvaliDB production deployment as

myself. Chief amongst them is Flo as the ultimate exception handler: Thank you for taking

time you didn’t have to solve problems you didn’t cause! Special thanks go to Erik for

churning out articles and conference talks with me that earned the highest praise (“nicht

soviel schlechter als manche der anderen”). But also to those not entangled in my sci-

entific activities, thank you for making office time worthwhile! I would swipe any of you

v

right any time – in randomized order: Gitte, Knuth, Sven, Malte, Julian, KSM, Hannes, the

other Julian, Kevi, and Jörn.

Beyond my academic life, there have been several people who have contributed to this

thesis in oneway or another. For starters, I have to give ELke a big smooch for her uncondi-

tional trust and support: If I needed a horse, I would definitely steal it with you! Of course,

all non-horse-related stealing has been and will be done with Kowa, my brother in spirit.

Persistently, he has been there when I needed a bearly man, a manly beard, or mainly be-

er. Also of the utmost persistence, Dadi has been with me all my life and knowing that’ll

never change is one of the pillars of my world. Albeit a bit clichéed, I have to stress the

importance of Muddi and Vaddas who both invested a lot to see me become halfway self-

sustainable. Having said this, I think it’s all the more noteworthy that they simply let me

alone when I needed to concentrate on my work – I promise compensation beers! Ann-

Kristin deserves particular distinction for the years of listening to what must’ve been the

most boringmonologues in the history of storytelling – youwere a great help in structuring

my thoughts before writing them up! And, naturally, I would like to thank my assistants:

not only for copious amounts of delicious coffee, butmore importantly for their consistent

and reliable support in virtually everything I do! Last and most certainly least, however, I

want to mention Kjell who has shown me the importance of keeping a positive attitude,

more vividly than anyone ever could have.

Seeing that I have shamefully ignored so many of my friends and family for way too long, I

feel lucky that most will still pick up the phone when I’m calling. I solemnly swear to make

up for the social neglect! Specifically and in no particular order: I’ll make sure that I get to

see Renie not only every other year, visit Boji in her new home, mop the floor with Jule in a

round of Mensch-ärgere-dich-nicht, take Muddi to an Elphi concert, play skat with Onna,

visit Lotte andMattis with Vaddas, schnüffelate with Schnüffi (“hannahannahannahanna-

hanna”), peacefully enjoy a glass of goodwinewithWalli, fix that goddamnwooden board

in the kitchenwith Stephan, go to the theater with Dani and Kari, watch onemanmaking a

difference with Benny, watch B-movies with Souli, make Stevi try out his new PlayStation 3

with me, pull off a comeback with Joe, find out what Mr. Unbeaten Intelligence has been

up to all these years, and finally have that barbecue at Jan’s (“Die Wurst ist gekauft!”).

I’m afraid I might have forgotten someone who deserves acknowledgment…But that’s a

risk I’m willing to take – this thing needs to be printed now!

Wolfram Wingerath Hamburg, September 24th, 2018

vi

Contents

Abstract xi

1 Introduction 1
1.1 Real-Time Databases . 2

1.2 Real-Time Database Queries . 4

1.3 Challenges . 5

1.4 Primary Contributions . 7

1.4.1 A Categorization of Data Management Systems by Access Paradigm 7

1.4.2 InvaliDB: A Scalable Approach for Opt-in Real-Time Queries 7

1.4.3 An Implementation for Real-Time Queries on Top of MongoDB . . 8

1.4.4 Integration With the Orestes Database Middleware 8

1.5 Thesis Outline . 8

1.6 Previously Published Work . 10

2 Background & Related Work 13
2.1 Systems for Pull-Based & Push-Based Data Access 14

2.1.1 Collections vs. Streams . 15

2.2 Database Management . 16

2.2.1 Triggers & Active Databases . 16

2.2.2 Change Data Capture, Cache Coherence & Time Series Data . . . 17

2.2.3 Materialized Views . 19

2.2.4 Change Notifications . 21

2.2.5 Summary & Discussion . 23

2.3 Real-Time Databases . 24

2.3.1 Meteor . 24

2.3.2 RethinkDB . 28

2.3.3 Parse . 29

2.3.4 Firebase . 29

2.3.5 Further Systems . 31

2.3.6 Summary & Discussion . 32

2.4 Data Stream Management . 34

2.4.1 Queries Over Streams . 34

2.4.2 Notions of Time . 36

2.4.3 Windowing & Approximation . 37

2.4.4 Complex Event Processing . 39

vii

Contents

2.4.5 Messaging Middleware . 40

2.4.6 Summary & Discussion . 40

2.5 General-Purpose Stream Processing . 41

2.5.1 Architectural Patterns . 41

2.5.2 State-of-the-Art Systems . 44

2.5.3 Design Decisions & Trade-Offs . 52

2.5.4 Summary & Discussion . 52

2.6 Historical Overview & Discussion . 54

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries 57
3.1 System Model . 58

3.1.1 Fault Tolerance, Scalability & Multi-Tenancy 59

3.1.2 Real-Time Queries . 60

3.1.3 The Backing Database System . 62

3.2 The Event Layer: Decoupling Real-Time & OLTP Workloads 63

3.2.1 Messaging Semantics . 64

3.2.2 Write Pipeline . 68

3.2.3 Notification Pipeline . 69

3.2.4 Query Pipeline . 70

3.3 Query Processing: Distributed Result Maintenance 73

3.3.1 Two-Dimensional Workload Partitioning for Filter Predicates . . . 74

3.3.2 Advanced Processing Stages: Sorted Queries, Joins & Aggregations 77

3.3.3 The Pluggable Query Engine . 84

3.4 Summary & Discussion . 85

4 InvaliDB Prototype: Implementation & Experimental Evaluation 87
4.1 An InvaliDB Implementation Based on Storm 88

4.1.1 Workload Distribution . 88

4.1.2 Elasticity, State Management & Fault Tolerance 89

4.2 A Redis-Backed Event Layer Prototype . 91

4.2.1 Implementation & Correctness . 92

4.2.2 Horizontal Scalability & Deployment Considerations 94

4.3 A MongoDB-Compatible Real-Time Query Engine 96

4.3.1 Prototype Iterations & Query Expressiveness 96

4.3.2 Multi-Query Optimization & Computational Complexity 98

4.4 Performance Evaluation . 99

4.4.1 Experimental Setup . 99

4.4.2 Scaling With Query Load . 102

4.4.3 Scaling With Write Throughput . 104

4.4.4 Efficiency of Multi-Tenant Setups 106

4.5 Summary . 108

viii

Contents

5 Integrating InvaliDB With the Orestes Database Middleware 111
5.1 Orestes: A Database Middleware for Globally Low Latency 112

5.1.1 Data Model & Query Expressiveness 115

5.1.2 Access Control . 115

5.2 Quaestor: Extending Orestes With InvaliDB 117

5.2.1 Result Representation & TTL Estimation 119

5.2.2 Enforcing Access Control . 120

5.2.3 A Language-Agnostic Real-Time Communication Protocol 122

5.3 Extending the Pull-Based Query API by Push-Based Queries 123

5.3.1 Self-Maintaining Queries . 123

5.3.2 Observables & Subscriptions . 127

5.3.3 Event Stream Queries . 129

5.4 Real-Time Query Semantics . 132

5.4.1 Semantics by Example: Sorted Event Stream Queries 132

5.4.2 Real-Time Aggregations . 134

5.4.3 Real-Time Joins . 136

5.4.4 Implementing Self-Maintaining Queries 138

5.5 Experimental Evaluation of Quaestor . 140

5.5.1 Push-Based Real-Time Query Performance 140

5.5.2 The Effect of Query Caching on Pull-Based Query Performance . . 143

5.6 Summary & Discussion . 146

6 Conclusion 147
6.1 Best Practices for Designing a Scalable Real-Time Database 148

6.1.1 Scalable Workload Distribution . 148

6.1.2 Isolated Failure Domains . 148

6.1.3 Polyglot Data Model . 149

6.1.4 Balanced Interfaces . 149

6.2 Open Challenges . 150

6.2.1 Extending Semantics . 150

6.2.2 Exploring Trade-Offs & Optimizations 152

6.2.3 Building Applications . 154

6.3 Closing Thoughts . 156

Appendix 159
A InvaliDB Performance: Read Scalability . 159

A.1 Sustainable Queries Under Varying Query Partitions 159

A.2 Sustainable Queries Under Varying Number of Collections 167

B InvaliDB Performance: Write Scalability . 169

B.1 Sustainable Throughput Under Varying Write Partitions 169

B.2 Sustainable Throughput Under Varying Number of Collections . . 177

ix

Contents

C InvaliDB Performance: Latency Distribution 179

C.1 Varying Query Partitions . 179

C.2 Varying Write Partitions . 182

C.3 Comparison With Quaestor . 185

D Websocket Messaging Protocol for Quaestor’s Real-Time Queries 187

Bibliography 191

List of Figures 233

List of Tables 237

Listings 239

Statutory Declaration / Eidesstattliche Erklärung 241

x

Abstract

English

Many of today’s web applications notify users of status updates and other events in real-

time. But even thoughmore andmore usage scenarios revolve around the interaction be-

tween users, detecting and publishing changes remains notoriously hard even with state-

of-the-art data management systems. While traditional database systems excel at com-

plex queries over historical data, they are inherently pull-based and therefore ill-equipped

to push new information to clients. Systems for data stream management and process-

ing, on the other hand, are natively push-oriented and thus facilitate reactive behavior.

However, they do not retain data indefinitely and are therefore not able to answer his-

torical queries. The separation between these two system classes gives rise to both high

complexity and high maintenance costs for applications that require persistence and real-

time change notifications at the same time. How can push-based access be enabled for

database queries over historical data collections in a simple and efficient manner?

In this thesis, we explore the system space between pull-oriented database systems and

push-oriented stream management systems. Specifically, we focus on the novel system

class of real-time databases that bridge the gap between both paradigms by providing

collection-based semantics for pull-based and push-based queries alike. Through an in-

depth system survey, we uncover deficiencies in existing implementations and scale-

prohibitive limitations in their respective designs. In order to address these issues, we pro-

pose the systemdesign InvaliDBwhichmakes push-based real-time queries available as an

opt-in feature for existing pull-based database systems. InvaliDB exhibits several substan-

tial benefits over current real-time database architectures. First, it avoids the scalability

bottlenecks that other systems are constrained by through a novel two-dimensional work-

load partitioning scheme. Second, our design supports more expressive queries than its

peers, including sorted filter queries with limit and offset clauses, aggregations, and joins.

Third, InvaliDB is database-agnostic through a pluggable query engine and can therefore

be applied to existing (pull-based) application stacks in order to enable push-based data

access. We provide an experimental evaluation to demonstrate that sustainable que-

ry matching throughput scales linearly with the number of servers employed for query

matching, while end-to-end notification latency remains consistently low across all In-

valiDB configurations. A detailed case study of our InvaliDB prototype in a production

deployment further illustrates that our approach is feasible to implement, enables easy-

to-use query interfaces, and is practically useful for data-intensive industry applications.

xi

Abstract

German

Heutzutage informieren viele Webapplikationen Benutzer über Status-Updates und an-

dere Ereignisse in Echtzeit. Aber auch wenn die Interaktion zwischen Nutzern immer häu-

figer in den Vordergrund rückt, so sind selbst moderne Datenverwaltungssysteme nur be-

dingt zur Erkennung und Propagierung von Zustandsänderungen in der Lage. Während

traditionelle Datenbanken für komplexe Anfragen über historische Daten konzipiert wur-

den, sind sie inhärent Pull-basiert und bieten daher nur eingeschränkte Unterstützung

für proaktive Datenzugriffsmuster. Systeme für Datenstromverwaltung und -verarbeitung

sind dagegenPush-orientiert und ermöglichen so reaktives Verhalten. Sie speichernDaten

jedoch nur für begrenzte Zeit und können folglich keine historischen Anfragen beant-

worten. Die Trennung zwischen diesen beiden Systemklassen bedingt sowohl hohe Kom-

plexität als auch hohe Wartungskosten bei Anwendungen, die gleichzeitig Persistenz und

Echtzeitbenachrichtigungenbei Zustandsänderungenbenötigen. Wie kannPush-basierter

Zugriff für Anfragen über historische Daten simpel und effizient ermöglicht werden?

In dieser Arbeit untersuchen wir das Spektrum zwischen Pull-orientierten Datenbanksys-

temen und Push-orientierten Systemen zur Datenstromverwaltung. Insbesondere kon-

zentrieren wir uns auf die neuartige Systemklasse der Echtzeitdatenbanken (real-time da-

tabases). Systeme dieser Klasse schließen die Kluft zwischen beiden Paradigmen, indem

sie die für Datenbanksysteme übliche Collection-basierte Semantik für traditionelle Pull-

basierte Anfragen sowie für Push-basierte Echtzeitanfragen (real-time queries) unterstüt-

zen. Durch eine detaillierte Analyse aktueller Systeme decken wir Mängel in konkreten

Implementationen sowie konzeptionelle Limitationen in den jeweiligen Architekturen auf.

Zur Lösung dieser Probleme schlagen wir das Systemdesign InvaliDB vor, welches Push-

basierte Echtzeitanfragen als Opt-in-Feature für existierende Pull-basierte Datenbanksys-

teme bereitstellt. InvaliDB verfügt über mehrere wesentliche Vorteile gegenüber beste-

henden Echtzeitdatenbankarchitekturen. Erstens vermeidet es Flaschenhälse, die die Ska-

lierbarkeit anderer Systeme einschränken, durch ein neuartiges Konzept zur zweidimen-

sionalen Lastverteilung. Zweitens unterstützt unser Design mächtigere Echtzeitanfragen

als bestehende Systeme, darunter sortierte Filteranfragen mit Limit- und Offsetklauseln,

Aggregationen und Joins. Drittens abstrahiert InvaliDB durch eine austauschbare Kompo-

nente zur Anfrageverarbeitung (pluggable query engine) von konkreten Datenbanktech-

nologien und kann daher auch bestehende (Pull-basierte) Anwendungsstacks um Push-

basierte Datenzugriffsmechanismen erweitern. In einer experimentellen Evaluation de-

monstrieren wir, dass der für eine InvaliDB-Instanz tragbare Durchsatz bei der Anfragev-

erarbeitung (sustainable query matching throughput) linear mit der Anzahl der für die

Anfrageverarbeitung eingesetzten Server skaliert, wobei die Ende-zu-Ende-Latenz über

alle InvaliDB-Konfigurationen hinweg konstant niedrig bleibt. Eine detaillierte Fallstudie

über unseren InvaliDB-Prototypen im Produktionsbetrieb zeigt darüber hinaus, dass unser

Ansatz mit überschaubarem Aufwand implementierbar ist, simple Anfrageschnittstellen

ermöglicht und in datenintensiven Industrieanwendungen praktisch einsetzbar ist.

xii

xiii

Abstract

xiv

Introduction 1
“Please refresh the page to get the most current information.”

—from the FAQs of an online auctioning website

Thiswork devises scalable push-based real-timequeries on top of pull-based databases.

In recent years, users have come to expect reactivity from their applications, i.e. they

assume that changes made by other users are immediately reflected in the interfaces

they are using. Examples are shared worksheets and websites targeting social interac-

tion. These applications require the underlying data storage to publish new and updated

information as soon as it is created: Data access is push-based. In contrast, traditional

database management systems [HSH07] have been tailored towards pull-based data ac-

cess where information is only made available as a direct response to a client request.

While triggers and other push-oriented mechanisms have been added to their initial de-

sign, they are outperformed by several orders of magnitude when held against natively

push-based systems [SC05]. In consequence, the inadequacy of traditional database tech-

nology for handling rapidly changing data has been widely accepted as one of the funda-

mental challenges in database system design [SCZ05].

To warrant low-latency updates in quickly evolving domains, data stream management

systems [GZ10] break with the idea of maintaining a persistent data repository. Instead of

random access queries on static collections, they perform sequential, long-running que-

ries over data streams. Data streammanagement systems generate newoutputwhenever

new data becomes available and are thus natively push-based. However, data is only avail-

able for processing in one single pass, because data streams are conceptually unbounded

sequences of data items and therefore infeasible to retain indefinitely. Consequently, que-

ries over streams are confined to data that arrives after query activation.

Database Management Data StreamManagement

Data Access pull-based push-based

Data Model persistent collection ephemeral stream

Query Execution ad hoc, random access continuous, sequential

Table 1.1: A side-by-side comparison of core characteristics of database and data stream

management systems.

1

1 Introduction

Database and data stream management, respectively, follow fundamentally different se-

mantics regarding the way that data is processed and accessed as Table 1.1 summarizes.

The concept of persistent collections conforms to applications that require a (consistent)

view of their domain, for instance to keep track of warehouse stock or do financial ac-

counting. The stream data model, on the other hand, comes natural for domains that fa-

cilitate a notion of event sequences or demand reasoning about the relationship between

events, for example to analyze stock prices or identify malicious user behavior. However,

the access paradigm – pull-based or push-based – is tied to the data model: Database

management systems lack support for continuous queries over collections, whereas data

streammanagement systems only provide limited options for persistent data handling.

Acknowledging the gap between database and data stream management systems, a new

class of information systems has emerged that combines collection-based semantics with

a push-based access model. These systems are often referred to as real-time databases

[Puf16, Yu15], because they keep data at the client in-sync with current database state “in

realtime” [Pau15], i.e. as soon as possible after change. Like traditional database systems,

they store consistent snapshots of domain knowledge. But like stream management sys-

tems, they let clients subscribe to long-running queries that push incremental updates.

1.1 Real-Time Databases

In the past, the term “real-time databases”1 has been used as a reference to special-

ized pull-based database systems that produce an output within strict timing constraints

[PSS+93, AH98, Eri98]. Within the scope of this work, however, real-time databases

are systems that provide push-based access to database collections. Popular examples

are Firebase and Meteor as discussed in Section 2.3. Likewise, real-time queries in the

context of this work are push-based queries on top of database collections. They follow

the same collection-based querying semantics as common database queries, but respond

with a continuous stream of informational updates in addition to the initial query result.

In the literature, contrastingly, the term “real-time query” sometimes refers to a particu-

lar form of ad hoc pull-based query [TS+09] or to a push-based query over data streams

[Ros11]; we do not share this notion of real-time queries in this thesis. Correspondingly,

real-time applications are reactive or interactive applications that make new information

available to the user as soon as possible after they have been committed to storage [Eri98].

This work addresses applications with soft timing constraints. It specifically does not ad-

dress security-critical or other applications that impose strict upper bounds on response

times such as flight control systems or nuclear power plant controls [Sta88].

Intuitively, the information delivered by a real-time database through a real-time query

has two components: the initial result and change events. Both inherit certain character-

istics from data returned by database and data streammanagement systems, respectively.

1In this thesis, we use the terms “database” and “database system” synonymously, when the context makes

clear whether we are referring to the base data or the system maintaining it.

2

1.1 Real-Time Databases

The initial result corresponds to the data returned by a common ad hoc database query

and thus captures the data items matching on request. It is assembled from persistent

storage, just like a common database query result. Change events (also called change

notifications) are sent whenever the result is altered (e.g. when a matching data item is

inserted). Thus, they capture how the result evolves over time. Through change events,

the client receives all information required to maintain the initial result up-to-date.

Changes in a query result are gathered through a continuous process that sifts through the

database write stream, similar to a continuous query in a stream management system.

In order to identify the relevant updates for a given real-time query, the system has to

inspect every single write operation that might possibly affect the query result. This task

is straightforward for some queries and rather complicated for others. We only address

simple filter queries (i.e. select-project queries [Bad09]) in this section. More complex

queries that involve ordering, joins, or aggregations are discussed in Section 3.3.

Is match?

Was match? Was match?

ye
s no

ye
s no ye
s no

change add remove none
=

queries writes

Figure 1.1: A real-time database has to match all real-time queries (blue arrow) against

all incoming write operations (red arrow) to generate change notifications on

result alterations (green arrows).

The decision tree in Figure 1.1 illustrates how this task can be translated to two simple

questions asked for any written data item2:

1. Does the item match the query now? (“Is match?”)

2. Did the item match the query before? (“Was match?”)

2While the depicted approach does not apply to set operations, an update that affects several data items

can be transformed into a set of single-item updates to make the approach applicable (cf. Section 3.1.3).

3

1 Introduction

When a data itemmatches the query after an insert or update (left branch), it is either an

already-matching item that was altered (change) or a former non-match that just entered

the result (add). Similarly, whenever a data item is deleted or does not match the query

after an insert or update (right branch), it either is a matching item that just left the result

(remove) or it does not relate to the query result whatsoever (none).

In the presence ofmany concurrent real-time queries or high update throughput, this con-

tinuous monitoring process becomes very expensive. To put the resource requirements

into perspective, consider an app with 1 000 concurrent users and an average throughput

of 1 000written data items per second. Given each user has only one active real-time que-

ry to filter a string attribute by some pattern, the real-time database already may have to

perform 1 million matching operations – every single second. And this does not account

for more complex queries: Sorted queries may require additional work to maintain result

order and enforce limit or offset clauses. Similarly, queries with joins or aggregations may

impose even higher overhead, because they necessitatemaintaining counters, intermedi-

ate results, or other data structures that are implicitly required tomaintain the actual que-

ry result. It is possible to apply “optimizations” (e.g. batching) that trade throughput for

increased latency. Likewise, complexity may not be quadratic for query expressions that

allow efficient indexing (e.g. comparisons). But if minimal latency is mandatory, there is

no alternative to considering every write operation in the context of every active real-time

query. To warrant feasibility, this has to be implemented in a scalable manner.

1.2 Real-Time Database Queries

There are two distinct types of real-time database queries that differ in the way they ex-

pose data to the application: Event stream queries simply present the raw change events

to the application, so that it canmaintain an up-to-date copy of the result or apply custom

business logic. Self-maintaining queries are more abstract as they do the result mainte-

nance in a transparent manner and provide the client with the complete (updated) query

result on every change. Using the latter, reactive behavior can be implemented without

any notion of data streams or change events built into the business logic. Some static

applications can be transformed into real-time applications simply by switching the un-

derlying query mechanism – without even touching application code.

For query interfaces based on callback functions, the transition between static and real-

time behavior is particularly smooth. When a query is executed asynchronously, the main

thread of execution does not wait for the result to return. Instead, a callback function is

provided at query time to specify how the result should be processed. When it is received,

the callback function is invoked with the result as an argument.

If the query is executed as a static ad hoc query (see Figure 1.2a), the callback function

will only be called once. If the query is executed as a self-maintaining real-time query (see

Figure 1.2b), on the other hand, the callback functionwill be invoked once when the initial

4

1.3 Challenges

}{

(a) A static ad hoc query produces a single result

that represents database state at query time.

}{

(b) A self-maintaining query yields a sequence of

results, each reflecting the latest update.

Figure 1.2: While a static ad hoc query is pull-based, a self-maintaining (real-time) query

pushes updates to the client and presents a new result on every change.

result is returned and then again every time when the underlying data has changed; thus,

the application effectively behaves as though a new static query was executed whenever

it would return a different result than the last invocation. As the only application require-

ment, every callback function has to be implemented in idempotent fashion, so that an

invocation overrides all effects of the previous invocation. For illustration3, consider a

search website where a callback function renders the result of a user-defined query. If

the callback function is executed in the context of a self-maintaining query, it has to re-

move any result representations that were generated earlier or else the website will not

reflect result updates correctly.

1.3 Challenges

In concept, real-time databases extend traditional databases as they follow the same se-

mantics, but provide an additional mode of access. In practice, though, there is no estab-

lished scheme how to actually build a real-time database on top of a traditional database

system. Currently existing real-time databases have been built from scratch and conse-

quently do not inherit the rich feature set and stability that some pull-based systems have

3For a demonstration of the self-maintaining query implementation developed in the context of this work,

visit https://twoogle.info (cf. Section 5.3.1).

5

https://twoogle.info

1 Introduction

gained over decades of development. To date, every push-based real-time query mecha-

nism fails in at least one of the following challenges (see Chapter 2 for details):

C1 Scalability. Serving real-time queries is a resource-intensive process which re-

quires continuousmonitoring of all write operations thatmight possibly affect query

results. To sustain more demanding workloads than a single machine could handle,

real-time databases typically partition the set of queries across database nodes. As

each node is only responsible for a subset of all queries in this scheme, most sys-

tems can scale with the number of concurrent queries. However, we are not aware

of any real-time database that supports partitioning the write stream as well. Thus,

responsibility for individual queries is not shared among nodes and overall system

throughput remains bottlenecked by single-machine capacity: Queries simply be-

come intractable as soon as one node is not able to keep up with processing the

entire write stream.

C2 Expressiveness. The majority of real-time query APIs (application programming

interfaces) are limited in comparison to their ad hoc counterparts. Aggregations are

generally not available and sorted queries are often unsupported or have severe

restrictions; for example, there are implementations that only allow ordering by a

single attribute or offer a limit, but no offset clause. The lack of such basic function-

ality on the database side necessitates inefficient workarounds in the application

code, even for moderately sophisticated data access patterns.

C3 Legacy Support. Today’s real-time databases have been designed from scratch or

on top of NoSQL data stores [Win17b] that do not follow standards regarding data

model or query language. They implement custom protocols for pull-based and

push-based data access alike and exhibit interfaces that are incompatible among

different vendors. While the complete lack of support for legacy interfaces (partic-

ularly SQL) may be acceptable in development of a new application, it complicates

the adoption of push-based queries for existing applications.

C4 Abstract API. Many real-time query APIs expose specificities of the underlying im-

plementation and thus offer poor data independence. These interfaces reflect bot-

tom-up design and force developers to reason about problems that lie beyond the

application domain. For example, most real-time databases do not provide built-

in result maintenance (cf. self-maintaining queries) and thus require knowledge of

system internals (e.g. structure of change events) to handle real-time data correctly.

In this thesis, we argue that neither of these limitations is inherent to the challenge of

providing push-based real-time queries over database collections. Assuming there is a

demand for reactivity on the database side as established at the beginning of this chapter,

we thus postulate the following research question:

Research Question: How can expressive push-based real-time queries be implemented on

top of an existing pull-based database in a scalable and generic manner?

6

1.4 Primary Contributions

To substantiate our claim and address the above research question, we devise and im-

plement a generic real-time database design that solves challenges C1 through C3. We

then integrate the prototype implementation into an existing database middleware and,

in particular, extend the middleware’s existing purely pull-based query API by an abstract

interface for push-based real-time queries in order to master Challenge C4.

1.4 Primary Contributions

We present four primary contributions. In our first contribution, we provide a broad

discussion of push-based data access mechanisms in modern data management systems.

By pointing out where the current state of the art is deficient, we thus further motivate

our work towards collection-based real-time queries. Our second contribution is a system

design that provides push-based real-time queries on top of a purely pull-based database.

It is highly scalable (cf. C1), supports a wide range of query expressions (cf. C2), and ab-

stracts from the underlying database. Thus, it is compatible with legacy systems that do

not support push-based queries (cf. C3). We demonstrate our design’s feasibility and ef-

fectiveness through our third contribution: a prototype implementation. As our fourth

contribution, we prove tractability and usefulness of the overall approach via integration

of our prototype into an existing pull-based database middleware. The integrated system

introduces two client-facing real-time query interfaces: a sophisticated event-based API

and a more abstract high-level API using self-maintaining queries (cf. C4).

1.4.1 A Categorization of Data Management Systems by Access Paradigm

To promote an intuitive understanding of what makes real-time databases unique, we

present a classification scheme for data management systems that revolves around their

respective support for pull-based and push-based data retrieval. To this end, we compare

the different push-based query mechanisms in database systems, real-time databases,

and systems for data stream management and processing and highlight the conceptual

differences between real-time databases and the other system classes. Further, we in-

spect the limitations of existing real-time databases and identify the design decisions that

cause them.

1.4.2 InvaliDB: A Scalable Approach for Opt-in Real-Time Queries

Next, we use our findings to create a system design for collection-based real-time queries

that avoids the bottlenecks present in the current state of the art: We propose

InvaliDB, a scalable system design that provides push-based real-time queries on top of a

pull-based database. InvaliDB sets itself apart from existing system designs through (1) a

7

1 Introduction

unique workload distribution scheme for linear scalability, (2) support for expressive real-

time queries including sorted filter queries, joins, and aggregations, (3) a pluggable query

engine to achieve database independence, and (4) a separation of concerns between the

primary storage subsystem and the subsystem for real-time features, effectively decou-

pling failure domains and enabling independent scaling for both.

1.4.3 An Implementation for Real-Time Queries on Top of MongoDB

To demonstrate InvaliDB’s implementation feasibility, we then describe an InvaliDB pro-

totype built with the distributed stream processor Storm [TTS+14] and the in-memory

store Redis [San18b] to provide real-time queries on top of the NoSQL database Mon-

goDB [Mon18e]. In order to prove both high performance and linear scalability of our pro-

totype implementation, we then conduct an extensive performance analysis in which we

measure response times and sustainable throughput for various workloads and differently

sized deployments: Our experiments indicate that InvaliDB’s real-time query performance

scales linearly with the number of matching nodes, both in terms of sustainable write

throughput and the number of concurrent real-time queries. Irrespective of the number

of nodes, InvaliDB exhibits consistently low latency even under high per-node load.

1.4.4 Integration With the Orestes Database Middleware

To demonstrate the practical applicability of our approach, we detail the integration of

our InvaliDB prototype into the Orestes database middleware [GBR14]. In this setup, In-

valiDB serves two purposes. First, it provides push-based real-time queries that would

be infeasible to provide for the middleware itself: Easy-to-use self-maintaining queries

lend themselves to applications that merely need up-to-date views of their critical data,

whereas the highly flexible event stream queries cater for more complex access patterns

such as user-defined real-time joins or aggregations. Second, InvaliDB enables consistent

query result caching through low-latency invalidation messages. Thus, InvaliDB improves

latency and throughput of pull-based queries by more than an order of magnitude.

In comparison to existing real-time databases, our integrated architecture separates sub-

systems for serving OLTP (online transaction processing) workloads and real-time queries.

The real-time subsystem is scaled independently from the remaining system components,

has its own failure domain, and therefore does not compromise overall availability or fault

tolerance. We further show it incurs only minimal overhead on the application server.

1.5 Thesis Outline

The remainder of this dissertation is structured as follows.

In Chapter 2, we discuss related work and provide background on concepts and tech-

nologies used in this thesis. First, we categorize different information system classes that

8

1.5 Thesis Outline

account for real-time data in different ways: traditional database management systems,

real-time databases, data streammanagement systems, and general-purpose stream pro-

cessors. We then examine the available push-based mechanisms in each of these classes.

We put an emphasis on two system classes that are in the focal point of this work: In order

to identify scaling limitations of today’s real-time query implementations, we conduct a

system survey of currently existing real-time databases. We further survey the state of

the art in general-purpose stream processing technology, because it is a major building

block of the system design developed in this work.

In Chapter 3, we present the conceptualization of InvaliDB, a system design that enables

push-based real-time queries on top of pull-based databases. We begin with a system-

atic overview and a brief discussion of the exhibited real-time query semantics and the

provided consistency guarantees. Next, we elaborate on the event layer which subsumes

the different communication paths to and from the real-time component. In particular,

we detail the different kinds of messages that are exchanged between end user devices,

application servers, the database, and the real-time component. Further on, we focus on

InvaliDB’s scheme for workload distribution across a cluster of machines. Specifically, we

describe howwrite streammonitoring and result maintenance are performed in distribut-

ed fashion for sorted and unsorted filter queries, aggregations, and joins. We also explore

the pluggable query engine and how it lets InvaliDB abstract from specificities such as the

database query language or any concrete data format.

In Chapter 4, we describe and evaluate our InvaliDB implementation. We first lay out re-

quirements to be met by the underlying processing engine and discuss reasons for choos-

ing Storm over possible alternatives. We then expand on the Redis-based event layer

implementation as well as the MongoDB-compatible query engine. As final and essential

part of this chapter, we present experimental results that attest consistent latency in the

realm of low milliseconds and high throughput under various workloads in deployments

with few and many nodes alike.

In Chapter 5, we elucidate theQuaestor architecture that ties our InvaliDB implementation

into the Orestes database middleware. First, we introduce Orestes and its characteristic

approach for caching dynamic data, covering data model, access control mechanisms,

and query API. The introduction closes with a description of how InvaliDB and Orestes

work together in the Quaestor architecture to provide client-facing real-time queries and

consistent query caching. We closely examine two different ways of accessing real-time

data in the integrated system, namely self-maintaining queries and event stream queries.

With several examples, we illustrate the semantics of both real-time query types and show

how they can be used to implement custom real-time aggregations and even real-time join

queries. Lastly, we quantify overall system performance in the context of query caching

and real-time queries as the two primary features that are enabled by InvaliDB.

The final Chapter 6 summarizes the main contributions and limitations, unfolds opportu-

nities for future work, and concludes.

9

1 Introduction

1.6 Previously Published Work

This dissertation contains revised material from previous publications in Chapter 1

([WGF+17] and [Win17b]), Chapter 2 ([WGW+18], [WGF+17], [Win17b], and [WGFR16]),

Chapter 3 ([WGF+17], [GSW+17], and [Win17b]), Chapter 4 ([GSW+17]), and

Chapter 5 ([GSW+17]). Publication [WRG18] is being finished at the time of writing and

contains material taken from this thesis, mainly from Chapter 1, Chapter 2, and Chapter 6.

Further, the InvaliDB prototype described in this thesis has been serving customers at the

company Baqend since July 2017. Chapters 3, 4, and 5 as well as Appendix D therefore

include revised examples and explanations that were made available in an online usage

guide4,5 before the publication of this thesis.

The following list shows publications made in the context of the presented work:

[WRG18] W®Ä¦�Ù�ã«, Wolfram ; R®ãã�Ù, Norbert ; G�ÝÝ�Ùã, Felix: Real-Time & Stream

Data Management: Push-Based Data in Research & Practice. Springer, book

to be published in late 20186

[WGW+18] W®Ä¦�Ù�ã«, Wolfram ; G�ÝÝ�Ùã, Felix ; W®ãã, Erik ; FÙ®��Ù®�«, Steffen ; R®ãã�Ù,

Norbert: Real-Time Data Management for Big Data. In: Proceedings of the

21th International Conference on Extending Database Technology, EDBT 2018,

Vienna, Austria, March 26-29, 2018, OpenProceedings.org, 2018

[GSW+17] G�ÝÝ�Ùã, Felix ; S�«��ÙÝ�«Ã®�ã, Michael ; W®Ä¦�Ù�ã«, Wolfram ; W®ãã, Erik ;

YÊÄ�»®, Eiko ; R®ãã�Ù, Norbert: Quaestor: Query Web Caching for Database-

as-a-Service Providers. In: Proceedings of the 43rd International Conference

on Very Large Data Bases (2017)

[WGF+17] W®Ä¦�Ù�ã«, Wolfram ; G�ÝÝ�Ùã, Felix ; FÙ®��Ù®�«, Steffen ; W®ãã, Erik ; R®ãã�Ù,

Norbert: The Case For Change Notifications in Pull-Based Databases. In:

Datenbanksysteme für Business, Technologie und Web (BTW 2017) - Work-

shopband, 2.-3. März 2017, Stuttgart, Germany, 2017

[GWR17] G�ÝÝ�Ùã, Felix ; W®Ä¦�Ù�ã«, Wolfram ; R®ãã�Ù, Norbert: Scalable Data Man-

agement: An In-Depth Tutorial on NoSQL Data Stores. In: Datenbanksysteme

für Business, Technologie und Web (BTW 2017) - Workshopband, 2.-3. März

2017, Stuttgart, Germany vol. P-266, GI, 2017 (LNI), pp. 399–402

[Win17b] W®Ä¦�Ù�ã«, Wolfram: Real-Time Databases Explained: Why Meteor, Re-

thinkDB, Parse and Firebase Don’t Scale. In: Baqend Tech Blog (2017).

https://medium.com/p/822ff87d2f87

4Guide on Baqend Real-Time Queries: https://www.baqend.com/guide/topics/realtime/.
5Guide on the Baqend WebSocket API: https://www.baqend.com/guide/websockets/.
6The book ended up being published in early 2019 (ISBN: 978–3–030–10554–9).

10

https://medium.com/p/822ff87d2f87
https://www.baqend.com/guide/topics/realtime/
https://www.baqend.com/guide/websockets/

1.6 Previously Published Work

[FWR17] FÙ®��Ù®�«, Steffen ; W®Ä¦�Ù�ã«, Wolfram ; R®ãã�Ù, Norbert: Coordinated

Omission in NoSQL Database Benchmarking. In: Datenbanksysteme für Busi-

ness, Technologie und Web (BTW 2017) - Workshopband, 2.-3. März 2017,

Stuttgart, Germany, 2017

[GWFR16] G�ÝÝ�Ùã, Felix ; W®Ä¦�Ù�ã«, Wolfram ; FÙ®��Ù®�«, Steffen ; R®ãã�Ù, Norbert:

NoSQL Database Systems: A Survey and Decision Guidance. In: Computer

Science - Research and Development (2016)

[WGFR16] W®Ä¦�Ù�ã«, Wolfram ; G�ÝÝ�Ùã, Felix ; FÙ®��Ù®�«, Steffen ; R®ãã�Ù, Norbert:

Real-time stream processing for Big Data. In: it - Information Technology 58

(2016), no. 4, 186–194.

[Win16] W®Ä¦�Ù�ã«, Wolfram: The Joy of Deploying Apache Storm on Docker Swarm.

In: highscalability.com (2016). http://highscalability.com/blog/2016/
4/25/the-joy-of-deploying-apache-storm-on-docker-swarm.html. –

Accessed: 2016-05-03

[GSW+15] G�ÝÝ�Ùã, Felix ; S�«��ÙÝ�«Ã®�ã, Michael ; W®Ä¦�Ù�ã«, Wolfram ; FÙ®��-

Ù®�«, Steffen ; R®ãã�Ù, Norbert: The Cache Sketch: Revisiting Expiration-

based Caching in the Age of Cloud Data Management. In: Datenbanksys-

teme für Business, Technologie und Web (BTW), 16. Fachtagung des GI-

Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 4.-6.3.2015 in

Hamburg, Germany. Proceedings, 2015, 53–72

[WFGR15] W®Ä¦�Ù�ã«, Wolfram ; FÙ®��Ù®�«, Steffen ; G�ÝÝ�Ùã, Felix ; R®ãã�Ù, Norbert:

Who Watches the Watchmen? On the Lack of Validation in NoSQL Bench-

marking. In: Datenbanksysteme für Business, Technologie und Web (BTW),

16. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssys-

teme” (DBIS), 4.-6.3.2015 in Hamburg, Germany. Proceedings, 2015, 351–360

[RHL+15] R®ãã�Ù, Norbert (ed.) ; H�ÄÙ®�«, Andreas (ed.) ; L�«Ä�Ù, Wolfgang (ed.) ;

T«ÊÙ, Andreas (ed.) ; FÙ®��Ù®�«, Steffen (ed.) ; W®Ä¦�Ù�ã«, Wolfram (ed.):

Datenbanksysteme für Business, Technologie und Web (BTW 2015) - Work-

shopband, 2.-3. März 2015, Hamburg, Germany. vol. 242. GI, 2015 (LNI). –

ISBN 978–3–88579–636–7

[SRS+15] S�®�½, Thomas (ed.) ; R®ãã�Ù, Norbert (ed.) ; S�«ÏÄ®Ä¦, Harald (ed.) ;

S�ãã½�Ù, Kai-Uwe (ed.) ; H�Ù��Ù, Theo (ed.) ; FÙ®��Ù®�«, Steffen (ed.) ;

W®Ä¦�Ù�ã«, Wolfram (ed.): Datenbanksysteme für Business, Technologie und

Web (BTW), 16. Fachtagung des GI-Fachbereichs ”Datenbanken und Informa-

tionssysteme” (DBIS), 4.-6.3.2015 in Hamburg, Germany. Proceedings. vol.

241. GI, 2015 (LNI). – ISBN 978–3–88579–635–0

11

http://highscalability.com/blog/2016/4/25/the-joy-of-deploying-apache-storm-on-docker-swarm.html
http://highscalability.com/blog/2016/4/25/the-joy-of-deploying-apache-storm-on-docker-swarm.html

1 Introduction

[WFR15] W®Ä¦�Ù�ã«, Wolfram ; FÙ®��Ù®�«, Steffen ; R®ãã�Ù, Norbert: BTW 2015 –

Jubiläum an der Waterkant. In: Datenbank-Spektrum 15 (2015), no. 2,

159–162.

[GFW+14] G�ÝÝ�Ùã, Felix ; FÙ®��Ù®�«, Steffen ; W®Ä¦�Ù�ã«, Wolfram ; S�«��ÙÝ�«Ã®�ã,

Michael ; R®ãã�Ù, Norbert: Towards a Scalable and Unified REST API for Cloud

Data Stores. In: 44. Jahrestagung der Gesellschaft für Informatik, Informatik

2014, Big Data - Komplexität meistern, 22.-26. September 2014 in Stuttgart,

Deutschland, 2014, 723–734

[FWGR14] FÙ®��Ù®�«, Steffen ; W®Ä¦�Ù�ã«, Wolfram ; G�ÝÝ�Ùã, Felix ; R®ãã�Ù, Norbert:

NoSQL OLTP Benchmarking: A Survey. In: 44. Jahrestagung der Gesellschaft

für Informatik, Informatik 2014, Big Data - Komplexität meistern, 22.-26.

September 2014 in Stuttgart, Deutschland, 2014, 693–704

12

Background & Related Work 2
“We are stuck with technology when what

we really want is just stuff that works.”

—Douglas Adams

In the first chapter, we introduced real-time databases as systems that take the middle

ground between traditional database systems and data stream management systems. In

this chapter, we further explore why real-time databases deserve distinction in a separate

system class. To this end, we compare push-based real-time queries against the push-

based mechanisms for data access available in other information systems. In doing so, we

uncover a mismatch between functionality desired by application developers on the one

side and features actually provided by state-of-the-art systems on the other.

In Section 2.1, we delineate real-time databases from traditional database management

systems, data stream management systems, and general-purpose stream processing en-

gines. We do this by considering their individual notions of data and their respectively

facilitated means of data retrieval. In the following sections, we examine the different

mechanisms for push-based data access available in each of these system classes, starting

with traditional (relational) database systems in Section 2.2. Next, we dissect the real-time

query implementations of the most prominent real-time databases in Section 2.3. Thus,

we uncover both deficiencies in the individual implementations and scale-prohibitive limi-

tations in their respective designs. Our findings provide valuable insights into what design

decisions should be avoided in a scalable real-time database architecture (cf. Chapter 3).

In Section 2.4, we then focus on data streammanagement systems which do not promote

collection-based semantics, but instead view data as potentially infinite streams of infor-

mation. Subsequently in Section 2.5, we survey general-purpose stream processing tech-

nology and analyze different systems with respect to their capabilities. In Section 2.6, we

finally sum up our findings and conclude that all current push-based query implementa-

tions are either based on streaming semantics, are severely limited in their expressiveness,

are incompatible with legacy systems, or do not scale beyond trivial workloads.

13

2 Background & Related Work

2.1 Systems for Pull-Based & Push-Based Data Access

In the first chapter, we highlighted the individual characteristics of pull-based and push-

based data access: A pull-based query assembles data from a bounded data repository

and completes by returning data once, whereas a push-based query processes a concep-

tually unbounded stream of information to generate incremental output over time. Given

these fundamental differences, the design of any data management system reflects a bias

towards one or the other; for example, while databases do support push-based access

to a certain degree (e.g. through triggers), they are clearly geared towards efficiency for

pull-based data retrieval.

pull-based push-based

Database

Management

sta�c

collec�ons

Stream

Processing

unstructured
streams

Data Stream

Management

structured
streams

Real-Time

Databases

evolving
collec�ons

Figure 2.1: Different classes of data management systems and the access patterns they

support.

We argue that systems for data management can be classified by the way they facilitate

access to data as illustrated in Figure 2.1. At the one extreme, there are traditional da-

tabases1 which represent snapshots of domain knowledge that are the basis of all que-

ries. At the other extreme, there are general-purpose stream processing engines which

are designed to generate output from conceptually unbounded and arbitrarily structured

ephemeral data streams. Real-time databases and data stream management systems

both stand in the middle, but adhere to different semantics: Real-time databases work

on evolving collections that are distinguished from their static counterparts (i.e. from da-

tabase collections) through continuous integration of updates over time, enabling push-

based real-time queries. Data stream management systems provide APIs to query data

streams, for example, by applying filters to incoming data or by computing rolling aggre-

gations and joins over configurable time windows.

1While we focus on relational databases in our discussion, a preference for pull-based over push-based

access is also evident in graph databases [JPNR17], object databases [Wie15, Ch. 9], and other databases

with non-relational data models [OM10, Ch. 5, Sec. I].

14

2.1 Systems for Pull-Based & Push-Based Data Access

2.1.1 Collections vs. Streams

While a database collection represents the current state of the application domain, a data

stream rather encapsulates recent change. For an illustration of the difference between

the semantics of collections and streams, consider the example data given in Table 2.1

that shows two different representations of an application for user account management.

The stream-based representation (a) provides a sequential view on all user actions, but

does not retain them indefinitely: Events are available for a certain time window (framed

records), but are discarded eventually (lightly shaded records). This view on the data pro-

motes use cases that require notifications, e.g. for individual users logging in or out. How-

ever, the system only operates on a suffix and not the entirety of event history. Therefore,

queries do not reflect actions that happened long ago: For example, it is not possible

to produce a list of all registered users sorted by name or by date of first login, because

relevant data is beyond the query’s time horizon. In order to serve historical data, the

ephemeral events have to be applied to a persistent representation of application state.

A database collection (b) reflects all data ever written and thus enables queries such as

the above-mentioned one. Since collection-based ad hoc queries do not capture events

that arrive after the query, though, traditional databases do not propagate informational

updates to the client.

Timestamp Name Action

2017-05-05 07h49 Jane login
2017-05-05 08h52 Jane logout
2017-05-06 08h08 Jill login
2017-05-06 09h32 Ken login

↓ 2017-05-06 09h47 Jill logout
2017-05-06 10h11 Bob login

...
...

...

(a) A data stream primarily captures

changes in application state.

Name First Login Last Login Logged In

Bob 2017-01-15 2017-05-06 true

Erk 2017-01-26 2017-01-26 false

Jane 2017-02-12 2017-05-05 false

Jill 2016-08-02 2017-05-06 true

Joy 2017-03-09 2017-04-24 false

Ken 2017-05-05 2017-05-06 false

Lee 2016-03-01 2016-04-17 false

Tim 2017-02-23 2017-05-05 false

(b) A database collection provides access to the cur-

rent state of the application.

Table 2.1: Streams and collections promote different perspectives on data.

User account management is just one example of an application domain that requires

some formof permanent data storage to answer queries regarding the current state of the

world. Given a database’s limitation to mainly pull-based access, though, real-time user

interfaces are hard to build: One possibility is to reevaluate a given collection-based query

from time to time which is inefficient and introduces staleness in the order of the refresh

interval (cf. poll-and-diff in Section 2.3.1). Another approach is to merge results from

collection-based and stream-based queries; thus, the application is effectively burdened

with the task of view maintenance which is complex an error-prone (cf. Section 2.2.3).

15

2 Background & Related Work

Real-time databases aim to close the gap between both paradigms by providing collection-

based semantics for pull-based and push-based queries alike.

In the rest of this chapter, we provide an overview over push-based query mechanisms in

datamanagement systems available today. In doing so, we show conclusively that InvaliDB

is the only generic system design that combines the push-based access paradigm with

expressive collection-based queries at scale.

2.2 Database Management

The first databases were hierarchical and network databases [TL76], developed during

the 1960s. They exposed procedural query interfaces (as opposed to descriptive ones),

so that accessing specific information in one of these systems was similar to navigating to

a specific file within a file system [FS76]. Early query languages were severely limited in

expressiveness and relied on high-level programming languages for scanning and search

[Cod71, Sec. 1.2]. Similarly, consistency checks were mostly enforced within client appli-

cations and revolved around conventions and best practices [Oll06]. In consequence, data

integrity was difficult to maintain and reorganizing or scaling a database could be disrup-

tive for existing client applications. During the 1970s, standards in database management

(especially regarding query languages) [FS76] and data independence received more at-

tention within the database community [Cod71, Sec. 2]. The proposition of the relational

model [Cod70] then eventually led to a descriptive query language that evolved into the

Structured Query Language (SQL) [CB74].

2.2.1 Triggers & Active Databases

Relational databases were initially designed as passive repositories that accept, modify,

or retrieve structured data as a direct response to an explicit request [Cod82]. Acknowl-

edging the need to model application behavior in addition to the structural aspects of a

domain, database triggerswere the first activemechanisms to be proposed for relational

database systems [EC75] that became part of the SQL standard [CPM96]. Essentially, trig-

gers are procedures that are implicitly invoked on database events such as insert, update,

or delete operations or on system events like errors or user logins [Ora16, Sec. 3.2]. As

such, they are primarily used as a means to enforce integrity or to propagate writes on

specific entities to depending entities [Sto86]. In an effort to facilitate more sophisticated

behavioral semantics, event-condition-action (ECA) rules [SKM92] were introduced to

database systems during the 1980s and 1990s. ECA rules capture more complex events

(cf. Section 2.4.4), for example with temporal components (e.g. a fixed date or a time

period) or compositions (e.g. disjunctions or sequences of specific occurrences) [Cha95].

Further, execution of an action is not only tied to the occurrence of a specified event, but

typically also depends on fulfillment of a corresponding condition, for example a predicate

16

2.2 Database Management

over database state or the triggering event’s net effect (i.e. the difference between state

before and after the event) [HW93, Sec. 4.1].

The usefulness of active databases [Mor83, PD99], i.e. database systems with advanced

active features, is often illustrated with applications similar to those that motivate our

work: Typical examples are materialized view maintenance [SJGP90] and real-time user

interface (UI) updates [DJPQ94]. Common to all centralized active database implementa-

tions, however, is that database-internal activemechanisms quickly become performance

bottlenecks [SD95]. Therefore, some approaches restrict semantics to avoid infeasible

scenarios; for example, Alert [SPAM91] supports active rules exclusively over append-

only tables2. Comparable sacrifices are made by real-time (active) databases [PSS+93,

RSS+96]. The underlying notion of the term “real-time” in this context refers to compli-

ance with time constraints, whereas the databases in the focal point of this thesis are

“real-time” in the sense that they detect and propagate updated information with low la-

tency (see term disambiguation in Section 1.1). In order to deliver predictable execution

times, real-time (active) databases relax consistency guarantees, reduce concurrency, or

restrict query and rule expressiveness [Eri98]. To this day, active databasemechanisms re-

main prohibitive for scalability and thus even modern database systems are documented

to display poor latency and throughput when active features are used at scale (see for

example [BMH+16, p. 13]). Implementing active facilities on top of an existing database

system (as opposed to implementing them as an internal component) is usually even less

efficient [GGD95] [SKM92, Sec. 4.1] and significantly more difficult, as the information re-

quired for event detection is often only available within the database [PD99, Sec. 7.1].

2.2.2 Change Data Capture, Cache Coherence & Time Series Data

Given the limitations of active mechanisms within database systems, more generic ap-

proaches have been sought to make informational updates available outside of the data-

base system. Systems for change data capture (CDC) [Kle16, Ch. 11] extract data from

the primary storage system and propagate it to other systems, e.g. for replication pur-

poses, invalidation of cached views, or for custom data processing pipelines. Some sys-

tems use trigger-based replication, i.e. they employ activemechanisms to persist updates

to auxiliary tables which, in turn, are then polled periodically by downstream systems.

For instance, Databus extracts data through this pattern from Oracle databases [DBS+12,

Sec. 4.1] and Bucardo [Mul14, Mul11] extracts data from PostgreSQL through triggers

and notification listeners (cf. page 23). However, the auxiliary tables dedicated to storing

change information can become write bottlenecks and using triggers for data replication

is rather error-prone in itself because of the complexity involved in replicating multiple

tables or ensuring transactional visibility of updates [DBS+12]. To avoid these difficulties,

2Ruling out the possibility of updated or deleted recordsmakes detection of newmatches significantly more

efficient: In terms of the example in Section 1.1, only add events can occur, whereas change and remove

events are impossible.

17

2 Background & Related Work

some systems attach to the database using lower-level database protocols: As one ex-

ample, Databus hooks into MySQL’s storage engine API to obtain a change log [DBS+12,

Sec. 4.2]. There are also various products accompanying commercial databases that im-

plement inter-database replication using proprietary protocols (e.g. Oracle’s Active Data

Guard [Ora15a]) or provide database change logs for external applications (e.g. Oracle’s

GoldenGate [Ora15b] or IBM’s InfoSphere CDC [IBM11]). Even though some systems pro-

vide simple mechanisms to filter extracted data by a user-defined predicate (e.g. Databus

[DBS+12, Sec. 4.3]), more complex transformations or processing is usually performed in

dedicated (stream processing) systems such as the ones discussed in Section 2.4 and Sec-

tion 2.5. Our real-time database design InvaliDB requires a mechanism for change data

capture to make database writes available for query matching; our prototype implemen-

tation discussed in Chapter 4 employs a custom capturing mechanism, though.

Change data capture can be used to feed distributed caches or memory grids which of-

fload read and write workload from the main database system or perform processing

tasks such as data transformation. For example, systems like Oracle Cache Coherence

[BMH+16], Hazelcast [L+17], or Ignite [Gri17] are deployed as server clusters which act as

write-through or write-behind caches between client applications and the primary data

storage. The cached entities are stored in a derived format (e.g. Java objects) and relate

to the application data model rather than the underlying database schema. Use of filter

queries is discouraged, because they are processed node-locally and thus require heavy-

weight scatter-gather patterns for result assembly (see for example Hazelcast [L+17, Sec.

5.14] or Oracle Cache Coherence [BMH+16, p. 5]). Even though these systems provide

limited support for SQL or SQL-like query languages, data is usually accessed by primary

key and in a programmatic fashion, i.e. through program code. Under the term con-

tinuous queries [Haz17] [R+11, Ch. 23] [WBL+07], some systems offer push-based filter

queries with stream-based semantics3 or even collection-based static filter predicates and

result ordering (e.g. Oracle Cache Coherence [R+14a, R+14b]). Thus, these systems pro-

vide real-time database functionality like the systems in the focus of this thesis. However,

we are not aware of any continuous query implementation that has a pluggable query

engine or supports joins.

Time series databases [DF14] (e.g. OpenTSDB [SDSB18] or DalmatinerDB [Pro18]) are

specialized in storing and querying conceptually infinite sequences of events as a func-

tion of their time of occurrence, for example sensor data indexed by time. While some of

them (e.g. InfluxDB [Inf16]) are capable of rolling averages or other continuous aggrega-

tions [BD91], they are typically employed for analytic queries, or downsampling streams of

information; their capabilities do not extend to change notifications akin to the real-time

queries focused in this thesis.

3When a matching record leaves a query result, Ignite does not notify listening clients [Ign17].

18

2.2 Database Management

2.2.3 Materialized Views

Since results of complex queries cannot be maintained up-to-date efficiently by the

database-external systems discussed above, sophisticated mechanisms for database-

internal query result caching have been developed. The idea behind materialized views

[BC79] [CY12] is to precompute the result of particularly expensive queries, so that they

do not have to be evaluated repeatedly, but can be served immediately when requested.

Logical views, in contrast, are rewritten to queries that have to be evaluated on every re-

quest. Thus, materialized views are significantly faster to access than logical views. How-

ever, this read time performance advantage comes at a hefty cost: In order to guarantee

freshness of the cached query result, changes4 have to be detected and applied at write

time. This challenge is equivalent to the challenge of providing real-time queries as de-

scribed in Section 1.1.

View maintenance algorithms can be classified according to whether they assume full or

only partial access to the underlying database tables [GM99]. Recomputation of a query

result is conceptually straightforward, applicable to arbitrarily complex queries, and re-

quires unrestricted access to the base data. While queries with relatively stable results

can theoretically be maintained fresh and consistent by just recomputing the result af-

ter every invalidating write operation, it is difficult to distinguish invalidating writes from

those that can be safely ignored: A host of literature is dedicated to recognizing updates

that change the query result (relevant updates) [BLT86] [BCL89] [Elk90] [LS93], so that re-

computation can be avoided unless required for consistency. In order to address queries

that evolve more quickly or for which the base data is not accessible, incremental view

maintenance [Vis96] avoids recomputation altogether by detecting and applying changes

directly to the materialized result. Even though incremental maintenance of query re-

sults has been studied for other data models as well (e.g. object databases [Nak01]), the

majority of literature refers to relational databases [CY12, GM99]. To decouple the main-

tenance process from access to the base data, self-maintainability [GJSM96] has received

particular attention in the context of materialized views: It postulates that a view can be

kept up-to-date using only the view contents and the incoming modifications (i.e. the da-

tabase writes). In practice, many queries are not self-maintainable per se, but only with

respect to specific modifications at runtime or with the help of auxiliary data [QGMW96].

For example, sorted queries are not inherently self-maintainable with respect to deletes

and updates, because removing one item from the result may cause an unrelated item

to enter the result from beyond limit; it is possible, however, to make a top-k query self-

maintainable with respect to a certain number of updates or deletes by initially requesting

a top-k′ result where k′ > k [YYY+03]. Thus, there is often a trade-off between the useful-

4In the context of view maintenance in relational (SQL) databases, it is not only important to update a

materialized view whenever records in the corresponding base tables are written, but also when the view

definition is altered or when one of the base table’s schema is modified. We do not go into detail here

in order to keep the focus on result maintenance and refer to [CY12, Sec. 2.5.1] and [NLR98] for more

information.

19

2 Background & Related Work

ness of additional auxiliary data duringmaintenance and the costs of initially assembling it.

Taking the middle ground between recomputation and incremental maintenance, some

algorithms only materialize and incrementally maintain auxiliary data (e.g. a subquery re-

sult or a join index) instead of the actual result [BM90]. This kind of partial maintenance

of a materialized view still necessitates reevaluating the query to refresh, but makes this

process very cheap. At the same time, the maintained auxiliary data can be used by the

database optimizer to accelerate other queries as well [Vis98]. A materialized view can

thus be understood as a data structure that speeds up database reads, similar to a data-

base index. Since both recomputation and incremental maintenance of a query result can

be very resource-intensive, maintaining very complex or a great number of materialized

views is sometimes performed under relaxed consistency guarantees to allow distributing

or deferring themaintenance process [ASC+09]: When stale data is tolerable, incremental

maintenance can be performed through asynchronous and throughput-optimized batch

updates [SBLC00]; likewise, recomputation can be deferred to save resources. When ta-

bles are spread or sharded across different physical nodes, materialized views are typically

maintained in deferred fashion, because the overhead for transferring data between dif-

ferent sites is significant and sometimes prohibitive for immediate change propagation

[LYC+00]. Maintenance ofmaterialized views in distributed environments has been re-

searched for decades, specifically in the context of data warehousing where queries tend

to be particularly expensive to compute [CBHB09] [BKS00] [SP89]. Instead of maintaining

individual queries or indices, entire database partitions are sometimesmirrored to remote

sites in these scenarios, so that queries can be executed locally (i.e. at the replica) that

would otherwise have to be executed remotely (i.e. at the primary). In these distributed

setups, the transitions between indexing, materialized view maintenance, and database

replication can therefore be fluent.

While the algorithms employed for materialized viewmaintenance are conceptually iden-

tical to the ones applied in real-time databases, materialized views are used exclusively

to improve pull-based query performance. Building push-based mechanisms on top us-

ing triggers is possible [LG+03, Sec. 16–100], but at least as complex and error-prone

as an implementation on top of common database tables. Further, materialized views in

monolithic databases are heavyweight processes that have to be carefully planned in ac-

cordance with overall system resources [DA09]. The real-time queries addressed by this

thesis, in contrast, are executed by arbitrary end users; a real-time database must be able

to support thousands of concurrent real-time queries reliably and at all times (e.g. un-

der peak throughput). Nonetheless, the concepts behind maintaining a materialized view

also apply to maintenance of real-time queries; in particular, the real-time database de-

sign described in Chapter 3 adheres to the same principles as algorithms for incremental

maintenance in relational database systems. In the context of this work, specifically, we

use existing approaches for top-k query maintenance [YYY+03] to enable sorted real-time

queries (see Section 3.3.2). We thus only consider queries that are self-maintainable at

20

2.2 Database Management

runtime without accessing the base data. Further, we avoid irrelevant updates by identi-

fying obvious mismatches as early and cheaply as possible (cf. [Elk90]).

2.2.4 Change Notifications

Using mechanisms related to change detection in materialized views [Mic17a], some rela-

tional database systems have the ability to send notifications when previously requested

data has changed or might have changed. Most implementations exhibit occasional false

positives, i.e. change notifications may be sent without an actual data change occurring

[Pos17][Mic17d][MK+17]. In contrast to continuous query subscriptions in stream man-

agement systems or real-time databases, change notification messages in relational data-

base systems do not carry the changed data itself, but only identifiers (e.g. row IDs, table

names or query identifiers) and some information on what happened (e.g. the type of

operation or a text message). Therefore, supposedly changed data items or queries have

to be requested again after a notification has been received in order tomake sure the local

copy is still up-to-date [Pos17, Mic17c][MK+17, Sec. 15.5].

Like materialized views, change notifications serve the overall purpose of improving ad

hoc query performance in domains where updates are infrequent [Mic17b][MK+17, Sec.

15.5]. As typical use cases, vendors describe three-tier applications where data is cached

in the middle tier and only few queries have to be monitored for changes [MK+17, Sec.

15.7.7]. When receiving user requests, the middle-tier application servers respond on

the basis of their local copies of the data which they refresh asynchronously when receiv-

ing a notification [Mic17e] [MK+17, Sec. 15.5]. To receive change notifications, appli-

cation servers can subscribe to specific data items or queries, thus launching a process

at the database that monitors ongoing operations and detects relevant changes. Since

monitoring a query for changes incurs additional work on write operations, more than a

few concurrently active registered queriesmay impair OLTP throughput [Mic17b][MK+17,

Sec. 15.7.7]. For scenarios with high throughput or many unique queries, some vendors

explicitly discourage using their notification feature and instead recommend employing

workarounds, for example using triggers or implementing sophisticated middleware for

change detection [Mic17b]. Several variants of this notification mechanism exist and the

individual implementations exhibit partly substantial differences.

Oracle 12c offers two different change notification mechanisms: Object5 Change Noti-

fications and Query Result Change Notifications. When a query is registered for Object

Change Notifications (OCNs), a notification will be sent for every write operation in one of

the query’s underlying tables [MK+17, Example 15–1]. Since only the target collection of

a write operation (and specifically not the query predicate) is considered, the monitoring

process associated with a single OCN has a low performance footprint. In consequence,

though, the generated change notifications may or may not bear any relevance to the

5In literature and this thesis, the terms “object” and “record” both refer to an entity representation.

21

2 Background & Related Work

registered query. For example, when registering a highly selective query on a frequently

updated table, the majority of change notifications might be false positives, because the

updated records do not relate to the query result most of the time. In such a scenario,

the receiver of an OCN therefore has to weigh potential staleness (through disregarding

a notification and thus not refreshing a query result that actually has changed) against

potential inefficiency (through refreshing a query result that has actually not changed).

For applications that cannot easily tolerate the high chance of false positives that comes

with OCNs, the more concise Query Result Change Notifications (QRCNs) can be used.

Depending on the concrete query and the mode of operation, QRCNs can reduce or even

eliminate the risk of receiving false positives. In comparison to OCNs, however, they are

also more expensive to provide, because they necessitate (1) deriving6 before-images of

relevant data items and (2) evaluating the query with respect to both before- and after-

images7 of relevant data items [WBL+07]. There are two modes of operation for QRCNs:

In Guaranteed Mode, QRCNs are sent when and only when the registered query’s result

was altered; in other words, there are no false positives in Guaranteed Mode. This mode

of operation is the default. In Best-Effort Mode, false positives are possible, because the

system simplifies the monitoring process by two aspects: First, a simplified version of the

registered query is monitored instead of the registered query itself. Thus, a change of

the registered query always entails a notification, but a notification may also be sent for

an update that only affects the simplified query, but not the originally registered query.

As a second simplification, notifications in Best-Effort Mode are generated considering in-

dividual operations and not transactional effects. Thus, a notification may be generated

in response to an individual operation, even though it would never have become visi-

ble8. There are a range of queries that are not eligible for Guaranteed Mode, but only for

Best-Effort Mode; for example, a query cannot be registered in GuaranteedMode when it

contains an EXISTS condition, an aggregation (e.g. MIN, MAX, or SUM), an arithmetic func-

tion (e.g. ABS or SQRT), a string function (e.g. SUBSTR), a pattern matching condition (e.g.

LIKE), or when it contains an ORDER BY or GROUP BY statement or uses any join other

than inner equi-join [VSGC10, 0025] [MK+17, Sec. 15.7.5.2]. Some queries are not sup-

ported for QRCNs in either mode of operation, for example queries that include a COUNT
aggregation or queries that reference views or columns of types other than NUMBER or

VARCHAR2 [MK+17, Sections 15.7.5.1 and 15.7.5.3]. It is important to note that eligibility

for either mode of operation does not depend on the query specified by the user, but the

6According to [WBL+07, Sec. 4], changes are retrieved from querying transaction undo/redo logs which is

infeasible unless done in large batches: In an experimental evaluation, performance increased by a factor

of 35 when switching from near-realtime change computation (after every 10 transactions) to batched

change computation (after every 2 000 transactions) [WBL+07, Sec. 10].
7In the context of a write operation, we use the terms before-image and after-image to denote the fully

specified representations of a written entity immediately before and after the write operation has been

applied, respectively.
8As an example, consider a transaction that increases an employee’s salary by some amount and later de-

creases it by the same amount. In Best-Effort Mode, two notifications might be generated, even though

the transaction effectively does not change any data and thus does not warrant any notification at all.

22

2.2 Database Management

query that is actually executed. Thus, registering an originally supported query for QRCN

may still fail, for example when the query optimizer rewrites the query to use a material-

ized view [MK+17, Sec. 15.7.5.3]. Change notifications are among the “features that are

not available or are restricted for a multi-tenant container database” in Oracle databases

[Ora17b, Sec. 2.2.1].

Microsoft SQL Server provides change notifications roughly comparable to Oracle’s QR-

CNs in Best-Effort Mode: In SQL Server, false positives cannot be excluded for any regis-

tered query [Mic17c]. The range of supported queries appears somewhat less wide, be-

cause SQL Server denies notifications for unsupported query types altogether; in contrast

to Oracle databases, Microsoft SQL Server does not simplify unsupported query types to

enable query change notifications. Change notifications in Microsoft SQL Server are not

available for queries that reference a view, use subqueries, outer joins, or self-joins, in-

clude the UNION operator, the DISTINCT keyword, certain aggregates like AVG, MAX, and
MIN, or use * as column identifier [Mic17a]. As another distinction to Oracle’s notification

mechanism, a subscription in Microsoft SQL Server is canceled immediately on notifica-

tion, so that ongoing result maintenance requires creating a new subscription and thus

reexecuting the query in question whenever a notification has been received [HG17].

PostgreSQL provides only very basic support for notifications with an expressiveness that

is roughly comparable to Oracles Object Change Notifications. Change notifications in

PostgreSQL are not generated for specific queries, but for changes on particular tables:

Notification messages essentially tell the user that a write operation has occurred on the

table that was specified on subscription. To distinguish different kinds of change, varying

payload strings can be included in the notification messages [Pos17].

In summary, change notifications neither provide real-time queries out-of-the-box nor can

they be used to implement client-facing real-time queries in an efficient way, because

the only way to do so involves recomputing the query result on every change notifica-

tion. Further, using change notifications quickly becomes prohibitive, because they impair

write throughput, incur additional database round-trips for fetching invalidated results,

and (depending on the concrete system) sometimes even demand reestablishing a query

subscription after each change notification.

2.2.5 Database Systems: Summary & Discussion

Traditional databases offer limited capabilities to push information to clients. Triggers, ECA

rules, and change notifications cannot be used for proactive data delivery, unless brittle

workarounds are employed. A few systems even provide continuous query capabilities

that resemble our notion of real-time queries, but these systems are limited in their ex-

pressiveness and bound to specific query languages. While materialized views employ

mechanisms that are suitable for providing real-time queries, they are exclusively used to

increase pull-based query performance.

23

2 Background & Related Work

2.3 Real-Time Databases

While traditional databases are targeted at providing a consistent snapshot of the appli-

cation domain, real-time databases acknowledge that data may evolve. Both the archi-

tectures and client APIs of real-time databases reflect that facts can change over time and

that the system may have to enhance or correct issued information. Real-time databases

may allow snapshot (one-time) queries over database collections or they may provide in-

terfaces to directly access the stream of update operations. But their defining property

is that queries are formulated as though they were evaluated on static data collections,

even when their response is a continuous stream of updates to the query result.

In this section, we scrutinize the current state of the art in real-timedatabaseswith respect

to how the individual systems provide real-time queries. In doing so, we uncover scaling

limitations inherent to their respective designs. This section contains revised material

from [Win17b].

2.3.1 Meteor

Meteor [Met18] is a JavaScript app development framework that targets reactive apps and

websites. It uses MongoDB as its internal data storage and therefore inherits its query ex-

pressiveness while adding self-maintaining and event streamqueries on top. Interestingly,

Meteor offers two different implementations to detect relevant changes to a query result:

The original approach (changemonitoring + poll-and-diff) combinesmonitoring local write

operations within the application server and periodic query reevaluation; it is only used as

fallback nowadays. The more recent (and current default) implementation (oplog tailing)

relies on monitoring MongoDB’s replication log.

Change Monitoring + Poll-and-Diff. As illustrated in Figure 2.2, Meteor’s original ap-

proach towards real-timequeries combines twomechanisms that detect changes received

by the server itself (blue) and those received by another server (red), respectively: First,

a Meteor application server performs local change monitoring to discover state changes

that are relevant for currently active real-time queries. Thus, a newly inserted record

(1) is not only forwarded to the database (2), but is also translated to a corresponding

query change delta for every matching real-time query (3). However, change monitoring

alone is not sufficient in multi-server deployments: Server-local monitoring done within

the server on the left (A), for example, will not capture write operations received by the

server on the right (B). To compensate for this fact, Meteor employs a second strategy

called poll-and-diff which essentially reevaluates a real-time query periodically (“poll”),

computes relative changes to the locally maintained result (“diff”), and then sends them

to the client (4). When these two strategies are combined, the client will receive a rel-

evant update either immediately through change monitoring (red) or after a short delay

upon discovery through poll-and-diff (blue).

24

2.3 Real-Time Databases

From the client perspective, poll-and-diff has the obvious disadvantage of potential stal-

eness windows bounded by the polling interval (default: 10 seconds). With unfortunate

timing, result updates can also go completely unnoticed; for example, an item entering

and leaving the result between query polls will not be registered at all. But even if an ap-

plication can tolerate multi-second lags and missed notifications, poll-and-diff becomes

infeasible when many real-time queries are active concurrently. This is because each one

of them induces processing overhead on the database system through periodic polling. In

numbers, 1 000 query subscriptions result in an average of 100 queries per second whose

results have to be (1) assembled and (2) serialized, then (3) be sent to the application

server where they are (4) deserialized again, so that they can finally (5) be analyzed for

relevant changes. While this may be tractable in some cases, it quickly gets prohibitively

expensive when results are large. Further, it should be pointed out that this is just what

happens in an otherwise idle system, i.e. when no data is being written whatsoever. The

situation gets worse when write throughput increases, because the database has less

spare resources to serve periodic poll queries and because each application server has

to spend more CPU time on change monitoring – which becomes more demanding with

an increasing number of active real-time queries as well. It should be noted that poll-and-

diff works for arbitrary queries, since the pull-based query mechanisms of the underlying

database are used. At the same time, though, it is important to understand that real-time

queries that rely exclusively on poll-and-diff (i.e. queries that are not supported by change

monitoring) implicitly expose latency in the order of the polling interval.

database
(MongoDB)

real-�me client app server B4

1

23

app server A }{

Figure 2.2: Poll-and-diff: Meteor executes a query again and again to discover changes.

Oplog Tailing. Seeing the considerable downsides of poll-and-diff, the Meteor devel-

opers came up with an alternative approach that has a different set of trade-offs. As de-

scribed above, aMeteor application server is able tomaintain a query result by itself, given

it receives all relevant write operations. However, since a write operation is only visible

to the application server that receives it, multi-server deployments require a mechanism

25

2 Background & Related Work

that informs all servers about write operations received by the others. The poll-and-diff

approach accomplishes this, but at the same time introduces high base load by executing

the same query over and over. Acknowledging this problem, oplog tailingwas introduced

as an alternative solution that uses MongoDB’s replication protocol to feed the full write

stream to every application server.

Primary A Primary B Primary C

Figure 2.3: With oplog tailing, each Meteor application server receives all MongoDB

writes: Thus, OLTP workload is sharded, but real-time workload is not.

MongoDBachieveswrite scalability by distributingdata across different partitions (shards).

In a production deployment, data within a partition is kept redundantly in a so-called

replica set: Write operations within a partition are first applied by the primary and then

delivered to the secondaries. Internally, the primary logs all writes in a capped collection

– a ring buffer called the oplog – and the secondaries are following along using tailable

cursors [Mon17b]. The basic idea of oplog tailing [Col16] is to have theMeteor application

servers hook into MongoDB replication as though they were secondaries. As illustrated in

Figure 2.3, each application server taps into each primary’s oplog and thus will never miss

a single update operation. This setup makes periodic polling obsolete and eliminates the

staleness inherent to poll-and-diff. But in doing so, it introduces the application server as

a bottleneck for write throughput. Because this is where Meteor deviates from the way

that MongoDB uses the oplog: While each MongoDB secondary has to keep up with only

one primary, each Meteor server has to keep up with the combined throughput of the

entire MongoDB cluster. As a consequence, MongoDB can scale with write throughput,

but Meteor cannot.

26

2.3 Real-Time Databases

This is not just a theoretical limitation, but a critical problem for production deployments:

It is a known issue [W+14] that load spikes can saturate and take down a Meteor ap-

plication server when oplog tailing is enabled [M+14]. To address this particular issue,

poll-and-diff is used as a fallback strategy [Met15] for oplog tailing whenever an applica-

tion server falls behind in monitoring the change log. But this is obviously associated with

the cost of potential staleness and becomes infeasible as well when there are more than

a few active real-time queries [K+15]. To leverage maximum performance, it is therefore

officially recommended to carefully evaluate – on a per-query basis – whether to enable

or disable oplog tailing [Met16].

Par�al update from oplog:
{ name: „Bobby“, score: 500 } // game: ???

Baccarat players sorted by high-score

1. { name: „Joy“, game: „baccarat“, score: 100 }
2. { name: „Tim“, game: „baccarat“, score: 90 }
3. { name: „Lee“, game: „baccarat“, score: 80 }

Figure 2.4: Information delivered through the oplog can be insufficient to decide whether

or not an update has an effect on a given query’s result.

As a side note, oplog tailing does not eliminate the need to contact the database com-

pletely. For an example, consider a real-time query for the top-3 baccarat players as

depicted in Figure 2.4. The maintaining server receives a partial update to a previously

unknown player: According to the received update, Bobby has a higher score than any

baccarat player. However, it is unknown whether Bobby is a baccarat player to begin with,

because the oplog does not tell: It only contains information on Bobby’s new score (500),
but not the associated game. In consequence, theMeteor application server has to query

MongoDB for Bobby’s associated game in order to determinewhether the query is affected

by Bobby’s new high score.

In summary, Meteor offers two implementations of real-time queries: Poll-and-diff facil-

itates expressive real-time queries, but can be laggy and only works when few real-time

queries are active. Oplog tailing is viable in the presence of many concurrent real-time

queries, but is only feasible for low write throughput, because it effectively circumvents

the sharding mechanism of the underlying database. Neither approach works for many

users and high throughput.

27

2 Background & Related Work

2.3.2 RethinkDB

RethinkDB [Ret16] is a JSON document store with query expressiveness comparable to

MongoDB’s. However, RethinkDB is a completely independent project that seems more

ambitious than MongoDB in some areas, offering advanced features like pull-based θ-join

queries [Mar16]. Among the more interesting specialties of RethinkDB are changefeeds:

real-time queries with an event stream query interface.

Changefeeds. RethinkDB’s technique of change discovery is very similar to Meteor’s

oplog tailing: Clients do not communicate with the database nodes directly, but instead

with the application server [Mew16]; each application server runs an instance of the Re-

thinkDB proxy, a process that relays communication between clients and the RethinkDB

cluster. A client registers a real-time query at a RethinkDB proxy and then receives the

initial result and a stream of change deltas: the changefeed. The RethinkDB proxy, in turn,

queries the database once on subscription and subsequentlymonitors all write operations

from the RethinkDB cluster to maintain the real-time query result.

Just likeMeteor with oplog tailing, RethinkDB nullifies all benefits of database-level shard-

ing by burdening individual application servers withmonitoring the complete cluster write

stream. Due to this write bottleneck, RethinkDB is subject to the same performance lim-

itations as oplog tailing: Changefeeds cannot scale beyond the capacity of a single appli-

cation server and will saturate application server resources under pressure. In contrast to

Meteor, RethinkDB does not rely on external technical artifacts such as the oplog, though.

Thus, in particular, internal change propagation is more elegant and does not require ad-

ditional round-trips to fill informational gaps, as is the case with oplog tailing (cf. Figure

2.4). But even though RethinkDB executes the concept behind oplog tailing in cleaner

fashion than Meteor, the concept remains inherently unscalable.

There are few reports of RethinkDB users and their experiences with the scalability of

changefeeds. However, CoCalc (formerly known as SageMathCloud) [CoC18] as one of the

most enthusiastic RethinkDB users reverted from RethinkDB to PostgreSQL for a reactive

web application, because amakeshift solution based on PostgreSQL’s change notifications

(cf. page 23) outperformed RethinkDB changefeeds by an order of magnitude [Ste17].

In brief, RethinkDB offers a real-time query implementation similar to Meteor’s oplog

tailing: Write throughput for RethinkDB’s real-time queries does not scale as it is bot-

tlenecked by single-node capacity. Unlike Meteor, RethinkDB does not have a poll-and-

diff-like approach to utilize the pull-based query API for real-time queries. Thus, the pull-

based interface is more expressive than the push-based one. For example, changefeeds

for sorted queries support a limit, but no offset [Mar15]. Further, the client API has no

self-maintaining queries. In order to keep a query result up-to-date, the application logic

therefore has to implement result maintenance on top of an event stream query.

28

2.3 Real-Time Databases

2.3.3 Parse

Similar to Meteor, Parse is an app development framework that uses MongoDB as its

backing store. It was immensely popular and had one of the largest MongoDB deploy-

ments worldwide around the year 2015 [Ges17]. While Meteor and RethinkDB have pro-

vided real-time queries since 2012 and 2014, respectively, Parse announced the feature

in March 2016 [Wan16b] – after they had announced their own shutdown [Lac16]. In this

section, we describe the Live Query feature that brings event stream queries to the Parse

platform.

Live Queries. Without any support for sorting [Wan16a], Parse’s real-time queries are

less expressive than those of its peers, even though the architecture itself is very simi-

lar. Parse’s Live Query mechanism bears a strong resemblance to Meteor’s oplog tailing

and RethinkDB’s changefeeds: Each real-time query is maintained by a single process, the

LiveQuery Server. Likewise, single-servermatching performance is the hard limit forwrite

throughput. In contrast to Meteor and RethinkDB, though, Parse entertains separate pro-

cesses for OLTPworkload (application server) and for real-time querymatching (LiveQuery

server). Further, application servers publish their change log into a Redis-based message

queue instead of handing them directly to the matching processors; this increases scal-

ability and further decouples failure of the query matching process from the main appli-

cation server. While the approach in itself remains unscalable by design, the Parse im-

plementation appears less likely to break in an overload scenario. This statement cannot

be validated, though, because we are not aware of any major projects using Parse Live

Queries.

To summarize, the Parse LiveQuery architecture bears resemblance toMeteor’s oplog tail-

ing and RethinkDB’s changefeeds. Thus, real-time queries do not scale withwrite through-

put and query expressiveness is limited in comparison to pull-based queries: Sorted real-

time queries are not supported at all. Like RethinkDB, Parse has no self-maintaining que-

ries, but only an event-based real-time query interface.

2.3.4 Firebase

Unlike the other systems discussed in this section, Firebase [Fir16] is a proprietary ser-

vice and only very little is known about the technology stack behind its interfaces. Certain

hard limits are known, though, beyond which a single instance will not scale [Fir17f]; for

example, more than 100 000 parallel client connections or more than 1 000 write oper-

ations per second are not supported [Fir17b]. Firebase has been developed since 2011

and was acquired by Google in 2014 [Tam14]. Even though the core service is often ad-

vertised as a “real-time database” [Puf16], it can arguably be better described as a service

for cross-device state synchronization due to a very restrictive query interface. Over the

29

2 Background & Related Work

years, additional functionality has been added to the Firebase ecosystem through other

services, e.g. for authentication, asset hosting, and performance monitoring [Tam16].

Data Modeling & Querying. In contrast to other JSON-based data stores, the original

Firebase data model is not represented by a collection of JSON documents, but by one

single JSON document: a cloud-hosted tree structure of nested objects and lists. In or-

der to access data, a client essentially has to navigate through the hierarchy and request

specific child nodes for which it will receive immediate updates when data is modified

by others. Thus, Firebase is natively push-based. However, Firebase only provides little

querying capabilities beyond simple lookups by primary key, so that it can be difficult to

map application requirements to the simplistic access model Firebase exhibits. The only

way to deviate from access by key is to apply a single static filter (no logical AND/OR) or
to enforce order on a single attribute. Filter expressiveness is limited to lookups (=) and

range queries (<, ≤, >, ≥); in particular, content-based filtering (e.g. through regex que-

ries) is not supported [Ric13] [Leh14] and usually implemented by employing third-party

services or systems such as Elasticsearch [Ric14]. For use cases that requiremore sophisti-

cation (e.g. ordering by surname and then by forename), the Firebase team recommends

employing workarounds like introducing artificial attributes (e.g. the composite of two

other attributes) or retrieving a superset of all relevant data and doing the actual query

processing in the client [Wen15]. Likewise, nesting data is officially discouraged [Fir17a],

because it makes fine-grained access control impractical and data retrieval more expen-

sive: Since Firebase only allows fetching data subtrees entirely (i.e. including their child

nodes), high-level nodes in a deeply-nested tree structure become more bloated as their

child count grows. However, flattening out data structures often takes away even more

of the expressiveness, since one-to-one and one-to-many relationships are naturally ex-

pressed through nesting in the document data model [SF12].

AdvancedQueriesWith Firestore. In late 2017, Firestorewas introduced as a document-

oriented real-time database service that aims to provide increased scalability and more

advanced querying capabilities compared to the original Firebase [Duf17] [Fir17b]. In con-

trast to the original real-time database service, data in Firestore is organized in a collection

of JSON documents rather than one single huge JSON document; thus, Firestore facilitates

data retrieval in a more fine-grained fashion. Another relevant improvement is support

for composite queries through filter chaining (logical AND). However, these improvements

come with certain restrictions: First, it is only possible to combine range expressions and

lookups on the same attribute or to combine lookup expressions on different attributes

[Fir17e]. Put differently, range expressions on different attributes as well as filter disjunc-

tion (logical OR) are not supported by either the original Firebase nor Firestore. Regarding
sorting, Firestore imposes some restrictions as well: If a query contains a range expres-

sion, the first sorting key must be the attribute over which the range expression is evalu-

ated [Fir17d]. Thus, a query such as “Find all citizens older than 20 and younger than 30

years, sorted by hometown” is still not feasible. Firestore has been built upon work from

30

2.3 Real-Time Databases

Google’s Cloud Datastore [Goo18] [Tam17] and thus inherits some traits and limitations

from the underlying systems. Like Megastore [BBC+11], specifically, Firestore provides

transactions, but also imposes harsh limits on write throughput: With only 500 writes/s

per collection and even only 1 write/s per document [Fir17c], Firestore bars itself from

write-heavy applications, similar to Firebase with its restriction to 1 000 writes/s across

the entire data set. Firestore further exhibits latency which is several hundred millisec-

onds higher than Firebase’s [Ker17]. Like the original Firebase, Firestore does not support

regex queries or comparable content-based filters [Fir17e].

To conclude, Firebase does not suffer from the scalability bottlenecks apparent in the de-

sign of Meteor’s, RethinkDB’s, or Parse’s real-time query implementations, but also does

not feature sophisticated query mechanisms. Even though denormalizing the data model

or evaluating queries in the client can compensate the lack of query expressiveness to a

certain degree, sophisticated query patterns tend to be inefficient and awkward to imple-

ment [Jam16] [Ros16] [Bov17].

2.3.5 Further Systems

Above, we covered themost expressive real-time databases currently available. In the fol-

lowing, wewill briefly survey push-based querymechanisms in other (NoSQL) data storage

systems.

Realm [Rea18b] is an embedded database often compared with SQLite that provides

cross-device synchronization and collection-based real-time queries, both in the form of

event stream queries and self-maintaining queries [Rea17b]. Write operations are exe-

cuted locally and synchronized with the Realm Object Server which broadcasts them to

all clients [RRM17]. Since every client replicates the entire database, reads are always

executed locally as well and return very fast. At the same time, however, this scheme

introduces the client – e.g. a notebook, tablet, or mobile phone – as a bottleneck for proc-

essing as well as storage and the Object Server as a bottleneck for change propagation. In

consequence, Realm’s real-time queries are only feasible in domains with small data sets

and low update throughput. RxDB [RxD18] is another embedded database that provides

real-time queries through local change detection [RxD17b] [RxD17a]. It is written in Java-

Script and supports different storage backends, using their respective replication protocol

to synchronize data from the backend to the client. Like Realm, RxDB is only feasible in sce-

narios where change monitoring can be handled by the (mobile) client device. OrientDB

[Ori18] allows filtering newly written objects by a query predicate through so-called Live

Queries. Semantically, they appear somewhat collection-based, since they handle inserts,

updates, and deletes. But in contrast to systems like Meteor, OrientDB’s Live Queries only

react to ongoing write operations and do not deliver initially matching items [Del15]. To

maintain an up-to-date query result, it is therefore necessary to combine the pull-based

query mechanism for the initial result with the push-based mechanism for updates. Self-

31

2 Background & Related Work

maintaining queries are thus only possible with custom code. CouchDB [Apa18e] is an-

other contender that has an API for continuous changes [ALS10, Ch. 20]. As in OrientDB,

the initial result of a query has to be requested separately from the stream of changes. In

contrast to many systems discussed in this thesis, though, CouchDB only pushes matching

items to the client, i.e. the client will not receive delete notifications9. In consequence,

self-maintaining queries are complex to implement and require the client tomaintain que-

ry state. Similar to OrientDB’s Live Queries, Graphcool [Gra18] subscriptions filter the

write stream by custom criteria. As with OrientDB’s Live Queries, the matching process

does not consider a query result, but only the data item that is being written [BMS17].

As another similarity, Graphcool subscriptions also do not provide the initially matching

items [BM+17]. Rapid.io [STR18] is a proprietary database service that provides push-

based real-time queries with collection-based semantics, similar to Firestore [Dro17]. As

of September 2017, Rapid.io is officially in public Beta and the technology stack behind

the query API is undisclosed. Since we are not aware of any case studies or customer re-

ports, we thus cannot set its performance or scalability in perspective to that of the other

systems discussed in this section. Filter queries with comparisons, prefix and suffixmatch-

ing, and containment checks are supported and can be composed using logical AND/OR;
however, it is not possible to use negations or more sophisticated search operators (e.g.

regex predicates, wildcards, or case-insensitive search) [STR17]. Elasticsearch [Ela18] is

a distributed NoSQL database most famously known for its sophisticated full-text search

capabilities. Through so-called percolator queries [Ban11] [Gro16], Elasticsearch supports

push-based access in the sense that clients receive notifications as soon as new matches

to their queries are written to the database. However, only new matches are registered

and no notifications are sent for documents that are deleted or cease matching after an

update. Lastly, real-time APIs for MongoDB [Mon18e] and Stitch [Mon18h] [Dan17], a

cloud backend by the MongoDB creators, have been introduced in 2017 [Mon17a]. How-

ever, only stream-based filtering semantics are supported, i.e. updates that remove data

from the result cannot be detected [Dav17a] [Dav17b].

2.3.6 Real-Time Databases: Summary & Discussion

Table 2.2 sums up the capabilities of each system detailed in this thesis, comparing them

against our system design InvaliDB. Meteor is the only system featuring two different real-

time query implementations: Poll-and-diff scales with write throughput and oplog tailing

scales with the number of concurrent real-time queries – neither scales with both. Re-

thinkDB and Parse provide real-time queries with mechanisms similar to oplog tailing and

therefore also collapse under heavywrite load: The lack ofwrite streampartitioning repre-

sents a scale-prohibitive bottleneck in the designs of all these systems. While the technol-

ogy stack behind Firebase is not disclosed, hard scalability limits for both write throughput

9The same applies to CouchDB’s commercial derivative Cloudant [IBM18].

32

2.3 Real-Time Databases

and parallel client connections are documented. Further, it is apparent that Firebase mit-

igates scalability issues by simply denying complex queries to begin with: In the original

Firebase model, composite queries are impossible and sorted queries are only allowed

with single-attribute ordering keys. Even the more advanced Firestore queries lack sup-

port for disjunction of filter expressions (logical OR) and only provide limited options for

filter conjunction (logical AND). All systems in the comparison apart from Firebase offer

composite filter conditions for real-time queries, but differ in their support for ordered

results: Meteor supports sorted real-time queries with limit and offset, RethinkDB only

supports limit (but no offset), and Parse does not support sorting for real-time queries

whatsoever. All systems covered in the comparison matrix provide an event stream que-

ry interface, but only Meteor provides an interface that hides the complexity of handling

change deltas from the client (self-maintaining queries).

Meteor RethinkDB Parse Firebase InvaliDB

Poll-and-Diff Oplog Tailing

Scales With
3 7 7 7 7 3

Write Throughput (see Section 3.3)

Scales With
7 3 3 3 � 3Number of Queries (100k connections)

Composite Queries
3 3 3 3 � 3(AND/OR) (AND in Firestore)

Sorted Queries 3 3 3 7 � 3
(single attribute) (see Section 3.3.2)

Limit 3 3 3 7 3 3
Offset 3 3 7 7 � 3

(value-based)

Joins 7 7 7 7 7 3
(see Section 3.3.2)

Aggregations 7 7 7 7 7 3
(see Section 3.3.2)

Self-Maintaining
3 3 7 7 7 3

Queries (see Section 5.3.1)

Event Stream
3 3 3 3 3 3

Queries (see Section 5.3.3)

Table 2.2: A direct comparison of the different collection-based real-time query imple-

mentations detailed in this thesis.

Summing up, we are not aware of any system that carries non-trivial pull-based query

features to the push-based paradigm without severe compromises: Developers always

have toweigh a lack of expressiveness against the presence of hard scalability bottlenecks.

Through the system design developed in this thesis, InvaliDB, we show that expressive

real-time queries and scalability can go hand-in-hand.

33

2 Background & Related Work

2.4 Data Stream Management

In somedomains, data arrives so fast and in such great quantity that storing it in a database

collection is simply infeasible [BBD+02]. When the incoming data relates to ongoing (real-

world) events that require immediate action, persistence may further not even be useful;

for example, data in electronic trading, network monitoring, or real-time fraud detection

is only valuable for a short amount of time and therefore has to be utilized immediately

[SCZ05]. To adapt to these circumstances, data stream management systems (DSMSs)

introduce the data stream as an abstraction for an infinite sequence of database records

that arrive over time. The raw data streams arriving at the systems are usually referred

to as base streams, whereas those resulting from data transformations (e.g. queries) are

called derived streams [GZ10]. Since a data stream is impossible to store entirely due to

its unbounded nature, DSMSs drop the database requirement of eternal data persistence:

They retain incoming records for limited time only and eventually discard them.

2.4.1 Queries Over Streams

Queries over streams are long-running and produce new output whenever new data is

received; this is in contrast to ad hoc queries over collections which produce output once

on user request. Thus, queries over streams generate output streams, just like queries

over database relations produce output relations (i.e. result lists). In spite of these fun-

damental differences between queries over collections and queries over streams, how-

ever, streaming query languages are usually designed to resemble traditional database

languages: While some systems for stream management expose procedural interfaces

(e.g. Aurora [ACC+03] [CCC+02] or Borealis [AAB+05]), most systems employ SQL-like

query languages that extend relational algebra through special operators for handling

streams (e.g. STREAM [ABW06], Tapestry [TGNO92], TelegraphCQ [CCD+03], PipelineDB

[Nel17], S-Store [CDK+14]); in fact, several DSMSs are built on top of pull-based databases

(e.g. TelegraphCQ and PipelineDB extend PostgreSQL, S-store extends H-Store [KKN+08]).

Therefore, data streams are often implemented as time-varying collections [GZ10, Sec.

2.3.1] where new records are inserted and old records are deleted (cf. PipelineDB [Pip17]

and S-store [CDK+14, Sec. 3.2.1]).

Early systems (e.g. Tapestry) only supported append-only streams, i.e. they relied on

the assumption that records are only added and never modified or removed. When tu-

ples represent sensor measurements or other unchangeable facts, this assumption is

valid; in fact, base stream data is final in most applications [GZ10, Sec. 2.1.1]. Query

results are commonly not immutable, though, since they can evolve over time; as an

example, consider a query that collects the maximum temperature of the day from a

feed of sensor readings. To accommodate such non-monotonic data sources, modern

DSMSs are developed with support for mutable streams where issued data can be re-

34

2.4 Data Stream Management

vised [RMCZ06] [GAE06] [GHM+07]: Queries over streams in these systems can be used to

maintain predicate-based relations up-to-date, similar to materialized views. Some DSMS

query implementations even bear resemblance to the real-time query mechanisms dis-

cussed in this thesis. For example, insert/delete streams in STREAM [ABW06, Sec. 6.3] and

delta streams in PipelineDB [Nel17] produce change deltas similar to event streamqueries

(cf. Section 5.3.3). As another example, relation streams in STREAM [ABW06, Sec. 6.3]

[BSW04] produce fully maintained results very much like self-maintaining queries do (cf.

Section 5.3.1).

It is important to note, though, that DSMSs and real-time databases operate on differently

scoped data sets: Since DSMSs do not retain data indefinitely, queries over streams only

reflect recent data whereas queries in a real-time database reflect all data that ever en-

tered the system. By intuition, this means that DSMSs essentially access data that is yet to

arrive, because old portions of the stream are oftentimes not available anymore. In con-

sequence, queries over streams in DSMSs do not behave like collection-based real-time

queries unless they are defined over monotonic or quasi-monotonic attributes10 and

only refer to recent data. Queries that reference non-monotonic attributes (e.g. user-

name) can only produce output from the currently buffered portion of the stream; data

that has been discarded is effectively lost for queries to come. Therefore, use of non-

monotonic attributes for queries over streams is sometimes forbidden (see for example

Calcite [Cal17]).

SELECT name
FROM users

(a) This query cannot be answered with-

out knowledge of the entire data

stream.

SELECT name
FROM users
WHERE timestamp > now()

(b) This query explicitly and exclusively refers to fu-

ture information and can therefore be processed

based on the stream alone.

Listing 2.1: Whether or not a query can be answered on the basis of an ephemeral data

stream without access to the stream history depends on the temporal scope

of the query.

For illustration, consider a data management system receiving a stream of user actions

as presented in Section 2.1.1. If the data management system is a DSMS, it disposes of

data after a while and therefore is only aware of users that have been active recently. A

real-time database, on the other hand, would be aware of all users, because it maintains

a persistent data repository that reflects the entire data stream. This point is illustrated by

the queries in Listing 2.1: A complete list of all registered users (a) can only be produced

10An attribute ismonotonic, if all its values are either decreasing or increasing, such as arrival timestamps in

a centralized DSMS. Similarly, an attribute is quasi-monotonic, if it is correlated to a monotonic attribute.

For example, the time at which an event is registered according to a sensor’s local clock (event time) is

quasi-monotonic, because it typically corresponds to the time at which it is received according to the

server’s clock (arrival time) within a certain error margin (cf. Section 2.4.2).

35

2 Background & Related Work

by the real-time database, because the DSMS does not have access to all relevant data

as soon as the first portion of the stream has been discarded. If the result is constrained

to current and future users (b), however, the query result can be computed by the real-

time database and the DSMS alike, because it does not require historical knowledge of

the stream.

Several DSMSs account for the need to access historical data by letting users combine

queries over unbounded data streams with queries over persistent database collections.

While this enables both query types illustrated in Listing 2.1, executing stream queries

without bounded windows is often considered infeasible for practical workloads (cf.

[Wid05]) as scalability of database-rooted DSMSs is typically limited. STREAM, for exam-

ple, is a centralized DSMS that does not scale horizontally at all [ABB+16, Sec. 8.1], while

PipelineDB does not support data sharding (i.e. every node maintains the entire data set)

and is only able to distribute query processing across few nodes because of synchroniza-

tion overhead for replication11. For systems that are not built on databases, achieving que-

ry semantics as illustrated above can further be difficult, because their query languages

are sometimes hardly comparable with traditional database languages such as SQL12.

2.4.2 Notions of Time

Since records in streams often refer to events in a complex distributed system, they can be

attributed with different timestamps. For example, a record may carry the time at which

it was received by the DSMS (arrival time) and the time at which the corresponding event

actually occurred according to the measuring device’s local clock (event time) [GZ10].

Event and arrival time are usually correlated and ideally close. In practice, however, there

is often a delay between the occurrence of an event and its registration in the stream

management system. For example, consider user data that is collected on a smartphone

and reported sporadically through the Internet; depending on network connectivity, clock

skew between the mobile device and the DSMS, and other factors, event time and arrival

time for a particular record may diverge by seconds, hours, or even days [Aki15].

Since base streams are naturally ordered by the arrival timestamp, they have to be reor-

ganized whenever application semantics revolve around a different notion of time such

as event time. For stream reordering, the input stream is buffered for t∆ time units and

items within the buffered portion of the stream are reorganized and emitted according to

the sort specification [ACC+03, Sec. 5.2.2]. Records that arrive more than t∆ time units

late are typically dropped from the reordered stream [GZ10, Sec. 2.2.2]. It is also possible

to revise stream output on receiving delayed records instead of dropping them: The basic

11All write operations in PipelineDB are coordinated synchronously via two-phase commit between all nodes

[Pip15], so that highly distributed setups are likely to experience increased latency as well as reduced

throughput and availability [Pan15, Sec. 3.1].
12As an example, consider the graphical user interface of Aurora/Borealis which is based on arrows and boxes

rather than SQL-style declarative statements [ÇAA+16].

36

2.4 Data Stream Management

idea is to revoke previously issued information (that has turned out to be incorrect) and to

emit updated records which reflect the new information [RMCZ06]. However, providing

revised output takes a performance toll on the upstream component, just like applying

revised output can be expensive for downstream components13.

Since system performance can degrade significantly when output has to be retained for

a long time [ABB+13, Sec. 8.4], different approaches limit the amount of state utilized

for compensating out-of-order arrival. Some systems use a fixed value for the time or the

number of records to buffer (e.g. Aurora [ACC+03]). Other systems dynamically control

the amount of metadata by measuring or estimating the current delay within the applica-

tion stack (e.g. NiagaraCQ [CDTW00], MillWheel [ABB+13], Gigascope [JMSS05]). Special

records are used to propagate this kind of information fromupstream components further

downstream. For example, a punctuation [TMSF03] is a record that carries an invariant

condition such as timestamp ≥ '12h05m00s' that is guaranteed to be true for all sub-

sequent records; thus, all buffered records that do not fulfill the invariant can be safely

abandoned (e.g. all records from before timestamp '12h05m00s'). So-called heartbeats
[SW04] orwatermarks [ABB+13] serve a similar purpose. Computing or estimating these

invariant conditions, however, is challenging in some settings [SW04].

2.4.3 Windowing & Approximation

Queries over streams are usually evaluated in the context of a window, i.e. a finite parti-

tion of the conceptually unbounded sequence of records. There are several dimensions

by which a window can be described [GZ10, Sec. 2.1.2]. One dimension is the direction

of movement, relating to the way that start and end point of the window are chosen: Ei-

ther both are fixed (fixed window), one is fixed and one is moving (landmark window),

or both are moving (sliding window) [PS06]; windows can also be expanding or contract-

ing, depending on whether the window boundaries are moving in the same direction or

whether they are moving at the same speed. Further, windows can be distinguished by

the way their contents are defined. Most commonly, window contents are specified in

terms of time (e.g. “all data from the last two minutes”) or count (e.g. “the last 1 000

records”) [ABW06, Sec. 6], but other forms of defining a stream partition are possible, for

instance based on query predicates [GAE06] [JMS+08]. Movement and update frequency

can also be used to characterize a window. Intuitively, a sliding window [Gol06] is eagerly

refreshed with every incoming record: The window advances as one record enters and

another one leaves. When a new query result is produced lazily every n time units or ev-

ery n tuples instead, the window is called a jumping window [MVLL05]. When the update

interval equals window size, the stream is split into contiguous, non-overlapping ranges.

13Specifically, providing undo information requires buffering the original output [ABC+15, Sec. 2.3]. Likewise,

reprocessing huge amounts of data to generate updated records can lead to CPU contention and can thus

significantly impair overall system performance [Kre14c].

37

2 Background & Related Work

Since these windows are often illustrated to “tumble over” from one range to the next,

they are referred to as tumbling windows.

In comparison to sliding or jumping windows, tumbling windows are relatively easy to im-

plement, because their state is reset on everymove: In other words, only new tuples have

to be incorporated when updating a tumbling window. Sliding and jumping windows, in

contrast, are more complex (and sometimes less efficient) to realize [GZ10], because they

have to reflect tuples moving out of the window as well. In consequence, the metadata

required for incremental computation of a query result over a sliding window can vary

significantly depending on the query type [Feg16]. For example, maintaining a counter

is very straightforward, as it is incremented for every new record and decremented for

every expiring record; more complex aggregations such as an average, in contrast, may

require retaining all records within the window, because their contribution to the query

result depends on their concrete values. In Section 5.4.2, we provide two examples for

incremental maintenance of aggregate values, namely count and average.

To reduce the amount of metadata required for incremental query result computation,

specific algorithms and data structures have been developed for the approximation of

value frequencies [Gib01] [PT05] [MM02], quantiles [GK01] [LLXY04], top-k queries

[MBP06] [DLOM02] [GM98] [MAEA05b], skyline queries [LYWL05, TP06], aggregate que-

ries [DGIM02] [LMT+05] [GKS01a] [CM05], range queries [BL10], and other query types

[DGIM02] [FKSV03] [MAEA05a] [GKS01b]. Workloads are further bursty in many stream-

ing applications [Kle02] and therefore input rates may (temporarily) exceed system ca-

pacity, despite optimized implementations. In order to prevent system overload in such

scenarios, a DSMS may resort to load shedding [TCZ+03]: Here, the DSMS deliberately

skips records within the stream to reduce effective load. There are different strategies

for selecting to-be-skipped tuples (e.g. probabilistic sampling [SH12] [BDM07] or selec-

tion by semantic criteria [AN04]). Which one fits a given scenario best depends on the

optimization target (e.g. throughput, quality of service [MWA+03]).

InvaliDB evaluates queries over streams of database records in order to provide incremen-

tal result updates for common database queries. While it is thus technically stream-based,

InvaliDB’s query engine has to be aligned perfectly with the semantics of the underlying

data store and therefore follows collection-based semantics. In consequence, reducing

load by approximation or load shedding bears the risk of compromising correctness in

the context of our work: Given the same query and the same input records, InvaliDB’s

query engine must produce the exact same matching decisions as the query engine of

the underlying database. Approximative query evaluation and write workload shedding

are therefore incompatible with the collection-based real-time query semantics focused

in this work. Query load shedding, in contrast, can be applied safely by rejecting or abort-

ing individual real-time query subscriptions to reduce overall workload. Since InvaliDB’s

query engine is pluggable (cf. Section 3.3.2), it could also be implemented as a true DSMS

without backing database. All techniques discussed in this section would be applicable

38

2.4 Data Stream Management

to such an InvaliDB implementation with purely stream-based query semantics (cf. future

work in Section 6.2.1).

2.4.4 Complex Event Processing

In some applications, the relevant informationmay not be explicitly represented in the in-

dividual base stream entries, but rather implicitly encoded in the context between them.

Systems for complex event processing (CEP) [CM12] [CVZ13] address these applications

by capturing the temporal, local, or even causal relationships and dependencies between

individual records. Similar to active databases (cf. Section 2.2.1), CEP systems execute

business logic and thus proactively trigger actions; these may range from a simple notifi-

cation of maintenance personnel to an emergency shutdown of failing hardware [ENL11].

Depending on the concrete system, the rules that determine application behavior are ei-

ther defined through a declarative language, imperative programming, or a graphical user

interface [VRR10]. By establishing a context between stream entries, CEP systems thus

create data streams with a higher level of abstraction from the low-level base streams

[BD15]. Typical use cases include prediction of customer behavior [AGR+09], monitoring

freight logistics [RRH13], routing network traffic in realtime to maximize quality of service

[Ara13], and intrusion detection [FR11].

For illustration, consider an array of temperature sensors deployed for monitoring hard-

ware in a data center. Through aggregation and correlation of different readings over time,

a CEP engine can derive pieces of information which are more abstract and more relevant

to the application domain than the raw temperature values [Pal13]. For example, com-

plex error conditions (e.g. machines in a particular rack overheating) might be detected

by considering measurements of different sensors over time. Likewise, sensor readings

that appear plausible in themselves might be uncovered as faulty when they deviate sig-

nificantly from output of colocated sensors.

The requirement to correlate events with one another makes CEP engines inherently diffi-

cult to scale across machine boundaries [CGH+17] and therefore deployments usually do

not span more than a few nodes [Esp16] [IBM14] [Pip15]. However, distribution can be

achieved by application-level sharding or by building abstraction hierarchies that reduce

the number of events to process on every individual machine [BD15, Sec. 2.4]. Since

general-purpose stream processing systems (cf. Section 2.5) can also be used for com-

plex event processing and sometimes even provide abstractions to facilitate this task (e.g.

Flink [KW17]), the line between complex event processing and general-purpose stream

processing has become blurred [Vin16].

In contrast to the CEP systems mentioned in this section, InvaliDB is neither designed for

detecting complex event patterns nor for establishing temporal, causal, or other relation-

ships between individual occurrences. As described in Section 3.2.1, we rather entertain

a simplistic notion of event processing in the context of this work where different events

39

2 Background & Related Work

can be distinguished by their respective match type (i.e. by the kind of query result al-

teration associated with an event) and by their respective operation type (i.e. the type of

operation that triggered the event). Since InvaliDB’s query engine is pluggable, though,

more sophisticated complex event processing mechanisms could be developed in the fu-

ture (see Section 6.2.1).

2.4.5 Messaging Middleware

Processing streaming data in a massively distributed system necessitates funneling infor-

mation from the system periphery into a data stream and propagating it with low latency.

In contrast to systems for change data capture (cf. Section 2.2.2), message-oriented

middleware (MOM) is not primarily concerned with collecting relevant information on

events as they occur, but mainly implements efficient and often reliable mechanisms for

data distribution: A producer provides data items to the messaging middleware which

then delivers them to one or many consumers. Various forms of propagation are com-

mon, for example point-to-point (single producer, single consumer) or publish-subscribe

(single producer, multiple consumers) delivery. The provided delivery guarantees range

from none (e.g. publish-subscribe in Redis [San18b] or NATS [Clo18a]) over at-least-once

(e.g. in Kafka [KNR11]) to exactly-once (e.g. RabbitMQ [Piv18], ActiveMQ [Apa18a], Qpid

[Apa18h], HornetQ [Gia12], or IBM WebSphere MQ [LLO+12]). In order to acknowledge

individual messages, some MOMs keep track of each consumer’s delivery log and retain

messages that have not been acknowledged by all consumers. When implemented in this

fashion, exactly-once delivery may incur significant overhead and can even bring the en-

tire system down when just one single consumer stays disconnected for a long time. To

avoid this kind of failure scenario, distributed log systems such as Kafka archive all data

to disk and allow clients to request data replays by providing a log offset of event history.

Thus, data can be retained for days or even weeks with minimal processing overhead for

the middleware, while at-least-once delivery guarantees are naturally met through the

ability to replay the archived messages. Exactly-once delivery guarantees are still achiev-

able, but at the cost of reduced scalability [Tre15] [Tre17] and/or significantly increased

system complexity [Nar17]. While simple content-based and even rule-based filtering is

supported by some systems (e.g. Siena [CRW01] or Delta [KKM13]), querying capability is

typically limited in comparison to the systems discussed above.

2.4.6 Data Stream Management: Summary & Discussion

Data streammanagement systems are similar to real-time databases in several ways. First,

they support continuous queries, i.e. they proactively deliver information as soon as new

data of relevance becomes available. Second, many of them are also capable of ad hoc

queries over currently buffered data; in fact, many data stream management systems are

40

2.5 General-Purpose Stream Processing

extensions of existing databases and therefore inherit some of their capabilities. As an im-

portant distinction to real-time databases, however, data streams are typically retained for

only a relatively short amount of time. Seeing that data stream management systems are

thus oriented towards current and future events, querying data that is rooted in the past

is inefficient or impossible without a second system for persistent data management.

2.5 General-Purpose Stream Processing

Unlike data stream management systems that are mostly intended for analyzing struc-

tured information through declarative query languages, systems for stream processing

expose generic and imperative (i.e. non-declarative) programming interfaces to work with

structured, semi-structured, and entirely unstructured data. Rather than yet another ap-

proach for querying data, stream processing can thus be seen as the latency-oriented

counterpart to batch processing. In this section, we provide an overview over some of

the most popular distributed stream processing systems currently available and highlight

similarities, differences, and trade-offs taken in their respective designs. In Chapter 4, we

will choose a stream processor for our InvaliDB prototype based on these findings.

2.5.1 Architectural Patterns

In contrast to traditional data analytics systems that collect and periodically process huge

– static – volumes of data, streaming analytics systems avoid putting data at rest and pro-

cess it as it becomes available, thus minimizing the time a single data item spends in the

processing pipeline. Stream processing pipelines often routinely achieve end-to-end la-

tencies of several seconds or even subsecond latency.

Figure 2.5 illustrates typical layers of a streaming analytics pipeline. Data like user clicks,

billing information, or unstructured content such as images or text messages are collected

from various places inside an organization and then moved to the streaming layer (e.g. a

queuing/streaming system like Kafka [KNR11] or Kinesis [Ama18]) fromwhich it is accessi-

ble to a stream processor that performs a certain task to produce an output. This output

is then forwarded to the serving layer which might for example be an analytics web GUI

like trending topics at Twitter or a database where a materialized view is maintained.

In an attempt to combine the best of both worlds, an architectural pattern called the

Lambda Architecture [MW15] has become quite popular that complements the slow

batch-oriented processing with an additional real-time component and thus targets both

the Volume and the Velocity challenge of Big Data [Lan01] at the same time. As illustrated

in Figure 2.6a, the Lambda Architecture describes a system comprising three layers: Data

is stored in a persistence layer like HDFS [SKRC10] from which it is ingested and processed

by the batch layer periodically (e.g. once a day), while the speed layer handles the por-

tion of the data that has not yet been processed by the batch layer, and the serving layer

41

2 Background & Related Work

collec�on

streaming

serving

processing

click

Figure 2.5: An abstract view on a streaming analytics pipeline.

consolidates both by merging the output of the batch and the speed layer. The obvious

benefit of having a real-time system compensate for the high latency of batch process-

ing is paid for by increased complexity in development, deployment, and maintenance. If

the batch layer is implemented with a system that supports both batch and stream proc-

essing (e.g. Spark), the speed layer often can be implemented with minimal overhead by

using the corresponding streaming API (e.g. Spark Streaming) tomake use of existing busi-

ness logic and the existing deployment. For Hadoop-based and other systems that do not

provide a streaming API, however, the speed layer is only available as a separate system.

Using an abstract language like Summingbird [BROL14] to write the business logic enables

automatic compilation of code for both the batch and the stream processing system (e.g.

Hadoop and Storm) and thus eases development in those cases where batch and speed

layer can use (parts of) the same business logic, but the overhead for deployment and

maintenance still remains.

Another approach that, in contrast, dispenses with the batch layer in favor of simplicity is

known as the Kappa Architecture [Kre14b] and is illustrated in Figure 2.6b. The basic idea

is to not periodically recompute all data in the batch layer, but to do all computation in

the stream processing system alone and only perform recomputation when the business

logic changes by replaying historical data. To achieve this, the Kappa Architecture em-

ploys a powerful stream processor capable of coping with data at a far greater rate than

it is incoming and a scalable streaming system for data retention. An example of such a

streaming system is Kafka which has been specifically designed to work with the stream

processor Samza in this kind of architecture. Archiving data (e.g. in HDFS) is still possible,

but not part of the critical path and often not required as Kafka, for instance, supports

retention times in the order of weeks. On the downside, however, the effort required

42

2.5 General-Purpose Stream Processing

streaming

click

serving

persistence

speed

batch

(a) The Lambda Architecture achieves low la-

tency by complementing a batch-oriented

with a stream-oriented processing system.

streaming

click

serving

persistence

speed

(b) The Kappa Architecture relies on stream-

oriented processing only.

Figure 2.6: Lambda and Kappa Architecture in comparison.

to replay the entire history increases linearly with data volume and the naive approach

of retaining the entire write stream may have significantly greater storage requirements

than periodically processing the new data and updating an existing database, depending

on whether and how efficiently the data is compacted in the streaming layer. As a conse-

quence, the Kappa Architecture should only be considered an alternative to the Lambda

Architecture in applications that do not require unbounded retention times or allow for

efficient compaction (e.g. because it is reasonable to only keep the most recent value for

each given key).

Of course, the latency displayed by the stream processor (speed layer) alone is only a

fraction of the end-to-end application latency due to the impact of the network or other

systems in the pipeline. But it is obviously an important factor and may dictate which

43

2 Background & Related Work

system to choose in applications with strict timing SLAs. In the context of this thesis, low

latency is particularly important in order to provide real-time queries.

2.5.2 State-of-the-Art Systems

While all stream processors share some common ground regarding their underlying con-

cepts and working principle, an important distinction between the individual systems that

directly translates to the achievable speed of processing (i.e. latency) is the processing

model as illustrated in Figure 2.7: Handling data items immediately as they arrive mini-

mizes latency at the cost of high per-item overhead (e.g. through messaging), whereas

buffering and processing them in batches yields increased efficiency, but obviously in-

creases the time the individual item spends in the data pipeline. Purely stream-oriented

systems such as Storm and Samza provide very low latency and relatively high per-item

cost, while batch-oriented systems achieve unparalleled resource-efficiency at the ex-

pense of latency that is prohibitively high for real-time applications. The space between

these two extremes is vast and some systems like Storm Trident and Spark Streaming em-

ploy micro-batching strategies to trade latency against throughput: Trident groups tuples

into batches to relax the one-at-a-time processingmodel in favor of increased throughput,

whereas Spark Streaming restricts batch size in a native batch processor to reduce latency.

In the following, we go into more detail on the specificities of the above-mentioned sys-

tems and highlight inherent trade-offs and design decisions.

batch

Spark

high throughputlow latency

Storm Trident

Spark Streaming

micro-batchstream

Samza

Flink

Storm

MapReduce

Figure 2.7: Choosing a processing model means trading off latency against throughput.

Storm has been in development since late 2010, was open-sourced in September 2011 by

Twitter, and eventually became an Apache top-level project in 2014. It is the first distrib-

uted stream processing system to gain traction throughout research and practice and was

initially promoted as the “Hadoop of realtime” [Mar12, Mar14], because its programming

model provided an abstraction for stream processing similar to the abstraction that the

MapReduce paradigm provides for batch processing. But apart from being the first of its

kind, Storm also has a wide user base due to its compatibility with virtually any language:

On top of the Java API, Storm is also Thrift-compatible [SAK07] and comes with adapters

for numerous languages such as Perl, Python, and Ruby. Storm can run on top of Mesos

44

2.5 General-Purpose Stream Processing

[HKZ+11], as a dedicated cluster, or even on a single machine. The vital parts of a Storm

deployment are a ZooKeeper [HKJR10] cluster for reliable coordination, several supervi-

sors for execution, and a Nimbus server to distribute code across the cluster and take

action in case of worker failure; in order to shield against a failing Nimbus server, Storm

allows having several hot-standby Nimbus instances. Storm is scalable, fault-tolerant, and

even elastic as work may be reassigned at runtime. As of version 1.0.0, Storm provides

reliable state implementations that survive and recover from supervisor failure. How-

ever, Storm’s state management is only feasible for applications with small state, because

updates are persisted synchronously and therefore can dominate latency when they are

large. Earlier versions of Storm only provided the option of stateless processing and thus

required state management at the application level to achieve fault tolerance and elastic-

ity in stateful applications. Storm excels at speed and thus is able to perform in the realm

of low double-digit milliseconds when carefully tuned (for example, see the evaluation of

our InvaliDB prototype in Chapter 4). Through the impact of network latency and garbage

collection, however, real-world topologies usually do not display consistent end-to-end

latency below 50 ms [GMSS15, Ch. 7].

serving

spoutspout spout

bolt

bolt

bolt

streaming

Figure 2.8: Data flow in a Storm topology: Data is ingested from the streaming layer and

then passed between Storm components, until the final output reaches the

serving layer.

A data pipeline or application in Storm is called a topology. As illustrated in Figure 2.8, a

topology is a directed graph that represents data flow as directed edges between nodes

which again represent the individual processing steps: The nodes that ingest data and

thus initiate the data flow in the topology are called spouts and emit tuples to the nodes

downstreamwhich are called bolts and do processing, write data to external storage, and

may send tuples further downstream themselves. Storm comes with several groupings

that control data flow between nodes, e.g. for shuffling or hash-partitioning a stream

of tuples by some attribute value, but also allows arbitrary custom groupings. By default,

45

2 Background & Related Work

Stormdistributes spouts and bolts across the nodes in the cluster in a round-robin fashion,

although the scheduler is pluggable to account for scenarios in which a certain processing

step has to be executed on a particular node, for example because of hardware depen-

dencies. The application logic is encapsulated in a manual definition of data flow and the

spouts and bolts which implement interfaces to define their behaviour during startup, and

on data ingestion or on receiving a tuple, respectively.

While Storm does not provide any guarantee on the order in which tuples are processed,

it does provide the option of at-least-once processing through an acknowledgement fea-

ture that tracks the processing status of every single tuple on its way through the topology:

Stormwill replay a tuple, if any bolt involved in processing it explicitly signals failure or does

not acknowledge successful processing within a given timeframe. Using an appropriate

streaming system, it is even possible to shield against spout failures, but the acknowledge-

ment feature is often not used in practice, because the messaging overhead imposed by

tracking tuple lineage (i.e. a tuple and all the tuples that are emitted on its behalf) no-

ticeably impairs achievable system throughput [CDE+15]. With version 1.0.0, Storm in-

troduced a backpressuremechanism to throttle data ingestion as a last resort whenever

data is ingested faster than it can be processed. If processing becomes a bottleneck in a

topology without such a mechanism, throughput degrades as tuples eventually time-out

and are either lost (at-most-once processing) or replayed repeatedly to possibly time-out

again (at-least-once processing), thus putting evenmore load on an already overburdened

system.

Storm Trident was released in autumn 2012 and version 0.8.0 as a high-level API with

stronger ordering guarantees and a more abstract programming interface with built-in

support for joins, aggregations, grouping, functions, and filters. In contrast to Storm, Tri-

dent topologies are directed acyclic graphs (DAGs) as they do not support cycles; this

makes them less suitable for implementing iterative algorithms and is also a difference

to plain Storm topologies which are often wrongfully described as DAGs [Apa18g], but

actually can introduce cycles. Also, Trident does not work on individual tuples, but on

micro-batches. Correspondingly, Trident introduces batch size as a parameter to increase

throughput at the cost of latency which, however, may still be as low as several millisec-

onds for small batches [Eri14]. All batches are by default processed in sequential order,

although Trident can also be configured to process multiple batches in parallel. On top

of Storm’s scalability and elasticity, Trident provides its own API for fault-tolerant state

management with exactly-once processing semantics. In more detail, Trident prevents

data loss by using Storm’s acknowledgement feature and guarantees that every tuple is

reflected only once in persistent state by maintaining additional information alongside

state and by applying updates transactionally. As of writing, two variants of state man-

agement are available: One only stores the sequence number of the last-processed batch

together with current state, butmay block the entire topologywhen one ormore tuples of

a failed batch cannot be replayed (e.g. due to unavailability of the data source), whereas

46

2.5 General-Purpose Stream Processing

the other can tolerate this kind of failure, but is more heavyweight as it also stores the

last-known state. Irrespective of whether batches are processed in parallel or one by one,

state updates have to be persisted in strict order to guarantee correct semantics. As a

consequence, their size and frequency can become a bottleneck and Trident can there-

fore only feasibly manage small state.

Samza [NPP+17] [Ram15] is very similar to Storm in that it is a stream processor with a

one-at-a-time processing model and at-least-once processing semantics. It was initially

created at LinkedIn, submitted to the Apache Incubator in July 2013 and was granted top-

level status in 2015. Samza was co-developed with the queuing system Kafka14 [KNR11]

and therefore relies on the samemessaging semantics: Streams are partitioned andmes-

sages (i.e. data items) inside the same partition are ordered, whereas there is no order

between messages of different partitions. Even though Samza can work with other queu-

ing systems, Kafka’s capabilities are effectively required to use Samza to its full potential

and therefore it is assumed to be deployed with Samza for the rest of this section. In com-

parison to Storm, Samza requires a little more work to deploy as it does not only depend

on a ZooKeeper cluster, but also runs on top of Hadoop YARN [Apa16h] for fault tolerance:

In essence, application logic is implemented as a job that is submitted through the Samza

YARN client which has YARN then start and supervise one or more containers. Scalability

is achieved through running a Samza job in several parallel tasks each of which consumes

a separate Kafka partition; the degree of parallelism, i.e. the number of tasks, cannot be

increased dynamically at runtime. Similar to Kafka, Samza focuses on support for JVM-

languages, particularly Java. Contrasting Storm and Trident, Samza is designed to handle

large amounts of state in a fault-tolerant fashion by persisting state in a local database

and replicating state updates to Kafka. By default, Samza employs a key-value store for

this purpose, but other storage engines with richer querying capabilities can be plugged

in.

As illustrated in Figure 2.9, a Samza job represents one processing step in an analytics

pipeline and thus roughly corresponds to a bolt in a Storm topology. In stark contrast

to Storm where data is directly sent from one bolt to another, though, output produced

by a Samza job is always written back to Kafka from where it can be consumed by other

Samza jobs. Although a single Samza job or a single Kafka persistence hop may delay

a message by only a few milliseconds [Kre14a], latency adds up and complex analytics

pipelines comprising several processing steps eventually display higher end-to-end latency

than comparable Storm implementations.

On the upside, however, this design also decouples individual processing steps and thus

eases development. Another advantage is that buffering data between processing steps

makes (intermediate) results available to unrelated parties, e.g. other teams in the same

14In 2016, a native stream processor was introduced to Kafka: Kafka Streams [Kre16] is not only conceptu-

ally similar to Samza, but was also built by the same people, reusing portions of the Samza source code

[PM16]. Kafka Streams can therefore be considered an unofficial Samza successor.

47

2 Background & Related Work

Ka�a

Ka�a

Samza job Samza job

Ka�a

Samza job

Figure 2.9: Data flow in a typical Samza analytics pipeline: Samza jobs cannot commu-

nicate directly, but have to use a queuing system such as Kafka as message

broker.

company. Further, it eliminates the need for a backpressure algorithm, since there is no

harm in the backlog of a particular job filling up temporarily, given a reasonably sized

Kafka deployment. Since Samza processesmessages in order and stores processing results

durably after each step, it is able to prevent data loss by periodically checkpointing current

progress and reprocessing all data from that point onwards in case of failure; in fact, Samza

does not support a weaker guarantee than at-least-once processing, since there would be

virtually no performance gain in relaxing this guarantee. While Samza does not provide

exactly-once semantics, it allows configuring the checkpointing interval and thus offers

some control over the amount of data that may be processed multiple times in an error

scenario.

Spark [ZCD+12] is a batch processing framework that is often mentioned as the unofficial

successor of Hadoop as it offers several benefits in comparison, most notably a more con-

cise API resulting in less verbose application logic and significant performance improve-

ments through in-memory caching. In particular, iterative algorithms (e.g. machine learn-

ing algorithms such as k-means clustering or logistic regression) are accelerated by orders

of magnitude, because data is not necessarily written to and loaded from disk between

every processing step. In addition to these performance benefits, Spark provides a variety

of machine learning algorithms out-of-the-box through theMLlib library. Originating from

UCBerkeley in 2009, Sparkwas open-sourced in 2010 andwas donated to theApache Soft-

ware Foundation in 2013where it became a top-level project in February 2014. It ismostly

written in Scala and has Java, Scala, and Python APIs. The core abstraction of Spark are

distributed and immutable collections called RDDs (resilient distributed datasets)15 that

15On top of RDDs, Spark provides DataFrames and Datasets as evenmore abstract APIs that impose a schema

on the otherwise unstructured RDD tuples [Dat18].

48

2.5 General-Purpose Stream Processing

can only be manipulated through deterministic operations. Spark is resilient to machine

failures by keeping track of any RDD’s lineage, i.e. the sequence of operations that cre-

ated it, and checkpointing RDDs that are expensive to recompute, e.g. to HDFS [SKRC10].

A Spark deployment consists of a cluster manager for resource management (and super-

vision), a driver program for application scheduling, and severalworker nodes to execute

the application logic. Spark runs on top of Mesos, YARN, or in standalone mode in which

case it may be used in combination with ZooKeeper to remove themaster node (i.e. the

cluster manager) as a single point of failure.

Spark Streaming [ZDL+13] shifts Spark’s batch processing approach towards real-time

requirements by chunking the stream of incoming data items into small batches, trans-

forming them into RDDs, and processing them as usual. It further takes care of data flow

and distribution automatically. Spark Streaming has been in development since late 2011

and became part of Spark in February 2013. Being a part of the Spark framework, Spark

Streaming had a large developer community and also a huge group of potential users from

day one, since both systems share the same API and since Spark Streaming runs on top

of a common Spark cluster. Thus, it can be made resilient to failure of any component

[VPAU15] like Storm and Samza and further supports dynamically scaling the resources

allocated for an application. Data is ingested and transformed into a sequence of RDDs

which is calledDStream (discretized stream) before processing through workers. All RDDs

in a DStream are processed in order, whereas data items inside an RDD are processed in

parallel without any ordering guarantees. In consequence, the order in which data items

are processedmay diverge from the order in which they are received, roughly by the batch

size. Since there is a certain job scheduling delay when processing an RDD, batch sizes be-

low 50 ms tend to be infeasible [Apa16f, Sec. “Performance Tuning”]. Accordingly, proc-

essing an RDD takes around 100ms in the best case, although Spark Streaming is designed

for latency in the order of a few seconds [ZDL+13, Sec. 2]. To prevent data loss even for un-

reliable data sources, Spark Streaming grants the option of using awrite-ahead log (WAL)

from which data can be replayed after failure. State management is realized through a

state DStream that can be updated through a DStream transformation.

Flink [Apa16d] is a project that has many parallels to Spark Streaming as it also originated

from research and advertises the unification of batch and stream processing in the same

system, providing exactly-once guarantees for the stream programmingmodel and a high-

level API comparable to that of Trident. Formerly known as Stratosphere [ABE+14], Flink

entered the Apache Incubator under its current name in mid-2014, received top-level sta-

tus in January 2015 [Apa15], and reached stable version 1.0.0 in March 2016 [Apa16a].

In contrast to Spark Streaming, Flink is a native stream processor and does not rely on

batching internally. Apart from the batching API and the streaming API in the focus of this

section, Flink also provides APIs for graph processing, complex event processing, SQL, and

an executor to run Storm topologies [Sax15]. Flink can be deployed using a resource nego-

tiator such as YARN or Mesos, but also in standalone mode directly on machines. A Flink

49

2 Background & Related Work

deployment has at least one job manager process (with optional standbys for failover)

to coordinate checkpointing and recovery and for receiving Flink jobs. The job manager

also schedules work across the task manager processes which usually reside on separate

machines and in turn execute the code. Resource allocation for a job was initially static

[Ewe16], but dynamic scaling has been added in version 1.5 in May 2018 [Hue18].

Conceptually, Flink can be considered one of the more advanced stream processors as

many of its core features were already considered in the initial design and not just added

as an afterthought as opposed to Spark’s streaming API or statemanagement in Storm, for

instance. However, only relatively few big players have committed to using it in production

so far (cf. [Apa16g] [Apa16b]). To provide exactly-once processing guarantees, Flink uses

an algorithm grounded in the Chandy-Lamport algorithm for distributed snapshots [CL85]:

Essentially,watermark items are periodically injected into the data stream and trigger any

receiving component to create a checkpoint of its local state. On success, the entirety of

all local checkpoints for a given watermark comprise a distributed global system check-

point. In a failure scenario, all components are reset to the last valid global checkpoint and

data is replayed from the corresponding watermark. Since data items may never overtake

watermark items (which are therefore also called barriers), acknowledgment does not

happen on a per-item basis and is consequently much more lightweight than in Storm.

Flink implements a back pressure mechanism [CTE15] through buffers with bounded ca-

pacity: Whenever ingestion is overtaking processing speed, the data buffers effectively

behave like fixed-size blocking queues and thus slow down the rate at which new data en-

ters the system. By making the buffering time for data items configurable, Flink promotes

an explicit trade-off between latency and throughput and can sustain higher throughput

than Storm. But while Flink is also able to provide consistent latency below 100 ms, it

cannot satisfy as aggressive latency goals as Storm [CDE+15].

Flink provides several APIs to execute collection-based (relational) queries: The only dis-

tinction between the functionally equivalent Table and SQL APIs [HWJ17] is that the first

is integrated into the host programming language whereas the latter executes standard-

ized SQL queries as the name implies. The DataStream API [Wal17] offers an abstraction

to perform complex stream-based queries, including operators for windowed aggrega-

tions and stream joins. By inserting all tuples within a data stream into an ever-growing

and initially empty dynamic table [HWJ17], collection-based queries become applicable

to streaming data. While continuous queries over dynamic tables are push-based and fol-

low collection-based semantics like the self-maintaining queries presented in this thesis,

they do not reflect historical data, but only tuples that have arrived since table creation.

Therefore, Flink’s continuous queries bear similarity to PipelineDB’s continuous views (see

Section 2.4) rather than InvaliDB’s real-time queries.

Further Systems. In the last couple of years, a great number of stream processors have

emerged that all aim to provide high availability, fault tolerance, and horizontal scalability.

Much like Flink, Apex [Apa18b] is a native stream processor that promises high perfor-

50

2.5 General-Purpose Stream Processing

mance in stream and batch processing with low latency in streaming workloads. It has

been in development since 2012, was accepted as Apache Incubator project in August

2015 and was granted top-level status in April 2016 [Apa16c]. It is also complemented

by a host of database, file system, and other connectors as well as pattern matching, ma-

chine learning, and more algorithms through an additional library, called Apex-Malhar.

Compared to projects like Spark Streaming or Flink, Apex has only few contributors and

little development activity [Apa18f]. Heron [KBF+15] was developed to replace Storm at

Twitter and is completely API-compatible to Storm, but improves on several aspects such

as backpressure, efficiency, resource isolation, multi-tenancy, ease of debugging, and per-

formance monitoring. It was open-sourced in May 2016 [Ram16]. MillWheel [ABB+13] is

an extremely scalable stream processor that offers similar qualities as Flink and Apex, e.g.

state management and exactly-once semantics. Millwheel and FlumeJava [CRP+10] are

the execution engines behind Google’s Dataflow cloud service for data processing. Like

other Google services and unlike most other systems discussed in this section, Dataflow is

fully managed and thus relieves its users of the burden of deployment and all related trou-

bles. The Dataflow programming model [ABC+15] combines batch and stream processing

and is also agnostic of the underlying processing system, thus decoupling business logic

from the actual implementation. The runtime-agnostic API was open-sourced in 2015

and has evolved into the Apache Beam [Apa18c] project (short for Batch and stream) to

bundle it with the corresponding execution engines (runners): As of writing, Apex, Flink,

Spark and the proprietary Google Dataflow cloud service are supported. Another fully

managed stream processing system is IBM Infosphere Streams [BBF+10]. In contrast to

Google Dataflow which is documented to be highly scalable (quota limit for customers:

1 000 compute nodes [Goo16]), it is hard to find evidence for high scalability of IBM In-

fosphere Streams; performance evaluations made by IBM [IBM14] only indicate it per-

forms well in small deployments with up to a few nodes. Photon [ABD+13] is a system

developed by Google to join distributed data streams under exactly-once processing se-

mantics. In contrast to the other stream processors discussed here, Photon is designed

for geographically distributed deployments. Thus, Photon exhibits relatively high end-

to-end latencies in the order of several seconds on average and is specifically designed

to cope with infrastructure degradation and failure (such as data center outages) in au-

tomatized fashion. Quill [CFG+16] is a distributed platform that supports temporal and

relational data analysis of historical and streaming data. It uses the analytics library Trill

[CGB+14] for relational and temporal data analysis. Since Trill relies on micro-batching to

compute incremental output over data streams, latency is typically in the order of sec-

onds, even though it is configurable through batch size. Concord [Bro15] is a proprietary

stream processing framework designed around performance predictability and ease-of-

use. To remove garbage collection as a source of possible delay, it is implemented in C++.

To facilitate isolation in multi-tenant deployments, Concord is tightly integrated with the

resource negotiator Mesos. Flume [Apa16e] is a system for efficient data aggregation and

collection that is often used for data ingestion into Hadoop as it integrates well with HDFS

51

2 Background & Related Work

and can handle large volumes of incoming data. While it is not designed for complex

topologies, Flume does support simple operations such as filtering or modifying incoming

data through Flume Interceptors [GMSS15, Ch. 7] whichmay be chained together to form

a low-latency processing pipeline. The list of distributed stream processors goes on, but

we consider systems out of scope that have been discontinued (e.g. Muppet [LLP+12], S4

[NRNK10]), or focus on mobile computing (e.g. Sonora [YQC+12]).

2.5.3 Design Decisions & Trade-Offs

Table 2.3 sums up the properties of those systems in direct comparison which we cov-

ered in-depth in the last section. Storm provides low latency, but does not offer ordering

guarantees and is often deployed providing no delivery guarantees at all, since the per-

tuple acknowledgement required for at-least-once processing effectively doublesmessag-

ing overhead. Stateful exactly-once processing is available in Trident through idempotent

state updates, but has notable impact on performance and even fault tolerance in some

failure scenarios. Samza is another native stream processor that has not been geared to-

wards low latency as much as Storm and puts more focus on providing rich semantics,

in particular through a built-in concept of state management. Having been developed for

use with Kafka in the Kappa Architecture, Samza and Kafka are tightly integrated and share

messaging semantics; thus, Samza can fully exploit the ordering guarantees provided by

Kafka. Spark Streaming effectively unifies batch and stream processing and offers a high-

level API, exactly-once processing guarantees, and a rich set of libraries, all of which can

greatly reduce the complexity of application development. However, being a native batch

processor, Spark Streaming loses to its contenders with respect to latency [CDE+15].

For a discussion of the different notions of event and processing time (cf. Section 2.4.2)

for the individual systems, we refer to [Aki15] [Aki16, Nie17] [Apa17]. We consider the

intricacies of event and processing time to be out of scope, because InvaliDB directly uses

object versions as logical event timestamps (cf. Section 3.1) and therefore does not rely

on the event time semantics of the underlying stream processor.

2.5.4 Stream Processing: Summary & Discussion

With current technology, it has become feasible to build Big Data analytics pipelines that

process data items as they arrive. However, processing latency is involved in a number

of trade-offs with other desirable properties such as throughput, fault tolerance, reliabil-

ity (processing guarantees), and ease of development. Throughput can be optimized by

buffering data and processing it in batches to reduce the impact of messaging and other

overhead per data item, whereas this obviously increases the in-flight time of individual

data items. Abstract interfaces hide system complexity and ease the process of application

development, but sometimes also limit the possibilities of performance tuning. Similarly,

52

2.5 General-Purpose Stream Processing

st
ri
ct
e
st

a
ch
ie
va
b
le

st
a
te

p
ro
ce
ss
in
g

b
a
ck
p
re
ss
u
re

e
la
sti
c

g
u
a
ra
n
te
e

la
te
n
cy

m
a
n
a
g
e
m
e
n
t

m
o
d
e
l

m
e
ch
a
n
is
m

o
rd
e
ri
n
g
g
u
a
ra
n
te
e
s

sc
a
la
b
il
it
y

S
to
rm

a
t-
le
a
st
-o
n
ce

�
10

0
m
s

y
e
s

o
n
e
-a
t-
a
-ti
m
e

y
e
s

n
o

y
e
s

Tr
id
e
n
t

e
xa
ct
ly
-o
n
ce

<
10

0
m
s

y
e
s
(s
m
a
ll
st
a
te
)

m
ic
ro
-b
a
tc
h

y
e
s

b
e
tw

e
e
n
b
a
tc
h
e
s

ye
s

S
a
m
za

a
t-
le
a
st
-o
n
ce

<
10

0
m
s

y
e
s

o
n
e
-a
t-
a
-ti
m
e

n
o
t
re
q
u
ir
e
d

w
it
h
in
st
re
a
m

p
a
rti
ti
o
n
s

n
o

S
p
a
rk

S
tr
e
a
m
in
g

e
xa
ct
ly
-o
n
ce

<
1
se
co
n
d

y
e
s

m
ic
ro
-b
a
tc
h

ye
s

b
e
tw

e
e
n
b
a
tc
h
e
s

y
e
s

F
li
n
k
(s
tr
e
a
m
in
g
)

e
xa
ct
ly
-o
n
ce

<
10

0
m
s

y
e
s

o
n
e
-a
t-
a
-ti
m
e

y
e
s

w
it
h
in
st
re
a
m

p
a
rti
ti
o
n
s

y
e
s

Ta
b
le
2
.3
:
S
to
rm

/T
ri
d
e
n
t,
S
a
m
za
,
S
p
a
rk

S
tr
e
a
m
in
g
,
a
n
d
F
li
n
k
’s
st
re
a
m
in
g
e
n
g
in
e
in
d
ir
e
ct
co
m
p
a
ri
so
n
.

53

2 Background & Related Work

rich processing guarantees and fault tolerance for stateful operations increase reliability

and make it easier to reason about semantics, but require the system to do additional

work, e.g. acknowledgements and state replication. Exactly-once semantics are particu-

larly desirable and can be implemented through combining at-least-once guarantees with

either transactional or idempotent state updates, but they cannot be achieved for actions

with side effects such as sending a notification to an administrator.

Through general-purpose stream processing frameworks, data can be accessed in the ar-

guably most generic of ways: through writing application code. At the same time, though,

neither declarative query languages nor collection-based change notifications nor self-

maintaining queries are available out-of-the-box. While collection-based real-time que-

ries can be implemented using stream processing technology (as detailed in Chapter 3

and Chapter 4), the complexity involved in doing so is prohibitive in many use cases.

2.6 Push-Based Access in Data Management:
Historical Overview & Discussion

Unsynchronized access to file systems, network databases (CODASYL), and hierarchical

databases (IMS) [FS76] represented the state-of-the-art mechanisms for data storage and

retrieval before the advent of relational database systems. However, data management

has come a long way since then: Figure 2.10 provides a coarse-grained overview over the

development of data management systems from 1970 until today.

1980

2010

Relational
Model

Ingres

System R

Triggers

Entity-Relationship Model

SQL
Standard

PostgreSQL

HiPAC

Starburst

Rapide

STREAM

Aurora &
Borealis

MapReduce

Bigtable

Dynamo

Spark

Storm

Flink

Samza

RethinkDB

Meteor

Firebase

InvaliDB

GFS

Telegraph
1970 1990

2000 today

Active Databases
Big Data &

NoSQL
Real-Time
Databases

Relational Databases
CEP &

Streams

Stream
Processing

Figure 2.10: Over the last five decades, different classes of data management systems

have been in the focal point of research interest.

54

2.6 Historical Overview & Discussion

After the introduction of the relational model in 1970 [Cod70], Ingres [SHWK76] and Sys-

temR [CAB+81] followed shortly thereafter as the first implementations of relational data-

base systems. In the following years, the formalization of data modeling (e.g. through the

Entity-Relationship Model [Che75]) and standardization through both ANSI [ANS86] and

ISO [Tec87] helped to increase the popularity of relational systems further. While triggers

as the first active mechanisms were proposed in 1975 already [EC75], active databases

such as Starburst [SCF+86], HiPAC [DBB+88], and Postgres [SR86] did not emerge before

the mid-1980s. Systems like Rapide [San93], Telegraph [CCD+03], STREAM [MWA+03],

and Aurora/Borealis [ÇAA+16] in the 1990s and early 2000s eventually took the acknowl-

edgment of data in motion one step further by introducing dedicated concepts for data

streams and event sequences, thus deviating from the relational model centered around

static data collections. The explosion of user-generated data at companies like Google

and Amazon in the early 2000s finally sparked development of several data management

system classes that parted with the relational model altogether [GWFR16]. NoSQL data

stores like BigTable [CDG+06] and Dynamo [DHJ+07] revolutionized the way that distrib-

uted data stores were designed, favoring high scalability and fault tolerance over query

expressiveness and compliance with existing standards. Similarly, the Google File System

(GFS) [GGL03] and MapReduce [DG04] pioneered storage and batch processing of semi-

structured and unstructured huge data volumes and thus turned Big Data management

and analytics into hot research topics. Around 2010, stream processing frameworks like

Storm [TTS+14], Stratosphere (later renamed to Flink) [ABE+14], and Samza [NPP+17]

shifted the research focus from maximizing throughput to also achieving low latency for

data-intensive applications at scale. With the growing popularity of interactive and col-

laborative applications in recent times, real-time databases finally received some atten-

tion as well as, because they effectively combine the collection-based semantics of tra-

ditional databases with the push-based delivery mechanisms known from stream-based

systems. However, first-generation real-time database systems like Meteor [Met18], Re-

thinkDB [Ret16], and Firebase [Fir16] exhibited critical design flaws in query expressive-

ness, scalability, and fault tolerance, resulting in limited usefulness for large-scale industry

applications. In this thesis, we present InvaliDB as a second-generation real-time database

system design that removes critical constraints present in the first-generation systems.

Discussion

The ability to notify clients of changes to their critical data has become an important fea-

ture for both data storage systems and application development frameworks. Table 2.4

sums up the current landscape of systems that provide push-based data access in one

form or another. Traditional (SQL) database management systems provide a wealth of

features for applications based on request-response interaction, but maintaining query

results on a per-user basis is not what they have been designed for. Few SQL systems

55

2 Background & Related Work

provide active features beyond triggers and existing functionality for query result mainte-

nance is almost exclusively employed for optimizing pull-based query performance (e.g.

materialized views or change notifications).

Database

Management

Real-Time

Databases

Data Stream

Management

Stream

Processing

Primitive persistent collections ephemeral streams

Processing one-time
one-time +

continuous
continuous

Access random
random +

sequential
sequential (single-pass)

Data structured
structured,

unstructured

Table 2.4: An overview over system classes providing push-based data access.

Data stream management systems and stream processing engines are push-based, ex-

pressive, and scalable at the same time, but do not provide collection-based query se-

mantics; instead, they rely on the notion of data streams as the basic primitive. Real-

time databases combine the data model of traditional databases with the access model

of stream-oriented systems. Current implementations, however, are either unscalable or

avoid the complex queries thatmake them so appealing in theory: In consequence, devel-

opers often find themselves evaluating complex performance trade-offs or compensating

for missing query expressiveness when building reactive applications on top of a state-

of-the-art real-time database. Since existing approaches are designed to replace (rather

than amend) existing pull-based systems, the benefits of using a real-time instead of a tra-

ditional database always have to be weighed against the comparative lack of pull-based

features and overall maturity. In order to make the concept of real-time databases more

practically relevant, it is necessary to remove these limitations.

In the remainder of this thesis, we will therefore present a real-time database design that

is legacy-compatible, provides high read andwrite scalability, and is suitable for expressive

real-time queries at the same time (cf. Chapter 3). We will then provide experimental ev-

idence to support our claims (cf. Chapter 4) and describe a concrete application scenario

to illustrate that our approach is practical for existing pull-based systems (cf. Chapter 5).

56

InvaliDB: A Scalable Design for Opt-in
Real-Time Queries 3

“Life does not get better by chance, it gets better by change.”

—Jim Rohn

In Chapters 1 and 2, we postulated four pivotal challenges of building real-time databa-

ses and surveyed the state of the art in related technology. While we found that many

systems do acknowledge a need for reactivity on the database side by pushing updated

information to the client, no collection-based real-time query implementation addresses

all of the challenges at the same time. Throughout the rest of this thesis, we will conceive,

implement, and evaluate a push-based real-time query mechanism that solves all of the

aforementioned challenges in a comprehensive fashion.

In this chapter, we therefore present InvaliDB, a system design that provides push-based

real-time queries over database collections on top of existing pull-based databases. Thus,

we address three out of the four mentioned challenges in this chapter: scalability (C1),

query expressiveness (C2), and support of legacy systems (C3). An experimental evalua-

tion of InvaliDB and the remaining challenge of an abstract query API (C4) will be covered

in Chapter 4 and Chapter 5, respectively.

In Section 3.1, we explore the context in which InvaliDB is employed and the semantics

which it follows, emphasizing data model, access control, and ordering as well as consis-

tency guarantees for real-time queries. In Section 3.2, we then detail the messaging layer

that decouples communication between the pull-based database on the one side and

InvaliDB on the other. To promote a clear understanding of the intended system behavior,

we first lay out the different message types that are required to facilitate efficient main-

tenance of sorted results. Then, we discuss the different communication pipelines over

which these messages are exchanged. Until this point in the chapter, we treat InvaliDB as

a black box and only describe received input and generated output. Starting with Section

3.3, we focus on InvaliDB’s internals and explain how computation and state management

required for these messages are distributed horizontally across machines. In doing so, we

explicate how many concurrent real-time queries and high update throughput are made

feasible for sorted and unsorted filter expressions, joins, and aggregations. Last in this sec-

tion, we turn to the pluggable query engine and describe which components of our design

are generic and which components have to be customized for the underlying pull-based

database. Finally, we provide a synoptic discussion of our approach in Section 3.4.

57

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

3.1 System Model

InvaliDB is a real-time database design that provides push-based access to data through

collection-based real-time queries. Its name is derived from one of its usages1 where it

invalidates cached database queries.

Similar to some of the systems discussed in Chapter 2 (e.g. Meteor, RethinkDB, Parse),

InvaliDB relies on a pull-based database system for data storage. End users do not directly

interact with the database, but instead with application servers that execute queries and

write operations on the users’ behalf. As an important distinction to state-of-the-art real-

time databases, however, InvaliDB separates the query matching process from all other

system components: The real-time component (InvaliDB cluster) is deployed as a sepa-

rate system, isolated from the application servers, and it can only be reached through an

asynchronous message broker (the event layer). To enable real-time queries, an applica-

tion server only runs the lightweight InvaliDB client which relays messages between the

end users, the database, and the InvaliDB cluster. The expensive task of real-time query

matching, on the other hand, is offloaded to the InvaliDB cluster.

end user

InvaliDB client
(applica�on server) database

InvaliDB cluster
(query matching)

 DB
nvaliI }{+

23 1

} {/
event layer

}{

Figure 3.1: InvaliDB strictly separates responsibilities for data storage (database) from

real-time query matching (InvaliDB cluster). The InvaliDB client is located at

the application server and acts as a broker between these two.

Figure 3.1 sketches out the information flow within the overall architecture. In essence,

messages are exchanged between end user, application server, database, and the InvaliDB

cluster on the following occasions:

1The Quaestor architecture (cf. Section 5.2) implements a scheme for global caching of dynamic content,

specifically database query results. Within the Quaestor architecture, InvaliDB is used to detect modifi-

cations to query results, so that stale caches can be invalidated in a timely manner.

58

3.1 System Model

• query subscription (1): In order to subscribe to a real-time query, a web or mobile

application user sends a subscription request with a unique identifier2 to an appli-

cation server. The application server then executes the query against the database

to produce the initial result, i.e. the currently matching data objects. This result and

a representation of the query itself are asynchronously handed to the InvaliDB clus-

ter which then activates the query. From then on, the InvaliDB cluster maintains an

up-to-date representation of the query result.

• write operation (2): For every insert, update, or delete operation which is executed

at the database, an after-image (i.e. a fully specified representation) of the written

entity is handed to the InvaliDB cluster. The after-image is then matched against

all active real-time queries to detect changes to currently maintained results. Since

InvaliDB receives complete copies of the written data objects, it does not require

additional database queries for query maintenance (unlike Meteor, cf. page 27).

• change notification (3): As a response to a real-time query subscription, the In-

valiDB cluster sends out a stream of notification messages. The first notification

message for any real-time query contains the initial result; this message is gener-

ated on query subscription. All subsequent notifications contain incremental result

updates: Whenever a write operation changes any currently active real-time query,

the InvaliDB cluster sends a notification to the subscribed application servers which,

in turn, forward the notification to the subscribed clients.

• query cancellation (not illustrated): Similar to a real-time query subscription, a real-

time query cancellation request is asynchronously passed to the real-time compo-

nent (InvaliDB cluster), so that the query can be deactivated and does not consume

further resources. No database interaction is required for query deactivation.

In the remainder of this section, we lay out the context in which InvaliDB can be deployed.

By doing so, we present assumptions that our systemdesign is based on and further clarify

the semantics which it follows.

3.1.1 Fault Tolerance, Scalability & Multi-Tenancy

InvaliDBpromotes a separationof concerns betweenpull-basedOLTPworkloads andpush-

based real-time workloads. In this section, we briefly describe consequences and impli-

cations of this characteristic of our design.

Fault Tolerance Through Isolated Failure Domains. As one of the main advantages of

the strict segregation between OLTP and real-time processing in our proposed design,

overload or failure of one component does not compromise availability of the other: In

particular, a failing InvaliDB cluster will simply stop responding to application servers, but

2For every subscription request, the client generates a unique identifier which is used by the application

server to tag the individual change notifications. Thus, the client knows towhich real-time query subscrip-

tion an incoming change notification belongs, even though all subscriptions share the same connection.

59

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

will do no further harm. This is an important distinction to systems that burden the ap-

plication servers with query matching: As we found in Section 2.3, for example, Meteor

and RethinkDB ultimately crash when the real-time subsystem becomes a performance

bottleneck.

Resource Isolation& Scalability. Another prime benefit of our segregated systemdesign

is that resources for OLTPworkloads and those for real-timeworkloads can be scaled inde-

pendently: Pull-based OLTP performance can be improved by adding application servers

or scaling out the database system and, likewise, additional processing nodes can be as-

signed to the InvaliDB cluster in order to increase sustainable real-time workload (i.e. the

number of real-time queries or write throughput). In contrast, many of the systems dis-

cussed in Chapter 2 are inherently unscalable, because they colocate querymatching with

OLTP processing within the application server (e.g. Meteor, RethinkDB) or the database

itself (e.g. change notification mechanisms in Oracle, SQL Server, or PostgreSQL).

Multi-Tenancy. In our proposed system design, an application does not necessarily have

to be deployed with a dedicated InvaliDB cluster. Instead, different applications (tenants)

can share a single, comparatively more powerful InvaliDB cluster. Therefore, real-time

queries can be understood as a “Realtime-as-a-Service” offering which is provided by the

InvaliDB cluster and consumed by application servers through the event layer interface.

Providing real-time queries with a single shared InvaliDB cluster can be preferable over

using small dedicated clusters, because it optimizes efficiency through resource pooling,

increases resilience against load spikes, and is also easier to deploy and monitor.

3.1.2 Real-Time Queries

InvaliDB’s real-time queries are designed to resemble ad hoc database queries in many as-

pects, specifically query semantics. However, given the fundamental differences between

the push-based and the pull-based access paradigm, both query types are used in differ-

ent ways. In the following, we therefore elucidate how real-time queries can be defined,

how user permissions can be enforced, and what correctness guarantees are provided in

our conceptual framework.

Implicit Ordering by Primary Key. Evaluating database queries sometimes involves a cer-

tain degree of indeterminism. While this may be acceptable in some applications, it can

have disastrous effects in others: Using InvaliDB for cache invalidation (cf. Chapter 5) is

only possible, for instance, if InvaliDB’s query evaluation is perfectly aligned with the pull-

based query engine underneath. As an illustration of this issue, consider a sorted SQL

query: Since ORDER BY clauses do not guarantee stable sorting order unless the sorting

key is unique for every result entry [Tec92], entities may appear in arbitrary order within

the query result when they have identical sorting keys. For queries that contain the equiv-

alent of an offset or limit clause, even result membership can thus be subject to indeter-

minism, whenever result boundaries are ambiguous. In order to guarantee that query

60

3.1 System Model

evaluation in the pull-based database and within InvaliDB produce the same output, que-

ries therefore have to be defined in such a way that their results are unambiguous. For

sorted queries, in particular, we therefore assume that all sorting keys are made unique

(e.g. by implicitly adding the primary key as the last component).

Immutable Query Parameters. InvaliDB’s real-time queries are immutable, i.e. it is not

possible to update the parameters of an active real-time query: Once a subscription re-

quest has been sent, the subscriber is only able to either cancel it or keep listening for

notifications. Changing the definition of a query is thus only possible by resubscribing

with different parameters. It is important to note, however, that we assume query im-

mutability in this work to reduce overall system complexity; in reality, changes in query

context during execution may contradict this assumption. For example, revoking certain

user rights should be immediately reflected in the data provided through active real-time

queries. In our system model, a user’s active subscriptions therefore have to be canceled

after permission updates (see next paragraph).

Access Control. InvaliDB’s real-time queries are designed to enforce access control on

the level of individual records. To this end, every real-time query subscription carries a

representation of the executing user’s permissions (e.g. the user ID and a list of associ-

ated roles). Likewise, access control lists are attached to every incoming write operation

to restrict or explicitly allow access to certain users and user groups3. Irrespective of the

actual matching status, a real-time query may only produce a match for a given entity

representation when the user has read access. Thus, the check of permissions can be

understood as an additional filter predicate that an incoming object needs to satisfy. It

should be noted, however, that user permissions (unlike query predicates) may be up-

dated during the lifetime of a real-time query. Since real-time queries (and thus also the

associated permissions) cannot be updated, though, a change of user permissions will

have no effect on active real-time queries. To effectively propagate updated permissions

to the InvaliDB cluster, all affected real-time queries have to be canceled and resubscribed

with fresh parameters.

Eventually Consistent Query Results. InvaliDB can be seen as a replicated storage, since

it receives a copy of database state (the initial query result) and subsequently applies up-

dates to it (after-images). But since all communication is purely asynchronous4, InvaliDB

may receive after-images delayed or skewed (comparedwith the order in which the corre-

sponding write operations arrive at the database). In consequence, a query result main-

tained by InvaliDB may diverge temporarily from actual database state. When InvaliDB

has applied the same write operations as the database, however, the maintained result of

an active real-time query (within InvaliDB) is identical to the result of the corresponding

pull-based query (run against the database). Similar to other asynchronously replicated

3Sections 5.1.2 and 5.2.2 further explore how access control can be implemented in a system using InvaliDB.
4As detailed in Section 3.2, the application server never waits for input from InvaliDB: In essence, the ap-

plication server passes after-images to the InvaliDB cluster when it receives them from the database and

passes change notifications to the end user as soon as it receives them from the InvaliDB cluster.

61

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

systems, InvaliDB thus facilitates a notion of correctness that corresponds to eventual con-

sistency [BG13].

3.1.3 The Backing Database System

InvaliDB is designed for query expressiveness onparwith that of aggregate-oriented [SF12]

NoSQL document stores such asMongoDB. Since these systems rely on nesting to express

relationships between entities, they typically5 provide only very limited or no support for

join queries. Accordingly, InvaliDB is designed to enable real-time queries over single col-

lections, like the state-of-the-art real-time databases discussed in Section 2.3. In contrast

to these systems, though, InvaliDB also enables real-time join queries and real-time ag-

gregations (cf. Section 3.3.2).

Data Model. Since write operations may arrive out-of-order, InvaliDB needs to identify

(and ignore) records for which newer versions have already been processed; to ensure

eventual correctness of maintained query results, InvaliDB only processes new versions

and filters out already-processed ones. To make this feasible, we assume all data to be

versioned6, so that it is always trivial to pick the most recent version among different rep-

resentations of an entity. For the same reason, we assume that there is an arbitrary (but

finite) upper bound for propagation delays, so that last-seen object versions do not have

to be retained indefinitely. To further reduce complexity, we assume all write operations

to be final and non-conflicting; we do not consider scenarios where conflicts have to be

resolved or write operations have to be rolled back. We also make two assumptions re-

garding primary keys: First, primary keys are alwaysfinal, meaning they cannot be changed

once assigned; this characteristic is mandatory, because InvaliDB’s workload distribution

scheme assumes primary key hashes to be static for database entities (see Section 3.3 for

details). Second, primary keys must not be reused to prevent InvaliDB from mistaking en-

tities for one another: Since InvaliDB remembers deleted items (and ignores inserts and

updates for them), inserting an entity with the primary key of a previously deleted one

may lead to incorrect behavior.

Write Propagation. A real-time query entails at most one single database request on

subscription (cf. Section 3.2.4) and is otherwise self-maintainable [QGMW96], i.e. its

result can be kept up-to-date with only the incoming write stream. To avoid contacting

the database during query matching, however, InvaliDB requires a complete (i.e. fully

specified) copy of any written data object7. Producing these may incur some processing

overhead at write time, depending on a variety of parameters. For example, set-oriented

5See our in-depth database survey [GWFR16].
6Versioning data records is a standard feature in many database systems (e.g. PostgreSQL [Pos18, Sec.

5.4], SQL Server [MGB17], Oracle NoSQL Database [Ora18b, Sec. 9]) and can be implemented within the

application server, if the underlying database system does not support it (cf. Section 4.3).
7A delete operation provides the identifier of the deleted entity and null as after-image.

62

3.2 The Event Layer: Decoupling Real-Time & OLTP Workloads

writes8 can only be processed correctly when all affected database records are identified

and assembled by the application server and provided to InvaliDB. Similarly, a write oper-

ation has to complete before the corresponding after-image can be sent to InvaliDB, if the

primary key (or any auto-generated attribute) is assigned by the database or if it is exe-

cuted as part of a transaction and therefore might be aborted by the database. To shield

against bursty write workloads and write hotspots in general, the application server en-

forces a per-object propagation rate limit by collapsing after-images of the same entity.

For example, a rate limit of 10 write operations per second translates to a minimum delay

of 100ms between after-images for the same entity. When a particular entity is updated

three times within 50ms under this rate limit, the application server will propagate the

first update immediately and the third update 100ms later; the second update will not be

propagated at all.

Query Execution. While InvaliDB serves every subscription to an active real-time query

without database interaction, it requires the initial result whenever the subscribed query

is not being maintained already (see Section 3.2.4 for details). However, InvaliDB neither

regulates the overall number of real-time queries in the system nor the number of dis-

tinct queries that an application server subscribes to. Instead, InvaliDB only employs rate

limiting on the level of individual queries to bound the impact of runtime errors that re-

quire resubscription (cf. poll frequency rate limit in Section 3.3.2). Application servers are

consequently able to incur substantial load on themselves and on the underlying data-

base system by registering excessively many distinct real-time queries over a short period

of time. In this work, we assume that application servers avoid such self-inflicted over-

load scenarios by enforcing a rate limit on pull-based queries for the initial results. Since

InvaliDB is designed to serve many application servers with possibly heterogeneous hard-

ware profiles in a multi-tenant environment, the performance characteristics of the sub-

scribed application servers and the capabilities of the backing data store are transparent

to InvaliDB.

3.2 The Event Layer: Decoupling Real-Time & OLTP Workloads

In Section 3.1, we introduced the event layer as a message broker that decouples applica-

tion servers from an InvaliDB cluster. We also briefly presented its different communica-

tion pipelines for write propagation, query management, and real-time notifications. In

this section, we detail the three event layer pipelines and their respective characteristics

such as requirements on ordering or delivery guarantees.

We start in Section 3.2.1 by describing the intended messaging semantics. In more detail,

we explicate how query result modifications are encoded in the different types of noti-

8As an example, consider the following SQL command which may affect arbitrarily many database records:

UPDATE employee SET income += 500 WHERE name = 'Smith'.

63

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

fication messages and how client-side result maintenance (cf. self-maintaining9 queries)

can be implemented on their basis. In Section 3.2.2, we then address the write pipeline

that propagates after-images from the application servers to the InvaliDB cluster. Next in

Section 3.2.3, we focus on information flow in the opposite direction and consider the

notification pipeline over which initial results and result changes are pushed from the In-

valiDB cluster back to the application servers. In Section 3.2.4, we finally turn to the query

pipeline and describe how query subscriptions are established, how they are canceled,

and how they are related to change notification streams.

3.2.1 Messaging Semantics

As stated in Section 3.1, every real-time query produces a sequential stream of change no-

tifications which enables the receiving party to maintain the query result: For every result

change, the InvaliDB cluster sends out one or several notifications containing the infor-

mation required to implement these changes. Further, every change notification relates

to exactly one database entity that is or was part of the result. To make explicit how the

transmitted entity relates to the query result, every change notification carries a match

type attribute. The elementary match types are as follows:

• add: An entity entered the result, i.e. it did not match before and is matching now.

• change: A matching entity was updated and remains a match.

• changeIndex (for sorted results only): A matching entity was updated and changed

its position within the query result (subsumed by change).

• match: The entity matches the query (either add, change, or changeIndex).

• remove: The entity was a match before, but is not matching any longer.

The add, change, changeIndex, and removematch types relate to collection-based query

semantics as they encode incremental result alterations. The match match type, in con-

trast, is intended for stream-oriented query semantics: Since the match type match does
not reflect the previous matching state of the written entity, the InvaliDB cluster does not

maintain result state for these queries unless required for matching (e.g. when specified

with a limit or offset). It is only assigned when the client specifically requests this more

generic match type; by default, the most specific match types are provided.

As an illustration of the different match types, consider the query in Figure 3.2: The query

selects blog posts whose title contains the keyword 'NoSQL' and it sorts them by publica-

tion year in descending order. The initial result in the example only contains two articles

from the years 2015 and 2014, respectively. Next, a new article is entered into the system

with title 'NoSQL' and the default year of -1. This triggers an add notification and thus ap-
9To avoid confusion, we would like to point out that self-maintaining queries are an abstraction for real-

time queries that hides the complexity of result maintenance from the application developer (cf. Section

5.3.1). In contrast, a real-time query is called self-maintainable, if its result can be kept up-to-datewithout

access to the underlying database (cf. Section 2.2.3).

64

3.2 The Event Layer: Decoupling Real-Time & OLTP Workloads

pends the article with ID 8 to the result. A later update changes the article’s year to 2081
and thus provokes a changeIndex notification: The article is moved to the first position

of the query result. However, the author notices a typo in the year value and corrects it

to 2018. This alteration entails a simple change notification as the article is modified, but

its position within the result remains unchanged. Finally, the author spots and rectifies

another typo, this time relating to the title: Changing the article’s title from 'NoSQL' to

'No SQL' causes a remove notification as the article does not satisfy the matching condi-

tion anymore and therefore leaves the query’s result.

SELECT ID, title, year

 FROM articles

 WHERE title like '%NoSQL%'

 ORDER BY year DESC

add

remove

changeIndex

change

ID Title Year

8 NoSQL 2081

6 NoSQL 101 2015

2 Do NoSQL! 2014

1)

2)

3)

ID Title Year

6 NoSQL 101 2015

2 Do NoSQL! 2014

8 NoSQL! -1

1)

2)

3)

ID Title Year

6 NoSQL 101 2015

2 Do NoSQL! 2014

1)

2)

ID Title Year

8 NoSQL 2018

6 NoSQL 101 2015

2 Do NoSQL! 2014

1)

2)

3)

ID Title Year

8 No SQL! 2018

6 NoSQL 101 2015

2 Do NoSQL! 2014

1)

2)

initial result

title:

null 'NOSQL!'→

year:

-1 2081→

year:

2081 2018→

title:

'NoSQL!' 'No SQL!'→

ID 8
v1

ID 8
v2

ID 8
v3

ID 8
v4

Figure 3.2: The different match types correspond to different kinds of result alterations.

There are two different approaches for transferring the initial result to the real-time query

subscriber. In this work, we represent the initial result as a sequence of add events, so

that change notifications for the initial result as well as the incremental ones for result

alterations relate to single database entities, respectively. Since initial and incremental

change notifications are both scoped to individual entities here, they can be processed in

the same fashion10. This is not the case with the second approach where the initial result

is transferred in the form of an actual collection with the first change notification. While

we think the second approach is useful to illustrate the general idea (see for example

Figure 3.5 on page 72), we consider it less practical for two reasons. First, it requires

10The subscriber can discern initial and incremental change notifications through the initial flag (cf. pa-

rameters on page 68) which is only true for events that represent part of the initial result.

65

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

handling initial and incremental notifications separately, because the initial notification

carries a collection of records whereas all following notifications carry individual records.

In other words, it makes notification processing more complex for the client than the first

approach where all notifications carry individual records. As a second reason, the current

system design does not even allow providing the initial result as a contiguous collection

for certain11 queries, because the result maintenance procedure and, in particular, the

result itself are partitioned within the InvaliDB cluster, so that no single matching node in

the InvaliDB cluster has a notion of the complete result. For details, see Section 3.3.

After-Images, Before-Images & Attribute-Level Change Deltas

The InvaliDB cluster receives representations of database entities in the form of after-

images. These after-images are delivered through the write stream (cf. Section 3.2.2) or

as part of query results (e.g. on subscription, cf. Section 3.2.4). On receiving an entity

representation, the cluster generates one or several change notifications for all affected

real-time query subscriptions. However, the InvaliDB cluster only receives fully specified

after-images of written entities (and no information on which attributes were updated

specifically). In consequence, the naïve way of change propagation is to provide a fully

specified after-image with every change notification.

When an after-image is received for an already-known entity, the already-known version

reflects the entity before the write operation was applied and the more recent version

represents the entity immediately thereafter. Thus, these two representations can be in-

terpreted as before-image and after-image of the entity, respectively. A before-image can

only be derived when the written entity is already part of the query’s result; this corre-

sponds to change notifications with match type change, changeIndex, and remove. In the
case of add notifications, only the after-image (and no prior version) of the written entity

is available by definition; the entity is just becoming part of the result.

The before-image can be provided to the subscriber as a change notification property in

addition to the after-image. This can be convenient, for instance, when the receiving ap-

plication displays the old and the new version of the written entity side-by-side. However,

it is not necessary to send two fully specified records for this purpose. Instead, the same

information can also be encoded in the after-image plus attribute-level change deltas

that capture the difference between before- and after-image; these can be computed

within the InvaliDB cluster before sending out the notification. Assuming the subscriber

maintains the query result, it is even possible to strip the after-images from all but the

add notifications: For all other match types, the subscriber already knows the current

record version (before-image), so that attribute-level change deltas are sufficient to de-

rive the after-image from local state. While complete records are arguably more intuitive

11Specifically, unsorted filter queries and aggregation queries with grouping key (cf. Section 3.3.2) are main-

tained in partitions.

66

3.2 The Event Layer: Decoupling Real-Time & OLTP Workloads

to process than attribute-level change deltas, they also bloat payload traffic by including

information that has not changed (and has already been delivered with previous notifica-

tions). When entities are large and changes are frequent, transmitting only attribute-level

change deltas instead of complete records can thus reduce network traffic significantly

without reducing entropy12.

For illustration, consider an e-commerce application where product information and cur-

rent warehouse stock are stored in the same entity; whenever the stock value for a par-

ticular product changes (i.e. every time it is sold or replenished), a change notification

will be generated and sent to all subscribers. When fully specified after-images are in-

cluded in every change notification, static information such as the product description

will also be transmitted on every update. Therefore, the size of the product description

and the frequency of updates may dominate the network footprint of a real-time query.

However, the effective change that needs to be transmitted is only a counter update. By

using attribute-level change deltas, unaltered attributes are stripped from the generated

change notification before it is sent to the subscriber.

Change Notification Properties

Change notifications encode changes to the result of the underlying real-time query. Fur-

ther, every change notification is related to exactly one database entity (“the related en-

tity”) and carries its characteristics and result context (e.g. position in the result). These

information are encoded in the following properties:

• id (optional): a subscription identifier. If this attribute is present, the change noti-

fication is only processed by the application server responsible for the subscription

(e.g. for changes representing an initial result that is designated for a specific sub-

scriber or for query renewal requests, cf. page 80); a change notification without

subscription ID will be processed by all application servers (specifically: incremental

change notifications that are intended for all subscribers of the query).

• match type: Thematch type encodes what kind of result alteration the change noti-

fication represents. As illustrated in Figure 3.2 on page 65, it thus explicitly tells the

subscriber how the maintained result needs to be updated.

• before-image and after-image: a representation of the related entity from before

and after write execution, respectively.

• change delta: a representation of the relative change that happened to the related

entity (i.e. new, updated, and removed properties).

• operation: the type of operation by which the entity relating to the notification was

altered (insert, update, or delete; none if unknown or not applicable). For an ex-

12It should be noted that complete before- and after-images can be exposed to the application developer,

independent of whether fully specified entity representations or only change deltas are transmitted: If

desired, the InvaliDB client can assemble the complete records in transparent fashion.

67

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

ample where neither insert, update, nor delete can reasonably be applied to an

event, consider how the last entity in a top-10 query result is pushed out when a

new item enters the top-10: While one notification represents the insertion of the

new entity itself (add), another one represents the entity leaving the result (remove).
Since the leaving entity was neither inserted, updated, nor deleted, the correspond-

ing notification would be delivered with operation type none.

• index (for sorted queries only): an integer representing the new position of the

related entity within the result.

• initial: a boolean value indicating whether this notification represents part of the

initial result or not.

• error (only on error): If present, this attribute indicates that the subscription was

terminated due to an error condition. Ideally, this attribute contains hints on how

the application server can handle the error (see for example subscription errors in

Section 3.2.4 or query maintenance errors in Section 3.3.2).

By applying the transmitted change notifications according to their respectivematch types

(and indices), the subscriber can maintain an up-to-date representation of the query’s

result. In Section 5.4.4, we provide a detailed description and example code to illustrate

a straightforward algorithm for client-side result maintenance.

Throughout the rest of this section, we describe the different communication channels

for message exchange between the application server and the InvaliDB cluster.

3.2.2 Write Pipeline

InvaliDB’s write pipeline is similar to a queue where after-images are inserted by appli-

cation servers on the one side and taken out by the InvaliDB cluster on the other. As

described in Section 3.1.3, however, InvaliDB does not rely on first-in-first-out (FIFO) or-

dering; in fact, it does not assume anything at all regarding the order in which after-images

arrive. In consequence, InvaliDB’s write pipeline can be scaled from one single message

queue to many concurrent message queues without any coordination between them.

C

A
B

C

B A
CA B

InvaliDB
cluster

event layer applica�on
server

Figure 3.3: Thewrite pipeline is horizontally scalable, because it does not have to be order-

preserving: Propagation can be distributed across an arbitrary number of asyn-

chronous message queues within the event layer.

68

3.2 The Event Layer: Decoupling Real-Time & OLTP Workloads

The example in Figure 3.3 shows an event layer where the write pipeline consists of three

independent message queues. For publishing write operations, an application server al-

ternates between them (e.g. in Round-Robin fashion) to scatter thewriteworkload evenly;

thus, the after-images A, B, and C are not transferred to the event layer sequentially, but

to different message queues in parallel. On the other side, consumer processes within

the InvaliDB cluster draw after-images from the event layer in arbitrary order: In the ex-

ample, after-image B is consumed before after-image A and after-image C is consumed

concurrently.

Importantly, the number of producers (application servers), consumers (InvaliDB cluster),

and message queues (write pipeline) are entirely independent from one another: To sup-

port higherwrite throughput, parallelismof each one can be increased individually. There-

fore, (OLTP) write throughput does not become a limiting factor to the event layer. The

same holds true for the overall system because of the way that the matching workload is

distributed within the InvaliDB cluster (see Section 3.3).

3.2.3 Notification Pipeline

The change notification pipeline can be seen as the counterpart to the write pipeline,

since it transports change notifications back to the application servers as an immediate

response to received after-images. In the context of the write pipeline, the InvaliDB clus-

ter can be seen as a subscriber to after-images that are provided by application servers.

For the notification pipeline, roles are reversed: The InvaliDB cluster emits change notifi-

cations that are pushed towards the application servers.

ED F ED F

B C
A

AB C
1

2

ED F

AB C

InvaliDB
cluster

event layer applica�on
server

Figure 3.4: The notification pipeline delivers the initial result and incremental result

changes for any registered real-time query. Since individual notification mes-

sages for the same query depend on one another, the notification pipeline

must be order-preserving per query to guarantee correctness.

Figure 3.4 shows, however, that the notificationpipeline is significantlymore complex than

the write pipeline, mainly for three reasons:

1. Coupling with query pipeline: Every change notification belongs to a particular real-

time query. In consequence, a real-time query subscription request (1) is required to

open the corresponding change stream, before a change notification can be

received (2). The process of activating a real-time query is described in Section 3.2.4.

69

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

2. Ordering guarantees: Every change notification represents a transition of the corre-

sponding query result from one state to another. For some queries (e.g. sorted filter

queries, cf. page 68), change notifications are totally ordered (green ∆), i.e. they

are emitted in sequence and have to be applied correspondingly. This is the case

for D, E, and F in the illustration. Notifications for other queries (e.g. unsorted fil-

ter queries) only obey a partial order (orange∆), so that notifications for unrelated

changes can be emitted by concurrent processes within the InvaliDB cluster. In the

illustration, B is emitted before C by the same process, so that B also has to be de-

livered before C on the side of the application servers; for example, B and C could

be add and remove notifications for the same entity. NotificationA, in contrast, does

not have any dependency to either B or C as it is emitted by a concurrent process;

for example, it may relate to a different entity. Since A is thus unrelated to all other

emitted notifications, it may occur anywhere in the change stream.

3. Persistent connections: The notification pipeline requires a persistent connection

between the event layer and the application server, so that result changes can be

pushed from InvaliDB to the listening application server. If the event layer is parti-

tioned, an application server therefore has to maintain a connection to every parti-

tion that holds a currently subscribed query. This is not required13 for propagation

of after-images.

Due to the above-described complications, notifications cannot just be scattered arbitrar-

ily across any number of concurrent message queues as it is the case with after-images in

the write pipeline. However, the change notification pipeline of the event layer can still

be partitioned as indicated by the dashed separation line in the illustration: All notifica-

tions for one particular query go through the samemessage queue within the event layer,

but different queries can be assigned to different message queues. The change notifica-

tion pipeline within the event layer is thus horizontally scalable; unlike the write pipeline,

though, it is not easily scalable beyond throughput sustainable by a single machine. See-

ing that every change stream is consumed by a single-machine subscriber, however, this

constraint does not limit overall scalability.

3.2.4 Query Pipeline

As stated earlier, the output of a real-time query is delivered through the notification

pipeline, while every notification channel is opened and closed through specific requests

sent over the query pipeline. In more detail, an application server first connects to the

event layer and starts listening for change notifications on the corresponding notification

channel. Then, it sends a real-time query subscription request and waits for change no-

tifications to arrive. In this scheme, the subscription is deliberately delayed until after

13As an aside, persistent connections between application servers and event layer endpoints are generally

desirable for efficiency reasons, even though not strictly required.

70

3.2 The Event Layer: Decoupling Real-Time & OLTP Workloads

the notification channel has been established to exclude the possibility of losing change

notifications to race conditions.

The application server keeps listening until the query’s internal or external deactivation (cf.

internal and external transaction aborts [GD94]). An external query deactivation occurs,

when the last listening client explicitly unsubscribes by sending a cancellation request

to the application server which is then forwarded to the event layer. Since the InvaliDB

cluster keeps track of all current subscriptions, it will automatically deactivate the query

when the last subscription for a real-time query has been canceled. Contrastingly, an in-

ternal query deactivation is triggered by the InvaliDB cluster itself whenever it encounters

a condition that makes further maintenance impossible (cf. query maintenance errors in

Section 3.3.2). In this case, an error notification (cf. error attribute on page 68) is sent out
as the last message on the corresponding notification channel to inform all subscribers of

the query’s termination.

Possible reasons for implicit query deactivation include errors during querymaintenance14

and query expiration: On activation within the InvaliDB cluster, every query is assigned

a time to live (TTL) which has to be renewed before expiration to keep the associated

subscriptions active. Every application server therefore sends periodic TTL extension re-

quests over the query pipeline for every active subscription. This mechanism ensures that

real-time queries will be deactivated eventually when subscribers leave without sending

a prior cancellation request (e.g. on application server crash). The query TTL can be static

or dynamically chosen at runtime; either way, it is injected into the subscription request

by the application server and transparent to end users.

Query subscriptions are more complex to handle than cancellations or TTL extensions,

because they require the responsible application server to perform different actions, de-

pending on the context at subscription time. Figure 3.5 illustrates the process of register-

ing a real-time query in more detail. Whenever an end user sends a real-time query sub-

scription request to an application server, the application server forwards the subscription

request to the InvaliDB cluster immediately (1). In addition to the unique subscription ID

generated by the end user, the server also injects its own server ID into the request, so that

the InvaliDB cluster can keep track of the subscriptions maintained by every individual ap-

plication server; this knowledge facilitates efficient handling of query maintenance errors

(see page 80 for details). If the real-time query is being maintained already, the InvaliDB

cluster responds with the initial result (5) and the subscription is established without any

access to the pull-based database system (i.e. steps 2, 3, 4 are skipped). If the result is not

already beingmaintained, on the other hand, the InvaliDB cluster sends a subscription er-

ror back (2), thus indicating that the initial query result is required for query registration.

On receiving this error message, the application server then queries the pull-based data-

14Whenever the effect of an incoming write operation on a given query’s result cannot be determined with

certainty, the InvaliDB cluster cannot proceed with maintenance and therefore deactivates the query and

informs all subscribers through an error notification. In Section 3.3.2, we use the example of sorted filter

queries to discuss how this kind of query maintenance error can be handled transparently for end users.

71

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

base to assemble the initial result (3) and repeats the subscription request (4): Since the

query result is not missing this time, the query will be successfully registered in InvaliDB

and the InvaliDB cluster will send out the current15 result (5). While the result will be

received by all listening application servers through the notification pipeline, it will only

be forwarded to end users with a pending subscription request. For subscriptions that al-

ready have been bootstrapped, the initial result is ignored since incremental notifications

suffice to maintain the result in those cases. After emitting the initial result, the InvaliDB

cluster only produces incremental change notifications to be received by all subscribers

(6) until a new subscription request arrives (in which case a full result is emitted to be

received by the new subscriber alone) or until the query is deactivated.

databaseInvaliDB cluster applica�on server

 DB
nvaliI

1

5
6

2 3

event layer

}{+
}{

!

}{ }{

4 }{

Figure 3.5: InvaliDB avoids contacting the database where possible. Thus, a subscription

request is first sent to the InvaliDB cluster without the initial result (1), because

the query can be directly served when it is already being maintained (5/6). If

this is not the case (2), the initial result is queried from the database (3) and

the subscription request is repeated (4), with the initial result attached.

When there already is an active subscription for a particular real-time query, serving an

additional end user subscription for the same query is particularly efficient for two rea-

sons. First, the initial result can be retrieved without contacting the database, since the

query is already being maintained within InvaliDB. Second, no additional subscription be-

tween the application server and the change notification pipeline has to be established,

because changes for the query being subscribed are already coming in. When receiving an

additional subscription to an already subscribed query, the application server thus simply

awaits the initial result, returns it to the new subscriber when it arrives, and delivers the

incoming change notifications to the new subscriber as well from this point onwards.

Similar to the write pipeline, the query pipeline is not designed to provide the same order

on output as on input. Consequently, subscription, cancellation, and TTL extension re-

quests for the same query can arrive in arbitrary order at the InvaliDB cluster. To simplify

message processing, the InvaliDB cluster only accepts messages in the correct order; for

example, cancellation and TTL extension requests for yet-unregistered real-time queries

15At this point, the query might have been activated by a concurrent subscription issued by another ap-

plication server. In this case, the result attached to the subscription is processed like a series of write

operations, so that change notifications are generated to reflect the most recent version of the result.

72

3.3 Query Processing: Distributed Result Maintenance

are simply answered with error messages. Since the query pipeline does not have to obey

any ordering guarantees, message transport can easily be distributed across different ma-

chines, like the write pipeline.

Subscription Parameters

Apart from the implicitly injected server ID, there are two subscription parameters that

are mandatory for every real-time query: a representation of the query (e.g. an SQL

statement serialized as a string) and a unique subscription identifier. In addition, there

are many optional parameters conceivable to make InvaliDB filter out undesired notifica-

tions from the change stream or to remove nonessential attributes from the individual

notifications.

When the incoming change notifications are directly exposed to application code through

an event stream query, virtually any parameterization can be reasonable, depending on

the use case16. In particular, the stream of change notifications may be narrowed down

by allowing only notifications with certain match or operation types. Likewise, delivery

of the initial result can be disabled when the client application is only awaiting a spe-

cific event; thus, InvaliDB can also support a purely stream-based notion of data. For a

self-maintaining query, in contrast, all notifications are relevant by design and therefore

none are filtered out. At the same time, though, before-images are ideally stripped from

the individual change notifications, since only after-images are required for result main-

tenance.

As a final note, subscription parameters can also specify properties of the change stream

that do not relate to notification properties at all. For example, they can define how to

handle query maintenance errors (cf. slack and poll frequency rate limit on page 80)

or how to collapse highly frequent updates on the same entity to reduce event stream

throughput (see page 129). In Section 5.3.2, we describe real-time query subscriptions

and their parameterization from the user’s perspective in more detail.

3.3 Query Processing: Distributed Result Maintenance

In the last section, we presented InvaliDB’s event layer as a scalable mechanism for que-

ry management and the propagation of write operations and change notifications. In this

section, we describe how distributed query processing within InvaliDB is designed tomas-

ter high write throughput and many concurrent real-time queries at the same time.

In Section 3.3.1, we first explain how InvaliDB achieves read and write scalability for eval-

uating query predicates through a two-dimensional workload partitioning scheme in the

16As an illustration, consider the different variants of query caching discussed in Section 5.2.1; they respec-

tively depend on event stream query subscriptions with distinct match type parameterization.

73

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

filtering stage. In Section 3.3.2, we then lay out how sorted queries, joins, and aggrega-

tions are handled through additional processing stages. Addressing the generalizability

of our approach, we finally cover the pluggable query engine in Section 3.3.3. In doing

so, we make explicit what parts of query processing have to be implemented for every

instance of the pluggable query engine and which parts can be done in generic fashion

and independently of the concrete query engine.

3.3.1 Two-Dimensional Workload Partitioning for Filter Predicates

InvaliDB’s real-time query engine has to match all incoming after-images (write pipeline)

against all active real-time queries (query pipeline) to produce change notifications as

output (notification pipeline). To enable higher input rates than a single machine could

handle, InvaliDB partitions data fromboth the query pipeline and thewrite pipeline evenly

across a cluster of machines: By assigning each node in the cluster to exactly one

query partition and exactly one write partition, any given node is only responsible for

a subset of all queries and only a fraction of all written data items.

Figure 3.6 depicts an InvaliDB clusterwith three query partitions (vertical blocks) and three

write partitions (horizontal blocks). When a subscription request is received by one of the

query ingestion nodes (1), it is forwarded to every matching node in the corresponding

query partition; while the query itself is broadcasted to all partition members, the items

in the initial result are delivered according to their respective write partitions (i.e. every

node receives only a partition of the result). Likewise, any incoming after-image received

by one of thewrite ingestion nodes (2) is delivered to all nodes in the correspondingwrite

partition as well. To detect result changes, every matching node matches any incoming

after-image against all of its queries and compares the current against the former match-

ing status of the related entity. In the example, a change notification is generated by the

matching node (3) that is responsible for the intersection of query partition 2 and write

partition 2. Since every matching node only holds a subset of all active queries and only

maintains a partition of the corresponding results, processing or storage limitations of an

individual node do not constrain overall system performance: By adding query partitions

(+qp) or write partitions (+wp), the number of sustainable active queries and overall system

write throughput can be increased, respectively. In similar fashion, the sustainable rate of

data intake can be increased by adding nodes for query and write stream ingestion; these

nodes are stateless (and therefore easy to scale out) as they merely receive data items

from the event layer, compute their respective partitions by hashing static attributes, and

forward the data items to the corresponding matching nodes.

To make workload distribution as even as possible, InvaliDB performs hash-partitioning

for inbound data from the write and query pipelines. For after-images, the hash value is

computed from the primary key, because it is the only attribute that is transmitted on in-

sert, update, and delete. In contrast, there is no attribute that is present in all requests re-

74

3.3 Query Processing: Distributed Result Maintenance

query
par��on 1

2

3

1

query
par��on 2

query
par��on 3

w
rit

e
pa

r�
�

on
 1

w
rit

e
pa

r�
�

on
 2

w
rit

e
pa

r�
�

on
 3

!

query inges�on

write inges�on

no�fica�on output

+wp

+qp

Figure 3.6: InvaliDB partitions both the query and the write pipeline, so that any given

matching node is only responsible for matching few queries against some of

the incoming write operations.

lated to a particular query. Using the subscription ID to generate the hash value would not

violate correctness as the partitioning would be consistent throughout subscription life-

time. However, since subscription IDs are randomly generated, query partitioning would

be randomaswell; in consequence, a single query could be assigned to several (or even all)

partitions within the InvaliDB cluster, given it was associated with multiple subscriptions.

For the sake of efficiency, an application server therefore computes the hash value from

the query attributes when the subscription request is received. Thus, distinct subscrip-

tions to a particular query are always assigned the same hash value and are thus routed

to the same partition, even when received by different application servers. Since the hash

value cannot be computed for requests other than the subscription requests, though, the

application server remembers every hash value for the entire lifetime of a subscription

and attaches it to every subsequent17 request relating to the same subscription.

17As a side note, this schememakes it impossible to assign cancellation and TTL extension requests to a query

partition without prior subscription. However, this does not present an error scenario, since cancellations

and TTL extensions are only meaningful for active subscriptions as described in Section 3.2.4.

75

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

When an application server subscribes to a real-time query, it first executes the query

against the pull-based database and then forwards the result to the InvaliDB cluster via a

subscription request (see Section 3.2.4). Since write operations happen asynchronously

to this procedure, however, there are two race conditions that need to be acknowledged

in InvaliDB’s design. The first race condition is between the write operation and the pull-

based query (write-query race): The initial result will only reflect the write operation, if

thewrite is applied at the database before execution of the pull-based query. For example,

a newly inserted itemwill only be present in the initial result, when the insert is processed

before the query. The second race condition is between the write operation and the real-

time query subscription (write-subscription race): The responsible matching node will

only implicitly match the incoming after-image against the query, if the subscription re-

quest arrives before the after-image. Without special precautions, a write operation can

thus be missed by a real-time query when it is (1) not reflected in an initial result and

when it is also (2) processed by the responsible matching node before the query has been

activated through the subscription request.

To avoid missing write operations through unfortunate timing on both these race condi-

tions, InvaliDB employs temporary write stream retention: Every matching node stores

received after-images and matches them against a new query on subscription. However,

since every matching node has only bounded space, long-lasting network partitions can

render this scheme infeasible. Likewise, write stream retention does not protect from

unbounded propagation delays: In practice, write stream retention time therefore needs

to be chosen according to actually observed delays (cf. Section 3.1.3). For reference, the

production deployment at Baqend described in Chapter 5 enforces a retention time of

few seconds, since our implementation of InvaliDB exhibits consistent end-to-end noti-

fication latencies in the realm of few milliseconds with subsecond peaks (see evaluation

in Section 5.5.1); these latencies include possible delays of after-image propagation. It

should be noted that write stream retention is not only exploited for after-image replay

on subscription, but also crucial for staleness avoidance, i.e. the ability to detect (and

ignore) stale write operations. For example, an insert or update operation for a specific

item is ignored whenever a delete for the same item has already been received. Likewise,

an insert or update is not applied when a higher version already has (see Section 3.1.3).

Depending on the specificities of the implementation, there are different mechanisms for

handling failure of individual nodes, network, or other infrastructure components. Since

this chapter provides a conceptual overview over InvaliDB and abstracts from concrete

technologies, though, we do not go into more detail here. The mechanisms for fault tol-

erance devised in our InvaliDB implementation are described in Chapter 4.

76

3.3 Query Processing: Distributed Result Maintenance

3.3.2 Advanced Processing Stages: Sorted Queries, Joins & Aggregations

By partitioning incoming queries and write operations orthogonally to one another, the

filtering stage described above distributes the predicatematchingworkload evenly across

all nodes in the cluster. However, while this scheme avoids hotspots, it also prevents cap-

turing the context between different items within the result: As every matching node

holds result partitions, changes of an individual result can only be registered on a per-

record basis. In more detail, changes relating to the sorting order cannot be detected

and queries that aggregate values from different entities (e.g. to compute an average) or

queries that join data collections cannot be handled, either.

a
b
c

filtering

sor�ng

joins

Σ
aggrega�ons

ev
en

t l
ay

er

Figure 3.7: Real-time query matching in InvaliDB is organized in several stages, each of

which consumes input from its predecessor and sends output either to the

event layer or to its respective successor stage.

In order to make InvaliDB suitable for these kinds of real-time queries without impair-

ing overall scalability, the process of generating change notifications for more advanced

queries is performed in additional processing stages18. The individual processing stages

are separated according to the way their input data is partitioned, so that workload is al-

ways spread across as many nodes as possible. The first processing stage for any query is

therefore the filtering stage as described in Section 3.3.1. It is the only processing stage

to ingest after-images; all subsequent processing stages only receive change notifications

from upstream matching nodes. The filtering stage only passes down written data items

when they either satisfy a query’s matching condition (match types add and change) or

18Similar to the staged event-driven architecture (SEDA) model [WCB01], InvaliDB employs loosely coupled

processing stages that can be scaled independently.

77

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

when they just ceased matching (match type remove); all other input is filtered out. Thus,
throughput is greatly reduced for subsequent stages in case of queries that require more

complex processing, because no change notifications are generated for obviously irrele-

vant write operations (similar to existing approaches for efficient view maintenance, e.g.

[BLT86] [BCL89] [LS93] [Elk90]).

The different stages are illustrated in Figure 3.7. Every query is registered in the filtering

stagewhere the static filter predicates are evaluated. Since query results are partitioned in

the filtering stage, it only directly serves queries that can bemaintainedwithout coordina-

tion between result partitions; this is only the case for unsorted filter queries over single

collections. Change notifications for these queries are directly sent to the event layer.

For more advanced queries, filtering stage output is instead passed on to the subsequent

stages. In the sorting stage, matching nodes detect positional changes of individual items

within the result (match type changeIndex). Likewise, added and removed items based on

limit and offset clauses are identified here. Queries that link data between collections are

also possible: A matching node in the join stage essentially combines the output of differ-

ent real-time queries into a continuously maintained join query result. Finally, matching

nodes in the aggregation stage are responsible for query components relating to aggre-

gations and groupings. This includes evaluation of matching conditions over groupings (cf.

HAVING clauses in SQL).

Like a physical execution plan in a relational database [HSH07, Sec. 4] which is determined

by the executed query, the sequence of processing stages involved in result maintenance

is also determined by the real-time query at hand. Depending on the query, the concrete

processing stages and the order in which they are traversed can therefore diverge from

the illustration. For example, maintaining a query result that is sorted by an attribute value

may not involve the aggregation stage at all, whereas maintaining a result that is sorted by

an aggregated value necessarily involves the aggregation stage before the sorting stage. In

this thesis, we focus on queries with and without explicit ordering, aggregation queries,

and simple join queries; we leave recursive queries, queries with subqueries, or other

more complex constructs for future work (see Section 6.2.1).

In the following, we describe the individual advanced processing stages in more detail.

Sorted Queries With Limit & Offset

For unsorted filter queries over single collections (i.e. for queries without explicit order-

ing, limit, or offset), matching conditions are static: A given object is part of a given query

result, if and only if the object satisfies all of the query’s filter predicates. Thus, all infor-

mation required for matching is encapsulated in the query and the written after-image.

This does not only allow distributing workload by queries and writes at the same time, but

also makes these queries inherently self-maintainable [QGMW96], i.e. their results can

be kept up-to-date by simply applying incoming write operations.

78

3.3 Query Processing: Distributed Result Maintenance

This is not the case for explicitly sorted filter queries, because their change notifications

also reflect result permutations (cf. index attribute on page 68); to capture these, a

matching node in the sorting stage requires access to the full result. Moreover, even the

matching status of an object can depend on its absolute position within the result or its

relative position to other items: For a sorted query with a limit clause, adding a new item

to the result can push the last item out and removing an item from the result can pull

another item in. When a sorted query is specified with an offset clause, result member-

ship further depends on the items in the offset, i.e. on items that are not even part of the

result. To maintain a sorted real-time query in incremental fashion, having access to the

full result may therefore not even suffice; for sorted queries with limit or offset clauses, a

matching node requires auxiliary data.

ID Title Year

5 DB Fun 2018

8 No SQL! 2018

3 BaaS For Dummies 2017

4 Query Languages 2017

7 Streams in Action 2016

9 SaaS For Dummies 2016

1)

2)

3)

4)

5)

6)

result
 OFFSET 3

 LIMIT 2

SELECT id, title, year

 FROM articles

 ORDER BY year DESC

offset

beyond

limit

.
.
.

.
.
.

.
.
.

Figure 3.8: Knowledge of the items in the query’s offset and beyond the specified limit is

critical to enable incremental maintenance of a sorted query’s result.

Figure 3.8 shows a sorted query with limit and offset clauses along with related data to

illustrate the extent of the auxiliary data required for incremental result maintenance.

When an article is removed from the offset by deletion or update (e.g. 'No SQL!'), the
first article in the result ('BaaS For Dummies') will move into the offset, while the first ar-

ticle beyond limit ('SaaS For Dummies') will move into the result. The other way around,

when an article is added to the offset (either by insert or update), the last article in the

offset will move into the result and the last article in the result will move beyond limit and

thus out of the result. To be able to detect updates and deletes happening to items in the

offset, the matching node responsible for a sorted query needs to be aware of all items

in the query’s offset. To further handle operations that remove an item from either the

offset or the result, the node also needs to know at least one item beyond the specified

limit; otherwise, a removed item cannot be replaced.

In order to make the query maintenance procedure more robust against these kinds of

write operations, sorted real-time queries are registered with auxiliary data in InvaliDB.

Similar to related work on top-k query maintenance [YYY+03], the query used to retrieve

the bootstrapping data (i.e. the initial result) is rewritten for this purpose: First, the off-

set clause is removed (i.e. OFFSET = 0), so that the initial result contains all elements

in the query’s offset. Maintaining all items in the offset is necessary, because otherwise

the actual result cannot be maintained in the presence of certain update operations (see

example above). Second, the limit clause is extended beyond the query’s specified limit,

79

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

so that the initial result contains all items in the offset, the actual result, and an addi-

tional number of items beyond limit; we refer to the number of items known beyond limit

as slack. By definition, the slack changes dynamically, because items can enter and leave

both result and offset at runtime. Therefore, the current slack also represents the number

of subsequent removes that can be handled at a given time.

Whenever the slack reaches zero, removing an item from the result or offset will render

the query unmaintainable, because thematching node cannot determinewhich effect the

removal has on the query result. When such a query maintenance error occurs, the re-

sponsible matching node deactivates the query and sends out a change notification with

an error attribute (cf. page 68). This particular error notification can also be seen as a

query renewal request, because it triggers the process to retrieve a fresh result which is

required for reactivating the query: On receiving a query renewal request, an application

server reexecutes19 the (rewritten) query against the database and submits the result to

the InvaliDB cluster via subscription request. After receiving the up-to-date result, the re-

sponsible matching node in the sorting stage sends out incremental change notifications

that reflect the evolution from the last valid to the current result representation. From

there on, the query is self-maintainable again and therefore will produce change notifica-

tions until its cancellation or until the next query maintenance error.

To avoid wasting database resources during this recovery process, thematching node des-

ignates one (as opposed to all) of the subscribed application servers for query renewal. In

more detail, it specifies one of the active subscriptions in the id attribute (cf. page 67) of
the query renewal request; thus, the request is only processed by the application server

responsible for the specified subscription and ignored by all others. If the request remains

unanswered for a certain period of time, the node sends out cancellation notifications for

all subscriptions of the unresponsive server20 and repeats the renewal request, targeting

a different application server. It repeats this process, until either the query is reactivated

or until no subscribers remain (in which case the query is deactivated altogether).

The requirement of contacting the database for query renewal violates the intended iso-

lation between real-time and OLTP workloads. For example, consider a sorted query with

limit clause where items are removed from the result in rapid succession over a long pe-

riod of time. Quickly after recovering from a query maintenance error (after exhausting

the slack), the query will become unmaintainable again very quickly. As a result, change

notifications will effectively only be sent on and immediately after recovery from mainte-

nance errors. In order tomake the query load inflicted upon the underlying database both

predictable and configurable, InvaliDB controls the frequency of query renewals through

a poll frequency rate limit. This rate limit can be specified as a globally fixed value, on the

19As a runtime optimization, the slack value can be adapted to the workload on reexecution, for example by

using a higher slack value to increase robustness against deletes.
20InvaliDB maintains the mapping between servers and their respective subscriptions on the basis of the

server ID which is transmitted on subscription as described in Section 3.2.4.

80

3.3 Query Processing: Distributed Result Maintenance

level of queries, or on the level of individual subscriptions21. To enforce a rate limit on a

query, the responsible matching node delays sending a query renewal request whenever

sending it immediately would result in a violation of the rate limit. For highly error-prone

scenarios, the rate limit represents a trade-off between expended database resources on

the one side and worst-case notification latency on the other: As long as maintenance

errors are infrequent, though, the rate limit does not affect notification latency at all.

Joins

Intuitively, a real-time join can be achieved within InvaliDB through incremental result

maintenance, similar to the query types discussed above: A node in the join stage main-

tains the different to-be-joined subquery results, combines them via the join conditions

of the actual query, and updates the overall result whenever new data becomes available.

On the upside, this approach enables real-time joins on top of databases that do not even

support pull-based join queries (see Section 5.4.3 for an example). On the downside,

though, it also prohibits database-internal query optimization: While a relational data-

base avoids materializing auxiliary data where possible, evaluating the join query outside

the database requires materialization of all subquery results. This is not feasible in the

general case, but only when intermediate results are small.

Provided the underlying database supports pull-based joins, it can be more efficient to

implement real-time joins through result recomputation. The basic idea is to exploit

database-internal optimization mechanisms by querying the data exactly as requested by

the client, specifically without rewriting the query for auxiliary data. Compared with ex-

ternal result maintenance of a join query, the performance penalty for query execution

on subscription and query renewal is thus minimized. At the same time, though, que-

ry maintenance errors are likely to become more frequent due to the relative shortage

of information. InvaliDB will generate change notifications without database interaction

where possible; for example, updates to items within the result can trivially be applied

when they do not alter attributes referenced in the matching or join conditions or the

sorting key. However, the possibility of occasional or even frequent query renewal should

be accounted for by choosing a reasonable poll frequency rate limit.

Through the deliberate fallback to pull-based query execution by repeated query renewal,

this scheme resembles the poll-and-diff mechanism in Meteor (see Section 2.3.1). How-

ever, InvaliDB provides three significant advantages: First, it avoids unnecessary database

queries by employing a dynamic query execution policy. Since the InvaliDB cluster moni-

tors the entire write stream, it can maintain a query result without any database interac-

tion, when only irrelevant writes are observed. Under poll-and-diff, in contrast, an appli-

cation server onlymonitors part of thewrite stream and therefore relies on periodic query

21When different subscriptions for the same query prescribe conflicting rate limits, InvaliDB always enforces

the one permitting the highest query frequency.

81

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

execution for change discovery: Even in the absence of write operations, a poll-and-diff

application server must reevaluate all active real-time queries periodically to guarantee

correctness. As a second advantage, InvaliDB enables better notification latency. Since In-

valiDB observes all write operations as they happen, change notifications (ormaintenance

errors) can always be produced quickly; the only constraint is the deliberate delay intro-

duced on error recovery through the poll frequency rate limiting. Latency under Meteor’s

poll-and-diff, on the other hand, depends on the polling interval, because some changes

can only be detected through query reexecution22. As the third and arguably most impor-

tant advantage, InvaliDB is able to support real-time join queries in the first place, whereas

all of the real-time database concepts discussed in Chapter 2 (including Meteor’s poll-

and-diff) only account for real-time queries over single collections. For maintenance of

real-time queries over single collections, in contrast, InvaliDB only resorts to pull-based

query execution on errors which occur only infrequently.

Aggregations

Similar to join queries, aggregationqueries can also bemaintained either in recomputation-

based or in incremental fashion. Since the recomputation-based method requests no ad-

ditional information apart from the actual result, it is relatively cheap to compute for the

database and also has a minimal network footprint. However, without any of the underly-

ing data, invalidating writes are often hard to discern from write operations that have no

impact on the result and can therefore be ignored.

required for
maintenance

SELECT AVG(year)

 FROM articles

 WHERE title LIKE '%aaS%'

result

ID Title Year

9 SaaS For Dummies 2016

3 BaaS For Dummies 2017

2016.5

Figure 3.9: An aggregation query result can be impossible to maintain incrementally with-

out also maintaining the base data from which the aggregate is derived.

For illustration, consider the query given in Figure 3.9 which produces the average publi-

cation year of a particular set of articles: a single numeric value (2016.5). If only this value

is given to the maintenance routine (recomputation-based maintenance), any insert, up-

date, or delete operation triggers an immediatemaintenance error: On insert, the respon-

sible matching node might be able to determine whether the written entity contributes

to the average, but it cannot possibly tell by how much, since the overall number of con-

tributing articles is unknown; for updates and deletes, the situation is evenmore involved,

22In Meteor, every real-time query is maintained by an individual application server. In a distributed Meteor

setup, however, an application server is not notified of write operations performed by other application

servers. Consequently, periodic query execution is necessary to find out whether and in what ways a

query result has been modified through write operations received by other servers in the cluster.

82

3.3 Query Processing: Distributed Result Maintenance

because it is also unknown whether the written entity contributed to the aggregation be-

fore the write occurred. In order to implement a maintenance routine that updates the

result in the presence of inserts, updates, and deletes, the result alone is therefore not

sufficient: Beyond the actual year value, the unique identifier (ID) and all attributes re-

quired for determining the matching status (title) have to be known for every article

that contributes to the current average value. With this information, the InvaliDB cluster

can maintain the underlying set of articles (i.e. the ones with 'aaS' in the title). In the

example, only articles 9 and 3 contribute to the aggregation result, so that recomputation-

based and incremental maintenance are both feasible. However, the amount of auxiliary

data required for incremental maintenance (outside the database) can be prohibitive in

the real world; as it is the case for joining queries, aggregation queries over large data sets

tend to be infeasible to maintain in an incremental fashion.

Result approximation techniques as they are used in stream management systems (cf.

Section 2.4.3) are generally not applicable to InvaliDB under the collection-based query

semantics focused in this thesis, because they are dictated by the underlying pull-based

database: If themaintained database query produces an exact result, InvaliDBmust main-

tain the exact result as well. However, we see potential for optimization in the use of prob-

abilistic or summary data structures [Cor17]. For example, an aggregation such as the one

illustrated in Figure 3.9 can be maintained through the initial aggregation result (2016.5),

a counter for the number of entities contributing to the aggregation result (n = 2), and

a Bloom filter [Blo70] as a space-efficient representation of all contributing entities (all

initially provided on subscription). For illustration, consider the incoming after-image of

an article from 2018 which is found to comply with the query’s WHERE clause. If the article
was inserted or if the article was updated but its ID is not contained in the Bloom filter, it

is certain23 that the corresponding entity was not already contributing to the aggregation

result. Thus, the counter can be incremented to n = 3 and the aggregation result can be

updated to 2016.5 + 2018−2016.5
n = 2016.5 + 1.5

3 = 2017. Likewise, a delete operation can

simply be ignored whenever the Bloom filter check for the deleted entity is negative. The

query will only become unmaintainable, when a positive Bloom filter check indicates that

the written entity might already be contributing to the aggregation result. Under certain

workloads, representing the set of matching entities through a Bloom filter instead of an

actual data collection could therefore significantly reduce the amount of data that needs

to be transferred between the application server and the InvaliDB cluster.

As an important distinction to the sorting and the join stages, computation within the ag-

gregation stage can be distributed across different matching nodes to a certain degree. To

this end, aggregation stage input is partitioned according to the grouping key (if specified),

23A Bloom filter is a fixed-size representation of an arbitrarily large set of items that might produce false

positives, but never false negatives. As an illustration of how a Bloom filter works, consider a list of name

initials (“the Bloom filter”) as the compressed representation of a set of names: If 'JD' is not among

the initials, 'John Doe' cannot possibly be contained in the original set; if 'JD' is on the list of initials,

though, it is uncertain whether 'John Doe' is in the set or whether the set contains another name with

the same initials, e.g. 'James Dean'.

83

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

so that an individual aggregation stage node for a given query only needs to maintain one

partition of the result. While this does not solve the infeasibility problem for large data

sets in principle, it does mitigate its severity for queries that are specified with a grouping

key.

3.3.3 The Pluggable Query Engine

InvaliDB is a real-time database design that provides push-based real-time queries on top

of an existing pull-based database. Since many of its components abstract from speci-

ficities such as query language or data format, InvaliDB can be understood as a generic

framework where most components can be shared between implementations for differ-

ent databases. In the following, we highlight the database-agnostic components of our

approach and describe where database-specific development is required for an InvaliDB

implementation.

Generic System Components. The event layer is database-agnostic as it handles entirely

opaque data transmissions between end users, application servers, and the InvaliDB clus-

ter. Likewise, the workload distribution scheme presented earlier in this chapter is not

based on any concrete technology or database language; it only makes sure that all que-

ries are matched against all incoming after-images. Finally, even the way that match types

are derived24 from the matching status abstracts from specificities of the underlying data

store: Whenever an incoming after-image satisfies a query’s predicates (match), it is either
new to the result (add) or it was updated within the result (change), possibly changing its
position (changeIndex); correspondingly, a non-matching after-image either corresponds

to an item that is leaving the result (remove) or it does not bear any relevance to the result
whatsoever.

Specialized System Components. There are only two aspects of real-time query main-

tenance that contain database-specific artifacts. First, an existing application server has

to be adapted in such a way that fully specified and versioned after-images are produced

for every write operation. As explained in Section 3.1.3, this is one of the underlying as-

sumptions made in this thesis and required for InvaliDB to work. The exact measures to

be taken here may vary depending on the employed database (see Section 4.3 for details

on our implementation on top of MongoDB). The second customized component is the

pluggable query enginewhich contains all logic related to (1) parsing queries according to

one specific query language, (2) interpreting the incoming after-images according to the

prevalent format and encoding, (3) computing the actual matching decision, and (4) sort-

ing the result according to database semantics25. In addition, customized logic has to be

applied on query subscription to extract query parameters from the subscription request

and initialize possible auxiliary data structures required formatching. Since these steps are

24The procedure of deriving match types from matching decisions is illustrated in Figure 1.1 on page 3.
25While different databases usually sort values similarly, sorting order may differ in edge cases such as col-

lections containing differently typed values or cases where different records have identical sorting keys.

84

3.4 Summary & Discussion

executed across all of the different processing stages, the pluggable query engine defines

interfaces on each one of them. By encapsulating the specialized parts of query matching

behind different interfaces in a pluggable component, generic system components can be

reused and support for new databases can be added with relative ease.

Collection-Based vs. Stream-Based Semantics. This thesis is focused on real-time que-

ries with collection-based semantics: By default, a query result reflects the entire write

stream history as it is bootstrappedwith data from the underlying database. However, it is

important to note that InvaliDB does not enforce collection-based semantics. On the con-

trary, the pluggable query engine explicitly enables arbitrary processing over the incoming

write stream. When a query result is initialized as an empty collection, for example, it is

implicitly scoped to the timeframe starting on query activation. In order to enable window

semantics, the result can then be cleared periodically (tumblingwindow) or bemaintained

in such away that old data items leavewhen new items arrive (sliding window). We do not

go into further detail here and defer the challenge of providing stream-based semantics

within InvaliDB to future lines of research (cf. Section 6.2.1).

3.4 Summary & Discussion

In Chapter 2, we found thatmodern real-timequerymechanisms exhibit severe limitations

with respect to scalability, query expressiveness, and compatibility to existing database

systems. Our system design InvaliDB addresses all of these issues and thus provides a

comprehensive solution to the challenge of providing push-based real-time queries over

database collections. In the following, we highlight the most significant aspects by which

InvaliDB separates itself from the current state of the art.

Scalability (cf. Challenge C1). The arguably most critical of the above-mentioned prob-

lems is poor scalability, because it makes currently available real-time databases not only

difficult, but practically infeasible to use: Some systems collapse when write workload

exceeds single-machine capacity (e.g. Meteor with oplog tailing, RethinkDB, and Parse),

while others fail in the face of many concurrent real-time queries (e.g. Meteor with poll-

and-diff). Contrastingly, InvaliDB distributes computation and state for unsorted filter

queries across a cluster of machines. Through its two-dimensional workload partitioning

scheme, InvaliDB’s overall matching performance is neither bounded by write throughput

nor by the number of active real-time queries. Computation required for more complex

queries (specifically sorting, joining, and aggregation) is performed in dedicated process-

ing stages; while input for these stages is already greatly reduced by the filtering stage, it is

also partitioned by query. By default, InvaliDB maintains queries in incremental fashion in

order to minimize change notification latency. However, it also supports recomputation-

based maintenance as a fallback for queries that are prohibitively expensive to maintain

incrementally.

85

3 InvaliDB: A Scalable Design for Opt-in Real-Time Queries

Query Expressiveness (cf. Challenge C2). Real-time query languages often provide only

limited or no support for sorted queries (e.g. RethinkDB, Firebase, and Parse), for content-

based filtering (e.g. Firebase), or even for combining filter expressions (e.g. Firebase),

while join queries are not supported by any current real-time database. InvaliDB, on the

other hand, supports unsorted filter queries, sorted filter queries, join queries, and ag-

gregations in push-based fashion. Even though collection-based query semantics are in

the focal point of this thesis, InvaliDB can also support streaming query semantics. For

stream-based semantics, the query engine forgoes retrieving the initial result from the

database and restricts itself to the data arriving in the write stream to implement filters,

joins, or aggregations over sliding, tumbling, or other variants of time windows. In this

thesis, we do not provide a detailed discussion of stream-based semantics, because our

focus lies on collection-based real-time queries.

Legacy Support (cf. Challenge C3). Finally, we are not aware of even a single database-

agnostic system designed to provide push-based real-time queries over database collec-

tions: Every real-time query mechanismwe encountered is designed for and only applica-

ble to a specific database system. InvaliDB, however, is designed with a pluggable query

engine on top of an abstract data model. Through the generic design of the event layer

and the different processing stages, data flow between application servers and the In-

valiDB cluster as well as workload distribution for real-time query maintenance abstract

from concrete database systems. At the same time, InvaliDB’s capabilities are designed to

match those of many popular database systems. In particular, InvaliDB provides the query

expressiveness of typical aggregate-oriented NoSQL data stores through the filtering and

sorting stage: These systems commonly support unsorted and sorted filter queries over

single collections. Additional capabilities of relational databases, namely aggregation and

join queries, are covered by dedicated processing stages.

In conclusion to this chapter, InvaliDB provides a scalable, expressive, and polyglot ap-

proach towards real-time queries over database collections. Next in Chapter 4, we will

present our InvaliDB prototype and experimental evidence for its high scalability. In Chap-

ter 5, we will then cover different industry applications for InvaliDB. Arguing for its practi-

cality, we will describe how InvaliDB enables push-based real-time queries and consistent

query caching on top of the purely pull-based database middleware Orestes and its com-

mercial implementation Baqend.

86

InvaliDB Prototype: Implementation &
Experimental Evaluation 4

“However beautiful the strategy, you should

occasionally look at the results.”

—Winston Churchill

In Chapter 1 and Chapter 2, we argued for the usefulness of real-time databases, sur-

veyed the different representatives available today, and conducted a qualitative compar-

ison of these representatives with respect to different functional and non-functional re-

quirements. In Chapter 3, we then presented InvaliDB, a system design to provide ex-

pressive real-time queries over database collections in a scalable and database-agnostic

manner. In this chapter, we demonstrate that our system design is feasible to implement

and highly scalable with regards to read andwrite workloads. To this end, we first describe

our distributed InvaliDB prototype that has been running in production at Baqend since

July 2017. Through an experimental evaluation, we then confirm our claims of scalability

and low latency. More specifically, we provide evidence that sustainable query matching

throughput scales linearly with the number of servers employed for querymatching, while

latency remains consistently low across different InvaliDB cluster configurations.

To start the chapter in Section 4.1, we lay out our reasons for choosing Storm as the un-

derlying processing engine and discuss possible alternatives. We also describe how our

workload partitioning scheme maps to a Storm topology. In Section 4.2, we then address

the event layer that decouples the InvaliDB cluster from the pull-based system on which it

is deployed. In more detail, we describe two different Redis-based event layer implemen-

tations which mainly differ in the degree to which they can be scaled horizontally and the

operational complexity involved in their respective deployments. In Section 4.3, we then

cover the pluggable query engine and two MongoDB-compatible implementations: our

very first prototype which uses a third-party JavaScript library for query predicate evalua-

tion and amore sophisticated implementation which is completely written in Java. Having

thus overviewed our InvaliDB prototype implementation, we present experimental results

in Section 4.4 to quantify sustainable matching throughput, latency characteristics, and

scalability: Our prototype exhibits latency consistently below 50ms in the 99th percentile

with peak latency rarely exceeding 100ms, while overall system throughput scales linearly

with the number of employed matching nodes. In the final Section 4.5, we sum up and

discuss our results.

87

4 InvaliDB Prototype: Implementation & Experimental Evaluation

4.1 An InvaliDB Implementation Based on Storm

By design, an InvaliDB implementation inherits some of its characteristics from the under-

lying stream processor which is required to implement the workload distribution scheme

described in Section 3.3. For implementation, we therefore only considered horizontally

scalable and fault-tolerant stream processors providing at-least-once or exactly-once de-

livery guarantees and low end-to-end latency: We thus immediately dismissed systems

that are prone to data loss (e.g. S4 [NRNK10]), had already been abandoned (e.g. Mup-

pet [LLP+12] or Naiad [MMI+13]), or were not publicly available at the time (e.g. Heron

[KBF+15], Apex [Apa16c], Kafka Streams [Kre16], Wallaroo [Mum17]). We also did not

consider systems that cannot be deployed on-premise (e.g. Google’s MillWheel [ABB+13]

and Photon [ABD+13] or the Dataflow cloud service [ABC+15], and Facebook’s Puma and

Stylus [CWI+16]). Given the requirement for low latency, the viable choices1 for the un-

derlying stream processor were thus narrowed down to either Storm [TTS+14] or Flink

[ABE+14]; by concept, Samza [Ram15] and Spark Streaming [ZDL+13] cannot provide

competitive latency. Even though Flink provides higher-level abstractions in comparison

with Storm and therefore might have facilitated more efficient development, we finally

chose Storm for the benefit of better latency [CDE+15]. Like Storm, InvaliDB is written

in Java to facilitate high performance: Since our InvaliDB prototype is running as a Storm

topology within the same Java Virtual Machine (JVM) as the Storm supervisors, it avoids

expensive data serialization and deserialization that would have been required, if we had

chosen any other language.

4.1.1 Workload Distribution

In contrast to some other systems such as Samza, Storm facilitates complex data flow

graphs. Thus, Storm topologies are a natural fit for InvaliDB’s internal design which per-

forms query maintenance in multiple processing stages (cf. Section 3.3). At the same

time, Stormonly distinguishes between two different kinds of nodeswithin each topology:

InvaliDB’s query ingestion and write ingestion nodes are implemented as Storm spouts,

whereas all processing stages are implemented using Storm bolts. The ingestion nodes

(spouts) receive data from the event layer and dispatch it to the associated matching

nodes (bolts) in the filtering stage, targeting all matching nodes in a write partition (write

ingestion) or query partition (query ingestion) at a time. To enable this kind of multi-

cast message flow within the topology, we implemented a custom Storm grouping (cf.

[TTS+14, Sec. 2]). Following InvaliDB’s workload distribution scheme, the processing bolts

in the filtering stage are the only ones to receive input from spouts; all subsequent proc-

essing stages are fed from upstream bolts via intra-topology messaging, i.e. they receive

change notifications generated in the preceding processing stages. The processing bolts

1We provide a more detailed comparison of these systems in Section 2.5.

88

4.1 An InvaliDB Implementation Based on Storm

in the final processing stage of any real-time query type send the finalized change notifi-

cations to the event layer. Since performance and scalability of InvaliDB’s recomputation-

based real-time queries (cf. Section 3.3.2) are limited by the underlying database rather

than InvaliDB itself, we only implemented incremental real-time queries in our proto-

type.

4.1.2 Elasticity, State Management & Fault Tolerance

Our InvaliDB implementation receives its scalability and elasticity properties from Storm:

More machines can be added to an InvaliDB cluster at runtime in order to increase sus-

tainablematching throughput on-the-fly. For our InvaliDB prototype, we did notmake use

of Storm’s built-in state management, since it is prohibitive for low latency (cf. page 45).

Consequently, all state of a running spout or bolt will be lost, when a node fails or when

workload is transferred from one query matching process to another (i.e. on elastic scale-

out or scale-in at runtime). Given an event layer implementation that is able to replay

data, the lack of state management is not an issue for spouts (ingestion nodes), because

they are completely stateless apart from metadata collected during bootstrapping: The

combination of at-least-once processing in Storm and data replay in the event layer guar-

antees correctness in the presence of spout failures. If the event layer is not able to replay

data (as is the case in our implementation, see Section 4.2), there are different scenarios

to consider.

Regardless of the event layer’s replay capability, a query spout failure can always be tol-

erated, because it can only trigger three different kinds of data loss, all of which result in

non-critical error conditions. First, a subscription request might be dropped, before it is

processed by the InvaliDB cluster. In this case, the subscribing client will receive a time-

out2 and needs to repeat the subscription attempt. Second, a cancellation request can

be missed, so that InvaliDB might keep on maintaining a real-time query that has no sub-

scribed clients. Since every real-time query is registered with a time to live (TTL) that is

not extended without live subscribers, though, the query will be removed from InvaliDB

eventually and bound resources will thus be freed. As a third error condition, losing TTL

extension requests can lead to premature query deactivation: But without renewing a

query’s TTL, it will eventually be canceled and error messages will be sent out to all listen-

ing clients (timeout). Like other runtime errors such as connection loss or query mainte-

nance errors (cf. page 80), a premature deactivation has to be addressed by the client, e.g.

through resubscribing the failed query. For our prototype, premature deactivation does

not occur, unless several TTL extension requests for the same query are dropped in direct

succession; our implementation uses 120 seconds as the default TTL and sends extension

requests every 30 seconds.

2Even if no initial result is requested (see subscription parameters in Section 3.2.4), our InvaliDB prototype

emits an initial message to inform the subscribers of the successful query activation.

89

4 InvaliDB Prototype: Implementation & Experimental Evaluation

While query-related data loss only affects those query subscriptions for which data has

been dropped, losing even a single write operation may corrupt any currently maintained

query result: If InvaliDB does not match all incoming writes against all active real-time

queries, it cannot guarantee convergence of real-time query results towards the underly-

ing database’s state as a liveness guarantee (cf. Section 3.1.2). Since any write operation

might thus potentially affect any query result, all currently maintained real-time queries

have to be canceled on write spout failure, unless missed write operations can be re-

played by the event layer. As every subscriber receives an error notification, canceled

queries can be resubscribed3.

Since our implementation relies on a Storm cluster without state management and since

every bolt (processing node) has critical state such as the maintained query result for ev-

ery active subscription, bolt failure cannot be tolerated regardless of the event layer im-

plementation: Whenever a subscription’s state is lost because of workload reassignment

or server outage, it is therefore irredeemably broken and has to be canceled. The bolt

startup procedure guarantees that such irrecoverable state loss cannot occur unnoticed:

A starting bolt always retrieves all currently active queries in its query partition from the

event layer4. All subscriptions found to be active are then canceled through error mes-

sages, because the state required for their maintenance is not available in the starting

bolt; in the absence of error conditions, however, a starting bolt will not find any active

queries and will therefore not send out any error message. While this startup procedure

guarantees correct behavior in the presence of bolt failure and workloadmigration, it also

exposes runtime errors to end users on these events. For self-maintaining queries that de-

liver complete query results, these errors can be handled transparently by implicit query

resubscription (cf. reconnect option on page 129). For event stream queries that deliver

incremental changes, on the other hand, explicit error handling within the client appli-

cation is required, because a simple resubscription may have undesired side effects: De-

pending on whether or not the initial result is requested on resubscription, events might

be reflected more than once in the event stream (resubscription with initial result) or

events might be missed when they occurred in the short time between the runtime error

and resubscription (resubscription without initial result).

Summing up, our InvaliDBprototypepreserves correctnessunder both unexpectedworker

failure and workload migration by proactively canceling real-time query subscriptions

whenever eventual correctness of themaintained results cannot be guaranteed. Handling

these situations in a transparent fashion (i.e. without the client noticing) would have re-

quired an efficient, scalable, and reliable statemanagement. We could have implemented

this on top of Storm, but opted against this option, because it would have consumed con-

3As stated in Section 3.1.3, our work assumes that application servers implement a rate limiting for pull-

based queries. Therefore, resubscription of many or even all active real-time queries does not overload

application servers nor the underlying database system.
4In order to make this bolt startup procedure feasible and efficient, our event layer implementation (see

Section 4.2) needs to maintain all active real-time queries in every partition of the notification pipeline.

90

4.2 A Redis-Backed Event Layer Prototype

siderable resources during development. As another option, we could have used a stream

processing framework with viable state management (e.g. Flink [ABE+14]) in combina-

tion with a durable event layer implementation capable of data replay (e.g. built on Kafka

[KNR11]). However, we chose Storm and Redis for the benefit of reduced latency during

normal operation over their more reliable peers that would have enabled more conve-

nient error handling.

4.2 A Redis-Backed Event Layer Prototype

The implementation of InvaliDB’s event layer was guided by several requirements. First,

InvaliDB’s event layer consists of three different communication pipelines for write prop-

agation, transmission of change notifications, and query subscription management (cf.

Section 3.2). For each of these communication pipelines, the event layer needs to act as

a message queue, with slight variations regarding the way that data is provided and de-

livered as well as the ordering guarantees that are required. As a second requirement,

the event layer has to support the bolt startup procedure detailed on page 90 which guar-

antees correctness despite the lack of state management in our stream processing en-

gine: To enable efficient access to all currently active real-time queries per partition at

any given time, our event layer implementation therefore must enable pull-based storage

and retrieval of data, like a key-value store. As a final and non-functional requirement, low

latency is necessary to enable interactive real-time applications.

We considered various messaging middleware systems (cf. Section 2.4.5) as the basic

building block for our event layer implementation, but excluded software libraries with-

out built-in standalone server (e.g. ZeroMQ [Hin13] [iMa18]) and systems that were not

publicly available when we started development in 2014 (e.g. Moquette [Sel18]). To keep

development and operational overhead low, we further decided against a polyglot imple-

mentation and therefore also discarded systems that did not meet all of the aforemen-

tioned requirements (e.g. Kafka5 [KNR11]). The remaining systems can be separated into

two classes: durablemessage queues with exactly-once semantics (e.g RabbitMQ [Piv18],

ActiveMQ [Apa18a], Qpid [Apa18h]) and transient systems with a focus on low latency

(i.e. Redis [San18b], NATS [Clo18b]). Even though the ability for data retention and re-

play would have facilitated a more robust event layer implementation, we decided to use

a system that provided minimal response times [Tre16]. We eventually chose Redis over

alternatives like NATS for our event layer implementation, because it appeared easier to

operate6.

5We started developing our InvaliDB prototype in 2014, but queryable state in Kafka did not become avail-

able before the second half of 2016 [The16]. Therefore, Kafka did not lend itself to maintaining the cur-

rently active real-time queries as required for the bolt startup procedure described on page 90.
6First, we already had experience with Redis from running it in production and, second, there were numer-

ous managed Redis offerings available to simplify deployment and maintenance (e.g. Azure Redis Cache

[Pan14] and Amazon ElastiCache [Bar13]); to the best of our knowledge, there were no managed service

offerings for NATS.

91

4 InvaliDB Prototype: Implementation & Experimental Evaluation

Redis (Remote Dictionary Server) is an in-memory key-value store that holds data in spe-

cialized data structures [DST15, Ch. 1 and Ch. 2], specifically strings, lists, sets, hashes, and

sorted sets. Streams as native data structures were introduced as an experimental feature

into Redis in 2017 [San17], but are still in development as of March 2018 [San18f]. There-

fore, our implementation does not use them and instead relies on the originally available

data structures alone. Similar to stored procedures in relational databases, Redis supports

server-side atomic execution of Lua scripts [DST15, Ch. 4]. Redis is single-threaded and

therefore unable to exploit multi-threaded processors7. By avoiding parallel processing,

on the other hand, Redis is able to provide optimistic batch transactions without locking,

latching, and other processing overhead that is inherent to concurrent database designs

[HAMS08] [SMA+07]. In consequence, Redis is extremely efficient and able to achieve

single-node throughput in the order of hundreds of thousands of read and write opera-

tions per second [San18a].

Redis facilitates high availability through Redis Sentinel [San18e], a management compo-

nent that orchestrates different Redis instances in amaster-slave replication schemewith-

out data partitioning. To achieve horizontal scalability, Redis Cluster [San18c] divides the

data into several partitions, each of which can be configured for master-slave replication

as well. While Redis Cluster provides the obvious benefits of higher availability and hori-

zontal scalability in comparison with a single-node Redis deployment, it is also more com-

plex to operate. More importantly for this work, Redis Cluster did not provide a scalable

publish-subscribe mechanism at the time of writing8 [GCS+15] [GC15] which also made it

significantly more challenging to develop an event layer implementation on top of it.

4.2.1 Implementation & Correctness

To explore the different trade-offs of the single-node Redis and the distributed Redis Clus-

ter in practice, we created two different implementations of the event layer.

The centralized implementation relies on a single Redis instance that manages all com-

munication between application servers and the InvaliDB cluster. The write pipeline is im-

plemented as a list where after-images are inserted on the one side (RPUSH operation) and
taken out on the other (LPOP operation): Every write operation is thus extracted and pro-
cessed by exactly one write spout. Since write operations are propagated to all matching

nodes in the corresponding write partitions, this scheme effectively implements a multi-

7For completeness, we want to point out that Redis provides the option to execute specific commands con-

currently to the main thread of execution (but without concurrency control) to avoid prolonged blocking,

e.g. FLUSHDB [San16].
8The Redis Cluster specification allows any client to subscribe to any publish-subscribe channel, even if the

client is not connected to the Redis Cluster node responsible for the subscribed channel. To make sure

that a subscribed client never misses a published message regardless, Redis Cluster implements a very

inefficient strategy: When a producer publishes a message, the receiving Redis Cluster node broadcasts

the message to all other Redis Cluster nodes, so that they can deliver it to any subscribed client. While

this scheme is convenient to use, it also causes sustainable throughput to deteriorate (not increase) with

growing cluster size, because the number of sentmessages growswith the number of Redis Cluster nodes.

92

4.2 A Redis-Backed Event Layer Prototype

cast distribution. The query pipeline for delivering subscription, cancellation, and TTL ex-

tension requests works by the same principle for message delivery as the write pipeline,

but involves additional processing for maintaining the set of active queries in Redis (cf.

bolt startup procedure on page 90). In more detail, the active queries are represented as

a map (i.e. Redis hash) that contains the number of active subscriptions for every real-

time query; a query (i.e. hash key) is added whenever no counter is found on subscription

and removedwhenever the corresponding counter reaches zero on cancellation. Tomake

sure that no query is activated in the InvaliDB cluster without being added to the set of

active queries, the query pipeline further uses Redis’ optimistic batch transactions to up-

date the query map atomically with every query subscription. The notification pipeline is

implemented using a Redis publish-subscribe channel [DST15, Ch. 4] per active real-time

query: Both initial results and change notifications are published by the responsible In-

valiDB matching nodes and then broadcasted to the subscribed application servers by the

Redis publish-subscribe mechanism. Spreading the workload over more than three Redis

instances (i.e. one per pipeline) is not trivially possible with the centralized implemen-

tation, because it would require application-level sharding (i.e. sharding on the level of

producers and consumers) not only across different message queues, but across different

Redis instances.

To remove this scalability limitation, we also created a distributed implementation of

the event layer on top of Redis Cluster; we only provide a brief overview here and re-

fer to [Suc17] for details. To facilitate even load distribution, the individual communica-

tion pipelines are hash-partitioned by ID (write pipeline) or query (query and notification

pipelines) across data partitions. Thus, the distributed query and write pipelines are es-

sentially sharded implementations of their centralized counterparts, i.e. each of them

employs a single message queue per partition to implement multi-cast message prop-

agation as described above. In contrast, we had to design the distributed notification

pipeline from scratch, because the publish-subscribe mechanism built into Redis Cluster

turned out to be infeasible at scale as described above. In more detail, we implemented

our own broadcasting mechanism through Lua scripting: Whenever an InvaliDB match-

ing node sends an initial result or change notification to Redis Cluster for publication, the

published message is atomically duplicated and inserted into every message queue that

corresponds to a subscription for the real-time query. In contrast to the write and query

pipelines, the notification pipeline thus employs one message queue per real-time query

subscription instead of only one message queue per partition. Unlike the native publish-

subscribe mechanism, clients of our implementation only receive a keyspace notification

[San18d] for every published message and then have to retrieve the published message

itself in pull-based fashion. Thus, our approach incurs an additional round-trip between

the application server and a Redis Cluster node for every published message; however,

seeing that both these components are colocated, the imposed latency overhead is in the

order of single-digit milliseconds only.

93

4 InvaliDB Prototype: Implementation & Experimental Evaluation

Neither Redis nor Redis Cluster provide mechanisms for acknowledgment or data replay,

so that messages may be lost in the presence of connectivity issues. In order to guar-

antee correctness in spite of this drawback, all possibly affected queries are therefore

invalidated as soon as an InvaliDB component or application server gets disconnected. In

more detail, a connectivity issue between the event layer and an InvaliDB data ingestion

or matching node is treated like a failure of the component itself (see Section 4.1.2). To

avoid losing change notifications, an application server therefore cancels all its real-time

query subscriptions and notifies the subscribed end user devices accordingly, after los-

ing its connection to the change notification pipeline. As explained earlier, losing a write

operation has the potential to compromise any maintained real-time query result on the

same collection. One approach for handling disconnects between an application server

and the write pipeline is therefore to have the application server cancel all possibly af-

fected active queries as soon as a write operation might have gotten lost; our event layer

implementations introduce dedicated components to serve this purpose (cf. state con-

troller in [Suc17]). Since the InvaliDB cluster ignores already-processed after-images (cf.

Section 3.1.3), however, an arguably more practical approach for scenarios with moder-

ate write throughput is to have the application server buffer all write operations for the

maximum propagation delay9 and have it replay all possibly lost writes after reconnect.

Since query subscription, cancellation, and TTL extension requests can be lost without

compromising correctness (cf. query spout failure on page 89), disconnects between the

application server and the query pipeline do not have to be addressed at all: In the worst

case, query subscriptions will simply abort or expire.

Since InvaliDB’s event layer only handles transient data that is discarded on reconnect in

our Redis-based implementations, replication is disabled for both prototypes.

4.2.2 Horizontal Scalability & Deployment Considerations

Figure 4.1 presents experimental evidence for the horizontal scalability of our distribut-

ed event layer implementation. The experiments were executed on Redis 3.2.9 instances,

running on Docker 1.10.2 with 2 vCPUs per Redis instance (AMD FX-8350 at 4.0GHz, 1

thread per core). All measurement points are averaged over five runs. In our experi-

ments, we did not measure absolute event layer performance, because even the central-

ized implementation was easily able to saturate the network link of our benchmarking

client. Therefore, we throttled the Docker containers hosting the Redis instances in these

experiments to 2% CPU time in order to quantify the relative effect of adding nodes to

the Redis Cluster. The line plot shows that a throttled single-node event layer deployment

was able to sustain about 8 800 writes per second, while doubling the number of nodes

increased sustainable write throughput by 75% to 80% each time. Even though the abso-

lute numbers differ for change notification throughput, the relative performance increase

9As stated in Section 3.1.3, our systemmodel assumes a finite upper bound formessage propagation delays.

94

4.2 A Redis-Backed Event Layer Prototype

is comparable: Given a single subscribed application server, roughly 3 700 change noti-

fications per second were feasible for the throttled single-node deployment, while dou-

bling the number of nodes also increased sustainable throughput by at least 75%. As was

to be expected, adding more subscribed application servers reduced sustainable change

notification throughput slightly, but did not affect linear scalability. We do not provide

measurements of sustainable query subscription throughput, because it was limited by

sustainable querying throughput of the underlying database. We further do not provide

latency measurements here, because event layer latency is subsumed by the end-to-end

latencies measured in the experiments presented in Section 4.4 and Section 5.5.1. For

details on the experimental setup of the event layer evaluation and for additional results,

we refer to [Suc17, Ch. 6].

1 2 4 8

Redis instances

4k

8k

16k

32k

64k

th
ro

u
g
h
p
u
t

(m
e
ss

a
g
e
s/

s)

event layer (Redis Cluster), throttled to 2% CPU time

write throughput
change notification throughput (1 subscribed app server)
change notification throughput (2 subscribed app servers)
change notification throughput (4 subscribed app servers)

Figure 4.1: Sustainable write and change notification throughput scale linearly with the

number of nodes in the distributed event layer implementation based on Redis

Cluster. Note that (1) the experiments were conducted on throttled hardware

(2% CPU time), because unthrottled deployments could not be saturated, and

that (2) both axes are on a logarithmic scale. (Data taken from [Suc17].)

In summary of the above, our distributed event layer implementation is unlikely to be-

come a bottleneck in the overall system for two reasons. First, throughput achieved by

an unrestricted production deployment can be assumed to be significantly higher than

the throughput achieved during the experiments described above, since our experiments

were executed on hardware throttled to only 2% CPU time: Without this artificial bot-

tleneck, we were not able to saturate even the single-node event layer deployment. In

other words, our experiments are designed to quantify scalability rather than absolute

performance and should not be taken as hints on the upper performance limit of the

tested event layer implementation. Second, our results confirm that efficiency remains

95

4 InvaliDB Prototype: Implementation & Experimental Evaluation

high in deployments with many nodes. While sustainable change notification throughput

decreases with an increasing number of subscribed application servers, it is important to

note that no application server subscribesmore than once to any individual real-time que-

ry: Since end user subscriptions are coalesced (cf. Section 3.2.4), themaximumnumber of

subscribers for a single real-time query to be served by the event layer is thus equal to the

number of application servers. Since any application server can potentially serve thou-

sands of end users (cf. performance evaluation in Section 5.5.1), the relative efficiency

reduction for multiple subscribers therefore only has very limited impact on scalability of

end user subscriptions.

While the distributed event layer implementation is more scalable and might thus be su-

perior in deployments with high-performance networks, it does not necessarily provide

an actual benefit over the centralized implementation in practice. Incidentally, we have

not been able to identify a scenario where the performance of our centralized implemen-

tation becomes a limitation: Neither the workloads executed during the experiments de-

scribed in this thesis nor any workload we have seen in production at Baqend [Baq18a] so

far have put the single-node event layer implementation under significant pressure. Given

the benefit of operational simplicity, the production deployment at Baqend therefore uses

the centralized event layer implementation at the time of writing.

4.3 A MongoDB-Compatible Real-Time Query Engine

Since InvaliDB is database-agnostic, we could have built our prototype on top of any da-

tabase system conforming to the requirements laid out in Section 3.1.3. However, we

decided to build uponMongoDB, because this choice warranted a better comparison be-

tween our prototype and the current state of the art: As discussed in Chapter 2, many of

today’s real-time database systems are also built on MongoDB (e.g. Meteor, Parse) or dis-

play a strong similarity regarding data model and query expressiveness (e.g. RethinkDB,

Firestore, Rapid.io). MongoDB is an aggregate-oriented document store [SF12] that na-

tively supports horizontal scalability through data sharding. Conveniently, MongoDB pro-

vides a native change data capture mechanism that makes retrieving after-images for the

write pipeline trivial: Our prototype uses the findAndModify [Mon18b] operation for in-

serts and updates10, because it directly returns the after-images which are then simply

forwarded to the InvaliDB cluster. Since InvaliDB requires versioning which was not sup-

ported by MongoDB at the time, every record carries a version number which the appli-

cation server initializes on insert and which it increments with every subsequent write.

4.3.1 Prototype Iterations & Query Expressiveness

The pluggability of our real-time query engine allowed us to separate development of the

database-specific matching component from development of InvaliDB’s generic compo-

10The after-image of a deleted entity is null and therefore does not have to be retrieved from the database.

96

4.3 A MongoDB-Compatible Real-Time Query Engine

nents such as result state management and the interaction with the event layer. Although

its source code is openly available [Mon18f], we did not use MongoDB directly for que-

ry matching because of two reasons. First, the C++ MongoDB code for matching queries

against after-images would have been difficult to isolate and integrate into our Java-based

Storm topology. Second and more importantly, though, including MongoDB in our In-

valiDB prototype would have required us to adopt an AGPL licensing [Mon18g]; since we

intended to use InvaliDB as part of a closed-source commercial offering at Baqend (cf.

Chapter 5), this was not an option. To avoid these issues, we opted for a custom-built que-

ry engine running within the InvaliDB cluster’s Java runtime (i.e. within the Storm topol-

ogy). We started with a minimalistic real-time query engine to create a working proof-of-

concept implementation quickly and to concentrate on implementing the generic InvaliDB

components first. After the generic components had been completed, we reengineered

the real-time query engine to improve performance and query expressiveness.

The first iteration was a JavaScript-based query engine that used the third-party Java-

Script library sift.js [Con18] for evaluatingMongoDB queries. In principle, wematched ev-

ery incoming after-image against any active real-time query by invoking a function within

the sift.js library. For this purpose, we used the Nashorn JavaScript engine [Ora18a] built

into Java 8. The great advantage of this approach was its simplicity, since it allowed us to

create a running version of the InvaliDB cluster without implementing the actual match-

ing logic ourselves. However, the real-time query engine based on sift.js had three criti-

cal flaws. First, it was slow, because the context switch between the Java and the Java-

Script runtime environments took longer than the actual matching procedure. Even when

micro-batching after-images, the cost of merely invoking the JavaScript matching routine

dominated processing latency. Second, advanced queries such as full-text search and geo

queries were not supported. As the third and arguably most severe problem, sift.js only

approximated MongoDB’s query semantics and hence led to incorrect query results (e.g.

for nested queries with dot notation [YCP17]).

In order to eliminate query matching as a performance bottleneck, to enhance expres-

siveness, and to satisfy our requirement of eventual correctness (cf. Section 3.1.2), we

created a Java-based query engine from scratch in the second iteration. By removing

the JavaScript runtime from the critical processing path and thus the necessity for micro-

batching, average processing latencies were reduced by one order of magnitude from

double-digit to single-digit milliseconds and peak matching throughput even increased by

two to three orders of magnitude, depending on the complexity of the queries used for

comparison11. Further, InvaliDB’s Java-based real-time query engine closely follows the

syntax and semantics of MongoDB’s query language for sorted filter queries over single

collections. It supports query operators for content-basedfiltering through regular expres-

sions ($regex), comparisons (e.g. $eq, $ne, $gt, $gte), logical combination of filter expres-

11We do not provide a detailed performance comparison between both implementations, because the

JavaScript-based real-time query engine has been abandoned and has therefore become irrelevant.

97

4 InvaliDB Prototype: Implementation & Experimental Evaluation

sions (e.g. $and, $or, $not), evaluating matching conditions over array values (e.g. $in,
$elemMatch, $all, $size), full-text search ($text), geo queries (e.g. $geoIntersects,
$geoWithin, $nearSphere), and various others (e.g. $exists, $mod). Full-text search

[Sch18] and geo queries [Pat18] have been particularly complex to emulate, since they

are domain-specific and have sophisticated semantics. For example, they can produce re-

sults that are ordered implicitly by metadata such as a similarity score (full-text search) or

the distance between amatching entity and a reference point (e.g. $nearSphere geo que-
ries). As of writing, our real-time query engine does not support aggregations or joins12,

but extending it to support these kinds of queries is planned for future work (cf. Section

6.2.1). In Section 5.4, we show how both real-time aggregations and real-time joins can

be achieved through client-side application code.

4.3.2 Multi-Query Optimization & Computational Complexity

Internally, every real-timequery is represented as a logical compositionof filter predicates.

By decomposing all queries into their individual predicates, our Java-based real-time que-

ry engine identifies common subexpressions and achieves predicate coalescence across

queries as illustrated in Figure 4.2: Even though both queries in the example have two

predicates each, only three distinct predicates have to be evaluated overall, since predi-

cate p2 is shared between query q1 and query q2.

SELECT * FROM articles

 WHERE year > 2012

 AND title LIKE "%SQL%"q1
p1

p2

p3
SELECT * FROM articles

 WHERE title LIKE "%SQL%"

 OR year < 1998q2

Figure 4.2: Query q1 = p1 ∧ p2 and query q2 = p2 ∨ p3 have predicate p2 in common.

For computing change notifications, the Java-based real-time query engine matches ev-

ery incoming after-image against the query predicates13 of the currently active real-time

queries. Given a write throughput m and active real-time queries with overall n query

predicates, the computational complexity of this naïve approach is thusO(m ·n), i.e. the
computational requirements for querymatching grow linearly with both write throughput

and the number of predicates. By using indices for predicate evaluation, overall computa-

tional complexity could be reduced toO(m · log n) for certain predicates such as compar-

isons, equality checks, or anchored regex expressions (cf. [Mon18d]). Required matching

12MongoDB does not support joins except left outer equi-joins as part of its aggregation pipeline [Mor15].
13The query engine skips predicate evaluationwhere possible and thus does not necessarily evaluate all pred-

icates for every after-image. For example, the query engine will not evaluate predicates in a disjunction

that is already known to be true and it will not evaluate predicates in a conjunction that is already known

to be false.

98

4.4 Performance Evaluation

resources would thus still grow linearly with write throughput, but only logarithmically

with the number of predicates. Due to time constraints during the development of our

prototype, however, we did not implement indexing within our real-time query compo-

nent and therefore leave this optimization to future work (cf. Section 6.2.2).

While overall matching node performance is typically dominated by querymatching, it can

also be influenced by other factors. For example, overhead for serializing and deserializing

after-images can also bind substantial computing resources and even becomes prohibitive

under write-heavy workloads unless write stream partitioning is applied (cf. evaluation in

Section 4.4.3). As another example, queries with low selectivity are more expensive to

maintain than queries with high selectivity, because they produce change notifications

more frequently and thus incur a higher overhead for serialization and messaging.

4.4 Performance Evaluation

In this section, we quantify the throughput and latency characteristics as well as the scal-

ability of our InvaliDB implementation. To this end, we present measurements of sustain-

able matching throughput and change notification latency for differently sized InvaliDB

clusters. Through our experimental evaluation, we confirm that InvaliDB exhibits the fol-

lowing characteristics:

• linear read scalability: In Section 4.4.2, we show that the number of concurrently

maintainable real-time queries is proportional to the number of employed query

partitions.

• linear write scalability: In Section 4.4.3, we demonstrate that sustainable write

throughput of an InvaliDB cluster increases linearly with the number of employed

write partitions.

• multi-tenancy: In Section 4.4.4, we demonstrate that InvaliDB is well-suitable to

serve multi-tenant deployments. To this end, we compare different workloads with

the same number of matching operations per second (matches/s) as the number

of queries times the number of writes per second. Thus, we show that InvaliDB

achieves comparable performance in scenarios with many cheap tenants (workload

spread across many database collections) as well as scenarios with few heavy hitters

(all queries and writes on a small number of collections).

4.4.1 Experimental Setup

All experiments were executed in a private cloud environment (OpenStack 2013.2 Havana,

Docker 17.09.0-ce, Ubuntu 14.04). The underlying hardware comprised five identical ma-

chines with six-core CPUs (Intel Xeon E5-2620 v2 at 2.1GHz, 64 GB RAM), connected over

a 1 Gbit/s LAN. Our experimental setup consisted of the following components:

99

4 InvaliDB Prototype: Implementation & Experimental Evaluation

• 1 InvaliDB client (2 vCPUs) for inserting records and measuring latency

• 1 Redis 3.0 server (1 vCPU) for communication between InvaliDB client and cluster

• 1 Storm 1.1.0 cluster (1 vCPU per node) running InvaliDB:

– 1 nimbus for cluster management

– 5 spouts for query ingestion (1 spout) and write ingestion (4 spouts)

– n ∈ {1, 2, 4, 8, 16} bolts for query matching (varied with experiments)

It should be noted that 4 write spouts were only required to saturate the most powerful

InvaliDB cluster; the less powerful InvaliDB clusters with few matching bolts displayed vir-

tually identical performance, irrespective of the number of employed write spouts. How-

ever, we deliberately chose the same number of spouts for all experiments, so that work-

load partitioning was the only difference between different configurations.

When assigning more than 4 matching nodes to a physical server, we observed incon-

sistent performance under high load, because matching nodes were contending for CPU

timewith the underlying virtualization stack. However, we were unable to deploy large In-

valiDB clusters with less matching nodes per physical server with our limited resources14.

Therefore, we throttled all InvaliDB matching nodes to 80% of single-core CPU time, so

that all of them received approximately equal computing resources regardless.

w
ri
te

p
a
rti
ti
o
n
s

query partitions

1 2 4 8 16

1 1 2 4 8 16

2 2 4 8 16 32

4 4 8 16 32 64

8 8 16 32 64 128

16 16 32 64 128 256

Table 4.1: The workload partitioning determines the number of matching nodes in the In-

valiDB cluster. With the given hardware, we could only evaluate configurations

with no more than 16 matching nodes (green background).

To investigate InvaliDB’s scalability, we doubled the number of query or write partitions

between certain runs and compared achieved throughput and notification latency. Table

4.1 shows the number of matching nodes required for this partitioning scheme with up

to 16 query and write partitions. With the hardware available to us, we were only able

to deploy InvaliDB clusters with up to 16 matching nodes (green background). In this

section, we describe the experiments where either query or write partition count was

scaled from 1 to 16 (first row and first column, respectively). We present results of the

experiments conducted with the remaining feasible configurations in Appendix A (read

scalability), Appendix B (write scalability), and Appendix C (latency histograms).

14For the experiments described in Section 5.5.1, we needed to deploy an application server in addition to

the components described here.

100

4.4 Performance Evaluation

Workload

For every InvaliDB cluster configuration, we performed a series of experiments, each of

which consisted of two phases: In the preparation phase, any still-active queries from

earlier experiments were removed and queries for the upcoming one were activated. In

the subsequent 1-minute measurement phase, the client machine performed a steady

number of insert operations per second against the event layer (Redis server). The client

also measured change notification latency as the time from before inserting an item until

after receiving the corresponding notification; we thus measured end-to-end latency val-

ues that subsumed both processing times in the InvaliDB cluster andmessage propagation

delays through the event layer.

SELECT * FROM test WHERE sequence >= i AND sequence < j

Listing 4.1: The queries used in our evaluation corresponded to the shown SQL query, with

varying instantiations of i and j.

Each document had five 10-literal string attributes and five integer attributes, one ofwhich

was a monotonically increasing sequence number. The queries were defined with com-

parison predicates on the sequence number field and matched one inserted document

each as illustrated in Listing 4.1. Since queries were added during the preparation phase,

the number of active queries remained constant for the duration of each experiment;

thus, InvaliDB’s matching nodes were exclusively occupied with matching queries against

incoming updates, but not with other tasks such as adding or canceling query subscrip-

tions. To minimize the effect of network congestion and message (de-)serialization, we

configured change notification throughput to be steady at roughly 17 matches per sec-

ond (i.e. 1 000 per 1-minute experiment). To this end, we inserted documents in random

order (i.e. specifically not sorted by sequence number) and only allowed 1 000 matching

queries per experiment; abundant queries matched non-existent sequence numbers, so

that they would not produce change notifications.

Coping With Garbage Collection

Providing consistently low response times requires minimizing delays in every stage of

the data processing pipeline. In particular, alleviating the impact and maximizing the pre-

dictability of stop-the-world garbage collection (GC) pauses [GTSS13] has proven to be

the single most important aspect of catering for predictable real-time performance in

our Java-based software stack. Fortunately, the object life-cycle in our real-time data-

processing system allows for efficient and low-pause GC, since there are only few long-

lived objects (queries, results, etc.), but many objects that are dereferenced shortly after

creation (specifically after-images). Since further only relatively few queries and objects

can bematched in a single thread of execution in a given timeframe, thememory footprint

of the individual matching nodes was often minimal: Spawning one JVM per core and us-

ing the generational G1 garbage collector [Ora17a], the CPU became a bottleneck before

101

4 InvaliDB Prototype: Implementation & Experimental Evaluation

JVM heap space exceeded 100MB under write-heavy workloads. In contrast, read-heavy

workloads withmany active real-time queries permatching node incurred highermemory

overhead and consequently also longer garbage collection pauses (see Section 4.4.4).

We experienced occasional GC pauses during some experimental runs that completely

dominated latency and therefore spoiled the results. To prevent this implementation ar-

tifact from affecting the evaluation of our approach, we repeated individual runs when

latency measurements were significantly distorted due to GC. This does not interfere with

the validity of our results, because comparable results could be achieved using a Java

Runtime Environment (JRE) that avoids garbage collection altogether [CTW05]. We used

the Oracle JRE with G1 garbage collection instead of a pause-free garbage collector, be-

cause the only freely available onewe are aware of (Shenandoah [Ora18c]) was not usable

[Ric15] when we developed our prototype, while commercial alternatives such as Azul’s

Zing [Azu18] were prohibitively expensive.

Apart from GC within InvaliDB, our measurements were also affected by GC within the

benchmarking client. To further prevent client-side GC from distorting our latency mea-

surements, we provided the client Java runtime with 30 GB RAM and configured it to

perform garbage collection only in idle phases between measurements.

4.4.2 Scaling With Query Load

To assess InvaliDB’s read scalability, we compared the number of concurrently sustainable

real-time queries for InvaliDB clusters with varying numbers of query partitions. Figure

4.3 illustrates experimental results for clusters with 1, 2, 4, 8, and 16 query partitions

at a fixed write throughput of 1 000 operations per second. Since we employed a single

write partition in all of these experiments, the number of query partitionswas equal to the

number of matching nodes for each deployment. Please note that we plotted the number

of active queries (a) and the number of query partitions (b) on a logarithmic scale.

The line plot of 99th percentile notification latency by query load (a) shows that response

times were consistently below 30ms for all InvaliDB deployments until at least 1 500 ac-

tive real-time queries per matching node: As the individual InvaliDB clusters were over-

whelmed at loads beyond 1 500 (1 node) and 1 800 (16 nodes) queries per node, matching

workload started queueing up and latency spiked as a consequence. Since we increased

workload in increments of 500 queries, per-node throughput measurements were more

accurate (and therefore appear to be slightly better) for larger clusters: The single-node

deployment couldmanage 1 500 and failed at 2 000 queries, whereas the 16-node deploy-

ment could sustain 29 000 and failed at 29 500 concurrent queries (i.e. between 1 812 and

1 844 queries per node under the assumption of perfectly even workload distribution).

The comparison of sustainable throughput under different SLAs (b) further makes explicit

that sustainable query load scales linearly with cluster size and that even strict latency

requirements can be satisfied near peak load. The latency histogram (c) and the provided

102

4.4 Performance Evaluation

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 1 write partition

1 query partition
2 query partitions
4 query partitions

8 query partitions
16 query partitions

(a) Change notification latency under an in-

creasing real-time query load (logarithmic

scale) at a constant write throughput of

1 000 ops/s.

1 2 4 8 16

query partitions

4k

8k

12k

16k

20k

24k

28k

q
u
e
ri

e
s

1k ops/s, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

(b) Themaximumnumber of concurrently ser-

viceable real-time queries by the number

of query partitions (both in logarithmic

scale) at 1 000 ops/s under different SLAs.

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 1 write partition

1 query partition, 1.5k queries
2 query partitions, 3k queries
4 query partitions, 6k queries
8 query partitions, 12k queries
16 query partitions, 24k queries

(c) Latency distribution at 1 000 ops/s with

1 500 real-time queries per query partition

(about 80% of system capacity).

avg.
std.

dev.
99% max.

1 query part.

1 500 queries 9.4 3.4 17.4 45

2 query part.

3 000 queries 9.2 2.4 15.2 28

4 query part.

6 000 queries 9.0 2.5 15.6 42

8 query part.

12 000 queries 9.0 2.4 15.5 32

16 query part.

24 000 queries
9.2 2.9 20.1 46

(d) Measured latency inmilliseconds (average,

standard deviation, 99th percentile, max.)

at 1 000 ops/swith 1 500 queries per query

partition (about 80% of system capacity).

Figure 4.3: Read scalability: sustainable number of concurrent real-time queries for In-

valiDB deployments with a single write partition and varying query partitions.

103

4 InvaliDB Prototype: Implementation & Experimental Evaluation

latency values (d) finally illustrate that all InvaliDB clusters displayed highly similar latency

distributions under identical relative load of 1 500 queries per node: Average notification

latency was measured between 9.0ms and 9.4ms with standard deviations ranging from

2.4ms to 3.4ms, while outliers never exceeded 50ms. The largest InvaliDB configurations

exhibited a slight performance degradation compared to the other configurations (99th

percentile). As reported in [GSW+17, Table 2], however, we did not experience compara-

ble issues with equally sized configurations on more potent hardware. Since processes of

our test setup’s virtualization layer had to share CPU cores with InvaliDB matching nodes

in the InvaliDB configuration with 16 matching nodes (cf. page 100), we consider this to

be a measurement artifact rather than an issue intrinsic to InvaliDB.

Appendices A and C.1 contain experimental results on the read performance and scalabil-

ity of our InvaliDB prototypewith 2, 4, 8, and 16write partitions at various throughputs.

4.4.3 Scaling With Write Throughput

Our evaluation of InvaliDB’s write scalability was conducted in similar fashion to the above-

described read scalability evaluation. As shown in Figure 4.4, we contrasted sustainable

throughput for InvaliDB clusters with a single query partition and 1 to 16 write partitions,

using a fixed read workload of 1 000 active real-time queries. Here, write throughput in

ops/s (a) and the number of write partitions (b) are on a logarithmic scale.

Considering the sustainable matching operations per second (matches/s) as the number

of active real-time queries multiplied by write operations per second, our results show

that InvaliDB achieves lower overall matching performance under write-heavy workloads

than under the read-heavy workloads discussed above. In more detail, the 99th percentile

latencies achieved under increasing write throughput (a) weremeasured below 30ms un-

til about 75% and below 50ms until about 95% of system capacity, while latencies under

the read-heavy workloads did not exceed 30ms before reaching the performance limit.

Similarly, sustainablewrite throughput (b) was feasible until 26 000 ops/s with 1 000 active

queries (26 million matches/s) for the largest InvaliDB cluster, while 29 000 queries could

be served at 1000 ops/s (29 million matches/s) with the same configuration under the

read-heavy workload. Thus, our experiments show that sustainable matching through-

put is slightly reduced under write-heavy workloads with 1.0 million (1 write partition)

to 1.625 million (16 write partitions) matches/s per node, compared to 1.5 to 1.8 mil-

lion matches/s per node under the read-heavy workloads. The latency histogram (c) and

the tabular summary (d) illustrate that latency characteristics are nonetheless consistent

across all InvaliDB configurations for the same relative workload: At roughly two thirds

of system capacity, the average notification latencies ranged from 8.8ms to 10.3ms with

standard deviations between 2.3ms and 3.5ms and outliers that were always well be-

low 100ms. Similar to the experiments under read-heavy workloads, the largest InvaliDB

cluster displayed the worst outliers and therefore slightly deteriorated average latency

104

4.4 Performance Evaluation

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 1 query partition

1 write partition
2 write partitions
4 write partitions

8 write partitions
16 write partitions

(a) Change notification latency under an

increasing write throughput (logarithmic

scale) serving 1 000 concurrent real-time

queries.

1 2 4 8 16

write partitions

4k

8k

12k

16k

20k

24k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

1k queries, 1 query partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

(b) Sustainable write throughput by the num-

ber of write partitions (both in logarithmic

scale) serving 1 000 active real-time que-

ries under different SLAs.

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 1 query partition

1 write partition, 1k ops/s
2 write partitions, 2k ops/s
4 write partitions, 4k ops/s
8 write partitions, 8k ops/s
16 write partitions, 16k ops/s

(c) Latency distribution with 1 000 active real-

time queries at 1 000 ops/s per write parti-

tion (about 66% of system capacity).

avg.
std.

dev.
99% max.

1 write part.

1 000 ops/s 8.8 2.4 15.5 34

2 write part.

2 000 ops/s 8.9 2.3 15.0 27

4 write part.

4 000 ops/s 9.0 2.3 15.6 30

8 write part.

8 000 ops/s 9.5 2.4 16.8 32

16 write part.

16 000 ops/s
10.3 3.5 21.9 79

(d) Measured latency inmilliseconds (average,

standard deviation, 99th percentile, max.)

with 1 000 active real-timequeries at 1 000

ops/s per write partition (about 66% of

system capacity).

Figure 4.4: Write scalability: sustainable write throughput for InvaliDB deployments with

a single query partition and varying write partitions.

105

4 InvaliDB Prototype: Implementation & Experimental Evaluation

and standard deviation compared to the clusters with fewer nodes. We think there are

two likely explanations for this occurrence. First, given that our test setup was only barely

sufficient to support a 16-node InvaliDB cluster (cf. Section 4.4.1), CPU contention might

have affected matching node performance for the largest InvaliDB configuration, but not

the smaller ones. As a second possibility, garbage collection in the Storm spouts for write

ingestion might have caused occasional latency stragglers at high throughput15.

While our experiments confirm that InvaliDB scales linearly with write throughput, they

also reveal that latency characteristics and sustainable throughput degrade noticeably un-

der write-heavy workloads when compared to measurements made under read-heavy

workloads. This can be explained by the overhead for (de-)serializing after-images which

grows with write throughput (cf. Section 4.3.2), but not with the number of active real-

time queries. We refer to Appendix B and Appendix C.2 for experimental results regarding

write performance and scalability of InvaliDB configurations with 2, 4, 8, and 16 query par-

titions under various read workloads.

4.4.4 Efficiency of Multi-Tenant Setups

In Section 4.4.2 and Section 4.4.3, we demonstrated that even extreme workloads with

thousands of concurrent real-time queries and thousands of write operations per sec-

ond are feasible for InvaliDB. For industry applications at Baqend, though, we observed

that real-time queries are often used for small websites or web applications with only a

few hundred concurrent real-time query subscriptions and moderate write throughput.

Setting up and maintaining a dedicated InvaliDB cluster for each of these lightweight use

cases would be prohibitive because of the involved operational complexity and the asso-

ciated costs. To support small-scale applications efficiently, an InvaliDB cluster therefore

needs to be capable of multi-tenancy (cf. Section 3.1.1), so that different applications can

share the same InvaliDB deployment. The plots in Figure 4.5 show read and write perfor-

mance of an InvaliDB cluster with only a single matching node in a multi-tenant scenario

where overall matching throughput is spread across many database collections. As be-

fore, we used a constant write throughput of 1 000 ops/s for our read workloads and a

fixed number of 1 000 active real-time queries for the write workloads. We provide ex-

perimental results on multi-tenant read performance and scalability at higher throughput

and on multi-tenant write performance and scalability under workloads with more ac-

tive real-time queries in Appendix A.2 and Appendix B.2, respectively. Please note that

the number of active queries, the number of query partitions, write throughput, and the

number of write partitions are again plotted on a logarithmic scale for better readability.

When an InvaliDB cluster serves only a single tenant, all incoming write operations have

to be matched against all active real-time queries. In a multi-tenant setup, in contrast,

an incoming write operation only has to be matched against the real-time queries active

15We only monitored garbage collection in the matching nodes.

106

4.4 Performance Evaluation

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 1 query partition, 1 write partition

1 collection
2 collections
4 collections

8 collections
16 collections
32 collections

(a) Change notification latency under an in-

creasing real-time query load (logarithmic

scale) at a constant write throughput of

1 000 ops/s.

1 2 4 8 16 32

collections

4k

8k

12k

16k

20k

24k

q
u
e
ri

e
s

1k ops/s, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

(b) Themaximumnumber of concurrently ser-

viceable real-time queries by the number

of collections (both in logarithmic scale) at

1 000 ops/s under different SLAs.

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 1 query partition, 1 write partition

1 collection
2 collections
4 collections

8 collections
16 collections
32 collections

(c) Change notification latency under an

increasing write throughput (logarithmic

scale) serving 1 000 real-time queries.

1 2 4 8 16 32

collections

2k

4k

6k

8k

10k

12k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

1k queries, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

(d) Sustainable write throughput by the num-

ber of collections (both in logarithmic

scale) serving 1 000 real-time queries un-

der different SLAs.

Figure 4.5: Multi-tenant performance: sustainable matching performance for an InvaliDB

deployment with a single matching node where real-time queries and write

operations are distributed equally across varying numbers of collections.

107

4 InvaliDB Prototype: Implementation & Experimental Evaluation

on the written collection: When all real-time queries are evenly distributed across n ten-

ants, matching workload is thus reduced to 1
n compared to a single-tenant workload with

the same write rate and the same overall number of active real-time queries. The plots

of notification latency (a) and concurrently sustainable real-time queries (b) confirm that

our prototype exhibits this behavior in practice. The sustainable query load scales linearly

with the number of tenants until about 7 000 queries and then flattens off slightly from

there. The decline of efficiency is caused by the increased memory usage and the asso-

ciated management overhead which, in turn, drains additional processing power (leaving

less CPU time for the actual query matching) and which also causes more frequent, more

expensive, and more time-consuming garbage collections (thus provoking occasional la-

tency stragglers).

For write-heavy workloads, 99th percentile latencies below 20ms were never achieved

under throughput higher than 3 500 ops/s (c). This can be explained by the overhead

for after-image parsing which also grows linearly with throughput, thus increasing base

latency and reducing the computing resources left for query matching. As another conse-

quence of this parsing overhead, sustainable throughput grew linearly with the number

of tenants until around 4 000 ops/s, but not as steeply under higher throughput (d).

4.5 Summary

We focused on unsorted filter queries in our evaluation, because the filtering stage imple-

ments InvaliDB’s unique two-dimensional partitioning scheme and is therefore the criti-

cal component for enabling InvaliDB’s scalability: As discussed in Section 3.3, the filtering

stage processes all queries and all write operations, while all subsequent processing stages

only have to cope with the output of the respectively previous stage partitioned by query

and are therefore unlikely to become a bottleneck. As the only exception, the join stage

can be scale-prohibitive, since certain join queries are infeasible for incremental mainte-

nance (cf. Section 3.3.2). However, arbitrary θ-join queries are neither supported by any

current real-time database nor by MongoDB, the underlying database for our InvaliDB

implementation. Therefore, we did not consider join queries in this evaluation.

Summing up the above experimental results, our Java-based InvaliDB implementation pro-

vides predictably low latency even under high load. Under various workloads, all InvaliDB

deployments displayed notification latencies consistently below 30ms in the 99th per-

centile when under moderate load and still below 50ms when approaching system ca-

pacity. Through our experimental evaluation, we have thus shown that it is feasible to

build an InvaliDB implementation that scales linearly with read and write workloads and

is also capable of serving real-time queries in a multi-tenant environment.

In the next chapter, we will illustrate InvaliDB’s practical usefulness by describing the in-

tegration of our prototype into the existing database middleware Orestes where it serves

two different purposes. First, InvaliDB extends the functionality of the base system by

108

4.5 Summary

adding push-based real-time queries to the otherwise pull-based query interface. Second,

it improves both throughput and latency of the existing pull-based query mechanism by

enabling consistent query caching through low-latency result change notifications.

109

4 InvaliDB Prototype: Implementation & Experimental Evaluation

110

Integrating InvaliDB With the Orestes
Database Middleware 5

“Everything should be made as simple as possible, but not simpler.”

—Albert Einstein

We presented four challenges of providing push-based real-time queries over database

collections in Chapter 1 and discussed limitations of the current state of the art in

Chapter 2. We then addressed three of these four challenges in Chapter 3 and Chap-

ter 4 by designing and implementing a real-time query mechanism that is scalable (cf.

Challenge C1), able to support a wide range of query expressions (cf. Challenge C2), and

compatible with legacy databases (cf. Challenge C3). In this chapter, we finally address

the remaining Challenge C4 by devising an abstract, yet expressive client API for push-

based real-time queries: The API is abstract in the sense that it hides complexity where

possible and expressive in the sense that it provides powerful queries and fine-grained

control over what information is pushed to the client. To achieve this goal, we integrate

our InvaliDB implementation into an existing database middleware, Orestes, and extend

its purely pull-based query interface to support push-based real-time queries.

In Section 5.1, we provide an overview over the Orestes database middleware and its

unique caching approach through which it achieves globally low read latency. We also

review its data model, access control mechanisms, and query API. Next in Section 5.2, we

describe how InvaliDB is integrated with Orestes in the Quaestor architecture and how

it enables two otherwise infeasible use cases: The first use case is consistent caching of

database query results which becomes effectively possible through InvaliDB’s ability to

detect result changes and thus to invalidate cached query results once they become stale.

The second use case consists in collection-based real-time queries for end users which

directly leverage InvaliDB’s ability to generate result change deltas. In Section 5.3, we

introduce the client API extension for push-based real-time queries and illustrate how

self-maintaining queries provide an abstraction for developing real-time functionality that

imposes little to no complexity overhead in comparison to the original pull-based API.

We further present event stream queries as an advanced abstraction that provides more

sophisticated control over which data is delivered to the client. In Section 5.4, we then

detail how these abstractions can be used to implement complex real-time queries, such

as aggregations and joins. Lastly, we conduct a performance evaluation of the overall

system for both use cases in Section 5.5 and conclude the chapter in Section 5.6.

111

5 Integrating InvaliDB With the Orestes Database Middleware

5.1 Orestes: A Database Middleware for Globally Low Latency

Relational database systems have been considered the one-size-fits-all solution to many

data management problems over decades [SC05]. In recent years, however, a plethora of

so-called NoSQL databases have emerged that are optimized for specific usage scenarios

and often sacrifice strong consistency or query expressiveness in favor of increased scala-

bility, error resilience, or other non-functional properties [GWFR16] [SF12]. In the context

of the web, systems that optimize read latency have received particular attention [VV16]

[LVA+15] [BVF+12] [GLS11], because end-to-end latency directly translates to page load

times and thus to user satisfaction and business success [Gri13]. Since the speed by which

information can be transmitted is ultimately limited by physical network latency, cross-site

replication is often used as a means to bring data closer to the clients [TPK+13] [CDE+13]

[BBC+11] [CDG+06] [DHJ+07].

web caches Orestes applica�on serversOrestes client

1 5

2 4

3

7

6

Figure 5.1: The Orestes database middleware uses the readily available web caching in-

frastructure to replicate data across the globe.

Orestes (Objects RESTfully Encapsulated in Standard Formats) [Ges18] [GBR14] [GB12]

[GB10] is a database middleware that takes another approach by employing common

HTTP [NMM+99] web caches to accelerate database reads. It follows the Database-as-a-

Service (DBaaS) [HIM02] model and communicates directly with clients through an

HTTP/REST [Fie00] interface. Orestes does not require setting up proprietary and globally

distributed database replicas in order to scale out read performance; instead, it serves

data copies from the web’s generic caching infrastructure and thus implements a mecha-

nism that can be seen as lazy on-demand geo-replication.

112

5.1 Orestes: A Database Middleware for Globally Low Latency

In order to keep clients from accessing stale copies, the Orestes application server keeps

track of all cached data items that arewritten during their respective cache lifetime. When

a cached data item is updated, the application server then actively removes it from all

invalidation-based caches such as the content delivery network (CDN) edge nodes, so

that subsequent requests to those caches will not yield old data. However, there are also

purely expiration-based caches that cannot be purged by the application server; these

caches retain any data item until its respective time to live (TTL) runs out. An example for

a purely expiration-based cache is the browser cache that is located in the user device.

To leverage expiration-based caches without introducing the possibility of stale reads,

the application server provides the clients with the Cache Sketch [GSW+15], a fixed-size

encoding of all currently stale cached resources. Being closely related to Bloom filters

[Blo70], the Cache Sketch is a probabilistic representation of a set of items that supports

containment checks: While it may identify actually fresh resources as stale (occasional

false positives), it is guaranteed to never identify an actually stale resource as fresh (no

false negatives). By renewing the client’s Cache Sketch periodically, staleness is effectively

bounded1 by the refresh interval. Using the Cache Sketch to identify stale caches, an

Orestes client can reliably determine whether (1) a given database record can safely be

fetched from a nearby expiration-based cache or whether (2) it needs to be retrieved from

the invalidation-based CDN or the original database (in case of a CDN cache miss).

Figure 5.1 illustrates the basic idea of how an Orestes client performs a read operation.

Initially, an application issues an HTTP request for a database record using the Orestes

client library (1). If the requested resource is present in the expiration-based browser

cache and is known to be fresh, it is directly delivered from within the client’s device (2).

Otherwise, the resource is either not present in the browser cache or it is present, but also

possibly stale. In this case, the request is revalidated and thus forwarded to the CDN (3).

Since the CDN is invalidation-based, the revalidation request is answered by the CDN, if

the requested data item is available (4). Otherwise, the revalidation request is forwarded

to the original backend (5) where the application server evaluates the request, performing

database lookups and otherwise required computation in the process (6). The generated

response is then sent back to the requesting client, updating all invalidation-based caches

along the way (7). Thus, the client finally receives the up-to-date database record.

In order to promote a clear understanding of the Orestes cache coherence scheme, we

contrast conventional HTTP caching with Orestes’ caching approach in Figure 5.2. In the

depicted setup, a database record (document) is served by the application server on the

left to two reading clients on the right: One is a conventional HTTP client (notebook) and

the other one uses the Orestes protocol for cache coherence (tablet). Both clients have

already accessed the database record before, so it is available at the invalidation-based

CDN and also in the purely expiration-based browser cache for each client. Staleness be-

1For more details on the consistency guarantees provided by the Cache Sketch, see [GSW+15, Sec. 2] and

[GSW+17, Sec. 3].

113

5 Integrating InvaliDB With the Orestes Database Middleware

5

1

2

4

0 1 0 1 10 4 0 2 0
+1+1

3

applica�on server
Orestes client

Cache Sketch update

CDN
(invalida�on-based)

browser cache
(expira�on-based)

wri�ng client
conven�onal
HTTP client

cache infrastructure

Figure 5.2: The Orestes cache coherence scheme: While conventional HTTP clients will

observe stale data when accessing purely expiration-based caches, Orestes

clients know which caches are stale through the Cache Sketch data structure.

Thus, Orestes clients only retrieve cached data when it is known to be fresh

and they issue revalidation requests otherwise.

comes an issue when the database record is updated by the client on the top left (1).

Even though the application server purges the invalidation-based CDN cache (2), the out-

dated copy is still present in the browser caches and will be returned to the conventional

HTTP client on request (red arrow). As explained above, however, the Orestes application

server does not only invalidate caches where possible, but also updates its Cache Sketch

(3) and transmits it to the Orestes client. Since the Orestes client can uncover the record

as stale using the Cache Sketch, it does not use the browser cache copy and instead re-

quests the record from the CDN. Since outdated copies are invalidated by the application

server, the client knows that cache hits produce fresh data2. In case of a cache miss, the

request is automatically upgraded to a revalidation request and will thus also deliver a

fresh record.

It should be noted that the Orestes application server and client store the Cache Sketch

in slightly different ways: The application server’s Cache Sketch is based on a counting

Bloomfilter [BMP+06]which supports removing items that are no longer stale3. The client

2In our description, we use a simplified model that abstracts from the latency of propagating updates from

the origin server to CDN edge nodes. For details, we refer to [Ges18].
3Since expired data items are implicitly evicted from all caches, cached data items do not have to be kept

beyond their TTL. Removing them decreases the risk of false positives and thus the chance of unnecessary

invalidations.

114

5.1 Orestes: A Database Middleware for Globally Low Latency

Cache Sketch, in contrast, is a more space-efficient Bloom filter [Blo70] that only supports

additive changes; item removal is reflected by replacing the client’s Cache Sketch with a

newly generated one.

5.1.1 Data Model & Query Expressiveness

Acknowledging the difficulty of choosing the right system for a given set of application re-

quirements, Orestes is designed as a polyglot database middleware that unifies various

backends behind a single HTTP/REST interface [GFW+14]. Orestes hides implementation

details of the underlying data storage systems and provides additional guarantees and

functionalities on top, for example multi-object ACID4 transactions [Wit16] and the cache

coherence scheme for globally low latency detailed above. In order to leverage the bene-

fits of different databases, Orestes allows application developers to declare functional and

non-functional requirements through schema annotations. The choice of a suitable com-

bination of data storage systems is then delegated to an Orestes subsystem, the Polyglot

Persistence Mediator (PPM) [SGR15]. Through the PPM, Orestes effectively decouples

application requirements from concrete technologies: Since the exposed interface is inde-

pendent of the underlying databases, the PPM can adapt to different requirements trans-

parently. Depending on the materialization model, data may either be partitioned across

distinct databases according to a sticky partitioning scheme or all data may be stored in

a single primary database that is used for queries, while updates are only periodically

applied through write-behind caching [SGR15].

Orestes enforces an object-oriented and strongly typed schema that supports CRUD5 op-

erations. The query API supports boolean filter expressions over single aggregate-oriented

collections without joins. While arbitrary relationship types can be implemented using

object references that are automatically resolved by the client library, the denormalized

data model promotes expressing 1:1 and 1:n relationships through nesting entities. Even

though there is no hard dependency on any underlying database technology, the Orestes

research prototype and the commercial Backend-as-a-Service (BaaS) product that origi-

nated from it, Baqend [Baq18a], use MongoDB as the primary database. In this thesis,

we also assumeMongoDB as the primary database on top of which we deploy InvaliDB to

provide collection-based real-time queries for Orestes.

5.1.2 Access Control

Orestes features a permission system [Baq18c] that enforces access on the granularity

of collections and entities through access control lists (ACLs). Collection-level permissions

are defined in the schema, while object-level permissions are defined in each object: Every

4ACID: atomicity, consistency, isolation, durability [HR83].
5CRUD: create, read, update, delete.

115

5 Integrating InvaliDB With the Orestes Database Middleware

data item has an acl attribute that is used to explicitly whitelist (allow) or blacklist (deny)

individual users or user groups for read and write access. For every registered user, there

is a corresponding record stored in the user collection. A special user record is associated

with anonymous users (i.e. users that are currently not logged in). User groups (cf. role-

based access control (RBAC) [SFK00]) are represented by role collection records, each

of which stores its respective group members as a set of user IDs. By default, there are

two groups to represent administrators and logged-in users, but custom groups can be

created.

Whether or not a usermay read, update, or delete a given data item is determined through

the following checks6:

1. Is the user a superuser?

Members of the administrator group are granted access immediately, without any

further check.

2. Is the user blacklisted?

If the user or one of her associated groups is blacklisted, access is denied.

3. Is the user whitelisted?

If the object in question has an emptywhitelist, it is implicitly accessible to the public

(and thus to any user). Otherwise, the accessing user is only approved, if the user

herself or an associated group is whitelisted.

Since its characteristic caching approach works on the level of entities, Orestes does not

support a more fine-grained permission granularity (e.g. attribute-level access control).

On the one hand, a rather coarse permission granularity may improve caching efficiency

by increasing the chance of different clients accessing the same data. But on the other

hand, it also has implications on data modeling, because access to a data item can only

be granted either entirely or not at all. As illustrated in Figure 5.3, one approach to mod-

eling entities with both private and public attributes is to partition them into separate

database collections. In the example, the sensitive information on Carl is encoded in the

standard User record (dark gray) which can only be accessed by himself (and implicitly

by administrators). All shareable information is externalized into a referenced Profile
record (light gray) with a separate set of permissions. Thus, only Carl’s profile may be

queried by another user such as Bob who is in Carl’s friends list (role: carlsFriends), but
Carl remains the only user whitelisted for write access on his private as well as his public

user data. Since the client library can resolve the profile reference automatically, it ap-

pears to the application developer as though Carl’s profile were nested inside the private

user object.

While the specificities of permission semantics are out of scope of this section, it is im-

portant to note that the information required for a check of permissions is bounded and

6Corresponding rules are applied on the schema level to determine whether a user is allowed to insert data

into a given collection.

116

5.2 Quaestor: Extending Orestes With InvaliDB

..

.

Carl's exposed profile

..

.

{
 'id': '/db/Profile/17',
 'user' : '/db/User/17',
 'acl': {
 'read': { '/db/Role/5': 'allow' },
 'write': { '/db/User/17': 'allow' }
 },

}

Carl's private user info

..

.

{
 'id': '/db/User/17',
 'username' : 'Carl',
 'profile' : '/db/Profile/17',
 'acl': {
 'read': { '/db/User/17': 'allow' },
 'write': { '/db/User/17': 'allow' }
 },

}

{
 'id' : '/db/Role/5',
 'name' : 'carlsFriends',
 'users' : ['/db/User/10', ...],

}

{
 'id' : '/db/User/10',
 'username' : 'Bob',

}

..

.

Bob's private user info

role entry for users befriended with Carl

Figure 5.3: Carl’s user information is partitioned according to visibility, so that public data

(light gray) can be queried by Carl’s friends (e.g. Bob), while the private data

(dark gray) remains visible only to Carl himself and administrators.

can be assembled efficiently for any given object: It essentially amounts to (1) the ID of

the accessing user, (2) the IDs of the user’s groups, and (3) a blacklist and a whitelist for

the accessed object itself and its database collection, respectively. All this is available at

the application server and can be piggybacked to revalidation requests, so that CDN edge

nodes are able to enforce access control and thus directly serve not only public, but also

non-public data to clients. The permission check itself can further be expressed as a que-

ry predicate (cf. page 61). Thus, InvaliDB supports Orestes’ access control mechanisms

through permission-sensitive real-time queries.

5.2 Quaestor: Extending Orestes With InvaliDB

In order to protect clients from stale reads, theOrestes application server purges all cached

copies of a data item from the invalidation-based CDN whenever the original data item is

updated or deleted. Since original and copy share the same primary key, invalidation de-

tection is trivial in the context of single-record caching. For query caching, however, inval-

idation detection is more involved and very similar to computing real-time query change

deltas: In order to reliably identify all cached query results that are invalidated by a given

update, thematching stati of the updated entity before and after the write operation have

to be taken into account with respect to each cached query (cf. Section 1.1). In addition,

it might be necessary to consider data that is not part of the actual result, for example

items in the offset of a sorted query’s result (cf. Section 3.3.2). When burdened with the

task of invalidation detection, the application server becomes a scalability bottleneck (see

our discussion of Meteor, RethinkDB, and Parse in Section 2.3). In order to generalize the

Orestes caching approach from single-record caching to query result caching in a scalable

117

5 Integrating InvaliDB With the Orestes Database Middleware

way, we developed an architecture named Quaestor [GSW+17] that integrates Orestes

with InvaliDB. In this architecture, InvaliDB serves two main purposes: First, it detects

stale query results and thus makes query caching feasible for Orestes. Second, it provides

low-latency query result updates to enable real-time queries for Orestes clients. This sec-

tion describes the general systemdesign of Quaestor and the interaction betweenOrestes

and InvaliDB. In Section 5.3 and Section 5.4, we assume a more user-oriented perspective

and discuss the client API for real-time queries in detail.

8
event layer

(Redis)
primary database

(MongoDB)

}{

real-�me query engine
(InvaliDB)

7 1

}{ /4

5

Orestes client

9

2
}{+ 3

}{ /

6

applica�on server
(Orestes)

 DB
nvaliI

Figure 5.4: The Quaestor architecture ties InvaliDB into Orestes in order to make query

caching feasible and provide client-facing real-time queries.

Figure 5.4 shows a high-level overview over the integrated system and the information

flow for write operations (red arrows), ad hoc and real-time queries (blue arrows), and

invalidations and real-time change notifications (green arrows). When a client poses an

ad hoc query (1), the application server executes the query against the primary database

(2) and sends the result back to the client. If the query is considered cacheable by the

internal decision model, the query is also asynchronously propagated to InvaliDB (3), to-

getherwith the query result, the TTL, and other information required for querymatching7.

7Tomonitor the result of a sorted query with offset, for example, InvaliDB requires all data items in the offset

in addition to the actual result (see Section 3.3.2).

118

5.2 Quaestor: Extending Orestes With InvaliDB

When InvaliDB detects a change that modifies the cached query’s result, an invalidation

message is sent to the application server (4) which, in turn, purges the query from the

invalidation-based CDN caches (5). A cached query is also implicitly removed from In-

valiDB on invalidation or – when no invalidation occurs – eventually removed when its TTL

expires. When the registered query is a real-time query, it is always sent to InvaliDB with

all corresponding information (3). In contrast to an invalidation query, though, a real-time

query does not only generate a single message for the CDN, but a continuous stream of

change events for the client (6) and it stays active until it is deregistered explicitly by the

client or implicitly, e.g. through connection loss. InvaliDB is able to detect changes, be-

cause it receives an after-image (i.e. a full entity representation)8 for any executed write

operation: Whenever a client inserts, updates, or deletes a data item (7), the receiving ap-

plication server applies the write operation (8) and sends the after-image of the modified

entity to InvaliDB (9) where it is matched against all active queries.

5.2.1 Result Representation & TTL Estimation

When caching a query, an internal decision model has to choose a result representation

to store in the caches. Listing 5.1 shows how the same query result can be cached as

a list of references (a) or as a list of fully specified objects (b). The ID list represen-

tation is only invalidated when a new item enters the result (add match type), when a

matching item leaves the result (remove match type), or when an item changes its po-

sition within the result (changeIndex match type). A fully specified object list is invali-

dated on the same events and also whenever amatching object is updated (changematch

type), even if the modification does not even relate to the matching criterion or sort-

ing key. Since the change match type subsumes the changeIndex match type, object

lists (add/remove/change match types) tend to be invalidated more often than ID lists

(add/remove/changeIndex match types). On the other hand, loading a query result by

ID list incurs an additional round-trip, because the individual object references have to be

resolved client-side, i.e. the client has to fetch every object in the result individually after

the ID list has been retrieved.

['obj1', 'obj2', 'obj3']

(a) An ID list only contains object refer-

ences that need to be resolved in an

additional round-trip.

[{ id : 'obj1', name : 'Alice' },
{ id : 'obj2', name : 'Bob' },
{ id : 'obj3', name : 'Carl' }]

(b) An object list contains fully specified objects (no

additional round-trips), but is invalidated when-

ever a result member is updated.

Listing 5.1: We consider two different ways to represent a query result.

8As described in Section 3.1, we assume that the application server only provides after-images and no

before-images.

119

5 Integrating InvaliDB With the Orestes Database Middleware

For each cached query result, Quaestor’s TTL estimator [GSW+17, Sec. 4.2] assigns a TTL

that defineswhen the result is going to be evicted fromexpiration-based caches. However,

since the actual expiration time cannot be predicted accurately, the TTL estimator can only

approximate the actual time until the next invalidating write occurs. In doing so, it has to

weigh the risk of evicting data too early (underestimating) against the risk of retaining data

too long (overestimating): When actually fresh data is removed from the cache, potential

cache hits become revalidation requests that are forwarded to the original database. This

increases both request latency and processing overhead in the backend. Choosing longer

TTLs avoids premature expiration, but also necessitates tracking more stale resources in

the Cache Sketch and thus raises the chance of false positives in the staleness check (cf.

page 113).

Since this chapter focuses on Quaestor’s real-time component, we refer to [GSW+17,

Sec. 4.2] for details on the TTL estimator and the decision model. Further, [Sch15] and

[SGDY16] provide background on the stochastic processes involved in estimating cache

expiration times, choosing query result representations, and deciding whether or not a

query is considered cacheable.

5.2.2 Enforcing Access Control

Access control as described in Section 5.1.2 is enforced at different levels within the Quae-

stor architecture. Write permissions are always validated in the application server, be-

cause it is the only component that handles inserts, updates, and deletes. Read permis-

sions, in contrast, are either validated in the application server when the query is initially

executed or in a CDN edge node when a client is accessing cached data. Even though read

permissions for real-time queries could be enforced within InvaliDB always, it is some-

times more efficient to enforce them in the application server.

For illustration, consider the different scenarios depicted in Figure 5.5 where two clients

subscribe to the same real-time query at the same application server. If InvaliDB is re-

sponsible for enforcing access control (a), the application server registers an individual

real-time query for each client subscription and simply passes on the change events re-

ceived from InvaliDB. If the data emitted for each subscription is highly dependent on the

individual client’s permissions, this approach minimizes traffic between InvaliDB and ap-

plication server. For example, consider a real-time query on the user collection: Since

clients without administrator privileges are only allowed to read their own user object,

subscribing to all changes on the user collection will generate distinct change events for

different non-administrator clients.

If, in contrast, the application server itself validates client permissions before serving the

change events (b), it can coalesce both client subscriptions (green and orange) into a sin-

gle InvaliDB subscription with elevated access rights (red). The application server makes

sure to receive all relevant change notifications (completeness) by registering the shared

120

5.2 Quaestor: Extending Orestes With InvaliDB

?

Orestes

clients

InvaliDB ?InvaliDB

(a) When InvaliDB is responsible for check-

ing permissions, every client subscription

corresponds to a distinct real-time query

in InvaliDB.

Orestes

clients

?

InvaliDB

(b) When the application server validates

access rights before delivering real-time

events, client subscriptions for the same

query can be coalesced.

Figure 5.5: Depending on the query, access control can be enforced in the application

server or within the InvaliDB cluster during query matching.

InvaliDB subscription with access rights that subsume those of the subscribed clients9. At

the same time, the application server filters out denied data for each client individually, so

that users only receive data they are allowed to see (correctness). This approach is ineffi-

cient when the subscribed query exhibits high permission-based selectivity as the above

example query on the user collection: Events for any change on the user table will be

transferred from InvaliDB to the application server, even though most of them will be fil-

tered out. On the other hand, in scenarios where different clients often receive the same

events (e.g. when most data in the subscribed collection is public), coalescing subscrip-

tions can reduce traffic between InvaliDB and application server, because every change

event is emitted by InvaliDB only once and duplicated in the application server.

The above examples show that many factors influence what the optimal strategy for ac-

cess control is. It should be noted, though, that the choice between application server and

InvaliDB for the point of access control is only available for unsorted queries: For explicitly

sorted queries, access control is necessarily enforcedwithin InvaliDB, because indices can-

9In the extreme case, the shared subscription is registered with administrator privileges, so that permission

checks within InvaliDB are effectively disabled.

121

5 Integrating InvaliDB With the Orestes Database Middleware

not be generated without determining the matching status first (see Section 3.3.2) which

is dependent on the subscriber’s permissions. In consequence, applying access rules in

InvaliDB is the more expressive option, while the approach illustrated in Figure 5.5b can

rather be seen as a performance optimization that is only applied to specific queries.

5.2.3 A Language-Agnostic Real-Time Communication Protocol

Similar to the HTTP/REST interface that enables language-agnostic handling of CRUD op-

erations and queries, we implemented a WebSocket-based [MF11] message exchange

protocol for real-time queries that can be used independently from client libraries. We

chose WebSockets over competing protocols or API definitions, because they are sup-

ported by everymajor browser vendor [Can18] and because they enable bi-directional du-

plex communication between the client and the server; this feature is critical to establish

multiple customized real-time query subscriptions over a single connection. In contrast,

WebRTC [HHE15] is mainly designed for browser-to-browser communication and Server-

Sent Events (SSE) [H+15] does not allow sending data from the client to the server after the

initial subscription; therefore, SSE is not appropriate for handling multiple subscriptions

over the same connection10. Web Push [TDR16] and the native push mechanisms in iOS

and Android would also not have been feasible, because they only support uni-directional

messaging from the server to the client and because they incur prohibitive message de-

livery times in the order of many seconds or even minutes [YAD14].

Using our protocol, an application can subscribe to a real-time query and subsequently

receive the corresponding notifications through a cleartext or TLS-encrypted [Ris15]Web-

Socket connectionwith an Orestes application server. In the following, we overviewwhich

messages are exchanged between the Orestes client and server, but we omit details on

the individual message types. We refer to Appendix D for a description of the individual

message attributes and examples. The high-level client API for real-time queries will be

covered in-depth in Section 5.3.

A real-time query is always initialized through a subscribe message sent from the client

to the server. On subscription, the client provides a universally unique identifier (UUID)

that is associated with the subscription; all subsequent messages relating to it will carry

this identifier. After subscription, the client only listens for messages sent by the server,

until the query is terminated. A real-time query can be terminated in two ways: explic-

itly through an unsubscribe message (issued by the client) or implicitly through an error

message (issued by the server or triggered by connection loss). Between subscription

(i.e. initialization) and unsubscription (i.e. termination) of a real-time query, messages

are only sent from the server to the client. To guarantee correct semantics, the client has

to process messages in strict order of their occurrence.

10Specifically, establishing new subscriptions and canceling active ones would require sending requests over

a separate connection.

122

5.3 Extending the Pull-Based Query API by Push-Based Queries

The firstmessage sent by the server is a resultmessagewhich contains all currentlymatch-

ing items in the specified order (if any) and serves as an indicator that the subscription has

been activated successfully. Each message from this point on is either a match message

(indicating a result update) or an error message (indicating query termination). By de-

fault, the client will receive a match message for every result update, so that the result

can be maintained up-to-date locally by taking the corresponding action for each event

(see result maintenance example in Section 5.4.4).

5.3 Extending the Pull-Based Query API by Push-Based Queries

In order tomake real-timequeries available to developers, we extended the existing purely

pull-based Orestes query API by push-based mechanisms; unless stated otherwise in the

text, all extensions discussed in this section have been implemented in the Baqend Java-

Script SDK [Baq18b] and are therefore eligible for public use. Since the Orestes/Baqend

JavaScript client is geared towards the web-centric application scenarios that motivate

our work (cf. Chapter 1), we deliberately restrict all code examples and the discussion

to the context of JavaScript. Please note, however, that client libraries written in other

languages11 can be implemented in similar fashion, since client-server communication is

language-agnostic: CRUDoperations and queries use the generic REST/HTTP interface and

real-time queries rely on the WebSocket-based communication protocol described in the

previous section.

In the remainder of this section, we discuss the API for real-time queries in detail. First

in Section 5.3.1, we describe how our API extension for self-maintaining queries can be

used, illustrating the simplicity of our design and the similarity to common pull-based

queries with an example. In Section 5.3.2, we then explain how observables [Hus17] are

leveraged in our API extension to provide low-latency result updates. Finally in Section

5.3.3, we turn towards the API extension for event stream queries, before we provide

usage examples in Section 5.4 and an experimental evaluation in Section 5.5.

5.3.1 Self-Maintaining Queries

As illustrated in the introductory Section 1.2, self-maintaining queries behave very simi-

lar to regular pull-based queries, the most significant distinction being that they update

themselves and thus can prevent application state from becoming stale. In more detail,

both the pull-based ad hoc query and the push-based self-maintaining query accept a call-

back function that specifies how a query result will be processed once it is received. But

while this callback function is only executed once in case of the regular pull-based que-

11In fact, the performance evaluations of InvaliDB (Section 4.4) and Quaestor (Section 5.5) have been carried

out using a Java implementation of our real-time query API.

123

5 Integrating InvaliDB With the Orestes Database Middleware

ry, the self-maintaining query also invokes the callback function with the updated result

whenever a relevant change occurs.

For illustration, consider a shared task list that is frequently updated by different instances

of a client application. All clients synchronize their interaction through a shared database

that holds all tasks on the task list. An example query and a callback function that displays a

given result are defined in Listing 5.2. The query refers to all records in the Task collection
(line 1) that are not completed (line 2). Tasks with an early deadline are ranked higher (line

3) and result size is limited to 10 data items (line 4). The callback function (console.log)
simply logs the query result to the console, when a result is received.

1 var query = DB.Task.find()
2 .equal('completed', false)
3 .ascending('deadline')
4 .limit(10);
5 query.resultList(console.log); // pull-based ad hoc query
6 query.resultStream(console.log); // self-maintaining query

Listing 5.2: The query selects the 10most urgent open tasks in the Task collection and the
callback function logs the result to the console. From a developer’s point of

view, executing the query as a self-maintaining real-time query is very similar

to executing it as a regular pull-based query.

In order to display the 10 most urgent open tasks, an instance of the application (i.e. an

Orestes client) has to execute the query. The basic Orestes query API only provides the

resultList method for pull-based queries (line 5). Since a pull-based query does not

update the result by itself, however, the application’s view of the data has to be actively

refreshed again and again to make sure that no updates are missed. This pattern cor-

responds to Meteor’s poll-and-diff mechanism that emulates real-time queries by peri-

odically reevaluating a query. As discussed in Section 2.3.1, it has several critical prob-

lems. First, it introduces client-side staleness, because there is no indicator for the client

to know when the result has changed. Second, this pattern is inefficient from the client’s

point of view, because the entire query result is transferred over the network repeatedly

– even when nothing has changed. Third, it is hard to scale, because load on the applica-

tion server and the database increases linearly with the number of clients, irrespective of

whether the result actually changes or even whether data is written at all.

Acknowledging the inadequacy of pull-based access patterns in reactive domains, our API

extension adds resultStream as a method for push-based self-maintaining queries (line

6). With a self-maintaining query, the top-10 list is not only logged to console once or

periodically (as would be the case with a regular query), but every time and immediately

when a task enters the top-10, is updated within the top-10, or leaves the top-10. Even

though the callback function is invokedwith a complete result on every call, only incremen-

tal change deltas are transmitted after the initial result; the updated result is produced by

124

5.3 Extending the Pull-Based Query API by Push-Based Queries

applying the incremental change information to the outdated result. This scheme ensures

a small network footprint and also facilitates high scalability, because server-side process-

ing overhead is very low. Computational overhead for query matching does not become

a bottleneck, because it is handled by InvaliDB in a scalable fashion.

Example Application: Twoogle

The presented extension to the pull-based query API makes it possible to introduce real-

time semantics to an existing purely pull-based application with ease. To this end, a de-

veloper has to replace calls to resultList with calls to resultStream first12. If the query
changes dynamically (e.g. in case of a user-defined search query as illustrated below),

the developer further has to make sure that the current real-time query subscription is

canceled, before the updated real-time query is subscribed. As a showcase application,

we implemented a social media search app named Twoogle13 that provides an interface

for searching Twitter messages. A continuous process running on the Orestes application

server receives live tweet messages as they are created by users anywhere on the world,

each of which is inserted into the Tweet database collection. Users can then search all

tweets in the continuously evolving database by typing a filter expression into the web

interface. The currently active real-time search is canceled whenever the search query is

updated.

query mode

pagina�on

query

query result

Figure 5.6: Twoogle is a social media application that enables user-defined real-time que-

ries over live Twitter messages.

12To guarantee that result updates are reflected correctly in application state, query callback functions have

to be implemented in idempotent fashion (cf. Section 1.2).
13To see a running version of Twoogle, visit https://twoogle.info.

125

https://twoogle.info

5 Integrating InvaliDB With the Orestes Database Middleware

1 function search(filter, limit, offset, realtime) {
2 if (subscription) {// cancel real-time query, if active
3 subscription.unsubscribe();
4 }
5 //formulate query:
6 query = DB.Tweet.find()
7 .matches('text', new RegExp(filter))
8 .descending('createdAt')
9 .offset(offset)

10 .limit(limit);
11 //execute query:
12 if (realtime) {
13 subscription = query.resultStream(renderResult);
14 } else {
15 query.resultList(renderResult);
16 }
17 }

Listing 5.3: The search function is executed whenever the user modifies one of the query

parameters, for example by typing in the search field.

The Twoogle user interface (UI) is depicted in Figure 5.6. Similar to other search engines,

Twoogle displays the result of a user-defined filter query, newest matches first. The result

is structured in pages, so that users can retrieve older messages by selecting a later page.

A feature that is probably unique to Twoogle is the ability to toggle the mode of query

execution: Users can choose between push-based real-time queries and pull-based static

queries by clicking the corresponding button. When the query is executed in pull-based

fashion, the search result is generated on page load and whenever the user modifies the

query, for example by typing into the search field or navigating to another page. With a

self-maintaining query, in contrast, the user-defined result also refreshes itself whenever

a new matching tweet is inserted into the Tweet collection or when a matching tweet is

updated or leaves the result.

Listing 5.3 shows how the switch between real-time and static behavior is implemented in

the search function which is triggered whenever one of the query parameters (line 1) is

modified. First, the current real-time subscription is canceled, if there is one (lines 2 to 4).

Subsequently, the current query parameters are used to create a query object (lines 6 to

10). Finally, the query is executed in pushed-based fashion (line 13) or in pull-based fash-

ion (line 15), depending on whether the boolean realtime parameter equates to true or
false (line 12). The only additional complexity that is introduced by using the push-based

query (as opposed to using the pull-based query) consists in the subscription object that is

required to cancel the current subscription before creating a new one. Simply resubscrib-

ing to a new real-time query without deactivating the obsolete subscription would result

in faulty behavior, because both the old and the new real-time query would update the

126

5.3 Extending the Pull-Based Query API by Push-Based Queries

client view. The renderResult callback function (invoked in lines 13/15, definition omit-

ted for clarity) generates an HTML representation of the query result and assigns it to a

specific child in the Domain Object Model (DOM). An invocation of the rendering function

overrides all effects of previous invocations by simply replacing the rendered search re-

sult, so that a Twoogle app instance in real-timemode exhibits virtually the same behavior

as an app instance in static mode that is refreshed repeatedly.

Twoogle exemplifies how client-side staleness can be reduced with minimal development

effort by employing a self-maintaining query. To highlight the congruence between pull-

based and push-based query expressiveness as a distinguishing feature of our real-time

query implementation, we implemented pagination in Twoogle using limit and offset

clauses: This solution illustrates that even an application with sophisticated queries can

be transitioned easily from static to real-time behavior. As discussed in Section 2.3, many

other real-time databases only provide limited support for sorted queries: For example,

the original Firebase only supports sorting by a single attribute, while RethinkDB supports

sorted real-time queries with limit, but not with an offset clause. Parse does not support

sorted real-time queries at all. We refer to the official Twoogle announcement [Win17a]

for implementation details.

5.3.2 Observables & Subscriptions

In the previous section, we presented a use case for self-maintaining queries and illus-

trated how real-time query subscriptions can be established and canceled14. Now, we

go into more detail on subscriptions and explain how we harness the expressiveness of

real-time queries through the observer pattern [Osm12].

Every real-time query produces an event stream (i.e. a sequence of query result updates)

that is represented by an abstraction called observable. An observable maintains a list of

so-called observers, each of which is a collection of callback functions. Whenever new

data becomes available in the stream, the observable notifies each observer, so that they

can apply their callback functions to the new data. To add a new observer to an observ-

able, it is necessary to create a subscription. This subscription can be canceled (unsub-

scribed) to remove its respective observer from the observable.

In simple words, a client has to subscribe to an observable and provide an observer in

order to define real-time behavior. The following three handler callback functions can be

wrapped by an observer:

• next: Defines what to do when an update arrives in the stream.

For self-maintaining queries, this callback function receives the complete updated

query result. For event stream queries, it receives individual change events.

14Listing 5.3 shows that the resultStreammethod returns an object (line 13) that can be used to unsubscribe

from the query (line 3).

127

5 Integrating InvaliDB With the Orestes Database Middleware

• error (optional): Defines what to do when there is an error.

This callback receives a server-side error, for example when the client issues a real-

time query with insufficient access rights. There are no possibilities for client-side

errors apart from connection aborts which are addressed by the complete handler

(see below). An error will implicitly cancel the corresponding subscription. An er-

ror event contains the subscription ID, the name of the problem (reason) and a

more elaborate problem description (message) that should point the user towards

the problem. For more details, see Appendix D.

• complete (optional): Defines what to do when the network connection is closed.

On a complete event, the corresponding subscriptionwill automatically be canceled.

Self-maintaining queries will transparently reconnect by default (see reconnect op-
tion below), so this handler can usually be ignored for them. Event stream queries,

on the other hand, do not support automatic reconnects: They will just silently stop

working when disconnected, unless a complete function is provided.

Introducing the error and complete handler functions as second and third arguments

allows explicit handling of maintenance errors and disconnects. Since they are optional,

though, our real-time query interface can also be used like a simple callback-based query

interface: In the Twoogle example (Listing 5.3, line 13), we thus only provide the next han-
dler for processing result updates. When a subscription is created like this, the underlying

observable is created implicitly and cannot be accessed by the application.

1 // one single observable:
2 var stream = query.resultStream();
3 // Multiple subscriptions on the same observable:
4 var sub = stream.subscribe(onNextA, onErrorA, onCompleteA);
5 var otherSub = stream.subscribe(onNextB, onErrorB , onCompleteB);

Listing 5.4: Different subscriptions can be created on top of a single observable.

Listing 5.4 shows that an alternative approach is to first explicitly create the real-time que-

ry’s observable by calling resultStream without arguments (line 2) and then create sub-

scriptions on top of it (lines 4/5). Sharing the same observable between different subscrip-

tions on the same query is more efficient, because real-time updates are only transferred

once from server to client for all subscriptions and not for each one individually. How-

ever, the semantics are also slightly different, because only the first subscribe call (line

4) triggers delivery of an initial result: When the second subscription (otherSub, line 5)

is created after the initial result has been emitted by the stream observable, the handler
function onNextB will not be called until a new result is emitted (e.g. because a change

occurs or because the stream is resubscribed after a connection error).

128

5.3 Extending the Pull-Based Query API by Push-Based Queries

Options for Self-Maintaining Query Subscriptions

By design, self-maintaining queries are straightforward to use and do not require any con-

figuration. However, clients can customize their behavior by providing an options argu-

ment as the first parameter to the resultStream function. There are two optional param-

eters available for self-maintaining queries:

• reconnect (default: -1): Determines how often the query is resubscribed after con-

nection loss or runtime error (negative values indicating infinite retries).

By default, a self-maintaining query will be resubscribed and the full initial result

will be delivered again whenever the WebSocket connection drops or when a que-

ry maintenance error is received. Since the full query result (and not just changed

records) will be transmitted on resubscription, however, reconnecting can impose

significant communication overhead for large results. To shield against this kind of

performance leak, clients can specify a non-negative integer to override this behav-

ior. In this case, they should also provide a complete handler which is going to be

called after the specified number of reconnect attempts has been exhausted.

• collapse (default: -1):15 Prescribes the minimal delay in milliseconds between two

subsequent result updates referring to the same entity.

Without explicit configuration, the Orestes server will propagate every write oper-

ation that has any effect on the subscribed query’s result. This may be undesirable

in the case of high-frequency updates on individual objects in the query result. As

an example, consider an object with a counter attribute that is incremented several

hundred times a second. To prevent a subscribed client from being overwhelmed by

an abundance of updates (or simply to save network traffic), the collapse parame-

ter can be set to a positive integer to indicate the number of milliseconds over which

updates on the same entity should be collapsed (cf. collapsing on page 63). With a

value of 200, for instance, the server will only send the current entity representation
every 200ms and skip intermediate updates.

5.3.3 Event Stream Queries

Calling the eventStream method on a query object creates an observable that encapsu-

lates all datamodifications relevant to the query’s result. In contrast to a self-maintaining

query, an event stream query does not invoke the callback function with a complete re-

sult on every change, but instead with a change notification containing details on how

exactly the result was transformed; among other attributes (see Appendix D), it carries a

database record (data), a matchType, and the triggering operation. The syntax for creat-
ing an observable, subscribing, and unsubscribing is identical to that for self-maintaining

queries. Once subscribed to the event stream of a query, the client will essentially receive

15This parameter has not been implemented for the JavaScript client at the time of writing.

129

5 Integrating InvaliDB With the Orestes Database Middleware

an event for every database entity matching at subscription time and for every entity that

enters the result, leaves the result, or is updated while in the result. Like a pull-based filter

query, an event stream filter query returns all entities in a collection that match the filter

criterion. An event stream query with an empty filter condition is called simple query,

because it does not entail any query processing and simply returns all entities in the col-

lection. A query that is defined with limit, offset, ascending, descending, or sort is

called sorted query16, because it reflects that the client is expecting an ordered result:

Only a sorted event stream query will deliver events with an index attribute.

While simple queries can be very useful (for example to monitor the entirety of all op-

erations on a particular collection), they should be handled with care, because they can

produce a great number of events within a short time for high-throughput collections.

Likewise, sorted queries should be avoided when filter queries would be sufficient, be-

cause enforcing order on huge results is relatively expensive. To bound the resources that

can be tied up by a single subscription, the application server rewrites both pull-based

and push-based queries, so that they respect a fixed upper limit (500 items at the time of

writing). Further, every query is implicitly ordered by ID to guarantee that the output of

ordering the result and capping it to a given size is deterministic (cf. Section 3.1.2). If the

unique ID was not implicitly included in every query’s sorting key, different objects in a re-

sult could receive identical sorting keys in which case they would be ordered randomly.

1 var explicitLimit = query
2 .offset(5)
3 .limit(495); // explicit limit
4 var implicitLimit = query
5 .offset(5); // implicit limit: 495 (= 500 - offset)
6 var cappedLimit = query
7 .offset(5)
8 .limit(500); // limit is capped to 495 (= 500 - offset)

Listing 5.5: Because of the implicit limit of at most 500 items per result, these three

queries are effectively equivalent.

Since the maximum limit is implicitly enforced, the three queries given in Listing 5.5 are

equivalent. With an explicit limit within the permitted range, the result will contain no

more than the specified number of items (lines 1 to 3). However, a sorted query without

the optional limit clause will be registered with the maximum permitted limit (lines 4/5):

The underlying rule is that offset + limit <= 500 must always hold, because items in

the offset have to be maintained by InvaliDB just like items in the actual result (cf. Section

3.3.2). In consequence, the limit can never assume values greater than 500 - offset
(lines 6 to 8). Correspondingly, queries with an offset greater than 499 are invalid and will

cause an error.

16Full-text search and some geo queries are sorted, but have not become part of the public Baqend API, yet.

130

5.3 Extending the Pull-Based Query API by Push-Based Queries

Options for Event Stream Query Subscriptions

Similar to self-maintaining queries, event stream queries can be configured by provid-

ing an options object as the first argument on an eventStream call. But while a self-

maintaining query necessarily receives the initial result and all events that are required

to maintain it, an event stream query explicitly allows restricting events, for example to

those with specific match types or to those that were triggered by specific operations

(cf. subscription parameters in Section 3.2.4). In addition17 to the options available for

self-maintaining queries, event stream queries adhere to the following parameters:

• matchTypes (default: ['all']): Restricts the delivered events to those with the

specified match types.

The default delivers all events with the most specific applicable match type (add,
change, changeIndex, or remove). If only a specific subset of match types are rel-

evant, a client can choose any combination of match types to listen for. In cases

where the difference between new and updated items is irrelevant, clients can also

use match type match: Subscribing to events with match type match will yield the

same events as the combination of add, change, and changeIndex, but the match

type of the received events will always be match.

• operations (default: ['any']): Restricts the delivered events to those that were trig-
gered by the specified operations.

Per default behavior, events will not be sorted out based on their operation, but

clients can choose any combination of insert, update, delete, and none to narrow
down the kind of matches they receive.

• initial (default: true): Specifies whether or not the initial result is to be returned.
If set to true, every entity matching the query at subscription time will be delivered

with match type add, irrespective of whether and which restrictions are imposed on

operations and match types (see the other options above). If set to false, clients
will only receive an event when the result changes.

• beforeImages (default: false):18 Specifies whether or not before-images are to be

delivered when available.

If set to true, change notifications are deliveredwith before-images, if they are avail-

able (cf. page 66 in Section 3.2.1). If set to false (default), change notifications only
contain after-images.

Using the matchTypes and operations options correctly requires an understanding of the
involved semantics. In the next section, we will provide several examples to illustrate how

17The reconnect parameter for event stream queries should be used with caution, because reconnecting

event stream queries exhibit non-intuitive semantics: As mentioned in Section 4.1.2, automatic resub-

scription of an event stream query can lead to duplicating events (when replaying the initial result) or

losing events (without initial result), so that a reconnect may not be transparent to the application logic.
18This parameter has not been implemented for the JavaScript client at the time of writing.

131

5 Integrating InvaliDB With the Orestes Database Middleware

event stream queries and self-maintaining queries operate and how they can be used to

implement custom data access patterns.

5.4 Real-Time Query Semantics

The main purpose of self-maintaining queries is to introduce real-time semantics with

minimal complexity. Event stream queries, in contrast, expose a high level of complexity

as they provide fine-grained control over which information should be delivered to the

client. This section sheds more light on the intricacies of event stream query semantics

by several examples.

5.4.1 Semantics by Example: Sorted Event Stream Queries

For an illustration of how a sorted event stream query behaves, consider the following

timeline where two users are working concurrently on the same data. User 1 subscribes

to a sorted event stream query over the Task collection and listens for the corresponding
events, while User 2 is working on the data:

Timestamp 0: User 1 and User 2 connect to the same database.

Timestamp 1: User 2 inserts task1:

var task1 = new DB.Task({title: 'My Task 1'});
task1.insert();

//actual result: [task1]

Timestamp 2: User 1 subscribes to an event stream query and immediately receives an

event for task1, because it is contained in the initial result:

var stream = DB.Task.find()
.matches('title', new RegExp('My Task'))
.ascending('title')
.limit(3)
.eventStream();

var subscription = stream.subscribe(event => {
console.log(event.matchType + '/'

+ event.operation
+ (event.initial ? ' (initial): ' : ': ')
+ event.data.title + ' is at index '
+ event.index);

});
// ... one round-trip later:
//'add/none (initial): My Task 1 is at index 0'

132

5.4 Real-Time Query Semantics

Timestamp 3: User 2 inserts task2:

var task2 = new DB.Task({title: 'My Task 2'});
task2.insert();

//actual result: [task1, task2]

Timestamp 4: User 1 receives a new event regarding task2:

//'add/insert: My Task 2 is at index 1'

Timestamp 5: User 2: inserts task3:

var task3 = new DB.Task({title: 'My Task 3'});
task3.insert();

//actual result: [task1, task2, task3]

Timestamp 6: User 1 receives a new event regarding task3:

//'add/insert: My Task 3 is at index 2'

Timestamp 7: User 2 updates task3 in such a way that its position in the ordered result

changes from index 2 to index 1:

task3.title = 'My Task 1b (former 3)';
task3.update();

//actual result: [task1, task3, task2]

Timestamp 8: User 1 is notified of task3’s new position through an event with match

type changeIndex, carrying the new version of task3. Note that there is no event to
indicate task2’s positional change as it follows implicitly from the update on task3:

//'changeIndex/update: My Task 1b (former 3) is at index 1'

Timestamp 9: User 2 inserts task0 which sorts before all other items in the result and

therefore is assigned index 0:

var task0 = new DB.Task({title: 'My Task 0'});
task0.insert();

//actual result: [task0, task1, task3], task2
// <--- within limit ---> <--- beyond limit

At this point, all four records inserted by User 2 comply with the matching criterion.

Because of the limit clause, however, only the first three of all four matching entities

appear in the result: The last one (task2) is pushed beyond the limit.

133

5 Integrating InvaliDB With the Orestes Database Middleware

Timestamp 10: User 1 receives two events that correspond to the two relevant changes

in the result:

//'remove/none: My Task 2 is at index undefined'
//'add/insert: My Task 0 is at index 0'

Note that there is no triggering operation for the first event (operation type none),
because task2 was not updated directly – the event is an indirect change event.

Timestamp 11: User 2 updates task3 again, so that it assumes its original title. Through

this update, task2 and task3 swap places again (cf. Timestamp 7):

task3.title = 'My Task 3';
task3.update();

//actual result: [task0, task1, task2], task3
// <--- within limit --->

Timestamp 12: User 1 receives the corresponding events and is thus notified that task3
leaves the result, whereas task2moves back into the result:

//'remove/update: My Task 3 is at index undefined'
//'add/none: My Task 2 is at index 2'

Timestamp 13: User 2 deletes task3:

task3.delete();

//actual result: [task0, task1, task2], ����XXXXtask3

Note that the deleted entity was not part of the result.

Timestamp 14: User 1 receives no change event, because deleting task3 had no effect

on the query result.

//no event is received

The above example illustrates that operation-related semantics are complex for sorted

queries: For example, insert and update operations may trigger an item to leave the

result (cf. Timestamps 9/10 and 11/12). Similarly (even though not shown in the example),

an add event can be triggered by a delete operation, when an item is removed from the

offset or the result and another item enters the result from beyond limit. When triggered

by an operation on a different entity, an event may therefore be delivered with operation

type none.

5.4.2 Real-Time Aggregations

TheOrestes JavaScript client is shippedwith basic support for ES7 [ECM17] observables, so

that real-time query functionality can be used without requiring external dependencies.

134

5.4 Real-Time Query Semantics

In this section, however, we use the extendedOrestes API in combinationwith the feature-

rich RxJS [Rea17a] client library. RxJS is the JavaScript implementation of the ReactiveX

[Rea18a] framework which provides easy-to-use operators for transforming or joining ob-

servable data streams. ReactiveX clients are also available in various other languages such

as Java, C++, C#, Scala, Python, Go, and PHP.

Count

A common use case for event stream queries is to compute and maintain aggregates in

realtime. The basic idea is to keep all information required formaintenance in an accumu-

lator data structure and to recompute and output the updated aggregate value whenever

an event is received; the following example is a client-side implementation of incremental

maintenance of an aggregation query.

1 var maintainCardinality = (counter, event) => {
2 if (event.matchType === 'add') {
3 counter++;
4 } else if (event.matchType === 'remove') {
5 counter --;
6 }
7 return counter;
8 };
9 var sub = query.eventStream({matchTypes: ['add', 'remove']})

10 .scan(maintainCardinality , 0)//update counter
11 .subscribe(console.log);//output counter

Listing 5.6: An event stream query can be used to implement custom real-time

aggregations, e.g. a counter for the number of items in the query result.

One of the simpler aggregates over a collection of entities is the cardinality or count, i.e.

the number of entities in a query result. The code in Listing 5.6 will compute andmaintain

the cardinality of the query result. The maintainCardinality function is invoked with

two arguments: the current counter value (the accumulator) and an incoming event. If
the event adds a new item to the result, the counter is incremented (line 3). If the event

removes an item from the result, the counter is decremented (line 5). Since only add
and remove events are relevant, the client subscribes to those events exclusively and not

to all match types as per default (line 9). The RxJS scan operator (line 10) provides the

initial counter value (0) and invokes the maintainCardinality function on every incoming

event to compute the new counter value that will be used on the next invocation. The

subscription’s callback function (line 11) receives the updated counter value and prints it

to the console whenever a change occurs.

135

5 Integrating InvaliDB With the Orestes Database Middleware

Average

As an example formaintaining amore complex aggregate, consider the average number of

goals defined for each of the tasks that match a given query. When using an accumulator

data structure like in the previous example, the maintenance logic becomes significantly

more complex, because the value of interest (i.e. the average) cannot bemaintained on its

own: Even if every change notification comes with before-images (cf. page 131) and after-

images, it is still necessary to maintain the number of matching tasks (cf. count above)

separately.

1 var computeAverage = (result) => {
2 if (result.length === 0) {
3 return 0;
4 }
5 var overallGoals = result.map(task => task.goals.length)
6 .reduce((a, b) => a + b);
7 return overallGoals / result.length;
8 };
9 var subscription = query.resultStream()

10 .map(computeAverage)
11 .subscribe(console.log);

Listing 5.7: Using the abstraction of self-maintaining queries, keeping an average up-to-

date can be done by simply recomputing it on every result change.

As an alternative approach that uses neither event stream queries nor an accumulator,

Listing 5.7 shows how the specified average value can be kept up-to-date through self-

maintaining queries. The procedure for computing the average from a query result is

encapsulated in the computeAverage function (lines 1 to 8): It essentially returns 0 for an
empty result (line 3) and the computed average for a non-empty result (line 7). Using a

self-maintaining query (resultStream, line 9) guarantees that the average is derived from
scratch both on subscription and whenever the result changes. The map operator (line 10)
applies the computeAverage function to every emitted result and the provided callback

function (line 11) logs the average value to the console, as in earlier examples.

5.4.3 Real-Time Joins

As covered in Section 3.3.2, InvaliDB supports real-time joins across collections. Even

though this feature has not been implemented for our InvaliDB prototype, a real-time

join query can be realized within client-side application code, even on top of databases

that do not support joins at all: The basic idea is to maintain an up-to-date view of the

involved subqueries and to update or recompute the joined query result whenever new

data becomes available.

136

5.4 Real-Time Query Semantics

1 SELECT task.title
2 FROM task
3 INNER JOIN issue ON task.id = issue.relatedTask
4 WHERE task.completed = false
5 AND task.title LIKE '%InvaliDB%'
6 AND issue.open = true
7 ORDER BY task.title ASC

Listing 5.8: An SQL query is declarative and evaluated entirely in the database system, so

that its execution does not involve client-side processing.

As an example, consider a task collection as in the previous examples which holds work

assignments of a software development team. Further, consider an issue collection that

contains bug reports and problem descriptions submitted by users; every issue can refer-

ence a specific task that addresses it. Listing 5.8 shows an SQL representation of a join

query that returns the title of every in-progress task related to an open issue. As such, the

query connects records from the task and the issue collections. Specifically, the query

joins the results of two subqueries that describe the following data sets, respectively:

1. all uncompleted tasks that have a title containing the string 'InvaliDB' and

2. all open issues.

A relational database system will execute this join query very efficiently using sophisti-

cated query optimization techniques [HSH07, Sec. 4]: Before its execution, the query will

be rewritten into an equivalent representation that avoids expensive operations and ma-

terialization of intermediate (subquery) results where possible.

When executed as a client-side nested loop join as illustrated in Listing 5.9, in contrast,

there is less room for optimization. In particular, evaluating the join condition requires

materializing the results of both subqueries: invalidbTasks is the sorted list of InvaliDB-
related tasks and issues holds the ID of every task that is referenced by an open issue

(both line 1). These two collections are kept up-to-date using two different real-time que-

ries: taskSubquery updates invalidbTasks (lines 2 to 8) and issueSubquery refreshes

issues (lines 9 to 13). These two real-time query observables are combined using the

merge operator (line 15), so that the join condition (line 16) is reevaluated whenever an

update is received for either of the two subquery results. Finally, the task title is projected

from the joined records (line 17). The subscription call specifies that the query result (i.e.

the ordered list of task titles) is to be printed to the console.

It should be noted that both real-time queries maintain lists of fully specified records,

because the Orestes query API does not support projection at the time of writing. Thus, all

tasks and issues are transferred to the client with attributes that should be removed at the

server for better efficiency, but are instead removed in the application (lines 13 and 17).

Even though this particular issue can be fixed by introducing projection to the query API,

137

5 Integrating InvaliDB With the Orestes Database Middleware

1 var invalidbTasks = [], issues = [];
2 var taskSubquery = DB.Task
3 .find()
4 .matches('title', /InvaliDB/)
5 .equal('completed', false)
6 .ascending('title')
7 .resultStream()
8 .map(result => invalidbTasks = result);
9 var issueSubquery = DB.Issue

10 .find()
11 .equal('open', true)
12 .resultStream()
13 .map(result => issues = result.map(i => i.relatedTask.id));
14 var joinQuery = taskSubquery
15 .merge(issueSubquery)
16 .scan(() => invalidbTasks.filter(t => issues.includes(t.id)));
17 .map(result => result.map(t => t.title));
18 .subscribe(projectionResult => console.log(projectionResult));

Listing 5.9: The query corresponds to the SQL query from Listing 5.8 which also retrieves

the titles of all InvaliDB-related uncompleted task entries that are associated
with an open issue.

performing client-side real-time joins will remain inefficient by concept when subquery

results are large or when the join condition has a high selectivity. For illustration, imagine

a scenario with only one single InvaliDB-related task, but 100 open issues referencing it:

issueswould contain 100 duplicates of the same ID, even though the overall result would

only hold an individual task title.

5.4.4 Implementing Self-Maintaining Queries

Self-maintaining queries are another use case for real-time functionality which we already

explored: Instead of considering every incremental change on its own, the client sub-

scribes to a stream of fresh query results. Since an event stream query intuitively provides

all information required to maintain an up-to-date view of the corresponding query’s re-

sult, a self-maintaining query is straightforward to implement with an event stream query.

One possibility to realize a self-maintaining query without using the built-in resultStream
method is illustrated in Listing 5.10.

The actual maintenance logic is encapsulated in the maintainResult function (lines 1 to

18). Whenever an event is processed, the relevant information is extracted from the event

first (lines 2/3), then the result is updated (lines 5 to 16) and, finally, a copy19 of the result

is returned (line 17). Depending on the event’s match type (type), the extracted object is
19By returning a copy instead of the original result, we shield result maintenance from side effects; since

variable scope is limited to the maintenance function, the result cannot be modified externally.

138

5.4 Real-Time Query Semantics

processed in different ways: While remove and add events can be applied by simply delet-

ing (line 8) or inserting (line 15) the object, respectively, change and changeIndex events
make it necessary to replace it: To this end, the object is first located and then removed

(cf. while-loop, lines 6 to 12); in the process, its current position in the result is stored

in the oldPosition variable (line 11). After removal, the up-to-date object is inserted

again (line 15), either at the position specified by the event, at the previous position, or

as the first element. Similar to earlier examples, the scan operator (line 20) once again

maintains an accumulator data structure by invoking maintainResult on every event20.

The subscription callback (line 21) finally prints the updated result to the console initially

and on change.

The illustrated eventStream query subscription behaves exactly like a self-maintain-

ing resultStream query subscription as described in Section 5.3.1. In fact, the internal

implementation of resultStream queries is very similar to the provided code example;

there are only minor differences, e.g. for the implementation of automatic reconnects.

1 var maintainResult = (result, event) => {
2 var object = event.data;
3 var type = event.matchType;
4 var oldPosition = 0;
5 if (['change', 'changeIndex', 'remove'].includes(type)) {
6 while (oldPosition < result.length) {
7 if (result[oldPosition].id == event.data.id) {
8 result.splice(oldPosition , 1);
9 break;

10 }
11 oldPosition++;
12 }
13 }
14 if (['change', 'changeIndex', 'add'].includes(type)) {
15 result.splice(event.index || oldPosition , 0, object);
16 }
17 return result.slice();
18 };
19 var subscription = query.eventStream()
20 .scan(maintainResult , [])
21 .subscribe(console.log);

Listing 5.10: Similar to a numeric aggregate, a query result can be maintained fresh by

applying all updates that are delivered by an event stream query.

20Like in the count aggregation example (cf. page 135), the query result itself is the accumulator that is

updated incrementally; thus, there is no additional map step required to extract the relevant information

as in the real-time join example (cf. page 136).

139

5 Integrating InvaliDB With the Orestes Database Middleware

5.5 Experimental Evaluation of Quaestor

In this section, we present experimental results to confirm that Quaestor provides low

latency and high throughput for push-based and pull-based queries alike. To this end,

we first measure Quaestor’s real-time query performance to demonstrate that Quaestor

inherits InvaliDB’s scalability while adding only minimal latency overhead. Second, we

contrastQuaestor’s pull-based query performance against CDN-cached and traditional un-

cached database access. Thus, we illustrate the significance of the latency and throughput

benefits gained from the query caching scheme that is enabled by InvaliDB.

5.5.1 Push-Based Real-Time Query Performance

In the Quaestor architecture, clients subscribe to real-time queries at Orestes application

servers which, in turn, subscribe the corresponding real-time queries at InvaliDB’s event

layer. An application server thus basically acts as a proxy between the clients and InvaliDB.

Since the application servers and InvaliDB are decoupled by the event layer, both can be

scaled separately. The application servers on the one side do not become a bottleneck

for real-time queries, because different real-time query subscriptions can be managed

independently fromone another: Additional application servers can always be spawned to

take care of further client subscriptions. InvaliDB on the other side can scale with read and

write workloads as is evident from the experimental results presented in Section 4.4.

Since an in-depth evaluation of Quaestor’s overall scalability is out of scope for this chap-

ter, we restrict the performance evaluation in this section to a quantification of the latency

overhead and throughput limitations entailed by processingwithin theOrestes application

server.

Setup & Workload

We conducted our experiments using the same basic setup as described in Section 4.4.1

(InvaliDB-only deployment), but we added an Orestes application server (6 vCPUs, 4 GB

RAM) between the benchmark client and InvaliDB’s event layer: In the Quaestor deploy-

ment, the benchmark client communicated exclusively with theOrestes application server

(and not with the event layer directly), like an end user (see Figure 3.1 on page 58). Com-

pared to the experiments from Section 4.4, we thus effectively introduced an additional

network hop for all messages sent between the benchmark client and the InvaliDB cluster.

For testing Quaestor’s scalability by query and write workload, we used the respectively

most potent InvaliDB deployment: We configured InvaliDB with 16 query partitions and 1

write partition for the read-heavy workload and used the inverse deployment with only a

single query partition and 16 write partitions for the write-heavy workload.

140

5.5 Experimental Evaluation of Quaestor

To put the overhead and limitations of theQuaestor architecture into perspective, we con-

trast Quaestor’s latency and throughput characteristics with InvaliDB performance mea-

surements from Section 4.4, using identical workloads: The benchmarking client inserted

data items at a fixed rate for one minute, measuring change notification latency for each

received change event. Notification latencywas againmeasured as the time before insert-

ing an item until after receiving the corresponding event. We also registered all real-time

queries before each measuring phase and limited the number of matching items per ex-

periment run to 1 000 (≈ 17 matches per second) to bound messaging overhead, like in

earlier experiments.

To capture matching performance with as little noise as possible, we used a single Web-

Socket connection for all subscriptions. The cost of handling client connections is not rel-

evant in the context of this evaluation, because it can be offloaded from the application

server to a dedicated component: At Baqend, every application server only maintains a

single WebSocket connection to a client-facing proxy server which is only responsible for

handling the immediate client connections (and for nothing else). Thus, the number of

real-time query subscriptions can be fanned out with only one single WebSocket connec-

tion maintained by each application server.

Results

Figure 5.7 shows our results of comparing Quaestor’s with InvaliDB’s real-time query per-

formance. As is evident from the line plot of 99th percentile latency during the read-heavy

workload (a), Quaestor essentially adds a fixed overhead of about 5ms to InvaliDB’s raw

change notification latency. At the same time, Quaestor’s application server does not rep-

resent a bottleneck under the read-heavy workload as it is only limited by InvaliDB’s capa-

bilities21. The corresponding line plot for the write-heavy workload (c), in contrast, shows

that write throughput is limited by Quaestor’s application server just before 8 000 opera-

tions per second. A comparison of the latency distributions from the read-heavy (b) and

the write-heavy (d) workloads at roughly 80% of capacity paints a similar picture: During

the read-heavy workload, Quaestor’s latency distribution is shifted to the right by about

5ms and displays a slightly longer tail, but otherwise corresponds to InvaliDB’s latency

characteristics. While Quaestor’s latency distribution receives a noticeable right skew un-

der write pressure, performance deteriorates gracefully22 and remains consistently below

100ms even near full capacity. We did not include measurements of the impact of query

subscription, because it depends on the performance of pull-based queries for fetching

the initial query result.

21Counterintuitively, the Quaestor deployment was able to support slightly more queries than the InvaliDB-

only deployment during our experiments as shown in Figure 5.7a. Wewould like to point out that this is no

measurement error, but rather a consequence of pushing InvaliDB to the performance limit: Near system

capacity, 99th percentile latency simply becomes unstable and InvaliDB’s performance may therefore vary

slightly between experiments.
22See Appendix C.3 for additional latency histograms taken at other points during the experiments.

141

5 Integrating InvaliDB With the Orestes Database Middleware

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

(a) Read scalability: change notification la-

tency under an increasing query load (log-

arithmic scale) at a constant write through-

put of 1 000 writes per second.

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

24k queries, 1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

(b) Latency distribution under a read-heavy

workloadwith 24 000 active real-time que-

ries at 1 000 writes per second.

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

(c) Write scalability: change notification la-

tency under an increasing write load (loga-

rithmic scale) at a fixed query load of 1 000

active real-time queries.

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

6k ops/s, 1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

(d) Latency distribution under a write-heavy

workload with 6 000 write operations per

second and 1 000 active queries.

Figure 5.7: Change notification latency exhibited by Quaestor in comparison to the corre-

sponding InvaliDB-only deployments under read-heavy and write-heavy work-

loads.

142

5.5 Experimental Evaluation of Quaestor

When receiving a notification from InvaliDB, the application server essentially just passes

the notification on, thus incurring fixed costs per received notification. Given the constant

match throughput across all experiments, it is therefore plausible that subscribing more

real-time queries does not raise computational load for the application server. In con-

trast, the observation that performance degrades and ultimately collapses under heavy

write workload is explained by OLTP-related CPU contention and increased frequency and

duration of garbage collection pauses within the Java-based application server.

To sum up, the implementation of our real-time database design exhibits predictable and

consistently low latency, even under high OLTP workload. The experimental evidence fur-

ther confirms our claims of high scalability by showing that real-time query subscriptions

do not impose significant overhead on the application server: While serving a real-time

query will become more expensive as match throughput grows, the mechanism itself is

very lightweight and facilitates many concurrent real-time queries.

5.5.2 The Effect of Query Caching on Pull-Based Query Performance

Quaestor is not only able to provide fast push-based access to data, but it also accelerates

common pull-based database queries through query caching. InvaliDB is the enabling

component for query caching, because detecting stale query results is infeasible for the

application server (cf. Section 5.2). In the following, we provide an experimental quantifi-

cation of the significant throughput and latency improvements gained through Quaestor’s

query caching. The experimental data is taken from our dedicated Quaestor publication

[GSW+17] which provides additional details on the use case of query caching and an ex-

tended evaluation.

Setup & Workload

For a better illustration ofQuaestor’s benefits, we chose a geographically distributed setup

for our experiments: Three Orestes application servers and an InvaliDB cluster with 16

matching cores (8 nodes with 2 vCPUs each) were hosted in Northern Ireland, while the

clients executing the workload were located in Northern California. The database work-

load was executed over MongoDB collections which were hash-sharded by primary key.

The MongoDB cluster comprised two shard servers and a single configuration server and

was powerful enough to not become a bottleneck during the experiments. The clients,

application servers, and all MongoDB servers were Amazon Elastic Compute Cloud (EC2)

m3.xlarge instances with 4 vCPUs, 15 GB RAM and two 40 GB SSDs each. For InvaliDB,

we used c3.large instances with 2 vCPUs and 3.75 GB RAM each.

For each experiment, we generated 10MongoDB collections with 10 000 documents each

and 100 distinct queries per collection. To generate the workload, all clients executed

asynchronous requests that were divided into 1% write operations (inserts, updates, and

143

5 Integrating InvaliDB With the Orestes Database Middleware

deletes), 49.5% primary key lookups, and 49.5% database queries. The queries were

designed in such a way that each one had exactly 10 matching records at the beginning

of an experiment. The records, queries, and collections to use for each client request

were sampled from a Zipfian distribution. The client connections were warmed up for 30

seconds before each experiment by writing data into a separate collection. The Quaestor

configurations that used caching had the clients refresh their Cache Sketches once every

second to bound staleness.

Results

Figure 5.8 compares read performance achieved under an increasing number of client

connections by different Quaestor configurations:

• uncached Quaestor (black line) using no caches whatsoever

• CDN-only Quaestor (green line) using only the CDN for caching

• full-fledged Quaestor (blue line) using both CDN and client cache (browser cache)

Throughout the experimental evaluation of latency (a), the baseline setup with uncached

database access exhibited amean latency of about 150ms, whereas the CDN-only and the

full-fledged Quaestor setup consistently achieved less than 20ms (> 7×) and less than

5ms (> 30×), respectively. A similar observation can be made with regards to through-

put (b): The setup without any caching was consistently outperformed by the CDN-only

Quaestor (> 5×) and Quaestor with full caching (> 11×). The query latency histogram (c)

shows the distribution of response times for the full-fledged Quaestor setup that used all

available caches: Most requests were answered by the client cache (< 1ms latency) or

the CDN (< 5ms latency), while only few requests hit the database (≈ 150ms latency).

In summary, our results demonstrate that Quaestor is able to achieve significant latency

and throughput improvements compared to uncached database access and even com-

pared to a setup that exploits CDN caches for delivery. Although not shown here, it should

be noted that the corresponding non-Quaestor Orestes deployment (without InvaliDB)

would perform significantly worse, because it does not support query caching: All que-

ries (i.e. 49.5% of all requests) would therefore have to be processed by the database

system.

144

5.5 Experimental Evaluation of Quaestor

300 600 1200 1800 2400 3000
Connections

0

50

100

150

200

M
e
a
n
 l
a
te

n
cy

 (
m

s)

Quaestor CDN-only Uncached

(a) Mean query latency under an increasing number of client connections.

(Data taken from [GSW+17, Fig. 8c].)

300 600 1200 1800 2400 3000
Connections

0

25k

50k

75k

100k

125k

150k

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Quaestor CDN-only Uncached

(b) Achievable query throughput under an increasing number of client connections.

(Data taken from [GSW+17, Fig. 8a].)

Client Cache Hits (capped)

CDN Cache Hits

Cache Misses

(c) Distribution of query latency exhibited by full-fledged Quaestor with client and CDN caching.

(Diagram taken from [GSW+17, Fig. 8f].)

Figure 5.8: Query latency and throughput exhibited by full-fledged Quaestor with client

and CDN caching, Quaestor with only CDN caching, and completely uncached

database access.

145

5 Integrating InvaliDB With the Orestes Database Middleware

5.6 Summary & Discussion

In this chapter, we demonstrated the practicality of our real-time database design InvaliDB

by integrating it into the Orestes database middleware.

Orestes’ characteristic caching approach for dynamic data relies on the ability to detect

when data becomes stale. While the Orestes application server can detect when individ-

ual records are updated by CRUD operations, we identified change detection over query

results as infeasible for the base system. In consequence, Orestes is only able to cache

individual database records, but not query results. To address this issue, we presented

the Quaestor architecture as an extension to Orestes that employs InvaliDB for query re-

sult monitoring. Within the Quaestor architecture, InvaliDB is used in two different ways:

First, InvaliDB makes query result caching feasible by providing low-latency invalidation

messages for stale query results. As demonstrated in our experimental evaluation, the

query caching scheme enabled by InvaliDB can improve throughput and latency of pull-

based queries by more than an order of magnitude. As a second use case, InvaliDB gener-

ates change deltas for query results which are delivered to end users through push-based

real-time queries. In contrast to competing real-time database architectures that burden

the application server with query matching (cf. Section 2.3), Quaestor delegates result

maintenance to InvaliDB and thus removes the application server as a possible bottleneck.

As verified by our experiments, Quaestor thus provides real-timequeries in a scalable fash-

ion with little overhead for the application server, supporting both high write throughput

and many concurrent real-time queries with low double-digit latencies.

Aside from performance considerations, the design of the client APIs for push-based data

access received particular attentionwithin this chapter. We created twodifferent query in-

terfaces that are geared towards simplicity and expressiveness, respectively. As illustrated

with Twoogle and other examples, self-maintaining queries are easy to reason about as

they effectively behave like common pull-based queries that are refreshed on every re-

sult change. Thus, they provide a smooth transition from pull-based to push-based query

semantics for application developers. Instead of the complete list of matching records,

event stream queries deliver incremental change deltas that capture how query results

evolve over time. While event stream queries do expose increased complexity to the ap-

plication developer, they also providemore fine-grained control over information flow, for

example through filtering by match type or the type of the triggering operation.

To conclude, we have demonstrated that InvaliDB can enhance an existing database ar-

chitecture in two ways: First, InvaliDB facilitates significant performance improvements

for existing pull-based interfaces and, second, it promotes a way to access data in push-

based fashion. In contrast to other real-time database designs, InvaliDB exposes greater

query expressiveness, is compatible with legacy database systems, and has further been

demonstrated to scale with read and write workloads alike.

146

Conclusion 6
“Just one more thing…”

—Lieutenant Columbo

The goal of this thesis has been to devise a scalable design for expressive push-based

real-time queries on top of existing pull-based databases. After we divided this goal into

four distinct challenges in Chapter 1, we surveyed and classified related work in Chap-

ter 2. We then set out to create the systemdesign InvaliDBwithin Chapter 3 and evaluated

a prototypical implementation thereof in Chapter 4. In Chapter 5, we demonstrated the

practicality of our approach by integrating the InvaliDB prototype with an existing pull-

based database middleware. We further presented database query caching and client-

facing real-time queries as two use cases that are supported by the integrated system,

but would be infeasible without InvaliDB.

In this chapter, we conclude this dissertation by reflecting on what we have achieved and

projecting what remains to be done. We start with a summary of our main contributions

and our most significant learnings in Section 6.1. We then discuss limitations of our work

and derive possible lines of future research in Section 6.2. Finally, we provide closing

thoughts in Section 6.3.

147

6 Conclusion

6.1 Best Practices for Designing a Scalable Real-Time Database

Within this thesis, we have conceived and implemented the system design InvaliDB for

collection-based real-time queries on top of existing database systems. In doing so, we

demonstrated that real-time queries can be provided in a scalable (cf. Challenge C1) and

expressive (cf. Challenge C2) manner, while still being compatible with legacy databases

(cf. Challenge C3). Our integration with an existing database architecture further illus-

trated how an existing pull-based query interface can be turned into a push-based inter-

face with minimal complexity overhead for application developers (cf. Challenge C4).

Over the course of our work, we identified critical design flaws in existing real-time data-

bases and derived a number of best practices to avoid them. To validate our research in

a real-world setting, we deployed our implementation in production at the Backend-as-a-

Service company Baqend (cf. Chapter 5) where it has been serving customers since July

2017. In this section, we recapitulate important lessons we learned and outline essential

features of a real-time database system as well as ways to achieve them.

6.1.1 Scalable Workload Distribution

As illustrated in Section 1.1, a real-time database has to analyze the effect of every single

write operation on every single real-time query. In consequence, both an increase in write

throughput and a growing number of query subscriptions lead to a proportional increase

in matching workload. Since a system design that only scales with one of these two di-

mensions will necessarily become a bottleneck when single-machine capacity is reached

(see Section 2.3), real-time database architects must plan ahead for either dimension to

grow. In Section 3.3, we presented a two-dimensional partitioning scheme that scales

out with write operations as well as queries across several worker processes. However,

cross-machine distribution is difficult to realize for operations beyond the mere checking

of static filter conditions. Therefore, some components of a query may still have to be

evaluated in a centralized fashion. In our architecture, the computation related to result

order, joins, and aggregations is done in processing stages that are mostly partitioned by

query; these do not becomebottlenecks in practice, though, because the serial processing

stages are downstream of the highly distributed filtering stage and therefore only receive

a fraction of overall system throughput.

6.1.2 Isolated Failure Domains

Unless the process of query matching is effectively decoupled from the main application

server, an outage of the real-time component can take down the entire system. In order

to make a real-time database deployment justifiable in a production setting, overall sys-

tem availability must therefore not depend on the health of the real-time subsystem. This

148

6.1 Best Practices for Designing a Scalable Real-Time Database

requirement is related to the requirement of scalability, but ultimately differs in its focus

on failure scenarios: While scalability of the real-time component postulates that heavy

load is sustainable in principle, the isolation of failure domains ultimately demands basic

availability even under partial system failure. The above-mentioned scheme for workload

partitioning does not exclude the possibility of real-time subsystem failure, e.g. through

a sudden load burst, a hardware malfunction, or another error. Therefore, InvaliDB sepa-

rates the application server and the real-time subsystem through asynchronous communi-

cation in the event layer detailed in Section 3.2; thus, the worst possible impact of query

matching breakdown essentially amounts to delayed real-time notifications or cancella-

tion of active subscriptions (cf. Section 3.1.1).

6.1.3 Polyglot Data Model

Even though InvaliDB is based on several assumptions regarding the context intowhich it is

embedded (see Section 3.1), we abstracted from implementation details where possible.

In more detail, we created a generic message exchange protocol based on JSON as the

external interface, so that InvaliDB clients can be written in any programming language

(see Section 5.2.3). Further, we embedded the query engine into the overall architecture

in such a way that it can be switched out with relative ease (cf. Section 3.3.3). Since our

architecture is thus agnostic of the underlying data model, InvaliDB naturally supports

polyglot backends like Orestes. The pluggable query engine also enabled us to quickly

move from our initial JavaScript-based query engine to the Java-based implementation

that is used in production at Baqend (cf. Section 4.3). Looking ahead, InvaliDB’s data

model independence will be crucial for adding support for new database languages.

6.1.4 Balanced Interfaces

When designing Quaestor’s real-time query interface, we found one of the major chal-

lenges in striking a balance between expressiveness and complexity. Event stream queries

(cf. Section 5.3.3) are very powerful as they combine database query predicates with

event-based selection criteria such as match or operation type. However, this mix of

collection-based and stream-based semantics is non-intuitive to work with, because it re-

quires an understanding of InvaliDB’s semantics as well as the eventmessage format. Self-

maintaining queries (cf. Section 5.3.1) produce complete query results instead of change

deltas and are therefore significantly easier to use, given the concept of a pull-based que-

ry over database collections is already understood. There are two key aspects to their

simplicity: First, self-maintaining queries only expose the collection-based component of

a real-time query, i.e. they do not reference the match type or other event properties.

Second, self-maintaining queries extend common ad hoc queries in the sense that they

add functionality without imposing restrictions. In order to utilize a self-maintaining que-

ry, users thus only have to understand that they will receive updated results in addition

149

6 Conclusion

to the initial result they would expect for the corresponding pull-based query. Since the

public release of our real-time query API in mid-2017, we have seen both query interfaces

in production at Baqend customers. We consider the acceptance by actual users to be a

validation of our approach of exposing two distinct query interfaces with varying degrees

of complexity.

6.2 Open Challenges

We firmly believe that our work provides valuable insights for real-time database archi-

tects, but we are also aware of some limitations. In this section, we outline challenges we

encountered and establish points of reference for future work.

6.2.1 Extending Semantics

Our work is focused on sorted filter queries over single collections as they are supported

by many document-oriented NoSQL databases. With respect to query expressiveness,

consistency guarantees, and also regarding the diversity of supported database systems,

we therefore see multiple opportunities to extend our approach.

Joins & Aggregations. By concept, InvaliDB provides support for groupings, aggrega-

tions, and queries that connect multiple collections through joins (cf. Section 3.3.2). How-

ever, we only implemented sorted real-time filter queries over single collections in the

context of this work. Therefore, real-time aggregations and joins have to be maintained

within the client application (see Section 5.4.2 and Section 5.4.3 for examples). Future

work could extend our InvaliDB implementation by real-time aggregations and joins to re-

move the necessity for these kinds of client-side workarounds. Full support for real-time

joins and aggregations would further enable quantifying the trade-off between incremen-

tal and recomputation-based maintenance for these types of real-time queries.

Additional Database Languages. As described in Section 4.3, we implemented real-time

queries using MongoDB’s query language, concentrating on basic filtering functionality

(e.g. comparison and regex expressions). In follow-up work, the sophistication of que-

ry processing could be advanced in two different directions: First, the existing MongoDB

query engine could be amended by additional operators, e.g. $expr for evaluating con-

ditions over fields in the same record [Mon18c]. Second, support for additional database

languages and query types1 could be added through entirely new query engines. Depend-

ing on the concrete query engine, the complexity of this endeavor can range from being

trivial to being prohibitive. For example, systems lend themselves to an InvaliDB integra-

tion when they already use a pluggable query engine (e.g. Calcite [Apa18d]) or when their

source code is available (e.g. MongoDB). In these cases, the query engine can either be

1For example, we do not address recursive queries or queries with subqueries in this work.

150

6.2 Open Challenges

used as-is or it is at least feasible to rebuild in distributed fashion, because matching be-

havior is transparent. Many commercial database systems, however, are effectively black

boxes for which only the compiled binaries are available. Reengineering a query engine

for such a system is extremely cumbersome and requires meticulous analysis of intended

and actual matching behavior to assure correctness of real-time query results: Unless the

distributed query engine (running within InvaliDB) and the original query engine (running

within the database) are perfectly aligned, real-time query results and actual results may

diverge. Future work could therefore also develop systematic approaches for defining

test cases and spotting behavioral differences between query engines. Support for similar

database languages or different dialects of the same language (e.g. SQL) could thus be

added more efficiently.

Transactions. InvaliDB promotes a notion of eventual consistency that resembles the

guarantees provided by many document-oriented NoSQL databases: In the absence of

write operations, a real-time query result converges to the result that the corresponding

pull-based query would yield when executed against the underlying database. In the con-

text of query engines that supportmulti-key transactions, it should be consideredwhether

and in what ways transactional guarantees can be reflected by InvaliDB’s push-based real-

time queries. To achieve transactional visibility of write operations, for example, events

that were triggered by the same transaction could be delayed until all of them can be

published to the client atomically. Likewise, serviceability of monotonic reads, read-your-

writes, or other session consistency guarantees could be investigated.

Embracing Streams & Complex Events. In this thesis, we argue that collection-based

semantics are natural for many applications and thus sometimes preferable over stream-

based semantics. However, stream-based semantics undoubtedly have their merits and

we do not see any reason why a data management system should be restricted to either

streams or collections as basic primitives. While InvaliDB’s default semantics are based on

database collections, its pluggable query engine supports collection-based and stream-

based semantics alike (cf. Section 3.3.3). In a purely stream-based context, InvaliDB’s

query engine would not have to be aligned with query evaluation in a backing database,

so that arbitrary semantics could be adopted andmechanisms for approximation and load

shedding (cf. Section 2.4.3) would be eligible without compromising correctness. Future

work could thus develop a stream-based query engine that is tailored to time series or

other forms of sequential data. InvaliDB further only supports simple event processing

based onmatch and operation types. Another powerful extension to our approach would

therefore be the integration of more sophisticated complex event processing to establish

temporal, causal, or other relationships between events.

151

6 Conclusion

6.2.2 Exploring Trade-Offs & Optimizations

Through our implementation, we have shown that InvaliDB is scalable and capable of pro-

viding low latency even under heavy load. In the following, we present considerations

regarding both InvaliDB and Quaestor to improve performance and efficiency, availability,

and usability.

Failure Transparency. In our current implementation, several types of failure result in

query cancellation and an error message being sent to the client. This fail-fast strategy

does not impede behavioral correctness, but it causes inconvenience for end users and

is sometimes relatively inefficient compared to other viable options. To avoid service dis-

ruption and save client resources, the application server could be redesigned to handle

those errors transparently which are currently resolved by client-initiated resubscription.

Specifically, the history of any subscription could be retained to enable compensation of

connection drops between client and application server: On reconnection, a client would

provide an identifier for every supposedly active subscription (and possibly a history off-

set), so that the application server could then only deliver the events that were missed

since connection loss. To make this possible, parts of the event layer would have to be

reimplemented2 on top of a message queue that supports data retention and replay (e.g.

Kafka); our Redis-based implementation does not persistently store any data apart from

the currently active queries. Using a system like Kafka underneath, the event layer would

also become natively reliable: Since Redis does not provide any reliability guarantees,

loss-free communication can only be ensured through application-sidemeasures like que-

ry invalidation on every connection loss (cf. Section 4.2). Replayability would also allow

a bootstrapping procedure for InvaliDB’s worker nodes that picks up and continues ac-

tive subscriptions instead of canceling them: Since the processing engine Storm does not

support fault-tolerant state management, a worker node failure currently results in de-

activation of the worker’s active subscriptions when it comes back up (see Section 4.1).

There are also numerous mostly performance-related aspects of our implementation that

could be improved. For example, highly frequent write operations on the same entity (and

resulting change events) could be merged, so that resources are not wasted and clients

are not overwhelmed by incoming messages (cf. collapse parameter in Section 5.3.2).

Self-Maintainability. InvaliDB makes query maintenance feasible by taking the match-

ing process out of the database. However, since the database remains the single source

of truth, queries have to be registered with enough information to make the result self-

maintainable. As discussed for sorted queries in Section 3.3.2, however, only partial self-

maintainability is feasible for some queries; when InvaliDB lacks required information, the

database has to be contacted or else the query must be deactivated. To enforce strict

isolation between InvaliDB and the database, we opted to cancel the query subscription

2In the Quaestor architecture, the application servers cannot be used for retaining the subscription history,

because they are stateless by design in order to facilitate high scalability.

152

6.2 Open Challenges

and have the client resubscribe whenever the result might have become stale. This proce-

dure can be optimized by avoiding the detour over the client and letting InvaliDB directly

interact with the database. As a possibly more significant optimization, InvaliDB could fur-

ther be allowed to retrieve missing information in finer granularity than the entire result,

e.g. by requesting individual records to fill up an ordered query’s slack (cf. page 80) or

by resolving references in an equi-join3. This would reduce the rate of maintenance er-

rors for sorted queries and enable incremental maintenance for real-time queries that are

purely recomputation-based in our current scheme such as certain join queries (cf. Section

3.3.2). Subsequent work could shed light on the opportunities and risks that lie in weak-

ening the separation between InvaliDB and the database to improve self-maintainability

of active real-time queries.

Indexing & Workload Partitioning. As described in Section 4.3.2, our current imple-

mentation of InvaliDB employs a brute force comparison to match all queries against all

incoming after-images. The computational complexity of continuously matching n que-

ry predicates at a given write throughput m is therefore O(m · n). By employing indices

for comparisons and other predicates (e.g. anchored regex expressions), the computa-

tional complexity of thematching process could be reduced toO(m · log n) in some cases,

thus increasing single-node efficiency. Further, our current query partitioning scheme dis-

tributes entire queries by their hashes. In consequence, query predicates are evaluated

on multiple nodes in the InvaliDB cluster, whenever they are part of queries in different

query partitions. A containment-aware distribution scheme could increase efficiency by

assigning queries to the same query partition whenever one of them subsumes the other.

Since deviating from our current hash-based distribution scheme could also lead to an

uneven load distribution, though, a key challenge of this approach would be to preserve

scalability in the presence of arbitrary query workloads.

Client Performance. In the web-centered use cases that motivate our work, real-time

query subscribers are oftenmobile phones or other deviceswith limited processing power,

weak network links, and/or bounded (monthly) data allowance. Heavy hitter queries are

therefore likely to saturate these end user devices (or the network between them and the

application servers) before the InvaliDB cluster becomes a bottleneck. Even though we

focussed on the scalability issues in the backend in this thesis, we also discussed three

different approaches to cope with real-time query load that is prohibitive for clients. First,

write operations on the same entity can be collapsed in order to mitigate hotspots and

thereby not only reduce the matching load on the InvaliDB cluster, but also the frequency

of emitted result updates (cf. write propagation in Section 3.1.3). Second, the frequency

by which result updates are emitted can similarly be reduced by buffering and collapsing

3The following query illustrates that reference resolution can be more efficient than query recomputation:

SELECT * FROM score s INNER JOIN user u ON s.uid = u.id ORDER BY s.value DESC LIMIT 10.
Whenever a new user enters the top-10 high score list (i.e. the query result), our current scheme would

require resubscribing (and thereby reevaluating) the query, because the new user’s reference cannot

be resolved. Granting InvaliDB access to the database and allowing exploratory queries would allow

resolving the user reference with a simple lookup and specifically without invalidating the query’s result.

153

6 Conclusion

change notifications themselves (cf. subscription parameters in Section 5.3.2). Third, the

fallback of our maintenance procedure to periodic pull-based query execution (cf. result

recomputation in Section 3.3.2) also represents an effective mechanism to control the

data flow towards the client as it limits the frequency of emitted change notifications to

the polling period4. Future work could quantify and compare the effectiveness of these

different approaches for saving client resources, derive best practices, and possibly de-

velop more sophisticated schemes to minimize client resource usage for real-time query

subscriptions.

Production Deployment. The system we built in the context of this thesis does not only

serve as a proof of concept, but has already been used in production at Baqend since

July 2017. By exposing our system to paying customers, we created a strong incentive to

optimize for metrics that would not have received much attention in a purely academic

context. In contrast to an experimental setup, a production deployment is running con-

tinuously over weeks without interruption and therefore must tolerate or autonomously

recover from network outages, random server restarts, fluctuating workloads, and other

complications. Also, maintenance tasks such as releasing new versions on a regular ba-

sis become a necessity. Rolling out a new version of the application server or database

has to be coupled with the rollout of the corresponding InvaliDB version. Consequently,

safety measures have to be taken in order to enable rolling back any unsuccessful deploy-

ments. To furtherminimize the total cost of ownership while retaining sufficient resources

for sudden load spikes, it is necessary to monitor the entire application stack on various

levels and scale subsystems out or in, depending on their load. Many of these tasks are

currently manual and we consider automating cluster management of InvaliDB and re-

lated components a huge challenge for ourselves or practitioners who are following our

example.

6.2.3 Building Applications

We believe the emergence of scalable real-time databases enables countless ways to im-

prove existing applications and create genuinely new ones. As a final note in this outlook,

we would like to outline potential for innovation in different application areas.

Reactive& CollaborativeMobile Apps. By providing a push-based accessmode for que-

ries with traditional database semantics, InvaliDB simplifies the development of reactive

social media websites, collaborative worksheets, and other applications that promote in-

teraction between users. While we touched on several use cases in this work, we focused

on a display of API functionality rather than actual applications (see Section 5.3 and Sec-

tion 5.4). Qualitative studies to evaluate the usefulness of our real-timequery abstractions

and comparisons with peer systems would provide valuable feedback for us to improve

4Since this approach relies on the underlying database (and not the InvaliDB cluster) for query evaluation,

it further enables real-time queries that are only supported by the underlying database, but not by the

real-time query engine.

154

6.2 Open Challenges

existing and add missing features. Apart from efforts to extend the existing JavaScript

API, client libraries for other programming languages and especially native SDKs for mo-

bile platforms (e.g. Android and iOS) would further extend the reach and impact of our

approach towards push-oriented data access.

Upgrading Legacy Interfaces. Applications that have been developed on top of pull-

based databases often work in a pull-based fashion themselves, i.e. the user has to take

action to refresh or update her view of the data. However, rather than a deliberate design

decision, the need to refresh manually is mostly a mere side effect of using a pull-based

database for data storage. Since InvaliDB makes real-time features available on top of ex-

isting databases, we see a tremendous opportunity in upgrading existing static interfaces

with self-maintaining queries as presented in Section 5.3.1: Those portions of the user in-

terface that display dynamic information (e.g. user-defined search results as in Twoogle)

could thus be made interactive to augment the user experience. Interfaces could also be

served in two different versions. For instance, the static version of a website could be

served to low-bandwidth clients or the interactive version could be served to premium

customers only.

Augmenting Current Cache Coherence Schemes. Even though one of the defining prop-

erties of relational database systems is strong consistency, many approaches to scale out

read capacity reflect a trade-off between consistency and query performance: Due to the

significant costs associatedwith eager incremental querymaintenance, in particular, result

caches are commonly lagging behind, because they are refreshed asynchronously through

batch updates or periodic recomputation. Similar to its role within the Quaestor architec-

ture, InvaliDB could perform asynchronous change detection to trigger updates or recom-

putation of invalidated copies of the data. Having the database servers only subscribe

to InvaliDB instead of monitoring the write stream themselves promises several benefits:

First, this would significantly increase fault tolerance of the overall system, because OLTP

workloads would be decoupled from the performance impact of query maintenance. As

a second advantage, viewmaintenance could further be used in a much wider scope than

before, because InvaliDB (unlike a monolithic database server) is able to scale with the

number of concurrently maintained queries and with write throughput at the same time.

As a third benefit, InvaliDB removes the necessity to weigh consistency against data fresh-

ness (e.g. through refresh rates), because it performs incremental and immediate result

maintenance with low latency by default. Seeing that current schemes for query offload-

ing deliberately expose stale data to clients in favor of increased performance, we believe

InvaliDB bears the prospect of combining improved query performancewith reduced data

staleness, even though it currently does not provide transactional guarantees.

155

6 Conclusion

6.3 Closing Thoughts

Collection-based query semantics have been bound to pull-based access patterns for

decades. But even though the first active database features emerged as early as the 1970s,

modern databases still do not provide scalable and expressive push-based query mech-

anisms. Stream-oriented systems do address this lack of reactivity through continuous

queries, but they also require developers to abandon the concept of a database collec-

tion and to reason about data streams instead. As a compromise between these two

system classes, real-time databases attempt the conceptual unification of database query

semantics with a push-based access model. However, current implementations are only

of limited practical relevance, since they are incompatible with existing technology stacks,

fail under heavy load, or do not support complex queries to begin with.

In this work, we proposed the real-time database design InvaliDB to overcome these lim-

itations. While our prototype is built on top of MongoDB, the concept itself is database-

agnostic and can be applied to other NoSQL and even relational database systems. In an

extensive experimental evaluation, we presented compelling evidence for its high scalabil-

ity and consistently low latency under various workloads and system configurations. We

integrated our prototype with a purely pull-based database middleware in the Quaestor

architecture to further illustrate the practicality of our approach with an end-to-end ex-

ample. In doing so, we also exemplified two convenient interfaces for real-time queries:

Whenever a subscribed query’s result is altered, the integrated system proactively deliv-

ers either complete results through self-maintaining queries or incremental change deltas

through event stream queries. For a display of potential gains beyond reactive behav-

ior, we finally showed how InvaliDB makes consistent query caching possible by providing

low-latency result invalidations. In the Quaestor architecture, InvaliDB thus enables an

order-of-magnitude improvement of throughput and latency for pull-based queries over

the base system without InvaliDB.

In the past, practitioners have been rightfully cautious in adopting real-time databases,

because they are hard to integrate into existing applications and mostly intractable to use

at scale. The system design presented in this thesis addresses frequent concerns through

a combination of characteristics that, to the best of our knowledge, is unique among real-

time databases: First, it abstracts from the underlying data model and is therefore ap-

plicable to virtually any database system. Second, InvaliDB scales with both the number

of concurrent queries and with write throughput. Third and arguably most important for

production settings, it is designed as an opt-in component with an isolated failure domain

to make its adoption a low-risk endeavor. In conclusion to this dissertation, we hope that

our work sparks new confidence in the practicality of real-time databases and inspires

further research on the topic within the database community.

156

6.3 Closing Thoughts

157

6 Conclusion

158

Appendix

A InvaliDB Performance: Read Scalability

Please note that the following performance plots are scaled logarithmically.

A.1 Sustainable Queries Under Varying Query Partitions

1 000 ops/s Fixed, Increasing Query Load

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 1 write partition

1 query partition
2 query partitions
4 query partitions

8 query partitions
16 query partitions

1 2 4 8 16

query partitions

4k

8k

12k

16k

20k

24k

28k

q
u
e
ri

e
s

1k ops/s, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 2 write partitions

1 query partition
2 query partitions

4 query partitions
8 query partitions

1 2 4 8

query partitions

4k

6k

8k

10k

12k

14k

16k

18k

20k

22k

q
u
e
ri

e
s

1k ops/s, 2 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

159

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 4 write partitions

1 query partition
2 query partitions

4 query partitions

1 2 4

query partitions

6k

8k

10k

12k

14k

q
u
e
ri

e
s

1k ops/s, 4 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 8 write partitions

1 query partition 2 query partitions

1 2

query partitions

6k

8k

10k

12k

q
u
e
ri

e
s

1k ops/s, 8 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 16 write partitions

1 query partition

160

A InvaliDB Performance: Read Scalability

2 000 ops/s Fixed, Increasing Query Load

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k ops/s, 1 write partition

1 query partition
2 query partitions
4 query partitions

8 query partitions
16 query partitions

1 2 4 8 16

query partitions

2k

4k

6k

8k

10k

12k

14k

q
u
e
ri

e
s

2k ops/s, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k ops/s, 2 write partitions

1 query partition
2 query partitions

4 query partitions
8 query partitions

1 2 4 8

query partitions

2k

4k

6k

8k

10k

12k

14k

q
u
e
ri

e
s

2k ops/s, 2 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

161

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k ops/s, 4 write partitions

1 query partition
2 query partitions

4 query partitions

1 2 4

query partitions

4k

5k

6k

7k

8k

9k

10k

q
u
e
ri

e
s

2k ops/s, 4 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k ops/s, 8 write partitions

1 query partition 2 query partitions

1 2

query partitions

4k

5k

6k

7k

8k

q
u
e
ri

e
s

2k ops/s, 8 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k ops/s, 16 write partitions

1 query partition

162

A InvaliDB Performance: Read Scalability

4 000 ops/s Fixed, Increasing Query Load

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k ops/s, 1 write partition

2 query partitions
4 query partitions

8 query partitions
16 query partitions

1 2 4 8 16

query partitions

500

1k

2k

3k

4k

5k

q
u
e
ri

e
s

4k ops/s, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k ops/s, 2 write partitions

1 query partition
2 query partitions

4 query partitions
8 query partitions

1 2 4 8

query partitions

1k

2k

3k

4k

5k

6k

7k

q
u
e
ri

e
s

4k ops/s, 2 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

163

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k ops/s, 4 write partitions

1 query partition
2 query partitions

4 query partitions

1 2 4

query partitions

2k

3k

4k

5k

6k

q
u
e
ri

e
s

4k ops/s, 4 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k ops/s, 8 write partitions

1 query partition 2 query partitions

1 2

query partitions

3k

4k

q
u
e
ri

e
s

4k ops/s, 8 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k ops/s, 16 write partitions

1 query partition

164

A InvaliDB Performance: Read Scalability

8 000 ops/s Fixed, Increasing Query Load

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k ops/s, 1 write partition

4 query partitions
8 query partitions

16 query partitions

1 2 4 8 16

query partitions

500

1k

q
u
e
ri

e
s

8k ops/s, 1 write partition

99% latency 100ms 99% latency 50ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k ops/s, 2 write partitions

2 query partitions
4 query partitions

8 query partitions

1 2 4 8

query partitions

500

1k

2k

q
u
e
ri

e
s

8k ops/s, 2 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

165

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k ops/s, 4 write partitions

1 query partition
2 query partitions

4 query partitions

1 2 4

query partitions

500

1k

2k

3k

q
u
e
ri

e
s

8k ops/s, 4 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k ops/s, 8 write partitions

1 query partition 2 query partitions

1 2

query partitions

1k

2k

3k

q
u
e
ri

e
s

8k ops/s, 8 write partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k ops/s, 16 write partitions

1 query partition

166

A InvaliDB Performance: Read Scalability

A.2 Sustainable Queries Under Varying Number of Collections

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k ops/s, 1 query partition, 1 write partition

1 collection
2 collections
4 collections

8 collections
16 collections
32 collections

1 2 4 8 16 32

collections

4k

8k

12k

16k

20k

24k

q
u
e
ri

e
s

1k ops/s, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k ops/s, 1 query partition, 1 write partition

1 collection
2 collections
4 collections

8 collections
16 collections
32 collections

1 2 4 8 16 32

collections

2k

4k

6k

8k

10k

12k

q
u
e
ri

e
s

2k ops/s, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

167

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k ops/s, 1 query partition, 1 write partition

2 collections
4 collections
8 collections

16 collections
32 collections

1 2 4 8 16 32

collections

1k

2k

3k

4k

5k

6k

7k

8k

q
u
e
ri

e
s

4k ops/s, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

queries

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k ops/s, 1 query partition, 1 write partition

8 collections
16 collections

32 collections

1 2 4 8 16 32

collections

500

1k

2k

3k

q
u
e
ri

e
s

8k ops/s, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

168

B InvaliDB Performance: Write Scalability

B InvaliDB Performance: Write Scalability

Please note that the following performance plots are scaled logarithmically.

B.1 Sustainable Throughput Under Varying Write Partitions

1 000 Queries Fixed, Increasing Throughput

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 1 query partition

1 write partition
2 write partitions
4 write partitions

8 write partitions
16 write partitions

1 2 4 8 16

write partitions

4k

8k

12k

16k

20k

24k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

1k queries, 1 query partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 2 query partitions

1 write partition
2 write partitions

4 write partitions
8 write partitions

1 2 4 8

write partitions

2k

4k

6k

8k

10k

12k

14k

16k
18k
20k
22k
24k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

1k queries, 2 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

169

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 4 query partitions

1 write partition
2 write partitions

4 write partitions

1 2 4

write partitions

4k

6k

8k

10k

12k

14k

16k

18k

20k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

1k queries, 4 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 8 query partitions

1 write partition 2 write partitions

1 2

write partitions

4k

6k

8k

10k

12k

14k

16k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

1k queries, 8 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 16 query partitions

1 write partition

170

B InvaliDB Performance: Write Scalability

2 000 Queries Fixed, Increasing Throughput

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k queries, 1 query partition

1 write partition
2 write partitions
4 write partitions

8 write partitions
16 write partitions

1 2 4 8 16

write partitions

1k

2k

3k

4k

5k

6k
7k
8k
9k

10k
11k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

2k queries, 1 query partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k queries, 2 query partitions

1 write partition
2 write partitions

4 write partitions
8 write partitions

1 2 4 8

write partitions

2k

4k

6k

8k

10k

12k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

2k queries, 2 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

171

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k queries, 4 query partitions

1 write partition
2 write partitions

4 write partitions

1 2 4

write partitions

2k

3k

4k

5k

6k

7k

8k

9k

10k

11k
12k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

2k queries, 4 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k queries, 8 query partitions

1 write partition 2 write partitions

1 2

write partitions

3k

4k

5k

6k

7k

8k

9k

10k

11k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

2k queries, 8 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k queries, 16 query partitions

1 write partition

172

B InvaliDB Performance: Write Scalability

4 000 Queries Fixed, Increasing Throughput

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k queries, 1 query partition

1 write partition
2 write partitions
4 write partitions

8 write partitions
16 write partitions

1 2 4 8 16

write partitions

500

1k

2k

3k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

4k queries, 1 query partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k queries, 2 query partitions

1 write partition
2 write partitions

4 write partitions
8 write partitions

1 2 4 8

write partitions

1k

2k

3k

4k

5k

6k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

4k queries, 2 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

173

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k queries, 4 query partitions

1 write partition
2 write partitions

4 write partitions

1 2 4

write partitions

2k

3k

4k

5k

6k

7k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

4k queries, 4 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k queries, 8 query partitions

1 write partition 2 write partitions

1 2

write partitions

2k

3k

4k

5k

6k

7k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

4k queries, 8 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k queries, 16 query partitions

1 write partition

174

B InvaliDB Performance: Write Scalability

8 000 Queries Fixed, Increasing Throughput

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k queries, 1 query partition

8 write partitions 16 write partitions

1 2 4 8 16

write partitions

500

1k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

8k queries, 1 query partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k queries, 2 query partitions

2 write partitions
4 write partitions

8 write partitions

1 2 4 8

write partitions

500

1k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

8k queries, 2 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

175

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k queries, 4 query partitions

1 write partition
2 write partitions

4 write partitions

1 2 4

write partitions

1k

2k

3k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

8k queries, 4 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k queries, 8 query partitions

1 write partition 2 write partitions

1 2

write partitions

2k

3k

4k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

8k queries, 8 query partitions

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k queries, 16 query partitions

1 write partition

176

B InvaliDB Performance: Write Scalability

B.2 Sustainable Throughput Under Varying Number of Collections

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

1k queries, 1 query partition, 1 write partition

1 collection
2 collections
4 collections

8 collections
16 collections
32 collections

1 2 4 8 16 32

collections

2k

4k

6k

8k

10k

12k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

1k queries, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

2k queries, 1 query partition, 1 write partition

1 collection
2 collections
4 collections

8 collections
16 collections
32 collections

1 2 4 8 16 32

collections

1k

2k

3k

4k

5k

6k

7k
8k
9k

10k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

2k queries, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

177

Appendix

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

4k queries, 1 query partition, 1 write partition

1 collection
2 collections
4 collections

8 collections
16 collections
32 collections

1 2 4 8 16 32

collections

1k

2k

3k

4k

5k

6k

7k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

4k queries, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

500 1k 1.5k 2k 3k 4k 6k 8k 12k 16k 24k 32k

throughput (ops/s)

10

20

30

40

50

60

70

80

90

100

9
9

th
 p

e
rc

e
n
ti

le
 l
a
te

n
cy

 (
m

s)

8k queries, 1 query partition, 1 write partition

4 collections
8 collections

16 collections
32 collections

1 2 4 8 16 32

collections

500

1k

2k

3k

th
ro

u
g
h
p
u
t

(o
p
s/

s)

8k queries, 1 query partition, 1 write partition

99% latency 100ms

99% latency 50ms

99% latency 30ms

99% latency 20ms

178

C InvaliDB Performance: Latency Distribution

C InvaliDB Performance: Latency Distribution

C.1 Read Scalability: Latency Distribution Under Varying Query Partitions

Fixed Relative Load: 1 000 ops/s, 500 Queries per Node

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 1 write partition

1 query partition, 500 queries
2 query partitions, 1k queries
4 query partitions, 2k queries
8 query partitions, 4k queries
16 query partitions, 8k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 2 write partitions

1 query partition, 1k queries
2 query partitions, 2k queries
4 query partitions, 4k queries
8 query partitions, 8k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 4 write partitions

1 query partition, 2k queries
2 query partitions, 4k queries
4 query partitions, 8k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 8 write partitions

1 query partition, 4k queries
2 query partitions, 8k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 16 write partitions

1 query partition, 8k queries

179

Appendix

Fixed Relative Load: 1 000 ops/s, 1 000 Queries per Node

There are no histograms for InvaliDB configurations with 4 write partitions and 4 query

partitions, 8 write partitions, or 16 write partitions below, because none of them was

able to sustain 1 000 queries per matching node at 1 000 ops/s (cf. page 160).

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 1 write partition

1 query partition, 1k queries
2 query partitions, 2k queries
4 query partitions, 4k queries
8 query partitions, 8k queries
16 query partitions, 16k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 2 write partitions

1 query partition, 2k queries
2 query partitions, 4k queries
4 query partitions, 8k queries
8 query partitions, 16k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k ops/s, 4 write partitions

1 query partition, 4k queries
2 query partitions, 8k queries

180

C InvaliDB Performance: Latency Distribution

Fixed Relative Load: 2 000 ops/s, 500 Queries per Node

There is no histogram for the InvaliDB configuration with 16 write partitions below,

because it was not able to sustain 8 000 queries at 2 000 ops/s (cf. page 162).

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k ops/s, 1 write partition

1 query partition, 500 queries
2 query partitions, 1k queries
4 query partitions, 2k queries
8 query partitions, 4k queries
16 query partitions, 8k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k ops/s, 2 write partitions

1 query partition, 1k queries
2 query partitions, 2k queries
4 query partitions, 4k queries
8 query partitions, 8k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k ops/s, 4 write partitions

1 query partition, 2k queries
2 query partitions, 4k queries
4 query partitions, 8k queries

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k ops/s, 8 write partitions

1 query partition, 4k queries
2 query partitions, 8k queries

181

Appendix

C.2 Write Scalability: Latency Distribution Under Varying Write Partitions

Fixed Relative Load: 1 000 queries, 500 ops/s per Node

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 1 query partition

1 write partition, 500 ops/s
2 write partitions, 1k ops/s
4 write partitions, 2k ops/s
8 write partitions, 4k ops/s
16 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 2 query partitions

1 write partition, 1k ops/s
2 write partitions, 2k ops/s
4 write partitions, 4k ops/s
8 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 4 query partitions

1 write partition, 2k ops/s
2 write partitions, 4k ops/s
4 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 8 query partitions

1 write partition, 4k ops/s
2 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 16 query partitions

1 write partition, 8k ops/s

182

C InvaliDB Performance: Latency Distribution

Fixed Relative Load: 1 000 queries, 1 000 ops/s per Node

There is no histogram for the InvaliDB configuration with 16 query partitions below,

because it was not able to sustain 1 000 queries at 16 000 ops/s (cf. page 170).

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 1 query partition

1 write partition, 1k ops/s
2 write partitions, 2k ops/s
4 write partitions, 4k ops/s
8 write partitions, 8k ops/s
16 write partitions, 16k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 2 query partitions

1 write partition, 2k ops/s
2 write partitions, 4k ops/s
4 write partitions, 8k ops/s
8 write partitions, 16k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 4 query partitions

1 write partition, 4k ops/s
2 write partitions, 8k ops/s
4 write partitions, 16k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1k queries, 8 query partitions

1 write partition, 8k ops/s
2 write partitions, 16k ops/s

183

Appendix

Fixed Relative Load: 2 000 queries, 500 ops/s per Node

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k queries, 1 query partition

1 write partition, 500 ops/s
2 write partitions, 1k ops/s
4 write partitions, 2k ops/s
8 write partitions, 4k ops/s
16 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k queries, 2 query partitions

1 write partition, 1k ops/s
2 write partitions, 2k ops/s
4 write partitions, 4k ops/s
8 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k queries, 4 query partitions

1 write partition, 2k ops/s
2 write partitions, 4k ops/s
4 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k queries, 8 query partitions

1 write partition, 4k ops/s
2 write partitions, 8k ops/s

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k queries, 16 query partitions

1 write partition, 8k ops/s

184

C InvaliDB Performance: Latency Distribution

C.3 Comparison With Quaestor

Latency Distribution Under Increasing Query Load

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

2k queries, 1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

8k queries, 1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

16k queries, 1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

24k queries, 1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

28k queries, 1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

30k queries, 1k ops/s, 16 query partitions, 1 write partition

Quaestor (1 app server)
InvaliDB

185

Appendix

Latency Distribution Under Increasing Write Load

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

500 ops/s, 1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

1.5k ops/s, 1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

3k ops/s, 1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

4.5k ops/s, 1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

6k ops/s, 1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

0 20 40 60 80 100

latency (ms)

0

0.05

0.1

0.15

0.2

fr
e
q
u
e
n
cy

7.5k ops/s, 1k queries, 1 query partition, 16 write partitions

Quaestor (1 app server)
InvaliDB

186

D Websocket Messaging Protocol for Quaestor’s Real-Time Queries

D Websocket Messaging Protocol for Quaestor’s Real-Time
Queries

Section 5.2.3 provides an overview over the messages that are exchanged between

Quaestor’s client and server to provide real-time queries. The following provides

examples and a detailed description of the attributes each message type carries.

Essentially, the messages can be separated into two basic types:

• Client-to-server (request)messages are sent from the client towards the server to

initialize or terminate a real-time query. A request message is always one of the

following:

– subscribe message: initializes a real-time query.

– unsubscribe message: terminates a real-time query.

• Server-to-client (response)messages are sent from the server to the client to

keep the client up-to-date on the subscribed query’s result. A response message is

always one of the following.

– result message: indicates that the real-time query subscription has been

activated. If requested on subscription, the result message carries the initial

query result, i.e. all data items matching the query on subscription.

– match message: carries a result change delta.

– error message: terminates a real-time query because of some problem.

Every request and response message contains the following attributes:

• id: a universally unique identifier (UUID) generated by the client and initially

provided with the subscription message; required to distinguish between different

subscriptions transmitted over the same websocket connection.

• type: required to distinguish between the different kinds of messages (subscribe,
unsubscribe, result, match, error).

Request Messages: From Client to Server

There are only two types of messages that are sent from the client to the server via

websocket: subscribe messages and unsubscribe messages.

A subscribe message initializes a real-time query and therefore encapsulates what

information the client is interested in. A subscribe message may contain the following

specific attributes:

• token: authorization user token or null for queries executed anonymously.

• initial: a boolean value to indicate whether or not the initial result is requested.

187

Appendix

• bucket: the collection on which the query is performed.

• query: a MongoDB query as string (will be parsed into a JSON document

server-side).

• sort: a MongoDB sort document [Mon18a] as string (will be parsed into a JSON

document server-side)

• offset: an integer indicating the number of items to skip; e.g. an offset of 20 in a

sorted query result means the result will only contain items with index 20, 21, 22

and so forth.

• limit: an integer indicating the maximum number of items in the result.

• operations: the operations that can trigger an event.

• matchTypes: the match types that the client is interested in.

As illustrated in Listing D.1, the client has to provide a unique string (UUID) for the id
attribute when creating a subscribe message.

{
'id': 'be22181e -8561-445f-99a1-97ec2d4e253f',
'type': 'subscribe',
'token': null,
'initial': true,
'bucket': 'User',
'query': '{\'value\' : 42}',
'sort': '{\'name\': 1}',
'offset': 20,
'limit': 10,
'operations': ['any'],
'matchTypes': ['all']

}

Listing D.1: An exemplary subscribe message.

An unsubscribe message terminates the specified subscription. It does not have any

specific attributes (see Listing D.2).

{
'id': 'be22181e -8561-445f-99a1-97ec2d4e253f',
'type': 'unsubscribe'

}

Listing D.2: An exemplary unsubscribe message.

188

D Websocket Messaging Protocol for Quaestor’s Real-Time Queries

Response Messages: From Server to Client

In addition to the mandatory id and type attributes, every message issued by the server

has a date attribute that designates the server time at which the message was

generated.

A result message is always the first message sent to the client as it indicates the

activation of the real-time query subscription. It contains the complete initial query

result when and only when initial was specified as true on subscription. If present,

the initial result is given as a list of JSON documents under the data attribute; for sorted
queries, item order obeys the specified order. The result message shown in Listing D.3

carries an initial result with only a single item.

{
'id': 'be22181e -8561-445f-99a1-97ec2d4e253f',
'type': 'result',
'date': '2017-08-17T05:02:46.467Z',
'data': [{

'id': '/db/User/23edf763 -031a-42c1-b841-0d5a470f117d',
'version': 1,
'acl': null,
'createdAt': '2017-08-17T05:02:45.54Z',
'updatedAt': '2017-08-17T05:02:45.54Z',
'date': null,
'geo': null,
'name': 'Tim',
'ref': null,
'value': 42

}]
}

Listing D.3: An exemplary result message.

Amatch message encapsulates a change delta, i.e. a write operation that affected the

query result. A match message contains the attributes shown in Listing D.4:

• matchType: the match type as described in Section 3.2.1, for example add for an
entity that entered the result or remove for a deleted entity.

• operation: the time of operation that triggered the event; insert, update,
delete, or none (please refer to the parameter description on page 67 and the

example in Section 5.4.1 for details).

• index: for sorted queries only; the position of the modified entity within the result

as a list index (-1 for a deleted entity).

189

Appendix

• data: a JSON document representing the after-image of the updated entity.

{
'id': 'be22181e -8561-445f-99a1-97ec2d4e253f',
'type': 'match',
'date': '2017-08-17T05:02:46.848Z',
'matchType': 'add',
'operation': 'insert',
'index': 0,
'data': {

'id': '/db/User/4ab39068-de17-45c2-b9b3-c571d7542c8b',
'version': 1,
'acl': null,
'createdAt': '2017-08-17T05:02:46.829Z',
'updatedAt': '2017-08-17T05:02:46.829Z',
'date': null,
'geo': null,
'name': 'Al',
'ref': null,
'value': 42

}
}

Listing D.4: An exemplary match message.

An error message terminates a real-time query subscription and informs the client that

there was a problem. An error message always contains the error attribute with a JSON

document that holds details on the problem that occurred (see Listing D.5 for an

example).

{
'id': 'be22181e -8561-445f-99a1-97ec2d4e253f',
'type': 'error',
'date': '2017-08-17T05:07:38.008Z',
'error': {

'message': 'Too many active subscriptions (only 20
allowed)!',

'status': 429,
'reason': 'Too Many Requests'

}
}

Listing D.5: An exemplary error message.

190

Bibliography

[AAB+05] A���®, Daniel J. ; A«Ã��, Yanif ; B�½�þ®ÄÝ»�, Magdalena ; C�ã®Äã�Ã�½, Ugur ;

C«�ÙÄ®��», Mitch ; Hó�Ä¦, Jeong-Hyon ; L®Ä�Ä�Ù, Wolfgang ; M�Ý»�ù,

Anurag S. ; R�Ý®Ä, Alexander ; Rùò»®Ä�, Esther ; T�ã�ç½, Nesime ; X®Ä¦, Ying ;

Z�ÊÄ®», Stan: The Design of the Borealis Stream Processing Engine. In:

Second Biennial Conference on Innovative Data Systems Research (CIDR

2005). Asilomar, CA, January 2005

[ABB+13] A»®��ç, Tyler ; B�½®»Êò, Alex ; B�»®ÙÊ¦½ç, Kaya et al.: MillWheel:

Fault-Tolerant Stream Processing at Internet Scale. In: Very Large Data

Bases, 2013, pp. 734–746

[ABB+16] Chapter STREAM: The Stanford Data Stream Management System.

In: AÙ�Ýç, Arvind ; B���Ê�», Brian ; B��ç, Shivnath ; C®�Ý½�ó®�þ, John ;

D�ã�Ù, Mayur ; IãÊ, Keith ; MÊãó�Ä®, Rajeev ; SÙ®ò�Ýã�ò�, Utkarsh ; W®�ÊÃ,

Jennifer: Data Stream Management: Processing High-Speed Data Streams.

Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. – ISBN

978–3–540–28608–0, 317–336

[ABC+15] A»®��ç, Tyler ; BÙ��Ý«�ó, Robert ; C«�Ã��ÙÝ, Craig ; C«�ÙÄù�», Slava ;

F�ÙÄ�Ä��þ-MÊ�ã�þçÃ�, Rafael J. ; L�ø, Reuven ; M�V��ãù, Sam ; M®½½Ý,

Daniel ; P�ÙÙù, Frances ; S�«Ã®�ã, Eric ; W«®ãã½�, Sam: The Dataflow Model:

A Practical Approach to Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, Out-of-Order Data Processing. In: Proceedings

of the VLDB Endowment 8 (2015), pp. 1792–1803

[ABD+13] AÄ�Äã«�Ä�Ù�ù�Ä�Ä, Rajagopal ; B�Ý»�Ù, Venkatesh ; D�Ý, Sumit ; GçÖã�,

Ashish et al.: Photon: Fault-tolerant and Scalable Joining of Continuous

Data Streams. In: SIGMOD ’13, 2013

[ABE+14] A½�ø�Ä�ÙÊò, Alexander ; B�Ù¦Ã�ÄÄ, Rico ; Eó�Ä, Stephan et al.: The

Stratosphere Platform for Big Data Analytics. In: The VLDB Journal (2014).

http://dx.doi.org/10.1007/s00778-014-0357-y. – DOI

10.1007/s00778–014–0357–y. – ISSN 1066–8888

[ABW06] AÙ�Ýç, Arvind ; B��ç, Shivnath ; W®�ÊÃ, Jennifer: The CQL Continuous

Query Language: Semantic Foundations and Query Execution. In: The VLDB

Journal 15 (2006), June, no. 2, 121–142.

http://dx.doi.org/10.1007/s00778-004-0147-z. – DOI

10.1007/s00778–004–0147–z. – ISSN 1066–8888

191

http://dx.doi.org/10.1007/s00778-014-0357-y
http://dx.doi.org/10.1007/s00778-004-0147-z

Bibliography

[ACC+03] A���®, Daniel J. ; C�ÙÄ�ù, Don ; C�ã®Äã�Ã�½, Ugur ; C«�ÙÄ®��», Mitch ;

CÊÄò�ù, Christian ; L��, Sangdon ; SãÊÄ��Ù�»�Ù, Michael ; T�ã�ç½, Nesime ;

Z�ÊÄ®», Stan: Aurora: A New Model and Architecture for Data Stream

Management. In: The VLDB Journal 12 (2003), August, no. 2, 120–139.

http://dx.doi.org/10.1007/s00778-003-0095-z. – DOI

10.1007/s00778–003–0095–z. – ISSN 1066–8888

[AGR+09] A½®, M. H. ; G�Ù��, C. ; R�Ã�Ä, B. S. ; S�þ¦®Ä, B. ; T�ÙÄ�òÝ»®, T. ; V�ÙÊÄ�, T. ;

W�Ä¦, P. ; Z�����», P. ; AÄ�Äã«�Ä�Ù�ù�Ä, A. ; K®Ù®½Êò, A. ; Lç, M. ; R�®þÃ�Ä,

A. ; KÙ®Ý«Ä�Ä, R. ; S�«®Ä�½�ç�Ù, R. ; GÙ��Ý, T. ; B¹�½�ã®�«, S. ; C«�Ä�Ù�ÃÊç½®,

B. ; GÊ½�Ýã�®Ä, J. ; B«�ã, S. ; L®, Ying ; D® N®�Ê½�, V. ; W�Ä¦, X. ; M�®�Ù, David ;

GÙ�½½, S. ; N�ÄÊ, O. ; S�ÄãÊÝ, I.: Microsoft CEP Server and Online Behavioral

Targeting. In: Proc. VLDB Endow. 2 (2009), August, no. 2, 1558–1561.

http://dx.doi.org/10.14778/1687553.1687590. – DOI

10.14778/1687553.1687590. – ISSN 2150–8097

[AH98] AÄ�½�Ù, Sten F. (ed.) ; H�ÄÝÝÊÄ, Jörgen (ed.): Active, Real-Time, and

Temporal Database Systems. Springer Berlin Heidelberg, 1998 (Lecture

Notes in Computer Science 1553)

[Aki15] A»®��ç, Tyler: The world beyond batch: Streaming 101. In: O’Reilly Media

(2015), August. https://www.oreilly.com/ideas/the-world-beyond-
batch-streaming-101. – Accessed: 2017-05-21

[Aki16] A»®��ç, Tyler: The world beyond batch: Streaming 102. In: O’Reilly Media

(2016), January. https://www.oreilly.com/ideas/the-world-beyond-
batch-streaming-102. – Accessed: 2017-05-21

[ALS10] AÄ��ÙÝÊÄ, J. C. ; L�«Ä�Ù�ã, Jan ; S½�ã�Ù, Noah: CouchDB: The Definitive

Guide. 1st. O’Reilly Media, Inc., 2010. – ISBN 0596155891, 9780596155896

[Ama18] AÃ�þÊÄ K®Ä�Ý®Ý: Amazon Kinesis. https://aws.amazon.com/kinesis/.
version: 2018. – Accessed: 2018-08-19

[AN04] Aù��, Ahmed M. ; N�ç¦«ãÊÄ, Jeffrey F.: Static Optimization of Conjunctive

Queries with Sliding Windows over Infinite Streams. In: Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data. New

York, NY, USA : ACM, 2004 (SIGMOD ’04). – ISBN 1–58113–859–8, 419–430

[ANS86] ANSI: X3.135-1986: Information Systems – Database Language – SQL /

American National Standards Institute. 1986. – Standard

[Apa15] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: The Apache Software Foundation

Announces Apache®Flink™as a Top-Level Project. In: Apache Software

Foundation Blog (2015), January. https://blogs.apache.org/
foundation/entry/the_apache_software_foundation_announces69. –
Accessed: 2016-11-25

192

http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.14778/1687553.1687590
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://aws.amazon.com/kinesis/
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces69
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces69

Bibliography

[Apa16a] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Announcing Apache Flink 1.0.0. In: Apache

Flink Blog (2016), March.

https://flink.apache.org/news/2016/03/08/release-1.0.0.html. –
Accessed: 2017-01-15

[Apa16b] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Apache Flink: Powered By Flink. In: Apache

Flink website (2016). https://flink.apache.org/poweredby.html. –
Accessed: 2016-10-17

[Apa16c] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: The Apache Software Foundation

Announces Apache®Apex™as a Top-Level Project. In: Apache Software

Foundation Blog (2016), April. https://blogs.apache.org/foundation/
entry/the_apache_software_foundation_announces90. – Accessed:

2016-11-25

[Apa16d] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Flink. https://flink.apache.org/.
version: 2016. – Accessed: 2016-09-18

[Apa16e] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Flume. https://flume.apache.org/.
version: 2016. – Accessed: 2016-10-17

[Apa16f] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Level of Parallelism in Data Processing. In:

Spark Streaming – 2.0.0 Documentation (2016).

https://spark.apache.org/docs/2.0.0/streaming-programming-
guide.html#level-of-parallelism-in-data-receiving. – Accessed:

2016-09-23

[Apa16g] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Powered By Spark. In: Apache Spark

Website (2016). https://cwiki.apache.org/confluence/display/
SPARK/Powered+By+Spark. – Accessed: 2016-10-17

[Apa16h] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: YARN. http://hadoop.apache.org/docs/
stable/hadoop-yarn/hadoop-yarn-site/YARN.html. version: 2016. –

Accessed: 2016-10-17

[Apa17] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Apache Beam Compatibility Matrix.

https://beam.apache.org/documentation/runners/capability-
matrix/. version: 2017. – Accessed: 2017-11-18

[Apa18a] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: ActiveMQ.

https://activemq.apache.org/. version: 2018. – Accessed: 2018-05-10

[Apa18b] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Apex. http://apex.apache.org/.
version: 2018. – Accessed: 2018-08-18

[Apa18c] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Beam. https://beam.apache.org/.
version: 2018. – Accessed: 2018-05-10

[Apa18d] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Calcite. https://calcite.apache.org/.
version: 2018. – Accessed: 2018-05-10

193

https://flink.apache.org/news/2016/03/08/release-1.0.0.html
https://flink.apache.org/poweredby.html
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces90
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces90
https://flink.apache.org/
https://flume.apache.org/
https://spark.apache.org/docs/2.0.0/streaming-programming-guide.html#level-of-parallelism-in-data-receiving
https://spark.apache.org/docs/2.0.0/streaming-programming-guide.html#level-of-parallelism-in-data-receiving
https://cwiki.apache.org/confluence/display/SPARK/Powered+By+Spark
https://cwiki.apache.org/confluence/display/SPARK/Powered+By+Spark
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://beam.apache.org/documentation/runners/capability-matrix/
https://beam.apache.org/documentation/runners/capability-matrix/
https://activemq.apache.org/
http://apex.apache.org/
https://beam.apache.org/
https://calcite.apache.org/

Bibliography

[Apa18e] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: CouchDB. http://couchdb.apache.org/.
version: 2018. – Accessed: 2018-05-10

[Apa18f] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: GitHub: Apache Apex Core.

https://github.com/apache/apex-core. version: 2018. – Accessed:

2018-08-18

[Apa18g] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ (ed.): Guaranteeing Message Processing.

Apache Software Foundation, 2018. http://storm.apache.org/releases/
1.2.2/Guaranteeing-message-processing.html. – Accessed: 2018-08-19

[Apa18h] AÖ��«� SÊ¥ãó�Ù� FÊçÄ��ã®ÊÄ: Qpid. https://qpid.apache.org/.
version: 2018. – Accessed: 2018-05-10

[Ara13] AÙ�Ä¦Ê, Mauricio: Mobile QoS Management Using Complex Event

Processing. In: Proceedings of the 7th ACM International Conference on

Distributed Event-based Systems. New York, NY, USA : ACM, 2013 (DEBS

’13). – ISBN 978–1–4503–1758–0, 115–122

[ASC+09] A¦Ù�ó�½, Parag ; S®½��ÙÝã�®Ä, Adam ; CÊÊÖ�Ù, Brian F. ; SÙ®ò�Ýã�ò�, Utkarsh ;

R�Ã�»Ù®Ý«Ä�Ä, Raghu: Asynchronous View Maintenance for VLSD

Databases. In: Proceedings of the 2009 ACM SIGMOD International

Conference on Management of Data. New York, NY, USA : ACM, 2009

(SIGMOD ’09). – ISBN 978–1–60558–551–2, 179–192

[Azu18] Aþç½ SùÝã�ÃÝ, IÄ�.: Zing: Java for the Real Time Business.

https://www.azul.com/products/zing/whatisit/. version: 2018. –

Accessed: 2018-05-10

[Bad09] Chapter Extensions. In: B��®�, Antonio: Quantifiers in Action: Generalized

Quantification in Query, Logical and Natural Languages. Boston, MA :

Springer US, 2009. – ISBN 978–0–387–09564–6, 127–147

[Ban11] B�ÄÊÄ, Shay: Percolator. In: Elastic Blog (2011), February.

https://www.elastic.co/blog/percolator. – Accessed: 2017-11-17

[Baq18a] B�Ø�Ä�: Baqend. https://www.baqend.com/. version: 2018. – Accessed:

2018-05-10

[Baq18b] B�Ø�Ä�: Baqend JavaScript SDK and CLI for High-Performance Websites.

https://github.com/Baqend/js-sdk. version: 2018. – Accessed:

2018-05-10

[Baq18c] B�Ø�Ä�: Users, Roles, and Permissions. In: Baqend Guide (2018).

https://www.baqend.com/guide/topics/user-management/. – Accessed:

2018-05-10

[Bar13] B�ÙÙ, Jeff: Amazon ElastiCache – NowWith a Dash of Redis. In: AWS News

Blog (2013), September. https://aws.amazon.com/blogs/aws/amazon-
elasticache-now-with-a-dash-of-redis/. – Accessed: 2018-05-28

194

http://couchdb.apache.org/
https://github.com/apache/apex-core
http://storm.apache.org/releases/1.2.2/Guaranteeing-message-processing.html
http://storm.apache.org/releases/1.2.2/Guaranteeing-message-processing.html
https://qpid.apache.org/
https://www.azul.com/products/zing/whatisit/
https://www.elastic.co/blog/percolator
https://www.baqend.com/
https://github.com/Baqend/js-sdk
https://www.baqend.com/guide/topics/user-management/
https://aws.amazon.com/blogs/aws/amazon-elasticache-now-with-a-dash-of-redis/
https://aws.amazon.com/blogs/aws/amazon-elasticache-now-with-a-dash-of-redis/

Bibliography

[BBC+11] B�»�Ù, Jason ; BÊÄ�, Chris ; CÊÙ��ãã, James C. ; FçÙÃ�Ä, J. J. ; K«ÊÙ½®Ä,

Andrey ; L�ÙÝÊÄ, James ; L�ÊÄ, Jean-Michel ; L®, Yawei ; L½Êù�, Alexander ;

YçÝ«ÖÙ�»«, Vadim: Megastore: Providing Scalable, Highly Available Storage

for Interactive Services. In: CIDR vol. 11, 2011, pp. 223–234

[BBD+02] B���Ê�», Brian ; B��ç, Shivnath ; D�ã�Ù, Mayur ; MÊãó�Ä®, Rajeev ; W®�ÊÃ,

Jennifer: Models and Issues in Data Stream Systems. In: Proceedings of the

Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems. New York, NY, USA : ACM, 2002 (PODS ’02). – ISBN

1–58113–507–6, 1–16

[BBF+10] B®�Ã, Alain ; BÊç®½½�ã, Eric ; F�Ä¦, Hanhua et al.: IBM Infosphere Streams

for Scalable, Real-time, Intelligent Transportation Services. In: Proceedings

of the 2010 ACM SIGMOD International Conference on Management of

Data, 2010. – ISBN 978–1–4503–0032–2

[BC79] BçÄ�Ã�Ä, O. P. ; C½�ÃÊÄÝ, Eric K.: Efficiently Monitoring Relational

Databases. In: ACM Trans. Database Syst. 4 (1979), September, no. 3,

368–382. http://dx.doi.org/10.1145/320083.320099. – DOI

10.1145/320083.320099. – ISSN 0362–5915

[BCL89] B½�»�½�ù, José A. ; CÊ�çÙÄ, Neil ; L�ÙÝÊÄ, Per-Ake: Updating Derived

Relations: Detecting Irrelevant and Autonomously Computable Updates. In:

ACM Trans. Database Syst. 14 (1989), September, no. 3, 369–400.

http://dx.doi.org/10.1145/68012.68015. – DOI 10.1145/68012.68015.

– ISSN 0362–5915

[BD91] BÙÊ�»ó�½½, Peter J. ; D�ò®Ý, Richard A.: Time Series: Theory and Methods.

2nd Edition. Springer Science & Business Media, 1991

[BD15] BÙçÄÝ, Ralf ; DçÄ»�½, Jürgen: Complex Event Processing: Komplexe Analyse

von massiven Datenströmen mit CEP. Springer Vieweg, 2015

[BDM07] B���Ê�», Brian ; D�ã�Ù, Mayur ; MÊãó�Ä®, Rajeev: Load Shedding in Data

Stream Systems. In: Data Streams – Models and Algorithms vol. 31.

Springer, 2007, pp. 127–147

[BG13] B�®½®Ý, Peter ; G«Ê�Ý®, Ali: Eventual Consistency Today: Limitations,

Extensions, and Beyond. In: Queue 11 (2013), March, no. 3, 20:20–20:32.

http://dx.doi.org/10.1145/2460276.2462076. – DOI

10.1145/2460276.2462076. – ISSN 1542–7730

[BKS00] B�½½�ãÙ��«�, Ladjel ; K�Ù½�Ö�½�Ã, Kamalakar ; S�«Ä�®��Ù, Michel: On

Efficient Storage Space Distribution Among Materialized Views and Indices

in Data Warehousing Environments. In: Proceedings of the Ninth

International Conference on Information and Knowledge Management. New

York, NY, USA : ACM, 2000 (CIKM ’00). – ISBN 1–58113–320–0, 397–404

195

http://dx.doi.org/10.1145/320083.320099
http://dx.doi.org/10.1145/68012.68015
http://dx.doi.org/10.1145/2460276.2462076

Bibliography

[BL10] Bç���¥çÙÙ®, Francesco ; L�ø, Gianluca: Approximating Sliding Windows by

Cyclic Tree-like Histograms for Efficient Range Queries. In: Data Knowl. Eng.

69 (2010), September, no. 9, 979–997.

http://dx.doi.org/10.1016/j.datak.2010.05.002. – DOI

10.1016/j.datak.2010.05.002. – ISSN 0169–023X

[Blo70] B½ÊÊÃ, Burton H.: Space/Time Trade-offs in Hash Coding with Allowable

Errors. In: Commun. ACM 13 (1970), July, no. 7, 422–426.

http://dx.doi.org/10.1145/362686.362692. – DOI

10.1145/362686.362692. – ISSN 0001–0782

[BLT86] B½�»�½�ù, José A. ; L�ÙÝÊÄ, Per-Ake ; TÊÃÖ�, Frank W.: Efficiently Updating

Materialized Views. In: SIGMOD Rec. 15 (1986), June, no. 2, 61–71.

http://dx.doi.org/10.1145/16856.16861. – DOI 10.1145/16856.16861.

– ISSN 0163–5808

[BM90] B½�»�½�ù, José A. ; M�Ùã®Ä, Nancy L.: Join Index, Materialized View, and

Hybrid-Hash Join: A Performance Analysis. In: Proceedings of the Sixth

International Conference on Data Engineering. Washington, DC, USA : IEEE

Computer Society, 1990. – ISBN 0–8186–2025–0, 256–263

[BM+17] BçÙ», Nikolas ; M�Ù»ã�ÄÄ�Ù, Nilan et al.: GraphQL vs. Firebase. In:

Graphcool Docs (2017). https://www.graph.cool/docs/tutorials/
graphql-vs-firebase-chi6oozus1/. – Accessed: 2017-07-18

[BMH+16] B½®ãþ, Craig ; M®��½�ãÊÄ, Tim ; HÊó�Ý, Jason ; F�½�Ê, Mark ; R�¹�, Harvey ;

Sã�¥¥ÊÙ�, Randy ; PçÙ�ù, Jon ; P�Ù�½ã�, Patrick: Oracle Coherence 12c:

Planning a Successful Deployment / Oracle Corporation. 2016. – technical

report

[BMP+06] BÊÄÊÃ®, Flavio ; M®ãþ�ÄÃ��«�Ù, Michael ; P�Ä®¦Ù�«ù, Rina ; S®Ä¦«, Sushil ;

V�Ù¦«�Ý�, George: An improved construction for counting bloom filters. In:

Algorithms–ESA 2006. Springer, 2006, pp. 684–695

[BMS17] BçÙ», Nikolas ; M�Ù»ã�ÄÄ�Ù, Nilan ; S�«®�»½®Ä¦, Johannes: How to build a

Real-Time Chat with GraphQL Subscriptions and Apollo? In: Graphcool Docs

(2017). https://www.graph.cool/docs/tutorials/worldchat-
subscriptions-example-ui0eizishe/. – Accessed: 2017-07-18

[Bov17] BÊò�Ù, Pier: Firebase: the great, the meh, and the ugly. In: freeCodeCamp

Blog (2017), January. https://medium.freecodecamp.com/firebase-the-
great-the-meh-and-the-ugly-a07252fbcf15. – Accessed: 2017-05-21

[Bro15] BÙÊóÄ, Cole: Introducing Concord. In: Concord Blog (2015), November.

http://concord.io/posts/introducing_concord. – Accessed:

2016-09-21

196

http://dx.doi.org/10.1016/j.datak.2010.05.002
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/16856.16861
https://www.graph.cool/docs/tutorials/graphql-vs-firebase-chi6oozus1/
https://www.graph.cool/docs/tutorials/graphql-vs-firebase-chi6oozus1/
https://www.graph.cool/docs/tutorials/worldchat-subscriptions-example-ui0eizishe/
https://www.graph.cool/docs/tutorials/worldchat-subscriptions-example-ui0eizishe/
https://medium.freecodecamp.com/firebase-the-great-the-meh-and-the-ugly-a07252fbcf15
https://medium.freecodecamp.com/firebase-the-great-the-meh-and-the-ugly-a07252fbcf15
http://concord.io/posts/introducing_concord

Bibliography

[BROL14] BÊù»®Ä, Oscar ; R®ã�«®�, Sam ; O’CÊÄÄ�½½, Ian ; L®Ä, Jimmy: Summingbird: A

Framework for Integrating Batch and Online MapReduce Computations. In:

Proc. VLDB Endow. 7 (2014), August, no. 13, 1441–1451.

http://dx.doi.org/10.14778/2733004.2733016. – DOI

10.14778/2733004.2733016. – ISSN 2150–8097

[BSW04] B��ç, Shivnath ; SÙ®ò�Ýã�ò�, Utkarsh ; W®�ÊÃ, Jennifer: Exploiting

K-constraints to Reduce Memory Overhead in Continuous Queries over Data

Streams. In: ACM Trans. Database Syst. 29 (2004), September, no. 3,

545–580. http://dx.doi.org/10.1145/1016028.1016032. – DOI

10.1145/1016028.1016032. – ISSN 0362–5915

[BVF+12] B�®½®Ý, Peter ; V�Ä»�ã�Ù�Ã�Ä, Shivaram ; FÙ�Ä»½®Ä, Michael J. ; H�½½�ÙÝã�®Ä,

Joseph M. ; SãÊ®��, Ion: Probabilistically bounded staleness for practical

partial quorums. In: Proceedings of the VLDB Endowment 5 (2012), no. 8,

776–787. http://dl.acm.org/citation.cfm?id=2212359

[ÇAA+16] Ç�ã®Äã�Ã�½, Uğur ; A���®, Daniel ; A«Ã��, Yanif ; B�½�»Ù®Ý«Ä�Ä, Hari ;

B�½�þ®ÄÝ»�, Magdalena ; C«�ÙÄ®��», Mitch ; Hó�Ä¦, Jeong-Hyon ; M����Ä,

Samuel ; M�Ý»�ù, Anurag ; R�Ý®Ä, Alexander ; Rùò»®Ä�, Esther ; SãÊÄ��Ù�»�Ù,

Mike ; T�ã�ç½, Nesime ; X®Ä¦, Ying ; Z�ÊÄ®», Stan: The Aurora and Borealis

Stream Processing Engines. In: G�ÙÊ¥�½�»®Ý, Minos (ed.) ; G�«Ù»�, Johannes

(ed.) ; R�ÝãÊ¦®, Rajeev (ed.): Data Stream Management: Processing

High-Speed Data Streams. Berlin, Heidelberg : Springer Berlin Heidelberg,

2016. – ISBN 978–3–540–28608–0, pp. 337–359

[CAB+81] C«�Ã��Ù½®Ä, Donald D. ; AÝãÙ�«�Ä, Morton M. ; B½�Ý¦�Ä, Michael W. ; GÙ�ù,

James N. ; K®Ä¦, W. F. ; L®Ä�Ý�ù, Bruce G. ; LÊÙ®�, Raymond ; M�«½, James W.

; PÙ®��, Thomas G. ; PçãþÊ½ç, Franco ; S�½®Ä¦�Ù, Patricia G. ; S�«»Ê½Ä®�»,

Mario ; S½çãþ, Donald R. ; TÙ�®¦�Ù, Irving L. ; W���, Bradford W. ; YÊÝã,

Robert A.: A History and Evaluation of System R. In: Commun. ACM 24

(1981), October, no. 10, 632–646.

http://dx.doi.org/10.1145/358769.358784. – DOI

10.1145/358769.358784. – ISSN 0001–0782

[Cal17] C�½�®ã� (ed.): Streaming. Calcite, November 2017.

https://calcite.apache.org/docs/stream.html. – Accessed:

2017-11-26

[Can18] Can I use WebSockets? https://caniuse.com/#feat=websockets.
version:May 2018. – Accessed: 2018-05-21

[CB74] C«�Ã��Ù½®Ä, Donald D. ; BÊù��, Raymond F.: SEQUEL: A Structured English

Query Language. In: Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD)

Workshop on Data Description, Access and Control. New York, NY, USA :

ACM, 1974 (SIGFIDET ’74), 249–264

197

http://dx.doi.org/10.14778/2733004.2733016
http://dx.doi.org/10.1145/1016028.1016032
http://dl.acm.org/citation.cfm?id=2212359
http://dx.doi.org/10.1145/358769.358784
https://calcite.apache.org/docs/stream.html
https://caniuse.com/#feat=websockets

Bibliography

[CBHB09] C«�ò�Ý, Leonardo Weiss F. ; Bç�«Ã�ÄÄ, Erik ; Hç�Ý»�, Fabian ; BÏ«Ã,

Klemens: Towards Materialized View Selection for Distributed Databases.

In: Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology. New York, NY, USA : ACM,

2009 (EDBT ’09). – ISBN 978–1–60558–422–5, 1088–1099

[CCC+02] C�ÙÄ�ù, Don ; C�ã®Äã�Ã�½, Uǧur ; C«�ÙÄ®��», Mitch ; CÊÄò�ù, Christian ; L��,

Sangdon ; S�®�Ã�Ä, Greg ; SãÊÄ��Ù�»�Ù, Michael ; T�ã�ç½, Nesime ; Z�ÊÄ®»,

Stan: Monitoring Streams: A New Class of Data Management Applications.

In: Proceedings of the 28th International Conference on Very Large Data

Bases, VLDB Endowment, 2002 (VLDB ’02), 215–226

[CCD+03] C«�Ä�Ù�Ý�»�Ù�Ä, Sirish ; CÊÊÖ�Ù, Owen ; D�Ý«Ö�Ä��, Amol ; FÙ�Ä»½®Ä,

Michael J. ; H�½½�ÙÝã�®Ä, Joseph M. ; HÊÄ¦, Wei ; KÙ®Ý«Ä�ÃçÙã«ù, Sailesh ;

M����Ä, Samuel R. ; R�®ÝÝ, Fred ; S«�«, Mehul A.: TelegraphCQ: Continuous

Dataflow Processing. In: Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data. New York, NY, USA :

ACM, 2003 (SIGMOD ’03). – ISBN 1–58113–634–X, 668–668

[CDE+13] CÊÙ��ãã, James C. ; D��Ä, Jeffrey ; EÖÝã�®Ä, Michael ; F®»�Ý, Andrew ; FÙÊÝã,

Christopher ; FçÙÃ�Ä, J. J. ; G«�Ã�ó�ã, Sanjay ; Gç��Ù�ò, Andrey ; H�®Ý�Ù,

Christopher ; HÊ�«Ý�«®½�, Peter ; HÝ®�«, Wilson ; K�Äã«�», Sebastian ;

KÊ¦�Ä, Eugene ; L®, Hongyi ; L½Êù�, Alexander ; M�½Ä®», Sergey ; Mó�çÙ�,

David ; N�¦½�, David ; Qç®Ä½�Ä, Sean ; R�Ê, Rajesh ; RÊ½®¦, Lindsay ; S�®ãÊ,

Yasushi ; SþùÃ�Ä®�», Michal ; T�ù½ÊÙ, Christopher ; W�Ä¦, Ruth ; WÊÊ�¥ÊÙ�,

Dale: Spanner: Google’s Globally Distributed Database. In: ACM Trans.

Comput. Syst. 31 (2013), August, no. 3, pp. 8:1–8:22.

http://dx.doi.org/10.1145/2491245. – DOI 10.1145/2491245. – ISSN

0734–2071

[CDE+15] C«®Äã�Ö�½½®, Sanket ; D�¦®ã, Derek ; Eò�ÄÝ, Bobby ; F�Ù®ò�Ù, Reza ; GÙ�ò�Ý,

Tom ; HÊ½��Ù��ç¦«, Mark ; L®ç, Zhuo ; NçÝ��çÃ, Kyle ; P�ã®½, Kishorkumar ;

P�Ä¦, Boyang J. ; PÊç½ÊÝ»ù, Paul: Benchmarking Streaming Computation

Engines at Yahoo! In: Yahoo! Engineering Blog (2015), December.

http://yahooeng.tumblr.com/post/135321837876/benchmarking-
streaming-computation-engines-at. – Accessed: 2016-10-17

[CDG+06] C«�Ä¦, Fay ; D��Ä, Jeffrey ; G«�Ã�ó�ã, Sanjay ; HÝ®�«, Wilson C. ; W�½½��«,

Deborah A. ; BçÙÙÊóÝ, Mike ; C«�Ä�Ù�, Tushar ; F®»�Ý, Andrew ; GÙç��Ù,

Robert E.: Bigtable: A Distributed Storage System for Structured Data. In:

Proceedings of the 7th USENIX Symposium on Operating Systems Design and

Implementation - Volume 7. Berkeley, CA, USA : USENIX Association, 2006

(OSDI ’06), 15–15

198

http://dx.doi.org/10.1145/2491245
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

Bibliography

[CDK+14] C�ã®Äã�Ã�½, Ugur ; Dç, Jiang ; KÙ�Ý»�, Tim ; M����Ä, Samuel ; M�®�Ù, David

; M��«�Ä, John ; P�ò½Ê, Andrew ; SãÊÄ��Ù�»�Ù, Michael ; Sçã«�Ù½�Ä�, Erik ;

T�ã�ç½, Nesime ; Tç¥ã�, Kristin ; W�Ä¦, Hao ; Z�ÊÄ®», Stanley: S-Store: A

Streaming NewSQL System for Big Velocity Applications. In: Proc. VLDB

Endow. 7 (2014), August, no. 13, 1633–1636.

http://dx.doi.org/10.14778/2733004.2733048. – DOI

10.14778/2733004.2733048. – ISSN 2150–8097

[CDTW00] C«�Ä, Jianjun ; D�W®ãã, David J. ; T®�Ä, Feng ; W�Ä¦, Yuan: NiagaraCQ: A

Scalable Continuous Query System for Internet Databases. In: Proceedings

of the 2000 ACM SIGMOD International Conference on Management of

Data. New York, NY, USA : ACM, 2000 (SIGMOD ’00). – ISBN

1–58113–217–4, 379–390

[CFG+16] C«�Ä�Ù�ÃÊç½®, Badrish ; F�ÙÄ�Ä��þ, Raul C. ; GÊ½�Ýã�®Ä, Jonathan ;

E½��óù, Ahmed ; Qç�Ã�Ù, Abdul: Quill: Efficient, Transferable, and Rich

Analytics at Scale. In: International Conference on Very Large Databases

(PVLDB Vol. 9, Issue. 14), 2016

[CGB+14] C«�Ä�Ù�ÃÊç½®, Badrish ; GÊ½�Ýã�®Ä, Jonathan ; B�ÙÄ�ãã, Mike ; D�L®Ä�,

Robert ; F®Ý«�Ù, Danyel ; P½�ãã, John C. ; T�Ùó®½½®¦�Ù, James F. ; W�ÙÄÝ®Ä¦,

John: Trill: A High-performance Incremental Query Processor for Diverse

Analytics. In: Proc. VLDB Endow. 8 (2014), December, no. 4, 401–412.

http://dx.doi.org/10.14778/2735496.2735503. – DOI

10.14778/2735496.2735503. – ISSN 2150–8097

[CGH+17] C�Ù�ÊÄ�, Paris ; G�ò�ù, Gábor E. ; H�ÙÃ�ÄÄ, Gábor ; K�ãÝ®¥Ê�®ÃÊÝ, Asterios

; SÊãÊ, Juan ; M�Ù»½, Volker ; H�Ù®�®, Seif: Large-Scale Data Stream

Processing Systems. In: Handbook of Big Data Technologies. Springer, 2017,

pp. 219–260

[Cha95] C«�»Ù�ò�Ùã«ù, Sharma: Early Active Database Efforts: A Capsule Summary.

In: IEEE Trans. on Knowl. and Data Eng. 7 (1995), December, no. 6,

1008–1010. http://dx.doi.org/10.1109/69.476505. – DOI

10.1109/69.476505. – ISSN 1041–4347

[Che75] C«�Ä, Peter Pin-Shan: The Entity-relationship Model: Toward a Unified View

of Data. In: SIGIR Forum 10 (1975), December, no. 3, 9–9.

http://dx.doi.org/10.1145/1095277.1095279. – DOI

10.1145/1095277.1095279. – ISSN 0163–5840

[CL85] C«�Ä�ù, K. M. ; L�ÃÖÊÙã, Leslie: Distributed Snapshots: Determining Global

States of Distributed Systems. In: ACM Trans. Comput. Syst. 3 (1985),

February, no. 1, 63–75. http://dx.doi.org/10.1145/214451.214456. –
DOI 10.1145/214451.214456. – ISSN 0734–2071

199

http://dx.doi.org/10.14778/2733004.2733048
http://dx.doi.org/10.14778/2735496.2735503
http://dx.doi.org/10.1109/69.476505
http://dx.doi.org/10.1145/1095277.1095279
http://dx.doi.org/10.1145/214451.214456

Bibliography

[Clo18a] C½Êç� N�ã®ò� CÊÃÖçã®Ä¦ FÊçÄ��ã®ÊÄ (ed.): Does NATS guarantee message

delivery? Cloud Native Computing Foundation, 2018.

https://nats.io/documentation/faq/#gmd. – Accessed: 2018-05-28

[Clo18b] C½Êç� N�ã®ò� CÊÃÖçã®Ä¦ FÊçÄ��ã®ÊÄ: NATS. https://nats.io/.
version: 2018. – Accessed: 2018-05-28

[CM05] CÊÙÃÊ��, Graham ; Mçã«ç»Ù®Ý«Ä�Ä, S.: An Improved Data Stream

Summary: The Count-min Sketch and Its Applications. In: J. Algorithms 55

(2005), April, no. 1, 58–75.

http://dx.doi.org/10.1016/j.jalgor.2003.12.001. – DOI

10.1016/j.jalgor.2003.12.001. – ISSN 0196–6774

[CM12] Cç¦Ê½�, Gianpaolo ; M�Ù¦�Ù�, Alessandro: Processing Flows of

Information: From Data Stream to Complex Event Processing. In: ACM

Comput. Surv. 44 (2012), June, no. 3, 15:1–15:62.

http://dx.doi.org/10.1145/2187671.2187677. – DOI

10.1145/2187671.2187677. – ISSN 0360–0300

[CoC18] CÊC�½� �ù S�¦�M�ã«, IÄ�.: CoCalc. https://cocalc.com/. version: 2018. –

Accessed: 2018-05-10

[Cod70] CÊ��, E. F.: A Relational Model of Data for Large Shared Data Banks. In:

Commun. ACM 13 (1970), June, no. 6, 377–387.

http://dx.doi.org/10.1145/362384.362685. – DOI

10.1145/362384.362685. – ISSN 0001–0782

[Cod71] CÊ��, E. F.: A Data Base Sublanguage Founded on the Relational Calculus.

In: Proceedings of the 1971 ACM SIGFIDET (Now SIGMOD) Workshop on

Data Description, Access and Control. New York, NY, USA : ACM, 1971

(SIGFIDET ’71), 35–68

[Cod82] CÊ��, E. F.: Relational Database: A Practical Foundation for Productivity. In:

Commun. ACM 25 (1982), February, no. 2, 109–117.

http://dx.doi.org/10.1145/358396.358400. – DOI

10.1145/358396.358400. – ISSN 0001–0782

[Col16] CÊ½�Ã�Ä, Tom: The Oplog Observe Driver. In: Meteor Documentation

(2016). https://github.com/meteor/docs/blob/
cc3f8fe99b3db72c21ea2c0e8d7e574bca860ec6/long-form/oplog-
observe-driver.md. – Accessed: 2017-10-16

[Con18] CÊÄ�ÊÄ, Craig: sift.js. https://github.com/crcn/sift.js. version: 2018.

– Accessed: 2018-06-24

[Cor17] CÊÙÃÊ��, Graham: Data Sketching. In: Commun. ACM 60 (2017), August,

no. 9, 48–55. http://dx.doi.org/10.1145/3080008. – DOI

10.1145/3080008. – ISSN 0001–0782

200

https://nats.io/documentation/faq/#gmd
https://nats.io/
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1145/2187671.2187677
https://cocalc.com/
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/358396.358400
https://github.com/meteor/docs/blob/cc3f8fe99b3db72c21ea2c0e8d7e574bca860ec6/long-form/oplog-observe-driver.md
https://github.com/meteor/docs/blob/cc3f8fe99b3db72c21ea2c0e8d7e574bca860ec6/long-form/oplog-observe-driver.md
https://github.com/meteor/docs/blob/cc3f8fe99b3db72c21ea2c0e8d7e574bca860ec6/long-form/oplog-observe-driver.md
https://github.com/crcn/sift.js
http://dx.doi.org/10.1145/3080008

Bibliography

[CPM96] CÊ�«Ù�Ä�, Roberta ; P®Ù�«�Ý«, Hamid ; M�ããÊÝ, Nelson M.: Integrating

Triggers and Declarative Constraints in SQL Database Sytems. In:

Proceedings of the 22th International Conference on Very Large Data Bases.

San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 1996 (VLDB ’96).

– ISBN 1–55860–382–4, 567–578

[CRP+10] C«�Ã��ÙÝ, Craig ; R�Ä®ó�½�, Ashish ; P�ÙÙù, Frances ; A��ÃÝ, Stephen ;

H�ÄÙù, Robert ; BÙ��Ý«�ó, Robert ; N�ã«�Ä: FlumeJava: Easy, Efficient

Data-Parallel Pipelines. In: ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). 2 Penn Plaza, Suite 701 New

York, NY 10121-0701, 2010, 363-375

[CRW01] C�Ùþ�Ä®¦�, Antonio ; RÊÝ�Ä�½çÃ, David S. ; WÊ½¥, Alexander L.: Design and

Evaluation of a Wide-area Event Notification Service. In: ACM Trans.

Comput. Syst. 19 (2001), August, no. 3, 332–383.

http://dx.doi.org/10.1145/380749.380767. – DOI

10.1145/380749.380767. – ISSN 0734–2071

[CTE15] C�½��®, Ufuk ; TþÊçÃ�Ý, Kostas ; Eó�Ä, Stephan: How Apache

Flink™handles backpressure. In: data Artisans Blog (2015), August.

http://data-artisans.com/how-flink-handles-backpressure/. –
Accessed: 2017-09-12

[CTW05] C½®�», Cliff ; T�Ä�, Gil ; WÊ½¥, Michael: The Pauseless GC Algorithm. In:

Proceedings of the 1st ACM/USENIX International Conference on Virtual

Execution Environments. New York, NY, USA : ACM, 2005 (VEE ’05). – ISBN

1–59593–047–7, 46–56

[CVZ13] C�Ù�ÊÄ�, P. ; V�Ä�®»�Ý, K. ; Z�½ÊÝ«Ä¹�, F.: Towards Highly Available Complex

Event Processing Deployments in the Cloud. In: 2013 Seventh International

Conference on Next Generation Mobile Apps, Services and Technologies,

2013. – ISSN 2161–2889, pp. 153–158

[CWI+16] C«�Ä, Guoqiang J. ; W®�Ä�Ù, Janet L. ; Iù�Ù, Shridhar ; J�®Ýó�½, Anshul ; L�®,

Ran ; S®Ã«�, Nikhil ; W�Ä¦, Wei ; W®½¥ÊÄ¦, Kevin ; W®½½®�ÃÝÊÄ, Tim ; Y®½Ã�þ,

Serhat: Realtime Data Processing at Facebook. In: Proceedings of the 2016

International Conference on Management of Data. New York, NY, USA :

ACM, 2016 (SIGMOD ’16). – ISBN 978–1–4503–3531–7, 1087–1098

[CY12] C«®Ù»Êò�, Rada ; Y�Ä¦, Jun: Materialized Views. In: Foundations and Trends

in Databases 4 (2012), no. 4, 295-405.

http://dx.doi.org/10.1561/1900000020. – DOI 10.1561/1900000020. –

ISSN 1931–7883

[DA09] D«Êã�, C.A. ; A½®, M.S.: Materialized View Selection in Data Warehousing: A

Survey. In: Materialized View Selection in Data Warehousing: A Survey 9

(2009), no. 3, pp. 401–414

201

http://dx.doi.org/10.1145/380749.380767
http://data-artisans.com/how-flink-handles-backpressure/
http://dx.doi.org/10.1561/1900000020

Bibliography

[Dan17] D�Ä®�½Ý, Eric: MongoDB Stitch – Backend as a Service (commentary). In:

Hacker News (2017). https://news.ycombinator.com/item?id=14595456.
– Accessed 2017-11-17

[Dat18] D�ã��Ù®�»Ý IÄ�.: Resilient Distributed Dataset (RDD). In: Databricks

Glossary (2018). https://databricks.com/glossary/what-is-rdd. –
Accessed: 2018-07-22

[Dav17a] D�ò®Ý, A. Jesse J.: New Driver Features for MongoDB 3.6 (commentary). In:

emptysquare Blog (2017), October. https://emptysqua.re/blog/driver-
features-for-mongodb-3-6/#comment-3574381334. – Accessed:

2017-11-17

[Dav17b] D�ò®Ý, A. Jesse J.: New Driver Features for MongoDB 3.6: Notification API.

In: emptysquare Blog (2017), June.

https://emptysqua.re/blog/driver-features-for-mongodb-3-6/. –
Accessed: 2018-04-23

[DBB+88] D�ù�½, U. ; B½�çÝã�®Ä, B. ; Bç�«Ã�ÄÄ, A. ; C«�»Ù�ò�Ùã«ù, U. ; HÝç, M. ;

L��®Ä, R. ; M�C�Ùã«ù, D. ; RÊÝ�Äã«�½, A. ; S�Ù®Ä, S. ; C�Ù�ù, M. J. ; L®òÄù, M. ;

J�ç«�Ù®, R.: The HiPAC Project: Combining Active Databases and Timing

Constraints. In: SIGMOD Rec. 17 (1988), March, no. 1, 51–70.

http://dx.doi.org/10.1145/44203.44208. – DOI 10.1145/44203.44208.

– ISSN 0163–5808

[DBS+12] D�Ý, Shirshanka ; BÊã�ò, Chavdar ; SçÙ½�»�Ù, Kapil ; G«ÊÝ«, Bhaskar ;

V�Ù���Ù�¹�Ä, Balaji ; N�¦�Ù�¹, Sunil ; Z«�Ä¦, David ; G�Ê, Lei ; W�Ýã�ÙÃ�Ä,

Jemiah ; G�Äã®, Phanindra ; S«»Ê½Ä®», Boris ; TÊÖ®ó�½�, Sajid ; P��«�ò,

Alexander ; SÊÃ�ÝçÄ��Ù�Ã, Naveen ; Sç�Ù�Ã�Ä®�Ã, Subbu: All Aboard the

Databus!: Linkedin’s Scalable Consistent Change Data Capture Platform. In:

Proceedings of the Third ACM Symposium on Cloud Computing. New York,

NY, USA : ACM, 2012 (SoCC ’12). – ISBN 978–1–4503–1761–0, 18:1–18:14

[Del15] D�½½’AØç®½�, Luigi: LiveQuery. In: OrientDB Blog (2015), October.

http://orientdb.com/livequery/. – Accessed: 2017-07-09

[DF14] DçÄÄ®Ä¦, Ted ; FÙ®��Ã�Ä, Ellen ; LÊç»®��Ý, Mike (ed.): Time Series

Databases: New Ways to Store and Access Data. O’Reilly Media, 2014

[DG04] D��Ä, Jeffrey ; G«�Ã�ó�ã, Sanjay: MapReduce: Simplified Data Processing

on Large Clusters. In: Proceedings of the 6th Conference on Symposium on

Operating Systems Design & Implementation - Volume 6. Berkeley, CA, USA :

USENIX Association, 2004 (OSDI’04), 10–10

[DGIM02] D�ã�Ù, Mayur ; G®ÊÄ®Ý, Aristides ; IÄ�ù», Piotr ; MÊãó�Ä®, Rajeev:

Maintaining Stream Statistics over Sliding Windows. In: SIAM Journal on

Computing 31 (2002), no. 6, pp. 1794–1813

202

https://news.ycombinator.com/item?id=14595456
https://databricks.com/glossary/what-is-rdd
https://emptysqua.re/blog/driver-features-for-mongodb-3-6/#comment-3574381334
https://emptysqua.re/blog/driver-features-for-mongodb-3-6/#comment-3574381334
https://emptysqua.re/blog/driver-features-for-mongodb-3-6/
http://dx.doi.org/10.1145/44203.44208
http://orientdb.com/livequery/

Bibliography

[DHJ+07] D�C�Ä�®�, G. ; H�ÝãÊÙçÄ, D. ; J�ÃÖ�Ä®, M. ; K�»ç½�Ö�ã®, G. ; L�»Ý«Ã�Ä, A. ;

P®½�«®Ä, A. ; S®ò�Ýç�Ù�Ã�Ä®�Ä, S. ; VÊÝÝ«�½½, P. ; VÊ¦�½Ý, W.: Dynamo:

Amazon’s highly available key-value store. In: ACM SOSP vol. 14, 2007 (17),

pp. 205–220

[DJPQ94] D°�þ, Oscar ; J�®Ã�, Arturo ; P�ãÊÄ, Norman W. ; Q�®Ã�Ù®, Ghassan al:

Supporting Dynamic Displays Using Active Rules. In: SIGMOD Rec. 23 (1994),

March, no. 1, 21–26. http://dx.doi.org/10.1145/181550.181555. – DOI

10.1145/181550.181555. – ISSN 0163–5808

[DLOM02] D�Ã�®Ä�, Erik D. ; LÌÖ�þ-OÙã®þ, Alejandro ; MçÄÙÊ, J. I.: Frequency

Estimation of Internet Packet Streams with Limited Space. In: Proceedings

of the 10th Annual European Symposium on Algorithms. London, UK, UK :

Springer-Verlag, 2002 (ESA ’02). – ISBN 3–540–44180–8, 348–360

[Dro17] DÙÊ�®», David: Will Google Build Your Product? In: David Drobik – Blog

(2017), October. https://medium.com/@daviddrobik/will-google-
build-your-product-56508d19524a. – Accessed: 2017-12-23

[DST15] D� S®½ò�, Maxwell D. ; T�ò�Ù�Ý, Hugo L.: Redis Essentials. Packt Publishing,

2015. – ISBN 1784392456, 9781784392451

[Duf17] Dç¥�ã�½, Alex: Introducing Cloud Firestore: Our New Document Database

for Apps. In: Firebase Blog (2017), October.

https://firebase.googleblog.com/2017/10/introducing-cloud-
firestore.html. – Accessed: 2017-12-19

[EC75] EÝó�Ù�Ä, Kapali P. ; C«�Ã��Ù½®Ä, Donald D.: Functional Specifications of a

Subsystem for Data Base Integrity. In: Proceedings of the 1st International

Conference on Very Large Data Bases. New York, NY, USA : ACM, 1975 (VLDB

’75). – ISBN 978–1–4503–3920–9, 48–68

[ECM17] ECMA IÄã�ÙÄ�ã®ÊÄ�½: ECMAScript 2017 Language Specification. 8th Edition,

June 2017

[Ela18] E½�Ýã®�Ý��Ù�«: Elasticsearch.

https://www.elastic.co/products/elasticsearch/. version: 2018. –

Accessed: 2018-05-10

[Elk90] E½»�Ä, Charles: Independence of Logic Database Queries and Update. In:

Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems. New York, NY, USA : ACM, 1990 (PODS ’90).

– ISBN 0–89791–352–3, 154–160

[ENL11] Eãþ®ÊÄ, Opher ; N®�½�ãã, Peter ; Lç�»«�Ã, David C. ; Sã®Ù½®Ä¦, Sebastian

(ed.): Event processing in action. Manning Greenwich, 2011

[Eri98] EÙ®»ÝÝÊÄ, Joakim: Real-Time and Active Databases: A Survey. In: AÄ�½�Ù,

Sten F. (ed.) ; H�ÄÝÝÊÄ, Jörgen (ed.): Active, Real-Time, and Temporal

203

http://dx.doi.org/10.1145/181550.181555
https://medium.com/@daviddrobik/will-google-build-your-product-56508d19524a
https://medium.com/@daviddrobik/will-google-build-your-product-56508d19524a
https://firebase.googleblog.com/2017/10/introducing-cloud-firestore.html
https://firebase.googleblog.com/2017/10/introducing-cloud-firestore.html
https://www.elastic.co/products/elasticsearch/

Bibliography

Database Systems: Second International Workshop, ARTDB-97 Como, Italy,

September 8–9, 1997 Proceedings. Berlin, Heidelberg : Springer Berlin

Heidelberg, 1998. – ISBN 978–3–540–49151–4, 1–23

[Eri14] EÙ®�ÝÝÊÄ: Trident – benchmarking performance. In: Ericsson Research Blog

(2014). http://www.ericsson.com/research-blog/data-knowledge/
trident-benchmarking-performance/. – Accessed: 2016-01-12

[Esp16] EÝÖ�ÙT��« (ed.): How does Esper scale? EsperTech, 2016.

http://www.espertech.com/esper/faq_esper.php#scaling. – Accessed:

2016-09-19

[Ewe16] Eó�Ä, Stephan: FLIP-6- Flink Deployment and Process Model- Standalone,

Yarn, Mesos, Kubernetes, etc. In: Flink Improvement Proposals (2016),

August. https://cwiki.apache.org/confluence/pages/
viewpage.action?pageId=65147077. – Accessed: 2017-11-17

[Feg16] F�¦�Ù�Ý, Leonidas: Incremental Query Processing on Big Data Streams. In:

IEEE Trans. on Knowl. and Data Eng. 28 (2016), November, no. 11,

2998–3012. http://dx.doi.org/10.1109/TKDE.2016.2601103. – DOI

10.1109/TKDE.2016.2601103. – ISSN 1041–4347

[Fie00] F®�½�®Ä¦, Roy T.: REST: Architectural Styles and the Design of Network-based

Software Architectures, University of California, Irvine, Doctoral dissertation,

2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[Fir16] F®Ù���Ý�: Firebase. https://firebase.google.com/. version: 2016. –

Accessed: 2016-09-18

[Fir17a] F®Ù���Ý�: Best practices for data structure: Avoid nesting data. In: Firebase

Docs (2017). https://firebase.google.com/docs/database/web/
structure-data#avoid_nesting_data. – Accessed: 2017-05-21

[Fir17b] F®Ù���Ý� (ed.): Choose a Database: Cloud Firestore or Realtime Database.

Firebase, December 2017.

https://firebase.google.com/docs/firestore/rtdb-vs-firestore. –
Accessed: 2017-12-19

[Fir17c] F®Ù���Ý� (ed.): Firestore: Quotas and Limits. Firebase, December 2017.

https://firebase.google.com/docs/firestore/quotas. – Accessed:

2017-12-19

[Fir17d] F®Ù���Ý� (ed.): Order and Limit Data with Cloud Firestore. Firebase,

December 2017. https://firebase.google.com/docs/firestore/query-
data/order-limit-data. – Accessed: 2017-12-19

[Fir17e] F®Ù���Ý� (ed.): Perform Simple and Compound Queries in Cloud Firestore.

Firebase, December 2017.

https://firebase.google.com/docs/firestore/query-data/queries. –

204

http://www.ericsson.com/research-blog/data-knowledge/trident-benchmarking-performance/
http://www.ericsson.com/research-blog/data-knowledge/trident-benchmarking-performance/
http://www.espertech.com/esper/faq_esper.php#scaling
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65147077
http://dx.doi.org/10.1109/TKDE.2016.2601103
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://firebase.google.com/
https://firebase.google.com/docs/database/web/structure-data#avoid_nesting_data
https://firebase.google.com/docs/database/web/structure-data#avoid_nesting_data
https://firebase.google.com/docs/firestore/rtdb-vs-firestore
https://firebase.google.com/docs/firestore/quotas
https://firebase.google.com/docs/firestore/query-data/order-limit-data
https://firebase.google.com/docs/firestore/query-data/order-limit-data
https://firebase.google.com/docs/firestore/query-data/queries

Bibliography

Accessed: 2017-12-19

[Fir17f] F®Ù���Ý� (ed.): Realtime Database Limits. Firebase, November 2017.

https://firebase.google.com/docs/database/usage/limits. –
Accessed: 2017-11-17

[FKSV03] F�®¦�Ä��çÃ, Joan ; K�ÄÄ�Ä, Sampath ; SãÙ�çÝÝ, Martin J. ; V®Ýó�Ä�ã«�Ä,

Mahesh: An Approximate L1-Difference Algorithm for Massive Data

Streams. In: SIAM J. Comput. 32 (2003), January, no. 1, 131–151.

http://dx.doi.org/10.1137/S0097539799361701. – DOI

10.1137/S0097539799361701. – ISSN 0097–5397

[FR11] F®��Ê, M. ; RÊÃ�ÄÊ, L.: A Generic Intrusion Detection and Diagnoser System

Based on Complex Event Processing. In: 2011 First International Conference

on Data Compression, Communications and Processing, 2011, pp. 275–284

[FS76] FÙù, James P. ; S®�½�ù, Edgar H.: Evolution of Data-Base Management

Systems. In: ACM Comput. Surv. 8 (1976), March, no. 1, 7–42.

http://dx.doi.org/10.1145/356662.356664. – DOI

10.1145/356662.356664. – ISSN 0360–0300

[GAE06] G«�Ä�Ã, Thanaa M. ; AÙ�¥, Walid G. ; E½Ã�¦�ÙÃ®�, Ahmed K.: Exploiting

Predicate-window Semantics over Data Streams. In: SIGMOD Rec. 35 (2006),

March, no. 1, 3–8. http://dx.doi.org/10.1145/1121995.1121996. – DOI

10.1145/1121995.1121996. – ISSN 0163–5808

[GB10] G�ÝÝ�Ùã, Felix ; Bì�»½�ÙÝ, Florian: Performanz- und Reaktivitätssteigerung

von OODBMS vermittels der Web-Caching-Hierarchie unter Einsatz und

Adaption offener Standards. University of Hamburg, bachelor’s thesis, 2010

[GB12] G�ÝÝ�Ùã, Felix ; Bì�»½�ÙÝ, Florian: Kohärentes Web-Caching von

Datenbankobjekten im Cloud Computing, University of Hamburg, master’s

thesis, 2012

[GBR14] G�ÝÝ�Ùã, Felix ; Bì�»½�ÙÝ, Florian ; R®ãã�Ù, Norbert: Orestes: A scalable

Database-as-a-Service architecture for low latency. In: Data Engineering

Workshops (ICDEW), 2014 IEEE 30th International Conference on, 2014, pp.

215–222

[GC15] G�ÝÝ�Ùã, Felix ; C�Ù½ÝÊÄ, Josiah: Proposal for scalable PubSub in Redis

Cluster. In: Redis-dev Mailing List (2015), July. https://
groups.google.com/d/msg/redis-dev/GaCzMEOQ1b4/PaYcZ5whYy4J. –
Accessed: 2018-06-09

[GCS+15] G�ÝÝ�Ùã, Felix ; C�Ù½ÝÊÄ, Josiah ; S�Ä¥®½®ÖÖÊ, Salvatore et al.: Redis Cluster

Pub/Sub – Scalability Issues. In: Redis GitHub Issues (2015), July.

https://github.com/antirez/redis/issues/2672. – Accessed:

2018-06-09

205

https://firebase.google.com/docs/database/usage/limits
http://dx.doi.org/10.1137/S0097539799361701
http://dx.doi.org/10.1145/356662.356664
http://dx.doi.org/10.1145/1121995.1121996
https://groups.google.com/d/msg/redis-dev/GaCzMEOQ1b4/PaYcZ5whYy4J
https://groups.google.com/d/msg/redis-dev/GaCzMEOQ1b4/PaYcZ5whYy4J
https://github.com/antirez/redis/issues/2672

Bibliography

[GD94] G�ÖÖ�Ùã, Andreas ; D®ããÙ®�«, Klaus R.: Rule-Based Implementation of

Transaction Model Specifications. In: P�ãÊÄ, Norman W. (ed.) ; W®½½®�ÃÝ,

M. H. (ed.): Rules in Database Systems. London : Springer London, 1994. –

ISBN 978–1–4471–3225–7, pp. 127–142

[Ges17] G�ÝÝ�Ùã, Felix: The AWS and MongoDB Infrastructure of Parse: Lessons

Learned. In: Baqend Tech Blog (2017), January.

https://medium.baqend.com/parse-is-gone-a-few-secrets-about-
their-infrastructure-91b3ab2fcf71. – Accessed: 2017-11-29

[Ges18] G�ÝÝ�Ùã, Felix: Low Latency for Cloud Data Management. University of

Hamburg, to be published in late 2018. – PhD thesis

[GFW+14] G�ÝÝ�Ùã, Felix ; FÙ®��Ù®�«, Steffen ; W®Ä¦�Ù�ã«, Wolfram ; S�«��ÙÝ�«Ã®�ã,

Michael ; R®ãã�Ù, Norbert: Towards a Scalable and Unified REST API for

Cloud Data Stores. In: 44. Jahrestagung der Gesellschaft für Informatik,

Informatik 2014, Big Data - Komplexität meistern, 22.-26. September 2014 in

Stuttgart, Deutschland, 2014, 723–734

[GGD95] G�ÖÖ�Ùã, Andreas ; G�ãþ®ç, Stella ; D®ããÙ®�«, Klaus R.: A designer’s

benchmark for active database management systems: 007 meets the

BEAST. In: S�½½®Ý, Timos (ed.): Rules in Database Systems: Second

International Workshop, RIDS ’95 Glyfada, Athens, Greece, September

25–27, 1995 Proceedings. Berlin, Heidelberg : Springer Berlin Heidelberg,

1995. – ISBN 978–3–540–45137–2, pp. 309–323

[GGL03] G«�Ã�ó�ã, Sanjay ; GÊ�®Ê¥¥, Howard ; L�çÄ¦, Shun-Tak: The Google File

System. In: Proceedings of the Nineteenth ACM Symposium on Operating

Systems Principles. New York, NY, USA : ACM, 2003 (SOSP ’03). – ISBN

1–58113–757–5, 29–43

[GHM+07] G«�Ä�Ã, T. M. ; H�ÃÃ��, M. A. ; MÊ»��½, M. F. ; AÙ�¥, W. G. ; E½Ã�¦�ÙÃ®�,

A. K.: Incremental Evaluation of Sliding-Window Queries over Data Streams.

In: IEEE Transactions on Knowledge and Data Engineering 19 (2007), Jan,

no. 1, pp. 57–72. http://dx.doi.org/10.1109/TKDE.2007.250585. – DOI

10.1109/TKDE.2007.250585. – ISSN 1041–4347

[Gia12] G®��ÊÃ�½½®, Piero ; S«�Ý«®, Ankita (ed.): Hornetq messaging developer’s

guide. Packt Publishing Ltd., 2012

[Gib01] G®��ÊÄÝ, Phillip B.: Distinct Sampling for Highly-Accurate Answers to

Distinct Values Queries and Event Reports. In: Proceedings of the 27th

International Conference on Very Large Data Bases. San Francisco, CA, USA :

Morgan Kaufmann Publishers Inc., 2001 (VLDB ’01). – ISBN

1–55860–804–4, 541–550

206

https://medium.baqend.com/parse-is-gone-a-few-secrets-about-their-infrastructure-91b3ab2fcf71
https://medium.baqend.com/parse-is-gone-a-few-secrets-about-their-infrastructure-91b3ab2fcf71
http://dx.doi.org/10.1109/TKDE.2007.250585

Bibliography

[GJSM96] GçÖã�, Ashish ; J�¦��®Ý«, H. V. ; S®Ä¦« MçÃ®�», Inderpal: Data integration

using self-maintainable views. In: AÖ�ÙÝ, Peter (ed.) ; BÊçþ�¦«Êç�,

Mokrane (ed.) ; G�Ù��Ù®Ä, Georges (ed.): Advances in Database Technology

– EDBT ’96: 5th International Conference on Extending Database Technology

Avignon, France, March 25–29, 1996 Proceedings. Berlin, Heidelberg :

Springer Berlin Heidelberg, 1996. – ISBN 978–3–540–49943–5, 140–144

[GK01] GÙ��Äó�½�, Michael ; K«�ÄÄ�, Sanjeev: Space-efficient Online

Computation of Quantile Summaries. In: Proceedings of the 2001 ACM

SIGMOD International Conference on Management of Data. New York, NY,

USA : ACM, 2001 (SIGMOD ’01). – ISBN 1–58113–332–4, 58–66

[GKS01a] G�«Ù»�, Johannes ; KÊÙÄ, Flip ; SÙ®ò�Ýã�ò�, Divesh: On Computing

Correlated Aggregates over Continual Data Streams. In: Proceedings of the

2001 ACM SIGMOD International Conference on Management of Data. New

York, NY, USA : ACM, 2001 (SIGMOD ’01). – ISBN 1–58113–332–4, 13–24

[GKS01b] Gç«�, Sudipto ; KÊç��Ý, Nick ; S«®Ã, Kyuseok: Data-streams and

Histograms. In: Proceedings of the Thirty-third Annual ACM Symposium on

Theory of Computing. New York, NY, USA : ACM, 2001 (STOC ’01). – ISBN

1–58113–349–9, 471–475

[GLS11] GÊ½��, Wojciech ; L®, Xiaozhou ; S«�«, Mehul A.: Analyzing consistency

properties for fun and profit. In: ACM PODC, ACM, 2011, 197–206

[GM98] G®��ÊÄÝ, Phillip B. ; M�ã®�Ý, Yossi: New Sampling-based Summary Statistics

for Improving Approximate Query Answers. In: SIGMOD Rec. 27 (1998),

June, no. 2, 331–342. http://dx.doi.org/10.1145/276305.276334. – DOI

10.1145/276305.276334. – ISSN 0163–5808

[GM99] GçÖã�, Ashish ; MçÃ®�», Iderpal S.: Materialized views: techniques,

implementations, and applications. MIT press, 1999. – ISBN

0–262–57122–6

[GMSS15] GÙÊò�Ù, Mark ; M�½�Ý»�, Ted ; S�®�Ã�Ä, Jonathan ; S«�Ö®Ù�, Gwen: Hadoop

Application Architectures. Beijing : O’Reilly, 2015

http://my.safaribooksonline.com/9781491900086. – ISBN

978–1–4919–0008–6

[Gol06] GÊ½��, Lukasz: Sliding Window Query Processing over Data Streams,

University of Waterloo, diss., August 2006

[Goo16] GÊÊ¦½� (ed.): Google Cloud Dataflow: Resource Quotas. Google, 2016.

https://cloud.google.com/dataflow/quotas. – Accessed: 2016-10-17

[Goo18] GÊÊ¦½�: Google Cloud Datastore.

https://cloud.google.com/datastore/. version: 2018. – Accessed:

2018-05-10

207

http://dx.doi.org/10.1145/276305.276334
http://my.safaribooksonline.com/9781491900086
https://cloud.google.com/dataflow/quotas
https://cloud.google.com/datastore/

Bibliography

[Gra18] GÙ�Ö«�ÊÊ½, IÄ�.: Graphcool. https://www.graph.cool/. version: 2018. –

Accessed: 2018-05-10

[Gri13] GÙ®¦ÊÙ®», Ilya: High performance browser networking. [S.l.] : O’Reilly

Media, 2013. – ISBN 1449344763 9781449344764

[Gri17] GÙ®�G�®Ä SùÝã�ÃÝ IÄ�. (ed.): Introducing Apache Ignite™. GridGain Systems

Inc., 2017

[Gro16] GÙÊÄ®Ä¦�Ä, Martijn van: Elasticsearch Percolator Continues to Evolve. In:

Elastic Blog (2016), June. https://www.elastic.co/blog/elasticsearch-
percolator-continues-to-evolve. – Accessed: 2017-11-17

[GSW+15] G�ÝÝ�Ùã, Felix ; S�«��ÙÝ�«Ã®�ã, Michael ; W®Ä¦�Ù�ã«, Wolfram ; FÙ®��Ù®�«,

Steffen ; R®ãã�Ù, Norbert: The Cache Sketch: Revisiting Expiration-based

Caching in the Age of Cloud Data Management. In: Datenbanksysteme für

Business, Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs

”Datenbanken und Informationssysteme” (DBIS), 4.-6.3.2015 in Hamburg,

Germany. Proceedings, 2015, 53–72

[GSW+17] G�ÝÝ�Ùã, Felix ; S�«��ÙÝ�«Ã®�ã, Michael ; W®Ä¦�Ù�ã«, Wolfram ; W®ãã, Erik ;

YÊÄ�»®, Eiko ; R®ãã�Ù, Norbert: Quaestor: Query Web Caching for

Database-as-a-Service Providers. In: Proceedings of the 43rd International

Conference on Very Large Data Bases (2017)

[GTSS13] G®�Ù�, Lokesh ; T«ÊÃ�Ý, Gaël ; SÊÖ�Ä�, Julien ; S«�Ö®ÙÊ, Marc: A Study of

the Scalability of Stop-the-world Garbage Collectors on Multicores. In:

SIGARCH Comput. Archit. News 41 (2013), March, no. 1, 229–240.

http://dx.doi.org/10.1145/2490301.2451142. – DOI

10.1145/2490301.2451142. – ISSN 0163–5964

[GWFR16] G�ÝÝ�Ùã, Felix ; W®Ä¦�Ù�ã«, Wolfram ; FÙ®��Ù®�«, Steffen ; R®ãã�Ù, Norbert:

NoSQL Database Systems: A Survey and Decision Guidance. In: Computer

Science - Research and Development (2016)

[GZ10] GÊ½��, Lukasz ; ZÝç, M. T.: Data Stream Management. Morgan & Claypool

Publishers, 2010. – ISBN 1608452727, 9781608452729

[H+15] H®�»ÝÊÄ, Ian et al.: Server-Sent Events. W3C Recommendation.

https://www.w3.org/TR/eventsource/. version: February 2015. –

Accessed: 2018-05-21

[HAMS08] H�Ù®þÊÖÊç½ÊÝ, Stavros ; A���®, Daniel J. ; M����Ä, Samuel ; SãÊÄ��Ù�»�Ù,

Michael: OLTP Through the Looking Glass, and What We Found There. In:

Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data. New York, NY, USA : ACM, 2008 (SIGMOD ’08). – ISBN

978–1–60558–102–6, 981–992

208

https://www.graph.cool/
https://www.elastic.co/blog/elasticsearch-percolator-continues-to-evolve
https://www.elastic.co/blog/elasticsearch-percolator-continues-to-evolve
http://dx.doi.org/10.1145/2490301.2451142
https://www.w3.org/TR/eventsource/

Bibliography

[Haz17] H�þ�½��Ýã (ed.): Hazelcast: Continuous Query Cache. Hazelcast, 2017.

http://docs.hazelcast.org/docs/latest-development/manual/html/
Distributed_Query/Continuous_Query_Cache.html. – Accessed:

2017-11-12

[HG17] Hç���Ù�, Jennifer ; Gçù�Ù, Craig: Working with Query Notifications. In:

Microsoft SQL Documentation: Database Features (2017), March. –

Accessed: 2017-05-12

[HHE15] HÊ½Ã��Ù¦, Christer ; H�»�ÄÝÝÊÄ, Stefan ; EÙ®»ÝÝÊÄ, Goran: Web Real-Time

Communication Use Cases and Requirements. RFC 7478.

http://dx.doi.org/10.17487/RFC7478. version:March 2015 (Request for

Comments). – Accessed: 2018-05-21

[HIM02] H��®¦çÃçÝ, Hakan ; Iù�Ù, Bala ; M�«ÙÊãÙ�, Sharad: Providing Database As a

Service. In: Proceedings of the 18th International Conference on Data

Engineering. Washington, DC, USA : IEEE Computer Society, 2002 (ICDE ’02),

29–38

[Hin13] H®Äã¹�ÄÝ, Pieter ; OÙ�Ã, Andy (ed.) ; Gç½®�», Maria (ed.): ZeroMQ:

Messaging for Many Applications. O’Reilly Media, 2013

[HKJR10] HçÄã, Patrick ; KÊÄ�Ù, Mahadev ; JçÄØç�®Ù�, Flavio P. ; R���, Benjamin:

ZooKeeper: Wait-free Coordination for Internet-scale Systems. In:

Proceedings of the 2010 USENIX Conference on USENIX Annual Technical

Conference. Berkeley, CA, USA : USENIX Association, 2010 (USENIXATC’10)

[HKZ+11] H®Ä�Ã�Ä, Benjamin ; KÊÄó®ÄÝ»®, Andy ; Z�«�Ù®�, Matei ; G«Ê�Ý®, Ali ;

JÊÝ�Ö«, Anthony D. ; K�ãþ, Randy ; S«�Ä»�Ù, Scott ; SãÊ®��, Ion: Mesos: A

Platform for Fine-grained Resource Sharing in the Data Center. In:

Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation. Berkeley, CA, USA : USENIX Association, 2011

(NSDI’11), 295–308

[HR83] H�Ù��Ù, Theo ; R�çã�Ù, Andreas: Principles of Transaction-oriented

Database Recovery. In: ACM Comput. Surv. 15 (1983), December, no. 4,

287–317. http://dx.doi.org/10.1145/289.291. – DOI 10.1145/289.291.

– ISSN 0360–0300

[HSH07] H�½½�ÙÝã�®Ä, Joseph M. ; SãÊÄ��Ù�»�Ù, Michael ; H�Ã®½ãÊÄ, James:

Architecture of a Database System. In: Found. Trends databases 1 (2007),

February, no. 2, 141–259. http://dx.doi.org/10.1561/1900000002. –
DOI 10.1561/1900000002. – ISSN 1931–7883

[Hue18] Hç�Ý»�, Fabian: Apache Flink 1.5.0 Release Announcement. In: Apache

Flink Blog (2018), May.

https://flink.apache.org/news/2018/05/25/release-1.5.0.html. –

209

http://docs.hazelcast.org/docs/latest-development/manual/html/Distributed_Query/Continuous_Query_Cache.html
http://docs.hazelcast.org/docs/latest-development/manual/html/Distributed_Query/Continuous_Query_Cache.html
http://dx.doi.org/10.17487/RFC7478
http://dx.doi.org/10.1145/289.291
http://dx.doi.org/10.1561/1900000002
https://flink.apache.org/news/2018/05/25/release-1.5.0.html

Bibliography

Accessed: 2018-08-18

[Hus17] HçÝ�®Ä, Jafar: Observables for ECMAScript.

https://tc39.github.io/proposal-observable/. version: 2017. –

Accessed: 2017-08-05

[HW93] H�ÄÝÊÄ, E. ; W®�ÊÃ, J.: An Overview of Production Rules in Database

Systems / Stanford University. version: June 1993.

http://ilpubs.stanford.edu:8090/25/. Stanford InfoLab, June 1993

(1993-18). – Technical Report

[HWJ17] Hç�Ý»�, Fabian ; W�Ä¦, Shaoxuan ; J®�Ä¦, Xiaowei: Continuous Queries on

Dynamic Tables. In: Flink Blog (2017), April.

https://flink.apache.org/news/2017/04/04/dynamic-tables.html. –
Accessed: 2017-10-27

[IBM11] IBM (ed.): Overview of InfoSphere CDC (IBM Infosphere Change Data

Capture, Version 6.5.2). IBM, 2011.

https://www.ibm.com/support/knowledgecenter/en/SSTRGZ_10.1.3/
com.ibm.cdcdoc.mcadminguide.doc/concepts/overview_of_cdc.html. –
Accessed: 2017-11-12

[IBM14] IBM CÊÙÖÊÙ�ã®ÊÄ: Of Streams and Storms / IBM Software Group. 2014. –

technical report

[IBM18] IBM (ed.): Cloudant NoSQL DB Docs: Filter Functions. IBM, May 2018.

https://console.bluemix.net/docs/services/Cloudant/api/
design_documents.html#filter-functions. – Accessed: 2018-05-2

[Ign17] Continuous Queries: Continuously obtain real-time query results. In:

Apache Ignite™Docs (2017).

https://apacheignite.readme.io/docs/continuous-queries. –
Accessed: 2017-11-12

[iMa18] ®M�ã®ø CÊÙÖÊÙ�ã®ÊÄ: ZeroMQ. http://zeromq.org/. version: 2018. –

Accessed: 2018-03-26

[Inf16] IÄ¥½çøD�ã� IÄ�.: InfluxDB.

https://www.influxdata.com/time-series-platform/influxdb/.
version: 2016. – Accessed: 2016-09-18

[Jam16] J�Ã®Ä, Baptiste: Reasons Not To Use Firebase. In: Chris Blog (2016),

September. https://crisp.im/blog/why-you-should-never-use-
firebase-realtime-database/. – Accessed: 2017-05-21

[JMS+08] J�®Ä, Namit ; M®Ý«Ù�, Shailendra ; SÙ®Ä®ò�Ý�Ä, Anand ; G�«Ù»�, Johannes ;

W®�ÊÃ, Jennifer ; B�½�»Ù®Ý«Ä�Ä, Hari ; C�ã®Äã�Ã�½, Uǧur ; C«�ÙÄ®��», Mitch

; T®���ããÝ, Richard ; Z�ÊÄ®», Stan: Towards a Streaming SQL Standard. In:

Proc. VLDB Endow. 1 (2008), August, no. 2, 1379–1390.

210

https://tc39.github.io/proposal-observable/
http://ilpubs.stanford.edu:8090/25/
https://flink.apache.org/news/2017/04/04/dynamic-tables.html
https://www.ibm.com/support/knowledgecenter/en/SSTRGZ_10.1.3/com.ibm.cdcdoc.mcadminguide.doc/concepts/overview_of_cdc.html
https://www.ibm.com/support/knowledgecenter/en/SSTRGZ_10.1.3/com.ibm.cdcdoc.mcadminguide.doc/concepts/overview_of_cdc.html
https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#filter-functions
https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#filter-functions
https://apacheignite.readme.io/docs/continuous-queries
http://zeromq.org/
https://www.influxdata.com/time-series-platform/influxdb/
https://crisp.im/blog/why-you-should-never-use-firebase-realtime-database/
https://crisp.im/blog/why-you-should-never-use-firebase-realtime-database/

Bibliography

http://dx.doi.org/10.14778/1454159.1454179. – DOI

10.14778/1454159.1454179. – ISSN 2150–8097

[JMSS05] JÊ«ÄÝÊÄ, Theodore ; Mçã«ç»Ù®Ý«Ä�Ä, S. ; S«»�Ö�Äùç», Vladislav ;

SÖ�ãÝ�«��», Oliver: A Heartbeat Mechanism and Its Application in

Gigascope. In: Proceedings of the 31st International Conference on Very

Large Data Bases, VLDB Endowment, 2005 (VLDB ’05). – ISBN

1–59593–154–6, 1079–1088

[JPNR17] Chapter Management and Analysis of Big Graph Data: Current Systems and

Open Challenges. In: JçÄ¦«�ÄÄÝ, Martin ; P�ã�ÙÃ�ÄÄ, André ; N�çÃ�ÄÄ,

Martin ; R�«Ã, Erhard: Handbook of Big Data Technologies. Springer

International Publishing, 2017. – ISBN 978–3–319–49340–4, 457–505

[K+15] K�ãþ�Ä, Jacob et al.: Oplog tailing too far behind not helping.

https://forums.meteor.com/t/oplog-tailing-too-far-behind-not-
helping/2235. version: 2015. – Accessed: 2017-07-09

[KBF+15] Kç½»�ÙÄ®, Sanjeev ; B«�¦�ã, Nikunj ; Fç, Maosong ; K��®¦�«�½½®, Vikas ;

K�½½Ê¦¦, Christopher ; M®ãã�½, Sailesh ; P�ã�½, Jignesh M. ; R�Ã�Ý�Ãù,

Karthik ; T�Ä�¹�, Siddarth: Twitter Heron: Stream Processing at Scale. In:

Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data. New York, NY, USA : ACM, 2015 (SIGMOD ’15). – ISBN

978–1–4503–2758–9, 239–250

[Ker17] K�ÙÖ�½Ã�Ä, Todd: Cloud Firestore for Realtime Database Developers. In:

Firebase Blog (2017), October. https://firebase.googleblog.com/2017/
10/cloud-firestore-for-rtdb-developers.html. – Accessed:

2017-12-23

[KKM13] K�Ù�Ä�ÝÊÝ, Konstantinos ; K�ãÝ®¥Ê�®ÃÊÝ, Asterios ; M�ÄÊ½�Ý�ç, Ioana:

Delta: Scalable Data Dissemination Under Capacity Constraints. In: Proc.

VLDB Endow. 7 (2013), December, no. 4, 217–228.

http://dx.doi.org/10.14778/2732240.2732241. – DOI

10.14778/2732240.2732241. – ISSN 2150–8097

[KKN+08] K�½½Ã�Ä, Robert ; K®ÃçÙ�, Hideaki ; N�ã»®ÄÝ, Jonathan ; P�ò½Ê, Andrew ;

R�Ý®Ä, Alexander ; Z�ÊÄ®», Stanley ; JÊÄ�Ý, Evan P. C. ; M����Ä, Samuel ;

SãÊÄ��Ù�»�Ù, Michael ; Z«�Ä¦, Yang ; Hç¦¦, John ; A���®, Daniel J.: H-store:

A High-performance, Distributed Main Memory Transaction Processing

System. In: Proc. VLDB Endow. 1 (2008), August, no. 2, 1496–1499.

http://dx.doi.org/10.14778/1454159.1454211. – DOI

10.14778/1454159.1454211. – ISSN 2150–8097

[Kle02] K½�®Ä��Ù¦, Jon: Bursty and Hierarchical Structure in Streams. In:

Proceedings of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. New York, NY, USA : ACM, 2002

211

http://dx.doi.org/10.14778/1454159.1454179
https://forums.meteor.com/t/oplog-tailing-too-far-behind-not-helping/2235
https://forums.meteor.com/t/oplog-tailing-too-far-behind-not-helping/2235
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html
http://dx.doi.org/10.14778/2732240.2732241
http://dx.doi.org/10.14778/1454159.1454211

Bibliography

(KDD ’02). – ISBN 1–58113–567–X, 91–101

[Kle16] K½�ÖÖÃ�ÄÄ, Martin: Designing Data-Intensive Applications: The Big Ideas

Behind Reliable, Scalable, and Maintainable Systems. O’Reilly, 2016

[KNR11] KÙ�ÖÝ, Jay ; N�Ù»«���, Neha ; R�Ê, Jun: Kafka: a Distributed Messaging

System for Log Processing. In: NetDB’11, 2011

[Kre14a] KÙ�ÖÝ, Jay: Benchmarking Apache Kafka: 2 Million Writes Per Second (On

Three Cheap Machines). In: LinkedIn Engineering Blog (2014), April.

https://engineering.linkedin.com/kafka/benchmarking-apache-
kafka-2-million-writes-second-three-cheap-machines. – Accessed:

2016-10-17

[Kre14b] KÙ�ÖÝ, Jay: Questioning the Lambda Architecture. In: O’Reilly Media (2014),

7. http://radar.oreilly.com/2014/07/questioning-the-lambda-
architecture.html. – Accessed: 2015-12-17

[Kre14c] KÙ�ÖÝ, Jay: Why local state is a fundamental primitive in stream processing.

In: O’Reilly Media (2014), July. https://www.oreilly.com/ideas/why-
local-state-is-a-fundamental-primitive-in-stream-processing. –
Accessed: 2017-11-30

[Kre16] KÙ�ÖÝ, Jay: Introducing Kafka Streams: Stream Processing Made Simple. In:

Confluent Blog (2016), March. http://www.confluent.io/blog/
introducing-kafka-streams-stream-processing-made-simple/. –
Accessed: 2016-09-19

[KW17] K½Êç��Ý, Kostas ; W�Ù�, Chris: Complex Event Processing with Flink: An

Update on the State of Flink CEP. In: data Artisans Blog (2017), November.

https://data-artisans.com/blog/complex-event-processing-flink-
cep-update. – Accessed: 2017-12-26

[L+17] Lç�», Greg et al.: Mastering Hazelcast IMDG / Hazelcast. 2017. – technical

report

[Lac16] L��»�Ù, Kevin: Moving On. In: Parse Blog (2016), January.

http://blog.parseplatform.org/announcements/moving-on/. –
Accessed: 2017-11-18

[Lan01] L�Ä�ù, Douglas: 3D Data Management: Controlling Data Volume, Velocity,

and Variety / META Group. version: February 2001. http://
blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-
Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.
2001. – technical report

[Leh14] L�«�Ä��ç�Ù, Michael: Firebase: Now with more querying! In: Firebase Blog

(2014), November. https://firebase.googleblog.com/2014/11/
firebase-now-with-more-querying.html. – Accessed: 2017-12-23

212

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing
https://www.oreilly.com/ideas/why-local-state-is-a-fundamental-primitive-in-stream-processing
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://data-artisans.com/blog/complex-event-processing-flink-cep-update
https://data-artisans.com/blog/complex-event-processing-flink-cep-update
http://blog.parseplatform.org/announcements/moving-on/
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://firebase.googleblog.com/2014/11/firebase-now-with-more-querying.html
https://firebase.googleblog.com/2014/11/firebase-now-with-more-querying.html

Bibliography

[LG+03] LÊÙ�Äãþ, Diana ; GÙ�¦Ê®Ù, Joan et al. ; OÙ��½� (ed.): Oracle Database SQL

Reference, 10g Release 1 (10.1). Oracle, December 2003

[LLO+12] L�ÃÖ»®Ä, Valerie ; L�ÊÄ¦, Weng T. ; O½®ò�Ù�, Leonardo ; R�ó�ã, Sweta ;

Sç�Ù�«Ã�Äù�Ã, Nagesh ; X®�Ä¦, Rong ; K�½½�Ý, Gerald ; KÙ®Ý«Ä�, Neeraj ;

F�ÝÝÃ�ÄÄ, Stefan ; K��Ä, Martin et al.: Building smarter planet solutions

with MQTT and IBMWebSphere MQ Telemetry. IBM Redbooks, 2012

[LLP+12] L�Ã, Wang ; L®ç, Lu ; PÙ�Ý��, Sts et al.: Muppet: MapReduce-style

Processing of Fast Data. In: VLDB 2012 (2012).

http://dx.doi.org/10.14778/2367502.2367520. – DOI

10.14778/2367502.2367520. – ISSN 2150–8097

[LLXY04] L®Ä, X. ; Lç, H. ; Xç, J. ; Yç, J. X.: Continuously maintaining quantile

summaries of the most recent N elements over a data stream. In:

Proceedings. 20th International Conference on Data Engineering, 2004. –

ISSN 1063–6382, pp. 362–373

[LMT+05] L®, Jin ; M�®�Ù, David ; Tç¥ã�, Kristin ; P�Ö��®ÃÊÝ, Vassilis ; Tç�»�Ù, Peter A.:

Semantics and Evaluation Techniques for Window Aggregates in Data

Streams. In: Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data. New York, NY, USA : ACM, 2005

(SIGMOD ’05). – ISBN 1–59593–060–4, 311–322

[LS93] L�òù, Alon Y. ; S�¦®ò, Yehoshua: Queries Independent of Updates. In:

Proceedings of the 19th International Conference on Very Large Data Bases.

San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 1993 (VLDB ’93).

– ISBN 1–55860–152–X, 171–181

[LVA+15] Lç, Haonan ; V��Ù�Ù�¦«�ò�Ä, Kaushik ; A¹Êçø, Philippe ; HçÄã, Jim ; SÊÄ¦,

Yee J. ; TÊ��¦çÝ, Wendy ; KçÃ�Ù, Sanjeev ; L½Êù�, Wyatt: Existential

consistency: measuring and understanding consistency at Facebook. In:

M®½½�Ù, Ethan L. (ed.) ; H�Ä�, Steven (ed.): SOSP, ACM, 2015, pp. 295–310

[LYC+00] L��®Ê, Wilburt ; Y�Ä¦, Jun ; Cç®, Yingwei ; G�Ù�®�-MÊ½®Ä�, Hector ; W®�ÊÃ,

Jennifer: Performance Issues in Incremental Warehouse Maintenance. In:

Proceedings of the 26th International Conference on Very Large Data Bases.

San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 2000 (VLDB ’00).

– ISBN 1–55860–715–3, 461–472

[LYWL05] L®Ä, Xuemin ; Yç�Ä, Yidong ; W�Ä¦, Wei ; Lç, Hongjun: Stabbing the sky:

efficient skyline computation over sliding windows. In: 21st International

Conference on Data Engineering (ICDE’05), 2005. – ISSN 1063–6382, pp.

502–513

[M+14] M�Ê, Andrew et al.: My experience hitting limits on Meteor performance.

https://groups.google.com/forum/#!topic/meteor-talk/Y547Hh2z39Y.

213

http://dx.doi.org/10.14778/2367502.2367520
https://groups.google.com/forum/#!topic/meteor-talk/Y547Hh2z39Y

Bibliography

version: 2014. – Accessed: 2017-07-09

[MAEA05a] M�ãó�½½ù, Ahmed ; A¦Ù�ó�½, Divyakant ; E½ A����®, Amr: Duplicate

Detection in Click Streams. In: Proceedings of the 14th International

Conference on World Wide Web. New York, NY, USA : ACM, 2005 (WWW

’05). – ISBN 1–59593–046–9, 12–21

[MAEA05b] M�ãó�½½ù, Ahmed ; A¦Ù�ó�½, Divyakant ; E½ A����®, Amr: Efficient

Computation of Frequent and Top-k Elements in Data Streams. In:

Proceedings of the 10th International Conference on Database Theory.

Berlin, Heidelberg : Springer-Verlag, 2005 (ICDT’05). – ISBN

3–540–24288–0, 978–3–540–24288–8, 398–412

[Mar12] M�Ùþ, Nathan: Preview of Storm: The Hadoop of Realtime Processing. In:

BackType Technology Blog (2012), 5.

http://web.archive.org/web/20120509023348/http://tech.backtype.
com/preview-of-storm-the-hadoop-of-realtime-processing. –
Accessed: 2015-12-17

[Mar14] M�Ùþ, Nathan: History of Apache Storm and lessons learned. In: Thoughts

from the Red Planet (2014), 10. http://nathanmarz.com/blog/history-
of-apache-storm-and-lessons-learned.html. – Accessed: 2015-12-17

[Mar15] M�Ùã®Ä, Watts: Changefeeds in RethinkDB. In: RethinkDB Docs (2015).

https://rethinkdb.com/docs/changefeeds/javascript/#changefeeds-
with-filtering-and-aggregation-queries. – Accessed: 2017-07-09

[Mar16] M�Ùã®Ä, Watts: Table joins in RethinkDB. In: RethinkDB Docs (2016).

https://www.rethinkdb.com/docs/table-joins/. – Accessed:

2017-11-17

[MBP06] MÊçÙ�ã®�®Ý, Kyriakos ; B�»®Ù�Ý, Spiridon ; P�Ö��®�Ý, Dimitris: Continuous

Monitoring of Top-k Queries over Sliding Windows. In: Proceedings of the

2006 ACM SIGMOD International Conference on Management of Data. New

York, NY, USA : ACM, 2006 (SIGMOD ’06). – ISBN 1–59593–434–0, 635–646

[Met15] M�ã�ÊÙ D�ò�½ÊÖÃ�Äã GÙÊçÖ: Livequery. In: Meteor Change Log v1.0.4

(2015), March. http://docs.meteor.com/changelog.html#livequery-1.
– Accessed: 2017-07-09

[Met16] M�ã�ÊÙ D�ò�½ÊÖÃ�Äã GÙÊçÖ: Tuning Meteor Mongo Livedata for

Scalability. In: Meteor Blog (2016), May. https://blog.meteor.com/
tuning-meteor-mongo-livedata-for-scalability-13fe9deb8908. –
Accessed: 2017-05-12

[Met18] M�ã�ÊÙ D�ò�½ÊÖÃ�Äã GÙÊçÖ: Meteor. https://www.meteor.com/.
version: 2018. – Accessed: 2018-05-10

214

http://web.archive.org/web/20120509023348/http://tech.backtype.com/preview-of-storm-the-hadoop-of-realtime-processing
http://web.archive.org/web/20120509023348/http://tech.backtype.com/preview-of-storm-the-hadoop-of-realtime-processing
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
https://rethinkdb.com/docs/changefeeds/javascript/#changefeeds-with-filtering-and-aggregation-queries
https://rethinkdb.com/docs/changefeeds/javascript/#changefeeds-with-filtering-and-aggregation-queries
https://www.rethinkdb.com/docs/table-joins/
http://docs.meteor.com/changelog.html#livequery-1
https://blog.meteor.com/tuning-meteor-mongo-livedata-for-scalability-13fe9deb8908
https://blog.meteor.com/tuning-meteor-mongo-livedata-for-scalability-13fe9deb8908
https://www.meteor.com/

Bibliography

[Mew16] M�ó�Ý, Daniel: Scaling, sharding and replication: Running a proxy node. In:

RethinkDB Docs (2016). https://rethinkdb.com/docs/sharding-and-
replication/#running-a-proxy-node. – Accessed: 2017-07-09

[MF11] M�½Ä®»Êò, Alexey ; F�ãã�, Ian: The WebSocket Protocol. RFC 6455.

http://dx.doi.org/10.17487/RFC6455. version: December 2011

(Request for Comments). – Accessed: 2018-05-21

[MGB17] M���ç½�ù, Ed ; Gçù�Ù, Craig ; Bù«�Ã, Rick: Row Version (Transact-SQL). In:

SQL Server 2017 Documentation (2017), July.

https://docs.microsoft.com/en-us/sql/t-sql/data-types/
rowversion-transact-sql?view=sql-server-2017. – Accessed:

2018-05-19

[Mic17a] M®�ÙÊÝÊ¥ã (ed.): SQL Server 2008 R2 Books Online: Creating a Query for

Notification. Microsoft, 2017.

https://msdn.microsoft.com/en-us/library/ms181122.aspx. –
Accessed: 2017-05-12

[Mic17b] M®�ÙÊÝÊ¥ã (ed.): SQL Server 2008 R2 Books Online: Planning for

Notifications. Microsoft, 2017. https://technet.microsoft.com/en-us/
library/ms187528(v=sql.105).aspx#Anchor_1. – Accessed: 2017-05-12

[Mic17c] M®�ÙÊÝÊ¥ã (ed.): SQL Server 2008 R2 Books Online: Query Notification

Messages. Microsoft, 2017. https://msdn.microsoft.com/en-us/
library/ms189308(v=sql.105).aspx. – Accessed: 2017-05-13

[Mic17d] M®�ÙÊÝÊ¥ã (ed.): SQL Server 2008 R2 Books Online: Understanding When

Query Notifications Occur. Microsoft, 2017. https://
msdn.microsoft.com/en-us/library/ms188323(v=sql.105).aspx. –
Accessed: 2017-05-15

[Mic17e] M®�ÙÊÝÊ¥ã (ed.): SQL Server 2008 R2 Books Online: Using Query

Notifications. Microsoft, 2017. https://technet.microsoft.com/en-us/
library/ms175110(v=sql.105).aspx. – Accessed: 2017-05-13

[MK+17] MçÙÙ�ù, Chuck ; Kùã�, Tom et al.: Using Continuous Query Notification

(CQN). In: Oracle Database Development Guide, 12c Release 1 (12.1).

Oracle, May 2017

[MM02] M�Ä»ç, Gurmeet S. ; MÊãó�Ä®, Rajeev: Approximate Frequency Counts

over Data Streams. In: Proceedings of the 28th International Conference on

Very Large Data Bases, VLDB Endowment, 2002 (VLDB ’02), 346–357

[MMI+13] MçÙÙ�ù, Derek G. ; M�S«�ÙÙù, Frank ; IÝ���Ý, Rebecca ; IÝ�Ù�, Michael ;

B�Ù«�Ã, Paul ; A���®, Martín: Naiad: A Timely Dataflow System. In:

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles. New York, NY, USA : ACM, 2013 (SOSP ’13). – ISBN

215

https://rethinkdb.com/docs/sharding-and-replication/#running-a-proxy-node
https://rethinkdb.com/docs/sharding-and-replication/#running-a-proxy-node
http://dx.doi.org/10.17487/RFC6455
https://docs.microsoft.com/en-us/sql/t-sql/data-types/rowversion-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/data-types/rowversion-transact-sql?view=sql-server-2017
https://msdn.microsoft.com/en-us/library/ms181122.aspx
https://technet.microsoft.com/en-us/library/ms187528(v=sql.105).aspx#Anchor_1
https://technet.microsoft.com/en-us/library/ms187528(v=sql.105).aspx#Anchor_1
https://msdn.microsoft.com/en-us/library/ms189308(v=sql.105).aspx
https://msdn.microsoft.com/en-us/library/ms189308(v=sql.105).aspx
https://msdn.microsoft.com/en-us/library/ms188323(v=sql.105).aspx
https://msdn.microsoft.com/en-us/library/ms188323(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms175110(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms175110(v=sql.105).aspx

Bibliography

978–1–4503–2388–8, 439–455

[Mon17a] MÊÄ¦ÊDB IÄ�.: MongoDB 3.6.0-rc0 is released. In: MongoDB Blog (2017),

October.

https://www.mongodb.com/blog/post/mongodb-360-rc0-is-released. –
Accessed: 2017-11-17

[Mon17b] MÊÄ¦ÊDB IÄ�. (ed.): MongoDB CRUD Concepts: Tailable Cursor. MongoDB

Inc., 2017.

https://docs.mongodb.com/manual/core/tailable-cursors/. –
Accessed: 2017-11-13

[Mon18a] MÊÄ¦ÊDB IÄ�. (ed.): Cursor Methods: cursor.sort(). MongoDB Inc.,

2018.

https://docs.mongodb.com/v3.6/reference/method/cursor.sort/. –
Accessed: 2018-09-12

[Mon18b] MÊÄ¦ÊDB IÄ�. (ed.): db.collection.findAndModify(). MongoDB Inc., 2018.

https://docs.mongodb.com/v3.6/reference/method/
db.collection.findAndModify/. – Accessed: 2018-06-23

[Mon18c] MÊÄ¦ÊDB IÄ�. (ed.): Evaluation Query Operators: $expr. MongoDB Inc.,

2018.

https://docs.mongodb.com/v3.6/reference/operator/query/expr/. –
Accessed: 2018-09-08

[Mon18d] MÊÄ¦ÊDB IÄ�. (ed.): Evaluation Query Operators: $regex, Index Use.
MongoDB Inc., 2018. https://docs.mongodb.com/v4.0/reference/
operator/query/regex/#index-use. – Accessed: 2018-06-30

[Mon18e] MÊÄ¦ÊDB IÄ�.: MongoDB. https://www.mongodb.com. version: 2018. –

Accessed: 2018-05-10

[Mon18f] MÊÄ¦ÊDB IÄ�.: The MongoDB Database. GitHub repository.

https://github.com/mongodb/mongo. version: July 2018. – Accessed:

2018-08-07

[Mon18g] MÊÄ¦ÊDB IÄ�. (ed.): MongoDB Licensing. MongoDB Inc., July 2018.

https://www.mongodb.com/community/licensing. – Accessed:

2018-08-07

[Mon18h] MÊÄ¦ÊDB IÄ�.: MongoDB Stitch. https://mongodb.com/cloud/stitch.
version: 2018. – Accessed: 2018-05-10

[Mor83] MÊÙ¦�ÄÝã�ÙÄ, Matthew: Active Databases As a Paradigm for Enhanced

Computing Environments. In: Proceedings of the 9th International

Conference on Very Large Data Bases. San Francisco, CA, USA : Morgan

Kaufmann Publishers Inc., 1983 (VLDB ’83). – ISBN 0–934613–15–X, 34–42

216

https://www.mongodb.com/blog/post/mongodb-360-rc0-is-released
https://docs.mongodb.com/manual/core/tailable-cursors/
https://docs.mongodb.com/v3.6/reference/method/cursor.sort/
https://docs.mongodb.com/v3.6/reference/method/db.collection.findAndModify/
https://docs.mongodb.com/v3.6/reference/method/db.collection.findAndModify/
https://docs.mongodb.com/v3.6/reference/operator/query/expr/
https://docs.mongodb.com/v4.0/reference/operator/query/regex/#index-use
https://docs.mongodb.com/v4.0/reference/operator/query/regex/#index-use
https://www.mongodb.com
https://github.com/mongodb/mongo
https://www.mongodb.com/community/licensing
https://mongodb.com/cloud/stitch

Bibliography

[Mor15] MÊÙ¦�Ä, Andrew: Joins and Other Aggregation Enhancements Coming in

MongoDB 3.2 (Part 1 of 3) – Introduction. In: MongoDB Blog (2015),

October.

https://www.mongodb.com/blog/post/joins-and-other-aggregation-
enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction. –
Accessed: 2018-04-23

[Mul11] Mç½½�Ä�, Greg S.: NOTIFY vs. Prepared Transactions in Postgres (the

Bucardo solution). In: End Point Blog (2011), May.

https://www.endpoint.com/blog/2011/05/03/notify-vs-prepared-
transactions-in. – Accessed: 2017-11-12

[Mul14] Mç½½�Ä�, Greg S.: Version 5 of Bucardo database replication system. In:

End Point Blog (2014), June. https://www.endpoint.com/blog/2014/06/
23/bucardo-5-multimaster-postgres-released. – Accessed: 2017-11-12

[Mum17] MçÃÃ, John: How Wallaroo Scales Distributed State. In: Wallaroo Labs

Blog (2017), October. https://blog.wallaroolabs.com/2017/10/how-
wallaroo-scales-distributed-state/. – Accessed: 2017-12-29

[MVLL05] M�, Lisha ; V®¦½�Ý, Stratis D. ; L®, Meng ; L®, Qian: Stream Operators for

Querying Data Streams. In: F�Ä, Wenfei (ed.) ; Wç, Zhaohui (ed.) ; Y�Ä¦, Jun

(ed.): Advances in Web-Age Information Management: 6th International

Conference, WAIM 2005, Hangzhou, China, October 11 – 13, 2005.

Proceedings. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. – ISBN

978–3–540–32087–6, 404–415

[MW15] M�Ùþ, Nathan ; W�ÙÙ�Ä, James: Big Data: Principles and Best Practices of

Scalable Realtime Data Systems. 1st. Greenwich, CT, USA : Manning

Publications Co., 2015. – ISBN 1617290343, 9781617290343

[MWA+03] MÊãó�Ä®, Rajeev ; W®�ÊÃ, Jennifer ; AÙ�Ýç, Arvind ; B���Ê�», Brian ; B��ç,

Shivnath ; D�ã�Ù, Mayur ; M�Ä»ç, Gurmeet S. ; O½ÝãÊÄ, Chris ; RÊÝ�ÄÝã�®Ä,

Justin ; V�ÙÃ�, Rohit: Query Processing, Approximation, and Resource

Management in a Data Stream Management System. In: CIDR, 2003

[Nak01] N�»�ÃçÙ�, Hiroaki: Incremental Computation of Complex Object Queries.

In: Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications. New York, NY, USA :

ACM, 2001 (OOPSLA ’01). – ISBN 1–58113–335–9, 156–165

[Nar17] N�Ù»«���, Neha: Exactly-once Semantics are Possible: Here’s How Kafka

Does it. In: Confluent Blog (2017), June.

https://www.confluent.io/blog/exactly-once-semantics-are-
possible-heres-how-apache-kafka-does-it/. – Accessed: 2017-11-18

217

https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.endpoint.com/blog/2011/05/03/notify-vs-prepared-transactions-in
https://www.endpoint.com/blog/2011/05/03/notify-vs-prepared-transactions-in
https://www.endpoint.com/blog/2014/06/23/bucardo-5-multimaster-postgres-released
https://www.endpoint.com/blog/2014/06/23/bucardo-5-multimaster-postgres-released
https://blog.wallaroolabs.com/2017/10/how-wallaroo-scales-distributed-state/
https://blog.wallaroolabs.com/2017/10/how-wallaroo-scales-distributed-state/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/

Bibliography

[Nel17] N�½ÝÊÄ, Derek: PipelineDB 0.9.7 – Delta Streams and Towards a PostgreSQL

Extension. In: PipelineDB Blog (2017), March.

https://www.pipelinedb.com/blog/pipelinedb-0-9-7-delta-streams-
and-towards-a-postgresql-extension. – Accessed: 2017-11-25

[Nie17] N®�«Ê¥¥, Matthias: Event time processing in Apache Spark and Apache

Flink. In: Codecentric Blog (2017), April. https://blog.codecentric.de/
en/2017/04/event-time-processing-apache-spark-apache-flink/. –
Accessed: 2017-11-18

[NLR98] N®��, Anisoara ; L��, Amy J. ; RçÄ��ÄÝã�®Ä�Ù, Elke A.: The CVS Algorithm for

View Synchronization in Evolvable Large-Scale Information Systems. In:

Proceedings of the 6th International Conference on Extending Database

Technology: Advances in Database Technology. Berlin, Heidelberg :

Springer-Verlag, 1998 (EDBT ’98). – ISBN 3–540–64264–1, 359–373

[NMM+99] N®�½Ý�Ä, Henrik F. ; MÊ¦ç½, Jeffrey ; M�Ý®Äã�Ù, Larry M. ; F®�½�®Ä¦, Roy T. ;

G�ããùÝ, Jim ; L���«, Paul J. ; B�ÙÄ�ÙÝ-L��, Tim: Hypertext Transfer Protocol –

HTTP/1.1. RFC 2616. http://dx.doi.org/10.17487/RFC2616.
version: June 1999 (Request for Comments). – Accessed: 2018-05-21

[NPP+17] NÊ¦«��®, Shadi A. ; P�Ù�Ã�Ý®ò�Ã, Kartik ; P�Ä, Yi ; R�Ã�Ý«, Navina ;

BÙ®Ä¦«çÙÝã, Jon ; GçÖã�, Indranil ; C�ÃÖ��½½, Roy H.: Samza: Stateful

Scalable Stream Processing at LinkedIn. In: Proc. VLDB Endow. 10 (2017),

August, no. 12, 1634–1645.

http://dx.doi.org/10.14778/3137765.3137770. – DOI

10.14778/3137765.3137770. – ISSN 2150–8097

[NRNK10] N�çÃ�ù�Ù, Leonardo ; RÊ��®ÄÝ, Bruce ; N�®Ù, Anish ; K�Ý�Ù®, Anand: S4:

Distributed Stream Computing Platform. In: Proceedings of the 2010 IEEE

International Conference on Data Mining Workshops. Washington, DC, USA :

IEEE Computer Society, 2010 (ICDMW ’10). – ISBN 978–0–7695–4257–7,

170–177

[Oll06] O½½�, T. W.: Nineteen Sixties History of Data Base Management. In:

IÃÖ�¦½®�þþÊ, John (ed.): History of Computing and Education 2 (HCE2): IFIP

19th World Computer Congress, WG 9.7, TC 9: History of Computing,

Proceedings of the Second Conference on the History of Computing and

Education, August 21–24, 2006, Santiago, Chile. Boston, MA : Springer US,

2006. – ISBN 978–0–387–34741–7, 67–75

[OM10] O’BÙ®�Ä, James A. ; M�Ù�»�Ý, George M.: Management Information

Systems. 10th Edition. McGraw-Hill/Irwin, 2010

[Ora15a] OÙ��½� (ed.): Oracle Active Data Guard: Real-Time Data Protection and

Availability. Oracle, October 2015

218

https://www.pipelinedb.com/blog/pipelinedb-0-9-7-delta-streams-and-towards-a-postgresql-extension
https://www.pipelinedb.com/blog/pipelinedb-0-9-7-delta-streams-and-towards-a-postgresql-extension
https://blog.codecentric.de/en/2017/04/event-time-processing-apache-spark-apache-flink/
https://blog.codecentric.de/en/2017/04/event-time-processing-apache-spark-apache-flink/
http://dx.doi.org/10.17487/RFC2616
http://dx.doi.org/10.14778/3137765.3137770

Bibliography

[Ora15b] OÙ��½� (ed.): Oracle GoldenGate 12c: Real-Time Access to Real-Time

Information. Oracle, March 2015

[Ora16] OÙ��½� (ed.): Oracle Database Development Guide, 12c Release 1 (12.1).

Oracle, May 2016

[Ora17a] OÙ��½� (ed.): Java Platform, Standard Edition HotSpot Virtual Machine

Garbage Collection Tuning Guide: Garbage-First Garbage Collector. Oracle,

2017. https://docs.oracle.com/javase/8/docs/technotes/guides/vm/
gctuning/g1_gc.html. – Accessed: 2017-11-18

[Ora17b] OÙ��½� (ed.): Oracle Database Readme, 12c Release 1 (12.1). Oracle, March

2017

[Ora18a] OÙ��½� (ed.): Java Platform, Standard Edition Nashorn User’s Guide. Oracle,

2018. https://docs.oracle.com/javase/8/docs/technotes/guides/
scripting/nashorn/. – Accessed: 2018-06-23

[Ora18b] OÙ��½� (ed.): Oracle NoSQL Database: Python Driver Getting Started Guide

(12.2.4.5). Oracle, February 2018

[Ora18c] OÙ��½� CÊÙÖÊÙ�ã®ÊÄ: Shenandoah GC.

https://wiki.openjdk.java.net/display/shenandoah/Main.
version: 2018. – Accessed: 2018-05-10

[Ori18] OÙ®�ÄãDB Lã�.: OrientDB. https://orientdb.com/. version: 2018. –

Accessed: 2018-05-10

[Osm12] OÝÃ�Ä®, Adnan: The Observer Pattern. In: Learning JavaScript Design

Patterns (2012). https://www.safaribooksonline.com/library/view/
learning-javascript-design/9781449334840/ch09s05.html. –
Accessed: 2018-05-10

[Pal13] P�½Ã�Ù, Mark: How To Analyze Sensor Data In Real-Time With CEP. In: The

StreamBase Event Processing Blog (2013), April.

http://streambase.typepad.com/streambase_stream_process/2013/
04/time-windowing.html. – Accessed: 2018-02-14

[Pan14] P�Äã, Saurabh: Lap around Azure Redis Cache. In: Microsoft Azure Blog

(2014). https://azure.microsoft.com/de-de/blog/lap-around-azure-
redis-cache-preview/. – Accessed: 2018-05-28

[Pan15] P�Ä¦, Gene: Scalable Transactions for Scalable Distributed Database

Systems, EECS Department, University of California, Berkeley, diss., Jun

2015. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-168.html

[Pat18] P�ãþó�«½, Marcel: Inkrementelle Auswertung geobasierter

MongoDB-Anfragen, University of Hamburg, master’s thesis, 2018

219

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
https://wiki.openjdk.java.net/display/shenandoah/Main
https://orientdb.com/
https://www.safaribooksonline.com/library/view/learning-javascript-design/9781449334840/ch09s05.html
https://www.safaribooksonline.com/library/view/learning-javascript-design/9781449334840/ch09s05.html
http://streambase.typepad.com/streambase_stream_process/2013/04/time-windowing.html
http://streambase.typepad.com/streambase_stream_process/2013/04/time-windowing.html
https://azure.microsoft.com/de-de/blog/lap-around-azure-redis-cache-preview/
https://azure.microsoft.com/de-de/blog/lap-around-azure-redis-cache-preview/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-168.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-168.html

Bibliography

[Pau15] P�ç½, Ryan: Build a realtime liveblog with RethinkDB and PubNub. In:

RethinkDB Blog (2015), May.

https://rethinkdb.com/blog/rethinkdb-pubnub/. – Accessed:

2017-05-20

[PD99] P�ãÊÄ, Norman W. ; D°�þ, Oscar: Active Database Systems. In: ACM

Comput. Surv. 31 (1999), March, no. 1, 63–103.

http://dx.doi.org/10.1145/311531.311623. – DOI

10.1145/311531.311623. – ISSN 0360–0300

[Pip15] P®Ö�½®Ä�DB (ed.): Two Phase Commits. PipelineDB, 2015.

http://enterprise.pipelinedb.com/docs/two-phase.html#two-phase.
– Accessed: 2016-10-17

[Pip17] P®Ö�½®Ä�DB (ed.): Streams. PipelineDB, 2017.

http://docs.pipelinedb.com/streams.html. – Accessed: 2017-11-25

[Piv18] P®òÊã�½ SÊ¥ãó�Ù�, IÄ�.: RabbitMQ. https://www.rabbitmq.com/.
version: 2018. – Accessed: 2018-05-10

[PM16] P�ãã�ÙÝÊÄ, Pat ; M�½�Ý»�, Ted: Ingest & Stream Processing – What Will You

Choose? In: QCon (2016), August.

https://www.infoq.com/presentations/ingest-stream-processing. –
Accessed: 2018-05-25

[Pos17] T«� PÊÝã¦Ù�SQL G½Ê��½ D�ò�½ÊÖÃ�Äã GÙÊçÖ (ed.): PostgreSQL 9.6

Documentation: Notify. The PostgreSQL Global Development Group, 2017.

https://www.postgresql.org/docs/9.6/static/sql-notify.html. –
Accessed: 2017-05-13

[Pos18] PÊÝã¦Ù�SQL G½Ê��½ D�ò�½ÊÖÃ�Äã GÙÊçÖ (ed.): PostgreSQL 9.4.18

Documentation. PostgreSQL Global Development Group, 2018. https://
www.postgresql.org/docs/9.4/static/ddl-system-columns.html. –
Accessed: 2018-05-19

[Pro18] PÙÊ¹��ã F®FÊ: DalmatinerDB. https://dalmatiner.io/. version: 2018. –

Accessed: 2018-05-10

[PS06] P�ãÙÊçÃÖ�Ý, Kostas ; S�½½®Ý, Timos: Window Specification over Data

Streams. In: Proceedings of the 2006 International Conference on Current

Trends in Database Technology. Berlin, Heidelberg : Springer-Verlag, 2006

(EDBT’06). – ISBN 3–540–46788–2, 978–3–540–46788–5, 445–464

[PSS+93] PçÙ®Ã�ã½�, B. ; S®ò�Ý�Ä»�Ù�Ä, R. ; Sã�Ä»Êò®�, J. ; R�Ã�ÃÙ®ã«�Ã, K. ;

TÊóÝ½�ù, D.: A Study of Distributed Real-Time Active Database Applications.

Amherst, MA, USA : University of Massachusetts, 1993. – technical report

[PT05] P�ò�Ä, A. ; T®Ùã«�ÖçÙ�, Srikanta: Range-Efficient Computation of F” over

Massive Data Streams. In: Proceedings of the 21st International Conference

220

https://rethinkdb.com/blog/rethinkdb-pubnub/
http://dx.doi.org/10.1145/311531.311623
http://enterprise.pipelinedb.com/docs/two-phase.html#two-phase
http://docs.pipelinedb.com/streams.html
https://www.rabbitmq.com/
https://www.infoq.com/presentations/ingest-stream-processing
https://www.postgresql.org/docs/9.6/static/sql-notify.html
https://www.postgresql.org/docs/9.4/static/ddl-system-columns.html
https://www.postgresql.org/docs/9.4/static/ddl-system-columns.html
https://dalmatiner.io/

Bibliography

on Data Engineering. Washington, DC, USA : IEEE Computer Society, 2005

(ICDE ’05). – ISBN 0–7695–2285–8, 32–43

[Puf16] Pç¥¥�½�Ä, Frank van: Have you met the Realtime Database? In: Firebase

Blog (2016), July. https://firebase.googleblog.com/2016/07/have-
you-met-realtime-database.html. – Accessed: 2017-05-20

[QGMW96] Qç�ÝÝ, Dallan ; GçÖã�, Ashish ; MçÃ®�», Inderpal S. ; W®�ÊÃ, Jennifer:

Making Views Self-maintainable for Data Warehousing. In: Proceedings of

the Fourth International Conference on Parallel and Distributed Information

Systems. Washington, DC, USA : IEEE Computer Society, 1996 (DIS ’96). –

ISBN 0–8186–7475–X, 158–169

[R+11] Rçþþ®, Joseph et al.: Oracle Coherence Developer’s Guide, Release 3.7.1,

2011

[R+14a] Rçþþ®, Joseph et al.: Querying Data In a Cache. In: Oracle Fusion

Middleware: Developing Applications with Oracle Coherence, 12c (12.1.2).

Oracle, May 2014

[R+14b] Rçþþ®, Joseph et al.: Using Continuous Query Caching. In: Oracle Fusion

Middleware: Developing Applications with Oracle Coherence, 12c (12.1.2).

Oracle, May 2014

[Ram15] R�Ã�Ý«, Navina: Apache Samza, LinkedIn’s Framework for Stream

Processing. In: thenewstack.io (2015), January. http://thenewstack.io/
apache-samza-linkedins-framework-for-stream-processing/. –
Accessed: 2016-09-21

[Ram16] R�Ã�Ý�Ãù, Karthik: Open Sourcing Twitter Heron. In: Twitter Blog (2016),

May. https://blog.twitter.com/2016/open-sourcing-twitter-heron. –
Accessed: 2017-01-15

[Rea17a] R���ã®ò�X (ed.): A reactive programming library for JavaScript. ReactiveX,

2017. http://reactivex.io/rxjs/. – Accessed: 2017-08-05

[Rea17b] R��½Ã: Realm Java 3.0: Collection Notifications, Snapshots and Sorting

Across Relationships. In: Realm Blog (2017), February. https://
news.realm.io/news/realm-java-3-0-collection-notifications/. –
Accessed: 2017-07-09

[Rea18a] R���ã®ò�X: ReactiveX. http://reactivex.io/. version: 2018. – Accessed:

2018-05-10

[Rea18b] R��½Ã: Realm. https://realm.io/. version: 2018. – Accessed:

2018-05-10

[Ret16] R�ã«®Ä»DB: RethinkDB. https://www.rethinkdb.com/. version: 2016. –

Accessed: 2016-09-18

221

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
http://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing/
http://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing/
https://blog.twitter.com/2016/open-sourcing-twitter-heron
http://reactivex.io/rxjs/
https://news.realm.io/news/realm-java-3-0-collection-notifications/
https://news.realm.io/news/realm-java-3-0-collection-notifications/
http://reactivex.io/
https://realm.io/
https://www.rethinkdb.com/

Bibliography

[Ric13] R®�«�Ù�ÝÊÄ, Kato: Queries, Part 1: Common SQL Queries Converted for

Firebase. In: Firebase Blog (2013), October.

https://firebase.googleblog.com/2013/10/queries-part-1-common-
sql-queries.html. – Accessed: 2017-12-23

[Ric14] R®�«�Ù�ÝÊÄ, Kato: Queries, Part 2: Advanced Searches with Firebase, made

Plug-and-Play Simple. In: Firebase Blog (2014), January. https://
firebase.googleblog.com/2014/10/firebase-is-joining-google.html.
– Accessed: 2017-12-23

[Ric15] R®�«ã�Ù, Jan: Garbage Collector Shenandoah: desktop applications,

Masaryk University, master’s thesis, 2015

[Ris15] R®Ýã®�, Ivan ; G®Ù®�-R®Ýã®�, Jelena (ed.) ; R�Ä»®Ä, Melinda (ed.): Bulletproof

SSL and TLS. Feisty Duck, 2015

[RMCZ06] Rùò»®Ä�, E. ; M�Ý»�ù, A. S. ; C«�ÙÄ®��», M. ; Z�ÊÄ®», S.: Revision Processing

in a Stream Processing Engine: A High-Level Design. In: 22nd International

Conference on Data Engineering (ICDE’06), 2006. – ISSN 1063–6382, pp.

141–141

[Ros11] RÊÝ�, Ian T.: Real-Time Query Systems for Complex Data Sources, Harvard

University Cambridge, Massachusetts, diss., 2011

[Ros16] RÊÝ�, Alex: Firebase: The Good, Bad, and the Ugly. In: Raizlabs Developer

Blog (2016), December.

https://www.raizlabs.com/dev/2016/12/firebase-case-study/. –
Accessed: 2017-05-21

[RRH13] Rì�®¦�Ù, David ; RÊ®�½, Moritz ; HÊÃÖ�½, Michael ten: Towards Agile and

Flexible Air Cargo Processes with Localization Based on RFID and Complex

Event Processing. In: KÙ�ÊóÝ»®, Hans-Jörg (ed.) ; S�«Ê½þ-R�®ã�Ù, Bernd (ed.)

; T«Ê��Ä, Klaus-Dieter (ed.): Dynamics in Logistics: Third International

Conference, LDIC 2012 Bremen, Germany, February/March 2012

Proceedings. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. – ISBN

978–3–642–35966–8, 235–246

[RRM17] R��Êù, Nic ; R�¹�¦ÊÖ�½, Priya ; M�øó�½½, Eric: NDP Episode #19: Mobile

Development with Realm. In: Couchbase Blog (2017), June. https://
blog.couchbase.com/ndp-episode-19-mobile-development-realm/. –
audio podcast (explanation by Eric Maxwell, starting at 10:57); Accessed:

2017-09-13

[RSS+96] R�Ã�ÃÙ®ã«�Ã, Krithi ; S®ò�Ý�Ä»�Ù�Ä, Raju ; Sã�Ä»Êò®�, John A. ; TÊóÝ½�ù,

Don T. ; X®ÊÄ¦, Ming: Integrating Temporal, Real-time, an Active Databases.

In: SIGMOD Rec. 25 (1996), March, no. 1, 8–12.

http://dx.doi.org/10.1145/381854.381868. – DOI

222

https://firebase.googleblog.com/2013/10/queries-part-1-common-sql-queries.html
https://firebase.googleblog.com/2013/10/queries-part-1-common-sql-queries.html
https://firebase.googleblog.com/2014/10/firebase-is-joining-google.html
https://firebase.googleblog.com/2014/10/firebase-is-joining-google.html
https://www.raizlabs.com/dev/2016/12/firebase-case-study/
https://blog.couchbase.com/ndp-episode-19-mobile-development-realm/
https://blog.couchbase.com/ndp-episode-19-mobile-development-realm/
http://dx.doi.org/10.1145/381854.381868

Bibliography

10.1145/381854.381868. – ISSN 0163–5808

[RxD17a] RøDB (ed.): Custom Build. RxDB, 2017.

https://pubkey.github.io/rxdb/custom-build.html. – Accessed:

2017-10-16

[RxD17b] RøDB (ed.): Query Change Detection. RxDB, 2017.

https://pubkey.github.io/rxdb/query-change-detection.html. –
Accessed: 2017-10-16

[RxD18] RøDB: RxDB. https://github.com/pubkey/rxdb. version: 2018. –

Accessed: 2018-05-10

[SAK07] S½��, Mark ; A¦�Ùó�½, Aditya ; Kó®�ã»ÊóÝ»®, Marc: Thrift: Scalable

Cross-Language Services Implementation / Facebook Inc. version: April

2007. http://thrift.apache.org/static/files/thrift-20070401.pdf.
2007. – technical report. – Accessed: 2018-08-19

[San93] S�ÄãÊÙÊ, Alexandre: Case Study in Prototyping With Rapide: Shared

Memory Multiprocessor System / Stanford University. 1993. – technical

report

[San16] S�Ä¥®½®ÖÖÊ, Salvatore: The first release candidate of Redis 4.0 is out. In:

Antirez.com (2016), December. http://antirez.com/news/110. –
Accessed: 2018-06-10

[San17] S�Ä¥®½®ÖÖÊ, Salvatore: Streams: a new general purpose data structure in

Redis. In: Antirez.com (2017), October. http://antirez.com/news/114. –
Accessed: 2018-05-12

[San18a] S�Ä¥®½®ÖÖÊ, Salvatore: How Fast is Redis?, 2018.

https://redis.io/topics/benchmarks. – Accessed: 2018-05-31

[San18b] S�Ä¥®½®ÖÖÊ, Salvatore: Redis. https://redis.io/. version: 2018. –

Accessed: 2018-05-10

[San18c] S�Ä¥®½®ÖÖÊ, Salvatore: Redis Cluster Specification, 2018.

https://redis.io/topics/cluster-spec. – Accessed: 2018-05-30

[San18d] S�Ä¥®½®ÖÖÊ, Salvatore: Redis Keyspace Notifications, 2018.

https://redis.io/topics/notifications. – Accessed: 2018-06-10

[San18e] S�Ä¥®½®ÖÖÊ, Salvatore: Redis Sentinel Documentation, 2018.

https://redis.io/topics/sentinel. – Accessed: 2018-06-04

[San18f] S�Ä¥®½®ÖÖÊ, Salvatore: An update on Redis Streams development. In:

Antirez.com (2018), January. http://antirez.com/news/116. – Accessed:

2018-05-12

[Sax15] S�ø, Matthias J.: Storm Compatibility in Apache Flink: How to run existing

Storm topologies on Flink. In: Apache Flink Blog (2015), December

223

https://pubkey.github.io/rxdb/custom-build.html
https://pubkey.github.io/rxdb/query-change-detection.html
https://github.com/pubkey/rxdb
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://antirez.com/news/110
http://antirez.com/news/114
https://redis.io/topics/benchmarks
https://redis.io/
https://redis.io/topics/cluster-spec
https://redis.io/topics/notifications
https://redis.io/topics/sentinel
http://antirez.com/news/116

Bibliography

[SBLC00] S�½�Ã, Kenneth ; B�ù�Ù, Kevin ; L®Ä�Ý�ù, Bruce ; CÊ�«Ù�Ä�, Roberta: How to

Roll a Join: Asynchronous Incremental View Maintenance. In: SIGMOD Rec.

29 (2000), May, no. 2, 129–140.

http://dx.doi.org/10.1145/335191.335393. – DOI

10.1145/335191.335393. – ISSN 0163–5808

[SC05] SãÊÄ��Ù�»�Ù, Michael ; C�ã®Äã�Ã�½, Ugur: ”One Size Fits All”: An Idea

Whose Time Has Come and Gone. In: Proceedings of the 21st International

Conference on Data Engineering. Washington, DC, USA : IEEE Computer

Society, 2005 (ICDE ’05). – ISBN 0–7695–2285–8, 2–11

[SCF+86] S�«ó�Ùþ, P. ; C«�Ä¦, W. ; FÙ�ùã�¦, J. C. ; LÊ«Ã�Ä, G. ; M�P«�ÙÝÊÄ, J. ;

MÊ«�Ä, C. ; P®Ù�«�Ý«, H.: Extensibility in the Starburst Database System. In:

Proceedings on the 1986 International Workshop on Object-oriented

Database Systems. Los Alamitos, CA, USA : IEEE Computer Society Press,

1986 (OODS ’86). – ISBN 0–8186–0734–3, 85–92

[Sch15] S�«��ÙÝ�«Ã®�ã, Michael: Towards Latency: An Online Learning Mechanism

for Caching Dynamic Query Content, University of Cambridge, master’s

thesis, 2015

[Sch18] S�«ìãã, Randy: Inkrementelle Auswertung von

MongoDB-Volltextsuchanfragen, University of Hamburg, master’s thesis,

2018

[SCZ05] SãÊÄ��Ù�»�Ù, Michael ; C�ã®Äã�Ã�½, Uǧur ; Z�ÊÄ®», Stan: The 8

Requirements of Real-time Stream Processing. In: SIGMOD Rec. 34 (2005),

December, no. 4, 42–47. http://dx.doi.org/10.1145/1107499.1107504.
– DOI 10.1145/1107499.1107504. – ISSN 0163–5808

[SD95] S®ÃÊÄ, Eric ; D®ããÙ®�«, Angelika K.: Promises and Realities of Active

Database Systems. In: Proceedings of the 21th International Conference on

Very Large Data Bases. San Francisco, CA, USA : Morgan Kaufmann

Publishers Inc., 1995 (VLDB ’95). – ISBN 1–55860–379–4, 642–653

[SDSB18] S®¦ÊçÙ�, Benoît ; D�Ã®Ù, Berk D. ; SÃ®ã«, Mark ; B�ÙÙ, Dave: OpenTSDB.

http://opentsdb.net/. version: 2018. – Accessed: 2018-05-10

[Sel18] S�½ò�, Andrea: Moquette. https://andsel.github.io/moquette/.
version: 2018. – Accessed: 2018-05-27

[SF12] S���½�¦�, Pramod J. ; FÊó½�Ù, Martin: NoSQL Distilled: A Brief Guide to the

Emerging World of Polyglot Persistence. 1st. Addison-Wesley Professional,

2012. – ISBN 0321826620, 9780321826626

[SFK00] S�Ä�«ç, Ravi ; F�ÙÙ�®Ê½Ê, David ; Kç«Ä, Richard: The NIST Model for

Role-based Access Control: Towards a Unified Standard. In: Proceedings of

the Fifth ACMWorkshop on Role-based Access Control. New York, NY, USA :

224

http://dx.doi.org/10.1145/335191.335393
http://dx.doi.org/10.1145/1107499.1107504
http://opentsdb.net/
https://andsel.github.io/moquette/

Bibliography

ACM, 2000 (RBAC ’00). – ISBN 1–58113–259–X, 47–63

[SGDY16] S�«��ÙÝ�«Ã®�ã, Michael ; G�ÝÝ�Ùã, Felix ; D�½®��Ù�, Valentin ; YÊÄ�»®, Eiko:

Learning Runtime Parameters in Computer Systems with Delayed

Experience Injection. In: CoRR abs/1610.09903 (2016).

http://arxiv.org/abs/1610.09903

[SGR15] S�«��ÙÝ�«Ã®�ã, Michael ; G�ÝÝ�Ùã, Felix ; R®ãã�Ù, Norbert: Towards

Automated Polyglot Persistence. In: Datenbanksysteme für Business,

Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs

”Datenbanken und Informationssysteme”, 2015

[SH12] S�Äã«�Ã®½�Ù�Ýç, S. ; H�Ã�½�ã«�, M.: Load shedding techniques based on

windows in data stream systems. In: 2012 International Conference on

Emerging Trends in Science, Engineering and Technology (INCOSET), 2012,

pp. 68–73

[SHWK76] SãÊÄ��Ù�»�Ù, Michael ; H�½�, Gerald ; WÊÄ¦, Eugene ; KÙ�ÖÝ, Peter: The

Design and Implementation of INGRES. In: ACM Trans. Database Syst. 1

(1976), September, no. 3, 189–222.

http://dx.doi.org/10.1145/320473.320476. – DOI

10.1145/320473.320476. – ISSN 0362–5915

[SJGP90] SãÊÄ��Ù�»�Ù, Michael ; J«®Ä¦Ù�Ä, Anant ; GÊ«, Jeffrey ; PÊã�Ã®�ÄÊÝ,

Spyros: On Rules, Procedure, Caching and Views in Data Base Systems. In:

Proceedings of the 1990 ACM SIGMOD International Conference on

Management of Data. New York, NY, USA : ACM, 1990 (SIGMOD ’90). – ISBN

0–89791–365–5, 281–290

[SKM92] S®ÃÊÄ, Eric ; K®�ÙÄ�Ä, Jerry ; M�®Ä�Ù�ò®½½�, Christophe d.: Implementing

High Level Active Rules on Top of a Relational DBMS. In: Proceedings of the

18th International Conference on Very Large Data Bases. San Francisco, CA,

USA : Morgan Kaufmann Publishers Inc., 1992 (VLDB ’92). – ISBN

1–55860–151–1, 315–326

[SKRC10] S«ò��«»Ê, Konstantin ; Kç�Ä¦, Hairong ; R��®�, Sanjay ; C«�ÄÝ½�Ù, Robert:

The Hadoop Distributed File System. In: Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST).

Washington, DC, USA : IEEE Computer Society, 2010 (MSST ’10). – ISBN

978–1–4244–7152–2, 1–10

[SMA+07] SãÊÄ��Ù�»�Ù, Michael ; M����Ä, Samuel ; A���®, Daniel J. ; H�Ù®þÊÖÊç½ÊÝ,

Stavros ; H��«�Ã, Nabil ; H�½½�Ä�, Pat: The End of an Architectural Era: (It’s

Time for a Complete Rewrite). In: Proceedings of the 33rd International

Conference on Very Large Data Bases, VLDB Endowment, 2007 (VLDB ’07). –

ISBN 978–1–59593–649–3, 1150–1160

225

http://arxiv.org/abs/1610.09903
http://dx.doi.org/10.1145/320473.320476

Bibliography

[SP89] S�¦�ò, Arie ; P�Ù», Jooseok: Maintaining Materialized Views in Distributed

Databases. In: Proceedings of the Fifth International Conference on Data

Engineering. Washington, DC, USA : IEEE Computer Society, 1989. – ISBN

0–8186–1915–5, 262–270

[SPAM91] S�«Ù�®�Ù, Ulf ; P®Ù�«�Ý«, Hamid ; A¦Ù�ó�½, Rakesh ; MÊ«�Ä, C.: Alert: An

Architecture for Transforming a Passive DBMS into an Active DBMS. In:

Proceedings of the 17th International Conference on Very Large Data Bases.

San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 1991 (VLDB ’91).

– ISBN 1–55860–150–3, 469–478

[SR86] SãÊÄ��Ù�»�Ù, Michael ; RÊó�, Lawrence A.: The Design of POSTGRES. In:

Proceedings of the 1986 ACM SIGMOD International Conference on

Management of Data. New York, NY, USA : ACM, 1986 (SIGMOD ’86). – ISBN

0–89791–191–1, 340–355

[Sta88] Sã�Ä»Êò®�, John A.: Misconceptions About Real-Time Computing: A Serious

Problem for Next-Generation Systems. In: Computer 21 (1988), October, no.

10, 10–19. http://dx.doi.org/10.1109/2.7053. – DOI 10.1109/2.7053. –

ISSN 0018–9162

[Ste17] Sã�®Ä, William: RethinkDB versus PostgreSQL: my personal experience. In:

CoCalc Blog (2017), February.

https://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html.
– Accessed: 2017-07-09

[Sto86] SãÊÄ��Ù�»�Ù, Michael: Object Management in POSTGRES Using

Procedures. In: Proceedings on the 1986 International Workshop on

Object-oriented Database Systems. Los Alamitos, CA, USA : IEEE Computer

Society Press, 1986 (OODS ’86). – ISBN 0–8186–0734–3, 66–72

[STR17] STRV Ý.Ù.Ê. (ed.): Rapid Docs: Collection. STRV s.r.o., 2017. https://
www.rapidrealtime.com/docs/api-reference/javascript/collection.
– Accessed: 2017-10-06

[STR18] STRV Ý.Ù.Ê.: Rapid – Realtime Database Services.

https://www.rapidrealtime.com/. version: 2018. – Accessed:

2018-05-10

[Suc17] Sç��Ê, Stephan: Skalierbare, echtzeitnahe Kommunikation von Änderungen

an Datenbankobjekten und Abfrageresultaten innerhalb einer

Backend-as-a-Service-Architektur, University of Hamburg, master’s thesis,

2017

[SW04] SÙ®ò�Ýã�ò�, Utkarsh ; W®�ÊÃ, Jennifer: Flexible Time Management in Data

Stream Systems. In: Proceedings of the Twenty-third ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.

226

http://dx.doi.org/10.1109/2.7053
https://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://www.rapidrealtime.com/docs/api-reference/javascript/collection
https://www.rapidrealtime.com/docs/api-reference/javascript/collection
https://www.rapidrealtime.com/

Bibliography

New York, NY, USA : ACM, 2004 (PODS ’04). – ISBN 158113858X, 263–274

[Tam14] T�ÃÖ½®Ä, James: Firebase is Joining Google! In: Firebase Blog (2014),

October. https://firebase.googleblog.com/2014/10/firebase-is-
joining-google.html. – Accessed: 2017-11-17

[Tam16] T�ÃÖ½®Ä, James: Firebase expands to become a unified app platform. In:

Firebase Blog (2016), May. https://firebase.googleblog.com/2016/05/
firebase-expands-to-become-unified-app-platform.html. – Accessed:

2017-12-23

[Tam17] T�ÃÖ½®Ä, James: Cloud Firestore: A New Document Database for Apps

(commentary). In: Hacker News (2017).

https://news.ycombinator.com/item?id=15393499. – Accessed

2017-12-19

[TCZ+03] T�ã�ç½, Nesime ; C�ã®Äã�Ã�½, Uğur ; Z�ÊÄ®», Stan ; C«�ÙÄ®��», Mitch ;

SãÊÄ��Ù�»�Ù, Michael: Load Shedding in a Data Stream Manager. In:

Proceedings of the 29th International Conference on Very Large Data Bases -

Volume 29, VLDB Endowment, 2003 (VLDB ’03). – ISBN 0–12–722442–4,

309–320

[TDR16] T«ÊÃÝÊÄ, Martin ; D�Ã�¦¦®Ê, Elio ; R�ùÃÊÙ, Brian: Generic Event Delivery

Using HTTP Push. RFC 8030. http://dx.doi.org/10.17487/RFC8030.
version: December 2016 (Request for Comments). – Accessed: 2018-05-21

[Tec87] T��«Ä®��½ CÊÃÃ®ãã��: ISO/IEC JTC υ IÄ¥ÊÙÃ�ã®ÊÄ T��«ÄÊ½Ê¦ù: ISO

9075:1987: Information processing systems – Database language – SQL /

International Organization for Standardization. 1987. – Standard

[Tec92] T��«Ä®��½ CÊÃÃ®ãã��: ISO/IEC JTC υ/SC χφ D�ã� Ã�Ä�¦�Ã�Äã �Ä�

®Äã�Ù�«�Ä¦�: ISO/IEC 9075:1992: Information technology – Database

languages – SQL / International Organization for Standardization. 1992. –

Standard

[TGNO92] T�ÙÙù, Douglas ; GÊ½���Ù¦, David ; N®�«Ê½Ý, David ; O»®, Brian: Continuous

Queries over Append-only Databases. In: SIGMOD Rec. 21 (1992), June, no.

2, 321–330. http://dx.doi.org/10.1145/141484.130333. – DOI

10.1145/141484.130333. – ISSN 0163–5808

[The16] T«�Ù�Ý»�, Eno: KIP-67: Queryable state for Kafka Streams. In: Kafka

Improvement Proposals (2016). https://cwiki.apache.org/confluence/
display/KAFKA/KIP-67%3A+Queryable+state+for+Kafka+Streams. –
Accessed: 2018-05-12

[TL76] TÝ®�«Ù®ãþ®Ý, D. C. ; LÊ�«ÊòÝ»ù, F. H.: Hierarchical Data-Base Management: A

Survey. In: ACM Comput. Surv. 8 (1976), March, no. 1, 105–123.

http://dx.doi.org/10.1145/356662.356667. – DOI

227

https://firebase.googleblog.com/2014/10/firebase-is-joining-google.html
https://firebase.googleblog.com/2014/10/firebase-is-joining-google.html
https://firebase.googleblog.com/2016/05/firebase-expands-to-become-unified-app-platform.html
https://firebase.googleblog.com/2016/05/firebase-expands-to-become-unified-app-platform.html
https://news.ycombinator.com/item?id=15393499
http://dx.doi.org/10.17487/RFC8030
http://dx.doi.org/10.1145/141484.130333
https://cwiki.apache.org/confluence/display/KAFKA/KIP-67%3A+Queryable+state+for+Kafka+Streams
https://cwiki.apache.org/confluence/display/KAFKA/KIP-67%3A+Queryable+state+for+Kafka+Streams
http://dx.doi.org/10.1145/356662.356667

Bibliography

10.1145/356662.356667. – ISSN 0360–0300

[TMSF03] Tç�»�Ù, P. A. ; M�®�Ù, D. ; S«��Ù�, T. ; F�¦�Ù�Ý, L.: Exploiting punctuation

semantics in continuous data streams. In: IEEE Transactions on Knowledge

and Data Engineering 15 (2003), May, no. 3, pp. 555–568.

http://dx.doi.org/10.1109/TKDE.2003.1198390. – DOI

10.1109/TKDE.2003.1198390. – ISSN 1041–4347

[TP06] T�Ê, Yufei ; P�Ö��®�Ý, Dimitris: Maintaining sliding window skylines on data

streams. In: IEEE Transactions on Knowledge and Data Engineering 18

(2006), March, no. 3, pp. 377–391.

http://dx.doi.org/10.1109/TKDE.2006.48. – DOI

10.1109/TKDE.2006.48. – ISSN 1041–4347

[TPK+13] T�ÙÙù, Douglas B. ; PÙ��«�»�Ù�Ä, Vijayan ; KÊã½�, Ramakrishna ;

B�½�»Ù®Ý«Ä�Ä, Mahesh ; A¦ç®½�Ù�, Marcos K. ; A�ç-L®���«, Hussam:

Consistency-based service level agreements for cloud storage. In: SOSP

ACM, 2013, pp. 309–324

[Tre15] TÙ��ã, Tyler: You Cannot Have Exactly-Once Delivery. In: Brave New Geek

(2015), March.

https://bravenewgeek.com/you-cannot-have-exactly-once-delivery/.
– Accessed: 2018-07-22

[Tre16] TÙ��ã, Tyler: Benchmarking Message Queue Latency. In: DZone (2016),

February.

https://dzone.com/articles/benchmarking-message-queue-latency. –
Accessed: 2018-05-27

[Tre17] TÙ��ã, Tyler: You Cannot Have Exactly-Once Delivery Redux. In: Brave New

Geek (2017), June. https://bravenewgeek.com/you-cannot-have-
exactly-once-delivery-redux/. – Accessed: 2018-07-22

[TS+09] TÊ, Lawrence ; S�«çÖÃ�ÄÄ, Viv et al. ; OÙ��½� (ed.): Oracle Database High

Availability Best Practices 11g Release 1 (11.1). Oracle, December 2009.

https://docs.oracle.com/cd/B28359_01/server.111/b28282/
glossary.htm#CHDIDADC. – Accessed: 2017-05-13

[TTS+14] TÊÝ«Ä®ó�½, Ankit ; T�Ä�¹�, Siddarth ; S«ç»½�, Amit ; R�Ã�Ý�Ãù, Karthik ;

P�ã�½, Jignesh M. ; Kç½»�ÙÄ®, Sanjeev ; J��»ÝÊÄ, Jason ; G���, Krishna ; Fç,

Maosong ; DÊÄ«�Ã, Jake ; B«�¦�ã, Nikunj ; M®ãã�½, Sailesh ; Rù��Êù,

Dmitriy: Storm@Twitter. In: Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data. New York, NY, USA :

ACM, 2014 (SIGMOD ’14). – ISBN 978–1–4503–2376–5, 147–156

[Vin16] V®Ä��Äã, Paul: CEP Tooling Market Survey 2016. In: complexevents.com

(2016), May. http://www.complexevents.com/2016/05/12/cep-tooling-

228

http://dx.doi.org/10.1109/TKDE.2003.1198390
http://dx.doi.org/10.1109/TKDE.2006.48
https://bravenewgeek.com/you-cannot-have-exactly-once-delivery/
https://dzone.com/articles/benchmarking-message-queue-latency
https://bravenewgeek.com/you-cannot-have-exactly-once-delivery-redux/
https://bravenewgeek.com/you-cannot-have-exactly-once-delivery-redux/
https://docs.oracle.com/cd/B28359_01/server.111/b28282/glossary.htm#CHDIDADC
https://docs.oracle.com/cd/B28359_01/server.111/b28282/glossary.htm#CHDIDADC
http://www.complexevents.com/2016/05/12/cep-tooling-market-survey-2016/
http://www.complexevents.com/2016/05/12/cep-tooling-market-survey-2016/

Bibliography

market-survey-2016/. – Accessed: 2017-12-14

[Vis96] V®Ýã�, Dimitri: Optimizing incremental view maintenance expressions in

relational databases, University of Toronto, diss., 1996

[Vis98] Chapter EDBT 1998: Advances in Database Technology — EDBT’98.

In: V®Ýã�, Dimitra: Integration of incremental view maintenance into query

optimizers. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998. – ISBN

978–3–540–69709–1, 374–388

[VPAU15] V�Ä»�ã, Bharat ; P��Ã�Ä��«�Ä, Prasanna ; AÙÊ»®�Ý�Ãù, Antony ;

UÖÖ�½�Ö�ã®, Raju: Can Spark Streaming survive Chaos Monkey? In: Netflix

Tech Blog (2015), Marriage. http://techblog.netflix.com/2015/03/can-
spark-streaming-survive-chaos-monkey.html. – Accessed: 2016-01-11

[VRR10] V®���»Êò®�, Krešimir ; R�ÄÄ�Ù, Thomas ; R�ø, Sascha: Marktübersicht

Real-Time Monitoring Software: Event Processing Tools im Überblick /

Fraunhofer Verlag, Fraunhofer-Informationszentrum Raum und Bau IRB.

2010. – technical report

[VSGC10] V�ÃçÙ®, S.S. ; S®Ä«�, B. ; G�Ä�Ý«, A. ; C«®ãã®, S.B.: Generating continuous

query notifications. https://www.google.com/patents/US20100036831.
version: February 2010. – US Patent App. 12/189,078

[VV16] V®Êãã®, Paolo ; Vç»Ê½®�, Marko: Consistency in Non-Transactional Distributed

Storage Systems. In: ACM Comput. Surv. 49 (2016), no. 1, pp. 19:1–19:34.

http://dx.doi.org/10.1145/2926965. – DOI 10.1145/2926965

[W+14] WÊÙ»Ã�Ä, David et al.: Large number of operations hangs server. In:

Meteor GitHub Issues (2014).

https://github.com/meteor/meteor/issues/2668. – Accessed:

2016-10-01

[Wal17] W�½ã«�Ù, Timo: From Streams to Tables and Back Again: An Update on

Flink’s Table & SQL API. In: Flink Blog (2017), March. https://
flink.apache.org/news/2017/03/29/table-sql-api-update.html. –
Accessed: 2017-10-27

[Wan16a] W�Ä¦, Mengyan: Parse LiveQuery Protocol Specification. In: GitHub:

ParsePlatform/parse-server (2016), March.

https://github.com/parse-community/parse-server/wiki/Parse-
LiveQuery-Protocol-Specification. – Accessed: 2017-11-18

[Wan16b] W�Ä¦, Mengyan: Parse Server Goes Realtime with Live Queries. In: Parse

Blog (2016), March. http://blog.parseplatform.org/announcements/
parse-server-goes-realtime-with-live-queries/. – Accessed:

2017-11-18

229

http://www.complexevents.com/2016/05/12/cep-tooling-market-survey-2016/
http://www.complexevents.com/2016/05/12/cep-tooling-market-survey-2016/
http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html
http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html
https://www.google.com/patents/US20100036831
http://dx.doi.org/10.1145/2926965
https://github.com/meteor/meteor/issues/2668
https://flink.apache.org/news/2017/03/29/table-sql-api-update.html
https://flink.apache.org/news/2017/03/29/table-sql-api-update.html
https://github.com/parse-community/parse-server/wiki/Parse-LiveQuery-Protocol-Specification
https://github.com/parse-community/parse-server/wiki/Parse-LiveQuery-Protocol-Specification
http://blog.parseplatform.org/announcements/parse-server-goes-realtime-with-live-queries/
http://blog.parseplatform.org/announcements/parse-server-goes-realtime-with-live-queries/

Bibliography

[WBL+07] W®ã»ÊóÝ»®, Andrew ; B�½½�Ã»ÊÄ��, Srikanth ; L®, Hua-Gang ; L®�Ä¦, Vince ;

S«�Ä¦, Lei ; SÃ®ã«, Wayne ; Sç�Ù�Ã�Ä®�Ä, Sankar ; T�ÙÙù, James ; Yç,

Tsae-Feng: Continuous Queries in Oracle. In: Proceedings of the 33rd

International Conference on Very Large Data Bases, VLDB Endowment, 2007

(VLDB ’07). – ISBN 978–1–59593–649–3, 1173–1184

[WCB01] W�½Ý«, Matt ; Cç½½�Ù, David ; BÙ�ó�Ù, Eric: SEDA: An Architecture for

Well-conditioned, Scalable Internet Services. In: SIGOPS Oper. Syst. Rev. 35

(2001), October, no. 5, 230–243.

http://dx.doi.org/10.1145/502059.502057. – DOI

10.1145/502059.502057. – ISSN 0163–5980

[Wen15] W�Ä¦�Ù, Jacob: List chat group in order of most recently posted. In:

Firebase Google Group (2015), June. https://groups.google.com/forum/
#!msg/firebase-talk/d-XjaBVL2Ko/TmkIep44lGgJ. – Accessed:

2017-07-09

[WGF+17] W®Ä¦�Ù�ã«, Wolfram ; G�ÝÝ�Ùã, Felix ; FÙ®��Ù®�«, Steffen ; W®ãã, Erik ; R®ãã�Ù,

Norbert: The Case For Change Notifications in Pull-Based Databases. In:

Datenbanksysteme für Business, Technologie und Web (BTW 2017) -

Workshopband, 2.-3. März 2017, Stuttgart, Germany, 2017

[WGFR16] W®Ä¦�Ù�ã«, Wolfram ; G�ÝÝ�Ùã, Felix ; FÙ®��Ù®�«, Steffen ; R®ãã�Ù, Norbert:

Real-time stream processing for Big Data. In: it - Information Technology 58

(2016), no. 4, 186–194. http://dx.doi.org/10.1515/itit-2016-0002. –
DOI 10.1515/itit–2016–0002

[WGW+18] W®Ä¦�Ù�ã«, Wolfram ; G�ÝÝ�Ùã, Felix ; W®ãã, Erik ; FÙ®��Ù®�«, Steffen ; R®ãã�Ù,

Norbert: Real-Time Data Management for Big Data. In: Proceedings of the

21th International Conference on Extending Database Technology, EDBT

2018, Vienna, Austria, March 26-29, 2018, OpenProceedings.org, 2018

[Wid05] W®�ÊÃ, Jennifer: The Stanford Data Stream Management System. In:

Microsoft Research Lectures (2005), July. https://www.microsoft.com/en-
us/research/video/the-stanford-data-stream-management-system/. –
lecture video (relevant part: 25m45s to 26m48s); Accessed: 2018-07-30

[Wie15] W®�Ý�, Lena: Advanced Data Management for SQL, NoSQL, Cloud and

Distributed Databases. DeGruyter, 2015 http://wiese.free.fr/adm.html.
– ISBN 978–3–11–044140–6

[Win17a] W®Ä¦�Ù�ã«, Wolfram: Going Real-Time Has Just Become Easy: Baqend

Real-Time Queries Hit Public Beta. In: Baqend Tech Blog (2017), September.

http://announcement.twoogle.info. – Accessed: 2017-09-26

[Win17b] W®Ä¦�Ù�ã«, Wolfram: Real-Time Databases Explained: Why Meteor,

RethinkDB, Parse and Firebase Don’t Scale. In: Baqend Tech Blog (2017).

230

http://dx.doi.org/10.1145/502059.502057
https://groups.google.com/forum/#!msg/firebase-talk/d-XjaBVL2Ko/TmkIep44lGgJ
https://groups.google.com/forum/#!msg/firebase-talk/d-XjaBVL2Ko/TmkIep44lGgJ
http://dx.doi.org/10.1515/itit-2016-0002
https://www.microsoft.com/en-us/research/video/the-stanford-data-stream-management-system/
https://www.microsoft.com/en-us/research/video/the-stanford-data-stream-management-system/
http://wiese.free.fr/adm.html
http://announcement.twoogle.info

Bibliography

https://medium.com/p/822ff87d2f87

[Wit16] W®ãã, Erik: Distributed Cache-Aware Transactions for Polyglot Persistence,

University of Hamburg, master’s thesis, August 2016

[WRG18] W®Ä¦�Ù�ã«, Wolfram ; R®ãã�Ù, Norbert ; G�ÝÝ�Ùã, Felix: Real-Time & Stream

Data Management: Push-Based Data in Research & Practice. Springer, book

to be published in late 2018

[YAD14] Y®½Ã�þ, Yavuz S. ; Aù�®Ä, Bahadir I. ; D�Ã®Ù��Ý, Murat: Google cloud

messaging (GCM): An evaluation. In: IEEE Global Communications

Conference, GLOBECOM 2014, Austin, TX, USA, December 8-12, 2014, 2014,

2807–2812

[YCP17] YçÝ�®Ä, Fedail ; CÊÄ�ÊÄ, Craig ; P¥½�çÃ, Pascal: Doesn’t act as expected!

In: sift.js GitHub Issues (2017), March.

https://github.com/crcn/sift.js/issues/117. – Accessed: 2018-08-05

[YQC+12] Y�Ä¦, Fan ; Q®�Ä, Zhengping ; C«�Ä, Xiuwei ; B�Ý�«�ÝãÄ®»«, Ivan ; Z«ç�Ä¦, Li

; Z«Êç, Lidong ; S«�Ä, Guobin: Sonora: A Platform for Continuous

Mobile-Cloud Computing / Microsoft Research. version:March 2012.

http://research.microsoft.com/apps/pubs/default.aspx?id=161446.
2012 (MSR-TR-2012-34). – technical report

[Yu15] Yç, Alice: What does it mean to be a real-time database? — Slava Kim at

Devshop SF May 2015. In: Meteor Blog (2015), June. – Accessed:

2017-05-20

[YYY+03] Y®, Ke ; Yç, Hai ; Y�Ä¦, Jun ; X®�, Gangqiang ; C«�Ä, Yuguo: Efficient

Maintenance of Materialized Top-k Views. In: Proceedings of the 19th

International Conference on Data Engineering (2003)

[ZCD+12] Z�«�Ù®�, Matei ; C«Êó�«çÙù, Mosharaf ; D�Ý, Tathagata et al.: Resilient

Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster

Computing. In: Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation. Berkeley, CA, USA : USENIX

Association, 2012 (NSDI’12), 2–2

[ZDL+13] Z�«�Ù®�, Matei ; D�Ý, Tathagata ; L®, Haoyuan et al.: Discretized Streams:

Fault-tolerant Streaming Computation at Scale. In: Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles. New York,

NY, USA : ACM, 2013 (SOSP ’13). – ISBN 978–1–4503–2388–8, 423–438

231

https://medium.com/p/822ff87d2f87
https://github.com/crcn/sift.js/issues/117
http://research.microsoft.com/apps/pubs/default.aspx?id=161446

Bibliography

232

List of Figures

List of Figures

1.1 A real-timedatabase has tomatch all real-timequeries (blue arrow) against

all incomingwrite operations (red arrow) to generate change notifications

on result alterations (green arrows). 3

1.2 While a static ad hoc query is pull-based, a self-maintaining (real-time)

query pushes updates to the client and presents a new result on every

change. 5

2.1 Different classes of data management systems and the access patterns

they support. 14

2.2 Poll-and-diff: Meteor executes a query again and again to discover changes. 25

2.3 With oplog tailing, each Meteor application server receives all MongoDB

writes: Thus, OLTP workload is sharded, but real-time workload is not. . . 26

2.4 Informationdelivered through the oplog canbe insufficient to decidewhether

or not an update has an effect on a given query’s result. 27

2.5 An abstract view on a streaming analytics pipeline. 42

2.6 Lambda and Kappa Architecture in comparison. 43

2.7 Choosing a processing model means trading off latency against throughput. 44

2.8 Data flow in a Storm topology: Data is ingested from the streaming layer

and thenpassed between Stormcomponents, until the final output reaches

the serving layer. 45

2.9 Data flow in a typical Samza analytics pipeline: Samza jobs cannot commu-

nicate directly, but have to use a queuing system such as Kafka asmessage

broker. 48

2.10 Over the last five decades, different classes of data management systems

have been in the focal point of research interest. 54

3.1 InvaliDB strictly separates responsibilities for data storage (database) from

real-time query matching (InvaliDB cluster). The InvaliDB client is located

at the application server and acts as a broker between these two. 58

3.2 The different match types correspond to different kinds of result alterations. 65

3.3 The write pipeline is horizontally scalable, because it does not have to

be order-preserving: Propagation can be distributed across an arbitrary

number of asynchronous message queues within the event layer. 68

233

List of Figures

3.4 The notification pipeline delivers the initial result and incremental result

changes for any registered real-time query. Since individual notification

messages for the same query depend on one another, the notification

pipeline must be order-preserving per query to guarantee correctness. . . 69

3.5 InvaliDB avoids contacting the database where possible. Thus, a subscrip-

tion request is first sent to the InvaliDB cluster without the initial result (1),

because the query can be directly served when it is already being main-

tained (5/6). If this is not the case (2), the initial result is queried from the

database (3) and the subscription request is repeated (4), with the initial

result attached. 72

3.6 InvaliDB partitions both the query and thewrite pipeline, so that any given

matching node is only responsible for matching few queries against some

of the incoming write operations. 75

3.7 Real-time query matching in InvaliDB is organized in several stages, each

of which consumes input from its predecessor and sends output either to

the event layer or to its respective successor stage. 77

3.8 Knowledge of the items in the query’s offset and beyond the specified

limit is critical to enable incremental maintenance of a sorted query’s result. 79

3.9 An aggregation query result can be impossible to maintain incrementally

without also maintaining the base data fromwhich the aggregate is derived. 82

4.1 Sustainable write and change notification throughput scale linearly with

the number of nodes in the distributed event layer implementation based

on Redis Cluster. Note that (1) the experiments were conducted on throt-

tled hardware (2% CPU time), because unthrottled deployments could

not be saturated, and that (2) both axes are on a logarithmic scale. (Data

taken from [Suc17].) . 95

4.2 Query q1 = p1 ∧ p2 and query q2 = p2 ∨ p3 have predicate p2 in common. . 98

4.3 Read scalability: sustainable number of concurrent real-time queries for

InvaliDB deployments with a single write partition and varying query par-

titions. 103

4.4 Write scalability: sustainable write throughput for InvaliDB deployments

with a single query partition and varying write partitions. 105

4.5 Multi-tenant performance: sustainable matching performance for an In-

valiDB deployment with a single matching node where real-time queries

and write operations are distributed equally across varying numbers of

collections. 107

5.1 The Orestes database middleware uses the readily available web caching

infrastructure to replicate data across the globe. 112

234

List of Figures

5.2 The Orestes cache coherence scheme: While conventional HTTP clients

will observe stale data when accessing purely expiration-based caches,

Orestes clients know which caches are stale through the Cache Sketch

data structure. Thus, Orestes clients only retrieve cached data when it

is known to be fresh and they issue revalidation requests otherwise. . . . 114

5.3 Carl’s user information is partitioned according to visibility, so that public

data (light gray) can be queried by Carl’s friends (e.g. Bob), while the pri-

vate data (dark gray) remains visible only to Carl himself and administrators.117

5.4 The Quaestor architecture ties InvaliDB into Orestes in order tomake que-

ry caching feasible and provide client-facing real-time queries. 118

5.5 Depending on the query, access control can be enforced in the application

server or within the InvaliDB cluster during query matching. 121

5.6 Twoogle is a social media application that enables user-defined real-time

queries over live Twitter messages. 125

5.7 Change notification latency exhibited by Quaestor in comparison to the

corresponding InvaliDB-only deployments under read-heavy and write-

heavy workloads. 142

5.8 Query latency and throughput exhibited by full-fledged Quaestor with

client and CDN caching, Quaestor with only CDN caching, and completely

uncached database access. 145

235

List of Figures

236

List of Tables

List of Tables

1.1 A side-by-side comparison of core characteristics of database and data

stream management systems. 1

2.1 Streams and collections promote different perspectives on data. 15

2.2 A direct comparison of the different collection-based real-time query im-

plementations detailed in this thesis. 33

2.3 Storm/Trident, Samza, Spark Streaming, and Flink’s streaming engine in

direct comparison. 53

2.4 An overview over system classes providing push-based data access. 56

4.1 The workload partitioning determines the number of matching nodes in

the InvaliDB cluster. With the given hardware, we could only evaluate

configurations with no more than 16 matching nodes (green background). 100

237

List of Tables

238

Listings

Listings

2.1 Whether or not a query can be answered on the basis of an ephemeral

data stream without access to the stream history depends on the tempo-

ral scope of the query. 35

4.1 The queries used in our evaluation corresponded to the shown SQL query,

with varying instantiations of i and j. 101

5.1 We consider two different ways to represent a query result. 119

5.2 The query selects the 10most urgent open tasks in the Task collection and
the callback function logs the result to the console. From a developer’s

point of view, executing the query as a self-maintaining real-time query is

very similar to executing it as a regular pull-based query. 124

5.3 The search function is executed whenever the user modifies one of the

query parameters, for example by typing in the search field. 126

5.4 Different subscriptions can be created on top of a single observable. . . . 128

5.5 Because of the implicit limit of at most 500 items per result, these three

queries are effectively equivalent. 130

5.6 An event stream query can be used to implement custom real-time ag-

gregations, e.g. a counter for the number of items in the query result. . . 135

5.7 Using the abstraction of self-maintaining queries, keeping an average up-

to-date can be done by simply recomputing it on every result change. . . 136

5.8 An SQL query is declarative and evaluated entirely in the database system,

so that its execution does not involve client-side processing. 137

5.9 The query corresponds to the SQL query from Listing 5.8 which also re-

trieves the titles of all InvaliDB-related uncompleted task entries that are
associated with an open issue. 138

5.10 Similar to a numeric aggregate, a query result can be maintained fresh by

applying all updates that are delivered by an event stream query. 139

D.1 An exemplary subscribe message. 188

D.2 An exemplary unsubscribe message. 188

D.3 An exemplary result message. 189

D.4 An exemplary match message. 190

D.5 An exemplary error message. 190

239

Listings

240

Statutory Declaration /
Eidesstattliche Erklärung

English: Statutory Declaration

I hereby declare, on oath, that I have written the present dissertation entitled

“Scalable Push-Based Real-Time Queries on Top of Pull-Based Databases”

by myself and have not used sources or means without declaration in the text. Any

thoughts or quotations which were inferred from these sources are clearly marked as

such.

This thesis was not submitted in the same or in a substantially similar version, not even

partially, to any other authority to achieve an academic grading and was not published

elsewhere.

I agree that a copy of this thesis may be made available in the Informatics Library of the

University of Hamburg.

Wolfram Wingerath Hamburg, September 24th, 2018

241

Statutory Declaration / Eidesstattliche Erklärung

German: Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorstehende Arbeit mit dem Titel

„Scalable Push-Based Real-Time Queries on Top of Pull-Based Databases“

selbständig und ohne fremde Hilfe angefertigt und mich anderer als der angegebenen

Hilfsmittel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus

Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit

hat in dieser oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches

einverstanden.

Wolfram Wingerath Hamburg, 24. September 2018

242

	Abstract
	Introduction
	Real-Time Databases
	Real-Time Database Queries
	Challenges
	Primary Contributions
	A Categorization of Data Management Systems by Access Paradigm
	InvaliDB: A Scalable Approach for Opt-in Real-Time Queries
	An Implementation for Real-Time Queries on Top of MongoDB
	Integration With the Orestes Database Middleware

	Thesis Outline
	Previously Published Work

	Background & Related Work
	Systems for Pull-Based & Push-Based Data Access
	Collections vs. Streams

	Database Management
	Triggers & Active Databases
	Change Data Capture, Cache Coherence & Time Series Data
	Materialized Views
	Change Notifications
	Summary & Discussion

	Real-Time Databases
	Meteor
	RethinkDB
	Parse
	Firebase
	Further Systems
	Summary & Discussion

	Data Stream Management
	Queries Over Streams
	Notions of Time
	Windowing & Approximation
	Complex Event Processing
	Messaging Middleware
	Summary & Discussion

	General-Purpose Stream Processing
	Architectural Patterns
	State-of-the-Art Systems
	Design Decisions & Trade-Offs
	Summary & Discussion

	Historical Overview & Discussion

	InvaliDB: A Scalable Design for Opt-in Real-Time Queries
	System Model
	Fault Tolerance, Scalability & Multi-Tenancy
	Real-Time Queries
	The Backing Database System

	The Event Layer: Decoupling Real-Time & OLTP Workloads
	Messaging Semantics
	Write Pipeline
	Notification Pipeline
	Query Pipeline

	Query Processing: Distributed Result Maintenance
	Two-Dimensional Workload Partitioning for Filter Predicates
	Advanced Processing Stages: Sorted Queries, Joins & Aggregations
	The Pluggable Query Engine

	Summary & Discussion

	InvaliDB Prototype: Implementation & Experimental Evaluation
	An InvaliDB Implementation Based on Storm
	Workload Distribution
	Elasticity, State Management & Fault Tolerance

	A Redis-Backed Event Layer Prototype
	Implementation & Correctness
	Horizontal Scalability & Deployment Considerations

	A MongoDB-Compatible Real-Time Query Engine
	Prototype Iterations & Query Expressiveness
	Multi-Query Optimization & Computational Complexity

	Performance Evaluation
	Experimental Setup
	Scaling With Query Load
	Scaling With Write Throughput
	Efficiency of Multi-Tenant Setups

	Summary

	Integrating InvaliDB With the Orestes Database Middleware
	Orestes: A Database Middleware for Globally Low Latency
	Data Model & Query Expressiveness
	Access Control

	Quaestor: Extending Orestes With InvaliDB
	Result Representation & TTL Estimation
	Enforcing Access Control
	A Language-Agnostic Real-Time Communication Protocol

	Extending the Pull-Based Query API by Push-Based Queries
	Self-Maintaining Queries
	Observables & Subscriptions
	Event Stream Queries

	Real-Time Query Semantics
	Semantics by Example: Sorted Event Stream Queries
	Real-Time Aggregations
	Real-Time Joins
	Implementing Self-Maintaining Queries

	Experimental Evaluation of Quaestor
	Push-Based Real-Time Query Performance
	The Effect of Query Caching on Pull-Based Query Performance

	Summary & Discussion

	Conclusion
	Best Practices for Designing a Scalable Real-Time Database
	Scalable Workload Distribution
	Isolated Failure Domains
	Polyglot Data Model
	Balanced Interfaces

	Open Challenges
	Extending Semantics
	Exploring Trade-Offs & Optimizations
	Building Applications

	Closing Thoughts

	Appendix
	InvaliDB Performance: Read Scalability
	Sustainable Queries Under Varying Query Partitions
	Sustainable Queries Under Varying Number of Collections

	InvaliDB Performance: Write Scalability
	Sustainable Throughput Under Varying Write Partitions
	Sustainable Throughput Under Varying Number of Collections

	InvaliDB Performance: Latency Distribution
	Varying Query Partitions
	Varying Write Partitions
	Comparison With Quaestor

	Websocket Messaging Protocol for Quaestor's Real-Time Queries

	Bibliography
	List of Figures
	List of Tables
	Listings
	Statutory Declaration / Eidesstattliche ErklÃ¤rung

