❈❤r✐st✐❛♥ ❏♦sé ◗✉✐♥t❛♥❛ P✐♥❡❞♦
❈➪▲❈❯▲❖ ❉■❋❊❘❊◆❈■❆▲ ❊▼ R
❈❤r✐st✐❛♥ ❏♦sé ◗✉✐♥t❛♥❛ P✐♥❡❞♦
❈➪▲❈❯▲❖ ❉■❋❊❘❊◆❈■❆▲ ❊▼ R
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
■❙❇◆ 978 − 85 − 8236 − 040 − 8
❈♦♣②r✐❣❤t ❝ ❊❞✉❢❛❝ 2017✱ ❈❤r✐st✐❛♥ ❏♦sé ◗✉✐♥t❛♥❛ P✐♥❡❞♦
❊❞✐t♦r❛ ❞❛ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞♦ ❆❝r❡ ✲ ❊❞✉❢❛❝
❘♦❞✳ ❇❘ 364✱ ❑♠ 04 ♦ ❉✐str✐t♦ ■♥❞✉str✐❛❧
69920 − 900 ♦ ❘✐♦ ❇r❛♥❝♦ ♦ ❆❝r❡
❉✐r❡t♦r
❏♦sé ■✈❛♥ ❞❛ ❙✐❧✈❛ ❘❛♠♦s
❈❖◆❙❊▲❍❖ ❊❉■❚❖❘■❆▲
❆❞❛✐❧t♦♥ ❞❡ ❙♦✉s❛ ●❛❧✈ã♦✱ ❆♥t♦♥✐♦ ●✐❧s♦♥ ●♦♠❡s ▼❡sq✉✐t❛✱ ❇r✉♥♦ P❡r❡✐r❛ ❞❛ ❙✐❧✈❛✱ ❈❛r❧❛
❇❡♥t♦ ◆❡❧❡♠ ❈♦❧t✉r❛t♦✱ ❉❛♠✐á♥ ❑❡❧❧❡r✱ ❊✉stáq✉✐♦ ❏♦sé ▼❛❝❤❛❞♦✱ ❋❛❜✐♦ ▼♦r❛❧❡s ❋♦r❡r♦✱
❏❛❝ó ❈és❛r P✐❝❝♦❧✐✱ ❏♦sé ■✈❛♥ ❞❛ ❙✐❧✈❛ ❘❛♠♦s✱ ❏♦sé ▼❛✉r♦ ❙♦✉③❛ ❯❝❤ô❛✱ ❏♦sé P♦r✜r♦
❞❛ ❙✐❧✈❛✱ ▲✉❝❛s ❆r❛ú❥♦ ❈❛r✈❛❧❤♦✱ ▼❛♥♦❡❧ ❉♦♠✐♥❣♦s ❋✐❧❤♦✱ ▼❛r✐❛ ❆❧❞❡❝② ❘♦❞r✐❣✉❡s ❞❡
▲✐♠❛✱ ❘❛✐♠✉♥❞❛ ❞❛ ❈♦st❛ ❆r❛r✉♥❛✱ ❙✐♠♦♥❡ ❞❡ ❙♦✉③❛ ▲✐♠❛✱ ❚✐❛❣♦ ▲✉❝❡♥❛ ❞❛ ❙✐❧✈❛✱ ❨✉r✐
❑❛r❛❝❝❛s ❞❡ ❈❛r✈❛❧❤♦✳
❊❞✐t♦r❛ ❞❡ P✉❜❧✐❝❛çõ❡s
❏♦❝í❧✐❛ ❖❧✐✈❡✐r❛ ❞❛ ❙✐❧✈❛
❉❡s✐❣♥ ❊❞✐t♦r✐❛❧
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈❛♣❛
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❘❡✈✐sã♦ ❚❡①t✉❛❧
❖r♠✐❢r❛♥ P❡ss♦❛ ❈❛✈❛❧❝❛♥t❡
❉❛❞♦s ■♥t❡r♥❛❝✐♦♥❛✐s ❞❡ ❈❛t❛❧♦❣❛çã♦ ♥❛ P✉❜❧✐❝❛çã♦ ✭❈■P✮
❊❞✉❢❛❝ 2016
❉✐r❡✐t♦s ❡①❝❧✉s✐✈♦s ♣❛r❛ ❡st❛ ❡❞✐çã♦✿
❊❞✐t♦r❛ ❞❛ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞♦ ❆❝r❡ ✭❊❞✉❢❛❝✮✱
❈❛♠♣✉s ❘✐♦ ❇r❛♥❝♦✱ ❇❘ 364✱ ❑♠ 4✱
❉✐str✐t♦ ■♥❞✉str✐❛❧ ✲ ❘✐♦ ❇r❛♥❝♦✲❆❈✱ ❈❊P 69920 − 900
68. 3901 2568 ✲ ❡✲♠❛✐❧✿❡❞✉❢❛❝✳✉❢❛❝❣♠❛✐❧✳❝♦♠
❊❞✐t♦r❛ ❆✜❧✐❛❞❛✿ ❋❡✐t♦ ❉❡♣ós✐t♦ ▲❡❣❛❧
P649❝
P✐♥❡❞♦✱ ❈❤r✐st✐❛♥ ❏♦sé ◗✉✐♥t❛♥❛
❈á❧❝✉❧♦ ❞✐❢❡r❡♥❝✐❛❧ ❡♠ ❘ ✴ ❈❤r✐st✐❛♥ ❏♦sé ◗✉✐♥t❛♥❛ P✐♥❡❞♦✳ ✲ ❘✐♦
❇r❛♥❝♦✿ ❊❞✉❢❛❝✱ 2017✳
390 ♣✳✿ ✐❧✳
■♥❝❧✉✐ ❜✐❜❧✐♦❣r❛✜❛✳
■❙❇◆✿ 978 − 85 − 8236 − 040 − 8
1. ▼❛t❡♠át✐❝❛✳ 2. ❈á❧❝✉❧♦ ❞✐❢❡r❡♥❝✐❛❧✳ ■✳ ❚ít✉❧♦✳
❈❉❉✿ 517.2
❇✐❜❧✐♦t❡❝ár✐❛ ▼❛r✐❛ ❞♦ ❙♦❝♦rr♦ ❞❡ ❖✳ ❈♦r❞❡✐r♦ ✲ ❈❘❇
11/667
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❆ ♠❡✉s ✜❧❤♦s✿
▼✐❧❛❣r♦s✱ ❆♥❞ré✱ ◆②❦♦❧❛s✱ ❑❡✈②♥✱
❡ ❈❡❝í❧✐❛✱
✈✐
R
♣❡❧❛s ❡t❡r♥❛s ❧✐çõ❡s ❞❡ ✈✐❞❛✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
◆❖❚❆➬Õ❊❙
❙❡çã♦
···
N
Z
Q
R
C
∪
≈
∩
∅
<
>
6=
∀
∃
/.
⇒
≤
abc
≥
[|x|]
n
P
ai
s✐❣♥✐✜❝❛✿ ❝♦♥t✐♥✉❛r s✉❝❡s✐✈❛♠❡♥t❡
❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s ♥❛t✉r❛✐s
❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s ✐♥t❡✐r♦s
❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❛❝✐♦♥❛✐s
❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s
❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s ❝♦♠♣❧❡①♦s
✉♥✐ã♦ ❞❡ ❝♦♥❥✉♥t♦s
s✐❣♥✐✜❝❛✿ ❛♣r♦①✐♠❛❞❛♠❡♥t❡
✐♥t❡rs❡çã♦ ❞❡ ❝♦♥❥✉♥t♦s
❝♦♥❥✉♥t♦ ✈❛③✐♦
r❡❧❛çã♦ ❡str✐t❛♠❡♥t❡ ♠❡♥♦r q✉❡ ✳✳✳
r❡❧❛çã♦ ❡str✐t❛♠❡♥t❡ ♠❛✐♦r q✉❡ ✳✳✳
♥ã♦ é ✐❣✉❛❧ ❛✳ ✳ ✳
q✉❛♥t✐✜❝❛❞♦r ✉♥✐✈❡rs❛❧ ✭♣❛r❛ t♦❞♦ ✮
q✉❛♥t✐✜❝❛❞♦r ❡①✐st❡♥❝✐❛❧ ✭❡①✐st❡ ✮
t❛✐s q✉❡✳ ✳ ✳
✐♠♣❧✐❝❛ ✭❡♥tã♦ ✮
r❡❧❛çã♦ ♠❡♥♦r ♦✉ ✐❣✉❛❧ ❛✳✳✳
♥ú♠❡r♦ ❢♦r♠❛❞♦ ♣♦r três ❛❧❣❛r✐s♠♦s
r❡❧❛çã♦ ♠❛✐♦r ♦✉ ✐❣✉❛❧ ❛✳✳✳
♣❛rt❡ ✐♥t❡✐r❛ ❞❡ ✉♠ ♥ú♠❡r♦ r❡❛❧ x
❄❄
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷
✶✳✷✳✶
✶✳✷✳✶
✶✳✷✳✶
✶✳✷✳✶
✶✳✺
✶✳✺
✶✳✷
✶✳✻
✶✳✸
s♦♠❛✿ a1 + a2 + a3 + · · · + an−1 + an
✶✳✸
n!
⇔
⊂
m|n
m ∤!
n
s✐❣♥✐✜❝❛ ♦ ♣r♦❞✉t♦✿ 1 × 2 × 3 × · · · × (n − 1) × n
❜✐❝♦♥❞✐❝✐♦♥❛❧ ✭s❡✱ ❡ s♦♠❡♥t❡ s❡✮
✐♥❝❧✉sã♦ ♣ró♣r✐❛ ❞❡ ❝♦♥❥✉♥t♦s
m é ❞✐✈✐s♦r ❞❡ n
m ♥ã♦ é ❞✐✈✐s♦r ❞❡ n
✶✳✸
✶✳✹✳✸
✶✳✻
✶✳✽✳✶
✶✳✽✳✶
⊆
A×B
✐♥❝❧✉sã♦ ❞❡ ❝♦♥❥✉♥t♦s
♣r♦❞✉t♦ ❝❛rt❡s✐❛♥♦ ❞♦s ❝♦♥❥✉♥t♦s A ❝♦♠ B
i=1
n
k
s✐❣♥✐✜❝❛✿
n!
k!(n − k)!
✶✳✽✳✸
✈✐✐
✷✳✶
✷✳✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✈✐✐✐
R
09/02/2021
❙❯▼➪❘■❖
◆♦t❛çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✈✐✐
■❞❡♥t✐❞❛❞❡s ❉✐✈❡rs❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ①✐✈
P❘❊❋➪❈■❖ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ①✐①
✶
❙■❙❚❊▼❆ ❉❖❙ ◆Ú▼❊❘❖❙ ❘❊❆■❙
✶✳✶ ■♥tr♦❞✉çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✷ ❙✐st❡♠❛ ❞♦s ♥ú♠❡r♦s r❡❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✷✳✶ ❆❞✐çã♦ ❡ ▼✉❧t✐♣❧✐❝❛çã♦ ❝♦♠ ♥ú♠❡r♦s r❡❛✐s ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✶✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✸ ❘❡❧❛çã♦ ❞❡ ♦r❞❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✶✲✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✹ ❉❡s✐❣✉❛❧❞❛❞❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✹✳✶ ■♥❡q✉❛çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✹✳✷ ■♥t❡r✈❛❧♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✹✳✸ ❆ r❡t❛ ❛♠♣❧✐❛❞❛✳ ■♥t❡r✈❛❧♦s ✐♥✜♥✐t♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✶✲✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✺ ❱❛❧♦r ❛❜s♦❧✉t♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✶✲✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✻ ❆①✐♦♠❛ ❞♦ s✉♣r❡♠♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✼ ■♥❞✉çã♦ ♠❛t❡♠át✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✽ Pr♦♣r✐❡❞❛❞❡s ❞♦s ♥ú♠❡r♦s ✐♥t❡✐r♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✽✳✶ ❉✐✈✐s✐❜✐❧✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✽✳✷ ▼á①✐♠♦ ❞✐✈✐s♦r ❝♦♠✉♠✳ ▼í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠
✶✳✽✳✸ ◆ú♠❡r♦s ♣r✐♠♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✶✲✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
▼✐s❝❡❧â♥❡❛ ✶✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷
❋❯◆➬Õ❊❙
✶
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✶
✷
✺
✶✸
✶✼
✷✼
✷✾
✷✾
✸✵
✸✵
✸✼
✹✶
✹✺
✹✼
✹✽
✺✹
✺✹
✺✺
✺✻
✺✾
✻✶
✻✺
✷✳✶ ■♥tr♦❞✉çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✺
✐①
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✷✳✷ ❘❡❧❛çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✷✳✶ ❉♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❡ ✉♠❛ r❡❧❛çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✷✳✷ ❘❡❧❛çõ❡s ❞❡ R ❡♠ R ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✷✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✸ ❋✉♥çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✸✳✶ ●rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✸✳✷ ❉❡✜♥✐çã♦ ❢♦r♠❛❧ ❞❡ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✸✳✸ ❉♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✸✳✹ ❖❜t❡♥çã♦ ❞♦ ❞♦♠í♥✐♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✸✳✺ ❈♦♥str✉çã♦ ❞♦ ❣rá✜❝♦ ❝❛rt❡s✐❛♥♦ ❞❡ ✉♠❛ ❢✉♥çã♦
✷✳✸✳✻ ❋✉♥çã♦✿ ■♥❥❡t✐✈❛✳ ❙♦❜r❡❥❡t✐✈❛✳ ❇✐❥❡t✐✈❛ ✳ ✳ ✳ ✳ ✳
✷✳✸✳✼ ❋✉♥çã♦ r❡❛❧ ❞❡ ✈❛r✐á✈❡❧ r❡❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✷✲✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹ ❋✉♥çõ❡s ❡s♣❡❝✐❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✶ ❋✉♥çã♦ ❛✜♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✷ ❋✉♥çã♦ ❝♦♥st❛♥t❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✸ ❋✉♥çã♦ ✐❞❡♥t✐❞❛❞❡ ❡♠ R ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✹ ❋✉♥çã♦ ❧✐♥❡❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✺ ❊q✉❛çã♦ ❞❡ ✉♠❛ r❡t❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✻ ❋✉♥çã♦ ♠❛✐♦r ✐♥t❡✐r♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✼ ❋✉♥çã♦ r❛✐③ q✉❛❞r❛❞❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✽ ❋✉♥çã♦ s✐♥❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✾ ❋✉♥çã♦ ✈❛❧♦r ❛❜s♦❧✉t♦ ❞❡ x ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✶✵ ❋✉♥çã♦ q✉❛❞rát✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✶✶ ❋✉♥çã♦ r❛❝✐♦♥❛❧ ✐♥t❡✐r❛ ♦✉ ♣♦❧✐♥ô♠✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✶✷ ❋✉♥çã♦ r❛❝✐♦♥❛❧ ❢r❛❝✐♦♥ár✐❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✹✳✶✸ ❋✉♥çõ❡s ❞❡ ♦❢❡rt❛ ❡ ❞❡♠❛♥❞❛✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✷✲✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✺ ❖♣❡r❛çõ❡s ❝♦♠ ❢✉♥çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✺✳✶ ❈♦♠♣♦s✐çã♦ ❞❡ ❢✉♥çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✺✳✷ ❋✉♥çã♦ ✐♥✈❡rs❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✺✳✸ ❘❡❧❛çã♦ ❡♥tr❡ ♦ ❣rá✜❝♦ ❞❡ f ❡ ❞❡ f −1 ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✷✲✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✻ ❖✉tr♦s t✐♣♦s ❞❡ ❢✉♥çõ❡s r❡❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✻✳✶ ❋✉♥çõ❡s ✐♠♣❧í❝✐t❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✻✳✷ ❋✉♥çã♦ ♣❡r✐ó❞✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✻✳✸ ❋✉♥çã♦ ❛❧❣é❜r✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✻✳✹ ❋✉♥çã♦ ♣❛r✳ ❋✉♥çã♦ í♠♣❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
①
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
R
✻✻
✻✼
✻✽
✼✸
✼✺
✼✺
✼✻
✼✻
✼✼
✼✽
✽✵
✽✷
✽✾
✾✶
✾✶
✾✶
✾✷
✾✷
✾✸
✾✺
✾✻
✾✻
✾✻
✾✼
✾✼
✾✽
✾✾
✶✵✸
✶✵✼
✶✵✽
✶✶✶
✶✶✸
✶✶✼
✶✷✶
✶✷✶
✶✷✶
✶✷✷
✶✷✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✷✳✻✳✺
✷✳✻✳✻
✷✳✻✳✼
❋✉♥çã♦ ♠♦♥♦tô♥✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❋✉♥çã♦ ❧✐♠✐t❛❞❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❋✉♥çã♦ ❡❧❡♠❡♥t❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✷✲✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✼ ❋✉♥çõ❡s tr❛♥s❝❡♥❞❡♥t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✼✳✶ ❆ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❞❡ ❜❛s❡ a ✳ ✳ ✳ ✳
✷✳✼✳✷ ❋✉♥çã♦ ❧♦❣❛rít♠✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✷✲✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✼✳✸ ❋✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✼✳✹ ❋✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s ✳ ✳ ✳
✷✳✼✳✺ ❋✉♥çõ❡s ❤✐♣❡r❜ó❧✐❝❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✷✲✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
▼✐s❝❡❧â♥❡❛ ✷✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
▲■▼■❚❊❙
✶✷✹
✶✷✺
✶✷✼
✶✷✾
✶✸✸
✶✸✸
✶✸✺
✶✸✾
✶✹✶
✶✹✽
✶✺✶
✶✺✸
✶✺✼
✶✻✶
✸✳✶ ❱✐③✐♥❤❛♥ç❛ ❞❡ ✉♠ ♣♦♥t♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✷ ▲✐♠✐t❡ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✸✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✷✳✶ Pr♦♣r✐❡❞❛❞❡s ❞♦s ❧✐♠✐t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✸✲✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✸ ▲✐♠✐t❡s ❧❛t❡r❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✹ ▲✐♠✐t❡s ❛♦ ✐♥✜♥✐t♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✸✲✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳
✸✳✺ ▲✐♠✐t❡s ✐♥✜♥✐t♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✻ ▲✐♠✐t❡ ❞❡ ❢✉♥çõ❡s tr❛♥s❝❡♥❞❡♥t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✻✳✶ ▲✐♠✐t❡s tr✐❣♦♥♦♠étr✐❝♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✳✻✳✷ ▲✐♠✐t❡s ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s
✸✳✻✳✸ ▲✐♠✐t❡ ❞❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❡ ❧♦❣❛rít♠✐❝❛ ✳
❊①❡r❝í❝✐♦s ✸✲✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
▼✐s❝❡❧â♥❡❛ ✸✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
R
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
❈❖◆❚■◆❯■❉❆❉❊
✶✻✶
✶✻✷
✶✻✾
✶✼✶
✶✼✾
✶✽✸
✶✽✺
✶✾✶
✶✾✺
✷✵✵
✷✵✵
✷✵✷
✷✵✹
✷✶✶
✷✶✺
✷✶✼
✹✳✶ ❈♦♥❝❡✐t♦s ❜ás✐❝♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✹✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✳✷ ❈♦♥t✐♥✉✐❞❛❞❡ ❡♠ ✐♥t❡r✈❛❧♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✳✷✳✶ ❋✉♥çõ❡s ❝♦♥tí♥✉❛s ❡♠ ✐♥t❡r✈❛❧♦s ❢❡❝❤❛❞♦s
❊①❡r❝í❝✐♦s ✹✲✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
▼✐s❝❡❧â♥❡❛ ✹✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
①✐
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✷✶✽
✷✷✺
✷✷✾
✷✸✶
✷✸✾
✷✹✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❉❊❘■❱❆❉❆❙
✷✹✺
✺✳✶ ❈♦♥❝❡✐t♦s ❜ás✐❝♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✷ ❉❡r✐✈❛❞❛ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✷✳✶ ❘❡t❛ t❛♥❣❡♥t❡✳ ❘❡t❛ ♥♦r♠❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✸ ❉❡r✐✈❛❞❛s ❧❛t❡r❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✹ ❉❡r✐✈❛❜✐❧✐❞❛❞❡ ❡ ❝♦♥t✐♥✉✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✹✳✶ ❘❡❣r❛s ❞❡ ❞❡r✐✈❛çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✹✳✷ ❉❡r✐✈❛❞❛ ❞❡ ♦r❞❡♠ s✉♣❡r✐♦r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✹✳✸ ❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ ✐♥✈❡rs❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✹✳✹ ❘❡❣r❛ ❞❛ ❝❛❞❡✐❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✹✳✺ ❉❡r✐✈❛❞❛ ❞❡ ✉♠❛ ❢✉♥çã♦ ✐♠♣❧í❝✐t❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✺✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✺ ❉❡r✐✈❛❞❛ ❞❡ ❢✉♥çõ❡s tr❛♥s❝❡♥❞❡♥t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✺✳✶ ❉❡r✐✈❛❞❛ ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✺✳✷ ❉❡r✐✈❛❞❛ ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s ✳ ✳ ✳ ✳ ✳
✺✳✺✳✸ ❉❡r✐✈❛❞❛ ❞❛s ❢✉♥çõ❡s✿ ❊①♣♦♥❡♥❝✐❛❧ ❡ ❧♦❣❛rít♠✐❝❛ ✳ ✳ ✳ ✳
✺✳✺✳✹ ❉❡r✐✈❛❞❛ ❞❛s ❡q✉❛çõ❡s ♣❛r❛♠étr✐❝❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✺✲✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✻ ❆♣r♦①✐♠❛çã♦ ❧♦❝❛❧ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✻✳✶ ❋✉♥çã♦ ❞✐❢❡r❡♥❝✐á✈❡❧ ❡ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳
✺✳✻✳✷ Pr♦♣r✐❡❞❛❞❡s ❞♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ ✉♠❛ ❢✉♥çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✻✳✸ ❙✐❣♥✐✜❝❛❞♦ ❣❡♦♠étr✐❝♦ ❞♦ ❞✐❢❡r❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✼ ❚❡♦r❡♠❛ s♦❜r❡ ❢✉♥çõ❡s ❞❡r✐✈á✈❡✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✳✼✳✶ ■♥t❡r♣r❡t❛çã♦ ❣❡♦♠étr✐❝❛ ❞♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡ ✳ ✳ ✳ ✳ ✳
✺✳✼✳✷ ■♥t❡r♣r❡t❛çã♦ ❣❡♦♠étr✐❝❛ ❞♦ ❚❡♦r❡♠❛ ❞♦ ❱❛❧♦r ▼é❞✐♦✳ ✳
❊①❡r❝í❝✐♦s ✺✲✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
▼✐s❝❡❧â♥❡❛ ✺✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻
R
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
❆P▲■❈❆➬Õ❊❙ ❉❆❙ ❉❊❘■❱❆❉❆❙
✻✳✶ ❱❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛✳ ❆❝❡❧❡r❛çã♦ ✐♥st❛♥tâ♥❡❛✳
✻✳✶✳✶ ❱❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻✳✶✳✷ ❆❝❡❧❡r❛çã♦ ✐♥st❛♥tâ♥❡❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✻✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻✳✷ ❊st✉❞♦ ❞♦ ❣rá✜❝♦ ❞❡ ❢✉♥çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻✳✷✳✶ ❋✉♥çã♦ ❝r❡s❝❡♥t❡✳ ❋✉♥çã♦ ❞❡❝r❡s❝❡♥t❡ ✳ ✳
✻✳✷✳✷ ❆ssí♥t♦t❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❊①❡r❝í❝✐♦s ✻✲✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻✳✸ ❋♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
①✐✐
✷✹✻
✷✹✼
✷✺✵
✷✺✸
✷✺✺
✷✺✼
✷✻✷
✷✻✸
✷✻✺
✷✻✻
✷✻✾
✷✼✸
✷✼✸
✷✼✺
✷✼✽
✷✼✾
✷✽✶
✷✽✺
✷✽✻
✷✽✽
✷✽✽
✷✾✵
✷✾✺
✷✾✽
✸✵✶
✸✵✺
✸✵✼
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✸✵✽
✸✵✾
✸✶✵
✸✶✸
✸✶✺
✸✶✺
✸✷✸
✸✸✺
✸✸✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✻✳✸✳✶
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❋♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s r❡❞✉tí✈❡✐s à ❢♦r♠❛
❊①❡r❝í❝✐♦s ✻✲✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻✳✹
❆♣❧✐❝❛çõ❡s ❞✐✈❡rs❛s
0
0
♦✉
∞
∞
R
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹✺
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹✾
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✺✶
❊①❡r❝í❝✐♦s ✻✲✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻✶
▼✐s❝❡❧â♥❡❛ ✻✲✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻✸
❘❡❢❡rê♥❝✐❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻✼
❮♥❞✐❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻✽
①✐✐✐
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
■❞❡♥t✐❞❛❞❡s ❛❧❣é❜r✐❝❛s
❈♦♥s✐❞❡r❛r
a, b ∈ R
❡
m, n ∈ Z✱
❡♥ ❣❡r❛❧ t❡♠✲s❡✿
•
a a =a
•
•
(am )n = amn
•
•
(ab)m = am bm
•
•
m n
m+n
a m am
= m,
b
b
•
b 6= 0
√
√
am/n = n am = ( n a)m , a > 0
√
√ √
n
ab = n a · n b, a > 0, b > 0
p
√
√
m n
a = mn a, a > 0
r
√
n
a
a
n
= √
, a > 0, b > 0
n
b
b
•
am
= am−n
an
•
a−n =
•
(a + b)2 = a2 + 2ab + b2
•
(a + b)3 = a3 + 3a2 b + 3ab2 + b3
•
(a − b)2 = a2 − 2ab + b2
•
(a − b)3 = a3 − 3a2 b + 3ab2 − b3
•
a3 − b3 = (a − b)(a2 + ab + b2 )
•
a3 + b3 = (a + b)(a2 − ab + b2 )
•
an − bn = (a − b)(an−1 + an−2 b + an−3 b2 + · · · + abn−2 + bn−1 )
•
an + bn = (a + b)(an−1 − an−2 b + an−3 b2 − · · · − abn−2 + bn−1 )
1
,
an
a 6= 0
q✉❛♥❞♦
n✲í♠♣❛r
■❞❡♥t✐❞❛❞❡s tr✐❣♦♥♦♠étr✐❝❛s
❈♦♥s✐❞❡r❛r
α, β ∈ R✳
•
cos(−α) = cos α
sen2 α + cos2 α = 1
•
senα · csc α = 1
•
tan2 α + 1 = sec2 α
•
cos α · sec α = 1
•
cot2 α + 1 = csc2 α
•
tan α · cot α = 1
•
sen2 α =
1 − cos 2α
2
•
cos2 α =
•
sen2α = 2senα · cos α
•
cos 2α = cos2 α − sen2 α
•
sen(α + β) = senα cos β + senβ cos α
•
cos(α + β) = cos α cos β − senαsenβ
•
tan α + tan β
tan(α + β) =
1 − tan α · tan β
•
tan(2α) =
•
2senαsenβ = cos(α − β) − cos(α + β)
•
tan α =
•
2senα cos β = sen(α+β)+sen(α−β)
•
2 cos α cos β = cos(α+β)+cos(α−β)
•
sen(−α) = −senα
•
①✐✈
1 + cos 2α
2
2 tan α
1 − tan2 α
1 − cos2α
sen2α
=
sen2α
1 + cos 2α
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
■❞❡♥t✐❞❛❞❡s ❣❡♦♠étr✐❝❛s
✶✳
A❂ár❡❛✱
P
❂ ♣❡rí♠❡tr♦✱
l❂
◗✉❛❞r❛❞♦
r
❧❛❞♦✱
❂ r❛✐♦
❘❡tâ♥❣✉❧♦
l
❈ír❝✉❧♦
a
l
b
A = l2
A = πr2
A=b×a
P = 2πr
P = 2(a + b)
P = 4l
✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳
✷✳
A❂ár❡❛✱ P
❂ ♣❡rí♠❡tr♦✱
c❂
❤✐♣♦t❡♥✉s❛✱
a
❡
b
❂ ❝❛t❡t♦s✱
h
❂ ❛❧t✉r❛✱
r
❂
r❛✐♦✱
α
❂ â♥❣✉❧♦ ❝❡♥tr❛❧✱
❚❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s
c
✟
✟
✟
✟
✟
✟
✟✟
b
c2 = a2 + b2
L
❂ ❝♦♠♣r✐♠❡♥t♦ ❞♦ s❡t♦r ❝✐r❝✉❧❛r
❚r✐â♥❣✉❧♦
❙❡t♦r ❝✐r❝✉❧❛r
✑
✑
✑ ❆ a
✑ h ❆
✑
❆
✑
❆
✑
c
a
b
1
A= b×h
2
P =a+b+c
1
A = r2 α
2
P = αr
✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳
✸✳
A❂ár❡❛✱ P ❂ ♣❡rí♠❡tr♦✱ B ❂ ❜❛s❡
R ❂ r❛✐♦ ♠❛✐♦r✱ r ❂ r❛✐♦ ♠❡♥♦r✱
P❛r❛❧❡❧♦❣r❛♠♦
♠❛✐♦r✱
b
❚r❛♣❡③ó✐❞❡
❂ ❜❛s❡ ♠❡♥♦r✱
h
❂ ❛❧t✉r❛✱
❈♦r♦❛ ❝✐r❝✉❧❛r
b
h
h
b
A=b×h
B
❅
❅
❅
1
A = (B + b)h
2
A = π(R2 − r2 )h
P = 2π(R + r)
✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳
①✈
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✹✳
A❂ár❡❛✱ P
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❂ ♣❡rí♠❡tr♦✱
S❂
s✉♣❡r❢í❝✐❡ t♦t❛❧✱
V
❂ ✈♦❧✉♠❡✱
h
❂ ❛❧t✉r❛✱
r
R
❂
r❛✐♦
❚r✐â♥❣✉❧♦ ❊q✉✐❧át❡r♦
P❛r❛❧❡❧❡♣✐♣❡❞♦ r❡t♦
❈✐❧✐♥❞r♦
❅
❅
l
h❅l
c ♣♣♣♣♣♣♣· · · · · · · · · b
a
❅
l
√
3 2
l
4
√
3
l
h=
2
A=
V =a×b×c
S = 2(a + b)c + 2ab
V = πr2 h
S = 2πrh + 2πr2
✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳
✺✳
V
❂ ✈♦❧✉♠❡✱
h
❂ ❛❧t✉r❛✱
❚r✐â♥❣✉❧♦
c
✑
✑
✑
✑
r
❂ s✉♣❡r❢í❝✐❡
❈♦♥❡ ❝✐r❝✉❧❛r r❡t♦
✑
✑
✑ ❆
❚r♦♥❝♦ ❞❡ ❝♦♥❡
❆a
❆
❆
b
p
A = p(p − a)(p − b)(p − c)
p=
S
❂ r❛✐♦✱
1
V = πr2 h
3
√
S = πr r2 + h2
a+b+c
2
1
V = π(R2 + rR + r2 )h
3
✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳✳
✻✳
V
❂ ✈♦❧✉♠❡✱
h
❂ ❛❧t✉r❛✱
r
❂ r❛✐♦✱
S
❂ s✉♣❡r❢í❝✐❡
❊s❢❡r❛
Pr✐s♠❛
4
V = πr3
3
S = 4πr2
V =B×h
B
❂ ár❡❛ ❞❛ ❜❛s❡
①✈✐
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
■❞❡♥t✐❞❛❞❡s ♣❛r❛ ❞❡r✐✈❛❞❛s
❙❡❥❛♠
C❂
n ∈ Q✱
♥❡♣❡r✐❛♥♦✱ logb x
a ∈ R✱
❝♦♥st❛♥t❡✱
Lnx❂❧♦❣❛r✐t♠♦
f (x), g(x)
❂ ❢✉♥çõ❡s✱
α❂â♥❣✉❧♦✱
❂ ❧♦❣❛r✐t♠♦ ♥❛t✉r❛❧ ♥❛ ❜❛s❡ b✳
•
Dx C = 0
•
Dx (f + g) = Dx f + Dx g
•
Dx (f · g) = f · Dx g + g · Dx f
•
g · Dx f − f · Dx g
f
Dx ( ) =
g
g2
•
Dx f (g(x)) = Dx f (g(x)) · Dx g
•
Dx [f ]n = n · Dx [f ]n−1
•
Dx [ef (x) ] = ef (x) · Dx [f (x)]
•
Dx af = af · Dx f · Lna,
•
Dx (Lnf ) =
•
Dx (logb f ) =
•
Dx senx = cos x
•
Dx tan x = sec2 x
•
Dx cos x = −senx
•
Dx cot x = − csc2 x
•
Dx sec x = sec x tan x
•
Dx csc x = − csc x cot x
•
Dx arcsenx = √
•
Dx arccos x = − √
•
Dx arctan x =
•
1
Dx arcsecx = √
x x2 − 1
1
· Dx f,
f
f 6= 0
1
1 − x2
1
1 + x2
a>0
1
·Dx f,
f · Lnb
f 6= 0
1
1 − x2
■❞❡♥t✐❞❛❞❡s ❞✐✈❡rs❛s
•
b, c ∈ R+ ✱ m ∈ Q t❡♠✲s❡✿ logb a = N ⇔ a = bN ✳ ▲♦❣♦✿ ✭✐✮
logb (a · c) = logb a + logb c✱ ✭✐✐✮ logb (a/c) = logb a − logb c✱ ✭✐✐✐✮ logb am =
m logb a✱ ✭✐✈✮ logc a = logb a · logc b
•
P❛r❛ ♥ú♠❡r♦s ♥❛ ❜❛s❡ ❞❡❝✐♠❛❧✿
•
❊q✉✐✈❛❧ê♥❝✐❛ ❡♥tr❡ ❣r❛✉s s❡①❛❣❡s✐♠❛✐s ❡ r❛❞✐❛♥♦s✳
❙✉♣♦♥❤❛♠♦s
α
❣r❛✉s
0o
300
45o
60o
90o
α
an an−1 · · · a1 a0 = 10n an +10n−1 an−1 +· · ·+10a1 +a0
senα
cos α
tan α
cot α
sec α
csc α
0
0
π
6
π
4
π
3
π
2
1
√2
2
√2
3
2
1
1
√
3
√2
2
2
1
2
0
0
√
3
3
−
√
3
1
√
−
1
1
√
3
3
0
r❛❞✐❛♥♦s
①✈✐✐
√
3
−
2 3
3
√
2
2
−
2
√
2
√
2 3
3
1
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❋♦r♠❛s ❞❡t❡r♠✐♥❛❞❛s ❡ ❋♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s ✭❄✮
lim f (x) =
lim g(x) =
h(x) =
lim h(x) =
❞❡ ♠♦❞♦ s✐♠❜ó❧✐❝♦
±∞
±∞
f (x) + g(x)
±∞
±∞ ± ∞ = ±∞
3
+∞
4
−∞
K∈R
x→
1
2
5
+∞
x→
+∞
f (x) + g(x)
−∞
−∞
f (x) · g(x)
−∞
(+∞) · (−∞) = −∞
f (x) · g(x)
−∞
(+∞) · K = −∞
f (x)/g(x)
0
±∞
f (x)/g(x)
❄
K/ ± ∞ = 0
0+
f (x)/g(x)
+∞
7
+∞
K>0
8
+∞
K<0
9
±∞
0
f (x) · g(x)
f (x) · g(x)
f (x) · g(x)
±∞
±∞
+∞
+∞
❄
+∞ + K = +∞
−∞ + K = −∞
(+∞) · (+∞) = +∞
(+∞) · K = +∞
±∞ · 0 =
❄
±∞/ ± ∞ = ❄
K/0+ = +∞
12
K>0
13
+∞
0+
f (x)/g(x)
+∞
+∞/0+ = +∞
14
K>0
0−
f (x)/g(x)
15
+∞
0−
f (x)/g(x)
−∞
K/0+ = −∞
16
0
0
f (x)/g(x)
−∞
+∞/0− = −∞
g(x)
❄
00 = ❄
∞∞ = ❄
❄
17
0
0
[f (x)]
18
∞
∞
[f (x)]g(x)
❄
[f (x)]g(x)
❄
∞
∞
0
[f (x)]g(x)
❄
∞
[f (x)]g(x)
❄
19
20
21
❙❡❥❛
0
1
K ∈ R✱
◆♦ ❧✐♠✐t❡✿
♥ã♦ ❡①✐st❡♠ ❡♠
lim
x→0
❄
K∈R
+∞
11
(+∞) − (+∞) =
+∞
+∞
K
❄
f (x) + g(x)
6
10
f (x) − g(x)
+∞
x→
1
= ±∞,
x
0/0 = ❄
0∞ = ❄
∞0 = ❄
1∞ = ❄
K
K
, 00 ,
✳
0
∞
1
lim
= 0, lim xx = 1
x→±∞ x
x→0
R✿
①✈✐✐✐
09/02/2021
P❘❊❋➪❈■❖
❖ ♣r♦♣ós✐t♦ ❞❡ ✉♠❛ ♣r✐♠❡✐r❛ ❞✐s❝✐♣❧✐♥❛ ❞❡ ❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ é ❡♥s✐♥❛r ❛♦ ❡st✉❞❛♥t❡
❛s ♥♦çõ❡s ❜ás✐❝❛s ❞❛ ❞❡r✐✈❛❞❛ ❛ss✐♠ ❝♦♠♦ ❛s té❝♥✐❝❛s ❡ ❛♣❧✐❝❛çõ❡s ❡❧❡♠❡♥t❛r❡s q✉❡ ❛❝♦♠✲
♣❛♥❤❛♠ t❛✐s ❝♦♥❝❡✐t♦s✳
❊st❛ ♦❜r❛ r❡♣r❡s❡♥t❛ ♦ ❡s❢♦rç♦ ❞❡ sí♥t❡s❡ ♥❛ s❡❧❡çã♦ ❞❡ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ♣r♦❜❧❡♠❛s
q✉❡ s❡ ❛♣r❡s❡♥t❛ ❝♦♠ ❢r❡q✉ê♥❝✐❛✱ q✉❛♥❞♦ ✉♠ ❡st✉❞❛♥t❡ ❞❛ ❣r❛❞✉❛çã♦ ❝♦♠❡ç❛ ❛ ❡st✉❞❛r
❝á❧❝✉❧♦ ♥♦ ✐♥í❝✐♦ ❞♦ s❡✉s ❡st✉❞♦s✳ ❖ ♦❜❥❡t✐✈♦ ❞❡st❡ ❧✐✈r♦ é ✐♥tr♦❞✉③✐r ♦s ♣r✐♥❝✐♣❛✐s ❝♦♥❝❡✐t♦s
❞♦ ❝á❧❝✉❧♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ ✉♠❛ ✈❛r✐á✈❡❧ ❡ s✉❛s ❛♣❧✐❝❛çõ❡s ❝♦♠❡ç❛♥❞♦ ❝♦♠ ✉♠❛ r❡✈✐sã♦ ❞❛
♠❛t❡♠át✐❝❛ ❜ás✐❝❛✱ ❛ss✐♠ ❝♦♠♦ ♦r✐❡♥t❛r ❛ ♠❡t♦❞♦❧♦❣✐❛ ♣❛r❛ q✉❡ ♦ ❧❡✐t♦r ♣♦ss❛ ✐❞❡♥t✐✜❝❛r
❡ ❝♦♥str✉✐r ✉♠ ♠♦❞❡❧♦ ♠❛t❡♠át✐❝♦ ❡ ❧♦❣♦ r❡s♦❧✈ê✲❧♦✳
❈❛❞❛ ❝❛♣ít✉❧♦ s❡ ✐♥✐❝✐❛ ❝♦♠ ♦s ♦❜❥❡t✐✈♦s q✉❡ s❡ ♣r❡t❡♥❞❡ ❛❧❝❛♥ç❛r❀ ❛ ❢❛rt❛ ✈❛r✐❡❞❛❞❡
❞♦s ❡①❡♠♣❧♦s ❡ ❡①❡r❝í❝✐♦s ❛♣r❡s❡♥t❛❞♦s ❡stã♦ ❝❧❛ss✐✜❝❛❞♦s ❞❡ ♠❡♥♦r ❛ ♠❛✐♦r ❞✐✜❝✉❧❞❛❞❡✳
❆ ✈❛r✐❡❞❛❞❡ ❞♦s ♣r♦❜❧❡♠❛s ❡ ❡①❡r❝í❝✐♦s ♣r♦♣♦st♦s ♣r❡t❡♥❞❡ tr❛♥s♠✐t✐r ♣❛rt❡ ❞❡ ♠✐♥❤❛
❡①♣❡r✐ê♥❝✐❛ ♣r♦✜ss✐♦♥❛❧ ❞✉r❛♥t❡ ♠✉✐t♦s ❛♥♦s ❞❡ ❡①❡r❝í❝✐♦ ❝♦♠♦ ♣r♦❢❡ss♦r ❞❡ ❡♥s✐♥♦ s✉♣❡r✐♦r
❛ss✐♠✱ ❝♦♠♦ ❈♦♥s✉❧t♦r ❡♠ ▼❛t❡♠át✐❝❛ P✉r❛ ❡ ❆♣❧✐❝❛❞❛✱ ❝♦♠ ❛t✉❛çã♦ ♥❛ ❣r❛❞✉❛çã♦ ❡ ♣ós✲
❣r❛❞✉❛çã♦ ❞❛ ❞♦❝ê♥❝✐❛ ✉♥✐✈❡rs✐tár✐❛✳
❋✐❝♦ ♣r♦❢✉♥❞❛♠❡♥t❡ ❣r❛t♦ ❝♦♠ ♦s ❡st✉❞❛♥t❡s ❞♦s ❞✐✈❡rs♦s ❝✉rs♦s ♦♥❞❡ ❞✐❢✉♥❞✐ ❛s ✐❞❡✐❛s
❡ ♦ ❝♦♥t❡ú❞♦ ❞❛s ♥♦t❛s ❞❡st❡ tr❛❜❛❧❤♦✳
❚❛♠❜é♠ ❛❣r❛❞❡ç♦ ❛s ❝♦♥tr✐❜✉✐çõ❡s ❡ s✉❣❡stõ❡s
❞♦s ❧❡✐t♦r❡s✱ ❡♠ ♣❛rt✐❝✉❧❛r ❞♦s ♠❡✉s ❝♦❧❡❣❛s✱ ♣❡❧❛ s✉❛ ❝♦♥st❛♥t❡ ❞❡❞✐❝❛çã♦ ♣❛r❛ ❛ r❡✈✐sã♦
❡ ❞✐s❝✉ssã♦ ❞♦s ♣r♦❜❧❡♠❛s ♣r♦♣♦st♦s✳
❆t✉❛❧♠❡♥t❡ ❡stá ❡♠ ❝♦♥str✉çã♦ ♦ ❧✐✈r♦ ✏ ❙✉♣❧❡♠❡♥t♦ ❞❡ ❈á❧❝✉❧♦
I ✑✱
♦♥❞❡ s❡ ❡♥❝♦♥tr❛
❛ s♦❧✉çã♦ ❞❡ t♦❞♦s ♦s ❡①❡r❝í❝✐♦s ♣r♦♣♦st♦s ♥❡st❡ ❧✐✈r♦ ❡ ♣♦❞❡ s❡r ♦❜t✐❞♦ s♦❧✐❝✐t❛♥❞♦ ✉♠❛
❝ó♣✐❛ ❛♦ ❛✉t♦r ❡♠✿ ❝❤r✐st✐❛♥❥q♣❅②❛❤♦♦✳❝♦♠✳❜r ✳
❈❤r✐st✐❛♥ ◗✉✐♥t❛♥❛ P✐♥❡❞♦✳
P❛❧♠❛s ✲ ❚❖✱ ▼❛rç♦ ❞❡
①✐①
2020
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❆ ♠❛t❡♠át✐❝❛ ❛♣r❡s❡♥t❛ ✐♥✈❡♥çõ❡s tã♦ s✉t✐s q✉❡ ♣♦❞❡rã♦ s❡r✈✐r ♥ã♦ só ♣❛r❛
s❛t✐s❢❛③❡r ♦s ❝✉r✐♦s♦s ❝♦♠♦✱ t❛♠❜é♠ ♣❛r❛ ❛✉①✐❧✐❛r ❛s ❛rt❡s ❡ ♣♦✉♣❛r tr❛❜❛❧❤♦
❛♦s ❤♦♠❡♥s✑✳
✏
❘✳ ❉❡s❝❛rt❡s
(1596 − 1650)
◆ã♦ ❛❞✐❛♥t❛ t❡r ✉♠ ♠❛r ❞❡ ❝♦♥❤❡❝✐♠❡♥t♦s✱ ❝♦♠ ❛ ♣r♦❢✉♥❞❡③❛ ❞❡ ✉♠ ♠✐✲
❧í♠❡tr♦✳✑
✏
❈❤✳ ◗✳ P✐♥❡❞♦
(1954−)
Pr♦❢❡ss♦r❡s t❡♥❞❡♠ à ❡t❡r♥✐❞❛❞❡❀ ♥✉♥❝❛ ♣♦❞❡rã♦ s❛❜❡r ♦♥❞❡ t❡r♠✐♥❛ s✉❛
✐♥✢✉❡♥❝✐❛✳✑
✏
✶
❍❡♥r② ❆❞❛♠s
(1838 − 1918)
✶ ❍❡♥r② ❇r♦♦❦s ❆❞❛♠s ✭1838 − 1918✮✱ ❢♦✐ ✉♠ ❡st❛❞✉♥✐❞❡♥s❡ ❤✐st♦r✐❛❞♦r✱ ❥♦r♥❛❧✐st❛ ❡ ♥♦✈❡❧✐st❛✳
①①
09/02/2021
❈❛♣ít✉❧♦ ✶
❙■❙❚❊▼❆ ❉❖❙ ◆Ú▼❊❘❖❙ ❘❊❆■❙
❊r❛tóst❡♥❡s ♥❛s❝❡✉ ❡♠ ❈✐r❡♥❡ ✭276 a.C. − 197 a.C.✮✱ ♦ q✉❡
❤♦❥❡ é ❛ ▲í❜✐❛✳ ❉❡♣♦✐s ❞❡ ❡st✉❞❛r ❡♠ ❆❧❡①❛♥❞r✐❛ ❡ ❆t❡♥❛s✱ ❡❧❡
s❡ t♦r♥♦✉ ❞✐r❡t♦r ❞❛ ❢❛♠♦s❛ ❇✐❜❧✐♦t❡❝❛ ❞❡ ❆❧❡①❛♥❞r✐❛✳
❊❧❡ tr❛❜❛❧❤♦✉ ❝♦♠ ❣❡♦♠❡tr✐❛ ❡ ♥ú♠❡r♦s ♣r✐♠♦s✳ ❊r❛tóst❡♥❡s
é ♠❛✐s ❝♦♥❤❡❝✐❞♦ ♣❡❧♦ s❡✉ ❝r✐✈♦ ❞❡ ♥ú♠❡r♦s ♣r✐♠♦s ✭♦ ✏❈r✐✈♦
❞❡ ❊r❛tóst❡♥❡s✑✮✱ ♦ q✉❛❧✱ ❝♦♠ ❛❧❣✉♠❛s ♠♦❞✐✜❝❛çõ❡s✱ ❛✐♥❞❛ é ✉♠
✐♥str✉♠❡♥t♦ ✐♠♣♦rt❛♥t❡ ❞❡ ♣❡sq✉✐s❛ ♥❛ ❚❡♦r✐❛ ❞♦s ◆ú♠❡r♦s✳
❊r❛tóst❡♥❡s t❛♠❜é♠ ❢❡③ ✉♠❛ ♠❡❞✐çã♦ ❡①tr❡♠❛♠❡♥t❡ ♣r❡❝✐s❛
❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❛ ❚❡rr❛✱ ❝♦♠♣❛r❛♥❞♦ ❛s s♦♠❜r❛s ♣r♦❞✉③✐❞❛s
♣❡❧♦ ❙♦❧ ❞♦ ♠❡✐♦✲❞✐❛✱ ♥♦ ✈❡rã♦✱ ❡♠ ❙✐❡♥❛ ❡ ❆❧❡①❛♥❞r✐❛✳
❊r❛tóst❡♥❡s
❝❛❧❝✉❧♦✉ ❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❛ ❚❡rr❛ ❡♠
tâ♥❝✐❛ ❛té ♦ ❙♦❧ ❡♠
à ▲✉❛ ❡♠
780.000
804.000.000
250.000
❊❧❡
✶
❡stá❞✐♦s ✱ ❛ ❞✐s✲
❡stá❞✐♦s ❡ ❛ ❞✐stâ♥❝✐❛ ❞❛ ❚❡rr❛
❡stá❞✐♦s ✳
❊r❛tóst❡♥❡s t❛♠❜é♠ ♠❡❞✐✉ ❛ ✐♥❝❧✐♥❛çã♦ ❞♦ ❡✐①♦ ❞❛ ❚❡rr❛ ❝♦♠ ❣r❛♥❞❡ ♣r❡❝✐sã♦✱ ❡♥❝♦♥tr❛♥❞♦ ♦
23 ❣r❛✉s✱ 51′ 15′′ ✳ ❚❛♠❜é♠ ♦r❣❛♥✐③♦✉ ✉♠ ❝❛tá❧♦❣♦ ❛str♦♥ô♠✐❝♦✱ ❝♦♥t❡♥❞♦ 675 ❡str❡❧❛s✳
✈❛❧♦r ❞❡
❊r❛tóst❡♥❡s ✜❝♦✉ ❝❡❣♦ ❡♠ ✐❞❛❞❡ ❛✈❛♥ç❛❞❛ ❡ ❞✐③✲s❡ q✉❡ t❡r✐❛ ❝♦♠❡t✐❞♦ s✉✐❝í❞✐♦✱ r❡❝✉s❛♥❞♦✲s❡
❛ ❝♦♠❡r ❡ ❝♦♥s❡q✉❡♥t❡♠❡♥t❡ ♠♦rr❡♥❞♦ ❞❡ ✐♥❛♥✐çã♦✳
❆ ♣❛❧❛✈r❛ ✏❝r✐✈♦✑ s✐❣♥✐✜❝❛ ♣❡♥❡✐r❛✳ ❖ q✉❡ ❊r❛tóst❡♥❡s ✐♠❛❣✐♥♦✉ ❢♦✐ ✉♠❛ ✏♣❡♥❡✐r❛✑ ❝❛♣❛③ ❞❡
s❡♣❛r❛r ♦s ♥ú♠❡r♦s ♣r✐♠♦s ❞♦s ❝♦♠♣♦st♦s✳
♥ú♠❡r♦ ♣r✐♠♦
p
❆ ✐❞❡✐❛ ❞♦ ❊r❛tóst❡♥❡s ❢♦✐ ❛ s❡❣✉✐♥t❡✿ ❥á q✉❡ ✉♠
é ❛q✉❡❧❡ q✉❡ s♦♠❡♥t❡ ♣♦ss✉✐ ❞♦✐s ❞✐✈✐s♦r❡s ✐♥t❡✐r♦s ✲ ♦
1
❡ ♦ ♣ró♣r✐♦
p
✲ ♣♦❞❡r✐❛
❤❛✈❡r ✉♠❛ ♣❡♥❡✐r❛ q✉❡ ♣✉❞❡ss❡ s❡♣❛r❛r ❡st❡s ♥ú♠❡r♦s ✭q✉❡ só tê♠ ❞♦✐s ❞✐✈✐s♦r❡s✱ ❡ ♣♦rt❛♥t♦ sã♦
♣r✐♠♦s✮ ❞♦s ♦✉tr♦s✱ q✉❡ ♣♦ss✉❡♠ ♠❛✐s ❞❡ ❞♦✐s ❞✐✈✐s♦r❡s ✭❡ sã♦ ❝❤❛♠❛❞♦s ❞❡ ✏❝♦♠♣♦st♦s✑✮✳
✶✳✶
■♥tr♦❞✉çã♦
❆ ♠❛t❡♠át✐❝❛ ❛ s❡r ❡st✉❞❛❞❛ ♥♦s ♣r✐♠❡✐r♦s ❝✉rs♦s ❞❛ ❣r❛❞✉❛çã♦ ❡stá ✐♥s♣✐r❛❞❛ ❡♠
❞✉❛s ❢♦♥t❡s✿
•
❆ ♣r✐♠❡✐r❛
é ❛ ✏ ❧ó❣✐❝❛
♠❛t❡♠át✐❝❛ ✑❀ ❡❧❛ s❡ ❞❡s❡♥✈♦❧✈❡ ♣♦r ♠❡✐♦ ❞❡ ♣r♦♣♦s✐çõ❡s ✭❢r❛✲
s❡s✮✱ às q✉❛✐s ♣♦❞❡♠♦s ❛tr✐❜✉✐r ✉♠ ✈❛❧♦r ❧ó❣✐❝♦ ❞❡ ✈❡r❞❛❞❡ ♦✉ ❞❡ ❢❛❧s✐❞❛❞❡ ✭s♦♠❡♥t❡
✶ ❊stá❞✐♦ ❡r❛ ✉♠❛ ✉♥✐❞❛❞❡ ❞❡ ♠❡❞✐❞❛ ♥❛ ●r❡❝✐❛✱
❡q✉✐✈❛❧❡♥t❡ ❛ ❛♣r♦①✐♠❛❞❛♠❡♥t❡ ✶✽✵♠ ❞❡ ❝♦♠♣r✐♠❡♥t♦✳
✶
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
✉♠ ❞❡st❡s ✈❛❧♦r❡s✮✳ P♦r ❡①❡♠♣❧♦✿
✕
❆ t❡rr❛ t❡♠ ❛ ❢♦r♠❛ ❛rr❡❞♦♥❞❛❞❛ ✭
✈
✕
❆ t❡rr❛ é ❞❡ ❢♦r♠❛ q✉❛❞r❛❞❛ ✭
❢
❂ ✈❡r❞❛❞❡✮✳
❂ ❢❛❧s♦✮
◆❛ ❧ó❣✐❝❛ ♠❛t❡♠át✐❝❛✱ ❛ ♥❡❣❛çã♦ ❞❡ ✉♠❛ ♣r♦♣♦s✐çã♦ ♥ã♦ ✐♠♣❧✐❝❛ ♥❛ ❛✜r♠❛çã♦ ❞♦
❝♦♥trár✐♦✳
• ❆ s❡❣✉♥❞❛
é ♦ ✏❝á❧❝✉❧♦ ✑❀ ✐st♦ s❡rá ♦❜❥❡t♦ ❞❡ ♥♦ss♦ ❡st✉❞♦✳
❖ ❡st✉❞♦ ❢✉♥❞❛♠❡♥t❛❧ ❞♦ ❝á❧❝✉❧♦ ❡stá ♦r✐❡♥t❛❞♦ s♦❜ ❝♦♥❝❡✐t♦s ❞❡ ❞✐❢❡r❡♥❝✐❛çã♦✱ ✐♥t❡✲
❣r❛çã♦ ❡ s✉❛s ❛♣❧✐❝❛çõ❡s ❡♠ ❞✐✈❡rs♦s ❝❛♠♣♦s ❞♦ ❝♦♥❤❡❝✐♠❡♥t♦ ♠❛t❡♠át✐❝♦✳ P♦r ❡①❡♠♣❧♦✿
•
❯♠ ❢❛❜r✐❝❛♥t❡ ❞❡ ❝❛✐①❛s ❞❡ ♣❛♣❡❧ã♦ ❞❡s❡❥❛ ♣r♦❞✉③✐r ❝❛✐①❛s s❡♠ t❛♠♣❛✱ ✉s❛♥❞♦ ♣❡❞❛✲
ç♦s q✉❛❞r❛❞♦s ❞❡ ♣❛♣❡❧ã♦ ❝♦♠
40 cm ❞❡ ❧❛❞♦✱ ❝♦rt❛♥❞♦ q✉❛❞r❛❞♦s ✐❣✉❛✐s ♥♦s q✉❛tr♦
❝❛♥t♦s ❡ ✈✐r❛♥❞♦ ✈❡rt✐❝❛❧♠❡♥t❡ ✭♣❛r❛ ❝✐♠❛✮ ♦s q✉❛tr♦ ❧❛❞♦s✳ ❆❝❤❛r ♦ ❝♦♠♣r✐♠❡♥t♦
❞♦s ❧❛❞♦s ❞♦s q✉❛❞r❛❞♦s ❛ s❡r❡♠ ❝♦rt❛❞♦s ❛ ✜♠ ❞♦ ♦❜t❡r ✉♠❛ ❝❛✐①❛ ❝♦♠ ♦ ♠❛✐♦r
✈♦❧✉♠❡ ♣♦ssí✈❡❧✳
•
❯♠ ❞✐str✐❜✉✐❞♦r ❛t❛❝❛❞✐st❛ t❡♠ ✉♠ ♣❡❞✐❞♦ ❞❡
•
❙✉♣♦♥❤❛♠♦s q✉❡ ✉♠ t✉♠♦r ♥♦ ❝♦r♣♦ ❞❡ ✉♠ ♣♦r❝♦ t❡♥❤❛ ❢♦r♠❛ ❡s❢ér✐❝❛✳ ◗✉❛♥❞♦ ♦
30.000
❝❛✐①❛s ❞❡ ❧❡✐t❡ q✉❡ ❝❤❡❣❛♠ ❛
5 s❡♠❛♥❛s✳ ❆s ❝❛✐①❛s sã♦ ❞❡s♣❛❝❤❛❞❛s ♣❡❧♦ ❞✐str✐❜✉✐❞♦r ❛ ✉♠❛ r❛③ã♦ ❝♦♥st❛♥t❡
❞❡ 1.800 ❝❛✐①❛s ♣♦r s❡♠❛♥❛✳ ❙❡ ❛ ❛r♠❛③❡♥❛❣❡♠ ♥✉♠❛ s❡♠❛♥❛ ❝✉st❛ ❘$ 0, 05 ♣♦r
❝❛✐①❛ ✳ ◗✉❛❧ é ♦ ❝✉st♦ t♦t❛❧ ❞❡ ♠❛♥✉t❡♥çã♦ ❞♦ ❡st♦q✉❡ ❞✉r❛♥t❡ 10 s❡♠❛♥❛s ❄
❝❛❞❛
r❛✐♦ ❞♦ t✉♠♦r é ❞❡
0, 5 cm✱
0, 0001 cm
✐♥st❛♥t❡ t0 ❄
❛ t❛①❛ ❞❡ ❝r❡s❝✐♠❡♥t♦ ❞♦ r❛✐♦ é ❞❡
◗✉❛❧ é ❛ t❛①❛ ❞❡ ❝r❡s❝✐♠❡♥t♦ ❞♦ ✈♦❧✉♠❡ ❞♦ t✉♠♦r ❡♠ ❛❧❣✉♠
♣♦r ❞✐❛✳
❖s ♣r♦❜❧❡♠❛s ❞♦ ❡①❡♠♣❧♦ ❛❝✐♠❛ ♣♦❞❡♠ s❡r r❡s♦❧✈✐❞♦s ❝♦♠ té❝♥✐❝❛s ❡ ♦♣❡r❛çõ❡s ❝♦♠
♥ú♠❡r♦s r❡❛✐s✳
P❛r❛ ❝♦♠♣r❡❡♥❞❡r ❜❡♠ ❛s ♦♣❡r❛çõ❡s ❢✉♥❞❛♠❡♥t❛✐s ❞♦ ❝á❧❝✉❧♦✱ ❡st✉❞❛r❡♠♦s ❛❧❣✉♠❛s
♣r♦♣r✐❡❞❛❞❡s ❞♦s ♥ú♠❡r♦s r❡❛✐s✱ ❜❡♠ ❝♦♠♦ ❛s ♦♣❡r❛çõ❡s ♣❡r♠✐t✐❞❛s ❝♦♠ ♦s ♠❡s♠♦s✳
✶✳✷
❙✐st❡♠❛ ❞♦s ♥ú♠❡r♦s r❡❛✐s
❯♠ ♥✉♠❡r❛❧ é ✉♠ sí♠❜♦❧♦ ♦✉ ❣r✉♣♦ ❞❡ sí♠❜♦❧♦s q✉❡ r❡♣r❡s❡♥t♦✉ ✉♠ ♥ú♠❡r♦ ❡♠
✉♠ ❞❡t❡r♠✐♥❛❞♦ ✐♥st❛♥t❡ ❞❛ ❡✈♦❧✉çã♦ ❞♦ ❤♦♠❡♠✳
❊♠ ❛❧❣✉♠❛ ❞❡t❡r♠✐♥❛❞❛ ❡s❝r✐t❛ ♦✉
é♣♦❝❛✱ ♦s ♥✉♠❡r❛✐s ❞✐❢❡r❡♥❝✐❛r❛♠✲s❡ ❞♦s ♥ú♠❡r♦s✱ ❞♦ ♠❡s♠♦ ♠♦❞♦ q✉❡ ❛s ♣❛❧❛✈r❛s s❡
❞✐❢❡r❡♥❝✐❛r❛♠ ❞❛s ❝♦✐s❛s às q✉❡ s❡ r❡❢❡r❡♠✳
❖s sí♠❜♦❧♦s ✏ 12✑✱ ✏❞♦③❡✑ ❡ ✏ XII ✑ ✭❞♦③❡
❡♠ ▲❛t✐♠✮ sã♦ ♥✉♠❡r❛✐s ❞✐❢❡r❡♥t❡s r❡♣r❡s❡♥t❛t✐✈♦s ❞♦ ♠❡s♠♦ ♥ú♠❡r♦✱ ❛♣❡♥❛s ❡s❝r✐t♦ ❡♠
✐❞✐♦♠❛s ❡ é♣♦❝❛s ❞✐❢❡r❡♥t❡s✳
✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖s ♥ú♠❡r♦s r❡♣r❡s❡♥t❛♠ ♣❛♣❡❧ ✈✐t❛❧ ♥ã♦ só ♥❛ ♠❛t❡♠át✐❝❛✱ ❝♦♠♦ ♥❛ ❝✐ê♥❝✐❛ ❞❡ ✉♠
♠♦❞♦ ❣❡r❛❧✱ ❡ ♥❛ ♥♦ss❛ ✈✐❞❛ ❞✐ár✐❛✳ ❱✐✈❡♠♦s ❝❡r❝❛❞♦s ❞❡ ♥ú♠❡r♦s✱ ❤♦rár✐♦s✱ t❛❜❡❧❛s✱ ❣rá✲
✜❝♦s✱ ♣r❡ç♦s✱ ❥✉r♦s✱ ✐♠♣♦st♦s✱ ✈❡❧♦❝✐❞❛❞❡s✱ ❞✐stâ♥❝✐❛s✱ t❡♠♣❡r❛t✉r❛s✱ r❡s✉❧t❛❞♦s ❞❡ ❥♦❣♦s✱
❡t❝✳
❆ ♠❛✐♦r ♣❛rt❡ ❞❛s q✉❛♥t✐❞❛❞❡s ❡st✉❞❛❞❛s ♥❡st❛s ♥♦t❛s ✭ár❡❛s✱ ✈♦❧✉♠❡s✱ t❛①❛s ❞❡ ✈❛r✐✲
❛çã♦✱ ✈❡❧♦❝✐❞❛❞❡s✱ ✳ ✳ ✳ ✮ sã♦ ♠❡❞✐❞❛s ♣♦r ♠❡✐♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s ❡ ♥❡ss❡ s❡♥t✐❞♦ ♣♦❞❡♠♦s
❞✐③❡r q✉❡ ♥♦ss♦ ✏❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧✑ s❡rá tr❛❜❛❧❤❛❞♦ ♥♦ s✐st❡♠❛ ❞♦s ♥ú♠❡r♦s r❡❛✐s✳
❖ ❡st✉❞♦ ❞♦ s✐st❡♠❛ ❞♦s ♥ú♠❡r♦s r❡❛✐s ♣❡❧♦ ♠ét♦❞♦ ❛①✐♦♠át✐❝♦✱ ❝♦♥s✐st❡ ❡♠ ❞❡✜♥✐r
❡st❡ ✏ s✐st❡♠❛ ♥✉♠ér✐❝♦ ✑ ♠❡❞✐❛♥t❡ ✉♠ ❣r✉♣♦ ❞❡ ❛①✐♦♠❛s✱ ❞❡ ♠♦❞♦ q✉❡ q✉❛❧q✉❡r ❝♦♥❥✉♥t♦
❞❡ ♥ú♠❡r♦s✿ ♥❛t✉r❛✐s✱ ✐♥t❡✐r♦s✱ r❛❝✐♦♥❛✐s ❡ ✐rr❛❝✐♦♥❛✐s s❡❥❛♠ ❢♦r♠❛❞♦s ♣♦r s✉❜❝♦♥❥✉♥t♦s
♣ró♣r✐♦s ❞♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s
R✳
❍❛ ♦✉tr♦ ♠♦❞♦ ❞❡ s❡ ❡st✉❞❛r ♦s ♥ú♠❡r♦s r❡❛✐s❀ ♣♦❞❡♠♦s ❞❡✜♥✐✲❧♦s ❡♠ t❡r♠♦s ❞❡
♥ú♠❡r♦s r❛❝✐♦♥❛✐s✱ ✉s❛♥❞♦ ♦s ❝❧áss✐❝♦s ❝♦rt❡s ❞❡ ❉❡❞❡❦✐♥❞
P♦ré♠✱ ♣❛r❛ ♦ ♥♦ss♦ ❡st✉❞♦ ❞♦ ✲ ✏❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✷
✸
♦✉ ❛s s✉❝❡ssõ❡s ❞❡ ❈❛✉❝❤② ✳
R✑
✲ é s✉✜❝✐❡♥t❡ ✐♥tr♦❞✉③✐r ♦
s✐st❡♠❛ ♣❡❧♦ ♠ét♦❞♦ ❛①✐♦♠át✐❝♦✳
❈♦♥s✐❞❡r❡♠♦s ♦s s❡❣✉✐♥t❡s ❝♦♥❥✉♥t♦s ♥✉♠ér✐❝♦s✿
N
❂
Z
❂
{0, 1, 2, 3, 4, 5, · · · , n · · · , }
♥❛t✉r❛✐s✳
{ · · · , −3, −2, −1, 0, 1, 2, 3, 4, · · · }
a
Q ❂ { /. a, b ∈ Z, b 6= 0}
b
5
11
3
Q = { · · · , −2, · · · − , · · · , −1, 0, 1, , 3, , · · · }
2
2
4
√
√
√
3
I = {± 2, ±π, ±e, ± 7, 5, · · · }
S
R=Q
I
√
C = {a + bi; a, b ∈ R ♦♥❞❡ i = −1 }
✐♥t❡✐r♦s✳
r❛❝✐♦♥❛✐s✳
r❛❝✐♦♥❛✐s✳
✐rr❛❝✐♦♥❛✐s✳
r❡❛✐s✳
❝♦♠♣❧❡①♦s
C = {1 + 2i, 3 + 2i, 5 − 4i, −1 − i, i, 2, 8i, 7, · · · }
❝♦♠♣❧❡①♦s
◗✉❛❧q✉❡r ♥ú♠❡r♦ r❡❛❧ ♣♦❞❡ s❡r ❝♦♥s✐❞❡r❛❞♦ ❝♦♠♦ ✉♠ ♥ú♠❡r♦ r❛❝✐♦♥❛❧ ♦✉ ♥ú♠❡r♦
✐rr❛❝✐♦♥❛❧✳ ❊st❡s ♥ú♠❡r♦s r❛❝✐♦♥❛✐s ❝♦♥s✐st❡♠ ❞♦s s❡❣✉✐♥t❡s✿
❛✮
❖s ✐♥t❡✐r♦s ♣♦s✐t✐✈♦s✱ ♥❡❣❛t✐✈♦s ❡ ♦ ③❡r♦✿
· · · − 6, −5, −4, · · · , −1, 0, 1, 2, 3, · · · , 12, 13, 14, · · · ✳
❜✮
❆s ❢r❛çõ❡s ♣♦s✐t✐✈❛s ❡ ♥❡❣❛t✐✈❛s✿
✷ ❘✐❝❤❛r❞ ❉❡❞❡❦✐♥❞ ✭1831 − 1916✮ ❢♦✐ ❛❧✉♥♦ ❞❡ ❈❛r❧ ❋✳ ●❛✉ss ✭1777 − 1855✮ ❡ ❉✐r✐❝❤❧❡t
(1805 − 1859)✳
❊st✉❞♦✉ ♦ ♣r♦❜❧❡♠❛ ❞♦s ♥ú♠❡r♦s ✐rr❛❝✐♦♥❛✐s✱ ❡ é ♠❛✐s ❝♦♥❤❡❝✐❞♦ ♣❡❧♦ s❡✉ tr❛❜❛❧❤♦ ♥♦s ❢✉♥❞❛♠❡♥t♦s ❞♦
s✐st❡♠❛ ❞❡ ♥ú♠❡r♦s r❡❛✐s✳
✸ ❆✉❣✉st✐♥ ❈❛✉❝❤② ✭1789 − 1857✮ ❢♦✐ ♦ ❢✉♥❞❛❞♦r ❞❛ ❛♥á❧✐s❡ ♠♦❞❡r♥❛✱ ❛♣♦rt♦✉ ✐♠♣♦rt❛♥t❡s r❡s✉❧t❛❞♦s
❡♠ ♦✉tr❛s ár❡❛s ❞❛ ♠❛t❡♠át✐❝❛✳ ❆❧é♠ ❞❡ s✉❛s ❛t✐✈✐❞❛❞❡s ♣♦❧ít✐❝❛s ❡ r❡❧✐❣✐♦s❛s✱ ❡s❝r❡✈❡✉
759
tr❛❜❛❧❤♦s
❡♠ ♠❛t❡♠át✐❝❛✳
✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
8
1
96
8 13
··· − , ··· − , ··· ,
··· , ,
, ···✳
5
2
15
5 14
❝✮
❖s ♥ú♠❡r♦s ❞❡❝✐♠❛✐s ❧✐♠✐t❛❞♦s ✭♣♦s✐t✐✈♦s ❡ ♥❡❣❛t✐✈♦s✮✿
5, 37 =
❞✮
537
✱
100
−3, 2841 = −
32.841
✱
10.000
0, 528 =
528
1.000
❖s ♥ú♠❡r♦s ❞❡❝✐♠❛✐s ✐❧✐♠✐t❛❞♦s ✭♣♦s✐t✐✈♦s ❡ ♥❡❣❛t✐✈♦s✮✿
3
745
0, 333333 · · · ≈ ✱
−3, 745745745 · · · ≈ −3 −
2, 5858585858 · · · ≈
9
999
9
58
8, 9999999 · · · ≈ 8 +
2+ ✱
99
9
❖ sí♠❜♦❧♦ ≈ s✐❣♥✐✜❝❛ ❛♣r♦①✐♠❛❞❛♠❡♥t❡✳ ❖❜s❡r✈❡✿
9
❙❡ ❝♦♥s✐❞❡r❡♠♦s ❛ r❡❧❛çã♦ 0, 999999 · · · = = 1 ✐st♦ é ✉♠ ❛❜s✉r❞♦ ❥á q✉❡ ♦ ♥ú♠❡r♦ 1
9
é ✐♥t❡✐r♦ ❡ 0, 999999 · · · é ✉♠ ♥ú♠❡r♦ r❛❝✐♦♥❛❧ ❞❡❝✐♠❛❧ ❝♦♠ ✉♠❛ ✐♥✜♥✐❞❛❞❡ ❞❡ ❛❧❣❛r✐s♠♦s
9
♥♦✈❡✳ ❆ss✐♠ é ♠❡❧❤♦r ❡♥t❡♥❞❡r q✉❡ 0, 999999 · · · ≈ = 1
9
• ❖s ♥ú♠❡r♦s ✐rr❛❝✐♦♥❛✐s sã♦ ❛q✉❡❧❡s ♥ú♠❡r♦s ❞❡❝✐♠❛✐s ♥ã♦ ♣❡r✐ó❞✐❝♦s✳ P♦r ❡①❡♠♣❧♦✿
√
√
5 = 2, 2360679774997896 · · · ❀
19 = 4, 35889894354067 · · ·
√
3
π = 3, 14159265358979323846 · · · ❀
✲ 28 = −3, 03658897187 · · ·
❆ ❋✐❣✉r❛ ✭✶✳✶✮ ♠♦str❛ ♠❡❞✐❛♥t❡ ❞✐❛❣r❛♠❛s ❞❡ ❱❡♥♥✹ ❛ r❡❧❛çã♦ ❞❡ ✐♥❝❧✉sã♦ ❡♥tr❡ ♦s
❝♦♥❥✉♥t♦s✳
C
I
✬
✫
✬
✩
Z
✪
✫
R
✩
Q
N
✪
❋✐❣✉r❛ ✶✳✶✿ ❈♦♥❥✉♥t♦ ◆✉♠ér✐❝♦
◆♦t❛çõ❡s✿
N+ = N − {0} = { 1, 2, 3, 4, 5, · · · , n, · · · }
Z+ = {1, 2, 3, 4, 5, · · · }
➱ ✐♠♣♦rt❛♥t❡ ❞❡st❛❝❛r q✉❡ ♦ ♥ú♠❡r♦ ③❡r♦ ♥ã♦ é ♥ú♠❡r♦ ♣♦s✐t✐✈♦ ♥❡♠ ♥❡❣❛t✐✈♦✳
❙✉♣♦♥❤❛ t❡♠♦s q✉❡ r❡❛❧✐③❛r ♦♣❡r❛çõ❡s ❛r✐t♠ét✐❝❛s ❡❧❡♠❡♥t❛r❡s ✭❛❞✐çã♦✱ s✉❜tr❛çã♦✱
♠✉❧t✐♣❧✐❝❛çã♦✱ ❞✐✈✐sã♦✱ ♣♦t❡♥❝✐❛çã♦ ❡ r❛❞✐❝❛çã♦✮ ❝♦♠ ❞♦✐s ♥ú♠❡r♦s q✉❛✐sq✉❡r ❞❡ ✉♠ s✉❜✲
❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s✱ ❡ ❞❡s❡❥❛♠♦s q✉❡ ♦ r❡s✉❧t❛❞♦ ♣❡rt❡♥ç❛ ❛♦ ♠❡s♠♦ s✉❜❝♦♥❥✉♥t♦✳
❖❜s❡r✈❡✱ ❝♦♠ ♦s ♥ú♠❡r♦s ♥❛t✉r❛✐s 4 ❡ 7 ♥ã♦ é ♣♦ssí✈❡❧ ❡❢❡t✉❛r ❛ ♦♣❡r❛çã♦ 4 − 7
✭s✉❜tr❛çã♦✮✱ ♣♦✐s s❛❜❡♠♦s q✉❡ 4 − 7 = −3 ♥ã♦ ♣❡rt❡♥❝❡ ❛♦ ❝♦♥❥✉♥t♦ N✳ ❆ss✐♠✱ ❡♠ ❣❡r❛❧
t❡♠♦s q✉❡ ♥♦ ❝♦♥❥✉♥t♦ ♥✉♠ér✐❝♦✿
❡♠
✹ ❏♦❤♥ ❱❡♥♥ ✭1834 − 1923✮ ♣✉❜❧✐❝♦✉ ✏▲ó❣✐❝❛ ❙✐♠❜ó❧✐❝❛✑ ❡♠
1889✳
1881 ❡✱
✏❖s Pr✐♥❝í♣✐♦s ❞❡ ▲ó❣✐❝❛ ❊♠♣ír✐❝❛✑
❖ s❡❣✉♥❞♦ ❞❡st❡s é ♠❡♥♦s ♦r✐❣✐♥❛❧ q✉❡ ♦ ♣r✐♠❡✐r♦✱ ♣♦ré♠ é ❞❡s❝r✐t♦ ❝♦♠♦ ♦ tr❛❜❛❧❤♦ ♠❛✐s
❞✉r❛❞♦✉r♦ ❡♠ ❧ó❣✐❝❛✳
✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
N
s♦♠❡♥t❡ é ♣♦ssí✈❡❧ ❡❢❡t✉❛r ♦♣❡r❛çõ❡s ❞❡ ❛❞✐çã♦ ❡ ♠✉❧t✐♣❧✐❝❛çã♦✳
Z
s♦♠❡♥t❡ é ♣♦ssí✈❡❧ ❡❢❡t✉❛r ♦♣❡r❛çõ❡s ❞❡ ❛❞✐çã♦✱ s✉❜tr❛çã♦ ❡ ♠✉❧t✐♣❧✐❝❛çã♦✳
Q
é ♣♦ssí✈❡❧ ❡❢❡t✉❛r ♦♣❡r❛çõ❡s ❞❡ ❛❞✐çã♦✱ s✉❜tr❛çã♦ ✱ ♠✉❧t✐♣❧✐❝❛çã♦ ❡ ❞✐✈✐sã♦ ✭❞❡s❞❡ q✉❡
♦ ❞✐✈✐s♦r ♥ã♦ s❡❥❛ ③❡r♦✮✳
I
R
é ♣♦ssí✈❡❧ ❡❢❡t✉❛r ♦♣❡r❛çõ❡s ❞❡ ♠♦❞♦ r❡str✐t♦✳
♣♦❞❡♠♦s ❡❢❡t✉❛r ♦♣❡r❛çõ❡s ❞❡ ❛❞✐çã♦✱ s✉❜tr❛çã♦✱ ♠✉❧t✐♣❧✐❝❛çã♦ ❡ ❞✐✈✐sã♦ ✭❞❡s❞❡ q✉❡ ♦
❞✐✈✐s♦r ♥ã♦ s❡❥❛ ③❡r♦✮✳
C
é ♣♦ssí✈❡❧ ❡❢❡t✉❛r ♦♣❡r❛çõ❡s ❞❡ ❛❞✐çã♦✱ s✉❜tr❛çã♦✱ ❞✐✈✐sã♦ ✭❝♦♠ ❞✐✈✐s♦r ♥ã♦ ③❡r♦✮✱ ♠✉❧✲
t✐♣❧✐❝❛çã♦✱ ♣♦t❡♥❝✐❛çã♦ ❡ r❛❞✐❝❛çã♦✳
C
❖ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s ❝♦♠♣❧❡①♦s
♥ú♠❡r♦s r❡❛✐s
❞♦ ❝♦♥❥✉♥t♦
R✳
R✳
t❡♠ ♠❛✐s ♣r♦♣r✐❡❞❛❞❡s q✉❡ ♦ ❝♦♥❥✉♥t♦ ❞♦s
◆♦ss♦ ♦❜❥❡t✐✈♦ ♥❡st❡ ❝❛♣ít✉❧♦ s❡rá ❡st✉❞❛r ❛s ♣r♦♣r✐❡❞❛❞❡s ✐♠♣♦rt❛♥t❡s
▼♦str❛✲s❡ q✉❡✱
Q
T
I = ∅✳
x ∈ R é ♣♦ssí✈❡❧ ❛ss♦❝✐❛r ✉♠ ♣♦♥t♦ ❞❡ ✉♠❛ r❡t❛✱ ❞❡ ♠♦❞♦ q✉❡ ❛ ❡st❡
♥ú♠❡r♦ r❡❛❧ x ❝♦rr❡s♣♦♥❞❛ ✉♠✱ ❡ s♦♠❡♥t❡ ✉♠✱ ú♥✐❝♦ ♣♦♥t♦ P ❝♦♠♦ ✐♥❞✐❝❛ ❛ ❋✐❣✉r❛ ✭✶✳✷✮✳
❆♦s ❡❧❡♠❡♥t♦s ❞❡
✛
−∞
···
r
−4
r
−3
r
−2
r
−1
r
0
r
1
r
r r
R
x
2
3
···
✲
+∞
❋✐❣✉r❛ ✶✳✷✿ ❘❡t❛ ♥✉♠ér✐❝❛
❉❡✜♥✐çã♦ ✶✳✶✳
❙✐st❡♠❛ ❞❡ ♥ú♠❡r♦s r❡❛✐s✳
❉✐③❡♠♦s ✏ s✐st❡♠❛ ❞❡ ♥ú♠❡r♦s r❡❛✐s✑ ❛♦ ❝♦♥❥✉♥t♦
R✱
♥♦ q✉❛❧ ❡stã♦ ❞❡✜♥✐❞❛s ❛s
♦♣❡r❛çõ❡s ❞❡ ❛❞✐çã♦ ✭+✮✱ ♠✉❧t✐♣❧✐❝❛çã♦ ✭⋆✮✱ ✉♠❛ r❡❧❛çã♦ ❞❡ ♦r❞❡♠ ✭< ✮ q✉❡ s❡ ❧ê
✏ ♠❡♥♦r q✉❡✑ ❡ ♦ ❛①✐♦♠❛ ❞♦ s✉♣r❡♠♦✳
❖ s✐st❡♠❛ ❞❡ ♥ú♠❡r♦s r❡❛✐s ♣♦❞❡ s❡r ❞❡♥♦t❛❞♦ ❝♦♠♦ ✭R,
❡s❝r❡✈❡✲s❡
+, ⋆, <
✮ ♦✉ s✐♠♣❧❡s♠❡♥t❡
R✳
❖✉tr❛ ♥♦t❛çã♦ ♣❛r❛ ❛ ♠✉❧t✐♣❧✐❝❛çã♦ é ✉♠ ♣♦♥t♦✳ ❆ss✐♠✱ ♣♦r ❡①❡♠♣❧♦✱ s❡
t❡♠♦s
✶✳✷✳✶
a·b
s✐❣♥✐✜❝❛ ♠✉❧t✐♣❧✐❝❛çã♦ ✭♣r♦❞✉t♦ ✮ ❞♦s ♥ú♠❡r♦s
a
❡
b✳
a, b ∈ R✱
❆❞✐çã♦ ❡ ▼✉❧t✐♣❧✐❝❛çã♦ ❝♦♠ ♥ú♠❡r♦s r❡❛✐s
❆❞✐çã♦ é ✉♠❛ ❞❛s ♦♣❡r❛çõ❡s ❜ás✐❝❛s ❞❛ ❛r✐t♠ét✐❝❛✳ ◆❛ s✉❛ ❢♦r♠❛ ♠❛✐s s✐♠♣❧❡s✱ ❛❞✐çã♦
❝♦♠❜✐♥❛ ❞♦✐s ♥ú♠❡r♦s ✭t❡r♠♦s✱ s♦♠❛♥❞♦s ♦✉ ♣❛r❝❡❧❛s✮ ❡♠ ✉♠ ú♥✐❝♦ ♥ú♠❡r♦ ❝❤❛♠❛❞♦ ✏ ❛
s♦♠❛ ✑✳ ❆❞✐❝✐♦♥❛r ♠❛✐s ♥ú♠❡r♦s ❝♦rr❡s♣♦♥❞❡ ❛ r❡♣❡t✐r ❛ ♦♣❡r❛çã♦✳
✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
P♦❞❡ t❛♠❜é♠ s❡r ✉♠❛ ♦♣❡r❛çã♦ ❣❡♦♠étr✐❝❛✱ ❛ ♣❛rt✐r ❞❡ ❞♦✐s s❡❣♠❡♥t♦s ❞❡ r❡t❛ ❞❛❞♦s
❞❡t❡r♠✐♥❛r ✉♠ ♦✉tr♦ ❝✉❥♦ ❝♦♠♣r✐♠❡♥t♦ s❡❥❛ ✐❣✉❛❧ à s♦♠❛ ❞♦s ❞♦✐s ✐♥✐❝✐❛✐s✳
❉❡✜♥✐çã♦ ✶✳✷✳
❙❡❥❛
A
▲❡✐ ❞❡ ❝♦♠♣♦s✐çã♦ ✐♥t❡r♥❛✳
s✉❜❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s
❝♦♥❥✉♥t♦
A
R✳
▲❡✐ ❞❡ ❝♦♠♣♦s✐çã♦ ✐♥t❡r♥❛ s♦❜r❡ ✉♠
é ✉♠❛ r❡❧❛çã♦ ❡♠ q✉❡✱ ❛ ❝❛❞❛ ♣❛r ❞❡ ❡❧❡♠❡♥t♦s ❞❡
♦✉tr♦ ❡❧❡♠❡♥t♦
c ∈ A✳
a, b ∈ A
❝♦rr❡s♣♦♥❞❡
❊①❡♠♣❧♦ ✶✳✶✳
•
❉❛❞♦s
8, 9 ∈ N
•
❉❛❞♦s
12, 4 ∈ R
•
❉❛❞♦s
18, 7 ∈ N
t❡♠♦s
8 + 9 = 17 ∈ N✳
t❡♠♦s
12
= 3 ∈ R✳
4
t❡♠♦s
✐♥t❡r♥❛✳
❆q✉✐✱ ❛ ❧❡✐ ❞❡ ❝♦♠♣♦s✐çã♦ ✐♥t❡r♥❛ é ❛ ❛❞✐çã♦✳
❆q✉✐✱ ❛ ❧❡✐ ❞❡ ❝♦♠♣♦s✐çã♦ ✐♥t❡r♥❛ é ❛ ❞✐✈✐sã♦✳
7 − 18 = −11 ∈
/ N✳
❆q✉✐✱ ♥ã♦ ❡①✐st❡ ❧❡✐ ❞❡ ❝♦♠♣♦s✐çã♦
❈♦♥s✐❞❡r❡♠♦s ❞♦✐s ❛①✐♦♠❛s ❞❡✜♥✐❞♦s ♥♦ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s R✳ ❊st❡s ❛①✐♦♠❛s
❞❡✜♥✐❞♦s ♣❡❧❛s ❧❡✐s ❞❡ ❝♦♠♣♦s✐çã♦ ✐♥t❡r♥❛ sã♦✿
❆①✐♦♠❛ ❞❛ ❆❞✐çã♦ ✭❙♦♠❛✮✿
P❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧ a ❡ b✱ t❡♠♦s q✉❡ a + b é ✉♠ ♥ú♠❡r♦ r❡❛❧✳
❆①✐♦♠❛ ❞❛ ▼✉❧t✐♣❧✐❝❛çã♦ ✭Pr♦❞✉t♦✮✿
P❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧ a ❡ b✱ t❡♠♦s q✉❡ a · b é ✉♠ ♥ú♠❡r♦ r❡❛❧✳
❖♥❞❡ ❡st❡s ❛①✐♦♠❛s ❞❛ ❛❞✐çã♦ ❡ ❛ ♠✉❧t✐♣❧✐❝❛çã♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s ❝✉♠♣r❡♠ ❛s s❡❣✉✐♥t❡s
♣r♦♣r✐❡❞❛❞❡s✿
❆✶
❆✷
❆✸
❆✹
P✶
P✷
P✸
P✹
❉✶
❉✷
∀ a, b ∈ R
✭❝♦♠✉t❛t✐✈❛✮
a+b=b+a
∀ a, b, c ∈ R
∃ 0 ∈ R /. a + 0 = 0 + a = a
∀ a ∈ R,
∀a ∈R
∃ − a ∈ R /. a + (−a) = (−a) + a = 0
∀ a, b ∈ R
✭❛ss♦❝✐❛t✐✈❛✮
(a + b) + c = a + (b + c)
✭♥❡✉tr♦✮
✭✐♥✈❡rs♦ ❛❞✐t✐✈♦✮
a.b = b.a
✭❛ss♦❝✐❛t✐✈❛✮
∀ a, b, c ∈ R (a.b).c = a.(b.c)
∃ 1 ∈ R /. a.1 = 1.a = a ∀ a ∈ R
∀ a ∈ R,
a 6= 0,
✭❝♦♠✉t❛t✐✈❛✮
✭♥❡✉tr♦✮
∃ a−1 ∈ R /. a.a−1 = a−1 .a = 1 ✭✐♥✈❡rs♦ ♠✉❧t✐♣❧✐❝❛t✐✈♦✮
∀ a, b, c ∈ R
a.(b + c) = a.b + a.c
✭❞✐str✐❜✉t✐✈❛✮
∀ a, b, c ∈ R
(a + b).c = a.c + b.c
✭❞✐str✐❜✉t✐✈❛✮
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✳
P❛r❛ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s
a, b, c
t❡♠♦s ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s ✿
✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✶✳
❖s ❡❧❡♠❡♥t♦s ♥❡✉tr♦✱ ✐♥✈❡rs♦ ❛❞✐t✐✈♦ ❡ ♠✉❧t✐♣❧✐❝❛t✐✈♦ sã♦ ú♥✐❝♦s✳
✷✳
a = −(−a)✳
✸✳
❙❡
✹✳
a.0 = 0.a = 0✳
✺✳
−a = (−1).a✳
✻✳
a.(−b) = (−a).b = −(a.b)
✼✳
(−a).(−b) = a.b
✽✳
a+c = b+c
✾✳
❙❡
a 6= 0
✶✵✳
a.b = 0
✶✶✳
a2
❂ b2
a = (a−1 )−1 ✳
❡♥tã♦
a.c = b.c
R
s❡✱ ❡ s♦♠❡♥t❡ s❡
c 6= 0✱
❡
❡♥tã♦
a = b✳
a = 0
s❡✱ ❡ s♦♠❡♥t❡ s❡
s❡✱ ❡ s♦♠❡♥t❡ s❡
a = b✳
a = b
♦✉
♦✉
❉❡♠♦♥str❛çã♦✳ ✭✷✮
b = 0✳
a = −b✳
∀ a ∈ R ❡①✐st❡ −a ∈ R q✉❡ ❝✉♠♣r❡ ❛ ✐❣✉❛❧❞❛❞❡ a + (−a) =
(−a) + a = 0✳ ❆ss✐♠ ♣❛r❛ t♦❞♦ (−a) ∈ R ❡①✐st❡ −(−a) ∈ R q✉❡ ❝✉♠♣r❡ ❛ ✐❣✉❛❧❞❛❞❡
(−a) + (−(−a)) = (−(−a)) + (−a) = 0✳ ❊♥tã♦ a + (−a) + (−(−a)) = (−(−a)) + a + (−a)❀
✐st♦ é a = −(−a)✳
P❡❧♦ ❆①✐♦♠❛ ❆✹✱ t❡♠♦s✿
❉❡♠♦♥str❛çã♦✳ ✭✹✮
a.0 = a(0 + 0)❀
♣♦✐s
0=0+0
▲♦❣♦✱ ♣❡❧♦ ❆①✐♦♠❛ ❉✶ s❡❣✉❡
a.0 = a · (0 + 0) = a.0 + a.0✱
❡♥tã♦
a.0 = 0
❉❡♠♦♥str❛çã♦✳ ✭✺✮
a + (−1)a = 1.a + (−1).a
❂ [1 + (−1)].a
❂ 0
✐st♦ ❞❡
❞✐str✐❜✉t✐✈✐❞❛❞❡
❡♥tã♦✱ ❛♣❧✐❝❛♥❞♦ ♦ ❆①✐♦♠❛ ❆✹ ♣❛r❛
❉❡♠♦♥str❛çã♦✳ ✭✾✮
−1
a = a(c.c ✮
❂ (a.c).c−1 = (b.c).c−1
❂ b(c.c−1 ) = b
a = 1.a
[1 + (−1)] = 0 ❡ a.0 = 0
a✱ s❡❣✉❡ (−1)a = −a
✐st♦ ❞❡
a = a.1
❡
1 = c.c−1
♣♦✐s
♣♦r ❤✐♣ót❡s❡✳
c · c−1 = 1
❡
c 6= 0
b·1=b
❉❡♠♦♥str❛çã♦✳ ✭✶✵✮
❙✉♣♦♥❤❛♠♦s
a=0
♦✉
b = 0✳
❊♥tã♦ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✶✮✲(4) s❡❣✉❡
a · b = 0✳
P♦r ♦✉tr♦ ❧❛❞♦✱ s✉♣♦♥❤❛✳
a · b = 0 ❡ q✉❡ a 6= 0✳ ❊♥tã♦ a−1 (a.b) = a−1 .0 = 0✱ ✐st♦ é ✭a−1 · a) · b =
b = 0✳ ❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✱ s✉♣♦♥❤❛ q✉❡ b 6= 0✳ ▲♦❣♦ a = 0✳
❙✉♣♦♥❤❛♠♦s
1 · b = 0❀
❧♦❣♦
✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✶✳✸✳
❆ ❞✐❢❡r❡♥ç❛ ❡ ♦ q✉♦❝✐❡♥t❡ ❞❡ ❞♦✐s ♥ú♠❡r♦s r❡❛✐s é ❞❡✜♥✐❞♦ ♣♦r✿
✶✳
✷✳
a − b = a + (−b)
a
= a.b−1
b
s❡
❞✐❢❡r❡♥ç❛✳
b 6= 0
q✉♦❝✐❡♥t❡
Pr♦♣r✐❡❞❛❞❡ ✶✳✷✳
P❛r❛ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s a, b, c, d✱ t❡♠♦s✿
✶✳ a − b = −(b − a).
✷✳ a − b = c ✱ ❡♥tã♦ a = b + c✳
✸✳ a.(b − c) = a.b − a.c✳
ad + bc
a c
+ =
.
✹✳ ❙❡ b 6= 0 ❡ d 6= 0✱ ❡♥tã♦
b
✺✳
❙❡
b 6= 0
✻✳
❙❡
a 6= 0
❡
❡
❉❡♠♦♥str❛çã♦✳ ✭✶✮
d
bd
a c
ad − bc
d 6= 0✱ ❡♥tã♦
− =
.
b d
bd
c−b
.
ax + b = c ✱ ❡♥tã♦ x =
a
a ❡ b ♥ú♠❡r♦s r❡❛✐s✱ ❡♥tã♦ a − b é ✉♠
−(a − b)✳ ❆ss✐♠ (a − b) + (−(a − b)) = 0✳
❙❡♥❞♦
❛❞✐t✐✈♦
P❡❧❛
❉❡✜♥✐çã♦
♥ú♠❡r♦ r❡❛❧✳ ▲♦❣♦ ❡①✐st❡ s❡✉ ♦♣♦st♦
✭✶✳✸✮ s❡❣✉❡✿
(a − b) − (a − b) = 0
a + (−b) − (a − b) = 0
♦✉
✭✶✳✶✮
−(b − a) é ✉♠ ♥ú♠❡r♦ r❡❛❧✱ ❧♦❣♦ ❡①✐st❡ s❡✉ ✐♥✈❡rs♦ ❛❞✐t✐✈♦ −[−(b − a)]✱
❧♦❣♦ −(b − a) + {−[−(b − a)]} = 0✳ ❆ss✐♠ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✶✮✲(2) t❡♠♦s ✿ −(b − a) +
(b − a) = 0 ❡♥tã♦
P♦r ♦✉tr♦ ❧❛❞♦✱
−(b − a) + b + (−a) = 0
✭✶✳✷✮
(a + (−b) − (a − b)) + (−(b − a) + b + (−a)) = 0✱ ✐st♦ é
−(a − b) + (−(b − a)) = 0❀ ♦♥❞❡ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✶✮✲(8) ❞♦ ♦♣♦st♦ ❛❞✐t✐✈♦ ❞❡ (a − b)
r❡s✉❧t❛
−(b − a)) = (a − b)✳
❉❡ ✭✶✳✶✮ ❡ ✭✶✳✷✮ t❡♠♦s
❉❡♠♦♥str❛çã♦✳ ✭✻✮
❙❡❥❛♠
a 6= 0
❡
ax + b = c✱
❡♥tã♦ ♣❡❧❛
Pr♦♣r✐❡❞❛❞❡
❡
❉❡✜♥✐çã♦
✭✶✳✸✮✲✭2✮ r❡s✉❧t❛
ax = c − b✳
a 6= 0 t❡♠♦s a−1 (ax) = a−1 (c−b) ❡✱ ♣❡❧♦ ❆①✐♦♠❛
c−b
x=
a
P❡❧♦ ♦♣♦st♦ ♠✉❧t✐♣❧✐❝❛t✐✈♦ ❞♦ ♥ú♠❡r♦
P3
✭✶✳✷✮✲(2) ❝♦♥❝❧✉í♠♦s
✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡♠♦♥str❛çã♦✳ ✭2✮ ✲ ✭5✮
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❉❡✜♥✐çã♦ ✶✳✹✳ ◆ú♠❡r♦ ♣❛r✳
❉✐③❡♠♦s q✉❡ a ∈ Z é ♥ú♠❡r♦ ♣❛r s❡ ❡①✐st❡ β ∈ Z t❛❧ q✉❡ a = 2β ✳
❊♠
Z✱
t♦❞♦ ♥ú♠❡r♦ q✉❡ ♥ã♦ é ♣❛r✱ é ❞❡♥♦♠✐♥❛❞♦ ♥ú♠❡r♦ í♠♣❛r✳
❖❜s❡r✈❛çã♦ ✶✳✶✳
✶✳ ❚♦❞♦ ♥ú♠❡r♦ í♠♣❛r b ∈ Z é ❞❛ ❢♦r♠❛ b = 2α + 1✱ ♣❛r❛ α ∈ Z✳
✷✳ ❙❡❣✉♥❞♦ ♥♦ss❛ ❞❡✜♥✐çã♦ ❞❡ ♥ú♠❡r♦ ♣❛r✱ ♦ ③❡r♦ é ♣❛r✳
❉❡✜♥✐çã♦ ✶✳✺✳ ❉✐✈✐s♦r ❝♦♠✉♠✳
❙❡❥❛♠ ♦s ♥ú♠❡r♦s a, b, d ∈ Z s❡✱ d ❞✐✈✐❞❡ ❛ a ❡ b✱ ♦ ♥ú♠❡r♦ d é ❝❤❛♠❛❞♦ ❞✐✈✐s♦r
❝♦♠✉♠ ❞❡ a ❡ b✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✸✳
❉❛❞♦s ♦s ♥ú♠❡r♦s ✐♥t❡✐r♦s a ❡ b✱ ❡①✐st❡ ✉♠ ❞✐✈✐s♦r ❝♦♠✉♠ ❞❛ ❢♦r♠❛ d = ax + by ♣❛r❛
❛❧❣✉♠ x, y ∈ Z❀ ❡✱ t♦❞♦ ❞✐✈✐s♦r ❝♦♠✉♠ ❞❡ a ❡ b ❞✐✈✐❞❡ ❡st❡ d✳
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❉❡✜♥✐çã♦ ✶✳✻✳ ▼á①✐♠♦ ❞✐✈✐s♦r ❝♦♠✉♠✳
❖ ♠á①✐♠♦ ❞✐✈✐s♦r ❝♦♠✉♠ ❞♦s ♥ú♠❡r♦s a ❡ b ♥ã♦ ♥✉❧♦s ✭❡s❝r✐t♦s ❝♦♠♦ ♣r♦❞✉t♦ ❞❡
❢❛t♦r❡s ♣r✐♠♦s✮ ❞❡♥♦t❛❞♦ mdc{a, b} é ♦ ♣r♦❞✉t♦ ❞♦s ❢❛t♦r❡s ❝♦♠✉♥s ❛ ❡❧❡s✱ ❝❛❞❛
✉♠ ❡❧❡✈❛❞♦ ❛♦ ♠❡♥♦r ❡①♣♦❡♥t❡✳
❉❡✜♥✐çã♦ ✶✳✼✳ ▼í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠✳
❖ ♠í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠ ❞♦s ♥ú♠❡r♦s a ❡ b ♥ã♦ ♥✉❧♦s ✭❡s❝r✐t♦s ❝♦♠♦ ♣r♦❞✉t♦ ❞❡
❢❛t♦r❡s ♣r✐♠♦s✮ ❞❡♥♦t❛❞♦ mmc{a, b} =
ab
✳
mdc{a, b}
❉❡✜♥✐çã♦ ✶✳✽✳ ◆ú♠❡r♦s ♣r✐♠♦s✳
❙❡❥❛ n ∈ Z✱ ❞✐③❡♠♦s q✉❡ n é ♥ú♠❡r♦ ♣r✐♠♦✱ s❡ n > 1 ❡ s❡✉s ú♥✐❝♦s ❞✐✈✐s♦r❡s
♣♦s✐t✐✈♦s sã♦ 1 ❡ ♦ ♣ró♣r✐♦ n✳ ❙❡ n ♥ã♦ é ♥ú♠❡r♦ ♣r✐♠♦ ❡♥tã♦ é ❝❤❛♠❛❞♦ ❞❡
♥ú♠❡r♦ ❝♦♠♣♦st♦✳
✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❊①❡♠♣❧♦ ✶✳✷✳
•
❙ã♦ ♥ú♠❡r♦s ♣r✐♠♦s✿
•
◆ã♦ sã♦ ♥ú♠❡r♦s ♣r✐♠♦s✱ sã♦ ♥ú♠❡r♦s ❝♦♠♣♦st♦s✿
2, 3, 7, 11 13, 17, 19
4, 6, 8, 10, 16, 24✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✹✳
n>1
❚♦❞♦ ♥ú♠❡r♦ ✐♥t❡✐r♦
é ♥ú♠❡r♦ ♣r✐♠♦ ♦✉ ♣r♦❞✉t♦ ❞❡ ♥ú♠❡r♦s ♣r✐♠♦s✳
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✺✳
❆❧❣♦r✐t♠♦ ❞❡ ❊✉❝❧✐❞❡s✳
P❛r❛ q✉❛✐sq✉❡r ❞♦✐s ♥ú♠❡r♦s ✐♥t❡✐r♦s ♥ã♦ ♥✉❧♦s
a
❡
b✱
❡①✐st❡♠ ✐♥t❡✐r♦s ú♥✐❝♦s
q
❡
r✱
❞❡♥♦♠✐♥❛❞♦s✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ ♦ q✉♦❝✐❡♥t❡ ❡ ♦ r❡st♦ ♦✉ r❡sí❞✉♦✱ t❛✐s q✉❡✿
0≤r<b
a = bq + r,
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✶✳✸✳
✭❛✮
−2805 = −24(119) + 51
✭❜✮
758 = 3(242) + 32
✭❝✮
780 = −16(−48) + 12
✭❞✮
826 = 33(25) + 1
❉❡✜♥✐çã♦ ✶✳✾✳
◆ú♠❡r♦s r❡❧❛t✐✈❛♠❡♥t❡ ♣r✐♠♦s✳
❉✐③❡♠♦s q✉❡ ❞♦✐s ♥ú♠❡r♦s
a, b ∈ Z
sã♦ r❡❧❛t✐✈❛♠❡♥t❡ ♣r✐♠♦s✱ s❡ ♦
mdc{ a, b } = 1✳
❊①❡♠♣❧♦ ✶✳✹✳
❖s s❡❣✉✐♥t❡s ❝♦♥❥✉♥t♦s✱ sã♦ ❞❡ ♥ú♠❡r♦s r❡❧❛t✐✈❛♠❡♥t❡ ♣r✐♠♦s✿
A = {8, 9}
❊①❡♠♣❧♦ ✶✳✺✳
❊♠♣r❡st❡✐ ♦s
B = {86, 25}
2
3
5
6
❞♦s
❞♦s
3
5
C = {32, 49}
D = {18, 19}
❞❡ ✉♠ ❞✐♥❤❡✐r♦ q✉❡ t✐♥❤❛ ❡ ❛✐♥❞❛ t❡♥❤♦ ❞❡ ✉♠
1
5
❞❡
♠✐❧❤ã♦ ❞❡ r❡❛✐s✳ ◗✉❡ q✉❛♥t✐❞❛❞❡ ❞❡ ❞✐♥❤❡✐r♦ ❡♠♣r❡st❡✐ ❄
❙♦❧✉çã♦✳
❖ s✐❣♥✐✜❝❛❞♦ ♠❛t❡♠át✐❝♦ ❞❛s ♣❛❧❛✈r❛s ✏ ❞♦s ✑✱ ✏ ❞❛s ✑✱ ✏ ❞♦ ✑✱ ✏ ❞❡ ✑✱ ♣♦❞❡♠♦s ❡♥t❡♥❞❡r
❝♦♠♦ s❡ ❢♦r ♦ ♦♣❡r❛❞♦r ❞❛ ♠✉❧t✐♣❧✐❝❛çã♦✳
❙✉♣♦♥❤❛ q✉❡ t✐♥❤❛
x
r❡❛✐s✳ ❊♠♣r❡st❡✐
2 5 3
( )( )( )x✱
3 6 5
❧♦❣♦ t❡♥❤♦
1
2 5 3
x − ( )( )( )x = ( )(1.000.000)
3 6 5
5
✶✵
1
( )(1000, 000)✳
5
❆ss✐♠✿
⇒
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
x −
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
1
2
x = 200.000 ⇒ x = 200.000 ⇒ x = 300.000
3
3
P♦rt❛♥t♦✱ t✐♥❤❛ 300.000 r❡❛✐s ❡ ❡♠♣r❡st❡✐ ❘$100.000✳
❊①❡♠♣❧♦ ✶✳✻✳
❆♦ ❝❤❡❣❛r ❛ ♠✐♥❤❛ ❝❛s❛ ❡♥❝♦♥tr❡✐ ✈ár✐❛s ❛r❛♥❤❛s ❡ ❜❛r❛t❛s✱ ❞❡♣♦✐s ❞❡ ♠❛t❛r ❡st❡s
✐♥s❡t♦s✱ ❝♦♥t❡✐ ♦ ♥ú♠❡r♦ ❞❡ ♣❛t❛s ❡ ♦❜s❡r✈❡✐ q✉❡ ❡r❛♠
108✳
16
❈❛❧❝✉❧❛r q✉❛♥t❛s ❜❛r❛t❛s ❡
❛r❛♥❤❛s ❡♥❝♦♥tr❡✐ ❛♦ ❝❤❡❣❛r ❛ ❝❛s❛✳
❙♦❧✉çã♦✳
➱ s✉✜❝✐❡♥t❡ s❛❜❡r♠♦s ♦ ♥ú♠❡r♦ ❞❡ ♣❛t❛s q✉❡ ❝❛❞❛ ✐♥s❡t♦ ♣♦ss✉✐✱ ❡ ❡♠ s❡❣✉✐❞❛ ❛♥❛❧✐s❛r
♦s ❞❛❞♦s ❡ ♦ q✉❡ s❡ ♣❡❞❡ ♥♦ ♣r♦❜❧❡♠❛✳
❙✉♣♦♥❤❛✱ q✉❡ ❡①✐st❛♠ b ❜❛r❛t❛s ❡ (16 − b) ❛r❛♥❤❛s✳ ❈♦♠♦✱ ❝❛❞❛ ❜❛r❛t❛ t❡♠ 6 ♣❛t❛s
❡ ❝❛❞❛ ❛r❛♥❤❛ t❡♠ 8 ♣❛t❛s✱ t❡♠♦s q✉❡✿ 6b + 8.(16 − b) = 108✳ ▲♦❣♦✱ b = 10✳
P♦rt❛♥t♦✱ ♦ t♦t❛❧ ❞❡ ❜❛r❛t❛s q✉❡ ❡♥❝♦♥tr❡✐ ❢♦r❛♠ 10 ❡ ❛s ❛r❛♥❤❛s t♦t❛❧✐③❛r❛♠ s❡✐s✳
❊①❡♠♣❧♦ ✶✳✼✳
❯♠ ❢❛❜r✐❝❛♥t❡ ❞❡ ❧❛t❛s✱ ❞❡s❡❥❛ ❢❛❜r✐❝❛r ✉♠❛ ❧❛t❛ ❡♠ ❢♦r♠❛ ❞❡ ❝✐❧✐♥❞r♦ ❝✐r❝✉❧❛r r❡t♦
❝♦♠
10 cm
❞❡ r❛✐♦ ❡
6283, 2 cm3
❞❛ ❝❛♣❛❝✐❞❛❞❡✳ ❉❡t❡r♠✐♥❡ s✉❛ ❛❧t✉r❛✳
❙♦❧✉çã♦✳
❙❛❜❡♠♦s q✉❡ ♦ ✈♦❧✉♠❡ V ✱ ❞♦ ❝✐❧✐♥❞r♦ ❝✐r❝✉❧❛r r❡t♦ ❞❡ r❛✐♦ r ❡ ❛❧t✉r❛ h é ❞❛❞♦ ♣❡❧❛
❢ór♠✉❧❛ V = πr2 h✳ P❡❧♦s ❞❛❞♦s ❞♦ ♣r♦❜❧❡♠❛ t❡♠♦s r = 10 cm✱ V = 6283, 2 cm3 ✳ ❆ss✐♠
♥❛ ❢ór♠✉❧❛
6.283, 2 cm3 = π(10cm)2 .h ⇒ 6.283, 2 cm3 = (3, 1416)(100 cm2 ).h
⇒
6.283, 2 cm3 = (314, 16 cm2 ).h ⇒ h =
⇒
6.283, 2 cm3
= 20 cm
314, 16cm2
P♦rt❛♥t♦ ❛❧t✉r❛ ❞♦ ❝✐❧✐♥❞r♦ ❞❡✈❡rá ♠❡❞✐r 20 cm✳
❊①❡♠♣❧♦ ✶✳✽✳
❆ ♠é❞✐❛ ❛r✐t♠ét✐❝❛ ❞❡
8
♥ú♠❡r♦s é
❊♥tã♦ ❛ ♠é❞✐❛ ❛r✐t♠ét✐❝❛ ❞❡ss❡s
14
6❀
❥á ❛ ♠é❞✐❛ ❛r✐t♠ét✐❝❛ ❞❡ ♦✉tr♦s
6
♥ú♠❡r♦s é
8✳
♥ú♠❡r♦s é✿
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s t❡♠♦s ♦s ♥ú♠❡r♦s a1 , a2 , a3 , · · · , a7 , a8 ❡ b1 , b2 , b3 , · · · b5 , b6 ✳ P❡❧♦s
❞❛❞♦s ❞♦ ♣r♦❜❧❡♠❛ t❡♠♦s q✉❡✿
a1 + a2 + · · · + a7 + a8
= 6
8
❡
b1 + b2 + · · · + b5 + b6
= 8
6
❊♥tã♦✱ a1 + a2 + · · · + a7 + a8 = (8)(6) ❡
b1 + b2 + · · · + b5 + b6 = (6)(8)✱ ❧♦❣♦✿
[a1 + a2 + · · · + a7 + a8 ] + [b1 + b2 + · · · + b5 + b6 ] = (8)(6) + (6)(8) = 96✳
✶✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
[a1 + a2 + · · · + a7 + a8 ] [b1 + b2 + · · · + b5 + b6 ]
96
+
=
= 6, 84✳
8+6
8+6
14
P♦rt❛♥t♦✱ ❛ ♠é❞✐❛ ❛r✐t♠ét✐❝❛ ❞❡ss❡s 14 ♥ú♠❡r♦s é 6, 84✳
▲♦❣♦✱
❊①❡♠♣❧♦ ✶✳✾✳
10 ❧✐tr♦s ❞❡ ✉♠❛
❝♦♥t❡♥❤❛ 25% ❞❡ ó❧❡♦❄
◗✉❛♥t♦s ❧✐tr♦s ❞❡ ó❧❡♦ ❞❡✈❡♠ s❡r ❛❞✐❝✐♦♥❛❞♦s ❛
15%
❞❡ ó❧❡♦✱ ♣❛r❛ ♦❜t❡r ♦✉tr❛ ♠✐st✉r❛ q✉❡
♠✐st✉r❛ q✉❡ ❝♦♥té♠
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛ q✉❡ ♥❛ ♠✐st✉r❛ ♦r✐❣✐♥❛❧ t❡♥❤❛♠♦s q✉❡ ❛❞✐❝✐♦♥❛r
x
❧✐tr♦s ❞❡ ó❧❡♦✳
❖❜s❡r✈❛♥❞♦ ❛ ❋✐❣✉r❛ ✭✶✳✸✮✱ t❡♠♦s✿
10(
15
25(10 + x)
)+x=
100
100
❘❡s♦❧✈❡♥❞♦ ❛ ❡q✉❛çã♦ t❡♠♦s q✉❡
P♦rt❛♥t♦✱ t❡r❡♠♦s q✉❡ ❛❞✐❝✐♦♥❛r
4
3
x✲
4
x= ✳
3
10
❧✐tr♦s ❞❡ ó❧❡♦✳
ó❧❡♦
❅
■
❅
❅
✒
❅
❘
❅
15%✲
25%
✠
ó❧❡♦
❊①❡♠♣❧♦ ✶✳✶✵✳
▲❛♥ç❛♠✲s❡ ❞♦✐s ❞❛❞♦s ♥ã♦✲t❡♥❞❡♥❝✐♦s♦s✳ ◗✉❛❧
❛ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❛ s♦♠❛ ❞♦s ♣♦♥t♦s s❡r ✐❣✉❛❧ ❛
7
❋✐❣✉r❛ ✶✳✸✿
❄
❙♦❧✉çã♦✳
❈♦♠ ♦s ❞❛❞♦s
D1
❡
D2
♣♦❞❡♠♦s ♦❜t❡r ♦s ❝♦♥❥✉♥t♦ ❞❡ ❝❛s♦s ♣♦ssí✈❡✐s✿
D1 × D2 = {(1, 1), . . . , (1, 6), (2, 1), . . . , (2, 6), (3, 1), . . . , (4, 1), . . . , (5, 1), . . . (6, 5), (6, 6)}
❖s ❝❛s♦s ❢❛✈♦rá✈❡✐s sã♦
P♦❞❡♠♦s ♦❜s❡r✈❛r q✉❡
❞♦s q✉❛✐s ❛ s♦♠❛ ✈❛❧❡
7✳
{ (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) }✳
❤á 6 × 6 = 36 r❡s✉❧t❛❞♦s ♣♦ssí✈❡✐s ✐❣✉❛❧♠❡♥t❡ ♣r♦✈á✈❡✐s✱
❆ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❛ s♦♠❛ ❞♦s ♣♦♥t♦s s❡r ✐❣✉❛❧ ❛
7
é
P =
6
1
=
36
6
❡♠
6
✳
❖❜s❡r✈❛çã♦ ✶✳✷✳
❙❡♥❞♦
a, b, c
três ❛❧❣❛r✐s♠♦s ❡s❝r❡✈❡r❡♠♦s
abc
♣❛r❛ ✐♥❞✐❝❛r q✉❡
abc = 100a + 10b + c
❡♠ ❣❡r❛❧✱ s❡
an , an−1 , an−2 , · · · a1 a0
sã♦ ❛❧❣❛r✐s♠♦s✱
an an−1 an−2 · · · a1 a0 = 10n an + 10n−1 an−1 + 10n−2 an−2 · · · 10a1 + a0
é ❝❤❛♠❛❞❛ ✏❞❡❝♦♠♣♦s✐çã♦ ♣♦❧✐♥ô♠✐❝❛ ❞❡ ✉♠ ♥ú♠❡r♦ ♥❛ ❜❛s❡ ❞❡❝✐♠❛❧✳✑
✶✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✶✲✶
✶✳ ❙❡❥❛♠✱ N ♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s ♥❛t✉r❛✐s ❡ Z ♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s ✐♥t❡✐r♦s✳ ❉❡✲
t❡r♠✐♥❡ q✉❛✐s ❞❡♥tr❡ ❛s s❡❣✉✐♥t❡s ♣r♦♣♦s✐çõ❡s é ✈❡r❞❛❞❡✐r❛ ✭✈✮ ❡ q✉❛❧ é ❛ ❢❛❧s❛ ✭❢ ✮✳
1. N = Z+
2. N+ = Z
3. N+ = Z+
4. N ⊂ Z
✷✳ ❉❛s s❡❣✉✐♥t❡s ♣r♦♣♦s✐çõ❡s q✉❛❧ é ✈❡r❞❛❞❡✐r❛ ✭✈✮ ♦✉ ❢❛❧s❛ ✭❢ ✮✳
1. N ⊂ Z ⊂ Q ⊂ R
2. I ⊂ R
7. Z+ = N
8. Z ∩ Q+ = N
4. R − Q = I
3. Q ∩ I = ∅
5. N ⊂ (Q − Z)
6. N ∪ Z = Q
✸✳ ❱❡r✐✜q✉❡ q✉❛✐s ❞❛s s❡❣✉✐♥t❡s ♣r♦♣♦s✐çõ❡s sã♦ ✈❡r❞❛❞❡✐r❛s✿
√
3
∈ Q 3. 5, 41 ∈ (Q − Z) 4.
2
√
6. 0 ∈
/Z
7.
−7 ∈
/R
8.
1. 7, 43333... ∈ I 2.
5. 2, 71854 ∈
/I
−5∈
/Q
−
3
∈ (R − Q)
5
✹✳ ❈♦♥str✉❛ ✉♠ ❞✐❛❣r❛♠❛ ❝♦♥t❡♥❞♦ ♦s ❝♦♥❥✉♥t♦s N✱ Z✱ Q ❡ I ❡ s✐t✉❡ ♦s s❡❣✉✐♥t❡s
♥ú♠❡r♦s✿
1.
6.
11.
√
3
2
π
2
10
−
3
2.
√
7.
−5
12.
0
3
−3
3. 0
8.
13.
− 0, 60
3
8
9. 2, 573
4.
5
− (− )2
2
5. 8, 43
10. 0, 333 · · ·
✺✳ ▼♦str❡ q✉❡✱ s❡ x2 ❂ ✵✱ ❡♥tã♦ x = 0✳
✻✳ ▼♦str❡ q✉❡✱ s❡ p é ♥ú♠❡r♦ í♠♣❛r✱ ❡♥tã♦ p2 é í♠♣❛r✳
✼✳ ▼♦str❡ q✉❡✱ s❡ p é ♥ú♠❡r♦ ♣❛r✱ ❡♥tã♦ p2 é ♣❛r✳
✽✳
✶✳
❙❡ a é r❛❝✐♦♥❛❧ ❡ b ✐rr❛❝✐♦♥❛❧✱ a + b ♥❡❝❡ss❛r✐❛♠❡♥t❡ é ✐rr❛❝✐♦♥❛❧❄
✷✳
❙❡ a é ✐rr❛❝✐♦♥❛❧ ❡ b ✐rr❛❝✐♦♥❛❧✱ a + b ♥❡❝❡ss❛r✐❛♠❡♥t❡ é ✐rr❛❝✐♦♥❛❧❄
✸✳
❙❡ a é r❛❝✐♦♥❛❧ ❡ b ✐rr❛❝✐♦♥❛❧✱ ab ♥❡❝❡ss❛r✐❛♠❡♥t❡ é ✐rr❛❝✐♦♥❛❧❄
✶✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✹✳
❊①✐st❡ ♥ú♠❡r♦ r❡❛❧ a t❛❧ q✉❡ a2 s❡❥❛ ✐rr❛❝✐♦♥❛❧✱ ♣♦ré♠ a4 r❛❝✐♦♥❛❧❄
✺✳
❊①✐st❡♠ ❞♦✐s ♥ú♠❡r♦s ✐rr❛❝✐♦♥❛✐s t❛✐s q✉❡ s✉❛ s♦♠❛ ❡ ♣r♦❞✉t♦ s❡❥❛♠ r❛❝✐♦♥❛✐s❄
✾✳ ▼♦str❡ q✉❡
√
2 é ✉♠ ♥ú♠❡r♦ ✐rr❛❝✐♦♥❛❧✳
✶✵✳ ❯♠ s✉❜❝♦♥❥✉♥t♦ A ⊆ R ❞✐③✲s❡ ❡stá✈❡❧ ❛❞✐t✐✈❛♠❡♥t❡ s❡✱ ∀ a, b ∈ A t❡♠♦s (a + b) ∈ A❀
❡ ❡stá✈❡❧ ♠✉❧t✐♣❧✐❝❛t✐✈❛♠❡♥t❡ s❡✱ ∀ a, b ∈ A t❡♠♦s (a · b) ∈ A✳
❉❛❞♦s ♦s ❝♦♥❥✉♥t♦s A = { 2, 4, 6, 8, · · · } ❡ B = { 1, 3, 5, 7, 9, · · · }✱ ❞❡t❡r♠✐♥❡
s❡ ❡❧❡s sã♦ ❝♦♥❥✉♥t♦s ❡stá✈❡✐s ❛❞✐t✐✈❛ ❡ ♠✉❧t✐♣❧✐❝❛t✐✈❛♠❡♥t❡✳
✶✳
❉❛❞♦s ♦s ❝♦♥❥✉♥t♦s✿ N, Z, Q ❡ R ❞❡t❡r♠✐♥❡ q✉❛✐s sã♦ ❡stá✈❡✐s r❡s♣❡✐t♦ ❞❛s
♦♣❡r❛çõ❡s ❞❡✿ ✐✮ ❛❞✐çã♦❀ ✐✐✮ ♠✉❧t✐♣❧✐❝❛çã♦✳
✷✳
✶✶✳ ▼♦str❡ q✉❡ 2 ❡ 3 sã♦ ❛s ú♥✐❝❛s r❛í③❡s ❞❛ ❡q✉❛çã♦ x2 − 5x + 6 = 0✳
✶✷✳ ❚r❛♥s❢♦r♠❡ ❝❛❞❛ ✉♠❛ ❞❛s ❡①♣r❡ssõ❡s ❡♠ ✉♠ ú♥✐❝♦ r❛❞✐❝❛❧✿
✶✳
q p
√
x y z
q p
√
3
x3 y3z
✷✳
✶✸✳ ❉❡t❡r♠✐♥❡ ❛ ❝♦♥❞✐çã♦ ♣❛r❛ q✉❡ s❡❥❛ ♣♦ssí✈❡❧ ❡①♣r❡ss❛r
♦♥❞❡ a, b, x ❡ y s❡❥❛♠ ♥ú♠❡r♦s r❛❝✐♦♥❛✐s✳
✸✳
p
√
√
√
a + b ♥❛ ❢♦r♠❛ x + y ✱
✶✹✳ ❊s❝r❡✈❛ ❛s ❡①♣r❡ssõ❡s ❛❜❛✐①♦ ❝♦♠♦ ✉♠❛ s♦♠❛ ❞❡ r❛❞✐❝❛✐s✿
✶✳
p
√
12 + 140
p
√
13 − 160
✷✳
✶✺✳ ❙✐♠♣❧✐✜q✉❡ ❛s s❡❣✉✐♥t❡s ❡①♣r❡ssõ❡s✿
✶✳
1
1
1
√
+√
−√
3
3
3
2
4
16
√
√
2+ 5 1− 5
√ +
√
2− 3 2+ 3
✷✳
✶✻✳ ❙❡❥❛♠ a, b, c, d, m, n ❡ p ♥ú♠❡r♦s r❡❛✐s ♣♦s✐t✐✈♦s✳ ▼♦str❡ q✉❡ s❡
√
am +
√
bn +
√
cp =
p
(a + b + c)(m + n + p) ✳
q p
√
4
x3 y z
✸✳
✸✳
p
√
9 − 72
√
√
( 3 9 − 3 3)2
b
c
a
= = ❡♥tã♦
m
n
p
✶✼✳ ❉❛❞♦s ♦s ♥ú♠❡r♦s a = 710 ❡ b = 68✳
✶✳
❉❡t❡r♠✐♥❡ ♦ ♠á①✐♠♦ ❞✐✈✐s♦r ❝♦♠✉♠ ❞❡ a ❡ b✳
✷✳
❉❡t❡r♠✐♥❡ ♦ ♠í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠ ❞❡ a ❡ b✳
✶✽✳ ❍á s❡✐s ❛♥♦s✱ ❛ ✐❞❛❞❡ ❞❡ ❆❧❜❡rt♦ ❡r❛ q✉❛tr♦ ✈❡③❡s ❛ ✐❞❛❞❡ ❞❡ P❡❞r♦✳ ❈❛❧❝✉❧❛r s✉❛s
✐❞❛❞❡s ❛t✉❛✐s s❛❜❡♥❞♦ q✉❡✱ ❞❡♥tr♦ ❞❡ q✉❛tr♦ ❛♥♦s✱ ❆❧❜❡rt♦ só t❡rá ♦ ❞♦❜r♦ ❞❛ ✐❞❛❞❡
❞❡ P❡❞r♦✳
1
2
✶✾✳ ❆ ✐❞❛❞❡ ❞❡ ▼❛r✐❛ é ✭♠❡t❛❞❡✮ ❞❡ ❞❛ ✐❞❛❞❡ ❞❡ ▼❛r✐s❛✳ ❙❡ ▼❛r✐s❛ t❡♠ 24 ❛♥♦s✳
2
3
q✉❛♥t♦s ❛♥♦s tê♠ ▼❛r✐❛❄
✶✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✵✳ ❆ s♦♠❛ ❞❛s ✐❞❛❞❡s ❞❡
❞♦ ♠❡✐♦
18
3
♣❡ss♦❛s é
97✳
❆ ♠❛✐♦r t❡♠
29
❛♥♦s ♠❛✐s q✉❡ ❛ ♠❡♥♦r✱ ❡ ❛
❛♥♦s ♠❡♥♦s q✉❡ ❛ ♠❛✐♦r✱ ❈❛❧❝✉❧❛r ❛ ✐❞❛❞❡ ❞❡ ❝❛❞❛ ✉♠❛✳
100 cm3
✷✶✳ ◗✉❛♥t♦ ❞❡ á❣✉❛ ❞❡✈❡ s❡r ❛❞✐❝✐♦♥❛❞❛ ❛
50%
❜ór✐❝♦✱ ♣❛r❛ r❡❞✉③✐r✲❧❛ ❛
✷✷✳ ❆♦ ❞✐✈✐❞✐r ♦ ♥ú♠❡r♦
t❛r♠♦s ♦ ❞✐✈✐❞❡♥❞♦
❉
♣♦r
❉
❡♠
❞
15
❞❡
80%
❞❡ ✉♠❛ s♦❧✉çã♦ ❞❡ á❝✐❞♦
❞❛ s♦❧✉çã♦ ❄
♦❜t❡♠♦s ❝♦♠♦ q✉♦❝✐❡♥t❡
✉♥✐❞❛❞❡s ❡ ♦ ❞✐✈✐s♦r
❞
q
❡ ❝♦♠♦ r❡st♦
❡♠
5
r✳
❙❡ ❛✉♠❡♥✲
✉♥✐❞❛❞❡s✱ ♦ q✉♦❝✐❡♥t❡ ❡
r❡st♦ ♦r✐❣✐♥❛✐s ♣❡r♠❛♥❡❝❡♠ ✐❣✉❛✐s✳ ◗✉❛❧ ❢♦✐ ♦ q✉♦❝✐❡♥t❡❄
✷✸✳ ❈♦♠♣r❛♠✲s❡ ❝❛❞❡r♥♦s ❞❡ ❢♦r♠❛ ♣r♦❣r❡ss✐✈❛ ❞❛ s❡❣✉✐♥t❡ ♠❛♥❡✐r❛✿
14
❝❛❞❡r♥♦s❀ ♥♦ s❡❣✉♥❞♦ ❞✐❛
❝❡ss✐✈❛♠❡♥t❡✳ ❉❡♣♦✐s ❞❡
30
15
❝❛❞❡r♥♦s❀ ♥♦ t❡r❝❡✐r♦ ❞✐❛
16
♥♦ ♣r✐♠❡✐r♦ ❞✐❛
❝❛❞❡r♥♦s ❡ ❛ss✐♠ s✉✲
❞✐❛s ❝♦♥s❡❝✉t✐✈♦s ❝♦♠♣r❛♥❞♦✱ q✉❛♥t♦s ❝❛❞❡r♥♦s ❢♦r❛♠
❝♦♠♣r❛❞♦s ♥♦ t♦t❛❧ ❄
✷✹✳ ❖ ❞❡♥♦♠✐♥❛❞♦r ❞❡ ✉♠❛ ❢r❛çã♦ ❞❡❝✐♠❛❧ é
❙❡ ♦ ♥✉♠❡r❛❞♦r ❛✉♠❡♥t❛ ❡♠
5
3
❛ ♠❡♥♦s q✉❡ ♦ ❞♦❜r♦ ❞♦ ♥✉♠❡r❛❞♦r✳
❡ ♦ ❞❡♥♦♠✐♥❛❞♦r ❡♠
14✱
♦ ✈❛❧♦r ❞❛ ❢r❛çã♦ é
7/15✳
❉❡t❡r♠✐♥❡ ❛ ❢r❛çã♦✳
✷✺✳
❊①♣❡❞✐çã♦✿
■♥❢♦r♠❡✿
P❧❛♥❡t❛
K
❆♦ ❝❤❡❣❛r ❛♦ ♣❧❛♥❡t❛
❡♠❜♦r❛ t❛♠❜é♠ t❡♥❤❛♠
K✱
❛❝❤❛♠♦s s❡r❡s ✈✐✈♦s ❝♦♠♦ ❡♠ ♥♦ss♦ ♣❧❛♥❡t❛✱
20 ❞❡❞♦s✱ ❡❧❡s tê♠ ✉♠ ♠❡♠❜r♦ ❛ ♠❡♥♦s✱ ❡ ✉♠ ❞❡❞♦ ❛ ♠❛✐s
❡♠ ❝❛❞❛ ♠❡♠❜r♦✳
P❡r❣✉♥t❛✲s❡✿
P♦ssí✈❡❧♠❡♥t❡ q✉❡ t✐♣♦ ❞❡ s❡r❡s ❤❛❜✐t❛♠ ♦ ♣❧❛♥❡t❛
K
❄
✷✻✳ ❉❡t❡r♠✐♥❡ ❞♦✐s ♥ú♠❡r♦s t❛✐s q✉❡ s✉❛ s♦♠❛✱ ♣r♦❞✉t♦ ❡ q✉♦❝✐❡♥t❡ s❡♠♣r❡ s❡❥❛♠ ✐❣✉❛✐s✳
✷✼✳ ❯♠❛ ❧❡❜r❡ s❡❣✉✐❞❛ ♣♦r ✉♠ ❣❛❧❣♦ ❧❡✈❛ ✉♠❛ ✈❛♥t❛❣❡♠ ❞❡
s❛❧t♦s ❡♥q✉❛♥t♦ q✉❡ ❛ ❧❡❜r❡ ❞á
6
s❛❧t♦s✱ ♠❛✐s✱
9
50
s❛❧t♦s✳
❖ ❣❛❧❣♦ ❞á
s❛❧t♦s ❞❛ ❧❡❜r❡ ❡q✉✐✈❛❧❡♠ ❛
7
5
❞♦
❣❛❧❣♦✳ ◗✉❛♥t♦s s❛❧t♦s ❞❛rá ❛ ❧❡❜r❡ ❛♥t❡s ❞❡ s❡r ❛❧❝❛♥ç❛❞❛ ♣❡❧♦ ❣❛❧❣♦ ❄
✷✽✳ ❯♠❛ s❡q✉ê♥❝✐❛ ❞❡ ♥ú♠❡r♦s r❡❛✐s é ❞✐t❛ ✉♠❛ ♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛ ❞❡ s❡❣✉♥❞❛ ♦r✲
❞❡♠ q✉❛♥❞♦ ❛ s❡q✉ê♥❝✐❛ ❢♦r♠❛❞❛ ♣❡❧❛s ❞✐❢❡r❡♥ç❛s ❡♥tr❡ t❡r♠♦s s✉❝❡ss✐✈♦s ❢♦r ✉♠❛
♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛✳
❆ss✐♥❛❧❡ ❛ ❛❧t❡r♥❛t✐✈❛ ♥❛ q✉❛❧ s❡ ❡♥❝♦♥tr❛ ♣❛rt❡ ❞❡ ✉♠❛
♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛ ❞❡ s❡❣✉♥❞❛ ♦r❞❡♠✳
❆✮❂④✵✱
❉✮
✺✱ ✶✷✱ ✷✶✱ ✷✸⑥
❂ ④✼✱ ✸✱ ✷✱ ✵✱ ✲✶⑥
✷✾✳ ▼♦str❡ q✉❡✱ s❡
p
❇✮❂
❊✮
④✻✱ ✽✱ ✶✺✱ ✷✼✱ ✹✹⑥
❈✮
❂ ④✲✸✱ ✵✱ ✹✱ ✺✱ ✽⑥
❂④✷✱ ✹✱ ✽✱ ✷✵✱ ✸✵⑥
é ✉♠ ♥ú♠❡r♦ ♣r✐♠♦ ❡
ai ∈ Z,
i = 1, 2, 3, · · · , n✱
(a1 + a2 + a3 + · · · + an )p = ap1 + ap2 + ap3 + · · · + apn + kp
✶✺
❡♥tã♦✿
♣❛r❛ ❛❧❣✉♠
k ∈ Z✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✸✵✳ ❙❡❥❛♠ a, b ∈ Z t❛✐s q✉❡ (a, b) = 1 s❡♥❞♦ a ❡ b ❞✐❢❡r❡♥t❡s ❞❡ ③❡r♦✳ ▼♦str❡ q✉❡
❡①✐st❡♠ x, y ∈ Z t❛✐s q✉❡
1
x y
1
♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛
= +
ab
ab
a b
✸✶✳ ▼♦str❡ q✉❡ t♦❞♦ q✉❛❞r❛❞♦ ♣❡r❢❡✐t♦ é ❞❛ ❢♦r♠❛ 5n ♦✉ 5n ± 1 ♣❛r❛ n ∈ Z✳
✸✷✳ ❱❡r✐✜❝❛r q✉❡ t♦❞♦ ♥ú♠❡r♦ ♥❛t✉r❛❧ ❝♦♠♣♦st♦ ♣♦r ❝✐♥❝♦ ❛❧❣❛r✐s♠♦s n = xmdcu é
♠ú❧t✐♣❧♦ ❞❡✿
✶✳
✷✳
2 s❡✱ ❡ s♦♠❡♥t❡ s❡✱ u = 0, 2, 4, 6, 8✳ ■st♦ é✱ s❡ ♦ ❛❧❣❛r✐s♠♦ ❞❛s ✉♥✐❞❛❞❡s ❞❡ n
❢♦r ♠ú❧t✐♣❧♦ ❞❡ 2
3 ✭♦✉ 9✮ s❡✱ ❡ s♦♠❡♥t❡ s❡✱❛ s♦♠❛ x + m + c + d + u ❢♦r ❞✐✈✐sí✈❡❧ ♣♦r 3 ✭♦✉ 9✮✳
❖♥❞❡ x, m, c, d, u sã♦ ♦s ❛❧❣❛r✐s♠♦s ❞❡ n
✸✳
4 s❡✱ ❡ s♦♠❡♥t❡ s❡✱ ♦ ♥ú♠❡r♦ du ❢♦r ♠ú❧t✐♣❧♦ ❞❡ 4✱ ♦✉ n é ❞❛ ❢♦r♠❛ a = xm200✳
✹✳
5 s❡✱ ❡ s♦♠❡♥t❡ s❡✱ u = 0 ♦✉ u = 5✳
✺✳
6 s❡✱ ❡ s♦♠❡♥t❡ s❡✱ n ❢♦r ❞✐✈✐sí✈❡❧ ♣♦r 2 ❡ 3✳
✻✳
✼✳
✽✳
8 ✭♦✉ 125✮ s❡✱ ❡ s♦♠❡♥t❡ s❡✱♦ ♥ú♠❡r♦ cdu ❢♦r ❞✐✈✐sí✈❡❧ ♣♦r 8 ✭♦✉ 125✮✱ ♦✉ n ❞❛
❢♦r♠❛ n = x000✳
11 s❡✱ ❡ s♦♠❡♥t❡ s❡✱ (d + m) − (x + c + u) ❢♦r ❞✐✈✐sí✈❡❧ ♣♦r 11✳
25 s❡✱ ❡ s♦♠❡♥t❡ s❡✱ ♦ ♥ú♠❡r♦ du ❢♦r ♠ú❧t✐♣❧♦ ❞❡ 25✱ ♦✉ du = 00✳
✸✸✳ ❉❡t❡r♠✐♥❡ ✉♠❛ r❡❣r❛ q✉❡ ♣❡r♠✐t❛ s❛❜❡r s❡ ✉♠ ♥ú♠❡r♦ ♥❛t✉r❛❧ n é ♠ú❧t✐♣❧♦ ❞❡ 7✳
✸✹✳ ❯♠❛ ❛r❛♥❤❛ s❡ ❡♥❝♦♥tr❛ ♥♦ ✈ért✐❝❡ A ❞❡ ✉♠ ❝✉❜♦ só❧✐❞♦ ❝✉❥❛ ❛r❡st❛ é ❞❡ 10cm✱ ❡
t❡♠ ❛ ✐♥t❡♥çã♦ ❞❡ ❝❛♣t✉r❛r ✉♠❛ ♠♦s❝❛ q✉❡ s❡ ❡♥❝♦♥tr❛ ♥♦ ✈ért✐❝❡ ♦♣♦st♦ B ✭✈❡r
❋✐❣✉r❛ ✭✶✳✹✮✮✳ ❆ ❛r❛♥❤❛ ❞❡✈❡ ❝❛♠✐♥❤❛r s♦❜r❡ ❛ s✉♣❡r❢í❝✐❡ ❞♦ ❝✉❜♦ só❧✐❞♦ ❡ ❡♥❝♦♥tr❛r
♦ ❝❛♠✐♥❤♦ ♠❛✐s ❝✉rt♦✳ ❊♥❝♦♥tr❡ ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❡ss❡ ❝❛♠✐♥❤♦✳
❋✐❣✉r❛ ✶✳✹✿
✶✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✳✸
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❘❡❧❛çã♦ ❞❡ ♦r❞❡♠
❆①✐♦♠❛ ✶✳✶✳
❉❡ ❡①✐stê♥❝✐❛✳
◆♦ ❝♦♥❥✉♥t♦
R✱
❡①✐st❡ ✉♠ s✉❜❝♦♥❥✉♥t♦ ❞❡♥♦t❛❞♦
R+ ✱
❝❤❛♠❛❞♦✱ ✏❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s
r❡❛✐s ♣♦s✐t✐✈♦s✑✱ q✉❡ ❝✉♠♣r❡ ♦ s❡❣✉✐♥t❡✿
✐✮ ❚♦❞♦ ♥ú♠❡r♦ r❡❛❧ a ❝✉♠♣r❡ ✉♠❛ ❡ s♦♠❡♥t❡ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❝♦♥❞✐çõ❡s✿
a ∈ R+ ,
♦✉
−a ∈ R+ ,
✐✐✮ ❙❡ a ∈ R+ ❡ b ∈ R+ ✱ ❡♥tã♦
a + b ∈ R+
❡
a=0
a · b ∈ R+ ✳
❉❡✜♥✐çã♦ ✶✳✶✵✳
a, b ∈ R✱
(b − a) ∈ R+ ✳
❙❡❥❛♠
❞✐③✲s❡ q✉❡ ✏ a é ♠❡♥♦r q✉❡
b✑
❡ s❡ ❡s❝r❡✈❡
a < b✱
s♦♠❡♥t❡ q✉❛♥❞♦
❉❡st❛ ❞❡✜♥✐çã♦ t❡♠♦s q✉❡ a ∈ R+ s❡✱ ❡ s♦♠❡♥t❡ s❡✱ (a − 0) ∈ R+ ✱ ❧♦❣♦ 0 < a✳
❖❜s❡r✈❛çã♦ ✶✳✸✳
✐✮
✐✐✮
❙❡
a < b✱
♣♦❞❡♠♦s ❡s❝r❡✈❡r
b > a✱
❡ s❡ ❧ê ✏ b é ♠❛✐♦r q✉❡
❉✐③✲s❡ q✉❡ ✏ a é ♠❡♥♦r ♦✉ ✐❣✉❛❧ q✉❡
b✑
❡ s❡ ❡s❝r❡✈❡
a = b✳
a✑ ✳
a≤b
s❡ ❡ s♦♠❡♥t❡ s❡
a<b
♦✉
✐✐✐✮ R+ = { a ∈ R /. 0 < a} = {a ∈ R /. a > 0}✳
✐✈✮ a ∈ R+
s❡✱ ❡ s♦♠❡♥t❡ s❡✱
0 < a✱
t❛♠❜é♠ ♣♦❞❡♠♦s ❡s❝r❡✈❡r
a > 0✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✻✳
P❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧
✶✳ a = b
♦✉
a<b
✷✳ a2 ≥ 0,
✸✳ ❙❡ a < b
❡
tr✐❝♦t♦♠✐❛
a>b
b<c✱
❡♥tã♦
a<c
❡♥tã♦ a + c < b + c
❡
✻✳ ❙❡ a < b ❡
✼✳ ❙❡ a < b
♦✉
t❡♠♦s✿
∀ a ∈ R (a2 > 0 s❡ a 6= 0)
✹✳ ❙❡ a < b ✱
✺✳ ❙❡ a < b
a, b, c, d
❡
c < d✱ ❡♥tã♦
∀c∈R
tr❛♥s✐t✐✈❛
♠♦♥♦t♦♥✐❛ ♥❛ s♦♠❛
a+c<b+d
c > 0 ✱ ❡♥tã♦ a.c < b.c
c < 0✱ ❡♥tã♦
♣♦s✐t✐✈✐❞❛❞❡
♠♦♥♦t♦♥✐❛ ♥♦ ♣r♦❞✉t♦
a.c > b.c✳
✶✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✽✳ ❙❡
a<b
✱
✾✳ ❙❡
a>0
✱
✶✵✳ ❙❡
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
−a > −b✳
❡♥tã♦
a−1 > 0
❡♥tã♦
0 < a < b✱
✭❙❡
ab ≥ 0
s❡ ❡ s♦♠❡♥t❡ s❡ ✭a
≥0
✶✷✳
ab ≤ 0
s❡ ❡ s♦♠❡♥t❡ s❡
✭a
✶✹✳
✶✺✳
✶✻✳
a≥0
b ≥ 0❀ a ≤ b
❡
a2 + b2 = 0
a < 0✱
a−1 > b−1 > 0
❡♥tã♦
✶✶✳
✶✸✳ ❙❡
R
❡
✭❙❡
b ≥ 0✮
≥0
a−1 < 0✮
❡♥tã♦
a<b<0
♦✉
✭a
b ≤ 0✮
❡
≤0
♦✉
❡♥tã♦
b ≤ 0✮
❡
✭a
0 > a−1 > b−1 ✮
≤0
❡
b ≥ 0✮
a2 ≤ b2 ✳
s❡ ❡ s♦♠❡♥t❡ s❡
a = 0 ❡ b = 0✳
√
√
❙❡ a2 ≤ b ✱
❡♥tã♦
✲
b≤a≤ b
√
√
a2 ≥ b ✱ ❡♥tã♦ a ≥ b ♦✉ a ≤ − b
❉❡♠♦♥str❛çã♦✳
❙❡❥❛♠
s❡ ❡ s♦♠❡♥t❡ s❡
✭✶✮
a, b ∈ R✳
❊♥tã♦✱
a − b ∈ R✱
♣❡❧♦
❆①✐♦♠❛
✭✶✳✶✮✲✭✐✮✱ t❡♠♦s q✉❡ ✉♠❛ ❡ s♦♠❡♥t❡
a − b ∈ R+ ♦✉ −(a − b) ∈ R+ ♦✉ a − b = 0✳
❊♥tã♦✱ a − b > 0 ♦✉ b − a > 0 ♦✉ a = b✱ ✐st♦ é✱ a > b ♦✉ b > a ♦✉ a = b✳
❊♠ ♣❛rt✐❝✉❧❛r✱ s❡ a ∈ R✱ ❡♥tã♦ a > 0 ♦✉ a < 0 ♦✉ a = 0✳
✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❝♦♥❞✐çõ❡s s❡ ❝✉♠♣r❡✿
❉❡♠♦♥str❛çã♦✳
❙❡
a∈R
✭✷✮
❡♥tã♦
a=0
♦✉
a 6= 0✳
a = 0 ⇒ a2 = 0
❙❡
a 6= 0
✱ ❡♥tã♦
a ∈ R+
♦✉
−a ∈ R+ ✱
❧♦❣♦
✭✶✳✸✮
a2 = a.a ∈ R+
♦✉
a2 = (−a)(−a) ∈ R+ ⇒ a2 > 0
❉❡ ✭✶✳✸✮ ❡ ✭✶✳✹✮ s❡❣✉❡ q✉❡
❉❡♠♦♥str❛çã♦✳
✭✶✳✹✮
a2 ≥ 0✳
✭✻✮
a < b ❡ c > 0 ❡♥tã♦ b − a ∈ R+ ❡ ❝♦♠♦ c ∈ R+ ✱ ❧♦❣♦ c(b − a) ∈ R+ ✳
❆ss✐♠✱ (bc − ac) ∈ R+ ✱ ❧♦❣♦ (bc − ac) > 0✱ ❡♥tã♦ bc > ac ♦✉ ac < bc✳
❙❡
❉❡♠♦♥str❛çã♦✳
❙❡❥❛
a−1 = 0✳
a > 0
✭✾✮
❡♥tã♦
a−1
a−1 = 0
✱ ❡♥tã♦ ❡①✐st❡
❊st❡ ú❧t✐♠♦ ❝❛s♦
❧❡✈❛r✐❛ à ✐❣✉❛❧❞❛❞❡
❙❡
1=0
❡ ♣❡❧♦
❆①✐♦♠❛
a−1 > 0 ♦✉ a−1 < 0 ♦✉
q✉❡ a.a−1 = a.0 = 0 ♦ q✉❡
✭✶✳✶✮ t❡♠♦s
é ✐♠♣♦ssí✈❡❧✱ ♣♦✐s t❡rí❛♠♦s
q✉❡ é ✉♠ ❛❜s✉r❞♦✳
a.a−1 < 0✱ ❡♥tã♦ ♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡
1 < 0✱ q✉❡ é ✉♠ ❛❜s✉r❞♦✳
❞❛ ♠♦♥♦t♦♥✐❛ ❞♦ ♣r♦❞✉t♦ r❡s✉❧t❛✿
✶✽
a−1 .a < 0.a
09/02/2021
✱
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❆ss✐♠✱ r❡s✉❧t❛ q✉❡ s❡
a > 0✱
a−1 > 0✳
❡♥tã♦
❉❡♠♦♥str❛çã♦✳ ✭✶✶✮
ab > 0 ❡♥tã♦ a 6= 0 ❡ b 6= 0✳
t❡♠♦s a
> 0✳ ❆ss✐♠ b = a (a.b) > 0✳
−1
❆♥❛❧♦❣❛♠❡♥t❡✱ s❡ a < 0 ❡♥tã♦ a
< 0 ❡ b = a−1 (a.b) < 0✳
P♦rt❛♥t♦✱ s❡ a.b > 0 ❡♥tã♦ ✭a < 0 ❡ b < 0✮ ♦✉ ✭a > 0 ❡ b > 0✮
P❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✶✮✲(10)✱ s❡
−1
P♦rt❛♥t♦ q✉❛♥❞♦
a>0
−1
❆s ❞❡♠❛✐s ♣r♦♣r✐❡❞❛❞❡s sã♦ ❡①❡r❝í❝✐♦s ♣❛r❛ ♦ ❧❡✐t♦r✳
❉❡✜♥✐çã♦ ✶✳✶✶✳
❯♠❛ ❡q✉❛çã♦ é ✉♠❛ ❡①♣r❡ssã♦ ❛❧❣é❜r✐❝❛ q✉❡ ❝♦♥té♠ ♦ sí♠❜♦❧♦ ❞❛ r❡❧❛çã♦ ❞❡ ✐❣✉❛❧✲
❞❛❞❡✳
x2 − 5 = x;
√
2x − 5 = x4 − 6x.
◆♦ q✉❡ s❡❣✉❡✱ ❡♥t❡♥❞❡r❡♠♦s q✉❡ ✏ r❡s♦❧✈❡r ✉♠❛ ❡q✉❛çã♦ E(x) = 0✑✱ ♦♥❞❡ E(x) é ✉♠❛
❡①♣r❡ssã♦ ❛❧❣é❜r✐❝❛✱ s✐❣♥✐✜❝❛ ❞❡t❡r♠✐♥❛r ♥ú♠❡r♦s x = a ∈ R ❞❡ ♠♦❞♦ q✉❡ ❛ ✐❣✉❛❧❞❛❞❡
E(a) = 0 s❡❥❛ ✈❡r❞❛❞❡✐r❛✳
P♦r ❡①❡♠♣❧♦✱ ❛♦ r❡s♦❧✈❡r ❛ ❡q✉❛çã♦ 4x − 8 = 0 ♦❜t❡♠♦s x = 2✱ ♣♦✐s 4(2) − 8 = 0✳
2
2
P♦r ♦✉tr♦ ❧❛❞♦ ❛♦ r❡s♦❧✈❡r ❛ ❡q✉❛çã♦ x + 9 = 0 ♦❜t❡♠♦s q✉❡ x = −9 ✱ ❛ q✉❛❧ ♥ã♦ t❡♠
2
s♦❧✉çã♦ ❡♠ R✳ ▲❡♠❜r❡✲s❡ q✉❡ x ≥ 0
∀ x ∈ R✳
❙ã♦ ❡①❡♠♣❧♦s ❞❡ ❡q✉❛çõ❡s✿
x + 7 = 3;
❖❜s❡r✈❛çã♦ ✶✳✹✳
a, b ∈ R t❛✐s
√
b✳
❞❡♥♦t❛✲s❡ a =
√
P♦r ❡①❡♠♣❧♦
4=2
❙❡❥❛♠
q✉❡
b > 0✳
−2✱
♦✉
◆♦ q✉❡ s❡❣✉❡ ❡♥t❡♥❞❡r❡♠♦s
q✉❛❞r❛❞❛ ♥❡❣❛t✐✈❛✳ ❆ss✐♠✱
❙❡
b < 0✱
√
♣♦✐s
√
4=2
b
❙❡
a2 = b
22 = (−2)2 = 4✳
❡ ✲
√
4 = −2✳
♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✻✮✲(2) ♥ã♦ ❡①✐st❡
Pr♦♣r✐❡❞❛❞❡ ✶✳✼✳
√
❝♦♠♦ ❛ r❛✐③ q✉❛❞r❛❞❛ ♣♦s✐t✐✈❛ ❡ ✲
♥ã♦ ❡①✐st❡ r❛✐③ q✉❛❞r❛❞❛ ❞❡ ♥ú♠❡r♦s ♥❡❣❛t✐✈♦s✳
❙❡❥❛♠
❞✐③✲s❡ q✉❡✿ ✏ a é r❛✐③ q✉❛❞r❛❞❛ ❞❡
a∈R
t❛❧ q✉❡
a2 = b✳
b
b✑
❡
❝♦♠♦ ❛ r❛✐③
P♦rt❛♥t♦ ❡♠
R
✺
❋ór♠✉❧❛ ❞❡ ❇❤❛s❦❛r❛✳ ✳
a, b, c ∈ R
✱ ♦♥❞❡
♣❡❧❛ ❡①♣r❡ssã♦✿
a 6= 0✱
❡♥tã♦ ❛ s♦❧✉çã♦ ❞❛ ❡q✉❛çã♦✿
x=
−b ±
ax2 + bx + c = 0✱
é ❞❛❞❛
√
b2 − 4ac
2a
❉❡♠♦♥str❛çã♦✳
❉✐✈✐❞✐♥❞♦ ❛ ❡q✉❛çã♦
✺ ❇❤❛s❦❛r❛
❆❝❤❛r②❛
b
c
ax2 +bx+c = 0 ♣♦r a 6= 0 r❡s✉❧t❛ ❛ ❡①♣r❡ssã♦ x2 + ( )x + = 0✳
a
a
(1114 − 1185)✱
♥❛s❝✐❞♦ ♥❛ ❮♥❞✐❛✳ ❋♦✐ ❡❧❡ q✉❡♠ ♣r❡❡♥❝❤❡✉ ❛❧❣✉♠❛s ❧❛❝✉♥❛s ♥❛ ♦❜r❛
❞❡ ❇r❛❤♠❛❣✉♣t❛✱ ❞❛♥❞♦ ✉♠❛ s♦❧✉çã♦ ❣❡r❛❧ ❞❛ ❡q✉❛çã♦ ❞❡ P❡❧❧ ❡ ❝♦♥s✐❞❡r❛♥❞♦ ♦ ♣r♦❜❧❡♠❛ ❞❛ ❞✐✈✐sã♦ ♣♦r
③❡r♦✳
✶✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈♦♠♣❧❡t❛♥❞♦ q✉❛❞r❛❞♦s
c
b
b
b
x + 2 x + + ( )2 = ( )2
2a
a
2a
2a
2
⇒
❖❜t❡♥❞♦ ❛ r❛✐③ q✉❛❞r❛❞❛ r❡s✉❧t❛✿ x =
−b ±
b
x+
2a
2
=(
b2 − 4ac
b 2 c
) − =
2a
a
4a2
√
b2 − 4ac
2a
❊①❡♠♣❧♦ ✶✳✶✶✳
❘❡s♦❧✈❡r ❛ s❡❣✉✐♥t❡s ❡q✉❛çõ❡s✿
❛✮
❝✮
3x + 2 = 14 − x
❙♦❧✉çã♦✳
x4 − 13x2 + 12 = 0
x2 − 2x − 3 = 0
❜✮
x3 − 3x2 + x + 2 = 0
❞✮
✭❛✮
3x + 2 = 14 − x✱ ❡♥tã♦ (3x + 2) + x = (14 − x) + x✱ ❧♦❣♦ (3x + x) + 2 = 14✱ ❡♥tã♦
14 − 2
✱ ❧♦❣♦ x = 3 é s♦❧✉çã♦ ❞❛
4x + 2 = 14✳ P❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✷✮ ✲ (6) ✈❡♠ q✉❡ x =
4
❡q✉❛çã♦✳
❙♦❧✉çã♦✳
✭❜✮
x2 − 2x − 3 = 0✱ ❡♥tã♦ (x + 1)(x − 3) = 0✱ ♣❡❧❛
x = −1 ♦✉ x = 3✳
Pr♦♣r✐❡❞❛❞❡
✭✶✳✶✮✲(10) s❡❣✉❡ q✉❡
❉❡ ♦✉tr♦ ♠♦❞♦✱ ❝♦♠♣❧❡t❛♥❞♦ q✉❛❞r❛❞♦s x2 − 2x − 3 = 0 ❡♥tã♦ x2 − 2x + 1 − 3 = 0 + 1
✐st♦ é x2 − 2x + 1 = 4✱ ❧♦❣♦ (x − 1)2 = 4✳ ❉❛ ❞❡✜♥✐çã♦ ❞❡ r❛✐③ q✉❛❞r❛❞❛ ① ✲ ✶ ❂ ✷ ♦✉ ① ✲
✶ ❂ ✲✷ ✳ P♦rt❛♥t♦ x = 3 ♦✉ x = −1 é s♦❧✉çã♦ ❞❛ ❡q✉❛çã♦✳
❙♦❧✉çã♦✳
✭❝✮
x4 − 13x2 + 12 = 0 ❡♥tã♦ ✭x2 − 12)(x2 − 1) = 0✱ ❛ss✐♠ t❡♠♦s q✉❡ x2 − 12 = 0 ♦✉
x2 − 1 = 0✳ ❉❡ x2 − 1 = 0 s❡❣✉❡ q✉❡ (x − 1)(x + 1) = 0 ✱ ❡♥tã♦ x = −1 ♦✉ x = 1 é s♦❧✉çã♦✳
√
√
√
√
❉❡ x2 − 12 = 0 s❡❣✉❡ q✉❡ (x − 12)(x + 12) = 0 ❡ x = − 12 ♦✉ x = 12 é s♦❧✉çã♦✳
√
√
P♦rt❛♥t♦✱ x = −1, x = 1, x = − 12 ♦✉ x = 12 sã♦ s♦❧✉çõ❡s ❞❛ ❡q✉❛çã♦✳
❙♦❧✉çã♦✳✭❞✮
x3 − 3x2 + x + 2 = 0✱ ❡s❝r❡✈❡♥❞♦ ♥❛ ❢♦r♠❛ ❞❡ ❢❛t♦r❡s x3 − 3x2 + x + 2 = (x − 2)(x2 −
x − 1) = 0✱ ❡♥tã♦ x − 2 = 0 ♦✉ x2 − x − 1 = 0✱ ❝♦♠♣❧❡t❛♥❞♦ q✉❛❞r❛❞♦s ❛ ❡st❛ ú❧t✐♠❛
5
1
✐❣✉❛❧❞❛❞❡ r❡s✉❧t❛✿ (x − )2 = .
2
4
√
1 2
5
5
1
❉❡ x − 2 = 0 s❡❣✉❡ q✉❡ x = 2 é s♦❧✉çã♦❀ ❞❡ (x − ) = s❡❣✉❡ q✉❡ x = +
♦✉
2
4
2
2
√
5
1
é s♦❧✉çã♦✳
x= −
2
2
√
√
1
5
5
1
P♦rt❛♥t♦✱ x = 2, x = +
♦✉ x = −
é s♦❧✉çã♦ ❞❛ ❡q✉❛çã♦✳
2
2
2
2
❊①❡♠♣❧♦ ✶✳✶✷✳
✷✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡t❡r♠✐♥❛r ♦ ♠❡♥♦r ♥ú♠❡r♦ ♣♦s✐t✐✈♦
M
❞❡ ♠♦❞♦ q✉❡✱ ♣❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧
x✱
❛❝♦♥✲
2
6x − x ≤ M ✳
t❡ç❛
❙♦❧✉çã♦✳
❉❡ 6x − x2 ≤ M ❝♦♠♣❧❡t❛♥❞♦ q✉❛❞r❛❞♦s t❡♠♦s q✉❡ 32 − 32 + 6x − x2 ≤ M ✳ ❆ss✐♠
9 − (x − 3)2 ≤ M ✳ ◗✉❛♥❞♦ x = 3 t❡r❡♠♦s ♦ ♠❡♥♦r ♥ú♠❡r♦ ♣♦s✐t✐✈♦ M = 9✳
❖❜s❡r✈❡✱ q✉❛♥❞♦ M > 9 t❛♠❜é♠ ❝✉♠♣r❡ ❛s ❝♦♥❞✐çõ❡s ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡✳
❉❡✜♥✐çã♦ ✶✳✶✷✳
P❛rt❡ ✐♥t❡✐r❛✳
x ❞❡♥♦t❛❞❛ ♣♦r [|x|] é ♦ ♠❛✐♦r
[|x|] = max{ m ∈ Z /. m ≤ x }
❆ ♣❛rt❡ ✐♥t❡✐r❛ ❞❡ ✉♠ ♥ú♠❡r♦ r❡❛❧
q✉❡ ♥ã♦ ✉❧tr❛♣❛ss❛
x✳
■st♦ é
♥ú♠❡r♦ ✐♥t❡✐r♦
❉❡st❛ ❞❡✜♥✐çã♦ r❡s✉❧t❛ q✉❡ ♦ ♥ú♠❡r♦ [|x|] é ú♥✐❝♦✱ ❡ s❡♠♣r❡ [|x|] ≤ x✳ P♦r ♦✉tr♦ ❧❛❞♦✱
❝♦♠♦ [|x|] é ♦ ♠❛✐♦r ✐♥t❡✐r♦ q✉❡ ❝✉♠♣r❡ ❡st❛ ❞❡s✐❣✉❛❧❞❛❞❡✱ ❡ t❡♠♦s q✉❡ x < [|x|] + 1✳
P♦rt❛♥t♦✱ [|x|] é ♦ ♥ú♠❡r♦ ✐♥t❡✐r♦ q✉❡ ❝✉♠♣r❡ ❛s ❞❡s✐❣✉❛❧❞❛❞❡s✿ [|x|] ≤ x < [|x|] + 1 ♦✉
(x − 1) < [|x|] ≤ x✳
❊①❡♠♣❧♦ ✶✳✶✸✳
❉❛s ❞❡s✐❣✉❛❧❞❛❞❡s✿
q✉❡
√
17
< 6, −2 < − 2 < −1
3
√
[| − 2|] = −2 ❡ [|5|] = 5✳
3 < π < 4,
h 17 i
= 5,
3
[|π|] = 3,
5<
❡
5=5<6
r❡s✉❧t❛
Pr♦♣r✐❡❞❛❞❡ ✶✳✽✳
❙❡❥❛
x
✉♠ ♥ú♠❡r♦ r❡❛❧✿
✐✮ [| − x|] ❂
−[|x|]
s❡ x ∈ Z.
−[|x|] − 1 s❡ x ∈
/ Z.
✐✐✮ [|x + y|] = [|x|] ✰ [|y|] ♦✉ [|x + y|] = [|x|] ✰ [|y|] ✰ ✶
✐✐✐✮ [|x + n|] = [|x|] + n ♣❛r❛ t♦❞♦ ✐♥t❡✐r♦ n✳
✐✈✮ [|n · x|] =
n−1 h
X
k=1
k i
x+
n
❉❡♠♦♥str❛çã♦✳
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✶✳✶✹✳
❛✮ [| − 5|] = −[|5|]
❝✮
h 5 13 i
= k6k
+
3
3
❜✮
❞✮
h
h 1 i
1 i
=−
− 1 = 0 − 1 = −1
2
2
h 5 13 i h 5 i h 13 i
=
+
+1=1+4+1=6
+
3
3
3
3
−
✷✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
h 4 7 i h 4 i h 7 i
=
+
=1+1=2
+
3 5
3
5
h 4 7 i h 20 + 21 i h 41 i
❢✮
+
=
=
=2
3 5
15
15
h 7 i h 7 i h 7 1 i h 7 2 i h 7 3 i h 7 4 i
=
+
+
+
+
=
+
+
+
+
❣✮
5
9
9
9 5
9 5
9 5
9 5
❡✮
=0+0+1+1+1=3
Pr✐♥❝í♣✐♦ ❞❡ ❆rq✉✐♠❡❞❡s✻ ✳
❙❡ a > 0 ❡ b > 0 sã♦ ♥ú♠❡r♦s r❡❛✐s✱ ❡♥tã♦ ❡①✐st❡ ✉♠ ✐♥t❡✐r♦ ♣♦s✐t✐✈♦ n t❛❧ q✉❡ a·n > b
Pr♦♣r✐❡❞❛❞❡ ✶✳✾✳
❉❡♠♦♥str❛çã♦✳
1
b
> 0✱ s❡♥❞♦ b > 0 t❡♠♦s q✉❡ > 0✳
a
a
h
b
b i
❀ ✐st♦ é ❛ ♣❛rt❡ ✐♥t❡✐r❛ ❞♦ ♥ú♠❡r♦ r❡❛❧ (1 + )✳ ❉❛
❉❡✜♥✐♠♦s ♦ ♥ú♠❡r♦ n = 1 +
a
a
h
b i
b
= n✳
❉❡✜♥✐çã♦ ✭✶✳✾✮ t❡♠♦s q✉❡ (1 + ) − 1 < 1 +
a
a
P♦rt❛♥t♦✱ a · n > b✳
❙❡ a > 0✱ ❡♥tã♦
❊①❡♠♣❧♦ ✶✳✶✺✳
❙❡❥❛♠ a, b ∈ R+ ✱ t❛✐s q✉❡ a · b = 1✳ ▼♦str❡ q✉❡ a + b ≥ 2✳
❉❡♠♦♥str❛çã♦✳
❉❛ ❤✐♣ót❡s❡ a.b = 1 t❡♠♦s q✉❡ 0 < a ≤ 1 ❡ 1 ≤ b, ❡♥tã♦ 0 ≤ (1 − a) ❡ 0 ≤ (b − 1) ⇒
0 ≤ (1 − a)(b − 1) = b − 1 − a.b + a = b − 1 − 1 + a✳
P♦rt❛♥t♦✱ a + b ≥ 2✳
❖❜s❡r✈❛çã♦ ✶✳✺✳
➱ ✐♠♣♦rt❛♥t❡ ❧❡♠❜r❛r ❛❧❣✉♠❛s ♣r♦♣r✐❡❞❛❞❡s ❜ás✐❝❛s ❞❡ ♥ú♠❡r♦s r❡❛✐s✿
a0 = 1 s♦♠❡♥t❡ s❡ a 6= 0❀ ❝❛s♦ a = 0 ❛ ❡①♣r❡ssã♦ 00 ♥ã♦ ❡①✐st❡✳
✐✮
a
a
∈ R✱ s♦♠❡♥t❡ s❡ b 6= 0❀ ❝❛s♦ b = 0 ❡♥tã♦ ♥ã♦ ❡①✐st❡✳
b
0
√
√ √
✐✐✐✮
a.b = a. b ❞❡s❞❡ q✉❡ a ❡ b s❡❥❛♠ ♣♦s✐t✐✈♦s✱ s✉♣♦♥❤❛ a = −1 ❡ b = −1✱ ❡♥tã♦
p
√ √
1 = (−1)(−1) = −1 −1 ♥ã♦ ❡①✐st❡ ❡♠ R✱ ♦ ♥ú♠❡r♦ 1 ♥ã♦ ❞❡✈❡♠♦s ❡s❝r❡✈❡r
❝♦♠ ❡❧❡♠❡♥t♦s q✉❡ ♥ã♦ ❡①✐st❡♠ ❡♠ R✳
✐✐✮
✐✈✮
❆ ❡①♣r❡ssã♦ ✰∞ é ❛ ✐❞❡✐❛ ❞❡ ✉♠ ♥ú♠❡r♦ ♣♦s✐t✐✈♦✱ ♦ ♠❛✐♦r ❞❡ t♦❞♦s ♣♦ré♠ ✭✰∞✮
+∞
❂ ❄ sã♦ ❢♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s✳ ◆ã♦ s❡ ❞❡✈❡ ♦♣❡r❛r ❝♦♠ ♦s
✲ ✭✰∞✮ ❂ ❄✱ ♦✉
+∞
sí♠❜♦❧♦s +∞, −∞✱ ❝♦♠♦ s❡ ❢♦ss❡♠ ♥ú♠❡r♦s✱ ♣♦✐s ♥ã♦ ♦ sã♦✳
✻ ❆rq✉✐♠❡❞❡s
(287 − 212 a.C.)✱
❝❤❛♠❛❞♦ ✏♦ ♠❛✐♦r ✐♥t❡❧❡❝t♦ ❞❛ ❛♥t✐❣✉✐❞❛❞❡✑✱ ❢♦✐ ✉♠ ❞♦s ♣r✐♠❡✐r♦s
❢✉♥❞❛❞♦r❡s ❞♦ ♠ét♦❞♦ ❝✐❡♥tí✜❝♦✳
✷✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❆♣❧✐❝❛çõ❡s ❝♦♠ ♥ú♠❡r♦s r❡❛✐s
❊①❡♠♣❧♦ ✶✳✶✻✳
❊♠ ❛♠❜❛s ❛s ♠❛r❣❡♥s ❞❡ ✉♠ r✐♦ ❝r❡s❝❡♠ ♣❛❧♠❡✐r❛s✱ ✉♠❛ ❡♠ ❢r❡♥t❡ à ♦✉tr❛✳ ❆ ❛❧t✉r❛
❞❡ ✉♠❛ é ❞❡
30 m✱
❡ ❞❛ ♦✉tr❛ é
20 m✳
❆ ❞✐stâ♥❝✐❛ ❡♥tr❡ s❡✉s tr♦♥❝♦s é ❞❡
50 m✳
◆❛ ♣❛rt❡ ♠❛✐s ❛❧t❛ ❞❡ ❝❛❞❛ ♣❛❧♠❡✐r❛ ❞❡s❝❛♥s❛♠ ♣áss❛r♦s✱ ❞❡ sú❜✐t♦ ❞♦✐s ♣áss❛r♦s ✭✉♠
❡♠ ❝❛❞❛ ♣❛❧♠❡✐r❛✮ ❛✈✐st❛♠ ✉♠ ♣❡✐①❡ q✉❡ ❛♣❛r❡❝❡ ♥❛ s✉♣❡r❢í❝✐❡ ❞❛ á❣✉❛✱ ❡♥tr❡ ❛s ❞✉❛s
♣❛❧♠❡✐r❛s✳ ❖s ♣áss❛r♦s ✈♦❛rã♦ ❡ ❛❧❝❛♥ç❛r❛♠ ♦ ♣❡✐①❡ ❛♦ ♠❡s♠♦ t❡♠♣♦✳ ❙✉♣♦♥❞♦ ❛ ♠❡s♠❛
✈❡❧♦❝✐❞❛❞❡❀ ❛ q✉❡ ❞✐stâ♥❝✐❛ ❞♦ tr♦♥❝♦ ❞❛ ♣❛❧♠❡✐r❛ ♠❡♥♦r ❛♣❛r❡❝❡✉ ♦ ♣❡✐①❡❄
✉
❅
❅
❅
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s q✉❡ ♦ ♣❡✐①❡ ❛♣❛r❡❝❡✉ ❛
x
✉♠❛ ❞✐stâ♥❝✐❛ ❞❡
♠❡tr♦s ❞♦ ♣é ❞❛ ♣❛❧✲
♠❡✐r❛ ♠❡♥♦r ❋✐❣✉r❛ ✭✶✳✺✮✱ ❡♥tã♦ ♣❡❧♦ t❡♦✲
r❡♠❛ ❞❡ P✐tá❣♦r❛s✿
√
202 + x2 =
❅
❅
❅
30 m
p
✉
❅
❅
(50 − x)
302 + (50 − x)2
20 m
❅
x
50 m
202 + x2 = 302 + (50 − x)2
❋✐❣✉r❛ ✶✳✺✿
x2 − (50 − x)2 = 302 − 202 ⇒ 2x − 50 = 10 ⇒ x = 30
P♦rt❛♥t♦✱ ♦ ♣❡✐①❡ ❛♣❛r❡❝❡✉ ❛ ✉♠❛ ❞✐stâ♥❝✐❛ ❞❡
30 m
❞❛ ♣❛❧♠❡✐r❛ ♠❡♥♦r✳
❊①❡♠♣❧♦ ✶✳✶✼✳
▼♦str❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s
y=
99
1
1 3 5
< ✳
x = . . ···
2 4 6
100
10
100
2 4 6
· · ···
3 5 7
101
2
1
< ,
2
3
r❡s✉❧t❛ q✉❡
x<y
❧♦❣♦✱
✱ ❞❡s❞❡ q✉❡✿
3
4
< ,
4
5
5
6
99
100
< , ··· ,
<
6
7
100
101
1 2 3 4 56
99 100
x2 < xy = . . . ·
···
·
2 3 4 5 67
100 101
✳
❊①tr❛✐♥❞♦ ❛ r❛✐③ q✉❛❞r❛❞❛ ❞❡ ❛♠❜♦s ♦s ♠❡♠❜r♦s ❞❡st❛ ú❧t✐♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ ♦❜t❡♠♦s
x< √
1
1
<
10
101
❊①❡♠♣❧♦ ✶✳✶✽✳
◗✉❡r❡♠♦s ❝♦♥str✉✐r ✉♠❛ ❝❛✐①❛ ❞❡ ♣❛♣❡❧ã♦ ❞❡
❞❡ ❧❛r❣✉r❛
10 cm ♠❡♥♦s q✉❡ s❡✉ ❝♦♠♣r✐♠❡♥t♦✳
✷✸
10 cm
❛❧t✉r❛✱ s❡♥❞♦ ❛ ❜❛s❡ ✉♠ r❡tâ♥❣✉❧♦
❙❡ ♦ ✈♦❧✉♠❡ ❞❛ ❝❛✐①❛ ❞❡✈❡ s❡r ❞❡
6000 cm3 ✱
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
q✉❛✐s ❛s ❞✐♠❡♥sõ❡s ❞❛ ❝❛✐①❛ q✉❡ s✉♣♦rt❛ ♠❛✐♦r ✈♦❧✉♠❡❄
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s q✉❡ ♦ ❝♦♠♣r✐♠❡♥t♦ s❡❥❛
xcm✳
❊♥tã♦ s❡❣✉♥❞♦ ♦s ❞❛❞♦s ❞♦ ♣r♦❜❧❡♠❛
t❡♠♦s ✉♠❛ ❝❛✐①❛ ❝♦♠♦ ♥❛
❋✐❣✉r❛
10 ♣ ♣ ♣ ♣ ♣
♣
✭✶✳✻✮✳
10x(x−10) = 6000 ⇒ x(x−10) =
2
600 ⇒ x − 10x − 600 = 0✳
▲♦❣♦
P❡❧❛
x=
Pr♦♣r✐❡❞❛❞❡
10 ±
P♦rt❛♥t♦
30 cm
x − 10
x
✭✶✳✼✮✿
p
102 − 4(−600)
= 5 ± 25
2
x = 30✱
♣ · · · · · · · · · · · · · ···· ·
❋✐❣✉r❛ ✶✳✻✿
❡ ❛s ❞✐♠❡♥sõ❡s ❞❛ ❝❛✐①❛ sã♦✿ ❛❧t✉r❛
❡ ❧❛r❣✉r❛ ❞❛ ❜❛s❡
10 cm✱
❡ ❝♦♠♣r✐♠❡♥t♦ ❞❛ ❜❛s❡
20 cm✳
❊①❡♠♣❧♦ ✶✳✶✾✳
❉❡t❡r♠✐♥❡ ❛ ♣❛rt❡ ✐♥t❡✐r❛ ❞♦ ♥ú♠❡r♦✿
1
1
1
1
x=1+ √ + √ + √ + √ ✳
2
3
4
5
❙♦❧✉çã♦✳
❖❜s❡r✈❡✱ ❝❛❧❝✉❧❛♥❞♦ ❛s r❛í③❡s ♣♦r ❢❛❧t❛ ❡ ♣♦r ❡①❝❡ss♦ ❡♠ ♠❡♥♦s ❞❡
❞❡s✐❣✉❛❧❞❛❞❡s✿
1 ≤ 1 ≤ 1,
1
0.7 < √ < 0.8,
2
1
0.5 < √ < 0.6,
3
❙♦♠❛♥❞♦ ❡st❛s ❞❡s✐❣✉❛❧❞❛❞❡s✱ ❡♥❝♦♥tr❛♠♦s q✉❡
0.8 + 0.6 + 0.5 + 0.5
▲♦❣♦
✐st♦ é
0, 1
♦❜t❡♠♦s ❛s
1
1
0.5 ≤ √ ≤ 0.5 0.4 < √ < 0.5
4
5
1 + 0.7 + 0.5 + 0.5 + 0.4 < x < 1 +
3, 1 < x < 3, 4✳
[|x|] = 3✳
❊①❡♠♣❧♦ ✶✳✷✵✳
❉❡❝♦♠♣♦r ♦ ♥ú♠❡r♦
60
❡♠ ❞✉❛s ♣❛rt❡s ❞❡ ♠♦❞♦ q✉❡ ♦ ♣r♦❞✉t♦ ❞❡ ❛♠❜❛s ❛s ♣❛rt❡s s❡❥❛
♦ ♠❛✐♦r ♣♦ssí✈❡❧✳
❙♦❧✉çã♦✳
❈♦♥s✐❞❡r❡♠♦s ♦s ♥ú♠❡r♦s
❙❡✉ ♣r♦❞✉t♦ é✿
P❛r❛ q✉❡ ♦ ♣r♦❞✉t♦
sã♦✿
30
❡
60 − 30✳
x
❡
60 − x✱
♦❜s❡r✈❡ q✉❡ ❛ ❛❞✐çã♦ ❞❡ ❡ss❡s ♥ú♠❡r♦s é
30
❡
2
2
2
60✳
P = x(60−x) = 60x−x = 30 −30 +2(30)x−x = 30 −(30−x)2 ✳
s❡❥❛ ♦ ♠❛✐♦r ♣♦ssí✈❡❧ t❡♠ q✉❡ ❛❝♦♥t❡❝❡r q✉❡ x = 30✳ ❧♦❣♦ ♦s ♥ú♠❡r♦s
P♦rt❛♥t♦✱ ♦s ♥ú♠❡r♦s sã♦
2
2
30✳
❊①❡♠♣❧♦ ✶✳✷✶✳
❙❛❜❡✲s❡ q✉❡ ❛ ♠é❞✐❛ ❣❡♦♠étr✐❝❛ ❞❡
n
♥ú♠❡r♦s✱ é s❡♠♣r❡ ♠❡♥♦r ♦✉ ✐❣✉❛❧ à s✉❛ ♠é❞✐❛
❛r✐t♠ét✐❝❛✳
✷✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❉❡ t♦❞♦s ♦s ♣❛r❛❧❡❧❡♣í♣❡❞♦s ❝♦♠ s♦♠❛ ✜①❛ ❞❡ s✉❛s três ❛r❡st❛s r❡❝✐♣r♦❝❛♠❡♥t❡ ♣❡r♣❡♥✲
❞✐❝✉❧❛r❡s✱ ❞❡t❡r♠✐♥❡ ♦ ♣❛r❛❧❡❧❡♣í♣❡❞♦ ❞❡ ✈♦❧✉♠❡ ♠á①✐♠♦✳
❙♦❧✉çã♦✳
❙❡❥❛ m = a + b + c ❛ s♦♠❛ ❞❛s ❛r❡st❛s ❞♦ ♣❛r❛❧❡❧❡♣í♣❡❞♦✳ ▲♦❣♦ s❡✉ ✈♦❧✉♠❡ é V = abc✳
❆♣❧✐❝❛♥❞♦ ❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ♠é❞✐❛ ❣❡♦♠étr✐❝❛ s❡❣✉❡
√
3
V =
√
3
abc ≤
m
a+b+c
=
3
3
❖ ✈♦❧✉♠❡ s❡rá ♠á①✐♠♦ s♦♠❡♥t❡ q✉❛♥❞♦ V =
c=
m
✳
3
⇒
V ≤
m3
27
m3
❡ ✐st♦ ❛❝♦♥t❡❝❡ s♦♠❡♥t❡ s❡ a = b =
27
P♦rt❛♥t♦ ♦ ♣❛r❛❧❡❧❡♣í♣❡❞♦ é ♦ ❝✉❜♦✳
❊①❡♠♣❧♦ ✶✳✷✷✳
▼♦str❡ q✉❡✱ s❡ ai > 0 i = 1, 2, 3, · · · , n ❡♥tã♦✿
n · a1 a2 a3 . · · · an−1 an ≤ an1 + an2 + an3 + · · · + ann−1 + ann
❙♦❧✉çã♦✳
P❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ♠é❞✐❛ ❣❡♦♠étr✐❝❛ t❡♠♦s q✉❡✿
a1 a2 a3 · · · an =
p
n
an1 an2 an3 · · · ann−1 ann ≤
an1 + an2 + an3 + · · · + ann−1 + ann
n
❧♦❣♦ ♠✉❧t✐♣❧✐❝❛♥❞♦ ♣♦r n s❡❣✉❡✿
n · a1 a2 a3 . · · · an−1 an ≤ an1 + an2 + an3 + · · · + ann−1 + ann
❉❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡❞✉③✐♠♦s✿
2a1 a2 ≤ a21 + a22 ,
3a1 a2 a3 ≤ a31 + a32 + a33 ,
4a1 a2 a3 a4 ≤ a41 + a42 + a43 + a44
❊①❡♠♣❧♦ ✶✳✷✸✳
❯♠❛ ✜❧❛ ❞❡ ❝❛❞❡✐r❛s ♥♦ ❝✐♥❡♠❛ t❡♠ 10 ♣♦❧tr♦♥❛s✳ ❉❡ q✉❛♥t♦s ♠♦❞♦s 3 ❝❛s❛✐s ♣♦❞❡♠
s❡ s❡♥t❛r ♥❡ss❛s ♣♦❧tr♦♥❛s ❞❡ ♠♦❞♦ q✉❡ ♥❡♥❤✉♠ ♠❛r✐❞♦ s❡ s❡♥t❡ s❡♣❛r❛❞♦ ❞❡ s✉❛ ♠✉❧❤❡r❄
❙♦❧✉çã♦✳
▲❡♠❜r❛♥❞♦ q✉❡ ♦ ❢❛t♦r✐❛❧ ❞❡ ✉♠ ♥ú♠❡r♦ n ∈ N ❝♦♠ n ≥ 2 é ❞❡✜♥✐❞♦ ♣♦r
n! = n(n − 1)(n − 2) . . . (3)(2)(1),
✷✺
0! = 1 ❡ 1! = 1
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊♥tã♦✱ ❡s❝♦❧❤✐❞❛ ❛ ♦r❞❡♠ ❞❡ ❝❛❞❛ ❝❛s❛❧✱ ♦ q✉❡ ♣♦❞❡ s❡r ❢❡✐t♦ ❞❡ 23 ♠♦❞♦s t❡♠♦s q✉❡
❛rr✉♠❛r ❡♠ ✜❧❛ 4 ❡s♣❛ç♦s ✈❛③✐♦s ❡ 3 ❝❛s❛✐s✱ ♦ q✉❡ ♣♦❞❡ s❡r ❢❡✐t♦ ❞❡
7!
♠♦❞♦s ✭❡s❝♦❧❤❛
(3!)(4!)
❞♦s ❡s♣❛ç♦s ✈❛③✐♦s✮ ✈❡③❡s 3! ✭❝♦❧♦❝❛çã♦ ❞♦s 3 ❝❛s❛✐s ♥♦s 3 ❧✉❣❛r❡s r❡st❛♥t❡s✮✳
❆ r❡s♣♦st❛ é
23 ×
7!
× 3! = 1.680✳
(3!)(4!)
❊①❡♠♣❧♦ ✶✳✷✹✳
❯♠ ♠á❣✐❝♦ s❡ ❛♣r❡s❡♥t❛ ✉s❛♥❞♦ ✉♠ ♣❛❧❡tó ❝✐♥t✐❧❛♥t❡ ❡ ✉♠❛ ❝❛❧ç❛ ❝♦❧♦r✐❞❛ ❡ ♥ã♦ r❡♣❡t❡
❡♠ s✉❛s ❛♣r❡s❡♥t❛çõ❡s ♦ ♠❡s♠♦ ❝♦♥❥✉♥t♦ ❞❡ ❝❛❧ç❛ ❡ ♣❛❧❡tó✳ P❛r❛ ♣♦❞❡r s❡ ❛♣r❡s❡♥t❛r ❡♠
500
❡s♣❡tá❝✉❧♦s✱ q✉❛❧ ♦ ♠❡♥♦r ♥ú♠❡r♦ ❞❡ ♣❡ç❛s ❞❡ r♦✉♣❛ q✉❡ ♣♦❞❡ t❡r s❡✉ ❣✉❛r❞❛✲r♦✉♣❛❄
❙♦❧✉çã♦✳
❙❡❥❛ c ♦ ♥ú♠❡r♦ ❞❡ ❝❛❧ç❛s ❡ p ♦ ♥ú♠❡r♦ ❞❡ ♣❛❧❡tós✳
P❡❧♦ ♣r✐♥❝í♣✐♦ ❢✉♥❞❛♠❡♥t❛❧ ❞❛ ❝♦♥t❛❣❡♠ c · p = 500✳ ❖ ♠❡♥♦r ♥ú♠❡r♦ ❞❡ ❡ ♣❡ç❛s é
c+p
P❡❧❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❛s ♠é❞✐❛s s❡❣✉❡
√
c·p≤
c+p
2
⇒
√
2 c·p≤c+p
√
❈♦♠♦ c · p = 500 ❡♥tã♦ 2 500 ≤ c + p✱ ❧♦❣♦ 44, 72 ≤ c + p
P♦rt❛♥t♦ ♦ ♠❡♥♦r ♥ú♠❡r♦ ❞❡ ♣❡ç❛s s❡rá 45✳
✷✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✶✲✷
0<a<1
✶✳ ▼♦str❡ q✉❡✱ s❡
✷✳ ▼♦str❡ q✉❡✱
a>b≥0
❡♥tã♦
a, b > 0
✸✳ ▼♦str❡ q✉❡✱ s❡
a
✹✳ ▼♦str❡ q✉❡✱ s❡
❡
b
a>0
a 2 > b2
❡
a
✾✳ ▼♦str❡ q✉❡✿
√
ab ≥
✶✵✳ ▼♦str❡ q✉❡✱ q✉❛♥❞♦
✶✶✳ ▼♦str❡ q✉❡✿
a3 +
✶✷✳ ▼♦str❡ q✉❡✱ s❡
♦♥❞❡
❡♥tã♦
a, b ∈ R✳
a > b✳
2ab
a+b
♠♦str❡ q✉❡
b>a
❡♥tã♦
a−1 > b−1 ✳
2ab ≤ a2 + b2 ✳
1
(a + ) ≥ 2✳
a
a+b+c = 1
b)(1 − c) ≥ 8abc✳
0 < a < b✱
b✱
❡
❡♥tã♦
✼✳ ▼♦str❡ q✉❡✱ s❡
✽✳ ▼♦str❡ q✉❡✿ ❙❡
a2 > b2
sã♦ ♣♦s✐t✐✈♦s ✭♦✉ ♥❡❣❛t✐✈♦s✮ ❡
✺✳ ❉❛❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s
✻✳ ▼♦str❡ q✉❡✱ s❡
a2 < a✳
❡♥tã♦
a > 0, b > 0, c > 0✱
♦♥❞❡✱
❡♥tã♦
a<
a, b, c, d ∈ R✱
a, b, c > 0
❡♥tã♦
a+b
<b
2
✳
a4 + b4 + c4 + d4 ≥ 4abcd✳
a > 1✳
s❡
bc ac ab
+
+
> a + b + c✳
a
b
c
❡♥tã♦
✶✸✳ ❉❡t❡r♠✐♥❛r ♦ ♠❡♥♦r ♥ú♠❡r♦
ab ≤
a, b > 0✳
q✉❛♥❞♦
1
1
> a2 + 2
3
a
a
√
(1 − a)(1 −
❡♥tã♦ t❡♠♦s q✉❡✱
M
❞❡ ♠♦❞♦ q✉❡✱ ♣❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧
x✱
t❡♥❤❛✲s❡
M
❞❡ ♠♦❞♦ q✉❡✱ ♣❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧
x✱
t❡♥❤❛✲s❡
2x − x2 ≤ M ✳
✶✹✳ ❉❡t❡r♠✐♥❛r ♦ ♠❛✐♦r ♥ú♠❡r♦
2
M ≤ x − 16x✳
✶✺✳ ❙❡❥❛♠
a
❡
b
♣♦s✐t✐✈♦s✱ ♠♦str❡ q✉❡
✶✻✳ ❉❡♠♦♥str❛r q✉❡✱ s❡
✶✼✳ ▼♦str❡ q✉❡✱ s❡
a
❡
b
sã♦ ♥ú♠❡r♦s ✐♥t❡✐r♦s ♣♦s✐t✐✈♦s ❡♥tã♦
x3 + y 3 + z 3 = 81,
✶✽✳ ▼♦str❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡✿
a
b
1 1
+ 2 ≥ + ✳
2
b
a
a b
x > 0, y > 0, z > 0✱
❡♥tã♦
a3 + b3
≥
2
a+b
2
3
xyz ≤ 27✳
x2 + 3
√
≥ 2✳
x2 + 2
✷✼
09/02/2021
✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✾✳ ❙❡❥❛♠ 0 < a < b✱ ❞❡t❡r♠✐♥❡ ❛ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦
✷✵✳ ▼♦str❡ q✉❡ s❡ ab ≥ 0✱ ❡♥tã♦ ab ≥ min .{a2 , b2 }✳
1
1
1 1
+
< + ✳
x a+b−x
a b
1
8
✷✶✳ ▼♦str❡ q✉❡✱ s❡ a + b = 1✱ ❡♥tã♦✿ a4 + b4 ≥ ✳
✷✷✳ ❉❡t❡r♠✐♥❡ t♦❞♦s ♦s ✈❛❧♦r❡s r❡❛✐s ❞❡ r ♣❛r❛ ♦s q✉❛✐s ♦ ♣♦❧✐♥ô♠✐♦✿ (r2 − 1)x2 + 2(r −
1)x + 1✱ s❡❥❛ ♣♦s✐t✐✈♦ ♣❛r❛ t♦❞♦ x ∈ R✳
✷✸✳ ❉❛❞♦s três ♥ú♠❡r♦s ♣♦s✐t✐✈♦s✱ s❛❜❡✲s❡ q✉❡ s❡✉ ♣r♦❞✉t♦ é 1 ❡ ❛ s♦♠❛ ❞❡ss❡s três
♥ú♠❡r♦s é ♠❛✐♦r q✉❡ ❛ s♦♠❛ ❞♦s s❡✉s ✐♥✈❡rs♦s✳ ▼♦str❡ q✉❡ ✉♠ ❞♦s ♥ú♠❡r♦s é ♠❛✐♦r
q✉❡ 1✱ ❡♥q✉❛♥t♦ ♦s ♦✉tr♦s ❞♦✐s sã♦ ♠❡♥♦r❡s q✉❡ 1✳
✷✹✳ ❖s ❧❛❞♦s a, b ❡ c ❞❡ ✉♠ tr✐â♥❣✉❧♦ s❛t✐s❢❛③❡♠ ❛ r❡❧❛çã♦ a2 + b2 + c2 ≥ ab + ac + bc✳
❊ss❡ tr✐â♥❣✉❧♦ é ❡q✉✐❧át❡r♦❄
✷✺✳ ▼♦str❡ q✉❡✱ s❡ a, b ∈ R sã♦ ♥ú♠❡r♦s t❛✐s q✉❡ a+b = 1✱ ❡♥tã♦ a+
1 2 1 2 25
+ b+
≥
a
b
2
✷✻✳ ❆ r❡❝❡✐t❛ ❞❛ ✈❡♥❞❛ ❞❡ q ✉♥✐❞❛❞❡s ❞❡ ✉♠ ♣r♦❞✉t♦ é R = 240q ❡ ♦ ❝✉st♦ ❞❡ ♣r♦❞✉çã♦
❞❡ q ✉♥✐❞❛❞❡s é C = 190q + 1500✳ P❛r❛ q✉❡ ❤❛❥❛ ❧✉❝r♦✱ ❛ r❡❝❡✐t❛ ❞❡ ✈❡♥❞❛s ❤á ❞❡
s❡r ♠❛✐♦r q✉❡ ♦ ❝✉st♦✳ P❛r❛ q✉❡ ✈❛❧♦r❡s ❞❡ q ❡st❡ ♣r♦❞✉t♦ ❞❛rá ❧✉❝r♦❄
✷✼✳ ❆❧é♠ ❞♦ ❝✉st♦ ❛❞♠✐♥✐str❛t✐✈♦ ✜①♦✱ ✭❞✐ár✐♦✮ ❞❡ ❘$350, 00 ♦ ❝✉st♦ ❞❡ ♣r♦❞✉çã♦ ❞❡ q
✉♥✐❞❛❞❡s ❞❡ ❝❡rt♦ ♣r♦❞✉t♦ é ❞❡ ❘$5, 50 ♣♦r ✉♥✐❞❛❞❡✳ ❉✉r❛♥t❡ ♦ ♠ês ❞❡ ♠❛rç♦✱ ♦
❝✉st♦ t♦t❛❧ ❞❛ ♣r♦❞✉çã♦ ✈❛r✐♦✉ ❡♥tr❡ ♦ ♠á①✐♠♦ ❞❡ ❘$3.210 ❡ ♦ ♠í♥✐♠♦ ❞❡ ❘$1.604
♣♦r ❞✐❛✳ ❉❡t❡r♠✐♥❡ ♦s ♥í✈❡✐s ❞❡ ♣r♦❞✉çã♦ ♠á①✐♠♦ ❡ ♠í♥✐♠♦ ♣♦r ♠ês✳
✷✽✳ ❊st❛❜❡❧❡ç❛ ♣❛r❛ q✉❡ ✈❛❧♦r❡s r❡❛✐s ❞❡ x ❛ ár❡❛ ❞❡ ✉♠ ❝ír❝✉❧♦ ❞❡ r❛✐♦ x✿
❛✮ é ♠❛✐♦r q✉❡ 400π cm2
❜✮ ♥ã♦ é s✉♣❡r✐♦r ❛ 400π cm2 ✳
✷✾✳ ❯♠❛ ♣✐s❝✐♥❛ ✐♥❢❛♥t✐❧ ❞❡✈❡ t❡r 1 m ❞❡ ❛❧t✉r❛ ❡ ♦ ❢♦r♠❛t♦ ❞❡ ✉♠ ❜❧♦❝♦ r❡t❛♥❣✉❧❛r✳ ❖
s❡✉ ❝♦♠♣r✐♠❡♥t♦ ♣r❡❝✐s❛ s✉♣❡r❛r à ❧❛r❣✉r❛ ❡♠ 0, 2 m✳ ❈♦♠ q✉❛♥t♦ ❞❡ ❧❛r❣✉r❛ ❡ss❛
♣✐s❝✐♥❛ ❝♦♠♣♦rt❛rá ♠❛✐s ❞❡ 2.000.000 litros❄ ✭▲❡♠❜r❡t❡✿ 1 m3 = 1.000 litros✮✳
✸✵✳ ❙❛❜❡✲s❡ q✉❡ s♦❜r❡ ❝❡rt❛s ❝♦♥❞✐çõ❡s ♦ ♥ú♠❡r♦ ❞❡ ❜❛❝tér✐❛s q✉❡ ❝♦♥té♠ ♦ ❧❡✐t❡ s❡
❞✉♣❧✐❝❛ ❛ ❝❛❞❛ 3 ❤♦r❛s✳ ❈❛❧❝✉❧❛r ♦ ♥ú♠❡r♦ ♣❡❧♦ q✉❛❧ é ♥❡❝❡ssár✐♦ ♠✉❧t✐♣❧✐❝❛r ❛
q✉❛♥t✐❞❛❞❡ ❞❡ ❜❛❝tér✐❛s ❞♦ ✐♥✐❝✐♦✱ ♣❛r❛ ♦❜t❡r ♦ ♥ú♠❡r♦ ❞❡ ❜❛❝tér✐❛s ❛♦ ✜♥❛❧ ❞❡ 1
❞✐❛✳
✸✶✳ ❖s ❛❧✉♥♦s ❞❛ ❯❋❚✱ ♦r❣❛♥✐③❛r❛♠ ✉♠❛ r✐❢❛ s♦♠❡♥t❡ ♣❛r❛ ❛❧✉♥♦s✳ ❉♦s q✉❛✐s 45 ❝♦♠✲
♣r❛r❛♠ 2 ♥ú♠❡r♦s✱ ❡ ♦ t♦t❛❧ ❞❡ ❛❧✉♥♦s q✉❡ ❝♦♠♣r❛r❛♠ ✉♠ ♥ú♠❡r♦ ❡r❛ ✷✵% ❞♦
♥ú♠❡r♦ ❞♦s r✐❢❛s ✈❡♥❞✐❞❛s✱ 80 ♥ã♦ ❝♦♠♣r❛r❛♠ ♥ú♠❡r♦ ♥❡♥❤✉♠ ❡ ♦✉tr♦s ❝♦♠♣r❛r❛♠
3 ♥ú♠❡r♦s✳ ❙❡ ♦ t♦t❛❧ ❞❡ r✐❢❛s ✈❡♥❞✐❞❛s ❡①❝❡❞❡✉ ❡♠ 33 ❛♦ ♥ú♠❡r♦ ❞❡ ❛❧✉♥♦s✱ ❞✐❣❛
q✉❛♥t♦s ❛❧✉♥♦s ❝♦♠♣r❛r❛♠ s♦♠❡♥t❡ ✉♠ ♥ú♠❡r♦ ❞❛ r✐❢❛✳
✷✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✳✹
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡s✐❣✉❛❧❞❛❞❡s
❖s ♥ú♠❡r♦s r❡❛✐s ♣♦❞❡♠ s❡r r❡❧❛❝✐♦♥❛❞♦s ❜✐✉♥í✈♦❝❛♠❡♥t❡ ❝♦♠ ♦s ♣♦♥t♦s ❞❡ ✉♠❛ r❡t❛
❈♦♠ ❡st❛ ✐❞❡♥t✐✜❝❛çã♦✱ ❞❛❞♦s ♦s ♥ú♠❡r♦s
♥❛ r❡t❛
x, y ∈ R
●r❛✜❝❛♠❡♥t❡✳
✛
r
✲
y−x
x
x < y ✱ ❣❡♦♠❡tr✐❝❛♠❡♥t❡
(y − x) ✉♥✐❞❛❞❡s✳
❞❡ ♠♦❞♦ q✉❡
▲✱ ♦ ♣♦♥t♦ x ❡st❛ à ❡sq✉❡r❞❛ ❞❡ y ❛ ✉♠❛ ❞✐stâ♥❝✐❛
✛
▲✳
▲
r
✲
y
❉❡✜♥✐çã♦ ✶✳✶✸✳
❆ ❡s❝r✐t❛ ❞❡ ✉♠❛ ♣r♦♣♦s✐çã♦ ♠❛t❡♠át✐❝❛ q✉❡ ❝♦♥tê♠ r❡❧❛çõ❡s ❞♦ t✐♣♦
♦✉
✶✳✹✳✶
≥
<,
>,
é ❝❤❛♠❛❞❛ ✏❞❡s✐❣✉❛❧❞❛❞❡✑
≤
■♥❡q✉❛çã♦
❯♠❛ ✐♥❡q✉❛çã♦ é ✉♠❛ ❡①♣r❡ssã♦ ❛❧❣é❜r✐❝❛ q✉❡ ❝♦♥té♠ ❛s r❡❧❛çõ❡s
❙ã♦ ❡①❡♠♣❧♦s ❞❡ ✐♥❡q✉❛çõ❡s✿
<, >, ≤
♦✉
≥✳
3x − 4 < 2 + x
■♥❡q✉❛çã♦ ❞❡ ♣r✐♠❡✐r♦ ❣r❛✉
3x2 − 4x − 5 ≤ 0
■♥❡q✉❛çã♦ ❞❡ s❡❣✉♥❞♦ ❣r❛✉
x2 − 5x + 4
≤2
x2 − 4
■♥❡q✉❛çã♦ r❛❝✐♦♥❛❧
3x − 4 < 2 + x ≤ 3x2 − 4x
■♥❡q✉❛çã♦ ♠✐st❛
ax − bx ≤ a − b
■♥❡q✉❛çã♦ ❡①♣♦♥❡♥❝✐❛❧
sen2 x − cos2 x ≥ 1
■♥❡q✉❛çã♦ tr✐❣♦♥♦♠étr✐❝❛
❘❡s♦❧✈❡r ✉♠❛ ✐♥❡q✉❛çã♦ s✐❣♥✐✜❝❛ ❞❡t❡r♠✐♥❛r ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ✈❛❧♦r❡s q✉❡ ❛ ✈❛r✐á✈❡❧
✭✐♥❝ó❣♥✐t❛✮ t❡♠ q✉❡ ❛ss✉♠✐r✱ ❞❡ ♠♦❞♦ q✉❡✱ ❛♦ s✉❜st✐t✉✐r ♥❛ ✐♥❡q✉❛çã♦ ❡♠ ❡st✉❞♦✱ ❛
❞❡s✐❣✉❛❧❞❛❞❡ s❡❥❛ ✈❡r❞❛❞❡✐r❛✳ ❖ ❝♦♥❥✉♥t♦ ❡♠ r❡❢❡rê♥❝✐❛ é ❝❤❛♠❛❞♦ ✏ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ✑✳
❖❜s❡r✈❛çã♦ ✶✳✻✳
x<y
❙❡ t✐✈❡r♠♦s ❛s ❞❡s✐❣✉❛❧❞❛❞❡s
❡
y<z
❞❡t♦♥❛✲s❡
x < y < z✳
❉❡ ✐❣✉❛❧ ♠♦❞♦✿
❛✮ x < y ≤ z
x<y
s✐❣♥✐✜❝❛
❡
y ≤ z✳
❜✮ x ≥ y ≥ z
s✐❣♥✐✜❝❛
x≥y
❡
y ≥ z✳
❝✮ x ≥ y > z
s✐❣♥✐✜❝❛
x≥y
❡
y > z✳
❞✮ x ≥ y ≤ z
♥ã♦ t❡♠ s✐❣♥✐✜❝❛❞♦✱ é ♠❡❧❤♦r ❡s❝r❡✈❡r
r❡❧❛çã♦ ❡♥tr❡
x
❡
z✳
✷✾
y ≤ z
❡
y ≤ x✱
♥ã♦ ❤❛✈❡♥❞♦
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✶✳✹✳✷ ■♥t❡r✈❛❧♦s
❙❡❥❛♠
a
❡
b
♥ú♠❡r♦s r❡❛✐s t❛✐s q✉❡
R✳
(a, b) = { x ∈ R /. a < x < b}
s✉❜❝♦♥❥✉♥t♦s ❞❡
a ≤ b✳
❙ã♦ ❝❤❛♠❛❞♦s ❞❡ ✐♥t❡r✈❛❧♦s ♦s s❡❣✉✐♥t❡s
✐♥t❡r✈❛❧♦ ❛❜❡rt♦ ❞❡ ❡①tr❡♠♦s
a
❞❡ ♥ú♠❡r♦s r❡❛✐s ❝♦♠♣r❡❡♥❞✐❞♦s ❡str✐t❛♠❡♥t❡ ❡♥tr❡
a
❡
b✱
✐st♦ é✱ ♦ ❝♦♥❥✉♥t♦
b✳
❡
[a, b] = { x ∈ R /. a ≤ x ≤ b}
✐♥t❡r✈❛❧♦ ❢❡❝❤❛❞♦ ❞❡ ❡①tr❡♠♦s
(a, b] = { x ∈ R /. a < x ≤ b}
✐♥t❡r✈❛❧♦ s❡♠✐✲❛❜❡rt♦ ♣❡❧❛ ❡sq✉❡r❞❛ ❞❡ ❡①tr❡♠♦s
❞❡ ♥ú♠❡r♦s r❡❛✐s ❝♦♠♣r❡❡♥❞✐❞♦s ❡♥tr❡
a
❡
b
✭✐♥❝❧✉✐♥❞♦ ♦s ♣♦♥t♦s
❡
b
é✱ ♦ ❝♦♥❥✉♥t♦
a
❡
b
b✮✳
[a, b) = { x ∈ R /. a ≤ x < b} ✐♥t❡r✈❛❧♦ s❡♠✐✲❛❜❡rt♦ ♣❡❧❛ ❞✐r❡✐t❛ ❞❡ ❡①tr❡♠♦s a ❡ b✱
✐st♦ é ♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s ❝♦♠♣r❡❡♥❞✐❞♦s ❡♥tr❡ a ❡ b ✭✐♥❝❧✉✐♥❞♦ ♦ ♣♦♥t♦ a✮✳
▲♦❣♦✱ ✉♠ s✉❜❝♦♥❥✉♥t♦ I ❞❡ R é ✉♠ ✐♥t❡r✈❛❧♦ s❡✱ ❡ s♦♠❡♥t❡ s❡✱ ❛ s❡❣✉✐♥t❡ ❝✉♠♣r❡ ❛
✐st♦ é✱ ♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s ❝♦♠♣r❡❡♥❞✐❞♦s ❡♥tr❡
a
a ❡ b✱ ✐st♦
a ❡ b✮✳
✭✐♥❝❧✉✐♥❞♦ ♦ ♣♦♥t♦
s❡❣✉✐♥t❡ ♣r♦♣r✐❡❞❛❞❡✿
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✵✳ ✳
I ✉♠ ✐♥t❡r✈❛❧♦ ❡♠ R✱
x < z < y ✱ t❡♠♦s z ∈ I ✳
❙❡❥❛
❝♦♠
♣❛r❛ q✉❛✐sq✉❡r
x, y ∈ I
❝♦♠
x<y
❡ ♣❛r❛ q✉❛❧q✉❡r
z∈R
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
✶✳✹✳✸ ❆ r❡t❛ ❛♠♣❧✐❛❞❛✳ ■♥t❡r✈❛❧♦s ✐♥✜♥✐t♦s
❘❡t❛ ❛♠♣❧✐❛❞❛ é ♦ ❝♦♥❥✉♥t♦ ♥✉♠ér✐❝♦
❡
+∞
R = R ∪ {−∞, +∞}✱ ♦♥❞❡ −∞ ✭♠❡♥♦s ✐♥✜♥✐t♦✮
✭♠❛✐s ✐♥✜♥✐t♦✮ sã♦ sí♠❜♦❧♦s q✉❡ s❡ ❝♦♠♣♦rt❛♠ s❡❣✉♥❞♦ ❛s s❡❣✉✐♥t❡s ❝♦♥✈❡♥çõ❡s✳
✶✳
−∞ < x < +∞ ∀ x ∈ R
✷✳
✸✳
x.(±∞) = (±∞).x = (±∞) ∀ x ∈ R
✹✳
✺✳
x.(±∞) = (±∞).x = (∓∞) ∀ x ∈ R x < 0✳
x + (±∞) = (±∞) + x = (±∞✮
(±∞) + (±∞) = (±∞) x > 0✳
❖s ✐♥t❡r✈❛❧♦s ✐♥✜♥✐t♦s sã♦ ❞❡✜♥✐❞♦s ❝♦♠♦✿
(a, +∞) = { x ∈ R /. a < x }
[a, +∞) = { x ∈ R /. a ≤ x }
(−∞, b) = { x ∈ R /. x < b }
(−∞, b] = { x ∈ R /. x ≤ b }
❖s sí♠❜♦❧♦s ✲∞, +∞ ❡ ∞ s♦♠❡♥t❡ sã♦ ✐❞❡✐❛s ❞❡ ✏ ♥ú♠❡r♦s ✑ ♣♦ré♠ ♥ã♦ s❡ ❝♦♠♣♦rt❛♠
❝♦♠♦ ♥ú♠❡r♦s✳
❊①❡♠♣❧♦ ✶✳✷✺✳
❉❛❞♦s ♦s ✐♥t❡r✈❛❧♦s
A = [3, 5], B = (4, 7] ❡ C = [8, 10]
❡♥tã♦✿
a) A ∪ C = [3, 5] ∪ [8, 10]
b) A ∪ B = [3, 7]
c) A ∩ C = ∅
d) A ∩ B = (4, 5]
✸✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❖❜s❡r✈❛♠♦s q✉❡ ❛ ✉♥✐ã♦ ♦✉ ✐♥t❡rs❡çã♦ ❞❡ ❞♦✐s ✐♥t❡r✈❛❧♦s ♥❡♠ s❡♠♣r❡ é ✉♠ ✐♥t❡r✈❛❧♦✳
❊①❡♠♣❧♦ ✶✳✷✻✳
❙❡❥❛
❙♦❧✉çã♦✳
x ∈ (1, 2]
❉❛ ❤✐♣ót❡s❡
x2 − 2x ∈ (−1, 0]✳
✱ ♠♦str❡ q✉❡
x ∈ (1, 2]
t❡♠♦s q✉❡
1 < x ≤ 2✱
❡♥tã♦
0 < x − 1 ≤ 1✳
▲♦❣♦ ♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ♣❛r❛ ♥ú♠❡r♦s r❡❛✐s ♣♦s✐t✐✈♦s
2
(x − 1) − 1 ≤ 0✱
P♦rt❛♥t♦✱
✐st♦ é
2
−1 < x − 2x ≤ 0✳
0 < (x − 1)2 ≤ 1✱
❛ss✐♠
−1 <
x2 − 2x ∈ (−1, 0]✳
❊①❡♠♣❧♦ ✶✳✷✼✳
❙❡
x ∈ (0, 2)✱
❞❡t❡r♠✐♥❡ ♥ú♠❡r♦s
x ∈ (0, 2)✱
❡♥tã♦
m
M
❡
❞❡ ♠♦❞♦ q✉❡✿
❙♦❧✉çã♦✳
❙❡
0<x<2
✱ ❧♦❣♦
m<
x+2
< M✳
x+5
5 < x + 5 < 7✳
❉❛ ♣r♦♣r✐❡❞❛❞❡ ❞♦ ✐♥✈❡rs♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s t❡♠♦s✿
1
1
1
<
<
7
x+5
5
P♦r ♦✉tr♦ ❧❛❞♦✱ ❞❡
x ∈ (0, 2)
✭✶✳✺✮
s❡❣✉❡ q✉❡✿
2<x+2<4
✭✶✳✻✮
❉❡ ✭✶✳✺✮ ❡ ✭✶✳✻✮ t❡♠♦s ♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ❞❡ ♠♦♥♦t♦♥✐❛ ♣❛r❛ ♦ ♣r♦❞✉t♦ q✉❡✿
x+2
4
2
<
<
7
x+5
5
P♦rt❛♥t♦✱
m=
2
7
❡
M=
4
5
✭❡st❡s ♥ã♦ sã♦ ♦s ú♥✐❝♦s ♥ú♠❡r♦s✮✳
❊①❡♠♣❧♦ ✶✳✷✽✳
❉❡t❡r♠✐♥❛r ❡♠ t❡r♠♦s ❞❡ ✐♥t❡r✈❛❧♦s ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦✿
3x−4 < 2+x✳
❙♦❧✉çã♦✳
❚❡♠♦s q✉❡
3x − 4 < 2 + x✱
❡♥tã♦
2x < 6
P♦rt❛♥t♦✱ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ é ♦ ✐♥t❡r✈❛❧♦
❀ ❧♦❣♦
x < 3✳
(−∞, 3)✳
❊①❡♠♣❧♦ ✶✳✷✾✳
❘❡s♦❧✈❡r ❛ ✐♥❡q✉❛çã♦
❙♦❧✉çã♦✳
x2 − 4 < x + 2 ✳
✸✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
1o ▼ét♦❞♦✳
x2 − 4 < x + 2 ⇒ x2 − x − 6 < 0 ⇒ (x + 2)(x − 3) < 0
⇒ {x + 2 > 0 ❡ x − 3 < 0} ♦✉ {x + 2 < 0 ❡ x − 3 > 0}
⇒ {x > −2 ❡ x < 3} ♦✉ {x < −2 ❡ x > 3}
⇒ x ∈ (−2, 3) ♦✉ x ∈ ∅ ⇒ x ∈ (−2, 3)
P♦rt❛♥t♦✱ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦ é (−2, 3)
2o ▼ét♦❞♦✳❈♦♠♣❧❡t❛♥❞♦ q✉❛❞r❛❞♦s✳
1
1
x2 − 4 < x + 2 ⇒ x2 − x < 6 ⇒ x2 − x + < 6 +
4
4
5
1
5
1 2 25
⇒ − < x− <
⇒ −2 < x < 3
⇒ (x − ) <
2
4
2
2
2
P♦rt❛♥t♦✱ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦ é (−2, 3)
⇒
x ∈ (−2, 3)
3o ▼ét♦❞♦✳ ▼ét♦❞♦ ❞♦s ♣♦♥t♦s ❝rít✐❝♦s✳
x2 − 4 < x + 2 ⇒ x2 − x − 6 < 0 ⇒ (x + 2)(x − 3) < 0.
❖s ✈❛❧♦r❡s ❞❡ x ♣❛r❛ ♦s q✉❛✐s ✈❡r✐✜❝❛✲s❡ ❛ ✐❣✉❛❧❞❛❞❡ (x + 2)(x − 3) = 0✱ sã♦ x = −2 ❡
x = 3✳
+ + + + +−
+ r− − − − − − − r+ + + + + + ✲
+
✛
−∞
−2
3
+∞
◆♦ ❞✐❛❣r❛♠❛✱ ♦❜s❡r✈❛♠♦s q✉❡ (x + 2)(x − 3) < 0 s❡ x ∈ (−2, 3)
P♦rt❛♥t♦✱ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦ é (−2, 3)✳
❖❜s❡r✈❛çã♦ ✶✳✼✳
✶✮
P❛r❛ ❞❡t❡r♠✐♥❛r ♦ s✐♥❛❧ ❞♦ ❢❛t♦r
❙❡✱ ♦ s✐♥❛❧ ❞❡
❞❡
a✳
(x − a)
❙❡✱ ♦ s✐♥❛❧ ❞❡
❡sq✉❡r❞❛ ❞❡
✷✮
a✳
❝♦♥s✐❞❡r❡✿
é ♣♦s✐t✐✈♦✱ ❡♥tã♦
(x − a)
(x − a) > 0
é ♥❡❣❛t✐✈♦✱ ❡♥tã♦
❡
(x − a) < 0
x > a✱
❡
❧♦❣♦
x
x < a✱
E1 (x)
❞❛ ❢♦r♠❛
E1 (x) > 0
♦✉
E1 (x) ≥ 0
P❛r❛ ❞❡t❡r♠✐♥❛r ♦ s✐♥❛❧ ❞❡ ✉♠ ♣r♦❞✉t♦✱ ❝♦♥s✐❞❡r❡✿
(−)(+) = −
❡
(−)(−) = +✳
♦✉
❡st❛ à ❞✐r❡✐t❛
❧♦❣♦
x
❡st❛ à
E(x) < 0
E1 (x) ≤ 0✳
❖ ♠ét♦❞♦ ❞♦s ♣♦♥t♦s ❝rít✐❝♦s ❝♦♥s✐st❡ ❡♠ tr❛♥s❢♦r♠❛r ❛ ✐♥❡q✉❛çã♦ ❞❛❞❛
♦✉tr❛ ❡q✉✐✈❛❧❡♥t❡
✸✮
x − a✱
(+)(+) = +,
❡♠
(+)(−) = −
✱
▲♦❣♦✱ ❞❡✈❡♠♦s ❞❡t❡r♠✐♥❛r ♦s ♣♦♥t♦s ❝rít✐❝♦s ❞❡ E1 (x)❀ ✐st♦ é✱ ♦s ✈❛❧♦r❡s ❞♦ ♥✉♠❡r❛❞♦r
❡ ❞❡♥♦♠✐♥❛❞♦r ❞❡ E1 (x) ♦s q✉❛✐s s❡❥❛♠ ✐❣✉❛✐s ❛ ③❡r♦✱ ♣❛r❛ ❛ss✐♠ ❞❡t❡r♠✐♥❛r ♥❛ r❡t❛ r❡❛❧
R ♦s ✐♥t❡r✈❛❧♦s r❡s♣❡❝t✐✈♦s✳
P♦r ú❧t✐♠♦✱ t❡♠♦s q✉❡ ❞❡t❡r♠✐♥❛r ♦ s✐♥❛❧ ❞❡ E1 (x) ❡♠ ❝❛❞❛ ✉♠ ❞♦s ✐♥t❡r✈❛❧♦s q✉❡
❝✉♠♣r❡♠ ❛ ✐♥❡q✉❛çã♦✳
✸✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖ ❝♦♠♣♦rt❛♠❡♥t♦ ❞♦s s✐♥❛✐s ❡♠ ✉♠❛ ✐♥❡q✉❛çã♦ ♣r♦✈é♠ ❞♦ ❣rá✜❝♦ ❞❡ ❢✉♥çõ❡s ♣♦❧✐♥♦✲
♠✐❛✐s ♥✉♠ s✐st❡♠❛ ❞❡ ❝♦♦r❞❡♥❛❞❛s ❝❛rt❡s✐❛♥❛s✳ ❊st❡ tó♣✐❝♦ s❡rá tr❛t❛❞♦ ♣♦st❡r✐♦r♠❡♥t❡✳
❊①❡♠♣❧♦ ✶✳✸✵✳
❉❡t❡r♠✐♥❡ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦
❙♦❧✉çã♦✳
x2 − 9
≥ 0✳
25 − x2
x2 − 9
(x − 3)(x + 3)
(x − 3)(x + 3)
=
≥ 0 s❡✱ ❡ s♦♠❡♥t❡ s❡
≤ 0✱ sã♦
2
25 − x
(5 − x)(5 + x)
(x − 5)(x + 5)
♣♦♥t♦s ❝rít✐❝♦s✿ { −5, −3, 3, 5 }✳
❚❡♠♦s q✉❡
+
✛ + + + r− − − − +
r + + + + +−
r − −−+
r + + + + + +
✲
−∞
−5
−3
3
5
+∞
▲♦❣♦✱ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ é ♦ ✐♥t❡r✈❛❧♦ s❡♠✐✲❛❜❡rt♦ (−5, −3] ∪ [3, 5)
❆s ✐♥❡q✉❛çõ❡s ❞♦ ♣ró①✐♠♦ ❡①❡♠♣❧♦ ❞❡✈❡♠ s❡r ❡st✉❞❛❞❛s ❝♦♠ ♠✉✐t❛ ❛t❡♥çã♦✱ ✉♠❛ ✈❡③
q✉❡ sã♦ ❢r❡q✉❡♥t❡s ♦s ❡q✉í✈♦❝♦s ♥❛s s♦❧✉çõ❡s ♣♦r ♣❛rt❡ ❞♦s ❡st✉❞❛♥t❡s ♥❛ ❢❛s❡ ✐♥✐❝✐❛❧ ❞♦
❡st✉❞♦ ❞♦ ❝á❧❝✉❧♦✳
❊①❡♠♣❧♦ ✶✳✸✶✳
❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ✐♥❡q✉❛çõ❡s✿
❛✮ x2 < 16
❜✮ x2 < −9
❝✮ x3 < 27
❙♦❧✉çã♦✳
❞✮ (x + 1)4 < (x + 1)2
✭❛✮
❉❛ ✐♥❡q✉❛çã♦ E(x) : x2 < 16 t❡♠♦s ❛ ✐♥❡q✉❛çã♦ E1 (x) : x2 − 16 < 0✱ ❡♥tã♦ ♥❛ ❢♦r♠❛
❞❡ ❢❛t♦r❡s r❡s✉❧t❛ (x − 4)(x + 4) < 0.
+ + + + +−
+ r− − − − − − − r+ + + + + + ✲
+
✛
−∞
−4
4
+∞
❈♦♥s✐❞❡r❡ ♦ s❡❣✉✐♥t❡ q✉❛❞r♦✿
■♥t❡r✈❛❧♦s
(−∞, −4)
❙✐♥❛❧ ❞❡ E1 (x)
❈♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❡ E1 (x)
+
(−4, 4)
−
(4, +∞)
+
(−4, 4)
P♦rt❛♥t♦✱ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦ é (−4, 4)✳
❙♦❧✉çã♦✳
✭❜✮
✸✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❛ ✐♥❡q✉❛çã♦
x2 < −9✱
t❡♠♦s
x2 + 9 < 0✱
✐st♦ é ❛❜s✉r❞♦✱ ❛ s♦♠❛ ❞❡ ♥ú♠❡r♦s ♣♦s✐t✐✈♦s
s❡♠♣r❡ é ♣♦s✐t✐✈♦❀ ❧♦❣♦ ♥ã♦ ❡①✐st❡♠ ♥ú♠❡r♦s r❡❛✐s q✉❡ ❝✉♠♣r❛♠ ❛ ✐♥❡q✉❛çã♦✳
P♦rt❛♥t♦ ❛ s♦❧✉çã♦ é ♦ ❝♦♥❥✉♥t♦ ✈❛③✐♦✳
❙♦❧✉çã♦✳
✭❝✮
E2 (x) : x3 < 27✳
❈♦♥s✐❞❡r❡ ❛ ✐♥❡q✉❛çã♦
x3 − 33 < 0✱ ✐st♦ é (x − 3)(x2 + 3x + 9) < 0✳ ❖❜s❡r✈❡ q✉❡ x2 + 3x + 9 =
9
9
3
27
3
> 0 ∀ x ∈ R✱ ❡♥tã♦ x2 + 3x + 9 > 0 ∀ x ∈ R✳
x2 + 2 · x + + 9 − = (x + )2 +
2
4
4
2
4
2
▲♦❣♦✱ ♥❛ ✐♥❡q✉❛çã♦ (x − 3)(x + 3x + 9) < 0 s❡❣✉❡ q✉❡ x − 3 < 0❀ ✐st♦ é x < 3✳
❚❡♠♦s
P♦rt❛♥t♦✱ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ é ♦ ✐♥t❡r✈❛❧♦
❙♦❧✉çã♦✳
(−∞, 3)
✭❞✮
E(x) : (x + 1)4 < (x + 1)2 .
❚❡♠♦s ❛q✉✐ ❛ ✐♥❡q✉❛çã♦
(x + 1)4 < (x + 1)2
(x + 1)2 (x2 + 2x) < 0
⇔
(x + 1)4 − (x + 1)2 < 0
x(x + 1)2 (x + 2) < 0
⇔
(x + 1)2 ≥ 0 ♣❛r❛ t♦❞♦
✐♥❡q✉❛çã♦ E1 (x) : x(x + 2) < 0✳
❙❡♥❞♦
❙❡✉s ♣♦♥t♦s ❝rít✐❝♦s sã♦
−2
❡
(x + 1)2 .[(x + 1)2 − 1] < 0
⇔
♥ú♠❡r♦ r❡❛❧✱ ❛ ✐♥❡q✉❛çã♦
E(x)
tr❛♥s❢♦r♠♦✉✲s❡ ♥❛
0✳
+ + + +−
+ r− − − +
+
r + + + + + + + + + ✲
−∞
−2
0
+∞
+
✛
❖❜s❡r✈❡ ♦ s❡❣✉✐♥t❡ q✉❛❞r♦✿
■♥t❡r✈❛❧♦s
❙✐♥❛❧ ❞❡
(−∞, −2)
E1 (x)
❈♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❡
E1 (x)
+
(−2, 0) − {−1}
(0, +∞)
−
(−2, 0)
+
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✶✳
P❛r❛ t♦❞♦
x∈R
❡
a>0
❉❡♠♦♥str❛çã♦✳
❉✐✈✐❞✐♥❞♦ ♥❛ ✐♥❡q✉❛çã♦
t❡♠♦s✿
ax2 + bx + c ≥ 0
ax2 + bx + c ≥ 0
♣♦r
s❡✱ ❡ s♦♠❡♥t❡ s❡
a > 0
r❡s✉❧t❛✿
b2 ≤ 4ac✳
x2 +
b
c
x+
≥ 0✳
a
a
❈♦♠♣❧❡t❛♥❞♦ q✉❛❞r❛❞♦s
c
b
b
b
x + 2 x + + ( )2 ≥ ( )2
2a
a
2a
2a
2
✸✹
⇒
b
x+
2a
2
≥
b2 − 4ac
4a2
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ ❞❡s✐❣✉❛❧❞❛❞❡ ✈❛❧❡ ♣❛r❛ t♦❞♦
02 ≥
b2 − 4ac
4a2
x ∈ R✱
⇒
❡♠ ♣❛rt✐❝✉❧❛r ♣❛r❛
0 ≥ b2 − 4ac
⇒
x=−
b
✱
2a
❛ss✐♠
b2 ≤ 4ac
❆ ❞❡♠♦♥str❛çã♦ ❞❛ r❡❝í♣r♦❝❛ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✶✳✸✷✳
❘❡s♦❧✈❡r ❛s ✐♥❡q✉❛çõ❡s✿
❙♦❧✉çã♦✳
❛✮ 8x − x2 − 20 ≤ 0
❝✮ x6 − 1 ≤ 0
✭❛✮
❜✮x2 + x + 9 > 0
❞✮xp − 1 > 0✱
♦♥❞❡
p
é ♣r✐♠♦
0 ≤ x2 − 8x + 20✱ ❝♦♠♦ (−8)2 ≤ 4(1)(20)✱ s❡❣✉❡ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✶✳✺✱ ❛ s♦❧✉çã♦
❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s✳
❚❡♠♦s
é ♦
❙♦❧✉çã♦✳
✭❜✮
❉❛ ✐♥❡q✉❛çã♦
x2 + x + 9 > 0 ✱
s❡❣✉❡ q✉❡
(1)2 ≤ 4(1)(9)✱
❡♥tã♦✱ ♣❡❧❛
Pr♦♣r✐❡❞❛❞❡
❛ s♦❧✉çã♦ é ♦ ❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s✳
❙♦❧✉çã♦✳
✭✶✳✺✮✱
✭❝✮
x6 − 1 ≤ 0 ♣♦❞❡♠♦s ❡s❝r❡✈❡r s♦❜ ❛ ❢♦r♠❛ (x2 )3 − 13 ≤ 0 ❡♥tã♦✱ ❞❛
❞✐❢❡r❡♥ç❛ ❞❡ ❝✉❜♦s t❡♠♦s ✭x2 − 12 )[(x2 )2 + x2 + 1] ≤ 0 ✐st♦ é (x + 1)(x − 1)(x4 + x2 + 1) ≤ 0❀
♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✶✶✮ s❡❣✉❡ q✉❡ ✭x4 + x2 + 1) ≥ 0✱ ❧♦❣♦ ❛ ✐♥❡q✉❛çã♦ ♦r✐❣✐♥❛❧ s❡ r❡❞✉③ ❛
❝❛❧❝✉❧❛r (x + 1)(x − 1) ≤ 0 q✉❡ t❡♠ ❝♦♠♦ s♦❧✉çã♦ ♦ ✐♥t❡r✈❛❧♦ [−1, 1]✳
P♦rt❛♥t♦ ♦ ❝♦♥❥✉♥t♦ ❛ s♦❧✉çã♦ ❞❡ x6 − 1 ≤ 0 é ♦ ✐♥t❡r✈❛❧♦ [−1, 1]✳
❆ ✐♥❡q✉❛çã♦
❙♦❧✉çã♦✳
✭❞✮
xp − 1 > 0 ♦♥❞❡ p é ♣r✐♠♦✱ ♣♦❞❡r♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ ❞❡ ❢❛t♦r❡s ❝♦♠♦
(x−1)(xp−1 +xp−2 +xp−3 + · · · +x2 +x+1) > 0✱ ♦ ❢❛t♦r ✭xp−1 +xp−2 +xp−3 + · · · +x2 +x+1
s❡♠♣r❡ é ♣♦s✐t✐✈♦ ∀x ∈ R ♣♦✐s é ✉♠ ♣♦❧✐♥ô♠✐♦ ✐rr❡❞✉tí✈❡❧ ❞❡ ❣r❛✉ ♣❛r ✭t♦❞❛s s✉❛s r❛í③❡s
❆ ✐♥❡q✉❛çã♦
sã♦ ♥ú♠❡r♦s ♥ã♦ r❡❛✐s✮✳
❊♥tã♦✱ r❡s♦❧✈❡r ♥♦ss❛ ❞❡s✐❣✉❛❧❞❛❞❡ ♦r✐❣✐♥❛❧ r❡❞✉③✲s❡ ❛ r❡s♦❧✈❡r
é
x ∈ (1, +∞✮
P♦rt❛♥t♦✱ ❛ s♦❧✉çã♦ ❞❡
xp − 1 > 0 ✱
♦♥❞❡
p
(x−1) > 0✱ ❝✉❥❛ s♦❧✉çã♦
é ♣r✐♠♦ é ♦ ❝♦♥❥✉♥t♦
(1, +∞)✳
❊①❡♠♣❧♦ ✶✳✸✸✳
❘❡s♦❧✈❡r ❡♠
R
♦ s❡❣✉✐♥t❡✿
❛✮ x2 + 6x + 10 = 0
❝✮ x2 + 6x + 10 < 0
❙♦❧✉çã♦✳
❡✱
✭❛✮
❜✮ x2 + 6x + 10 ≥ 0
❞✮ x2 + 10 ≥ 0
√
−6 ± −4
❈♦♠♦ r❡s✉❧t❛❞♦ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✼✮ ✭❢ór♠✉❧❛ ❞❡ ❇❤❛s❦❛r❛✮✱ s❡❣✉❡ q✉❡ x =
2
❝♦♠♦ ♥ã♦ é ♥ú♠❡r♦ r❡❛❧✱ ❡♥tã♦ ♦ ♣r♦❜❧❡♠❛ ♥ã♦ t❡♠ s♦❧✉çã♦ ❡♠ R❀ ✐st♦ é x ∈
/ R✳
❙♦❧✉çã♦✳
✭❜✮
✸✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P❡❧❛
✐st♦ é
Pr♦♣r✐❡❞❛❞❡
∀x∈R
62 ≤ 4(10)✱
x2 + 6x + 10 ≥ 0
✭✶✳✶✶✮ t❡♠♦s q✉❡
t❡♠♦s q✉❡
❙♦❧✉çã♦✳ ✭❝✮
Pr♦♣r✐❡❞❛❞❡
❧♦❣♦ ♦ ♣r♦❜❧❡♠❛ t❡♠ s♦❧✉çã♦ ❡♠
62 ≤ 4(10)✱
0 ∀ x ∈ R✱ ❛ss✐♠✱ ♥✉♥❝❛ ♣♦❞❡rá ♦❝♦rr❡r q✉❡ x2 + 6x + 10 < 0✳
▲♦❣♦✱ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❡♠ ❡st✉❞♦ ♥ã♦ t❡♠ s♦❧✉çã♦ ❡♠ R✳
❈♦♠♦ r❡s✉❧t❛❞♦ ❞❛
✭✶✳✶✶✮ t❡♠♦s q✉❡
❧♦❣♦
R❀
x2 + 6x + 10 ≥
❙♦❧✉çã♦✳ ✭❞✮
x2 + 10 ≥ 0 é ✐♠❡❞✐❛t❛✱ ♥ã♦ ♣r❡❝✐s❛ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✶✳✼✱ ♣♦✐s ∀ x ∈
R, x2 ≥ 0✱ ❡♥tã♦ x2 + 10 ≥ 10 ≥ 0✱ ✐st♦ é ∀ x ∈ R, x2 + 10 ≥ 0✳
P♦rt❛♥t♦✱ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛ ✐♥❡q✉❛çã♦ x2 + 10 ≥ 0 sã♦ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s✳
❆ s♦❧✉çã♦ ❞❡
❆♣❧✐❝❛çõ❡s ❞❛s ❞❡s✐❣✉❛❧❞❛❞❡s
❊①❡♠♣❧♦ ✶✳✸✹✳
❯♠ t❡rr❡♥♦ ❞❡✈❡ s❡r ❧♦t❛❞♦✳ ❖s ❧♦t❡s✱ t♦❞♦s r❡t❛♥❣✉❧❛r❡s✱ ❞❡✈❡♠ t❡r ár❡❛ s✉♣❡r✐♦r ♦✉
✐❣✉❛❧ q✉❡ 1.500 m2 ✱ ❡ ❛ ❧❛r❣✉r❛ ❞❡ ❝❛❞❛ ✉♠ ❞❡✈❡ t❡r 20 m ❛ ♠❡♥♦s q✉❡ ♦ ❝♦♠♣r✐♠❡♥t♦✳
❉❡t❡r♠✐♥❡ ❛s ❞✐♠❡♥sõ❡s ❞♦ ♠❡♥♦r ❞♦s ❧♦t❡s q✉❡ ❝✉♠♣r❡♠ t❛✐s ❝♦♥❞✐çõ❡s✳
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s q✉❡ ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❡ ❝❛❞❛ ❧♦t❡ s❡❥❛
x
♠❡tr♦s✱ ❡♥tã♦ ❛ ❧❛r❣✉r❛ ♠❡❞❡
2
(x − 20) ♠❡tr♦s❀ ❧♦❣♦ s✉❛ ár❡❛ ♠❡❞❡ x(x − 20)m ✳ P♦r ♦✉tr♦ ❧❛❞♦✱ t❡♠ q✉❡ s❡r s✉♣❡r✐♦r ♦✉
✐❣✉❛❧ ❛ 1.500m2 ❀ ❛ss✐♠ x(x−20) ≥ 1.500 ♦♥❞❡ x2 −20x−1.500 ≥ 0✱ ✐st♦ é (x−50)(x+30) ≥
0 ⇒ x ≥ 50 ♦✉ x ≤ −30✳
❉❡s❝♦♥s✐❞❡r❛♥❞♦ x ≤ −30✱ t❡♠♦s q✉❡ ❛s ♠❡❞✐❞❛s ❞♦ ♠❡♥♦r ❞♦s ❧♦t❡s é✿ ❝♦♠♣r✐♠❡♥t♦
50 m ❡ ❧❛r❣✉r❛ 30 m✳
❊①❡♠♣❧♦ ✶✳✸✺✳
❯♠❛ ❣❛❧❡r✐❛ ✈❛✐ ♦r❣❛♥✐③❛r ✉♠❛ ❡①♣♦s✐çã♦ ❡ ❢❡③ ❞✉❛s ❡①✐❣ê♥❝✐❛s✿ ✐✮ ❛ ár❡❛ ❞❡ ❝❛❞❛
q✉❛❞r♦ ❞❡✈❡ s❡r ♥♦ ♠í♥✐♠♦ ❞❡ 2.800 cm2 ❀ ✐✐✮ ♦s q✉❛❞r♦s ❞❡✈❡♠ s❡r r❡t❛♥❣✉❧❛r❡s ❡ ❛ ❛❧t✉r❛
❞❡✈❡ t❡r 30 cm ❛ ♠❛✐s q✉❡ ❛ ❧❛r❣✉r❛✳
❉❡♥tr♦ ❞❡ss❛s ❡s♣❡❝✐✜❝❛çõ❡s✱ ❡♠ q✉❡ ✐♥t❡r✈❛❧♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s ❞❡✈❡♠ s❡ s✐t✉❛r ❛s
❧❛r❣✉r❛s ❞♦s q✉❛❞r♦s❄
❙♦❧✉çã♦✳
❉❛ s❡❣✉♥❞❛ ❝♦♥❞✐çã♦✱ s✉♣♦♥❤❛ ❛ ❧❛r❣✉r❛ ❞♦ q✉❛❞r♦ s❡❥❛
x cm✱
❡♥tã♦ s✉❛ ❛❧t✉r❛ ♠❡❞❡
(30 + x)cm ❡ s✉❛ ár❡❛ ♠❡❞❡ (30 + x)xcm2 ❀ ♣❡❧❛ ♣r✐♠❡✐r❛ ❝♦♥❞✐çã♦ 2.800 ≤ (30 + x)x ✱
♦♥❞❡ 0 ≤ x2 + 30x − 2.800
⇒ 0 ≤ (x + 70)(x − 40) ⇒ (x ≤ −70 ♦✉ x ≥ 40)✳
❉❡s❝♦♥s✐❞❡r❛♠♦s x ≤ −70✳
P♦rt❛♥t♦✱ ❛s ♠❡❞✐❞❛s ❞♦ q✉❛❞r♦ sã♦✿ ❧❛r❣✉r❛ 40 cm ❡ ❛❧t✉r❛ 70 cm✳
✸✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✶✲✸
✶✳ ❊①♣r❡ss❡ ❝❛❞❛ ✉♠ ❞♦s ✐♥t❡r✈❛❧♦s ❛❜❛✐①♦ ✉s❛♥❞♦ ♦✉tr❛ ♥♦t❛çã♦ ❛❞❡q✉❛❞❛ ✭❞✉♣❧❛s
❞❡s✐❣✉❛❧❞❛❞❡s ♣♦r ❡①❡♠♣❧♦✮
1. (1, 14)
2. (4, 7)
3. [−π, π]
5. [−10, −2]
6. (0, 4)
7. [−3π, π)
5
4. [− , 8]
3
8. (−16, 16]
A = {x ∈ N x é ✐♠♣❛r }, B = {x ∈ Z/. −3 ≤ x < 4}
C = { x ∈ N /. x < 6 }✳ Pr♦✈❡ q✉❡ ♦ ❝♦♥❥✉♥t♦ D✱ t❛❧ q✉❡ D = (A ∩ B) − C ✱ é
✷✳ ❙ã♦ ❞❛❞♦s ♦s ❝♦♥❥✉♥t♦s
❡
✈❛③✐♦✳
✸✳ ❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ❡q✉❛çõ❡s✿
1. 3x + 2 = 4 − x
4. x3 − 3x2 + x + 2 = 0
2. x2 − 2x − 3 = 0
5. 5x2 − 3x − 4 = 0
✹✳ ❉❡t❡r♠✐♥❡ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❡♠
R
3. x4 − 13x2 + 36 = 0
6. x4 − x2 + 20 = 0
♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❞❡s✐❣✉❛❧❞❛❞❡s✿
1. x2 ≥ 1
2. x3 ≥ x2
3. 2x − 7 < 5 − x
4. 2(x − 4) + 3x < 5x − 7
5. 3 − x < 5 + 3x
6. 2 > −3 − 3x ≥ −1
√
x2 + x − 2 < 4
9.
8. x2 − 4 < x + 2
7. 4x − 3(x + 5) < x − 18
3x + 8
10. 2x − 6 <
5
2x − 74
13. x2 + 3x + 8 <
x−7
✶✻✳
11.
14.
2x + 6 x
x2 + 4x + 10
− < 5 12.
>0
3
4
x2 − x − 12
x+4
x
<
15. (x + 1)4 ≤ (x + 1)2
x−2
x+1
7(3 − 2x) + 2(2x − 15) < 6(3x − 5) + 3(3x − 1)
✶✼✳
✺✳ ❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ✐♥❡q✉❛çõ❡s✿
3
> 3x − 16
2x − 3
1
1. (x − )(3x + 5) > 0
2
2. (x − 2)(x + 2) ≤ 0
3. x(x + 1) ≤ 0
4. (x − 1)(x + 1) ≤ 0
5.
6.
7. x < x2 − 12 < 4x
x−1
≥0
x
8. 3 − x < 5 + 3x
10. (x − 5)2 < (2x − 3)2 11. x2 + 3x > −2
✸✼
x+1
<0
x−1
√
9.
x2 + x − 2 ≥ 4
12. 3x − 4 < 2 + x
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
13. (x − 1)3 (x2 − 4)(x − 5) > 0 14. 2 ≤ 5 − 3x < 11
3 1−x
16. 5x − 4(x + 5) < x − 24
17. 3x − 5 < +
4
3
5
4
3
2
19. x − 2x − 15x > 0
20. 2x − x − 10 > 0
3
9
22. x2 + 8x − 65 < x − 18
23. x2 + x +
<0
5
100
25. 3(x + 4) + 4x < 7x + 2
26. 3x2 − 7x + 6 < 0
28. (x5 − 1)(x + 1) ≥ 0
✸✶✳
29. x2 + 20x + 100 > 0
(x3 − 5x2 + 7x − 3)(2 − x) ≥ 0
✸✷✳
R
15. x2 − 3x + 2 > 0
18. 3 − x < 5 + 3x
21. x2 − 3x + 2 > 0
24. x2 − 2x − 5 > 0
27. x2 − 2x − 8 < 0
30. 3x − 4 < x + 6
(x2 − 3)3 (x2 − 7)(x2 − 2x − 3) > 0
✻✳ ❉❡t❡r♠✐♥❡ ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❞❛s s❡❣✉✐♥t❡s ✐♥❡q✉❛çõ❡s✿
✶✳
✷✳
✸✳
✹✳
3x
5
x
+
<
s❡ a > b > 0
2
−b
a+b
a−b
x x
x
+ >1+
s❡ c > b > a > 0
a b
c
5x
2x
+4>
+ 2x s❡ b > a > 0
3a
6b
11(2x − 3) − 3(4x − 5) > 5(4x − 5)
a2
✼✳ ❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ✐♥❡q✉❛çõ❡s r❛❝✐♦♥❛✐s✿
1.
x−1
2x
x
+
<
x−1
x
x+1
4. (2x + 1)101 (x − 3)99 ≥ 0
7.
2.
5.
(1 − x − x2 )(2 − x − x2 )
≥ 0 8.
(3 − x)(2 − x)
2
<0
3.
2x + 3
2x − 3
1
<
6.
x+2
3
x5 − 1
x5 − 2
<
9.
x4 + 1
x4 + 2
3x + 5
≤3
2x + 1
3x2 + 12
>3
x2 + 4x − 5
x+4
x
>
x−7
x+1
✽✳ ▼♦str❡ q✉❡ s❡ x ❡ y ♥ã♦ sã♦ ❛♠❜♦s ✐❣✉❛✐s ❛ ③❡r♦✱ ❡♥tã♦ 4x2 + 6xy + 4y 2 > 0
3x2 + 5xy + 3y 2 > 0✳
❡
✾✳ ❉❡t❡r♠✐♥❛r ♣❛r❛ q✉❛✐s ✈❛❧♦r❡s ❞❡ x ∈ R ✈❡r✐✜❝❛ ❛ ❞❡s✐❣✉❛❧❞❛❞❡
3(x − a)a2 < x3 − a3 < 3(x − a)x2
1
1
1
1
+ 2 + 3 + · · · + n ✱ s❡ n → ∞
3 3
3
3
√
√
2 − 4c
−b
+
b
b2 − 4c
−b
−
✶✶✳ ❙✉♣♦♥❤❛ b2 −4c ≥ 0✳ ▼♦str❡ q✉❡ ♦s ♥ú♠❡r♦s
❡
2
2
❛♠❜♦s ❝✉♠♣r❡♠ ❛ ❡q✉❛çã♦✿ x2 + bx + c = 0✳
✶✵✳ ❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡✿ S = 1 +
✸✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
b2 − 4c < 0✳ ▼♦str❡
x2 + bx + c = 0✳
✶✷✳ ❙✉♣♦♥❤❛ q✉❡
❛ ❡q✉❛çã♦✿
a, b, c ❡ d
√
a2 + b 2 . c 2 + d 2 ✳
✶✸✳ ❙✉♣♦♥❤❛
√
✶✹✳ ▼♦str❡ q✉❡✿
✶✺✳ ▼♦str❡ q✉❡✿
√
R
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
q✉❡ ♥ã♦ ❡①✐st❡ ♥❡♥❤✉♠ ♥ú♠❡r♦ r❡❛❧ q✉❡ ❝✉♠♣r❡
♥ú♠❡r♦s r❡❛✐s✳ ▼♦str❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❙❝❤✇❛rt③✿
ac + bd ≤
x2 − 2x − 15 ≥ x + 1 ∀ x ∈ (−∞, −3]✳
1
≤ x2 + x + 2 ≤ 8 ∀ x ∈ [−1, 2] − {1}.
4
✶✻✳ ❖s ♥ú♠❡r♦s ♣♦s✐t✐✈♦s
a1 , a 2 , a 3 , · · · , a n
♥ã♦ sã♦ ✐❣✉❛✐s ❛ ③❡r♦ ❡ ❢♦r♠❛♠ ✉♠❛ ♣r♦✲
❣r❡ssã♦ ❛r✐t♠ét✐❝❛✳ ▼♦str❡ q✉❡✿
√
1
1
1
1
n−1
√ +√
√ +√
√ + ··· + √
√ =√
√
a1 + a2
a2 + a3
a3 + a4
an−1 + an
a1 + an
✶✼✳ ❉❡t❡r♠✐♥❡ ❛ q✉❛♥t✐❞❛❞❡ ❞❡ ♥ú♠❡r♦s ✐♥t❡✐r♦s✱ ♣♦s✐t✐✈♦s ❡ í♠♣❛r❡s✱ ❢♦r♠❛❞♦s ♣♦r três
❛❧❣❛r✐s♠♦s ❞✐st✐♥t♦s✱ ❡s❝♦❧❤✐❞♦s ❞❡♥tr❡ ♦s ❛❧❣❛r✐s♠♦s
0, 1, 2, 3, 4, 5, 6, 7, 8
✶✽✳ ❈❛❧❝✉❧❡ ❛ s♦♠❛ ❞❡ t♦❞❛s ❛s ❢r❛çõ❡s ✐rr❡❞✉tí✈❡✐s✱ ❞❛ ❢♦r♠❛
✐♥t❡r✈❛❧♦
[4, 7]✳
p
✱
72
❡
9✳
q✉❡ ♣❡rt❡♥ç❛♠ ❛♦
✶✾✳ ❉❡♥tr❡ ♦s ♣❛r❛❧❡❧❡♣í♣❡❞♦s ❝♦♠ s♦♠❛ ✜①❛ ❞❡ s✉❛s três ❛r❡st❛s s✐♠✉❧t❛♥❡❛♠❡♥t❡ ♣❡r✲
♣❡♥❞✐❝✉❧❛r❡s✱ ❛❝❤❛r ♦ ♣❛r❛❧❡❧❡♣í♣❡❞♦ ❞❡ ✈♦❧✉♠❡ ♠á①✐♠♦✳
C ✈✐s✐t❛♠ ♦ ❛ç✉❞❡ ✏ P❡✐①❡ ♥❛ ❝❤❛♣❛ ✑ ❡ ♣❡s❝❛♠ ♠❛✐s ❞❡ 8 ♣❡✐①❡s❀
B ♣❡♥s❛ ♣❡s❝❛r ♠❛✐s 4 ❝♦♠ ♦ q✉❡ t❡r✐❛ ♠❛✐s ♣❡✐①❡s q✉❡ A ❡ C ♣♦ré♠ B t❡♠ ♠❡♥♦s
♣❡✐①❡s q✉❡ C ❡ ♦ q✉❡ t❡♠ C ♥ã♦ ❝❤❡❣❛♠ ❛ 5✳ ◗✉❛♥t♦s ♣❡✐①❡s tê♠ ❝❛❞❛ ✉♠ ❞❡❧❡s❄
✷✵✳ ❚rês ♣❡ss♦❛s
A, B
❡
✷✶✳ P❛r❛ ✉♠❛ ❢❡st❛ ♥♦ ◆❛t❛❧✱ ✉♠❛ ❝r❡❝❤❡ ♥❡❝❡ss✐t❛✈❛ ❞❡
❞♦❛çã♦ ❞❡ ❘$ ✸✼✵✱✵✵✳
❜♦♥❡❝❛s ❡ ❝❛rr✐♥❤♦s ❥✉♥t♦s✳
60
❜r✐♥q✉❡❞♦s✳ ❘❡❝❡❜❡✉ ✉♠❛
❊s♣❡r❛✈❛✲s❡ ❝♦♠♣r❛r ❝❛rr✐♥❤♦s ❛ ❘$2, 00 ❝❛❞❛✱ ❜♦♥❡❝❛s ❛
❘$3, 00 ❡ ❜♦❧❛s ❛ ❘$3, 50✳
❝❛rr✐♥❤♦s ❡
120
❙❡ ♦ ♥ú♠❡r♦ ❞❡ ❜♦❧❛s ❞❡✈❡r✐❛ s❡r ✐❣✉❛❧ ❛♦ ♥ú♠❡r♦ ❞❡
▼♦str❡ q✉❡ ❛ s♦❧✉çã♦ s❡r✐❛ ❝♦♠♣r❛r✿
40
❜♦♥❡❝❛s✱
20
❜♦❧❛s✳
✷✷✳ ❊♠ ✉♠❛ ❢❛③❡♥❞❛✱ ❡①✐st✐❛ ✉♠ ♥ú♠❡r♦ ❞❡ ❝❛❜❡ç❛s ❞❡ ❣❛❞♦s✳ ❉❡♣♦✐s ❞❡ ❞✉♣❧✐❝❛r ❡ss❡
♥ú♠❡r♦✱ ❢♦✐ r♦✉❜❛❞♦
1
❝❛❜❡ç❛✱ s♦❜r❛♥❞♦ ♠❛✐s ❞❡
54✳
▼❡s❡s ❞❡♣♦✐s ♦❜s❡r✈♦✉✲s❡ q✉❡
tr✐♣❧✐❝♦✉ ♦ ♥ú♠❡r♦ ❞❡ ❝❛❜❡ç❛s ❞❡ ❣❛❞♦ q✉❡ ❡①✐st✐❛ ♥♦ ✐♥í❝✐♦ ❡ ❢♦r❛♠ r♦✉❜❛❞❛s
r❡st❛♥❞♦ ♠❡♥♦s ❞❡
80✳
5
◗✉❛♥t❛s ❝❛❜❡ç❛s ❞❡ ❣❛❞♦ ❡①✐st✐❛♠ ♥♦ ✐♥í❝✐♦❄
✷✸✳ ❆ ♠é❞✐❛ ❛r✐t♠ét✐❝❛ ❞❛s ✐❞❛❞❡s ❞❡ ✉♠ ❣r✉♣♦ ❞❡ ♠é❞✐❝♦s ❡ ❛❞✈♦❣❛❞♦s é
♠é❞✐❛ ❛r✐t♠ét✐❝❛ ❞❛s ✐❞❛❞❡s ❞♦s ♠é❞✐❝♦s é
35
40
❛♥♦s ❡ ❛ ❞♦s ❛❞✈♦❣❛❞♦s é
❛♥♦s✳ ❆
50
❛♥♦s✳
P♦❞❡✲s❡✱ ❡♥tã♦✱ ❛✜r♠❛r q✉❡✿
✸✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✷✹✳ ❯♠❛ ♣❡ss♦❛ ❝♦♠♣r❛ ✉♠ ❛♣❛rt❛♠❡♥t♦ ♣♦r ❘$10.000, 00✱ ❡♠ s❡❣✉✐❞❛ ♦ ❛❧✉❣❛✳ ❉❡✐✲
1
①❛♥❞♦ 12 % ❞❛ r❡♥❞❛ ❛♥✉❛❧ ♣❛r❛ r❡♣❛r❛çõ❡s ❡ ♠❛♥✉t❡♥çã♦✱ ♣❛❣❛♥❞♦ ❘$325, 00 ❞❡
2
1
■P❚❯ ❡ 5 % ❞❡s❝♦♥t❛♥❞♦ ♣♦r ❝♦♥t❛ ❞❡ ✐♥✈❡st✐♠❡♥t♦✳ ◗✉❛❧ é ❛ r❡♥❞❛ ♠❡♥s❛❧❄
2
✷✺✳ ❆ s♦♠❛ ❞❛s ✐❞❛❞❡s ❞❡ três ♣❡ss♦❛s é 96✳ ❆ ♠❛✐♦r t❡♠ 32 ❛♥♦s ♠❛✐s q✉❡ ❛ ♠❡♥♦r ❡
❛ ❞♦ ♠❡✐♦ 16 ❛♥♦s ♠❡♥♦s q✉❡ ❛ ♠❛✐♦r✳ ❈❛❧❝✉❧❛r ❛ ✐❞❛❞❡ ❞❡ ❝❛❞❛ ✉♠❛ ❞❛s ♣❡ss♦❛s✳
✷✻✳ ❊✉ t❡♥❤♦ ❛ ✐❞❛❞❡ q✉❡ ✈♦❝ê t✐♥❤❛✱ q✉❛♥❞♦ ❡✉ t✐♥❤❛ ❛ ♠❡t❛❞❡ ❞❛ ✐❞❛❞❡ q✉❡ ✈♦❝ê t❡♠✳
❆ s♦♠❛ ❞❡ ♥♦ss❛s ✐❞❛❞❡s ❤♦❥❡ é ✐❣✉❛❧ ❛ 35 ❛♥♦s✳ ◗✉❛✐s sã♦ ❛s ✐❞❛❞❡s ❤♦❥❡❄
✷✼✳ ▼♦str❡ q✉❡✱ ♣❛r❛ ♥ú♠❡r♦s r❡❛✐s x ❡ y ✱ ❡ n ∈ N n ≥ 2 sã♦ ✈á❧✐❞❛s ❛s s❡❣✉✐♥t❡s
✐❣✉❛❧❞❛❞❡s✿
✶✳
xn − y n = (x − y)(xn−1 + xn−2 y + xn−3 y 2 + · · · + x2 y n−3 + xy n−2 + y n−1 )
xn + y n = (x + y)(xn−1 − xn−2 y + xn−3 y 2 − · · · + (−1)n−3 x2 y n−3 − xy n−2 + y n−1 )
s♦♠❡♥t❡ q✉❛♥❞♦ n í♠♣❛r✳
✷✳
✷✽✳ ▼♦str❡ q✉❡✱ s❡ p é ♥ú♠❡r♦ ♣r✐♠♦✱ ❡ a ∈ N✱ ❡♥tã♦ ap − a é ♠ú❧t✐♣❧♦ ❞❡ p✳
✷✾✳ Pr♦✈❡ q✉❡✿ (1 − x)[(1 + x)(1 + x2 )(1 + x4 ) · · · (1 + x2 )] = 1 − x2
✐♥t❡✐r♦ x✱ ❡ t♦❞♦ n ≥ 0✳
n
✸✵✳ ❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡ E = x3 + 3x + 2✱ q✉❛♥❞♦ x =
p
√
3
(n+1)
♣❛r❛ q✉❛❧q✉❡r
1
2−1− p
✳
√
3
2−1
✸✶✳ ❈♦♥str✉✐r ♥ú♠❡r♦s 49, 4.489, 444.889, 44.448.889, . . . ❡t❝ ♦❜t❡♥❞♦ ❝❛❞❛ ✉♠ ❞❡❧❡s
✐♥s❡r✐♥❞♦ ♦ ♥ú♠❡r♦ 48 ♥♦ ♠❡✐♦ ❞♦ ♥ú♠❡r♦ ❛♥t❡r✐♦r✳ ❱❡r✐✜❝❛r q✉❡ ❡st❡s ♥ú♠❡r♦s
sã♦ q✉❛❞r❛❞♦s ♣❡r❢❡✐t♦s ❡ ❡♥❝♦♥tr❛r ❛ r❛✐③ q✉❛❞r❛❞❛ ❞♦ ♥ú♠❡r♦ q✉❡ ❝♦♥s✐st❡ ❞❡ 2n
❛❧❣❛r✐s♠♦s✳
✸✷✳ ❉❛❞❛ ❛ ❡q✉❛çã♦ ❞❡ r❛í③❡s x1 ❡ x2 ✿ (m2 − 5m + 6)x2 + (4 − m2 )x + 20 = 0✳ ❉❡t❡r♠✐♥❡
♦s ✈❛❧♦r❡s ❞♦ ♣❛râ♠❡tr♦ m t❛❧ q✉❡ x1 < 1 < x2 ✳
✹✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✳✺
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❱❛❧♦r ❛❜s♦❧✉t♦
❉❡✜♥✐çã♦ ✶✳✶✹✳
❖ ✈❛❧♦r ❛❜s♦❧✉t♦ ❞❡ ✉♠ ♥ú♠❡r♦ r❡❛❧
x
é ❞❡♥♦t❛❞♦ ♣♦r
| x |✱
s❡ ❢♦r ♣♦s✐t✐✈♦ ♦✉ ✐❣✉❛❧ ❛ ③❡r♦✱ ❡ é ✐❣✉❛❧ ❛ s❡✉ ♦♣♦st♦ ❛❞✐t✐✈♦
■st♦ é✿
| x |=
P♦r ❡①❡♠♣❧♦✱ | 3 |= 3,
| 0 |= 0,
x
é ♦ ♣ró♣r✐♦ ♥ú♠❡r♦
−x
x
s❡ ❢♦r ♥❡❣❛t✐✈♦✳
s❡ x ≥ 0,
−x s❡ x < 0.
| −4 |= −(−4) = 4
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✷✳
✶✳ | a |≥ 0, ∀ a ∈ R ❡ | a |= 0 s❡ a = 0✳
✷✳ | a |2 = a2
✸✳ | −a |=| a |
✹✳ | ab |=| a | . | b |
✺✳ | a + b |≤| a | + | b |
❉❡♠♦♥str❛çã♦✳
✳ ✳ ✳ ❉❡s✐❣✉❛❧❞❛❞❡ tr✐❛♥❣✉❧❛r
✭✷✮
❙✉♣♦♥❤❛ a ≥ 0✱ ❡♥tã♦ | a |= a ✱ ❧♦❣♦ | a |2 = a.a = a2 ✳
❙✉♣♦♥❤❛ a < 0✱ ❡♥tã♦ | a |= −a✱ ❧♦❣♦ | a |2 = (−a)(−a) = a2 ✳
✭✺✮
❉♦ ❢❛t♦ s❡r ♦ ✈❛❧♦r ❛❜s♦❧✉t♦ ❞❡ ✉♠ ♥ú♠❡r♦ r❡❛❧ s❡♠♣r❡ ♣♦s✐t✐✈♦✱ s❡❣✉❡ q✉❡✿
❉❡♠♦♥str❛çã♦✳
✭✶✳✼✮
ab ≤| a | . | b |
P❡❧❛ 2a ♣❛rt❡ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ ❡ ❞❡ ✭✶✳✼✮ t❡♠♦s q✉❡ | a+b |2 = (a+b)2 = a2 +2ab+b2 =|
a |2 +2ab+ | b |2 ≤| a |2 +2 | ab | + | b |2 = (| a | + | b |)2 ✱ ✐st♦ é | a + b |2 ≤ (| a | + | b |)2
s❡♥❞♦ t♦❞♦s ❡st❡ ú❧t✐♠♦s ♥ú♠❡r♦s ♣♦s✐t✐✈♦s ❝♦♥❝❧✉í♠♦s q✉❡ | a + b |≤| a | + | b |✳
❖❜s❡r✈❛çã♦ ✶✳✽✳
✐✮
✐✐✮
❆ ❞✐stâ♥❝✐❛ ❡♥tr❡ ♦s ♥ú♠❡r♦s r❡❛✐s
●❡♦♠❡tr✐❝❛♠❡♥t❡✱
|a|
a
❡
b
❞❛ r❡t❛ ♥✉♠ér✐❝❛ ❞❡♥♦t❛♠♦s ♣♦r
é ❛ ❞✐stâ♥❝✐❛ ♥❛ r❡t❛ ♥✉♠ér✐❝❛ ❞♦ ♥ú♠❡r♦
a
| b − a |✳
❛té ♦ ♣♦♥t♦ ③❡r♦✳
●r❛✜❝❛♠❡♥t❡✳
✹✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
r
r
| b − a |=| a − b |
✛
a
✲
✛
b
r
0
|a|
r
✲
a
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✸✳
✐✮
✐✐✮
✐✐✐✮
✐✈✮
b>0
❙❡
| a | = | b |✱
√
|
a2
| b |= a✱
❡
❡♥tã♦
|a|
❂
a
|a|
|=
b
|b|
❉❡♠♦♥str❛çã♦✳
❡♥tã♦
a=b
♦♥❞❡
√
♦✉
a2
a=b
a = −b✳
♦✉
a = −b✳
é ❛ r❛✐③ q✉❛❞r❛❞❛ ♣♦s✐t✐✈❛ ❞❡
a2 ✳
b 6= 0
s❡
✭✐✐✮
❉❛ ❤✐♣ót❡s❡ | a |=| b | ❡ ❞❛ ❞❡✜♥✐çã♦ ❞❡ ✈❛❧♦r ❛❜s♦❧✉t♦ ❞♦ ♥ú♠❡r♦ b✱ s❡❣✉❡ q✉❡ | a |= b
♦✉ | a |= −b✳ ❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✱ ❞❛ ❞❡✜♥✐çã♦ ❞❡ ✈❛❧♦r ❛❜s♦❧✉t♦ ♣❛r❛ ♦ ♥ú♠❡r♦ a s❡❣✉❡ ❞❡
| a |= b q✉❡✱ a = b ♦✉ −a = b❀ ❡ ❞❡ | a |= −b s❡❣✉❡ q✉❡ a = −b ♦✉ −a = −b✳
P♦rt❛♥t♦ a = b ♦✉ a = −b✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✹✳
✐✮
✐✐✮
| x |< b
s❡✱ ❡ s♦♠❡♥t❡ s❡
| x |≤ b
s❡✱ ❡ s♦♠❡♥t❡ s❡
✐✐✐✮
❙❡
b≥
✐✈✮
❙❡
b ≥ 0, | x | ≥ b
✈✮
✵✱
| x |> b
−b < x < b✳
−b ≤ x ≤ b✳
s❡✱ ❡ s♦♠❡♥t❡ s❡
x>b
s❡✱ ❡ s♦♠❡♥t❡ s❡
♦✉
x ≥ b
x < −b✳
♦✉
x ≤ −b
|| a | − | a ||≤| a − b |≤| a | + | b |
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✶✳✸✻✳
❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ❡q✉❛çõ❡s✿
❛✮ | 2x − 4 |
❂✻
❜✮ || 5 − 2x | −4 |
❞✮ | x2 − 4 |
❂ | 2x |
❡✮| x − 1 |
❂✽
❝✮
3x + 1
❂✹
x−1
✰ ✹| x − 3 | ❂ ✷| x + 2 |
✹✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✭❛✮
❉❛ ❞❡✜♥✐çã♦✱ ❞❡ | 2x − 4 |= 6 s❡❣✉❡✲s❡ q✉❡ 2x − 4 = 6 ♦✉ −(2x − 4) = 6✱ ❡♥tã♦
❙♦❧✉çã♦✳
x=
6−4
6+4
♦✉ x =
✳ P♦rt❛♥t♦✱ x = 5 ♦✉ x = −1✳
2
−2
✭❜✮
P❡❧❛ ❞❡✜♥✐çã♦ ❞❡ ✈❛❧♦r ❛❜s♦❧✉t♦✱ s❡❣✉❡ q✉❡ | 5 − 2x | −4 = 8 ♦✉ | 5 − 2x | −4 = −8✱
❡♥tã♦ 5 − 2x = 12 ♦✉ 5 − 2x = −12 ♦✉ | 5 − 2x |= −4✱ s❡♥❞♦ ❡st❛ ú❧t✐♠❛ ✉♠ ❛❜s✉r❞♦✳
❙♦❧✉çã♦✳
7
2
▲♦❣♦✱ ❞❡ 5 − 2x = 12 ♦❜t❡♠♦s x = − ✱ ❡ ❞❡ 5 − 2x = −12 ♦❜t❡♠♦s x =
7
2
P♦rt❛♥t♦ x = − ♦✉ x =
17
é s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛✳
2
17
✳
2
✭❡✮
❉❛ ❡q✉❛çã♦ | x − 1 | ✰ ✹| x − 3 | ❂ ✷| x + 2 | t❡♠♦s ♦ s❡❣✉✐♥t❡ ❞✐❛❣r❛♠❛✿
❙♦❧✉çã♦✳
✛
−∞
r
−2
r
r
1
3
✲
+∞
❙❡ x < −2 ❡♥tã♦✱ | x + 2 |= −(x + 2), | x − 1 |= −(x − 1) ❡ | x − 3 |= −(x − 3)✱ ❧♦❣♦
17
17
❡✱ ❝♦♠♦ x =
❛ ❡q✉❛çã♦ é ❡q✉✐✈❛❧❡♥t❡ ❛ −(x − 1) − 4(x − 3) = −2(x + 2) ♦♥❞❡ x =
3
3
♥ã♦ ♣❡rt❡♥❝❡ ❛♦ ✐♥t❡r✈❛❧♦ ❞❛ ❝♦♥❞✐çã♦✱ s❡❣✉❡ q✉❡ x ∈
/ R✳
❙❡ −2 ≤ x < 1 ❡♥tã♦ | x + 2 |= x + 2, | x − 1 |= −(x − 1) ❡ | x − 3 |= −(x − 3)✱ ❧♦❣♦
9
❛ ❡q✉❛çã♦ é ❡q✉✐✈❛❧❡♥t❡ ❛ −(x − 1) − 4(x − 3) = 2(x + 2) ♦♥❞❡ x = ❡✱ ♣❡❧❛ ❝♦♥❞✐çã♦
7
x∈
/ R✳
❙❡ 1 ≤ x < 3 ❡♥tã♦ | x + 2 |= x + 2, | x − 1 |= x − 1 ❡ | x − 3 |= −(x − 3)✱ ❧♦❣♦ ❛
7
5
❙❡ x ≥ 3✱ ❡♥tã♦ | x + 2 |= x + 2, | x − 1 |= x − 1 ❡ | x − 3 |= x − 3✱ ❧♦❣♦ ❛ ❡q✉❛çã♦ é
17
❡q✉✐✈❛❧❡♥t❡ ❛ x − 1 + 4(x − 3) = 2(x + 2) ♦♥❞❡ x = ✳
3
17
7
sã♦ s♦❧✉çõ❡s ❞❛ ❡q✉❛çã♦✳
P♦rt❛♥t♦✱ x = ✱ ❡ x =
5
3
❡q✉❛çã♦ é ❡q✉✐✈❛❧❡♥t❡ ❛ x − 1 − 4(x − 3) = 2(x + 2) ♦♥❞❡ x = ✳
❊①❡♠♣❧♦ ✶✳✸✼✳
A = { x ∈ R /. | 12x − 4 |< 10 }, B = { x ∈ R/. | 3x − 1 |≥ 1 } ❡ C =
{ x ∈ R /. | x2 − 4 |< 2 }✳ ❊①♣r❡ss❛r ♥❛ ❢♦r♠❛ ❞❡ ✐♥t❡r✈❛❧♦s ♦ ❝♦♥❥✉♥t♦ (A ∪ B) ∩ C ✳
❉❛❞♦s✿
❙♦❧✉çã♦✳
P❛r❛ ♦ ❝♦♥❥✉♥t♦ A t❡♠♦s q✉❡ | 12x − 4 |< 10✱ ❡♥tã♦ −10 < 12x − 4 < 10 ❧♦❣♦ ✲
1
14
1 14
<x<
❀ ✐st♦ é A = (− , ✮✳
2
12
2 12
P❛r❛ ♦ ❝♦♥❥✉♥t♦ B t❡♠♦s q✉❡ | 3x − 1 |≥ 1 ✐♠♣❧✐❝❛ 3x − 1 ≥ 1 ♦✉ 3x − 1 ≤ −1✱ ❧♦❣♦
2
2
x ≥ ♦✉ x ≤ 0✱ ✐st♦ é B = (−∞, 0] ∪ [ , +∞)✳
3
3
✹✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
√
√
−2 < x2 − 4 < 2✱ ❡♥tã♦ 2 < x2 < 6✱ ❧♦❣♦ − 6 < x < − 2
√
√
√ S√ √
√
2 < x < 6❀ ❛ss✐♠ C = (− 6, − 2) ( 2, 6)
√ S√ √
√
6) é s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛✳
P♦rt❛♥t♦✱ (A ∪ B) ∩ C = (− 6, − 2) ( 2,
P❛r❛ ♦ ❝♦♥❥✉♥t♦
♦✉
C
t❡♠♦s
❊①❡♠♣❧♦ ✶✳✸✽✳
❘❡s♦❧✈❡r
❙♦❧✉çã♦✳✳
| x2 − 4 | + | 2x − 5 |< 1✳
❚❡♠♦s q✉❡
▲♦❣♦✿
| x2 − 4 |= x2 − 4
s❡
2≤x
♦✉ s❡
x ≤ −2
❡
| 2x − 5 |= 2x − 5
s❡
5
≤ x✳
2
≤ −2 ✈❡♠ q✉❡ | x2 −4 |= x2 −4 ❡ | 2x−5 |= −(2x−5) ⇒ (x2 −4)−(2x−5) < 1
x2 − 2x < 0 ✐st♦ é (x − 0)(x − 2) < 0✱ ❡ ♣❡❧❛ ❝♦♥❞✐çã♦ x ∈
/ R✳
❙❡ x
♦♥❞❡
−2 < x < 2 t❡♠♦s q✉❡ | x2 −4 |= −(x2 −4) ❡ | 2x−5 |= −(2x−5) ❡♥tã♦ ❛ ✐♥❡q✉❛çã♦
é ❡q✉✐✈❛❧❡♥t❡ à −(x2 − 4) − (2x − 5) < 1 ♦♥❞❡ 0 < x2 + 2x − 8 ✐st♦ é 0 < (x + 4)(x − 2) ❡
❞❛ ❝♦♥❞✐çã♦ x ∈
/ R✳
5
❙❡ 2 ≤ x <
t❡♠♦s q✉❡ | x2 − 4 |= x2 − 4 ❡ | 2x − 5 |= −(2x − 5) ❡♥tã♦ ✭x2 − 4) −
2
(2x − 5) < 1 ♦♥❞❡ (x − 0)(x − 2) < 0 ❡ ♣❡❧❛ ❝♦♥❞✐çã♦ x ∈
/ R✳
5
≤ x t❡♠♦s q✉❡ | x2 −4 |= x2 −4 ❡ | 2x−5 |= (2x−5) ❡♥tã♦ ✭x2 −4)+(2x−5) < 1
❙❡
2
√
√
♦♥❞❡ x2 + 2x − 10 < 0 ✱ ✐st♦ é (x − 11 + 1)(x + 11 + 1) < 0✱ ♣❡❧❛ ❝♦♥❞✐çã♦ x ∈
/ R✳
❙❡
P♦rt❛♥t♦✱ ♥ã♦ ❡①✐st❡ s♦❧✉çã♦ ❡♠
R✳
❊①❡♠♣❧♦ ✶✳✸✾✳
❘❡s♦❧✈❡r
❙♦❧✉çã♦✳
❉♦ ❢❛t♦
q✉❛❞r❛❞♦s
(x − 1)2 − | x − 1 | +8 > 0✳
(x − 1)2 =| x − 1 |2 ✱ s❡❣✉❡ q✉❡ | x − 1 |2 − | x − 1 | +8 > 0✱ ❧♦❣♦ ❝♦♠♣❧❡t❛♥❞♦
1 1
1
31
1
> 0✳
| x − 1 |2 −2( ) | x − 1 | + − + 8 > 0✱ ❛ss✐♠ (| x − 1 | − )2 +
2
4 4
2
4
❖❜s❡r✈❡ q✉❡ ❡st❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✈❛❧❡ ♣❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧✳
P♦rt❛♥t♦✱
x∈R
é ❛ s♦❧✉çã♦✳
❖❜s❡r✈❛çã♦ ✶✳✾✳
❛✮
P♦r ❡①❡♠♣❧♦
❜✮
❡
b
❞❡♥♦t❛♠♦s
max{−1, 4} = 4
❡
min{6, −3} = −3✳
❖ ♠á①✐♠♦ ❞❡ ❞♦✐s ♥ú♠❡r♦s
❙❡
a < x < b✱
❡♥tã♦
P♦r ❡①❡♠♣❧♦✱ s❡
a
max{a, b}
❡ ♦ ♠í♥✐♠♦ ❞❡
min{a, b}✳
| x |< max{| a |, | b | }✳
2 < x < 6✱
❡♥tã♦
| x |< 6
✹✹
❡ s❡
−12 < x < 6✱
❡♥tã♦
| x |< 12✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✶✲✹
✶✳ ❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ❡q✉❛çõ❡s✿
✶✳
✹✳
✼✳
✶✵✳
✶✸✳
✶✻✳
✷✳
|| 5 − 2x | −4 |= 8
✸✳
| x2 − 4 |=| 2x |
✺✳
| x2 − 4 |= 3x + 4
✻✳
| x2 + 4 |=| 2x |
| 4x + 3 |= 7
x2 − 2 | x |= 3
✽✳
| x2 + 2 |= 2x + 1
| x − 4 |=| x − 2 |
✾✳
| 2x + 2 |= 6x − 18
| x2 − x − 6 |= x + 2
| 2x − 5 |= 3
✶✹✳
| 2x − 4 |= 6
3x + 1
=4
x−1
✶✶✳
| x − 2 |=| 3 − 2x |
2|x+2| − | 2x+1 − 1 |= 2x+1 + 1
✶✼✳
✶✷✳
2 | x − 1 | −x2 + 2x + 7 = 0
✶✺✳
| x − 1 | + 4 | x − 3 |= 2 | x + 2 |
✷✳ ❘❡♣r❡s❡♥t❡ ❝❛❞❛ ✉♠ ❞♦s ❝♦♥❥✉♥t♦s s❡❣✉✐♥t❡s ❛tr❛✈és ❞❡ ❞❡s✐❣✉❛❧❞❛❞❡s ❡♥✈♦❧✈❡♥❞♦
✈❛❧♦r❡s ❛❜s♦❧✉t♦s✳
✶✳
✸✳
A = { x ∈ R /. x < −4 ♦✉ x > 4 }
C = { x ∈ R /. x > −9 ♦✉ x < 9 }
✷✳
✹✳
B = { x ∈ R /. x ≤ −6 ♦✉ x ≥ 4 }
D = { x ∈ R /. x ≥ −9 ♦✉ x ≤ 7 }
✸✳ ❘❡♣r❡s❡♥t❡ ❣❡♦♠❡tr✐❝❛♠❡♥t❡ ♦s s❡❣✉✐♥t❡s ❝♦♥❥✉♥t♦s✱ ♣❛r❛ ❧♦❣♦ ❡♠ s❡❣✉✐❞❛ ❡①♣r❡ssá✲
❧♦s ♥❛ ❢♦r♠❛ ❞❡ ✐♥t❡r✈❛❧♦s✳
✶✳
✸✳
✺✳
✼✳
A = { x ∈ R /. 8 < x < 13 }
✷✳
C = { x ∈ R /. − 13 ≤ x < 15 }
✹✳
E = { x ∈ R /. | 9 − x |< 7 }
G = { x ∈ R /. x > −9
✻✳
x<9}
♦✉
✽✳
B = { x ∈ R /. − 14 ≤ x < 5 }
D = { x ∈ R /. | x |< 6 }
F = { x ∈ R /. | x + 5 |≥ 8 }
H = { x ∈ R /. | 9 − x |<| x + 5 | }
✹✳ ❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ✐♥❡q✉❛çõ❡s✿
1.
| x + 4 | − | 5 − 2x |> 4
2.
| x2 − 4 | + | 2x − 5 |< 6
3.
| 3− | 2x + 3 ||< 2
4.
| 3x − 2 |≤| 4x − 4 | + | 7x − 6 |
✺✳ ❊♥❝♦♥tr❛r ♦ ❝♦♥❥✉♥t♦ s♦❧✉çã♦ ❡♠
R✳
1.
| 2x + 3 | +4 = 5x
2.
| x2 − 4 |= −2x + 4 3.
4.
| 5x − 3 |=| 3x + 5 | 5.
| 2x + 6 |=| 4 − 5x | 6.
7.
2
1
≤
6 − 3x
|x+3|
✻✳ ❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡
E✱
s❡✿
8.
| x | −2 <| x − 1 |
E=
9.
| 4x + 1 | − | x − 1 |
x
✹✺
| 3x − 1 |= 2x + 5
6 − 5x
1
≤
3+x
2
| x − 3 | +2 | x |< 5
∀ x ∈ (0, 1)✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✼✳ ❙❡❥❛♠ a ❡ b ♥ú♠❡r♦s r❡❛✐s✱ ♠♦str❡ q✉❡✿
max{ a, b} =
a + b+ | b − a |
2
min{ a, b} =
✽✳ ❙✉♣♦♥❤❛ ε > 0 ❡ ♠♦str❡ ♦ s❡❣✉✐♥t❡✿
ε
, 1} ❡ | y − y0 |<
✶✳ ❙❡ | x − x0 |< min{
2(| y0 | +1)
✷✳
❙❡ | y0 |6= 0 ❡ | y − y0 |< min{
| y0 | ε | y0 | 2
,
}
2
2
a + b− | b − a |
2
ε
2(| x0 | +1)
⇒
⇒ | xy − x0 y0 |< ε
y 6= 0 ❡
1
1
−
< ε✳
y y0
✾✳ ▼♦str❡ q✉❡✱ s❡ ♦s ♥ú♠❡r♦s a1 , a2 , a3 , · · · , an ♥ã♦ sã♦ ✐❣✉❛✐s ❛ ③❡r♦ ❡ ❢♦r♠❛♠ ✉♠❛
1
1
1
1
n−1
+
+
+ ··· +
=
.
♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛✱ ❡♥tã♦✿
a1 .a2
a2 .a3
a3 .a4
an−1 .an
a1 .an
✶✵✳ P❛r❛ t❡st❛r s❡ ✉♠❛ ♠♦❡❞❛ é ❡q✉✐❧✐❜r❛❞❛✱ ✉♠ ♣❡sq✉✐s❛❞♦r ❧❛♥ç❛ 100 ✈❡③❡s ❡ ❛♥♦t❛ ♦
♥ú♠❡r♦ x ❞❡ ❝❛r❛✳ ❆ t❡♦r✐❛ ❡st❛tíst✐❝❛ ❛✜r♠❛ q✉❡ ❛ ♠♦❡❞❛ ❞❡✈❡ s❡r ❝♦♥s✐❞❡r❛❞❛ ♥ã♦
❡q✉✐❧✐❜r❛❞❛ s❡
x − 50
≥ 1, 645✳ P❛r❛ q✉❡ ✈❛❧♦r❡s ❞❡ x ❛ ♠♦❡❞❛ s❡rá ❡q✉✐❧✐❜r❛❞❛ ❄
5
✶✶✳ ❆ ♣r♦❞✉çã♦ ❞✐ár✐❛ ❡st✐♠❛❞❛ ① ❞❡ ✉♠❛ r❡✜♥❛r✐❛ é ❞❛❞❛ ♣♦r | x − 300.000 |≤ 275.000✱
♦♥❞❡ x é ♠❡❞✐❞❛ ❡♠ ❜❛rr✐s ❞❡ ♣❡tró❧❡♦✳ ❉❡t❡r♠✐♥❡ ♦s ♥í✈❡✐s ♠á①✐♠♦ ❡ ♠í♥✐♠♦ ❞❡
♣r♦❞✉çã♦✳
✶✷✳ ❆s ❛❧t✉r❛s h ❞❡ ❞♦s t❡rç♦s ❞❡ ❛❧✉♥♦s ❞❛ ▲✐❝❡♥❝✐❛t✉r❛ ❡♠ ▼❛t❡♠át✐❝❛✱ ✈❡r✐✜❝❛♠ ❛
❞❡s✐❣✉❛❧❞❛❞❡
h − 1, 76
≤ 1✱ ♦♥❞❡ h é ♠❡❞✐❞♦ ❡♠ ♠❡tr♦s✳ ❉❡t❡r♠✐♥❡ ♦ ✐♥t❡r✈❛❧♦
0, 22
❞❛ r❡t❛ r❡❛❧ q✉❡ ❡ss❛s ❛❧t✉r❛s s❡ s✐t✉❛♠✳
✶✸✳ ❯♠ t❡rr❡♥♦ ❞❡✈❡ s❡r ❧♦t❛❞♦✳ ❖s ❧♦t❡s✱ t♦❞♦s r❡t❛♥❣✉❧❛r❡s✱ ❞❡✈❡♠ t❡r ár❡❛ s✉♣❡r✐♦r
♦✉ ✐❣✉❛❧ ❛ 400 m2 ✱ ❡ ❛ ❧❛r❣✉r❛ ❞❡ ❝❛❞❛ ✉♠ ❞❡✈❡ t❡r ✸✵♠ ❛ ♠❡♥♦s q✉❡ ♦ ❝♦♠♣r✐♠❡♥t♦✳
❉❡t❡r♠✐♥❡ ❛s ❞✐♠❡♥sõ❡s ❞♦ ♠❡♥♦r ❞♦s ❧♦t❡s q✉❡ ❝✉♠♣r❡♠ t❛✐s ❝♦♥❞✐çõ❡s✳
✶✹✳ ❯♠❛ ❣❛❧❡r✐❛ ✈❛✐ ♦r❣❛♥✐③❛r ✉♠❛ ❡①♣♦s✐çã♦ ❡ ❢❡③ ❛s s❡❣✉✐♥t❡s ❡①✐❣ê♥❝✐❛s✿ ✐✮ ❛ ár❡❛ ❞❡
❝❛❞❛ q✉❛❞r♦ ❞❡✈❡ s❡r ♥♦ ♠í♥✐♠♦ ❞❡ 3.200 cm2 ❀ ✐✐✮ ♦s q✉❛❞r♦s ❞❡✈❡♠ s❡r r❡t❛♥❣✉❧❛r❡s
❡ ❛ ❛❧t✉r❛ ❞❡✈❡ t❡r 40 cm ❛ ♠❛✐s q✉❡ ❛ ❧❛r❣✉r❛✳ ❉❡♥tr♦ ❞❡ss❛s ❡s♣❡❝✐✜❝❛çõ❡s✱ ❡♠ q✉❡
✐♥t❡r✈❛❧♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s ❞❡✈❡♠ s❡ s✐t✉❛r ❛s ❧❛r❣✉r❛s ❞♦s q✉❛❞r♦s❄
✶✺✳ ❯♠❛ ❡♠♣r❡s❛ ❞❡ ✉t✐❧✐❞❛❞❡ ♣ú❜❧✐❝❛ t❡♠ ✉♠❛ ❢r♦t❛ ❞❡ ❛✈✐õ❡s✳ ❊st✐♠❛✲s❡ q✉❡ ♦ ❝✉st♦
♦♣❡r❛❝✐♦♥❛❧ ❞❡ ❝❛❞❛ ❛✈✐ã♦ s❡❥❛ ❞❡ C = 0, 2k + 20 ♣♦r ❛♥♦✱ ♦♥❞❡ C é ♠❡❞✐❞♦ ❡♠
♠✐❧❤õ❡s ❞❡ r❡❛✐s ❡ k ❡♠ q✉✐❧ô♠❡tr♦s ❞❡ ✈ô♦❀ s❡ ❛ ❡♠♣r❡s❛ q✉❡r q✉❡ ♦ ❝✉st♦ ♦♣❡r❛❝✐♦♥❛❧
❞❡ ❝❛❞❛ ❛✈✐ã♦ s❡❥❛ ♠❡♥♦r q✉❡ 100 ♠✐❧❤õ❡s ❞❡ r❡❛✐s✱ ❡♥tã♦ k t❡♠ s❡r ♠❡♥♦r ❛ q✉❡
✈❛❧♦r❄
✹✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✳✻
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❆①✐♦♠❛ ❞♦ s✉♣r❡♠♦
❉❡✜♥✐çã♦ ✶✳✶✺✳
❙❡❥❛ A ✉♠ s✉❜❝♦♥❥✉♥t♦ ♥ã♦ ✈❛③✐♦ ❞♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s R✳
✐✮
A
❉✐③❡♠♦s q✉❡ ♦ ❝♦♥❥✉♥t♦
k1 ∈ R
✐✐✮
t❛❧ q✉❡✿
a ≤ k1 ✱
✐✐✐✮
t❛❧ q✉❡✿
A
k2 ≤ a
❉✐③❡♠♦s q✉❡ ♦ ❝♦♥❥✉♥t♦
a ∈ A✳
♣❛r❛ t♦❞♦
❉✐③❡♠♦s q✉❡ ♦ ❝♦♥❥✉♥t♦
k2 ∈ R
é ❧✐♠✐t❛❞♦ s✉♣❡r✐♦r♠❡♥t❡✱ s❡ ❡①✐st❡ ✉♠ ❡❧❡♠❡♥t♦
é ❧✐♠✐t❛❞♦ ✐♥❢❡r✐♦r♠❡♥t❡✱ s❡ ❡①✐st❡ ✉♠ ❡❧❡♠❡♥t♦
✱ ♣❛r❛ t♦❞♦
A
a ∈ A✳
é ❧✐♠✐t❛❞♦✱ s❡ ❢♦r ❧✐♠✐t❛❞♦ s✉♣❡r✐♦r ❡ ✐♥❢❡r✐♦r♠❡♥t❡✳
❊①❡♠♣❧♦ ✶✳✹✵✳
❛✮
❖s ❝♦♥❥✉♥t♦s
N, A = (0, +∞)
❡
✐♥❢❡r✐♦r♠❡♥t❡❀ ✉♠ ❧✐♠✐t❡ ✐♥❢❡r✐♦r é
❜✮
❖s ❝♦♥❥✉♥t♦s
A = (−∞, 3]
❡
❧✐♠✐t❛❞♦s s✉♣❡r✐♦r♠❡♥t❡❀ ✉♠
❝✮
❖ ❝♦♥❥✉♥t♦
A={
1
B = { /. n ∈ N }
n
k1 = −5✳
sã♦ ❝♦♥❥✉♥t♦s ❧✐♠✐t❛❞♦s
B = { x ∈ R/. 5 − (x − 1)2 > 0 }
❧✐♠✐t❡ s✉♣❡r✐♦r é k2 = 5✳
1
/. n ∈ N }
n
sã♦ ❝♦♥❥✉♥t♦s
é ❧✐♠✐t❛❞♦✳
❉❡✜♥✐çã♦ ✶✳✶✻✳ ❙✉♣r❡♠♦✳ ❮♥✜♠♦✳
❙❡❥❛ A ⊂ R ❡ A 6= ∅✳
✐✮
s
❖ ♥ú♠❡r♦ r❡❛❧
1o
❖ ♥ú♠❡r♦
2o
❙❡
✐✐✮
b∈A
❡
s
é ❧✐♠✐t❡ s✉♣❡r✐♦r ❞❡
b<s
❖ ♥ú♠❡r♦ r❡❛❧
1o
❖ ♥ú♠❡r♦
2o
❙❡
b∈A
❡
é ❝❤❛♠❛❞♦ s✉♣r❡♠♦ ❞❡
r
r
❡♥tã♦ ❡①✐st❡
A❀
x∈A
r<b
❡♥tã♦ ❡①✐st❡
A❀
a ≤ s✱
t❛❧ q✉❡
A
q✉❛♥❞♦✿
a ∈ A✳
b < x ≤ s✳
r ≤ a✱
t❛❧ q✉❡
s = sup A
♣❛r❛ t♦❞♦
❡ ❞❡♥♦t❛♠♦s
✐st♦ é
x∈A
❡ ❞❡♥♦t❛♠♦s
✐st♦ é
é ❝❤❛♠❛❞♦ í♥✜♠♦ ❞❡
é ❧✐♠✐t❡ ✐♥❢❡r✐♦r ❞❡
A
r = inf A
♣❛r❛ t♦❞♦
q✉❛♥❞♦ ✿
a ∈ A✳
r ≤ x < b✳
❆ss✐♠✱ s❡❣✉❡ q✉❡ ♦ ♠❡♥♦r ❞♦s ❧✐♠✐t❡s s✉♣❡r✐♦r❡s é ❝❤❛♠❛❞♦ ❞❡ ✏s✉♣r❡♠♦✑ ❡✱ ♦ ♠❛✐♦r ❞♦s
❧✐♠✐t❡s ✐♥❢❡r✐♦r❡s é ❝❤❛♠❛❞♦ ✏í♥✜♠♦✑✳
❖ í♥✜♠♦ ♦✉ s✉♣r❡♠♦ ❞❡ ✉♠ ❝♦♥❥✉♥t♦✱ ♣♦❞❡ ♦✉ ♥ã♦ ♣❡rt❡♥❝❡r ❛♦ ♣ró♣r✐♦ ❝♦♥❥✉♥t♦✳
P♦r ❡①❡♠♣❧♦ ♦ í♥✜♠♦ ♣❛r❛ ♦ ❝♦♥❥✉♥t♦
❝♦♥❥✉♥t♦✳
A={
✹✼
1
/. n ∈ N }
n
é ♦ ③❡r♦ ❡ ♥ã♦ ♣❡rt❡♥❝❡ ❛♦
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡✜♥✐çã♦ ✶✳✶✼✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
▼á①✐♠♦✳ ▼í♥✐♠♦✳
❙❡ ♦ s✉♣r❡♠♦ ❡ í♥✜♠♦ ❞❡ ✉♠ ❝♦♥❥✉♥t♦
A
sã♦ ❝❤❛♠❛❞♦s ❞❡ ✏♠á①✐♠♦✑ ❡ ✏♠í♥✐♠♦✑ r❡s♣❡❝t✐✈❛♠❡♥t❡ ❞❡
min A
❡
inf .(A) = 0
inf(C) = 0
B={
A = (0, 9]
❙❡❥❛♠ ♦s ❝♦♥❥✉♥t♦s✿
❆①✐♦♠❛ ✶✳✷✳
A
❡
✭r❡s♣❡❝t✐✈❛♠❡♥t❡✮✳
❊①❡♠♣❧♦ ✶✳✹✶✳
❊♥tã♦✿
A✱ ❡♥tã♦
❞❡♥♦t❛♠♦s max A
♣❡rt❡♥❝❡♠ ❛♦ ♠❡s♠♦ ❝♦♥❥✉♥t♦
sup .(A) = 9 = max(A);
❡
❡
sup(C)
1
/. n ∈ N }
C = N✳
n
inf(B) = 0 ❡ sup(B) = 1 = max(B)
♥ã♦ ❡①✐st❡✳
❆①✐♦♠❛ ❞♦ ❙✉♣r❡♠♦✳
❚♦❞♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s ♥ã♦ ✈❛③✐♦ ❧✐♠✐t❛❞♦ s✉♣❡r✐♦r♠❡♥t❡✱ t❡♠ s✉♣r❡♠♦
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✺✳
❙❡ ♦ ❝♦♥❥✉♥t♦
♣♦ss✉✐ í♥✜♠♦✳
A ⊂ R
é ❧✐♠✐t❛❞♦ ✐♥❢❡r✐♦r♠❡♥t❡ s❡♥❞♦
A 6= ∅ ✱
❡♥tã♦ ♦ ❝♦♥❥✉♥t♦
A
❉❡♠♦♥str❛çã♦✳
❙❡❥❛
❙❡
c
B = { −x ∈ R /. x ∈ A }, B 6= ∅
é ❧✐♠✐t❡ ✐♥❢❡r✐♦r ❞❡
é ❧✐♠✐t❡ s✉♣❡r✐♦r ❞❡
❛ss✐♠
B
A✱
❡♥tã♦
c ≤ a ∀ a ∈ A❀
−a ≤ −c ∀ a ∈ A ❡♥tã♦ −c
B ♣♦ss✉✐ s✉♣r❡♠♦ s = sup(B)❀
❧♦❣♦
❡ ♣❡❧♦ ❛①✐♦♠❛ ❞♦ s✉♣r❡♠♦ ❡♥tã♦
−s = inf(A)✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✻✳
Pr✐♥❝í♣✐♦ ❞❛ ❜♦❛ ♦r❞❡♠✳
❚♦❞♦ s✉❜❝♦♥❥✉♥t♦ ♥ã♦ ✈❛③✐♦ ❞❡
N
♣♦ss✉✐ ♠í♥✐♠♦✳
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ❧❡✐t♦r✳
✶✳✼
■♥❞✉çã♦ ♠❛t❡♠át✐❝❛
❉❡✜♥✐çã♦ ✶✳✶✽✳
❯♠ s✉❜❝♦♥❥✉♥t♦
M
❞❡ ♥ú♠❡r♦s r❡❛✐s ❞✐③✲s❡ q✉❡ é ✏ ❝♦♥❥✉♥t♦ ✐♥❞✉t✐✈♦✑✱ s❡ ❝✉♠♣r❡
❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✿
✐✮
✐✐✮
0 ∈ M✳
∀x∈M
❡♥tã♦
(x + 1) ∈ M
❊①❡♠♣❧♦ ✶✳✹✷✳
✹✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
• ❖ ❝♦♥❥✉♥t♦ R ❞❡ ♥ú♠❡r♦s r❡❛✐s é ✐♥❞✉t✐✈♦✱ ♣♦✐s 0 é ✉♠ ♥ú♠❡r♦ r❡❛❧ ❡ x + 1 t❛♠❜é♠
é r❡❛❧ ♣❛r❛ t♦❞♦ x r❡❛❧✳
• ❖ ❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♦s ♥ú♠❡r♦s ✐♥t❡✐r♦s é ✐♥❞✉t✐✈♦✳
• ❖ ❝♦♥❥✉♥t♦ { 0,
3
5
1
, 1, , 2, , · · · } é ✐♥❞✉t✐✈♦
2
2
2
❊①❡♠♣❧♦ ✶✳✹✸✳
❙❡❣✉♥❞♦ ♥♦ss❛ ❞❡✜♥✐çã♦✱ ♦s s❡❣✉✐♥t❡s ❝♦♥❥✉♥t♦s ♥ã♦ sã♦ ✐♥❞✉t✐✈♦s✿
• { 1, 2, 3, 4, 5, · · · }
• { 0, 1, 2, 3, 4, 5 }
• { 0, 2, 4, 6, · · · }
❊♠ ♠❛t❡♠át✐❝❛✱ ♠✉✐t❛s ❞❡✜♥✐çõ❡s ❡ ♣r♦♣♦s✐çõ❡s s❡ r❡❛❧✐③❛♠ ✉t✐❧✐③❛♥❞♦ ♦ ♣r✐♥❝í♣✐♦
❞❡ ✐♥❞✉çã♦ ♠❛t❡♠át✐❝❛✳ ❆ ❣❡♥❡r❛❧✐③❛çã♦ ❞❡ ✉♠❛ ♣r♦♣r✐❡❞❛❞❡ ❛♣ós ✈❡r✐✜❝❛çã♦ ❞❡ q✉❡ ❛
♣r♦♣r✐❡❞❛❞❡ é ✈á❧✐❞❛ ❡♠ ❛❧❣✉♥s ❝❛s♦s ♣❛rt✐❝✉❧❛r❡s✱ ♣♦❞❡ ❝♦♥❞✉③✐r ❛ sér✐♦s ❡♥❣❛♥♦s ❝♦♠♦
♠♦str❛ ♦ s❡❣✉✐♥t❡ ❡①❡♠♣❧♦✿
❊①❡♠♣❧♦ ✶✳✹✹✳
❈♦♥s✐❞❡r❡ ❛ r❡❧❛çã♦ f (n) = 22 + 1 ❞❡✜♥✐❞❛ ♣❛r❛ t♦❞♦ ♥ ∈ N✳
❚❡♠♦s q✉❡✱ q✉❛♥❞♦✿
n
n = 0 ❡♥tã♦ f (0) = 22 + 1 = 3
0
n = 1 ❡♥tã♦ f (1) = 22 + 1 = 5
1
n = 2 ❡♥tã♦ f (2) = 22 + 1 = 17
2
n = 3 ❡♥tã♦ f (3) = 22 + 1 = 257
3
n = 4 ❡♥tã♦ f (4) = 22 + 1 = 65.537
4
❖❜s❡r✈❡ q✉❡ t♦❞♦s ❛q✉❡❧❡s ♥ú♠❡r♦s ❡♥❝♦♥tr❛❞♦s sã♦ ♥ú♠❡r♦s ♣r✐♠♦s❀ P✳ ❋❡r♠❛t ✭1601−
1665✮ ❛❝r❡❞✐t♦✉ q✉❡ ❛ ❢ór♠✉❧❛ f (n) r❡♣r❡s❡♥t❛r✐❛ ♥ú♠❡r♦s ♣r✐♠♦s✱ q✉❛❧q✉❡r q✉❡ ❢♦ss❡ ♦
✈❛❧♦r ♣❛r❛ n ∈ N✱ ♣♦✐s ❡st❛ ✐♥❞✉çã♦ ❡r❛ ❢❛❧s❛ ❊✉❧❡r✼ ♠♦str♦✉ q✉❡ ♣❛r❛ n = 5 r❡s✉❧t❛
f (5) = 4.294.967.297 = 641 × 6.700.417 ❧♦❣♦✱ ❛ ❛✜r♠❛çã♦ ❞❡ P✳ ❋❡r♠❛t ❢♦✐ ♣r❡❝✐♣✐t❛❞❛✳
❊①❡♠♣❧♦ ✶✳✹✺✳
❈♦♥s✐❞❡r❡♠♦s ❛ r❡❧❛çã♦ f (n) = n2 + n + 41 ❞❡✜♥✐❞❛ ♣❛r❛ t♦❞♦ n ∈ N
✼ ▲❡♦♥❛r❞
❊✉❧❡r (1707 − 1783) ❡st✉❞♦✉ ❝♦♠ ❏♦❤❛♥♥ ❇❡r♥♦✉❧❧✐✱ ❛✐♥❞❛ ♣❛✐ ❞❡ tr❡③❡ ✜❧❤♦s ❡ ✜❝❛♥❞♦
❝♦♠♣❧❡t❛♠❡♥t❡ ❝❡❣♦✱ ❡s❝r❡✈❡✉ ♠❛✐s ❞❡ ♦✐t♦❝❡♥t♦s tr❛❜❛❧❤♦s ❡ ❧✐✈r♦s ❡♠ t♦❞♦s ♦s r❛♠♦s ❞❛ ♠❛t❡♠át✐❝❛✳
✹✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
40, f (n) é ✉♠ ♥ú♠❡r♦ ♣r✐♠♦✳ ❈♦♠ ❡❢❡✐t♦✱ s❡
n = 1, f (1) = 43; s❡ n = 2, f (2) = 47; s❡ n = 3, f (3) = 53; . . . ; s❡ n = 39, f (39) = 1.601✳
2
P♦ré♠ s❡ n = 40 t❡♠♦s f (40) = 40 + 40 + 41 = (41)(41) ♥ã♦ é ♣r✐♠♦✱ ♠♦str❛♥❞♦ q✉❡ ❛
2
s❡♥t❡♥ç❛ é ❢❛❧s❛✳ ❊♠ 1.772 ❊✉❧❡r ♠♦str♦✉ q✉❡ f (n) = n + n + 41 ❛ss✉♠❡ ✈❛❧♦r❡s ♣r✐♠♦s
♣❛r❛ n = 0, 1, 2, 3, . . . , 39✳
❖❜s❡r✈❡ q✉❡✱ ♣❛r❛ ✈❛❧♦r❡s ♠❡♥♦r❡s q✉❡
f (n−1) = f (−n) ♠♦str♦✉ q✉❡ n2 +n+41 ❛ss✉♠❡ ✈❛❧♦r❡s ♣r✐♠♦s
♣❛r❛ 80 ♥ú♠❡r♦s ✐♥t❡✐r♦s ❝♦♥s❡❝✉t✐✈♦s✱ s❡♥❞♦ ❡st❡s ✐♥t❡✐r♦s✿ n = −40, −39, −38, . . . 0,
1, 2, 3, . . . 38, 39❀ s✉❜st✐t✉✐♥❞♦ ❛ ✈❛r✐á✈❡❧ n ♣♦r n − 40 t❡♠♦s f (n − 40) = g(n) =
n2 − 79n + 1.601❀ ❧♦❣♦ g(n) = n2 − 79n + 1.601 ❛ss✉♠❡ ✈❛❧♦r❡s ♣r✐♠♦s ♣❛r❛ t♦❞♦s ♦s
♥ú♠❡r♦s ♥❛t✉r❛✐s ❞❡ 0 ❛té 79✳
❊✉❧❡r ♦❜s❡r✈❛♥❞♦ q✉❡
❊①❡♠♣❧♦ ✶✳✹✻✳
❆ s❡♥t❡♥ç❛✿ ✏ 2n
♣❛r❛
+ 2 é ❛ s♦♠❛ ❞❡ ❞♦✐s ♥ú♠❡r♦s ♣r✐♠♦s✑ é ✉♠❛ s❡♥t❡♥ç❛ ✈❡r❞❛❞❡✐r❛
n = 1, n = 2, n = 3, n = 4, . . . ❡✱ ❝♦♠♦ ♥♦s ❡①❡♠♣❧♦s ❛♥t❡r✐♦r❡s ❛♣ós ♠✉✐t❛s
t❡♥t❛t✐✈❛s✱ ♥ã♦ ❛❝❤❛♠♦s ♥❡♥❤✉♠ ♥ú♠❡r♦ ♥❛t✉r❛❧ q✉❡ ❛ t♦r♥❡ ❢❛❧s❛✳
◆✐♥❣✉é♠ ❛té ❤♦❥❡✱ ❛❝❤♦✉ ✉♠ ♥ú♠❡r♦ ♥❛t✉r❛❧ q✉❡ t♦r♥❛ss❡ ❛ s❡♥t❡♥ç❛ ❢❛❧s❛ ❡ ♥✐♥❣✉é♠✱
❛té ❤♦❥❡✱ s❛❜❡ ❞❡♠♦♥str❛r q✉❡ ❛ s❡♥t❡♥ç❛ é s❡♠♣r❡ ✈❡r❞❛❞❡✐r❛✳
❝♦♥❤❡❝✐❞❛ ❝♦♠♦ ❝♦♥❥❡t✉r❛ ❞❡ ●♦❧❞❜❛❝❤✱ ❢♦✐ ❢❡✐t❛ ❡♠
1742✱
❊st❛ ❢❛♠♦s❛ s❡♥t❡♥ç❛
❡♠ ✉♠❛ ❝❛rt❛ ❞✐r✐❣✐❞❛ ❛ ❊✉❧❡r
❞✐③✿
✏ ❚♦❞♦ ✐♥t❡✐r♦ ♣❛r✱ ♠❛✐♦r ❞♦ q✉❡
2✱
é ❛ s♦♠❛ ❞❡ ❞♦✐s ♥ú♠❡r♦s ♣r✐♠♦s✳✑
◆ã♦ s❛❜❡♠♦s ❛té ❤♦❥❡ s❡ ❡st❛ s❡♥t❡♥ç❛ é ✈❡r❞❛❞❡✐r❛ ♦✉ ❢❛❧s❛✳
❊♠ r❡s✉♠♦✱ ❞❛❞❛ ✉♠❛ ❛✜r♠❛çã♦ s♦❜r❡ ♥ú♠❡r♦s ♥❛t✉r❛✐s✱ s❡ ❡♥❝♦♥tr❛♠♦s ✉♠ ❝♦♥tr❛✲
❡①❡♠♣❧♦✱ s❛❜❡♠♦s q✉❡ ❛ ❛✜r♠❛çã♦ ♥ã♦ é s❡♠♣r❡ ✈❡r❞❛❞❡✐r❛✳
❊ s❡ ♥ã♦ ❛❝❤❛♠♦s ✉♠ ❝♦♥tr❛✲❡①❡♠♣❧♦❄ ◆❡st❛ ❝❛s♦✱ s✉s♣❡✐t❛♥❞♦ q✉❡ ❛ ❛✜r♠❛çã♦ s❡❥❛
✈❡r❞❛❞❡✐r❛ s❡♠♣r❡✱ ✉♠❛ ♣♦ss✐❜✐❧✐❞❛❞❡ é t❡♥t❛r ❞❡♠♦♥str❛✲❧❛ r❡❝♦rr❡♥❞♦ ❛♦ ♣r✐♥❝í♣✐♦ ❞❡
✐♥❞✉çã♦❀ é ♥❡❝❡ssár✐♦ ♣♦rt❛♥t♦✱ ❞✐s♣♦r ❞❡ ✉♠ ♠ét♦❞♦ ❝♦♠ ❜❛s❡ ❧ó❣✐❝❛ q✉❡ ♣❡r♠✐t❛ ❞❡❝✐❞✐r
s♦❜r❡ ❛ ✈❛❧✐❞❛❞❡ ♦✉ ♥ã♦ ❞❡ ✉♠❛ ❞❡t❡r♠✐♥❛❞❛ ✐♥❞✉çã♦✱ ✐st♦ ❡st❛ ❣❛r❛♥t✐❞♦ ❝♦♠ ❛ s❡❣✉✐♥t❡
♣r♦♣r✐❡❞❛❞❡✿
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✼✳ Pr✐♠❡✐r♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦ ♠❛t❡♠át✐❝❛✳
❙❡
P (n)
é ✉♠❛ ♣r♦♣r✐❡❞❛❞❡ ❡♥✉♥❝✐❛❞❛ ❡♠ t❡r♠♦s ❞❡
1o P (1)
é ✈❡r❞❛❞❡✐r♦
2o P (h)
é ✈❡r❞❛❞❡✐r♦ ♣❛r❛
❊♥tã♦
P (n)
h > 1✱
✐♠♣❧✐❝❛
é ✈❡r❞❛❞❡✐r♦✱ ♣❛r❛ t♦❞♦
P (h + 1)
n✱
♣❛r❛
n∈N
t❛❧ q✉❡✿
é ✈❡r❞❛❞❡✐r♦✳
n∈N✳
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
✺✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✶✳✹✼✳
▼♦str❡ q✉❡ 1 + 2 + 3 + 4 + . . . + n =
❙♦❧✉çã♦✳
n(n + 1)
✳
2
◆❡st❡ ❡①❡♠♣❧♦ ♦❜s❡r✈❡ q✉❡ P (n) : 1 + 2 + 3 + 4 + . . . + n =
P❛r❛ n = 1,
P (1) : 1 =
1(1 + 1)
é ✈❡r❞❛❞❡✐r❛✳
2
n(n + 1)
✳
2
h(h + 1)
s❡❥❛ ✈❡r❞❛❞❡✐r❛✳
2
(h + 1)[(h + 1) + 1]
é
▼♦str❛r❡✐ q✉❡ P (h + 1) : 1 + 2 + 3 + 4 + . . . + h + (h + 1) =
2
❙✉♣♦♥❤❛♠♦s q✉❡ P (h) : 1 + 2 + 3 + 4 + . . . + h =
✈❡r❞❛❞❡✐r♦✳
❈♦♠ ❡❢❡✐t♦✱ t❡♠♦s q✉❡✿
h(h + 1)
+ (h + 1) =
2
(h + 1)(h + 2)
(h + 1)[(h + 1) + 1 ]
h
=
✳
= (h + 1)( + 1) =
2
2
2
1 + 2 + 3 + 4 + . . . + h + (h + 1) =
▲♦❣♦✱ ♣❡❧♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦ ♠❛t❡♠át✐❝❛ ❝✉♠♣r❡✿
1 + 2 + 3 + 4 + ... + n =
n(n + 1)
2
∀n∈N
❊①❡♠♣❧♦ ✶✳✹✽✳
❉❡s❡❥❛✲s❡ ❝♦♥str✉✐r ✉♠❛ ♣❛r❡❞❡ ❞❡❝♦r❛t✐✈❛ ❝♦♠ t✐❥♦❧♦s ❞❡ ✈✐❞r♦ ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛✿ ❛
♣r✐♠❡✐r❛ ✜❧❛ ✭❜❛s❡✮ ❞❡✈❡rá t❡r 100 t✐❥♦❧♦s✱ ❛ s❡❣✉♥❞❛ ✜❧❛✱ 99 t✐❥♦❧♦s✱ ❛ t❡r❝❡✐r❛✱ 98 t✐❥♦❧♦s
❡ ❛ss✐♠ ♣♦r ❞✐❛♥t❡ ❛té ❛ ú❧t✐♠❛ ✜❧❛ q✉❡ ❞❡✈❡rá t❡r ❛♣❡♥❛s 1 t✐❥♦❧♦✳ ❉❡t❡r♠✐♥❡ ♦ ♥ú♠❡r♦
t♦t❛❧ ❞❡ t✐❥♦❧♦s ♥❡❝❡ssár✐♦s ♣❛r❛ ❝♦♥str✉✐r ❞❡st❛ ♣❛r❡❞❡✳ s❡rá ✐❣✉❛❧ ❛✿
❙♦❧✉çã♦✳
❖❜s❡r✈❡ q✉❡ ❛ q✉❛♥t✐❞❛❞❡ ❞❡ ♥ú♠❡r♦ ❞❡ t✐❥♦❧♦s ♥❡❝❡ssár✐♦s ♣❛r❛ ❝❛❞❛ ✜❧❛ é ✉♠ ♥ú♠❡r♦
♥❛t✉r❛❧ ❞❡❝r❡s❝❡♥t❡ ❛ ♣❛rt✐r ❞❡ 100 ❧♦❣♦✱ t❡♠♦s ❛♣❧✐❝❛♥❞♦ ❛ ❢ór♠✉❧❛ ❞♦ ❊①❡♠♣❧♦ ✭✶✳✹✼✮✱
q✉❡ ♦ t♦t❛❧ ❞❡ t✐❥♦❧♦s é✿ 100 + 99 + · · · + 3 + 2 + 1 =
P♦rt❛♥t♦✱ sã♦ ♥❡❝❡ssár✐♦s 5.050 t✐❥♦❧♦s✳
100(100 + 1)
= 5.050✳
2
❊①❡♠♣❧♦ ✶✳✹✾✳
▼♦str❡ q✉❡✱ ♣❛r❛ t♦❞♦ n ∈ N ❛ ❡①♣r❡ssã♦ n3 − n é ❞✐✈✐sí✈❡❧ ♣♦r s❡✐s✳
❙♦❧✉çã♦✳
❚❡♠♦s q✉❡ P (n) : n3 − n
P (1) : 13 − 1 = 0 é ❞✐✈✐sí✈❡❧ ♣♦r 6✳
❙✉♣♦♥❤❛ q✉❡ P (h) : h3 − h s❡❥❛ ❞✐✈✐sí✈❡❧ ♣♦r 6 s❡♥❞♦ h ∈ N✳
P❛r❛ n = h + 1 t❡♠♦s P (h + 1) :
(h + 1)3 − (h + 1) = (h + 1)[(h + 1)2 − 1] = h3 − h + 3h(h + 1)
✺✶
✭✶✳✽✮
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖❜s❡r✈❡ q✉❡
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
3h(h + 1)
é ❞✐✈✐sí✈❡❧ ♣♦r
6✳
h = 1 t❡♠♦s q✉❡ 3(1)(2) é ❞✐✈✐sí✈❡❧ ♣♦r 6✳
h ∈ N✳
❈♦♠ ❡❢❡✐t♦✱ s❡
♣♦r
6✱
♣❛r❛ t♦❞♦
❙✉♣♦♥❤❛
3h(h + 1) é ❞✐✈✐sí✈❡❧
h + 1 s❡❣✉❡ q✉❡ 3(h + 1)(h + 2) = 3h(h + 1) + 6 s❡♥❞♦ ❞✐✈✐sí✈❡❧ ♣♦r 6✳ ❊♥tã♦
❤✐♣ót❡s❡ ❛✉①✐❧✐❛r ♣❛r❛ P (n) ❝♦♥❝❧✉í♠♦s q✉❡ ♣❛r❛ t♦❞❛ n ∈ N ❛ ❡①♣r❡ssã♦
▲♦❣♦ ♣❛r❛
❡♠ ✭✶✳✽✮ ❞❛
n3 − n
R
é ❞✐✈✐sí✈❡❧ ♣♦r s❡✐s✳
❊①❡♠♣❧♦ ✶✳✺✵✳
(1 + x)n ≥ −1
(1 + x)n ≥ 1 + nx✳
▼♦str❡ q✉❡✱ ♣❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧
t❡♠♦s ❛ ❞❡s✐❣✉❛❧❞❛❞❡
❙♦❧✉çã♦✳
❙❡❥❛
S
1o 1 ∈ S
2o
❙❡
❡ ♣❛r❛ q✉❛❧q✉❡r ♥❛t✉r❛❧
♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s ♥❛t✉r❛✐s ♣❛r❛ ♦s q✉❛✐s
♣♦✐s✱
n∈N
❡♥tã♦
(1 + x)n ≥ 1 + nx✳
(1 + x)1 ≥ 1 + (1)x✳
h ∈ S ✱ t❡♠♦s q✉❡ (1 + x)h ≥ 1 + hx✱ ❡♥tã♦ (1 + x)h+1 = (1 + x)(1 + x)h ≥
(1 + x)(1 + hx) ≥ 1 + x + hx + hx2 ≥ 1 + (h + 1)x✳
▲♦❣♦✱ s❡
h∈S
❡♥tã♦
(h + 1) ∈ S ✳
S = N✳
❆♣❧✐❝❛♥❞♦ ♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦ ♠❛t❡♠át✐❝❛ t❡♠♦s q✉❡
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✽✳ ❙❡❣✉♥❞♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦ ♠❛t❡♠át✐❝❛✳
❙❡
P (n)
é ✉♠❛ ♣r♦♣♦s✐çã♦ ❡♥✉♥❝✐❛❞❛ ♣❛r❛
1o P (no )
o
2 P (h)
é ✈❡r❞❛❞❡✐r♦✳
h > no ✱
n ≥ no ✳
é ✈❡r❞❛❞❡✐r♦ ♣❛r❛
∀ n ∈ N✱
✈❡r❞❛❞❡✐r♦
t❛❧ q✉❡
n∈N
t❛❧ q✉❡✿
P (h + 1)
é ✈❡r❞❛❞❡✐r♦✳
1 3
(n + 2n)
3
é ✉♠ ✐♥t❡✐r♦✳
✐♠♣❧✐❝❛
❊♥tã♦
P (n)
é
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✶✳✺✶✳
▼♦str❡ q✉❡ s❡
n
é q✉❛❧q✉❡r ✐♥t❡✐r♦ ♣♦s✐t✐✈♦✱
❙♦❧✉çã♦✳
❙❡❥❛
S
♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s ✐♥t❡✐r♦s ♣♦s✐t✐✈♦s t❛✐s q✉❡
1 3
(n + 2n)
3
é ✉♠ ✐♥t❡✐r♦✳
1 3
(1 + 2(1)) = 1✳
3
1 3
❙✉♣♦♥❤❛ q✉❡ h ∈ S ❀ ✐st♦ é (h + 2h) é ✉♠ ✐♥t❡✐r♦✳
3
1
1 3
1 3
3
2
2
❊♥tã♦✱ [(h+1) +2(h+1)] = [(h +3h +3h+1)+(2h+2)] = (h +2h)+(h +h+1)
3
3
3
❖ ♥ú♠❡r♦
1∈S
♣♦✐s
é ✉♠ ✐♥t❡✐r♦✳
❆ss✐♠
h∈S
✐♠♣❧✐❝❛
(h + 1) ∈ S ✳
▲♦❣♦
S=N
✺✷
♣❡❧♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✶✳✺✷✳
❙❡❥❛♠
a, b ∈ R+
t❛✐s q✉❡
s❡♠♣r❡ é ✈❡r❞❛❞❡✐r❛✳
a 6= b✳
▼♦str❡ q✉❡
2n−1 (an + bn ) > (a + b)n ,
∀ n ∈ N+ ✱
❉❡♠♦♥str❛çã♦✳
P❛r❛
n=2
❛ ❞❡s✐❣✉❛❧❞❛❞❡ é ❞❛ ❢♦r♠❛✿
2(a2 + b2 ) > (a + b)2
✭✶✳✾✮
a 6= b✱ t❡♠♦s ❛ ❞❡s✐❣✉❛❧❞❛❞❡ a2 +b2 > 2ab✱ s♦♠❛♥❞♦ a2 +b2 ♦❜t❡♠♦s 2(a2 +b2 ) >
2ab + a2 + b2 = (a + b)2 ✐st♦ ✐♠♣❧✐❝❛ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✾✮✱ ♣♦rt❛♥t♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ é ✈á❧✐❞❛
♣❛r❛ n = 2✳
❈♦♠♦
❙✉♣♦♥❤❛♠♦s q✉❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ s❡❥❛ ✈á❧✐❞❛ ♣❛r❛
n = h✱
✐st♦ é
(a + b)h < 2h−1 (ah + bh )
▼♦str❛r❡♠♦s ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ♣❛r❛
n = h + 1✱
✭✶✳✶✵✮
✐st♦ é ❛ ♠♦str❛r q✉❡
(a + b)h+1 < 2h (ah+1 + bh+1 )
❚❡♠♦s ❞❡ ✭✶✳✶✵✮ q✉❡
✭✶✳✶✶✮
(a + b)h+1 = (a + b)h (a + b) < 2h−1 (ah + bh )(a + b)✱
(a + b)h+1 < 2h−1 [ah+1 + bh+1 + abh + bah ]
❈♦♠♦
✐st♦ é✿
✭✶✳✶✷✮
a 6= b✱ s✉♣♦♥❤❛♠♦s a > b✱ ❝♦♠♦ a, b ∈ R ❡♥tã♦ ah > bh ✱ ❧♦❣♦ (ah − bh )(a − b) > 0
s❡♠♣r❡ é ✈❡r❞❛❞❡✐r❛✳
P❛r❛ ♦ ❝❛s♦
a < b✱
❡♥tã♦
ah < bh
❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡
♥ú♠❡r♦s ♥❡❣❛t✐✈♦s✱ ❧♦❣♦
(ah − bh )(a − b) > 0
é ♦ ♣r♦❞✉t♦ ❞❡
(ah − bh )(a − b) > 0
✐st♦ ✐♠♣❧✐❝❛ q✉❡
ah+1 + bh+1 − abh − bah > 0
⇒
abh + bah < ah+1 + bh+1
❊♠ ✭✶✳✶✷✮ t❡♠♦s
(a + b)h+1 < 2h−1 [ah+1 + bh+1 + abh + bah < 2h (ah+1 + bh+1 )
P♦rt❛♥t♦✱ s❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✶✵✮ t❛♠❜é♠ ✈❛❧❡ ♣❛r❛
n = h + 1✱
❧♦❣♦ ✈❛❧❡ ♣❛r❛ t♦❞♦
n ∈ N✳
✺✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✳✽
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
Pr♦♣r✐❡❞❛❞❡s ❞♦s ♥ú♠❡r♦s ✐♥t❡✐r♦s
❊st✉❞❛r❡♠♦s ❛❧❣✉♠❛s ♣r♦♣r✐❡❞❛❞❡s ❜ás✐❝❛s ♣❛r❛ ♥ú♠❡r♦s ✐♥t❡✐r♦s✱ ❡st❡ ❝♦♥❥✉♥t♦ Z
♣♦❞❡♠♦s ❡st✉❞❛r ❝♦♠♦ ✉♠❛ ❡①t❡♥sã♦ ❞♦ ❝♦♥❥✉♥t♦ N
✶✳✽✳✶
❉✐✈✐s✐❜✐❧✐❞❛❞❡
❉❡✜♥✐çã♦ ✶✳✶✾✳
d, n ∈ Z✱
❛❧❣✉♠ c ∈ Z✳
❙❡❥❛♠ ♦s ♥ú♠❡r♦s
n=c·d
♣❛r❛
❞✐③✲s❡ q✉❡
d
é ❞✐✈✐s♦r ❞❡
n
❡ ❡s❝r❡✈❡♠♦s
d|n
q✉❛♥❞♦
❖❜s❡r✈❡ q✉❡ ❛ ♥♦t❛çã♦ d | b ♥ã♦ r❡♣r❡s❡♥t❛ ♥❡♥❤✉♠❛ ♦♣❡r❛çã♦ ❡♠ Z✱ ♥❡♠ r❡♣r❡s❡♥t❛
✉♠❛ ❢r❛çã♦✳ ❚r❛t❛✲s❡ ❞❡ ✉♠❛ s❡♥t❡♥ç❛ q✉❡ ❞✐③ s❡r ✈❡r❞❛❞❡ q✉❡ ❡①✐st❡ c ∈ Z t❛❧ q✉❡ n = cd✳
❆ ♥❡❣❛çã♦ ❞❡ss❛ s❡♥t❡♥ç❛ é r❡♣r❡s❡♥t❛❞❛ ♣♦r ❛ d ∤ n✱ s✐❣♥✐✜❝❛♥❞♦ q✉❡ ♥ã♦ ❡①✐st❡
♥❡♥❤✉♠ ♥ú♠❡r♦ ✐♥t❡✐r♦ c ∈ Z t❛❧ q✉❡ n = cd✳ P♦rt❛♥t♦✱ t❡♠♦s q✉❡ 0 ∤ n✱ s❡ n 6= 0
❆ ❞✐✈✐s✐❜✐❧✐❞❛❞❡ ❡st❛❜❡❧❡❝❡ ✉♠❛ r❡❧❛çã♦ ❜✐♥ár✐❛ ❡♥tr❡ ♥ú♠❡r♦s ✐♥t❡✐r♦s ❝♦♠ ❛s s❡❣✉✐♥t❡s
♣r♦♣r✐❡❞❛❞❡s✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✶✾✳
❙❡❥❛♠
a, b, d, , n , m ∈ Z
✶✳
n|n
✷✳
d|n
❡
n|m
⇒
d|m
✸✳
d|n
❡
d|m
⇒
d | (an + bm) ♣❛r❛ ❛❧❣✉♠ a, b ∈ Z
✹✳
d|n
⇒
✺✳
ad | an ❡ a 6= 0
✻✳
1|n
1 é ❞✐✈✐s♦r ❞❡ t♦❞♦s ♦s ✐♥t❡✐r♦s
✼✳
n|0
❝❛❞❛ ✐♥t❡✐r♦ é ❞✐✈✐s♦r ❞♦ ③❡r♦
✽✳
0|n
✾✳
d | n ❡ n 6= 0
⇒ | d |≤| n |
✶✵✳
d|n ❡ n|d
⇒ | d |=| n |
✶✶✳
d | n ❡ d 6= 0
r❡✢❡①✐✈❛
⇒
tr❛♥s✐t✐✈❛
❧✐♥❡❛r
♠✉❧t✐♣❧✐❝❛çã♦
ad | an
⇒
s✐♠♣❧✐✜❝❛çã♦
d|n
③❡r♦ é ❞✐✈✐s♦r s♦♠❡♥t❡ ❞♦ ③❡r♦
n=0
⇒
❝♦♠♣❛r❛çã♦
(n | d) | n
❉✐③❡r q✉❡ ✉♠ ♥ú♠❡r♦ a é ❞✐✈✐s♦r ❞❡ ♦✉tr♦ b✱ ♥ã♦ s✐❣♥✐✜❝❛ ❞✐③❡r q✉❡ a ❞✐✈✐❞❡ b✱ ♦❜s❡r✈❡
❛ ♣❛rt❡ 8. ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡✱ ❛q✉✐ ③❡r♦ é ❞✐✈✐s♦r ❞♦ ③❡r♦✳
✺✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✳✽✳✷
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
▼á①✐♠♦ ❞✐✈✐s♦r ❝♦♠✉♠✳ ▼í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠
❉❡✜♥✐çã♦ ✶✳✷✵✳
❙❡❥❛♠
❉✐✈✐s♦r ❝♦♠✉♠✳
a, b, d ∈ Z✱
s❡ ♦ ♥ú♠❡r♦
dé
a ❡ b✳
❝❤❛♠❛❞♦ ❞✐✈✐s♦r ❝♦♠✉♠ ❞❡
✉♠ ❞✐✈✐s♦r ❞♦s ♥ú♠❡r♦s
a
❡
b✱
♦ ♥ú♠❡r♦
d
é
Pr♦♣r✐❡❞❛❞❡ ✶✳✷✵✳
❉❛❞♦s ♦s ♥ú♠❡r♦s ✐♥t❡✐r♦s
❛❧❣✉♠
x, y ∈ Z
a
❡
b✱
❡①✐st❡ ✉♠ ❞✐✈✐s♦r ❝♦♠✉♠ ❞❛ ❢♦r♠❛
❡✱ t♦❞♦ ❞✐✈✐s♦r ❝♦♠✉♠ ❞❡
❡
a
b
❞✐✈✐❞❡ ❡st❡
d = ax + by
♣❛r❛
d✳
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✷✶✳
a, b ∈ Z✱
❉❛❞♦s
❛✮
d≥0
❜✮
d|a
❝✮
d∈Z
❝♦♠ ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✿
d
d|b
❡
c|a
❙❡
❡①✐st❡ ✉♠ ❡ s♦♠❡♥t❡ ✉♠
❡
d
c|b
⇒
c|d
♥ã♦ é ♥❡❣❛t✐✈♦
❡
b
❝❛❞❛ ❞✐✈✐s♦r ❝♦♠✉♠ é ❞✐✈✐s♦r ❞❡
d
é ✉♠ ❞✐✈✐s♦r ❝♦♠✉♠ ❞❡
a
❉❡♠♦♥str❛çã♦✳
P❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✷✵✮ ❡①✐st❡ ♣❡❧♦ ♠❡♥♦s ✉♠
❧♦❣♦
−d
d′
❝✉♠♣r❡
✭❜✮ ❡ ✭❝✮ ❡♥tã♦ d | d′
▲♦❣♦ ❡①✐st❡ s♦♠❡♥t❡ ✉♠
❉❡✜♥✐çã♦ ✶✳✷✶✳
❖ ♥ú♠❡r♦
a
❡
b
d
✭❜✮ ❡ ✭❝✮✱
a | bc
❡
❉❡♠♦♥str❛çã♦✳
d≥0
q✉❡ ❝✉♠♣r❡
❡
d′ | d✱
♣♦rt❛♥t♦
✭❜✮ ❡ ✭❝✮✳
| d |=| d′ |✳
▼á①✐♠♦ ❞✐✈✐s♦r ❝♦♠✉♠✳
❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✶✳✷✶✮ é ❝❤❛♠❛❞♦ ❞❡ ♠á①✐♠♦ ❞✐✈✐s♦r ❝♦♠✉♠ ✭♠✳❞✳❝✳✮
❡ ❞❡♥♦t❛✲s❡
Pr♦♣r✐❡❞❛❞❡ ✶✳✷✷✳
❙❡
q✉❡ ❝✉♠♣r❡ ❛s ❝♦♥❞✐çõ❡s
t❛♠❜é♠ ❝✉♠♣r❡✱ ❧♦❣♦ ❡st❛ ♣r♦✈❛❞♦ ❛ ❡①✐stê♥❝✐❛✳
P♦ré♠✱ s❡
❞❡
d
mdc{ a, b }✳
▲❡♠❛ ❞❡ ❊✉❝❧✐❞❡s✽ ✳
mdc{ a, b } = 1
❡♥tã♦
a | c✳
mdc{ a, b } = 1 ♣♦❞❡♠♦s ❡s❝r❡✈❡r 1 = ax + by ♣❛r❛ ❛❧❣✉♠ x, y ∈ Z✱
❝♦♥s❡q✉❡♥t❡♠❡♥t❡ c = cax + cby ✱ ❈♦♠♦ a | acx ❡ a | bc✱ ❡♥tã♦ c = cax + zay ❧♦❣♦ a | c✳
❉❡s❞❡ q✉❡
✽ ❊✉❝❧✐❞❡s ❞❡ ❆❧❡①❛♥❞r✐❛ ✏ 300 a.C.✑ ❢♦✐ ♣r♦❢❡ss♦r✱ ♠❛t❡♠át✐❝♦✱ ♣❧❛tó♥✐❝♦ ❡ ❡s❝r✐t♦r ♣♦ss✐✈❡❧♠❡♥t❡ ❣r❡❣♦✱
♠✉✐t❛s ✈❡③❡s r❡❢❡r✐❞♦ ❝♦♠♦ ♦ ✏P❛✐ ❞❛ ●❡♦♠❡tr✐❛✑✳ ❆❧é♠ ❞❡ s✉❛ ♣r✐♥❝✐♣❛❧ ♦❜r❛ ✏❖s ❊❧❡♠❡♥t♦s✑✱ ❊✉❝❧✐❞❡s
t❛♠❜é♠ ❡s❝r❡✈❡✉ s♦❜r❡ s❡çõ❡s ❝ô♥✐❝❛s✱ ❣❡♦♠❡tr✐❛ ❡s❢ér✐❝❛✱ t❡♦r✐❛ ❞♦s ♥ú♠❡r♦s✳
✺✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✶✳✷✷✳ ▼í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠✳
❙❡❥❛♠ a, b ∈ Z ♥ã♦ ♥✉❧♦s✱ ♦ ♠í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠ ❞❡ a ❡ b✱ ❞❡♥♦t❛❞♦ mmc{a, b}
é ❞❡✜♥✐❞♦ ♣♦r
mmc{a, b} =
✶✳✽✳✸
a·b
mdc{ a, b }
◆ú♠❡r♦s ♣r✐♠♦s
❉❡✜♥✐çã♦ ✶✳✷✸✳
❉✐③✲s❡ q✉❡ ♦ ✐♥t❡✐r♦ n é ✉♠ ♥ú♠❡r♦ ♣r✐♠♦✱ s❡ n > 1 ❡ ♦s ú♥✐❝♦s ❞✐✈✐s♦r❡s ♣♦s✐t✐✈♦s
❞❡ n sã♦ 1 ❡ ♦ ♣ró♣r✐♦ n✳ ❙❡ n ♥ã♦ é ♥ú♠❡r♦ ♣r✐♠♦ ❡♥tã♦ é ❝❤❛♠❛❞♦ ❞❡ ♥ú♠❡r♦
❝♦♠♣♦st♦✳
❊①❡♠♣❧♦ ✶✳✺✸✳
❙ã♦ ♥ú♠❡r♦s ♣r✐♠♦s✿ 2, 3, 7, 11, 13, 17, 19
❙ã♦ ♥ú♠❡r♦s ❝♦♠♣♦st♦s✿ 4, 6, 8, 10, 16, 24
❖ ♥ú♠❡r♦ 1 ♥ã♦ é ♣r✐♠♦❀ ♦❜s❡r✈❡ q✉❡ ♥ã♦ ❝✉♠♣r❡ ❛ ❞❡✜♥✐çã♦✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✷✸✳
❚♦❞♦ ♥ú♠❡r♦ ✐♥t❡✐r♦ n > 1 é ♥ú♠❡r♦ ♣r✐♠♦ ♦✉ ♣r♦❞✉t♦ ❞❡ ♥ú♠❡r♦s ♣r✐♠♦s✳
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✷✹✳ ❊✉❝❧✐❞❡s✳
❊①✐st❡ ✉♠❛ ✐♥✜♥✐❞❛❞❡ ❞❡ ♥ú♠❡r♦s ♣r✐♠♦s✳
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✶✳✷✺✳ ❚❡♦r❡♠❛ ❢✉♥❞❛♠❡♥t❛❧ ❞❛ ❛r✐t♠ét✐❝❛✳
❚♦❞♦ ♥ú♠❡r♦ ✐♥t❡✐r♦ n > 1 ♣♦❞❡♠♦s ❡①♣r❡ss❛r ❝♦♠♦ ♣r♦❞✉t♦ ❞❡ ❢❛t♦r❡s ♣r✐♠♦s ❞❡ ♠♦❞♦
ú♥✐❝♦✳
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❡ t❡♦r❡♠❛ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✶✳✺✹✳
▼♦str❡ q✉❡ 13|270 + 370 ✳
❉❡♠♦♥str❛çã♦✳
❉❡♥♦t❡♠♦s ♣❛r❛ ❡st❡ ❡①❡♠♣❧♦ m(13) ❝♦♠♦ ❛❧❣✉♠ ♠ú❧t✐♣❧♦ ❞❡ 13✱ ✐st♦ é m(13) =
13α, α ∈ Z✳
✺✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❚❡♠✲s❡✿ 24 = 13 + 3,
25 = m(13) + 6,
26 = m(13) + 4 = m(13) − 1✳ ▲♦❣♦✱
270 = 24 × (26 )11 = 24 [m(13) − 1]11 = m(13) − 24 = m(13) − 3
P♦r ♦✉tr♦ ❧❛❞♦✱ 32 = 13 − 4,
33 = m(13) + 1✳ ❡♥tã♦
370 = 3 · (33 )23 = 3 · (m(13) + 1)23 = 3(m(13) + 123 ) = m(13) + 3
❆ss✐♠✱ 270 + 370 = [m(13) − 3] + m(13) + 3 = m(13)✳
P♦rt❛♥t♦✱ 13|270 + 370 ✳
❊①❡♠♣❧♦ ✶✳✺✺✳
▼♦str❡ q✉❡ ❡①✐st❡♠ ✐♥✜♥✐t♦s ✈❛❧♦r❡s ❞❡ n ∈ Z ♣❛r❛ ♦s q✉❛✐s 7 ❡ 11 sã♦ ❞✐✈✐s♦r❡s ❞❡
8n + 5✳
❉❡♠♦♥str❛çã♦✳
2
❙❡ 7 ❡ 11 sã♦ ❞✐✈✐s♦r❡s ❞❡ 8n2 + 5✱ s❡❣✉❡ q✉❡ 77 t❛♠❜é♠ é ✉♠ ❞✐✈✐s♦r ❞❡ 8n2 + 5✱ ♣♦✐s
♦ m.d.c{ 7, 11 } = 1✳
❙❡ 77 é ✉♠ ❞✐✈✐s♦r ❞❡ 8n2 + 5 ❡♥tã♦ ❡①✐st❡ β ∈ Z t❛❧ q✉❡
8n2 + 5 = 77β
⇒
8n2 + 5 − 77 = 77(β − 1)
⇒
8(n2 − 9) = 77(β − 1)
❈♦♠♦ 8 ∤ 77✱ s❡❣✉❡ q✉❡ 8|(β − 1) ❡ 77|(n2 − 9)✳
❆ss✐♠✱ ♣❛r❛ t♦❞♦ α ∈ N t❡♠♦s β − 1 = 8α ❡ n2 − 9 = 77α,
α ∈ N✱ ❧♦❣♦
β = 1 + 8α✳
P♦rt❛♥t♦✱ 8n2 + 5 = 77(1 + 8α) ♣❛r❛ t♦❞♦ α ∈ Z✱ ❛ss✐♠ ❡①✐st❡♠ ✐♥✜♥✐t♦s ✈❛❧♦r❡s ❞❡
n ∈ Z ♣❛r❛ ♦s q✉❛✐s 8n2 + 5 é ❞✐✈✐sí✈❡❧ ♣♦r 7 ❡ ♣♦r 11✳
❊①❡♠♣❧♦ ✶✳✺✻✳
❙❡❥❛ n ✉♠ ♥ú♠❡r♦ ♥❛t✉r❛❧✳ ▼♦str❡ q✉❡ ✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❡ ❝❛❞❛ t❡r♥❛ ❛❜❛✐①♦
é ❞✐✈✐sí✈❡❧ ♣♦r 3✳
❛✮ n, n + 2, n + 4
❜✮ n, n + 10, n + 23
❝✮ n, n + 1, 2n + 1✳
❉❡♠♦♥str❛çã♦✳
❖ ❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♥ú♠❡r♦s ♥❛t✉r❛✐s ♣♦❞❡♠♦s r❡♣r❡s❡♥t❛r ♠❡❞✐❛♥t❡ ♦ ❝♦♥❥✉♥t♦
A = { 3k, 3k + 1, 3k + 2, k ∈ N }✳
❙❡ n = 3k ✱ ❡♥tã♦ ♣❛r❛ t♦❞♦s ♦s 4 ❡①❡r❝í❝✐♦s ✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❡ ❝❛❞❛ t❡r♥❛
é ❞✐✈✐sí✈❡❧ ♣♦r 3
❛✮
P❛r❛ ♦ ❝♦♥❥✉♥t♦ n, n + 2, n + 4
❙❡ n = 3k+1 ❡♥tã♦ ❛ t❡r♥❛ ❞❛❞❛ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ 3k+1, 3k+3, 3k+5
❧♦❣♦ ✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ t❡r♥❛ é ❞✐✈✐sí✈❡❧ ♣♦r 3✱ ♦ ♥ú♠❡r♦ 3k + 3✳
•
✺✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
•
n = 3k+2 ❡♥tã♦ ❛ t❡r♥❛ ❞❛❞❛ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ 3k+2, 3k+4, 3k+6
✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ t❡r♥❛ é ❞✐✈✐sí✈❡❧ ♣♦r 3✱ ♦ ♥ú♠❡r♦ 3k + 6✳
❙❡
❧♦❣♦
❈♦♠ q✉❛❧q✉❡r ❞❛s três ❤✐♣ót❡s❡s ♥❛ t❡r♥❛
❞❛ é ❞✐✈✐sí✈❡❧ ♣♦r
❜✮
P❛r❛ ♦ ❝♦♥❥✉♥t♦
•
✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦
3✳
n, n + 10, n + 23
n = 3k+1 ❡♥tã♦ ❛ t❡r♥❛ ❞❛❞❛ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ 3k+1, 3k+11, 3k+24
✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ t❡r♥❛ é ❞✐✈✐sí✈❡❧ ♣♦r 3✱ ♦ ♥ú♠❡r♦ 3k + 24✳
❙❡
❧♦❣♦
•
n, n + 2, n + 4
n = 3k+2 ❡♥tã♦ ❛ t❡r♥❛ ❞❛❞❛ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ 3k+2, 3k+12, 3k+25
✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ t❡r♥❛ é ❞✐✈✐sí✈❡❧ ♣♦r 3✱ ♦ ♥ú♠❡r♦ 3k + 12✳
❙❡
❧♦❣♦
❈♦♠ q✉❛❧q✉❡r ❞❛s três ❤✐♣ót❡s❡s ♥❛ t❡r♥❛ ✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ é ❞✐✈✐sí✈❡❧
3✳
♣♦r
❝✮
P❛r❛ ♦ ❝♦♥❥✉♥t♦
•
n = 3k+1 ❡♥tã♦ ❛ t❡r♥❛ ❞❛❞❛ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ 3k+1, 3k+2, 6k+3
✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ t❡r♥❛ é ❞✐✈✐sí✈❡❧ ♣♦r 3✱ ♦ ♥ú♠❡r♦ 6k + 3✳
❙❡
❧♦❣♦
•
n, n + 1, 2n + 1
n = 3k+2 ❡♥tã♦ ❛ t❡r♥❛ ❞❛❞❛ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ 3k+2, 3k+3, 6k+5
✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ t❡r♥❛ é ❞✐✈✐sí✈❡❧ ♣♦r 3✱ ♦ ♥ú♠❡r♦ 3k + 3✳
❙❡
❧♦❣♦
❈♦♠ q✉❛❧q✉❡r ❞❛s três ❤✐♣ót❡s❡s ♥❛ t❡r♥❛ ✉♠✱ ❡ ❛♣❡♥❛s ✉♠✱ ♥ú♠❡r♦ ❞❛ é ❞✐✈✐sí✈❡❧
♣♦r
3✳
✺✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✶✲✺
✶✳ ❈❛s♦ ❡①✐st❛♠✱ ❞❡t❡r♠✐♥❡ ♦ s✉♣r❡♠♦✱ ♦ í♥✜♠♦✱ ♦ ♠á①✐♠♦ ❡ ♦ ♠í♥✐♠♦ ♣❛r❛ ❝❛❞❛ ✉♠
❞♦s s❡❣✉✐♥t❡s ❝♦♥❥✉♥t♦s✿
✶✳
B = { x ∈ Q/.
| x2 − 4 |< 16 }
✷✳
A = { x ∈ Z /.
| x2 − 9 | +3 | x − 4 |< 16 }
✸✳
C = { x ∈ N /.
| x2 − x + 1 |< 3 }
✹✳
D = { x ∈ I /.
| 5x − 10 | + | x |≥ 1 }
✺✳
F = {x ∈ R /.
| x2 − 9 |≥ 16 − x }
✻✳
E = {x ∈ Z/. | x2 − 16 | + | x − 4 |> 1 }
✼✳
H = {x ∈ R/. | x2 − 9 |< 16 − x }
✽✳
G = { x ∈ R /. | 9 − x2 | − | x − 4 |< 1 }
✷✳ ▼♦str❡ q✉❡ 1 é ♦ s✉♣r❡♠♦ ❞♦ ❝♦♥❥✉♥t♦ E = { x/. x =
2n − 1
,
2n
n ∈ N }✳
✸✳ ▼♦str❡ q✉❡✱ s❡ ♦ ♣r♦❞✉t♦ ❞❡ ♥ ♥ú♠❡r♦s ♣♦s✐t✐✈♦s é ✐❣✉❛❧ ❛ 1 ✭✉♠✮✱ ❛ s♦♠❛ ❞♦s
♠❡s♠♦s ♥ã♦ é ♠❡♥♦r q✉❡ n✳
✹✳ ▼♦str❡ q✉❡✱ s❡ x1 ✱ x2 ✱ x3 ✱ x4 , · · · , xn sã♦ ♥ú♠❡r♦s ♣♦s✐t✐✈♦s✱ t❡♠♦s✿
xn−1 xn
x1 x2 x3 x4
+
+
+
+ ··· +
+
≥n
x2 x3 x4 x5
xn
x1
✺✳ ❯t✐❧✐③❛♥❞♦ ♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦ ♠❛t❡♠át✐❝❛✱ ♠♦str❡ ❝❛❞❛ ✉♠ ❞♦s s❡❣✉✐♥t❡s ❡♥✉♥✲
❝✐❛❞♦s✱ ♦♥❞❡ n ∈ N✿
✶✳
✷✳
✸✳
✹✳
✺✳
✻✳
n(n + 1)(2n + 1)
.
6
n2 (n + 1)2
3
3
3
3
.
1 + 2 + 3 + ··· + n =
4
n(3n − 1)
1 + 4 + 7 + · · · + (3n − 2) =
.
2
n(4n2 − 1)
2
2
2
2
.
1 + 3 + 5 + · · · + (2n − 1) =
3
n(1 + 3n)
2 + 5 + 8 + · · · + (3n − 1) =
, n≥1
2
20 + 21 + 22 + · · · + 2n−1 = 2n − 1, n > 1
12 + 2 2 + 3 2 + · · · + n2 =
✺✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✼✳
✽✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
n(n + 1)(n + 2)
.
3
1
1
1
1
n
+
+
+ ··· +
=
.
1×3 3×5 5×7
(2n − 1)(2n + 1)
2n + 1
1 × 2 + 2 × 3 + 3 × 4 + · · · + n(n + 1) =
✻✳ ❯t✐❧✐③❛♥❞♦ ♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦ ♠❛t❡♠át✐❝❛✱ ✈❡r✐✜q✉❡ ❛ ✈❛❧✐❞❛❞❡ ❞❡ ❝❛❞❛ ✉♠ ❞♦s
s❡❣✉✐♥t❡s ❡♥✉♥❝✐❛❞♦s✿
é ❞✐✈✐sí✈❡❧ ♣♦r 2,
✶✳
(n2 + n)
✷✳
(n3 + 2n)
✸✳
n(n + 1)(n + 2)
✹✳
(32n − 1)
✺✳
(10n − 1)
✻✳
2 n ≥ n2 ;
✼✳
3n ≥ (1 + 2n);
✽✳
8
é ❞✐✈✐sí✈❡❧ ♣♦r 3,
∀ n ∈ N✳
∀ n ∈ N✳
é ❞✐✈✐sí✈❡❧ ♣♦r 6. ∀ n ∈ N,
é ❞✐✈✐sí✈❡❧ ♣♦r 8,
é ❞✐✈✐sí✈❡❧ ♣♦r 9,
∀ n ∈ N,
∀ n ∈ N✳
n 6= 0✳
∀ n ∈ N✳
n≥4
∀ n ∈ N✳
é ✉♠ ❞✐✈✐s♦r ❞❡ 52n + 7 ∀ n ∈ N,
n≥1
✼✳ ❉❡t❡r♠✐♥❡ ❛ ✈❛❧✐❞❛❞❡ ❞❛s s❡❣✉✐♥t❡s ♣r♦♣♦s✐çõ❡s❀ ❥✉st✐✜q✉❡ s✉❛ r❡s♣♦st❛✳
✶✳
❙❡ x, y ∈ R ✱ ❝♦♠ 0 < x < y ✱ ❡♥tã♦ xn < y n ∀ n ∈ N,
✷✳
4n − 1
✸✳
(8n − 5n )
✹✳
(10n+1 + 10n + 1)
✺✳
✻✳
é ❞✐✈✐sí✈❡❧ ♣♦r 3,
∀ n ∈ N✳
é ❞✐✈✐sí✈❡❧ ♣♦r 3,
n 6= 0✳
∀ n ∈ N✳
é ❞✐✈✐sí✈❡❧ ♣♦r 3,
4n > n4 ; ∀ n ∈ N, n ≥ 5✳
22n+1 + 32n+1
é ✉♠ ♥ú♠❡r♦ ✐♥t❡✐r♦✳
5
∀ n ∈ N✳
✽✳ ▼♦str❡ q✉❡✱ ♣❛r❛ q✉❛✐sq✉❡r q✉❡ s❡❥❛♠ ♦s ♥ú♠❡r♦s ♣♦s✐t✐✈♦s ❞✐❢❡r❡♥t❡s a ❡ b é ✈á❧✐❞❛
√
a + bn
✳
n+1
n
n
P
P
✾✳ ▼♦str❡ ❛ s❡❣✉✐♥t❡ ✐❣✉❛❧❞❛❞❡✿ (b + ai ) = nb + ai
❛ ❞❡s✐❣✉❛❧❞❛❞❡✿
n+1
abn <
i=1
i=1
✶✵✳ ❙❡ n ∈ N✱ ♦ ❢❛t♦r✐❛❧ ❞♦ ♥ú♠❡r♦ n é ❞❡♥♦t❛❞♦ n✦✱ ❡ ❞❡✜♥✐❞♦ ❞♦ ♠♦❞♦ s❡❣✉✐♥t❡✿ 0✦ ❂
1, 1✦ ❂ 1 ❡ q✉❛♥❞♦ n > 1 ❞❡✜♥❡✲s❡ n✦ ❂ 1 × 2 × 3 × 4 × 5 × · · · (n − 1) × n ♦✉ n✦
❂ n(n − 1)(n − 2)(n − 3) · · · 4 × 3 × 2 × 1✳ ▼♦str❡ q✉❡✿
✶✳
2n−1 ≤ n✦
∀ n ∈ N✳
✶✶✳ ▼♦str❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡✿ n✦ <
✷✳
n+1
2
n
2n < n✦ < nn ♣❛r❛
∀ n ∈ N n ≥ 4✳
♣❛r❛ n ♥❛t✉r❛❧✱ ❝♦♠ n ≥ 2✳
✶✷✳ ▼♦str❡ q✉❡✱ s❡ | x |< 1✱ ♣❛r❛ q✉❛❧q✉❡r ✐♥t❡✐r♦ n ≥ 2✱ ❡♥tã♦ é ✈á❧✐❞❛ ❛ ❞❡s✐❣✉❛❧❞❛❞❡✿
(1 − x)n + (1 + x)n < 2n ✳
✻✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
▼✐s❝❡❧â♥❡❛ ✶✲✶
a, b ❡ c r❛í③❡s
1
1
69
1
+ 2+ 2 = ✳
2
a
b
c
4
✶✳ ❙❡❥❛♠
❞❛ ❡q✉❛çã♦
x3 − 3x2 + 9x − 2 = 0✳
▼♦str❡ q✉❡ ♦ ✈❛❧♦r ❞❡
✷✳ ❉❡t❡r♠✐♥❡ ❛ s♦♠❛✿
S = 1 + 2x + 3x2 + 4x3 + · · · + (n + 1)xn ✳
✸✳ ❉❡t❡r♠✐♥❡ ❛ s♦♠❛✿
1 + 11 + 111 + 1111 + · · · + 111111111 · · · 1 ✱ s❡ ♦ ú❧t✐♠♦ s♦♠❛♥❞♦
é ✉♠ ♥ú♠❡r♦ ❞❡
n
❛❧❣❛r✐s♠♦s✳
✹✳ ❉❡t❡r♠✐♥❡ ❛ s♦♠❛✿
S = nx + (n − 1)x2 + (n − 2)x3 + · · · + 2xn−1 + xn ✳
✺✳ ❉❡t❡r♠✐♥❡ ❛ s♦♠❛✿
S=
1
5
7
2n − 1
3
+ 2 + 3 + 4 + ··· +
2 2
2
2
2n
✻✳ ▼♦str❡ q✉❡ ❛ ♠é❞✐❛ ❣❡♦♠étr✐❝❛ ❞❡ ♥ ♥ú♠❡r♦s ♣♦s✐t✐✈♦s ♥ã♦ ✉❧tr❛♣❛ss❛ ❛ ♠é❞✐❛
❛r✐t♠ét✐❝❛ ❞❡st❡s ♠❡s♠♦s ♥ ♥ú♠❡r♦s✳
m > 1, m ∈ N sã♦ ✈á❧✐❞❛s ❛s s❡❣✉✐♥t❡s ❞❡s✐❣✉❛❧❞❛❞❡s✿
1
1
1
1
1
+
+
+ ··· +
>
m+1 m+2 m+3
2m
2
1
1
1
1
+
+
+ ··· +
>1
m+1 m+2 m+3
m + (2m + 1)
✼✳ ▼♦str❡ q✉❡✱ s❡
✶✳
✷✳
✽✳ Pr♦✈❡ q✉❡✱ ♣❛r❛ q✉❛❧q✉❡r ✐♥t❡✐r♦ ♣♦s✐t✐✈♦
n
é ✈á❧✐❞♦ ♦ s❡❣✉✐♥t❡✿
1
1
1
1
1
n−1
+ 2 + 2 + 2 + ··· + 2 <
2
2
3
4
5
n
n
✾✳ ▼♦str❡ ♣♦r ✐♥❞✉çã♦ s♦❜r❡
✶✳ ❙❡
x = p+
√
q✱
♦♥❞❡
p
n✱
❡
q
q✉❡✿
sã♦ r❛❝✐♦♥❛✐s✱ ❡
n∈N
❡♥tã♦
√
xn = a + b q
s❡♥❞♦
a
❡
b
♥ú♠❡r♦s r❛❝✐♦♥❛✐s✳
✷✳
▼♦str❡ q✉❡
: (p −
√
√
q)n = a − b q ✳
a, b, c ❢♦r♠❛♠ ✉♠❛ ♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛❀
1
1
1
√ , √
√ t❛♠❜é♠ ❢♦r♠❛♠ ✉♠❛ ♣r♦❣r❡ssã♦
√
√ , √
c+ a
b+ a
c+ b
✶✵✳ ▼♦str❡ q✉❡✱ s❡ ♦s ♥ú♠❡r♦s ♣♦s✐t✐✈♦s
❡♥tã♦ ♦s ♥ú♠❡r♦s
❛r✐t♠ét✐❝❛✳
✶✶✳ ❖ sí♠❜♦❧♦
n
P
ai
é ✉s❛❞♦ ♣❛r❛ r❡♣r❡s❡♥t❛r ❛ s♦♠❛ ❞❡ t♦❞♦s ♦s
i=1
✐♥t❡✐r♦
n
P
i
❞❡s❞❡
1
❛té
1
n
=
✳
n+1
i=1 i(i + 1)
n❀
✐st♦ é
n
P
i=1
ai
❂
ai
♣❛r❛ ✈❛❧♦r❡s ❞♦
a1 + a2 + a3 + · · · + an−1 + an ✳
✻✶
▼♦str❡ q✉❡✿
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✶✷✳ ❈❛❧❝✉❧❛r ❛ s♦♠❛ S =
n
P
i=1
✶✸✳ ▼♦str❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡
R
ai s❡♥❞♦ ai = k ✉♠❛ ❝♦♥st❛♥t❡✳
1
x2
≤
é ✈❡r❞❛❞❡✐r❛ ∀ x ∈ R✳
1 + x4
2
✶✹✳ ❯s❛♥❞♦ ♦ ❢❛t♦ q✉❡ x2 + xy + y 2 ≥ 0✱ ♠♦str❡ q✉❡ ❛ s✉♣♦s✐çã♦ x2 + xy + y 2 < 0 ❧❡✈❛
❛ ✉♠❛ ❝♦♥tr❛❞✐çã♦✳
✶✺✳ ❯♠❛ ♣✐râ♠✐❞❡ ❤❡①❛❣♦♥❛❧ r❡❣✉❧❛r✱ ❝♦♠ ❛ ❛r❡st❛ ❞❛ ❜❛s❡ 9 cm ❡ ❛r❡st❛ ❧❛t❡r❛❧ 15 cm✱
❢♦✐ s❡❝❝✐♦♥❛❞❛ ♣♦r ❞♦✐s ♣❧❛♥♦s ♣❛r❛❧❡❧♦s à s✉❛ ❜❛s❡ q✉❡ ❞✐✈✐❞✐r❛♠ s✉❛ ❛❧t✉r❛ ❡♠ três
♣❛rt❡s ✐❣✉❛✐s✳ ▼♦str❡ q✉❡ ❛ ♣❛rt❡ ❞❛ ♣✐râ♠✐❞❡✱ ❝♦♠♣r❡❡♥❞✐❞❛ ❡♥tr❡ ❡ss❡s ♣❧❛♥♦s✱
√
t❡♠ ✈♦❧✉♠❡✱ ✶✷✻ 3 cm3 ✳
✶✻✳ Pr♦✈❡✱ ♣♦r ✐♥❞✉çã♦✱ q✉❡
s❡q✉ê♥❝✐❛ 1,
√
2,
√
3
3,
√
4
n + 1 n
≤ n ♣❛r❛ t♦❞♦ n ≥ 3 ❡ ❝♦♥❝❧✉❛ ❞❛í q✉❡ ❛
n
4, . . . é ❞❡❝r❡s❝❡♥t❡ ❛ ♣❛rt✐r ❞♦ t❡r❝❡✐r♦ t❡r♠♦✳
✶✼✳ ❯♠❛ ✐♥❞ústr✐❛ ❞❡ ❝♦s♠ét✐❝♦s ❞❡s❡❥❛ ❡♠❜❛❧❛r s❛❜♦♥❡t❡s ❡s❢ér✐❝♦s ❞❡ r❛✐♦ 3 cm✳ ❆
❡♠❜❛❧❛❣❡♠ ❞❡✈❡rá t❡r ❢♦r♠❛t♦ ❝✐❧í♥❞r✐❝♦ ❞❡ ❢♦r♠❛ ❛ ❛❝♦♥❞✐❝✐♦♥❛r 3 s❛❜♦♥❡t❡s✱ ❝♦♠♦
♠♦str❛ ❛ ❋✐❣✉r❛ ✭✶✳✼✮ ✭✈✐st❛ s✉♣❡r✐♦r ❞❛ ❡♠❜❛❧❛❣❡♠ ❛❜❡rt❛✮✳
❋✐❣✉r❛ ✶✳✼✿
▼♦str❡ q✉❡ ❛ ♠❡❞✐❞❛ ❞♦ r❛✐♦ ❡ ❛ ❛❧t✉r❛ ❞❛ ❡♠❜❛❧❛❣❡♠✱ ❡♠ cm✱ ❞❡✈❡rã♦ s❡r ❞❡✱
√
❛♣r♦①✐♠❛❞❛♠❡♥t❡✿ 6, 92 ❡ 6 r❡s♣❡❝t✐✈❛♠❡♥t❡✭✳ ❙✉❣❡stã♦✿ 3 = 1, 73✮✳
✶✽✳ ❱❡r✐✜q✉❡✱ q✉❡ ♦ ♠á①✐♠♦ ♥ú♠❡r♦ ❞❡ ❞✐❛❣♦♥❛✐s ❞❡ ✉♠ ♣♦❧í❣♦♥♦ ❝♦♥✈❡①♦ ❞❡ n ❧❛❞♦s é✿
Nd =
n(n − 3)
2
∀ n ∈ N,
n > 3✳
✶✾✳ ▼♦str❡ q✉❡ s❡ ✉♠ ♥ú♠❡r♦ ♣r✐♠♦ p ♥ã♦ ❞✐✈✐❞❡ a✱ ❡♥tã♦ mmc{ p, a } = 1✳
✷✵✳ Pr♦✈❡ q✉❡ s❡ m é ✉♠ ✐♥t❡✐r♦ ♥ã♦ ♥❡❣❛t✐✈♦✱ ❡♥tã♦
1m + 2m + 3m + · · · (n − 1)m + nm ≤ nm+1 ,
✻✷
n≥1
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✷✶✳ ▼♦str❡ ♣♦r ✐♥❞✉çã♦ q✉❡ ♣❛r❛ q✉❛❧q✉❡r ✐♥t❡✐r♦ k > 1 ❡ n ∈ N✿
✶✳
nk+1
≥ 1 + 2k + 3k + · · · + (n − 2)k + (n − 1)k
(k + 1)
k−1
✷✳
1
1
1
n k
− k1
+ 3− k + · · · + (n − 1)− k + n− k
1 ≥ 1+2
1− k
✷✷✳ ▼♦str❡ ♣♦r ✐♥❞✉çã♦ ♦ s❡❣✉✐♥t❡✿
✶✳
❆ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❈❛✉❝❤② ✿
n
X
ai bi
i=1
!2
≤
n
X
a2i
i=1
!
·
n
X
i=1
b2i
!
2(n+1)
✷✳
2
4
(1 + q)(1 + q )(1 + q ) · · · (1 + q
2(n−1)
1−q
)(1 + q ) =
1−q
2n
!
n
n✦
✷✸✳ ❉❡✜♥❡✲s❡ ♦ ❝♦❡✜❝✐❡♥t❡ ❜✐♥♦♠✐❛❧
=
s❡ 0 ≤ m ≤ n✳ ▼♦str❡ q✉❡✿
m✦(m − n)✦
m
!
!
!
n+1
n
n
✶✳
=
+
s❡ 1 ≤ m ≤ n✳
m
m−1
m
!
n
P
n
n
.
✷✳ (a + b)
=
an−j bj
∀ a, b ∈ R✳
j
j=0
✷✹✳ ❉❡s❝♦❜r❛ ♦ ❡rr♦ ♥♦ s❡❣✉✐♥t❡ r❛❝✐♦❝í♥✐♦ ♣♦r ✐♥❞✉çã♦✿
❙❡❥❛ P (n)✿ ❙❡ a ❡ b sã♦ ✐♥t❡✐r♦s ♥ã♦ ♥❡❣❛t✐✈♦s t❛✐s q✉❡ a + b ≤ n
⇒
a = b✳
❖❜s❡r✈❡ q✉❡ P (0) é ✈❡r❞❛❞❡✐r❛✳
❙❡❥❛♠ a ❡ b ✐♥t❡✐r♦s t❛✐s q✉❡ a + b ≤ h + 1✱ ❞❡✜♥❛ c = a − 1 ❡ d = b − 1✱ ❡♥tã♦
c + d = a + b − 2 ≤ h + 1 − 2 ≤ h✳ ❆ ✈❡r❞❛❞❡ ❞❡ P (h) ✐♠♣❧✐❝❛ q✉❡ a = b❀ ✐st♦ é
P (h + 1) é ✈❡r❞❛❞❡✐r❛✳
P♦rt❛♥t♦ P (n) é ✈❡r❞❛❞❡✐r❛ ♣❛r❛ t♦❞♦ n ≥ 0,
n ∈ N✳
2
3
n
1
1
1
(n + 1)n
1
. 1+
··· 1 +
=
✷✺✳ ▼♦str❡ q✉❡✿ 1 + . 1 +
1
2
3
n
n✦
∀ n ∈ N+ ✳
✷✻✳ ❙❡ a, b ❡ n sã♦ ✐♥t❡✐r♦s ♣♦s✐t✐✈♦s✱ ♠♦str❡ ♦ s❡❣✉✐♥t❡✿
!
b
n
!2
+
✶✳
a
0
✷✳
n
0
!
!
!
! !
! !
a
b
a
b
a
b
+
+ ··· +
+
=
1
n−1
n−1
1
n
0
!
!2
!2
!2
!2
2n
n
n
n
n
=
+
+ ··· +
+
n
n
n−1
2
1
✻✸
a+b
n
!
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✷✼✳ ❙❡❥❛ r 6= 1✳
✶✳
❉❡❞✉③✐r q✉❡✱ a + ar + ar + ar + ar + · · · + ar
✷✳
▼♦str❡ ♣♦r ✐♥❞✉çã♦ s♦❜r❡ n ∈ N,
2
2
3
3
4
n−1
n ≥ 1 q✉❡✿
4
a + ar + ar + ar + ar + · · · + ar
n−1
1 − rn
=a
1−r
1 − rn
=a
1−r
R
✷✽✳ ▼♦str❡ q✉❡✱ ♣❛r❛ q✉❛❧q✉❡r x > 0 ❡ ♣❛r❛ t♦❞♦ ♥ú♠❡r♦ ♥❛t✉r❛❧ n✲♣❛r✱ ❛ s❡❣✉✐♥t❡
❞❡s✐❣✉❛❧❞❛❞❡ é ✈❡r❞❛❞❡✐r❛✿
xn + xn−2 + xn−4 + · · · +
1
xn−4
+
1
xn−2
+
1
≥n+1
xn
✷✾✳ ▼♦str❡ q✉❡ t♦❞♦ ♥ú♠❡r♦ ♥❛t✉r❛❧ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ❝♦♠♦ ♦ ♣r♦❞✉t♦ ❞❡ ♥ú♠❡r♦s
♣r✐♠♦s✳
✸✵✳ ❆ s❡q✉ê♥❝✐❛ ❞❡ ❋✐❜♦♥❛❝❝✐ ❞❡✜♥❡✲s❡ ❝♦♠♦ s❡❣✉❡✿ a1 = 1,
♣❛r❛ n ≥ 3✳ ▼♦str❡ ♣♦r ✐♥❞✉çã♦ q✉❡✿
an =
a2 = 1,
an = an−1 +an−2
√ n
1+ 5
2
√ n
− 1−2 5
√
5
✸✶✳ ◆❛ ✜❣✉r❛ ❛♦ ❧❛❞♦✱ ♦ tr✐â♥❣✉❧♦ ABC é ❡q✉✐❧át❡r♦✱ M é ♣♦♥t♦ ♠é❞✐♦ ❞♦ ❧❛❞♦ AB ✱ ♦
s❡❣♠❡♥t♦ M N é ♣❡r♣❡♥❞✐❝✉❧❛r ❛♦ ❧❛❞♦ BC ❡ ♦ s❡❣♠❡♥t♦ N P é ♣❡r♣❡♥❞✐❝✉❧❛r ❛♦
❧❛❞♦ AC ✳
❙❛❜❡♥❞♦ q✉❡ ♦ ❧❛❞♦ AP = 12✱ ❝❛❧❝✉❧❛r ❛ ár❡❛ ❞♦ tr✐â♥❣✉❧♦ ABC
M✡
✡
✡
A
✡
✡ ❏❏
❏
❏
P
✟❏
✡
✟✟ ❏
❏
✡ ✟✟
B
N
C
✸✷✳ ▼♦str❡ q✉❡✱ s❡ a1 , a2 , a3 , · · · , an sã♦ ♥ú♠❡r♦s r❡❛✐s t❛✐s q✉❡ | a1 |≤ 1 ❡ | an −an−1 |≤ 1✱
❡♥tã♦ | an |≤ 1✳
✸✸✳ ▼♦str❡ q✉❡✱ ♣❛r❛ t♦❞♦ ✐♥t❡✐r♦ ♣♦s✐t✐✈♦ n ❡ ♣❛r❛ p > 0 ♥ú♠❡r♦ r❡❛❧ ❛ s❡❣✉✐♥t❡
❞❡s✐❣✉❛❧❞❛❞❡ é ✈á❧✐❞❛✿(1 + p)n ≥ 1 + np +
✸✹✳ ▼♦str❡ q✉❡✿ |
n
P
i=1
ai |≤
n
P
i=1
n(n − 1) 2
p.
2
| ai |
✻✹
09/02/2021
❈❛♣ít✉❧♦ ✷
❋❯◆➬Õ❊❙
▲❡♦♥❤❛r❞ ❊✉❧❡r ♥❛s❝❡✉ ❡♠ ❇❛s✐❧❡✐❛✱
♥❛ ❙✉íç❛✱ ❡♠ 15 ❞❡
❛❜r✐❧ ❞❡ 1707✱ ❡ ♠♦rr❡✉ ❡♠ 18 ❞❡ s❡t❡♠❜r♦ ❞❡ 1783✱ ❡♠ ❙ã♦
P❡t❡rs❜✉r❣♦✱ ❘úss✐❛✳ ❋♦✐ ♦ ♠❛t❡♠át✐❝♦ ♠❛✐s ♣r♦❞✉t✐✈♦ ❞♦ sé❝✉❧♦
XV II ✲ ❤á q✉❡♠ ♦ ❝♦♥s✐❞❡r❡ ♦ ♠❛t❡♠át✐❝♦ ♠❛✐s ♣r♦❞✉t✐✈♦ ❞❡
t♦❞♦s ♦s t❡♠♣♦s✳
❊✉❧❡r ❡st✉❞♦✉ ▼❛t❡♠át✐❝❛ ❝♦♠ ❏♦❤❛♥♥ ❇❡r♥♦✉❧❧✐✳ ◗✉❛♥❞♦✱
❡♠ 1725✱ ◆✐❦♦❧❛✉s✱ ✜❧❤♦ ❞❡ ❏♦❤❛♥✱ ✈✐❛❥♦✉ ♣❛r❛ ❙ã♦ P❡t❡rs❜✉r❣♦✱
❝♦♥✈✐❞♦✉ ♦ ❥♦✈❡♠ ❊✉❧❡r ♣❛r❛ s❡❣✉✐✲❧♦ ❡ s❡ ✐♥s❝r❡✈❡r ♥❛ ❆❝❛❞❡♠✐❛✱
❛té 1741✳ ❊♠ 1726✱ ❊✉❧❡r ❥á t✐♥❤❛ ✉♠ ♣❡q✉❡♥♦ ❛rt✐❣♦ ♣✉❜❧✐❝❛çã♦
❡♠ 1727✱ ♣✉❜❧✐❝♦✉ ♦✉tr♦ ❛rt✐❣♦ s♦❜r❡ tr❛❥❡tór✐❛s r❡❝í♣r♦❝❛s✳ ❊st❡
❛rt✐❣♦ ❣❛♥❤♦✉ ♦ s❡❣✉♥❞♦ ❧✉❣❛r ♥♦ ●r❛♥❞❡ Pr❡♠✐♦ ❞❛ ❆❝❛❞❡♠✐❛
▲❡♦♥❤❛r❞ ❊✉❧❡r
❞❡ P❛r✐s✱ ♦ q✉❡ ❢♦✐ ✉♠ ❣r❛♥❞❡ ❢❡✐t♦ ♣❛r❛ ♦ ❥♦✈❡♠ ❧✐❝❡♥❝✐❛❞♦✳
❉❡ 1741 ❛té 1766✱ ❊✉❧❡r ❡st❡✈❡ ♥❛ ❆❧❡♠❛♥❤❛✱ ♥❛ ❆❝❛❞❡♠✐❛
❞❡ ❇❡r❧✐♠✱ s♦❜ ❛ ♣r♦t❡çã♦ ❞❡ ❋r❡❞❡r✐❝♦✲♦✲●r❛♥❞❡❀ ❞❡ 1.766 ❛ 1783 ✈♦❧t♦✉ ❛ ❙ã♦ P❡t❡rs❜✉r❣♦✱
❛❣♦r❛ s♦❜ ❛ ♣r♦t❡çã♦ ❞❛ ✐♠♣❡r❛tr✐③ ❈❛t❛r✐♥❛✳
❆ ✈✐❞❛ ❞❡st❡ ♠❛t❡♠át✐❝♦ ❢♦✐ q✉❛s❡ ❡①❝❧✉s✐✈❛♠❡♥t❡ ❞❡❞✐❝❛❞❛ ❛♦ tr❛❜❛❧❤♦ ♥♦s ❞✐❢❡r❡♥t❡s ❝❛♠✲
♣♦s ❞❛ ▼❛t❡♠át✐❝❛✳ ❊♠❜♦r❛ t✐✈❡ss❡ ♣❡r❞✐❞♦ ✉♠ ♦❧❤♦✱ ❡♠ 1735 ❡ ♦ ♦✉tr♦ ❡♠ 1766✱ ♥❛❞❛ ♣♦❞✐❛
✐♥t❡rr♦♠♣❡r ❛ s✉❛ ❡♥♦r♠❡ ♣r♦❞✉t✐✈✐❞❛❞❡✳ ❊✉❧❡r✱ ❝❡❣♦✱ ❛❥✉❞❛❞♦ ♣♦r ✉♠❛ ♠❡♠ór✐❛ ❢❡♥♦♠❡♥❛❧✱
❝♦♥t✐♥✉♦✉ ❛ ❞✐t❛r ❛s s✉❛s ❞❡s❝♦❜❡rt❛s✳ ❉✉r❛♥t❡ ❛ s✉❛ ✈✐❞❛ ❡s❝r❡✈❡✉ 560 ❧✐✈r♦s ❡ ❛rt✐❣♦s❀ ❡♠ ✈♦❞❛
❞❡✐①♦✉ ♠✉✐t♦s ♠❛♥✉s❝r✐t♦s✱ q✉❡ ❢♦r❛♠ ♣✉❜❧✐❝❛❞♦s ♣❡❧❛ ❆❝❛❞❡♠✐❛ ❞❡ ❙ã♦ P❡t❡rs❜✉r❣♦ ❞✉r❛♥t❡ ♦s
q✉❛r❡♥t❛ ❡ s❡t❡ ❛♥♦s s❡❣✉✐♥t❡s à s✉❛ ♠♦rt❡✳
✷✳✶
■♥tr♦❞✉çã♦
❆ ❛♣❧✐❝❛❜✐❧✐❞❛❞❡ ❞❛ ♠❛t❡♠át✐❝❛✱ ❡♥q✉❛♥t♦ ✐♥str✉♠❡♥t♦ ❞❡ ❡st✉❞♦ ❞♦s ❢❡♥ô♠❡♥♦s r❡❛✐s✱
❞❡♣❡♥❞❡ ❡ss❡♥❝✐❛❧♠❡♥t❡ ❞❛ s✉❛ ❝❛♣❛❝✐❞❛❞❡ ❞❡ r❡♣r❡s❡♥t❛r ❡ss❡s ❢❡♥ô♠❡♥♦s✱ ✐st♦ é✱ ❞❛
❝♦♥❝❡♣çã♦ ❞❡ ✉♠ ♠♦❞❡❧♦ ♠❛t❡♠át✐❝♦ q✉❡ s✐♥t❡t✐③❡ ❡ r❡❧❛❝✐♦♥❡ ❛s ♣r✐♥❝✐♣❛✐s ❝❛r❛❝t❡ríst✐❝❛s
❞♦ ❢❡♥ô♠❡♥♦ ❛ ❡st✉❞❛r✳ ◆❡ss❡s ♠♦❞❡❧♦s ♠❛t❡♠át✐❝♦s✱ t❛✐s r❡❧❛çõ❡s sã♦ ❤♦❥❡ r❡♣r❡s❡♥t❛❞❛s
♣♦r ❢✉♥çõ❡s✳
❖ ❝♦♥❝❡✐t♦ ❞❡ ❢✉♥çã♦ ❤♦❥❡ ♥♦s ♣♦❞❡ ♣❛r❡❝❡r s✐♠♣❧❡s✱♠❛s✱ é ♦ r❡s✉❧t❛❞♦
❞❡ ✉♠❛ ❧❡♥t❛ ❡ ❧♦♥❣❛ ❡✈♦❧✉çã♦ ❤✐stór✐❝❛ ✐♥✐❝✐❛❞❛ ♥❛ ❛♥t✐❣✉✐❞❛❞❡✱ q✉❛♥❞♦✱ ♣♦r ❡①❡♠♣❧♦✱
✻✺
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
♦s ♠❛t❡♠át✐❝♦s ❞❛ ❇❛❜✐❧ô♥✐❛ ✉t✐❧✐③❛r❛♠ t❛❜❡❧❛s ❞❡ q✉❛❞r❛❞♦s ❡ ❞❡ r❛í③❡s q✉❛❞r❛❞❛s ❡
❝ú❜✐❝❛s✱ ♦✉ q✉❛♥❞♦ ♦s P✐t❛❣ór✐❝♦s t❡♥t❛r❛♠ r❡❧❛❝✐♦♥❛r ❛ ❛❧t✉r❛ ❞♦ s♦♠ ❡♠✐t✐❞♦ ♣♦r ❝♦r❞❛s
s✉❜♠❡t✐❞❛s à ♠❡s♠❛ t❡♥sã♦ ❝♦♠ ♦ s❡✉ ❝♦♠♣r✐♠❡♥t♦✳
◆❛ é♣♦❝❛ ❛♥t✐❣❛✱ ♦ ❝♦♥❝❡✐t♦ ❞❡ ❢✉♥çã♦ ♥ã♦ ❡st❛✈❛ ❝❧❛r❛♠❡♥t❡ ❞❡✜♥✐❞♦✳ ❆s r❡❧❛çõ❡s
❡♥tr❡ ❛s ✈❛r✐á✈❡✐s s✉r❣✐❛♠ ❞❡ ❢♦r♠❛ ✐♠♣❧í❝✐t❛ ❡ ❡r❛♠ ❞❡s❝r✐t❛s ✈❡r❜❛❧♠❡♥t❡ ♦✉ ♣♦r ✉♠
❣rá✜❝♦✳ ❙ó ♥♦ sé❝✉❧♦ XV II ✱ q✉❛♥❞♦ ❉❡s❝❛rt❡s✶ ❡ P✐❡rr❡ ❋❡r♠❛t ✐♥tr♦❞✉③❡♠ ❛s ❝♦♦r❞❡♥❛✲
❞❛s ❝❛rt❡s✐❛♥❛s✱ é q✉❡ s❡ t♦r♥❛ ♣♦ssí✈❡❧ tr❛♥s❢♦r♠❛r ♣r♦❜❧❡♠❛s ❣❡♦♠étr✐❝♦s ❡♠ ♣r♦❜❧❡♠❛s
❛❧❣é❜r✐❝♦s ❡ ❡st✉❞❛r ❛♥❛❧✐t✐❝❛♠❡♥t❡ ❛s ❢✉♥çõ❡s✳
❆ ♠❛t❡♠át✐❝❛ r❡❝❡❜❡ ❛ss✐♠ ✉♠ ❣r❛♥❞❡ ✐♠♣✉❧s♦✱ ♥♦t❛❞❛♠❡♥t❡ ♣❡❧❛ s✉❛ ❛♣❧✐❝❛❜✐❧✐❞❛❞❡ ❛
♦✉tr❛s ❝✐ê♥❝✐❛s✳ ❆ ♣❛rt✐r ❞❡ ♦❜s❡r✈❛çõ❡s ♦✉ ❡①♣❡r✐ê♥❝✐❛s r❡❛❧✐③❛❞❛s✱ ♦s ❝✐❡♥t✐st❛s ♣❛ss❛r❛♠
❛ ❞❡t❡r♠✐♥❛r ❛ ❢ór♠✉❧❛ ♦✉ ❢✉♥çã♦ q✉❡ r❡❧❛❝✐♦♥❛ ❛s ✈❛r✐á✈❡✐s ❡♠ ❡st✉❞♦✳ ❆ ♣❛rt✐r ❞❛q✉✐
t♦❞♦ ♦ ❡st✉❞♦ s❡ ❞❡s❡♥✈♦❧✈❡ ❡♠ t♦r♥♦ ❞❛s ♣r♦♣r✐❡❞❛❞❡s ❞❡ t❛✐s ❢✉♥çõ❡s✳
➱ ♣♦r ✐ss♦ q✉❡ ✉♠ ❞♦s ❝♦♥❝❡✐t♦s ♠❛✐s ✐♠♣♦rt❛♥t❡s ❞❛ ♠❛t❡♠át✐❝❛ é ♦ ❞❡ ❢✉♥çã♦✳ ❊♠
q✉❛s❡ t♦❞❛s ❛s ♣❛rt❡s ❞❛ ❝✐ê♥❝✐❛ ♦ ❡st✉❞♦ ❞❡ ❢✉♥çõ❡s é ❛ ♣❛rt❡ ❝❡♥tr❛❧ ❞❛ t❡♦r✐❛✳
✷✳✷
❘❡❧❛çõ❡s
❉❛❞♦s ♦s ❝♦♥❥✉♥t♦s A = { 1, 2, 3, 4 } ❡ B = { a, b, c, d }✳
P♦❞❡♠♦s ❡st❛❜❡❧❡❝❡r ✉♠❛ r❡❧❛çã♦ ✭❝♦rr❡s♣♦♥❞ê♥✲
A
✲ B
❝✐❛✮ ❡♥tr❡ ♦s ❝♦♥❥✉♥t♦s A ❡ B ❞❡ ♠♦❞♦ q✉❡✱ ❛ ❝❛❞❛ ♥ú✲
✬
✬ ✩
♠❡r♦ ❡♠ ♦r❞❡♠ ❝r❡s❝❡♥t❡ ❞♦ ❝♦♥❥✉♥t♦ A ❝♦rr❡s♣♦♥❞❛
1
✲ a
✉♠❛ ❧❡tr❛ ♥❛ ♦r❞❡♠ ❛❧❢❛❜ét✐❝❛ ❞♦ ❝♦♥❥✉♥t♦ B ✳
✲ b
2
❖✉tr♦ ♠♦❞♦ ❞❡ ❛♣r❡s❡♥t❛r ♦ ❡sq✉❡♠❛ ❞❛ ❋✐❣✉r❛
✲ c
3
✭✷✳✶✮ s❡r✐❛ ✉t✐❧✐③❛♥❞♦ ❛ ❢♦r♠❛ ❞❡ ♣❛r ♦r❞❡♥❛❞♦✱ ✐st♦ é✿
✲ d
4
(1, a), (2, b), (3, c) ❡ (4, d)✳
✫ ✪
✫
❖❜s❡r✈❛♠♦s q✉❡ ❛ ❝♦rr❡s♣♦♥❞ê♥❝✐❛ ❡st❛❜❡❧❡❝✐❞❛
❞❡t❡r♠✐♥❛ ✉♠ s✉❜❝♦♥❥✉♥t♦ ❞♦ ❝♦♥❥✉♥t♦ ♣r♦❞✉t♦ ❝❛r✲
❋✐❣✉r❛ ✷✳✶✿
t❡s✐❛♥♦ A × B ✳ ❊st❡ ❝♦♥❥✉♥t♦ é ❞❡♥♦t❛❞♦ ❝♦♠♦✿
{(1, a), (2, b), (3, c), (4, d)}✳
✩
✪
❉❡✜♥✐çã♦ ✷✳✶✳
S é ✉♠❛ r❡❧❛çã♦ ❞❡ A ❡♠ B ✱
A × B ❀ ✐st♦ é✱ S ⊆ A × B ✳
❉✐③❡♠♦s q✉❡
❝❛rt❡s✐❛♥♦
s❡
S
é ✉♠ s✉❜❝♦♥❥✉♥t♦ ❞♦ ♣r♦❞✉t♦
❆ss✐♠✱ ✉♠❛ r❡❧❛çã♦ é ✉♠❛ ❝♦rr❡s♣♦♥❞ê♥❝✐❛ ❡①✐st❡♥t❡ ❡♥tr❡ ❝♦♥❥✉♥t♦s ♥ã♦ ✈❛③✐♦s✳
✶ ❘❡♥❡
❉❡s❝❛rt❡s ✭1596 − 1650✮✱ ❝r✐❛❞♦r ❞❛ ❣❡♦♠❡tr✐❛ ❛♥❛❧ít✐❝❛✱ ❢♦✐ ✉♠ ❣❡♥t✐❧ ❤♦♠❡♠✱ ♠✐❧✐t❛r✱ ♠❛t❡✲
♠át✐❝♦ ❡ ✉♠ ❞♦s ♠❛✐♦r❡s ✜❧ós♦❢♦s ❞❡ t♦❞♦s ♦s t❡♠♣♦s
✻✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ ❝♦rr❡s♣♦♥❞ê♥❝✐❛ ❡♥tr❡ ♦s ❞♦✐s ❝♦♥❥✉♥t♦s é ❞❛❞❛ ❡♠ t❡r♠♦s ❞❡ ♣❛r❡s ♦r❞❡♥❛❞♦s✱ ♦♥❞❡
♦ ♣r✐♠❡✐r♦ ❡❧❡♠❡♥t♦ ❞♦ ♣❛r ♣r♦❝❡❞❡ ❞♦ ❝♦♥❥✉♥t♦ ❞❡ ♣❛rt✐❞❛ A ❡ ♦ s❡❣✉♥❞♦ ❡❧❡♠❡♥t♦ ❞♦
♣❛r ♣r♦❝❡❞❡ ❞♦ ❝♦♥❥✉♥t♦ ❞❡ ❝❤❡❣❛❞❛ B ✳
❖❜s❡r✈❛çã♦ ✷✳✶✳
✶✮
❙❡
✷✮
❙❡
x ∈ A ❡ y ∈ B ❡ ❝✉♠♣r❡ (x, y) ∈ S ✱ ❡♥tã♦ ❞✐③❡♠♦s
y ♠❡❞✐❛♥t❡ S ❡ ❞❡♥♦t❛♠♦s ❝♦♠ ♦ sí♠❜♦❧♦ xSy ✳
S
é ✉♠❛ r❡❧❛çã♦ ❞❡
♦ ❝♦♥❥✉♥t♦
✸✮
B
A
❡♠
B✱
♦ ❝♦♥❥✉♥t♦
❈♦♠♦ ♦ ❝♦♥❥✉♥t♦ ✈❛③✐♦
❚❡♠♦s q✉❡
S
x
❡stá ❡♠ r❡❧❛çã♦ ❝♦♠
é ❝❤❛♠❛❞♦ ❞❡ ✏ ❝♦♥❥✉♥t♦ ❞❡ ♣❛rt✐❞❛✑ ❡
é ❝❤❛♠❛❞♦ ❞❡ ✏❝♦♥❥✉♥t♦ ❞❡ ❝❤❡❣❛❞❛✑✳
∅ ⊆ A × B✱
❡♥tã♦
❞❡ ✏ r❡❧❛çã♦ ♥✉❧❛ ♦✉ ✈❛③✐❛✑✳
✹✮
A
q✉❡
é ✉♠❛ r❡❧❛çã♦ ❞❡
A
❡♠
B✱
∅
é ✉♠❛ r❡❧❛çã♦ ❞❡
s❡ ❡ s♦♠❡♥t❡ s❡
A
❡♠
B
❡ é ❝❤❛♠❛❞❛
S ⊆ A × B✳
❖s ❝♦♥❥✉♥t♦s ❞❡ ♣❛rt✐❞❛ ❡ ❞❡ ❝❤❡❣❛❞❛ ♥ã♦ ♥❡❝❡ss❛r✐❛♠❡♥t❡ tê♠ ✉♠❛ ❡str✉t✉r❛✳ ◆♦
❡♥t❛♥t♦✱ s❡❣✉♥❞♦ ♦ t✐♣♦ ❞❡ ❡str✉t✉r❛ ✐♠♣♦st❛ ❛ ❡ss❡s ❝♦♥❥✉♥t♦s✱ ❡ ♦ t✐♣♦ ❞❡ r❡str✐çã♦ q✉❡
s❡ ✐♠♣õ❡ à ♣ró♣r✐❛ r❡❧❛çã♦✱ ♦❜t❡♠♦s ❛❧❣✉♥s t✐♣♦s ❡s♣❡❝✐❛✐s ❞❡ r❡❧❛çõ❡s✱ ❝❛❞❛ ✉♠❛ ❞❡❧❛s
❝♦♠ ✉♠ ♥♦♠❡ ❡s♣❡❝í✜❝♦
❊①❡♠♣❧♦ ✷✳✶✳
❙❡❥❛♠ ♦s ❝♦♥❥✉♥t♦s
❝♦♥❥✉♥t♦s
A
❡
B
A = { ❛❧✉♥♦s
❞♦
1o ❛♥♦
❞❡ ❈á❧❝✉❧♦
♣♦❞❡♠♦s ❢♦r♠❛r ❛❧❣✉♠❛s r❡❧❛çõ❡s ❝♦♠♦✿
I}
B = N✱
❡
S1 = { (x, y) ∈ A × B /.
x
tê♠
y
❛♥♦s
}
S2 = { (x, y) ∈ A × B /.
x
tê♠
y
r❡❛✐s
}
❡♥tã♦ ❝♦♠ ♦s
❊①❡♠♣❧♦ ✷✳✷✳
❙❡❥❛♠ ♦s ❝♦♥❥✉♥t♦s✿
A = {3, 4, 5, 6}✱ B = {1, 2, 3, 4}
S = {(x, y) ∈ A × B /.
❆ss✐♠✱ ♣♦❞❡♠♦s ❡s❝r❡✈❡r✿
✷✳✷✳✶
❡ ❛ r❡❧❛çã♦✿
x = y + 2}
S = { (3, 1), (4, 2), (5, 3), (6, 4) }✳
❉♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❡ ✉♠❛ r❡❧❛çã♦
❙❡❥❛ S ✉♠❛ r❡❧❛çã♦ ♥ã♦ ✈❛③✐❛ ❞❡ A ❡♠ B ✱ ✐st♦ é✿
S = { (x, y) ∈ A × B /. x ❡st❛ ❡♠ r❡❧❛çã♦ ❝♦♠ y }
✻✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✷✳✷✳ ❉♦♠í♥✐♦ ❞❡ ✉♠❛ r❡❧❛çã♦✳
❖ ❞♦♠í♥✐♦ ❞❛ r❡❧❛çã♦ S ❞❡ A ❡♠ B é ♦ ❝♦♥❥✉♥t♦ ❞♦s ❡❧❡♠❡♥t♦s x ∈ A ♣❛r❛ ♦s
q✉❛✐s ❡①✐st❡ ✉♠ ❡❧❡♠❡♥t♦ y ∈ B t❛❧ q✉❡ (x, y) ∈ S ✳
■st♦ é ♦ ❞♦♠í♥✐♦ ❞❡ S é ♦ s✉❜❝♦♥❥✉♥t♦ ❞❡ ❡❧❡♠❡♥t♦s ❞❡ A ❢♦r♠❛❞♦ ♣❡❧❛s ♣r✐♠❡✐r❛s
❝♦♠♣♦♥❡♥t❡s ❞♦s ♣❛r❡s ♦r❞❡♥❛❞♦s q✉❡ ♣❡rt❡♥❝❡♠ ❛ r❡❧❛çã♦✳ ❆ ♥♦t❛çã♦ ♣❛r❛ ✐♥❞✐❝❛r ♦
❞♦♠í♥✐♦ ❞❛ r❡❧❛çã♦ S é D(S) ❛ss✐♠ ❞❡✜♥✐❞♦✿
D(S) = { x ∈ A /. y ∈ B;
(x, y) ∈ S }
❉❡✜♥✐çã♦ ✷✳✸✳ ■♠❛❣❡♠ ❞❡ ✉♠❛ r❡❧❛çã♦✳
❆ ✐♠❛❣❡♠ ♦✉ ❝♦♥tr❛❞♦♠í♥✐♦ ❞❛ r❡❧❛çã♦ S ❞❡ A ❡♠ B é ♦ ❝♦♥❥✉♥t♦ ❞♦s ❡❧❡♠❡♥t♦s
y ∈ B ♣❛r❛ ♦s q✉❛✐s ❡①✐st❡ ✉♠ ❡❧❡♠❡♥t♦ x ∈ A t❛❧ q✉❡ (x, y) ∈ S ✳
■st♦ é✱ ❛ ✐♠❛❣❡♠ ❞❡ S é ♦ s✉❜❝♦♥❥✉♥t♦ ❞❡ B ❢♦r♠❛❞♦ ♣❡❧❛s s❡❣✉♥❞❛s ❝♦♠♣♦♥❡♥t❡s ❞♦s
♣❛r❡s ♦r❞❡♥❛❞♦s q✉❡ ♣❡rt❡♥❝❡♠ ❛ r❡❧❛çã♦✳ ❆ ♥♦t❛çã♦ ♣❛r❛ ✐♥❞✐❝❛r ❛ ✐♠❛❣❡♠ ❞❛ r❡❧❛çã♦
S é Im(S) = { y ∈ B /. x ∈ A; (x, y) ∈ S }
❊①❡♠♣❧♦ ✷✳✸✳
❖ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❛ r❡❧❛çã♦ ❞♦ ❊①❡♠♣❧♦ ✭✷✳✷✮ sã♦ r❡s♣❡❝t✐✈❛♠❡♥t❡✿
D(S) = {3, 4, 5, 6}
✷✳✷✳✷
❘❡❧❛çõ❡s ❞❡
Im(S) = {1, 2, 3, 4}
R
❡♠
R
◆♦ q✉❡ s❡❣✉❡✱ ✉t✐❧✐③❛r❡♠♦s r❡❧❛çõ❡s ❞❡ A ❡♠ B ♦♥❞❡ A ❡ B sã♦ s✉❜❝♦♥❥✉♥t♦s ❞♦
❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s R✳
❊①❡♠♣❧♦ ✷✳✹✳
❙❡❥❛ S ✉♠❛ r❡❧❛çã♦ ❞❡✜♥✐❞❛ ♣♦r✿ S = {(x, y) ∈ N+ × N+ /. x2 + y 2 ≤ 9}
▲♦❣♦✱ ♥♦ss❛ r❡❧❛çã♦ é✿ S = {(1, 1), (1, 2), (2, 1), (2, 2)}✳ ❯♠ ❞✐❛❣r❛♠❛ ❞❛ r❡❧❛çã♦
S ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✷✮✳
❖❜s❡r✈❡✱ s♦♠❡♥t❡ sã♦ q✉❛tr♦ ♣♦♥t♦s ❞♦ ♣❧❛♥♦✳
❊①❡♠♣❧♦ ✷✳✺✳
❙❡❥❛ T ❛ r❡❧❛çã♦ ❡♠ R ❞❡✜♥✐❞❛ ❝♦♠♦ s❡❣✉❡✿ T = {(x, y) ∈ R × R /. x2 + y 2 ≤ 9}
❯♠ ❞✐❛❣r❛♠❛ ❞❛ r❡❧❛çã♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✸✮✳ ❖❜s❡r✈❡✱ é ✐♠♣♦ssí✈❡❧ ❞❡s❡♥❤❛r
✉♠ ❛ ✉♠ ♦s ✐♥✜♥✐t♦s ❡❧❡♠❡♥t♦s ❞❛ r❡❧❛çã♦ T ❀ ✐st♦ ❛❝♦♥t❡❝❡ ♣❡❧♦ ❢❛t♦ ❛ r❡❧❛çã♦ T ❡st❛r
❞❡✜♥✐❞❛ ❝♦♠ s✉❜❝♦♥❥✉♥t♦s ❞❡ ✐♥✜♥✐t♦s ♥ú♠❡r♦s r❡❛✐s R✳
✻✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
y
✻
3
r
2
r
1
✛
❄0
−1
r
r
1
2
x✲
3
4
···
❋✐❣✉r❛ ✷✳✷✿
❋✐❣✉r❛ ✷✳✸✿
❊①✐st❡♠ ♦✉tr♦s t✐♣♦s ❞❡ r❡❧❛çõ❡s✱ ❝♦♠♦ ♠♦str❛ ❛ s❡❣✉✐♥t❡ ❞❡✜♥✐çã♦ ❬✻❪✳
❉❡✜♥✐çã♦ ✷✳✹✳
❙❡❥❛♠
k
♥ú♠❡r♦ r❡❛❧ ❝♦♥st❛♥t❡ ♥ã♦ ♥✉❧♦✱ ❡
n ∈ N✳
✐✮ ❉✐③❡♠♦s q✉❡ y é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ x✱ s❡ y = kx❀ ❡ ❞✐③❡♠♦s q✉❡ y é
1
x
✐♥✈❡rs❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ x✱ s❡ y = k( )✳
✐✐✮ ❉✐③❡♠♦s q✉❡ y é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ á n✲és✐♠❛ ♣♦tê♥❝✐❛ ❞❡ x✱ s❡ y = k.xn
❀ ❡ ❞✐③❡♠♦s q✉❡ y é ✐♥✈❡rs❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ á n✲és✐♠❛ ♣♦tê♥❝✐❛ ❞❡ x✱ s❡
1
y = k( n )✳
x
✐✐✐✮ ❉✐③❡♠♦s q✉❡ z é ❝♦♥❥✉♥t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ x ❡ y s❡ z = kxy
❊①❡♠♣❧♦ ✷✳✻✳
❉❡ ✉♠ ❣r✉♣♦ ❞❡
100
❛❧✉♥♦s✱ ❛ r❛③ã♦ s❡❣✉♥❞♦ ❛ q✉❛❧ ✉♠ ❜♦❛t♦ s❡ ❡s♣❛❧❤❛ é ❝♦♥❥✉♥✲
t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ♥ú♠❡r♦ ❞❡ ❛❧✉♥♦s q✉❡ ♦✉✈✐r❛♠ ♦ ❜♦❛t♦ ❡ ❛♦ ♥ú♠❡r♦ ❞❡ ❛❧✉♥♦s
q✉❡ ♥ã♦ ♦✉✈✐r❛♠ ♦ ❜♦❛t♦✳
♠✐♥✉t♦✱ q✉❛♥❞♦
30
❛✮ ❙❡ ♦ ❜♦❛t♦ ❡stá s❡ ❡s♣❛❧❤❛♥❞♦ ❛ ✉♠❛ r❛③ã♦ ❞❡ 5 ❛❧✉♥♦s ♣♦r
♦ ♦✉✈✐r❛♠✳ ❊①♣r❡ss❡ ❛ t❛①❛ s❡❣✉♥❞♦ ♦ q✉❛❧ ♦ ❜♦❛t♦ s❡ ❡stá ❡s♣❛❧❤❛♥❞♦
❝♦♠♦ ❢✉♥çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ❛❧✉♥♦s q✉❡ ♦ ♦✉✈✐r❛♠✳
q✉❛♥❞♦
90
❙♦❧✉çã♦✳
❜✮
◗✉ã♦ rá♣✐❞♦ ♦ ❜♦❛t♦ s❡ ❡s♣❛❧❤♦✉
❛❧✉♥♦s ♦ ♦✉✈✐r❛♠❄
❛✮
❙✉♣♦♥❤❛♠♦s f (x) s❡❥❛ ❛ t❛①❛ ♣❡❧♦ q✉❛❧ ♦ ❜♦❛t♦ s❡ ❡st❛ ❡s♣❛❧❤❛♥❞♦✱ q✉❛♥❞♦ x ❛❧✉♥♦s
♦ ♦✉✈✐r❛♠ ✭❧♦❣♦ ♥ã♦ ♦✉✈✐r❛♠ 100 − x)❀ ❡♥tã♦ f (x) = kx(100 − x)✳
◗✉❛♥❞♦ x = 30✱ t❡♠♦s f (30) = 5 ⇒ 5 = k(30)(100 − 30) ⇒ 5 = 2100k ⇒
1
5
=
✳
2100
420
x(100 − x)
▲♦❣♦ f (x) =
✳
420
k=
❙♦❧✉çã♦✳
❜✮
✻✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
◗✉❛♥❞♦
x = 90✱
t❡♠♦s
1
900
[90(100 − 90)] =
= 2, 142✱
420
420
♦✉✈✐r❛♠ é 2, 142 ♦✉✈✐♥t❡s ♣♦r ♠✐♥✉t♦✳
f (90) =
❝r❡s❝✐♠❡♥t♦ q✉❛♥❞♦ ✾✵ ❛❧✉♥♦s ♦
❛ t❛①❛ ❞❡
❊①❡♠♣❧♦ ✷✳✼✳
❖ ♣❡s♦ ❛♣r♦①✐♠❛❞♦ ❞❛ ❜❛♥❤❛ ❡♠ ✉♠ ♣♦r❝♦ é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ s❡✉ ♣❡s♦
❝♦r♣♦r❛❧✳
❛✮
❊①♣r❡ss❡ ♦ ♥ú♠❡r♦ ❞❡ q✉✐❧♦s ❞♦ ♣❡s♦ ❛♣r♦①✐♠❛❞♦ ❞❛ ❜❛♥❤❛ ❞❡ ✉♠ ♣♦r❝♦ ❝♦♠♦ ❢✉♥çã♦
❞❡ s❡✉ ♣❡s♦ ❝♦r♣♦r❛❧ s❛❜❡♥❞♦ q✉❡ ✉♠ ♣♦r❝♦ ❝♦♠ 98 kg t❡♠ ✉♠ ♣❡s♦ ❛♣r♦①✐♠❛❞♦ ❞❡
32 kg ❞❡ ❜❛♥❤❛✳
❜✮
❆❝❤❡ ♦ ♣❡s♦ ❞❛ ❜❛♥❤❛ ❞❡ ✉♠ ♣♦r❝♦ ❝✉❥♦ ♣❡s♦ ❝♦r♣♦r❛❧ s❡❥❛ 72 kg ✳
❙♦❧✉çã♦✳
❙❡❥❛
✭❛✮
y = f (x)
♦ ♣❡s♦ ❛♣r♦①✐♠❛❞♦ ❞❡ ❜❛♥❤❛ ❞❡ ✉♠ ♣♦r❝♦ ❝✉❥♦ ♣❡s♦ ❝♦r♣♦r❛❧ é
x kg ✱
s❡♥❞♦ ♦ ♣❡s♦ ❞❛ ❜❛♥❤❛ ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ s❡✉ ♣❡s♦ ❝♦r♣♦r❛❧✱ t❡♠♦s q✉❡ ❡①✐st❡
k t❛❧ q✉❡ f (x) = kx❀ q✉❛♥❞♦ x = 98 t❡♠♦s f (98) = 32✱ ❧♦❣♦ 32 = k.(98)
32
✳
♦♥❞❡ k =
98
32
P♦rt❛♥t♦ f (x) =
x✳
98
✉♠❛ ❝♦♥st❛♥t❡
❙♦❧✉çã♦✳ ✭❜✮
P♦r ♦✉tr♦ ❧❛❞♦✱ q✉❛♥❞♦
x = 72
t❡♠♦s
f (72) = 72(
▲♦❣♦ ♦ ♣❡s♦ ❞❛ ❜❛♥❤❛ é ❛♣r♦①✐♠❛❞❛♠❡♥t❡
32
1152
) =
= 23, 51✳
98
49
23, 51 kg ✳
❊①❡♠♣❧♦ ✷✳✽✳
❯♠❛ t♦r♥❡✐r❛ ❡♥❝❤❡ ✉♠ t❛♥q✉❡ ❡♠ 12 ♠✐♥✉t♦s✱ ❡♥q✉❛♥t♦ ✉♠❛ s❡❣✉♥❞❛ t♦r♥❡✐r❛ ❣❛st❛
18 ♠✐♥✉t♦s ♣❛r❛ ❡♥❝❤❡r ♦ ♠❡s♠♦ t❛♥q✉❡✳ ❈♦♠ ♦ t❛♥q✉❡ ✐♥✐❝✐❛❧♠❡♥t❡ ✈❛③✐♦✱ ❛❜r❡✲s❡ ❛
♣r✐♠❡✐r❛ t♦r♥❡✐r❛ ❞✉r❛♥t❡ x ♠✐♥✉t♦s❀ ❛♦ ✜♠ ❞❡ss❡ t❡♠♣♦✱ ❢❡❝❤❛✲s❡ ❡ss❛ t♦r♥❡✐r❛ ❡ ❛❜r❡✲s❡
❛ s❡❣✉♥❞❛✱ ❛ q✉❛❧ t❡r♠✐♥❛ ❞❡ ❡♥❝❤❡r ♦ t❛♥q✉❡ ❡♠ (x + 3) ♠✐♥✉t♦s✳
❈❛❧❝✉❧❛r ♦ t❡♠♣♦ ❣❛st♦ ♣❛r❛ ❡♥❝❤❡r ♦ t❛♥q✉❡✳
❙♦❧✉çã♦✳
❙❡❥❛
V
♦ ✈♦❧✉♠❡ ❞♦ t❛♥q✉❡✱ ❞♦ ❡♥✉♥❝✐❛❞♦✱ ❝♦♥❝❧✉✐✲s❡ q✉❡✱ ❡♠
❞❡ ❝❛❞❛ t♦r♥❡✐r❛ s❡rá
V
12
❡
V
18
❞♦ ✈♦❧✉♠❡ t♦t❛❧ ❞♦ t❛♥q✉❡✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✳
P♦❞❡♠♦s ❡♥tã♦ ❡s❝r❡✈❡r ❛ r❡❧❛çã♦✿
V
V
·x+
· (x + 3) = V ❀
12
18
x
x+3
+
=1
12
18
❛ss✐♠
1 ♠✐♥✉t♦ ❛ ❝♦♥tr✐❜✉✐çã♦
⇒
❡♥tã♦
3x + 2x + 6 = 36
x = 6✳
✼✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
x=6
▲♦❣♦✱ ♦ t❡♠♣♦ ♣❛r❛ ❛ ♣r✐♠❡✐r❛ t♦r♥❡✐r❛ é
9
R
❡ ♦ t❡♠♣♦ ♣❛r❛ ❛ s❡❣✉♥❞❛ t♦r♥❡✐r❛ é
♠✐♥✉t♦s✳
15
❈♦♥❝❧✉✐✲s❡✱ q✉❡ ♦ t❡♠♣♦ t♦t❛❧ ❣❛st♦✱ s❡rá ✐❣✉❛❧ ❛
♠✐♥✉t♦s✳
❊①❡♠♣❧♦ ✷✳✾✳
1
65
❯♠ ❛❝✐❞❡♥t❡ ❢♦✐ ♣r❡s❡♥❝✐❛❞♦ ♣♦r
q✉❡ s♦✉❜❡ ❞♦ ❛❝♦♥t❡❝✐♠❡♥t♦ ❛♣ós
x
❞❛ ♣♦♣✉❧❛çã♦ ❞❡ P❛tó♣♦❧✐s✳ ❖ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s
❤♦r❛s✱ é ❞❛❞♦ ♣♦r✿
f (x) =
t♦t❛❧ ❞❛ ♣♦♣✉❧❛çã♦✳
❙❛❜❡♥❞♦ q✉❡
1
9
❞❛ ♣♦♣✉❧❛çã♦ s♦✉❜❡ ❞♦ ❛❝✐❞❡♥t❡ ❛♣ós
tr❛♥s❝♦rr✐❞♦ ❛té q✉❡
❙♦❧✉çã♦✳
1
5
B✳
❋❛③❡♥❞♦
x=0
❡
f (0) =
1
· B✱
65
✈❡♠✿
❚❛♠❜é♠ ♣❡❧♦ ❡♥✉♥❝✐❛❞♦ ❞♦ ♣r♦❜❧❡♠❛✱
f (3) =
❉❛í ✈❡♠✿
❤♦r❛s✳
♦♥❞❡
B
é ♦
❉❡t❡r♠✐♥❡ ♦ t❡♠♣♦
❞❛ ♣♦♣✉❧❛çã♦ s♦✉❜❡ss❡ ❞❛ ♥♦tí❝✐❛✳
P❡❧♦ ❡♥✉♥❝✐❛❞♦ ❞♦ ♣r♦❜❧❡♠❛✱ ♥♦ t❡♠♣♦
♣♦♣✉❧❛çã♦
3
B
✱
1 + Ca−kx
9 = 1 + 64a−3k ✱
1
·B
9
❧♦❣♦
⇒
x = 0✱
1
B
❞❡
·B =
65
1 + Ca−0
q✉❛♥❞♦ x = 3 t❡♠♦s✱
⇒
ak = 2
s✱
⇒
C = 64✳
k = loga 2
é ✈á❧✐❞❛ ❛ ✐❣✉❛❧❞❛❞❡
❢✉♥çã♦ ❞❛❞❛ ♥♦ ❡♥✉♥❝✐❛❞♦ ♣♦❞❡rá s❡r ❡s❝r✐t❛ ❝♦♠♦✿
1
5
❞❛
❞❡ ♦♥❞❡
❙❛❜❡✲s❡ q✉❡✱ ♣❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧ ♣♦s✐t✐✈♦
◗✉❛❧ ♦ t❡♠♣♦ tr❛♥s❝♦rr✐❞♦ ❛té q✉❡
♦♥❞❡
1
65
1
B
·B =
9
1 + 64a−3k
1
= a−3k ✱
8
2−3 = (ak )−3
♦ ❛❝✐❞❡♥t❡ ❢♦✐ ♣r❡s❡♥❝✐❛❞♦ ♣♦r
B
f (x) =
1 + 2−x · 64
s = aloga s ✱
❧♦❣♦ ❛
❞❛ ♣♦♣✉❧❛çã♦ s♦✉❜❡ss❡ ❞❛ ♥♦tí❝✐❛ ❞♦ ❛❝✐❞❡♥t❡❄
1
f (x) = · B ❡ ❝❛❧❝✉❧❛r ♦ ✈❛❧♦r r❡s♣❡❝t✐✈♦ ❞❡ x✳
5
B
B
=
⇒ 4 = 2−x · 64 ⇒ x = 4
❚❡r❡♠♦s ❡♥tã♦✿
−x
5
1 + 2 · 64
1
P♦rt❛♥t♦✱ ♦ t❡♠♣♦ tr❛♥s❝♦rr✐❞♦ ❛té q✉❡
❞❛ ♣♦♣✉❧❛çã♦ s♦✉❜❡ss❡ ❞❛ ♥♦tí❝✐❛ ❞♦ ❛❝✐❞❡♥t❡
5
x = 4 ❤♦r❛s✳
❖r❛✱ ❜❛st❛ ❢❛③❡r
❢♦✐
❊①❡♠♣❧♦ ✷✳✶✵✳
❉❛❞❛s ❛s r❡❧❛çõ❡s✿
f (x) = x + 1;
g(x) = x − 2❀
r❡s♦❧✈❡r ❛ ❡q✉❛çã♦✿
| f (x) + g(x) |=| f (x) | + | g(x) |
❙♦❧✉çã♦✳
✼✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
| (x + 1) + (x − 2) |=| (x + 1) | + | (x − 2) | ⇔ | 2x − 1 |=| x + 1 | + | x − 2 |✳
❙❡ x < −1✱ ❡♥tã♦ −(2x − 1) = −(x + 1) − (x − 2)
⇒ −2x + 1 = −2x + 1✱ ❧♦❣♦
x ∈ (−∞, −1)✳
1
✱ ❡♥tã♦ −(2x − 1) = (x + 1) − (x − 2)
⇒ −2x + 1 = 3✱ ❧♦❣♦ x = −1✳
❙❡ −1 ≤ x <
2
1
❙❡
≤ x < 2✱ ❡♥tã♦ (2x − 1) = x + 1 − (x − 2) ⇒ 2x − 1 = 3✱ ❧♦❣♦ x = 2
2
❚❡♠♦s✿
✭❛❜s✉r❞♦✦✮✳
❙❡
2 ≤ x✱
P♦rt❛♥t♦✱
2x − 1 = x + 1 + x − 2
x ∈ (−∞, −1) ∪ [2, +∞)✳
⇒
❡♥tã♦
−1 = −1✱
❧♦❣♦
x ≥ 2.✳
❊①❡♠♣❧♦ ✷✳✶✶✳
❉❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s ❞❡ a ❡ b ♥❛ r❡❧❛çã♦ f (x) = ax2 + bx + 5✱ ♣❛r❛ ♦s q✉❛✐s s❡❥❛
✈á❧✐❞❛ ❛ ✐❞❡♥t✐❞❛❞❡ f (x + 1) − f (x) = 8x + 3✳
❙♦❧✉çã♦✳
❚❡♠♦s
f (x + 1) − f (x) = a(x + 1)2 + b(x + 1) + 5 − (ax2 + bx + 5) = 8x + 3
⇒
P♦rt❛♥t♦✱
x(2a) + a + b = 8x + 3
a=4
❡
⇒
2a = 8
⇒
a+b=3
♦✉
b = −1✳
❊①❡♠♣❧♦ ✷✳✶✷✳
❉❡t❡r♠✐♥❛r ♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ❞❛ s❡❣✉✐♥t❡s r❡❧❛çã♦✿
R(x) =
√
4
x2
− 4x + 12 + √
4
3x2
−x − 20 + x2
❙♦❧✉çã♦✳
❖ ♥ú♠❡r♦s r❡❛✐s ❞♦ ❞♦♠í♥✐♦ ❞❛ r❡❧❛çã♦
x2 − 4x + 12 ≥ 0
⇔
x∈R
⇔
❡
❝✉♠♣r❡✿
− x − 20 + x2 > 0
❡
(x − 2)2 + 8 ≥ 0
⇔
R
❡
⇔
(x − 5)(x + 4) > 0
(−∞, −4) ∪ (5, +∞)
⇔
⇔
D(R) = (−∞, −4)(5, +∞)
P♦rt❛♥t♦✱ ♦ ❞♦♠í♥✐♦ ❞❛ r❡❧❛çã♦
R(x)
é
D(f ) = (−∞, −4) ∪ (5, +∞).
✼✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✷✲✶
✶✳ ❙❡❥❛♠ ♦s ❝♦♥❥✉♥t♦s A = {0, 1, 2} ❡ B = {3, 2, 1}✱ ❡s❝r❡✈❡r ❡♠ ❢♦r♠❛ ❞❡
❝♦♥❥✉♥t♦s ❛ r❡❧❛çã♦ ❞❡ A ❡♠ B ❞❡✜♥✐❞❛ ♣♦r x = y ♣❛r❛ x ∈ A ❡ y ∈ B ✳
✷✳ ❙❡❥❛♠ ❛s r❡❧❛çõ❡s✿ f (x) = x ❡ g(x) = x − 2✳ P❛r❛ q✉❛✐s ✈❛❧♦r❡s ❞❡ x✱ é ✈á❧✐❞❛ ❛
r❡❧❛çã♦✿ | f (x) − g(x) |>| f (x) | − | g(x) |❄
✸✳ ❙✉♣♦♥❤❛ ♦s ❝♦♥❥✉♥t♦s A = {3, 5, 8, 9} ❡ B = {1, 3, 5, 7} ✱ ❡s❝r❡✈❡r ❡♠ ❢♦r♠❛
❞❡ ❝♦♥❥✉♥t♦s ❛ r❡❧❛çã♦ ❞❡ A ❡♠ B ❞❡✜♥✐❞❛ ♣♦r✿
✶✳
x < y; x ∈ A ❡ y ∈ B
✷✳
x ≥ y; x ∈ A ❡ y ∈ B
✸✳
x = y; x ∈ A ❡ y ∈ B
✹✳
y + x = 4; x ∈ A ❡ y ∈ B
✺✳
x é ❞✐✈✐sí✈❡❧ ♣♦r y;
x ∈A ❡ y ∈B
✹✳ P❛r❛ ♦ ❡①❡r❝í❝✐♦ ❛♥t❡r✐♦r✱ ❞❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦✱ ✐♠❛❣❡♠ ❞❡ ❝❛❞❛ r❡❧❛çã♦✳
✺✳ ❈♦♥str✉✐r ✉♠ ❞❡s❡♥❤♦✱ ❛❝❤❛r ♦ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s
r❡❧❛çõ❡s ❞❡✜♥✐❞❛s ❡♠ R✳
✶✳
S = {(x, y) ∈ R2 /.x − 5y = 0}
✷✳
✸✳
S = {(x, y) ∈ R2 /. y < 2x }.
✹✳
✺✳
S = {(x, y) ∈ R2 /. (x − 2)(y + 3) = 0}
✻✳
✼✳
✽✳
✾✳
✶✵✳
S = {(x, y) ∈ R2 /. x = 3 ❡
S = {(x, y) ∈ R2 /. x = 3y }.
1
S = {(x, y) ∈ R2 /. y = }.
x
− 2 < y < 2}.
S = {(x, y) ∈ R2 /. y = 2x ❡ x ∈ [−2, 1]}.
9 − x2
2
}.
S = {(x, y) ∈ R /. y = 2
x −4
S = {(x, y) ∈ R2 /. x = 3 ❡ y > 0}.
3x2 − 8x + 4
S = {(x, y) ∈ R2 /. y =
}✳
x2
✻✳ P❛r❛ ❛s r❡❧❛çõ❡s ❞♦ ❡①❡r❝í❝✐♦ ❛♥t❡r✐♦r✱ ❛❝❤❛r ❛s r❡❧❛çõ❡s ✐♥✈❡rs❛s✱ ✐♥❞✐❝❛r s❡✉ ❞♦♠í♥✐♦
❡ ✐♠❛❣❡♠ ❡ ❞❡s❡♥❤❛r✲❧❛✳
✼✳ ❉❡s❡♥❤❛r✱ ❧♦❣♦ ❞❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❛s s❡❣✉✐♥t❡s r❡❧❛çõ❡s✿
✶✳
S = { (x, y) ∈ R2 /. 1 ≤ x + y ≤ 2 }
✷✳
S = { (x, y) ∈ R2 /.
| x | + | y |= 5 }
✸✳
S = { (x, y) ∈ R2 /.
| x | + | y |≤ 8 }
✹✳
S = { (x, y) ∈ R2 /. y ≤ 2x
❡ x2 + y 2 ≤ 1 }
✼✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✽✳ ❙❡♥❞♦ y =| x − 5 | + | 3x − 21 | + | 12 − 3x | ✱ s❡ 4 < x < 5✱ ♣♦❞❡♠♦s ❛✜r♠❛r q✉❡ ❛
r❡❧❛çã♦ é ❡q✉✐✈❛❧❡♥t❡ ❛✿
✾✳ ❙❡❥❛ A = { 4, 5, 6 } ❞❡✜♥❡✲s❡ ❛ r❡❧❛çã♦ ❡♠ A × A ❞♦ s❡❣✉✐♥t❡ ♠♦❞♦ (a, b)S(c, d)
s❡✱ ❡ s♦♠❡♥t❡ s❡ a + d = b + c✳ ❆❝❤❛r ♦s ❡❧❡♠❡♥t♦s ❞❛ r❡❧❛çã♦ S ❡ ❞❡t❡r♠✐♥❡ s❡✉
❞♦♠í♥✐♦✳
✶✵✳ ❙❡❥❛ A = { 1, 2, 3 } ❞❡✜♥❡✲s❡ ❛ r❡❧❛çã♦ ❡♠ A × A ❞♦ s❡❣✉✐♥t❡ ♠♦❞♦ (a, b)T (c, d)
s❡✱ ❡ s♦♠❡♥t❡ s❡ a − d = b − c✳ ❆❝❤❛r ♦s ❡❧❡♠❡♥t♦s ❞❛ r❡❧❛çã♦ T ❡ ❞❡t❡r♠✐♥❡ s❡✉
❞♦♠í♥✐♦✳
✶✶✳ ❆ s♦♠❛ ❞♦s â♥❣✉❧♦s ✐♥t❡r♥♦s ❞❡ ✉♠ ♣♦❧í❣♦♥♦ r❡❣✉❧❛r ❝♦♥✈❡①♦ ♣❧❛♥♦ ❡stá ❡♠ r❡❧❛çã♦
❝♦♠ ♦ ♥ú♠❡r♦ ❞❡ ❧❛❞♦s✳ ❊①♣r❡ss❛r ❛♥❛❧✐t✐❝❛♠❡♥t❡ ❡st❛ r❡❧❛çã♦✳ ◗✉❛✐s ✈❛❧♦r❡s ♣♦❞❡
❛ss✉♠✐r ❛ ✈❛r✐á✈❡❧ ✐♥❞❡♣❡♥❞❡♥t❡❄
✶✷✳ ❊s❝r❡✈❡r ❛ r❡❧❛çã♦ q✉❡ ❡①♣r❡ss❡ ❛ ❞❡♣❡♥❞ê♥❝✐❛ ❡♥tr❡ ♦ r❛✐♦ r ❞❡ ✉♠ ❝✐❧✐♥❞r♦ ❡ s✉❛
❛❧t✉r❛ h s❡♥❞♦ ♦ ✈♦❧✉♠❡ V = 1✳
✶✸✳ ❉❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s ❞❡ a ❡ b ♥❛ r❡❧❛çã♦ y = S(x) ♦♥❞❡ S(x) = ax2 + bx + 5 ♣❛r❛
♦s q✉❛✐s é ✈á❧✐❞❛ ❛ ✐❣✉❛❧❞❛❞❡ S(x + 1) − S(x) = 8x + 3✳
1
❝♦♠ x 6= 0 ❡ x 6= −1✱ ❡♥tã♦ ♦ ✈❛❧♦r ❞❡ S = f (1) + f (2) + f (3) +
x(x + 1)
· · · + f (100) é✿
✶✹✳ ❙❡ f (x) =
✶✺✳ ❖ ❣rá✜❝♦ ❞❛ r❡❧❛çã♦ f ❞❡ R ❡♠ R✱ ❞❛❞❛ ♣♦r f (x) =| 1 − x | −2✱ ✐♥t❡r❝❡♣t❛ ♦ ❡✐①♦
❞❛s ❛❜s❝✐ss❛s ♥♦s ♣♦♥t♦s (a, b) ❡ (c, d)✱ ❝♦♠ a < c✳ ◆❡st❛s ❝♦♥❞✐çõ❡s ♦ ❞❡t❡r♠✐♥❡
♦ ✈❛❧♦r ❞❡ E = d + c − b − a✳
✶✻✳ ❆ ✈❛r✐á✈❡❧ x é ✐♥✈❡rs❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ y ❀ y é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ z ❀ z
é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ u✱ q✉❡ ♣♦r s✉❛ ✈❡③ é ✐♥✈❡rs❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ v ✳
◗✉❡ ❞❡♣❡♥❞ê♥❝✐❛ ❡①✐st❡ ❡♥tr❡ x ❡ v ❄
✶✼✳ ❆ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ✭F.P.✮ ♠❡♥s❛❧ ❞❡ ✉♠❛ ❡♠♣r❡s❛ é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧
❛♦ ♥ú♠❡r♦ ❞❡ tr❛❜❛❧❤❛❞♦r❡s ✭T ✮✱ s❛❜❡♥❞♦ q✉❡ 20 ❞♦s tr❛❜❛❧❤❛❞♦r❡s t❡♠ ✉♠❛ ❢♦❧❤❛
❞❡ ♣❛❣❛♠❡♥t♦ ❞❡ ❘$3000, 00✳ ❛✮ ❊①♣r❡ss❡ ♦ ✈❛❧♦r ❞❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ♠❡♥s❛❧
❝♦♠♦ ❢✉♥çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ tr❛❜❛❧❤❛❞♦r❡s❀ ❜✮ q✉❛❧ ❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ♣❛r❛ 18
tr❛❜❛❧❤❛❞♦r❡s❄
✶✽✳ ❙❡❥❛ a ∈ R ✉♠ ♥ú♠❡r♦ ✜①♦✱ ❡ f (x) = ax ✉♠❛ r❡❧❛çã♦ ❡♠ R
✶✳
✷✳
▼♦str❡ q✉❡✱ ♣❛r❛ ∀ x ∈ R é ✈á❧✐❞❛ ❛ s❡❣✉✐♥t❡ ❡①♣r❡ssã♦✿ f (−x) · f (x) = 1✳
▼♦str❡ q✉❡ f (x) · f (y) = f (x + y)
✼✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✸
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❋✉♥çõ❡s
❖ ❝♦♥❝❡✐t♦ ❜ás✐❝♦ ❞❡ ❢✉♥çã♦ é ♦ s❡❣✉✐♥t❡✿
✏t♦❞❛ ✈❡③ q✉❡ t❡♠♦s ❞♦✐s ❝♦♥❥✉♥t♦s ❡ ❛❧❣✉♠ t✐♣♦ ❞❡ ❛ss♦❝✐❛çã♦ ❡♥tr❡ ❡❧❡s q✉❡
❢❛ç❛ ❝♦rr❡s♣♦♥❞❡r ❛ t♦❞♦ ❡❧❡♠❡♥t♦ ❞♦ ♣r✐♠❡✐r♦ ❝♦♥❥✉♥t♦ ✉♠ ú♥✐❝♦ ❡❧❡♠❡♥t♦
❞♦ s❡❣✉♥❞♦✱ ♦❝♦rr❡ ✉♠❛ ❢✉♥çã♦ ✑
❉❡ ♦✉tr♦ ♠♦❞♦✱ ❞❛❞♦s ♦s ❝♦♥❥✉♥t♦s
A
❡
B✱
❡①✐st❡♠ ❞✐✈❡rs❛s r❡❧❛çõ❡s ❞❡
A
❡♠
B✱
❡♥tr❡ ❡st❛s tê♠ ♣❛rt✐❝✉❧❛r ✐♠♣♦rtâ♥❝✐❛ ❛q✉❡❧❛s q✉❡ ❝✉♠♣r❡♠ ♦ s❡❣✉✐♥t❡✿
❉❡✜♥✐çã♦ ✷✳✺✳
f ❞❡ A ❡♠ B ❞❡♥♦t❛❞♦ f : A −→ B ✱ é
x ∈ A✱ ❝♦rr❡s♣♦♥❞❡ ✉♠ ú♥✐❝♦ ❡❧❡♠❡♥t♦ y ∈ B ✳
❯♠❛ r❡❧❛çã♦
❡❧❡♠❡♥t♦
✉♠❛ ✏ ❢✉♥çã♦✑ s❡✱ ❛ t♦❞♦
❆ ❞❡✜♥✐çã♦ é ❝♦♥❤❡❝✐❞❛ ❝♦♠♦✿ ✏ ❝♦♥❝❡✐t♦ ✐♥t✉✐t✐✈♦ ❞❡ ❢✉♥çã♦ ✑✳ ❙❡
f (a) = b
❡ s❡ ❧ê ✏ f ❞❡
a✑
♦✉ ✏ f ❛♣❧✐❝❛❞♦ ❡♠
a✑✳
(a, b) ∈ f ✱ ❡s❝r❡✈❡✲s❡
❖❜s❡r✈❡✱ ♣♦r ❡①❡♠♣❧♦✱ ♦s ❞✐❛❣r❛♠❛s ❞❛s r❡❧❛çõ❡s ❞❛s ❋✐❣✉r❛s ✭✷✳✹✮ ❡ ✭✷✳✺✮
A
✬
1
✲ B
✩
✬
2
✒
✲
3
✲
4
✫
4
✬
1
✲ B
✩
✬
✲ a
1
2
✲
b
2
3
✲
c
✲ 3
✪
✫
❋✐❣✉r❛ ✷✳✹✿
A
✩
4
✪
✫
❆ r❡❧❛çã♦ ❞❛ ❋✐❣✉r❛ ✭✷✳✹✮ ♥ã♦ é ✉♠❛ ❢✉♥çã♦✱ ♣♦✐s ❡①✐st❡ ♦ ❡❧❡♠❡♥t♦
A
❛ss♦❝✐❛❞♦ ❛ ♠❛✐s ❞❡ ✉♠ ❡❧❡♠❡♥t♦ ❞♦ ❝♦♥❥✉♥t♦
B✳
e
✲ d
✪
✫
❋✐❣✉r❛ ✷✳✺✿
4
✩
✪
♥♦ ❝♦♥❥✉♥t♦
Pr❡st❡ ♠✉✐t❛ ❛t❡♥çã♦ ♥♦ ♣ró①✐♠♦
❡①❡♠♣❧♦✿
❆ r❡❧❛çã♦ ❞❛ ❋✐❣✉r❛ ✭✷✳✺✮ é ✉♠❛ ❢✉♥çã♦✱ ♣♦✐s t♦❞♦ ❡❧❡♠❡♥t♦ ❞♦ ❝♦♥❥✉♥t♦
❛ss♦❝✐❛❞♦ ❛ s♦♠❡♥t❡ ✉♠ ú♥✐❝♦ ❡❧❡♠❡♥t♦ ❞♦ ❝♦♥❥✉♥t♦
A✱
❡stá
B✳
✷✳✸✳✶ ●rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦
❉❡✜♥✐çã♦ ✷✳✻✳
●rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦✳
❉❡♥♦♠✐♥❛✲s❡ ❣rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ❛♦ ❝♦♥❥✉♥t♦✿
Gf = { (x, y) /.
x ∈ D(f )
✼✺
❡
y = f (x) ∈ Im(f ) }
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
✷✳✸✳✷ ❉❡✜♥✐çã♦ ❢♦r♠❛❧ ❞❡ ❢✉♥çã♦
❉❡✜♥✐çã♦ ✷✳✼✳
❯♠❛ ❢✉♥çã♦ f ❞❡✜♥✐❞❛ ❡♠ A ❝♦♠ ✈❛❧♦r❡s ❡♠ B ❡ ❞♦♠í♥✐♦ D(f ) ⊆ A✱ é ✉♠
s✉❜❝♦♥❥✉♥t♦ Gf ⊆ A × B q✉❡ ❝✉♠♣r❡ ❛s s❡❣✉✐♥t❡s ❝♦♥❞✐çõ❡s✿
✐✮
✐✐✮
∀ x ∈ D(f ),
❙❡
(x, y) ∈ Gf
∃ y∈B
❡
t❛❧ q✉❡
(x, z) ∈ Gf ✱
(x, y) ∈ Gf ✳
❡♥tã♦
y = z✳
✐✮ ♣♦❞❡♠♦s ❛✜r♠❛r q✉❡ ❛ t♦❞♦ ❡❧❡♠❡♥t♦ x ∈ D(f ) ❝♦rr❡s♣♦♥❞❡ ♣❡❧♦ ♠❡♥♦s
✉♠ ❡❧❡♠❡♥t♦ y ∈ B t❛❧ q✉❡ (x, y) ∈ Gf ❀ ❡ ❞❡ ✐✐✮ ♦ ❡❧❡♠❡♥t♦ y ❛ss♦❝✐❛❞♦ ❛♦ ❡❧❡♠❡♥t♦ x é
❉❛ ♣❛rt❡
ú♥✐❝♦✳
✷✳✸✳✸ ❉♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❡ ✉♠❛ ❢✉♥çã♦
❉❛ ❞❡✜♥✐çã♦ ❞❡ ❢✉♥çã♦✱ ✏
t♦❞❛ ❢✉♥çã♦ é ✉♠❛ r❡❧❛çã♦✱ ♠❛s ♥❡♠ t♦❞❛ r❡❧❛çã♦ é ✉♠❛
❢✉♥çã♦✑✱ ♦ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❡ ✉♠❛ ❢✉♥çã♦ sã♦ r❡s♣❡❝t✐✈❛♠❡♥t❡ ♦ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❛
r❡❧❛çã♦ q✉❡ ❡❧❛ r❡♣r❡s❡♥t❛✳
f : A −→ B é s❡♠♣r❡ ♦ ♣ró♣r✐♦ ❝♦♥❥✉♥t♦ ❞❡ ♣❛rt✐❞❛✱ ♦✉
s❡❥❛✱ D(f ) = A✳ ❙❡ ✉♠ ❡❧❡♠❡♥t♦ x ∈ A ❡st✐✈❡r ❛ss♦❝✐❛❞♦ ❛ ✉♠ ❡❧❡♠❡♥t♦ y ∈ B ✱ ❞✐③❡♠♦s
q✉❡ y é ❛ ✐♠❛❣❡♠ ❞❡ x ✭✐♥❞✐❝❛ q✉❡ y = f (x) ❡ ❧ê✲s❡ ✏ y é ✐❣✉❛❧ ❛ f ❞❡ x✑✮✳
❖ ❞♦♠í♥✐♦ ❞❡ ✉♠❛ ❢✉♥çã♦
❈♦♠ ❜❛s❡ ♥♦s ❞✐❛❣r❛♠❛s ❞❛s
❝♦♥❞✐çõ❡s ♣❛r❛ q✉❡ ✉♠❛ r❡❧❛çã♦
1o
❋✐❣✉r❛s
f
✭✷✳✹✮
✲✭✷✳✺✮ ❛❝✐♠❛✱ ❝♦♥❝❧✉í♠♦s q✉❡ ❡①✐st❡♠ ❞✉❛s
s❡❥❛ ✉♠❛ ❢✉♥çã♦✿
❖ ❞♦♠í♥✐♦ ❞❡✈❡ s❡♠♣r❡ ❝♦✐♥❝✐❞✐r ❝♦♠ ♦ ❝♦♥❥✉♥t♦ ❞❡ ♣❛rt✐❞❛✱ ♦✉ s❡❥❛✱ t♦❞♦ ❡❧❡♠❡♥t♦
❞❡
A é ♣♦♥t♦ ❞❡ ♣❛rt✐❞❛ ❞❡ ✢❡❝❤❛✳
❙❡ t✐✈❡r♠♦s ✉♠ ❡❧❡♠❡♥t♦ ❞❡
A ❞♦ q✉❛❧ ♥ã♦ ♣❛rt❛
✢❡❝❤❛✱ ❛ r❡❧❛çã♦ ♥ã♦ é ❢✉♥çã♦✳
2o
❉❡ ❝❛❞❛ ❡❧❡♠❡♥t♦ ❞❡
A
❞❡✈❡ ♣❛rt✐r ✉♠❛ ú♥✐❝❛ ✢❡❝❤❛✳ ❙❡ ❞❡ ✉♠ ❡❧❡♠❡♥t♦ ❞❡
A
♣❛rt✐r
♠❛✐s ❞❡ ✉♠❛ ✢❡❝❤❛✱ ❛ r❡❧❛çã♦ ♥ã♦ é ❢✉♥çã♦✳
❖❜s❡r✈❛çã♦ ✷✳✷✳
•
❈♦♠♦
x
❡
y
tê♠ s❡✉s ✈❛❧♦r❡s ✈❛r✐❛♥❞♦ ♥♦s ❝♦♥❥✉♥t♦s
A
❡
B✱
r❡❝❡❜❡♠ ♦ ♥♦♠❡ ❞❡
✈❛r✐á✈❡✐s✳
x é ❝❤❛♠❛❞❛ ✏ ✈❛r✐á✈❡❧ ✐♥❞❡♣❡♥❞❡♥t❡ ✑ ❡ ❛ ✈❛r✐á✈❡❧ y ✱ ✏ ✈❛r✐á✈❡❧ ❞❡♣❡♥❞❡♥t❡ ✑✱
♦❜t❡r ♦ ✈❛❧♦r ❞❡ y ❞❡♣❡♥❞❡♠♦s ❞❡ ✉♠ ✈❛❧♦r ❞❡ x✳
•
❆ ✈❛r✐á✈❡❧
•
❯♠❛ ❢✉♥çã♦
♣♦✐s ♣❛r❛
f
✜❝❛ ❞❡✜♥✐❞❛ q✉❛♥❞♦ sã♦ ❞❛❞♦s s❡✉ ❞♦♠í♥✐♦ ✭❝♦♥❥✉♥t♦
tr❛❞♦♠í♥✐♦ ✭❝♦♥❥✉♥t♦
B✮
❡ ❛ ❧❡✐ ❞❡ ❛ss♦❝✐❛çã♦
✼✻
A✮✱
s❡✉ ❝♦♥✲
y = f (x)✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✸✳✹
❖❜t❡♥çã♦ ❞♦ ❞♦♠í♥✐♦ ❞❡ ✉♠❛ ❢✉♥çã♦
❖ ❞♦♠í♥✐♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ❡♠
R é ♦ s✉❜❝♦♥❥✉♥t♦ ❞❡ R ♥♦ q✉❛❧ ♦ ♥ú♠❡r♦ y = f (x) ∈ R✳
❚❡♠♦s ❛❧❣✉♥s ❡①❡♠♣❧♦s ❞❡ ❢✉♥çõ❡s✿
✶✮
❙❡❥❛
f (x) =
√
3x − 6
R q✉❛♥❞♦ 3x − 6 ≥ 0 ✱ ❡♥tã♦ ♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ♣❛r❛ ❛
❢✉♥çã♦ é✿ D(f ) = { x ∈ R /.
x ≥ 2 }✳
√
x−2
✷✮ ◗✉❛♥❞♦ f (x) = √
3−x
√
x − 2 só é ♣♦ssí✈❡❧ ♣❛r❛ x ≥ 2 ❡✱ ♦ ❞❡♥♦♠✐♥❛❞♦r é ♣♦ssí✈❡❧ ♣❛r❛ x < 3 ❡♥tã♦
❈♦♠♦
♣❛r❛ ❛ ❢✉♥çã♦ f ❡st❛r ❜❡♠ ❞❡✜♥✐❞❛✱ D(f ) = { x ∈ R /.
2 ≤ x < 3 }✳
❉♦ ❢❛t♦ s❡r ♣♦ssí✈❡❧ ❡♠
✸✮
❈♦♥s✐❞❡r❡♠♦s ❛ ❢✉♥çã♦
g(x) =
7
✳
x−1
x − 1 ♥ã♦
D(g) = { x ∈ R /. x 6= 1 }✳
❈♦♠♦ ♦ ❞❡♥♦♠✐♥❛❞♦r
♣♦❞❡ s❡r ♥✉❧♦ ✭♥ã♦ ❡①✐st❡ ❞✐✈✐sã♦ ♣♦r ③❡r♦✮✱ ❡♥tã♦✿
❊①❡♠♣❧♦ ✷✳✶✸✳
❙❡❥❛ f : N −→ N ✭✐st♦ s✐❣♥✐✜❝❛ q✉❡ ♦ ❞♦♠í♥✐♦ ❡ ♦ ❝♦♥tr❛❞♦♠í♥✐♦ sã♦ ♦s ♥ú♠❡r♦s
♥❛t✉r❛✐s✮ ❞❡✜♥✐❞❛ ♣♦r y = x + 2✳ ❊♥tã♦ t❡♠♦s q✉❡✿
❉❡ ♠♦❞♦ ❣❡r❛❧✱ ❛ ✐♠❛❣❡♠ ❞❡ x ❛tr❛✈és ❞❡ f é x + 2✱ ♦✉ s❡❥❛✿ f (x) = x + 2✳
• ❆ ✐♠❛❣❡♠ ❞❡ 1 ❛tr❛✈és ❞❡ f é 3✱ ♦✉ s❡❥❛✱ f (1) = 1 + 2 = 3✳
• ❆ ✐♠❛❣❡♠ ❞❡ 2 ❛tr❛✈és ❞❡ f é 4✱ ♦✉ s❡❥❛✱ f (2) = 2 + 2 = 4✳
f : A −→ B ✱ ♦s ❡❧❡♠❡♥t♦s ❞❡ B q✉❡ sã♦ ✐♠❛❣❡♥s ❞♦s ❡❧❡♠❡♥t♦s
❞❡ f ❡ ❢♦r♠❛♠ ♦ ✏ ❝♦♥❥✉♥t♦ ✐♠❛❣❡♠ ❞❡ f ✑ ♦✉ ✏ ❝♦♥tr❛❞♦♠í♥✐♦ ❞❡
▲❡♠❜r❡✱ ❡♠ ✉♠❛ ❢✉♥çã♦
❞❡
A
❛tr❛✈és ❞❛ r❡❧❛çã♦
f ✑✳
❊①❡♠♣❧♦ ✷✳✶✹✳
❙❡❥❛♠ A = { 1, 3, 4, 5 } ❡ B = { 2, 4, 5, 7 } ❡ f = { (1, 2), (3, 4), (4, 5), (5, 7) }✳
f ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛
❚❡♠♦s q✉❡✿
f (1) = 2, f (3) = 4, f (4) = 5, f (5) = 7✳
Im(f ) = B
❡
D(f ) = A
Gf = { (1, 2), (3, 4), (4, 5), (5, 7) }
❖ ❞✐❛❣r❛♠❛ ❝♦rr❡s♣♦♥❞❡♥t❡ ❞❛ ❢✉♥çã♦
✭✷✳✻✮✳
❊①❡♠♣❧♦ ✷✳✶✺✳
❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦ f : A −→ B r❡♣r❡s❡♥t❛❞❛ ♥♦ ❞✐❛❣r❛♠❛ ❞❛ ❋✐❣✉r❛ ✭✷✳✼✮✱ ❞❡t❡r♠✐♥❡✿
❛✮ ♦ ❞♦♠í♥✐♦ D(f )❀ ❜✮ f (1), f (−3), f (3) ❡ f (2)❀ ❝✮ ♦ ❝♦♥❥✉♥t♦ ✐♠❛❣❡♠ Im(f )❀ ❞✮ ❛ ❧❡✐
❛ss♦❝✐❛t✐✈❛✳
❙♦❧✉çã♦✳
✼✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
A
✬
1
✲ B
✩
✬
✲ 2
4
−3
4
✲
5
2
✲ 7
✪
✫
❋✐❣✉r❛ ✷✳✻✿
✪
D(f ) = A✳
f (2) = 4✳
❖ ❝♦♥❥✉♥t♦ ✐♠❛❣❡♠ é ❢♦r♠❛❞♦ ♣♦r t♦❞❛s ❛s ✐♠❛❣❡♥s ❞♦s ❡❧❡♠❡♥t♦s ❞♦ ❞♦♠í♥✐♦✱ ♣♦r✲
t❛♥t♦✿
❞✮
✩
9
❋✐❣✉r❛ ✷✳✼✿
❖ ❞♦♠í♥✐♦ é ✐❣✉❛❧ ❛♦ ❝♦♥❥✉♥t♦ ❞❡ ♣❛rt✐❞❛✱ ♦✉ s❡❥❛✱
❡
✲
✚
❃
✚
✚ ✲
4
✚
✚
3 ✚
7
✫ ✪
✫
✪
❜✮ f (1) = 1, f (−3) = 9, f (3) = 9
❝✮
1
✲
✫
❛✮
✬
3
5
✲ B
✩
✬
✲ 1
A
✩
❈♦♠♦
Im(f ) = { 1, 4, 9 }✳
12 = 1, (−3)2 = 9, 32 = 9
❡
2 2 = 4✱
t❡♠♦s
y = x2 ✳
✷✳✸✳✺ ❈♦♥str✉çã♦ ❞♦ ❣rá✜❝♦ ❝❛rt❡s✐❛♥♦ ❞❡ ✉♠❛ ❢✉♥çã♦
❯♠ s✐st❡♠❛ ❞❡ ❝♦♦r❞❡♥❛❞❛s ❝❛rt❡s✐❛♥❛s ❝♦♥s✐st❡
❡♠ ✉♠ ♣❛r ❞❡ r❡t❛s ❞❡ ♥ú♠❡r♦s r❡❛✐s✱ ❛s q✉❛✐s s❡
y
✐♥t❡r❝❡♣t❛♠ ❢♦r♠❛♥❞♦ â♥❣✉❧♦ r❡t♦✱ ❝♦♠♦ ♠♦str❛ ❛
❋✐❣✉r❛ ✭✷✳✽✮❀ ❛ r❡t❛ ❤♦r✐③♦♥t❛❧ é ❝❤❛♠❛❞❛ ✏❡✐①♦✲x✑
♦✉ ✏ ❡✐①♦ ❞❛s ❛❜s❝✐ss❛s ✑ ❡ ❛ r❡t❛ ✈❡rt✐❝❛❧ é ❝❤❛♠❛❞❛
❞❡ ✏❡✐①♦✲y ✑ ♦✉ ✏ ❡✐①♦ ❞❛s ♦r❞❡♥❛❞❛s ✑✳
y =
f (x)✱ ❜❛st❛ ❛tr✐❜✉✐r ✈❛❧♦r❡s ❞♦ ❞♦♠í♥✐♦ à ✈❛r✐á✈❡❧ x
P❛r❛ ❝♦♥str✉✐r ♦ ❣rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦
2
1
−x
✛
−3
x
✲
−2
−1
f (x)✳
y =
y = 2x−1✳
Pr✐♠❡✐r♦ ♦❜s❡r✈❡
1
2
3
−2
−y ❄
P♦r ❡①❡♠♣❧♦✱ s❡ ❞❡s❡❥❛♠♦s ❝♦♥str✉✐r ♦ ❣rá✜❝♦
❞❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r
0
−1
❡✱ ✉s❛♥❞♦ ❛ s❡♥t❡♥ç❛ ♠❛t❡♠át✐❝❛ q✉❡ ❞❡✜♥❡ ❛ ❢✉♥✲
çã♦✱ ❝❛❧❝✉❧❛r ♦s ❝♦rr❡s♣♦♥❞❡♥t❡s ✈❛❧♦r❡s ♣❛r❛
✻3
❋✐❣✉r❛ ✷✳✽✿ P❧❛♥♦ ❝❛rt❡s✐❛♥♦
q✉❡ ♦ ❞♦♠í♥✐♦ sã♦ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s✱ ❧♦❣♦✱ ♣♦✲
❞❡♠♦s ❝♦♥s✐❞❡r❛r
❛ss✐♠ ❝❛❧❝✉❧❛♠♦s
x = 2, x = 4, x = 6, x = 8✱ ❡
♦s r❡s♣❡❝t✐✈♦s ✈❛❧♦r❡s ♣❛r❛ y ✱ ❝♦♠♦
✐♥❞✐❝❛ ❛ t❛❜❡❧❛✿
■❞❡♥t✐✜❝❛♠♦s ♦s ♣♦♥t♦s ❡♥❝♦♥tr❛❞♦s ♥♦ ♣❧❛♥♦ ❝❛rt❡s✐❛♥♦✱ ❝♦♠♦ ♠♦str❛ ❛
❋✐❣✉r❛
❖ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ é ✉♠❛ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦s q✉❛tr♦ ♣♦♥t♦s ❡♥❝♦♥tr❛❞♦s✳
✭✷✳✾✮✳
❇❛st❛
tr❛ç❛r ❛ r❡t❛✱ ❡ ♦ ❣rá✜❝♦ ❡st❛rá ❝♦♥str✉í❞♦✳
P❛r❛ ❞❡s❡♥❤❛r ♦ ❣rá✜❝♦ ❞❡ ✉♠❛ r❡t❛ sã♦ ♥❡❝❡ssár✐♦s ❛♣❡♥❛s ❞♦✐s ♣♦♥t♦s✳ ◆♦ ❡①❡♠♣❧♦
✼✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✻y
x
2
y
4
3
6
7
11
8
15
10
11
19
✂
✛
21
✂
✂
✂✂
✂0, 5
−x
✂
✂
✂
✂
✂ −1
✲
x
−y
❄
❋✐❣✉r❛ ✷✳✾✿
❛❝✐♠❛✱ ❡s❝♦❧❤❡♠♦s
6
♣♦♥t♦s✳ ❊♠ ✈❡r❞❛❞❡ é s✉✜❝✐❡♥t❡ ❡s❝♦❧❤❡r ❞♦✐s ❡❧❡♠❡♥t♦s ❞♦ ❞♦♠í♥✐♦✱
❡♥❝♦♥tr❛r s✉❛s ✐♠❛❣❡♥s ❡✱ ❧♦❣♦ ❛♣ós✱ tr❛ç❛r ❛ r❡t❛ q✉❡ ♣❛ss❛ ♣♦r ❡ss❡s ❞♦✐s ♣♦♥t♦s✳
❉❡✜♥✐çã♦
f : A −→ B t❡♠ ❝♦♠♦ ❞♦♠í♥✐♦ D(f ) = A❀
♣♦ré♠✱ q✉❛♥❞♦ ❞✐③❡♠♦s q✉❡ t❡♠♦s ✉♠❛ ❢✉♥çã♦ ❞❡ A ❡♠ B ❡ ❛❝❤❛♠♦s s❡✉ ❞♦♠í♥✐♦
D(f ) ⊆ A✱ ♦❜s❡r✈❡✱ t❡♠♦s ✉♠❛ r❡❧❛çã♦ ❞❡ A ❡♠ B ✱ ❡ ❛♦ ❝❛❧❝✉❧❛r s❡✉ ❞♦♠í♥✐♦ D(f )✱ ❛
tr❛♥s❢♦r♠❛♠♦s ❡♠ ✉♠❛ ❢✉♥çã♦ ✭s❡♠♣r❡ q✉❡ ❢♦r ♣♦ssí✈❡❧✮ ❞❡ D(f ) ❡♠ B ❀ ✐st♦ ♦❝♦rr❡ ❝♦♠
❢r❡q✉ê♥❝✐❛ q✉❛♥❞♦ t❡♠♦s ✉♠❛ r❡❧❛çã♦ ❞❡ R ❡♠ R ❡ ❢❛❧❛♠♦s ❞❡ ✏ ❢✉♥çã♦ ❞❡ R ❡♠ R✑✳
❙❡❣✉♥❞♦ ❛
✭✷✳✺✮✱ t♦❞❛ ❢✉♥çã♦
❊①❡♠♣❧♦ ✷✳✶✻✳
❙❡❥❛ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r✿
f (x) =
❞❡t❡r♠✐♥❡✿
❛✮ f (0, 12)
1,
−1,
√
1
2
❝✮ f ( 2)
❜✮ f ( )
❙♦❧✉çã♦✳
(
12
)=1
a) f (0.12) = f (
100
√
c) f ( 2) = −1
s❡✱
s❡✱
x∈Q
x∈I
❞✮ f (0, 333333...)
1
b) f ( ) = 1
2
3
d) f (0, 333333...) = f ( ) = 1
9
❊①❡♠♣❧♦ ✷✳✶✼✳
❉❛❞❛ ❛ ❢✉♥çã♦ f : R −→ R ✭♦✉ s❡❥❛✱ ♦ ❞♦♠í♥✐♦ ❡ ♦ ❝♦♥tr❛❞♦♠í♥✐♦ sã♦ ♦s ♥ú♠❡r♦s
r❡❛✐s✮ ❞❡✜♥✐❞❛ ♣♦r f (x) = x2 − 5x + 6✱ ❝❛❧❝✉❧❡✿ ❛✮ f (2), f (3) ❡ f (0)❀ ❜✮ ♦ ✈❛❧♦r ❞❡ x
❝✉❥❛ ✐♠❛❣❡♠ s❡❥❛ 2✳
❙♦❧✉çã♦✳ ❛✮
f (2) = 22 − 5(2) + 6 = 0;
❙♦❧✉çã♦✳
f (3) = 32 − 5(3) + 6 = 0
❡
f (0) = 6
❜✮
✼✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈❛❧❝✉❧❛r ♦ ✈❛❧♦r ❞❡
s❡❥❛✱
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
x
2
❝✉❥❛ ✐♠❛❣❡♠ ✈❛❧❡
❡q✉✐✈❛❧❡ ❛ r❡s♦❧✈❡r ❛ ❡q✉❛çã♦
f (x) = 2✱
♦✉
2
x − 5x + 6 = 2✳
❯t✐❧✐③❛♥❞♦ ❛ ❢ór♠✉❧❛ ❞❡ ❇❤❛s❦❛r❛✱ ❡♥❝♦♥tr❛♠♦s ❛s r❛í③❡s
P♦rt❛♥t♦✱ ♦s ✈❛❧♦r❡s ❞❡
x
❝✉❥❛ ✐♠❛❣❡♠ é
2
sã♦
x=1
❡
1
4✳
❡
x = 4✳
❊①❡♠♣❧♦ ✷✳✶✽✳
❙❡❥❛ ❛ ❢✉♥çã♦
f : R −→ R
❞❡✜♥✐❞❛ ♣♦r✿
f (x) = x2 − 3x + 2✳
a) f (−3)
b) f (x2 )
e) f (a2 )
c) f (y − z)
f ) f (x + h)
g) f (f (x))
❉❡t❡r♠✐♥❡✿
d) f (2x − 3) − f (x + 3)
h) f (x2 − 3x + 2)
❙♦❧✉çã♦✳
❛✮
f (−3) = (−3)2 − 3(−3) + 2 = 20
❜✮
f (x2 ) = [x2 ]2 − 3[x2 ] + 2 = x4 − 3x2 + 2
❝✮
f (y − z) = (y − z)2 − 3(y − z) + 2 = y 2 + z 2 − 2yz − 3y + 3z + 2
❞✮
f (2x − 3) − f (x + 3) = [2x − 3]2 − 3[2x − 3] + 2 − [x + 3]2 − 3[x + 3] + 2 =
= [4x2 − 18x + 20] − [x2 + 3x + 2] = 3x2 − 21x + 18
❡✮
f (a2 ) = [a2 ]2 − 3[a2 ] + 2 = a4 − 3a2 + 2
❢✮ f (x + h) = (x + h)2 − 3(x + h) + 2 = x2 + h2 + 2hx − 3x − 3h + 2
❣✮
f (f (x)) = [f (x)]2 − 3[f (x)] + 2
❤✮
f (x2 − 3x + 2) = [x2 − 3x + 2]2 − 3[x2 − 3x + 2] + 2 = x4 − 6x3 + 10x2 − 3x
✷✳✸✳✻
❋✉♥çã♦✿ ■♥❥❡t✐✈❛✳ ❙♦❜r❡❥❡t✐✈❛✳ ❇✐❥❡t✐✈❛
❉❡✜♥✐çã♦ ✷✳✽✳
❋✉♥çã♦ ✐♥❥❡t✐✈❛✳
❉✐③❡♠♦s q✉❡ ✉♠❛ ❢✉♥çã♦
f : A ⊆ R −→ B
D(f ) ⊆ A ❝♦rr❡s♣♦♥❞❡♠ ✐♠❛❣❡♥s ❞✐st✐♥t❛s❀
❝♦♠ x1 6= x2 ❝♦rr❡s♣♦♥❞❡ f (x1 ) 6= f (x2 )✳
❞♦
é ✐♥❥❡t✐✈❛✱ s❡ ❛ ❡❧❡♠❡♥t♦s ❞✐st✐♥t♦s
✐st♦ é ♣❛r❛ q✉❛❧q✉❡r
x1 , x2 ∈ D(f )
❊st❛ ❉❡✜♥✐çã♦ ✭✷✳✽✮ é ❡q✉✐✈❛❧❡♥t❡ ❛✿
f : A ⊆ R −→ B é ✏✐♥❥❡t✐✈❛✑
f (x1 ) = f (x2 ) t❡♠♦s q✉❡ x1 = x2 ✳
❉✐③❡♠♦s q✉❡ ✉♠❛ ❢✉♥çã♦
x1 , x2 ∈ D(f )
❝♦♠
✽✵
s❡✱ ♣❛r❛ q✉❛❧q✉❡r
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
P♦r ❡①❡♠♣❧♦✱ ❛ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r f (x) = 3x é ✐♥❥❡t✐✈❛ ♣♦✐s s❡ x1 6= x2
❡♥tã♦ 3x1 6= 3x2 ✱ ♣♦rt❛♥t♦ f (x1 ) 6= f (x2 )✳
❉❡✜♥✐çã♦ ✷✳✾✳ ❋✉♥çã♦ s♦❜r❡❥❡t✐✈❛✳
❉✐③❡♠♦s q✉❡ ✉♠❛ ❢✉♥çã♦ f : A ⊆ R −→ B é s♦❜r❡❥❡t✐✈❛ s❡✱ ❡ s♦♠❡♥t❡ s❡✱ s❡✉
❝♦♥❥✉♥t♦ ✐♠❛❣❡♠ ❢♦r ✐❣✉❛❧ ❛♦ ❝♦♥tr❛❞♦♠í♥✐♦✳
■st♦ é✱ ♣❛r❛ t♦❞♦ y ∈ B ✱ ❡①✐st❡ x ∈ A t❛❧ q✉❡ f (x) = y ❀ ❧♦❣♦✱ ❛ ❢✉♥çã♦ f : A ⊆ R −→ B
é s♦❜r❡❥❡t✐✈❛ s❡ Im(f ) = B ✳
❉❡✜♥✐çã♦ ✷✳✶✵✳ ❋✉♥çã♦ ❜✐❥❡t✐✈❛✳
❉✐③❡♠♦s q✉❡ ✉♠❛ ❢✉♥çã♦ f : A ⊆ R −→ R é ❜✐❥❡t✐✈❛ ❡♥tr❡ A ❡ R q✉❛♥❞♦ ❡❧❛ é
s♦❜r❡❥❡t✐✈❛ ❡ ✐♥❥❡t✐✈❛ ✭❛♠❜❛s ❛s ❝♦♥❞✐çõ❡s✮✳
P♦r ❡①❡♠♣❧♦✱ ❛ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r y = 3x é ✐♥❥❡t✐✈❛✱ ❝♦♠♦ ✈✐♠♦s ♥♦
❡①❡♠♣❧♦ ❛♥t❡r✐♦r✳ ❊❧❛ t❛♠❜é♠ é s♦❜r❡❥❡t✐✈❛✱ ♣♦✐s Im(f ) = B = R✳
▲♦❣♦✱ ❛ ❢✉♥çã♦ f é ❜✐❥❡t✐✈❛✳
❆ ❢✉♥çã♦ g : N −→ N ❞❡✜♥✐❞❛ ♣♦r y = x + 5 ♥ã♦ é s♦❜r❡❥❡t✐✈❛✳ P♦✐s Im(g) =
{ 5, 6, 7, 8, · · · } ❡ ♦ ❝♦♥tr❛❞♦♠í♥✐♦ é N✱ ❡st❛ ❢✉♥çã♦ é ✐♥❥❡t✐✈❛✱ ♣♦✐s ✈❛❧♦r❡s ❞✐❢❡r❡♥t❡s ❞❡
x tê♠ ✐♠❛❣❡♥s ❞✐st✐♥t❛s✳
❊♥tã♦ ❡ss❛ ❢✉♥çã♦ ♥ã♦ é ❜✐❥❡t✐✈❛✳
❖❜s❡r✈❛çã♦ ✷✳✸✳
• ➱ s✐♥ô♥✐♠♦ ❞❡ ❢✉♥çã♦ ✐♥❥❡t✐✈❛✿ ❋✉♥çã♦ ✐♥❥❡t✐✈❛✳ ❋✉♥çã♦ ✉♥í✈♦❝❛
• ➱ s✐♥ô♥✐♠♦ ❞❡ ❢✉♥çã♦ s♦❜r❡❥❡t✐✈❛✿ ❋✉♥çã♦ s♦❜r❡❥❡t♦r❛✳
• ➱ s✐♥ô♥✐♠♦ ❞❡ ❢✉♥çã♦ ❜✐❥❡t✐✈❛✿ ❋✉♥çã♦ ❜✐✉♥í✈♦❝❛✳ ❈♦rr❡s♣♦♥❞ê♥❝✐❛ ❜✐✉♥í✈✐❝❛✳ ❇✐✲
❥❡çã♦✳ ❋✉♥çã♦ ✉♠✲❛✲✉♠✳
❊①❡♠♣❧♦ ✷✳✶✾✳
❈♦♥s✐❞❡r❡ ♦s ❝♦♥❥✉♥t♦s A = { 5, 6, 7, 8} ❡ B = { 1, 2, 3, 4, 9 } ❞❡✜♥✐❞❛ ♣❡❧❛ ❡q✉❛çã♦
y = x − 4✳
P❛r❛ ❝❛❞❛ a ∈ A ✜❝❛ ❛ss♦❝✐❛❞♦ ✉♠ ú♥✐❝♦ y ∈ B ✳
❈♦♥s✐❞❡r❛♥❞♦ y = f (x) = x − 4 t❡♠♦s f (5) = 1, f (6) = 2, f (7) = 3 ❡ f (8) = 4✳
❊st❛ ❢✉♥çã♦ é ✐♥❥❡t✐✈❛✱ ♥ã♦ é s♦❜r❡❥❡t✐✈❛ ✭♣❛r❛ ♦ ❡❧❡♠❡♥t♦ 9 ∈ B ✱ ♥ã♦ ❡①✐st❡ ✉♠
❡❧❡♠❡♥t♦ ❡♠ A✮✱ ❧♦❣♦ ♥ã♦ é ❜✐❥❡t✐✈❛✳
❊①❡♠♣❧♦ ✷✳✷✵✳
❛✮ ❙❡❥❛♠ A = { 1, 3, 9, 10 } ❡ B = { 2, 3, 4, 5 } ❡ f : A → B ❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r
f (1) = 2, f (9) = 3, f (3) = 4 ❡ f (10) = 5 é ❢✉♥çã♦ ❜✐❥❡t✐✈❛✳
✽✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❜✮ ❆ ❢✉♥çã♦ h = { (x, y) ∈ R2 /. y = x2 + 1; −3 < x ≤ 3 } ♥ã♦ é ✐♥❥❡t✐✈❛✳
✷✳✸✳✼
❋✉♥çã♦ r❡❛❧ ❞❡ ✈❛r✐á✈❡❧ r❡❛❧
❉❡✜♥✐çã♦ ✷✳✶✶✳
❙❡❥❛♠ A ❡ B s✉❜❝♦♥❥✉♥t♦s ♥ã♦ ✈❛③✐♦s ❞❡ ♥ú♠❡r♦s r❡❛✐s✱ ✉♠❛ ❢✉♥çã♦ f : A −→ B
é ❞❡♥♦♠✐♥❛❞❛ ❢✉♥çã♦ r❡❛❧ ❞❡ ✈❛r✐á✈❡❧ r❡❛❧ ♦✉ ❢✉♥çã♦ ❞❡ ✉♠❛ ✈❛r✐á✈❡❧ r❡❛❧ ❛ ✈❛❧♦r❡s
r❡❛✐s✳
❉❛q✉✐ ♣♦r ❞✐❛♥t❡✱ t♦❞❛s ❛s ❢✉♥çõ❡s ❡st✉❞❛❞❛s s❡rã♦ r❡❛✐s ❞❡ ✉♠❛ ✈❛r✐á✈❡❧ r❡❛❧✳
❊①❡♠♣❧♦ ✷✳✷✶✳
❙❡❥❛ f = { (x, y) ∈ A × B /. y = 2x + 1 } ♦♥❞❡ A = R ❡ B = N✱ ❡♥tã♦ t❡♠♦s✿
1
3
n−1
1
, n) }
f = { (− , 0), (0, 1), ( , 2), (1, 3), ( , 4), · · · , (
2
2
2
2
n−1
n ∈ N} ⊆ A ❡ ❛ ✐♠❛❣❡♠ Im(f ) = B ✳
2
❆ ❋✐❣✉r❛ ✭✷✳✶✵✮ ♠♦str❛ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ f ✱ sã♦ ♣♦♥t♦s ✐s♦❧❛❞♦s✳
♥❡st❡ ❝❛s♦ ♦ ❞♦♠í♥✐♦ D(f ) = {x ∈ R/. x =
✻y
4 · · · · · · · · · · · · · · · · ✳q
✳
✁ ✳✳
3
y
✻
2 · · ·· · ·✳q
−x
✛
q
1q
− 12
2
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
0
1
2
−x✛
x
✲
1
❄
3
2
···
1
−2 −1
n−1
2
✁
0
1
2
✁
✁
✁
3
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
4
x
✲
5
−1
❄
❋✐❣✉r❛ ✷✳✶✵✿
❋✐❣✉r❛ ✷✳✶✶✿
❊①❡♠♣❧♦ ✷✳✷✷✳
❙❡❥❛ g : A −→ B ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r✿
0, 5,
s❡✱ 0 ≤ x < 2
g(x) =
0, 5 + x, s❡✱ 2 ≤ x ≤ 4
−1,
s❡✱ x < 0, ♦✉ x > 4
♦♥❞❡ A ❡ B sã♦ s✉❜❝♦♥❥✉♥t♦s ❞❡ R✳
✽✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❚❡♠♦s D(f ) = A = R ❡ Im(g) = { −1 } ∪ [1, 4]✳
❖ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ g(x) ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✶✶✮✳
❊①❡♠♣❧♦ ✷✳✷✸✳
❙❡❥❛ h(x) = x3 ✱ ❞❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❛ ❡①♣r❡ssã♦✿
❙♦❧✉çã♦✳
h(b) − h(a)
s❡♥❞♦ (a − b) 6= 0✳
b−a
❉❡t❡r♠✐♥❛♠♦s ♦s ✈❛❧♦r❡s ❞❛ ❢✉♥çã♦ ❞❛❞❛ ♣❛r❛ x = b ❡ x = a❀ ✐st♦ é h(b) = b3 ❡
h(a) = a3 ✳ ❆ss✐♠✱
b3 − a3
(b − a)(a2 + ab + b2 )
h(b) − h(a)
=
=
= a2 + ab + b2
b−a
b−a
b−a
♦ ú❧t✐♠♦ ❛❝♦♥t❡❝❡ ♣❡❧♦ ❢❛t♦ a 6= b✳
❖❜s❡r✈❛çã♦ ✷✳✹✳
◆♦ q✉❡ s❡❣✉❡✱ ❛ ❢✉♥çã♦ t❡rá ❝♦♠♦ r❡❣r❛ ❞❡ ❝♦rr❡s♣♦♥❞ê♥❝✐❛ x 7−→ f (x)✱ s❡♠ ❡①♣❧✐❝✐t❛r
s❡✉ ❞♦♠í♥✐♦ D(f ) ❡ ✐♠❛❣❡♠ Im(f )✳
❋✐❝❛ ❡st❛❜❡❧❡❝✐❞♦ q✉❡ ♦ ❞♦♠í♥✐♦ é ✉♠ s✉❜❝♦♥❥✉♥t♦ ❞♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s R✱
♣❛r❛ ♦ q✉❛❧ f (x) é ✉♠ ♥ú♠❡r♦ r❡❛❧✳
❖ ❣rá✜❝♦ ❞❛s ❢✉♥çõ❡s s❡rá ❢❡✐t♦ ♥✉♠ s✐st❡♠❛ ❞❡ ❝♦♦r❞❡♥❛❞❛s ❝❛rt❡s✐❛♥❛s✳
❊①❡♠♣❧♦ ✷✳✷✹✳
❉❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ❞❛ ❢✉♥çã♦ f (x) = x2 − 6x + 5✳
❙♦❧✉çã♦✳
❖❜s❡r✈❡✱ f (x) = x2 − 6x + 5 = (x − 3)2 − 4✱ s❡♥❞♦ (x − 3)2 s❡♠♣r❡ ♣♦s✐t✐✈♦✱ ❡♥tã♦
∀ x ∈ R, f (x) ≥ −4✳
▲♦❣♦ D(f ) = R ❡ Im(f ) = [−4, +∞)✳
❊①❡♠♣❧♦ ✷✳✷✺✳
❛✮
P❛r❛ q✉❛✐s ❢✉♥çõ❡s f (x) ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ g(x) t❛❧ q✉❡ f (x) = [g(x)]2 ❄
❜✮
P❛r❛ q✉❡ ❢✉♥çã♦ f (x) ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ g(x) t❛❧ q✉❡ f (x) =
❝✮
P❛r❛ q✉❛✐s ❢✉♥çõ❡s b(x) ❡ c(x) ♣♦❞❡♠♦s ❛❝❤❛r ✉♠❛ ❢✉♥çã♦ f (x) t❛❧ q✉❡✿
1
❄
g(x)
[f (x)]2 + b(x)[f (x)] + c(x) = 0
♣❛r❛ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s x ❄
❞✮
◗✉❡ ❝♦♥❞✐çõ❡s s❛t✐s❢❛③❡♠ ❛s ❢✉♥çõ❡s a(x) ❡ b(x) s❡ ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ f (x) t❛❧ q✉❡
a(x)f (x) + b(x) = 0 ♣❛r❛ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s x ❄
✽✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❙♦❧✉çã♦✳
❛✮
❈♦♠♦ f (x) = [g(x)]2 ≥ 0✱ ❡♥tã♦ ✐st♦ é ♣♦ssí✈❡❧ s♦♠❡♥t❡ ♣❛r❛ ❛s ❢✉♥çõ❡s f (x) ≥
0, ∀ x ∈ R✳
❜✮
❈♦♥s✐❞❡r❛♥❞♦ q✉❡ ❡st❛♠♦s tr❛❜❛❧❤❛♥❞♦ ❝♦♠ ❢✉♥çõ❡s ❞❡ R ❡♠ R✱ ♣♦❞❡♠♦s ✐♥t✉✐t✐✈❛✲
♠❡♥t❡ ❡♥t❡♥❞❡r f (x) ❝♦♠♦ s❡♥❞♦ ✉♠ ♥ú♠❡r♦ r❡❛❧❀ ❛ss✐♠ g(x) ❡①✐st❡ s♦♠❡♥t❡ q✉❛♥❞♦
g(x) =
❝✮
1
❡①✐st❛✱ ✐st♦ s♦♠❡♥t❡ é ♣♦ssí✈❡❧ s❡ f (x) 6= 0,
f (x)
❉❡ [f (x)]2 + b(x)[f (x)] + c(x) = 0✱ ♣❡❧❛ ❢ór♠✉❧❛ ❞❡ ❇❤❛s❦❛r❛ s❡❣✉❡✿
f (x) =
−b(x) ±
p
❧♦❣♦ ❡①✐st❡ f (x) q✉❛♥❞♦ [b(x)]2 ≥ 4 · c(x),
❞✮
∀x∈R
[b(x)]2 − 4 · c(x)
2
∀ x ∈ R✳
−b(x)
,
a(x)
❝♦♠ ❡st❛ ❝♦♥❞✐çã♦✳ ◗✉❛♥❞♦ ❛ ❢✉♥çã♦ b(x) = 0, ∀ x ∈ R ❡♥tã♦ a(x) = 0✳
P❛r❛ ♦ ❝❛s♦ a(x) 6= 0,
∀ x ∈ R✱ ❡①✐st❡ ✉♠❛ ú♥✐❝❛ ❢✉♥çã♦ f (x) =
∀x ∈ R
❖❜s❡r✈❡✱ s❡ a(x) = 0 ♣❛r❛ ❛❧❣✉♠ x ∈ R✱ ❡♥tã♦ ♣♦❞❡♠♦s ❡❧❡❣❡r ❛r❜✐tr❛r✐❛♠❡♥t❡ f (x)
❞❡ ♠♦❞♦ q✉❡ ❡①✐st❡♠ ✐♥✜♥✐t❛s ❢✉♥çõ❡s q✉❡ ❝✉♠♣r❡♠ ❡st❛ ❝♦♥❞✐çã♦✳
❊①❡♠♣❧♦ ✷✳✷✻✳
❯♠ ❡st✉❞♦ s♦❜r❡ ❛ ❡✜❝✐ê♥❝✐❛ ❞❡ ♦♣❡rár✐♦s ❞♦ t✉r♥♦ ❞❛ ♠❛♥❤❛ ❞❡ ✉♠❛ ❞❡t❡r♠✐♥❛❞❛
❢á❜r✐❝❛✱ ✐♥❞✐❝❛ q✉❡ ✉♠ ♦♣❡rár✐♦ ♠é❞✐♦ q✉❡ ❝❤❡❣❛ ❛♦ tr❛❜❛❧❤♦ ❛s 8 ❤♦r❛s ❞❛ ♠❛♥❤❛✱ ♠♦♥t❛
x ❤♦r❛s ❛♣ós ❞❡ ✐♥✐❝✐❛❞♦ s❡✉ tr❛❜❛❧❤♦ f (x) = −x3 + 6x2 + 15x rá❞✐♦s tr❛♥s✐st♦r✐③❛❞♦s✳
❛✮ ◗✉❛♥t♦s rá❞✐♦s ♦ ♦♣❡rár✐♦ t❡rá ♠♦♥t❛❞♦ ❛té ❛s 10 h ❞❛ ♠❛♥❤❛❄ ❜✮ ◗✉❛♥t♦s rá❞✐♦s ♦
♦♣❡rár✐♦ t❡rá ♠♦♥t❛❞♦ ❡♥tr❡ ❛s 9 ❡ 10 ❤♦r❛s ❞❛ ♠❛♥❤❛❄
❙♦❧✉çã♦✳
❛✮
❚❡♠♦s q✉❡✱ ❞❛s 08 : 00 ❛té ❛s 10 : 00 ♦ ♦♣❡rár✐♦ tr❛❜❛❧❤♦✉ x = 2 ❤♦r❛s✱ ❧♦❣♦ ❡❧❡ ♠♦♥t♦✉
f (2) = −23 + 6(22 ) + 15(2)✱ ❡♥tã♦ f (2) = 46.
P♦rt❛♥t♦✱ ❡❧❡ ♠♦♥t♦✉ 46 ❛♣❛r❡❧❤♦s✳
❜✮
❊♥tr❡ ❛s 08 : 00 ❡ 09 : 00 ❞❛ ♠❛♥❤❛ ❡❧❡ ♠♦♥t♦✉ f (1) = −13 + 6(12 ) + 15(1) = 20
❛♣❛r❡❧❤♦s❀ ❧♦❣♦ ❡♥tr❡ ❛s 09 : 00 ❡ 10 : 00 ❡❧❡ ♠♦♥t♦✉ 46 − 20 ❛♣❛r❡❧❤♦s✱ ✐st♦ é 26✳
❊①❡♠♣❧♦ ✷✳✷✼✳
❉❡✈❡♠♦s ❝♦♥str✉✐r ✉♠❛ ❝❛✐①❛ ❛❜❡rt❛ s❡♠ t❛♠♣❛ ❝♦♠ ✉♠ ♣❡❞❛ç♦ r❡t❛♥❣✉❧❛r ❞❡ ❝❛rt♦❧✐♥❛
❞❡ 60 × 86 cm ❝♦rt❛♥❞♦✲s❡ ✉♠❛ ár❡❛ ❞❡ x cm2 ❡♠ ❝❛❞❛ ❝❛♥t♦ ❡ ❞♦❜r❛♥❞♦✲s❡ ♦s ❧❛❞♦s ❝♦♠♦
✐♥❞✐❝❛ ❛ ❋✐❣✉r❛ ✭✷✳✾✮✳ ❊①♣r❡ss❡ ♦ ✈♦❧✉♠❡ ❞❛ ❝❛✐①❛ ❡♠ ❢✉♥çã♦ ❞❡ x✳
❙♦❧✉çã♦✳
✽✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✛
✲
86 cm
✳✳x
· · ·✳
x
x✳✳✳
✻
···
x
60 − 2x
60 cm
x
· · ·✳✳x
x
x
x✳✳✳· · · ❄
✳
86 − 2x
❋✐❣✉r❛ ✷✳✶✷✿
❆s ❞✐♠❡♥sõ❡s ❞❛ ❝❛✐①❛ sã♦✿ ❛❧t✉r❛
(86 − 2x)
❝♦♠♦ ♦❜s❡r✈❛♠♦s ♥❛
▲♦❣♦ ♦ ✈♦❧✉♠❡ é
❋✐❣✉r❛
x
❝♠✱ ❡ ❛ ❜❛s❡ é ✉♠ r❡tâ♥❣✉❧♦ ❞❡ ❧❛❞♦s
✭✷✳✶✷✮✳
V = x(60 − 2x)(86 − 2x)❀
✐st♦ é
(60 − 2x)
❡
V = 4x(30 − x)(43 − x)
❊①❡♠♣❧♦ ✷✳✷✽✳
900x
❙✉♣õ❡✲s❡ q✉❡ f (x) =
s❡❥❛ ♦ ♥ú♠❡r♦ ♥❡❝❡ssár✐♦ ❞❡ ❤♦♠❡♥s ✲ ❤♦r❛ ♣❛r❛ ❞✐str✐✲
400 − x
❜✉✐r ♣❛♥✢❡t♦s ❡♥tr❡ x ♣♦r ❝❡♥t♦ ❞❡ ♠♦r❛❞♦r❡s ❞❡ ✉♠❛ ❝✐❞❛❞❡✳ ❛✮ ❉❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦
❞❛ ❢✉♥çã♦✳ ❜✮ P❛r❛ q✉❛❧ ✈❛❧♦r ❞❡ x ♦ ♣r♦❜❧❡♠❛ t❡♠ ✐♥t❡r♣r❡t❛çã♦ ♣rát✐❝❛❄ ❝✮ ◗✉❛♥t♦s
❤♦♠❡♥s✲❤♦r❛ sã♦ ♥❡❝❡ssár✐♦s ♣❛r❛ ❞✐str✐❜✉✐r ♣❛♥✢❡t♦s ❡♥tr❡ ♦s ♣r✐♠❡✐r♦s 50% ❞❡ ♠♦r❛✲
❞♦r❡s❄ ❞✮ ◗✉❛♥t♦s ❤♦♠❡♥s✲❤♦r❛ sã♦ ♥❡❝❡ssár✐♦s ♣❛r❛ ❞✐str✐❜✉✐r ♣❛♥✢❡t♦s à ❝♦♠✉♥✐❞❛❞❡
✐♥t❡✐r❛✳ ❡✮ ◗✉❡ ♣♦r❝❡♥t❛❣❡♠ ❞❡ ♠♦r❛❞♦r❡s ❞❛ ❝✐❞❛❞❡ r❡❝❡❜❡✉ ♣❛♥✢❡t♦s✱ q✉❛♥❞♦ ♦ ♥ú♠❡r♦
❞❡ ❤♦♠❡♥s✲❤♦r❛ ❢♦✐ ❞❡ 100 ❄
❙♦❧✉çã♦✳
900
❝♦♠♦
400 − x
❡①❝❡t♦ x = 400✳
❛✮ ❖❜s❡r✈❛♥❞♦ ❛ ❢✉♥çã♦ f (x) =
t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s
✉♠❛ r❡❧❛çã♦ ❞❡
R
❡♠
R✱
s❡✉ ❞♦♠í♥✐♦ sã♦
❜✮ ❙❡♥❞♦ x ✉♠❛ ✈❛r✐á✈❡❧ q✉❡ r❡♣r❡s❡♥t❛ ♣♦r❝❡♥t❛❣❡♠✱ ♦ ♣r♦❜❧❡♠❛ t❡♠ ❛♣❧✐❝❛çã♦ ♣rát✐❝❛
q✉❛♥❞♦
0 ≤ x ≤ 100✳
❝✮ ◗✉❛♥❞♦ x = 50✱ ❡♥tã♦ f (50) =
❛♣r♦①✐♠❛❞❛♠❡♥t❡
129
❤♦♠❡♥s✳
900
(900)(50)
=
= 128, 59
400 − 50
7
❤♦♠❡♥s✲❤♦r❛❀ ✐st♦ é
❞✮ ❆ ❝♦♠✉♥✐❞❛❞❡ ✐♥t❡✐r❛ r❡♣r❡s❡♥t❛ ♦ 100%❀ ❧♦❣♦ x = 100✱ ❡ f (100) =
❙ã♦ ♥❡❝❡ssár✐♦s
300
❤♦♠❡♥s✳
❡✮ P❛r❛ ❝❛❧❝✉❧❛r x q✉❛♥❞♦ f (x) = 100 t❡♠♦s✱ 100 =
x = 40✳
❘❡❝❡❜❡✉ ♦
40%
❞❛ ♣♦♣✉❧❛çã♦✳
✽✺
900x
400 − x
⇒
(900)(100)
= 300✳
400 − 100
(400 − x) = 9x
⇒
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✷✳✷✾✳
A✱
❈❡rt♦ ❇❛♥❝♦
❖✉tr♦ ❇❛♥❝♦
B
$30.00 ♣♦r t❛❧ã♦ ❞❡ ❝❤❡q✉❡s ❡ ❘$5.00 ♣❛r❛ ❝❛❞❛ ❝❤❡q✉❡ ✉s❛❞♦✳
❘$10.00 ♣♦r t❛❧ã♦ ❞❡ ❝❤❡q✉❡ ❡ ❘$9.00 ♣❛r❛ ❝❤❡q✉❡ ✉s❛❞♦✳ ❈❛❧❝✉❧❛r
❝♦❜r❛ ❘
❝♦❜r❛
♦✉ ❝r✐tér✐♦ ♣❛r❛ ❞❡❝✐❞✐r ❡♠ q✉❡ ❇❛♥❝♦ ✈♦❝ê ❛❜r✐rá s✉❛ ❝♦♥t❛✳
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛ s❡❥❛♠ ✉s❛❞❛s x ❢♦❧❤❛s ❞❡ ❝❤❡q✉❡✱ ❡♥tã♦ t❡♠♦s✿
●❛st♦s ♥♦ ❇❛♥❝♦ A : R$30.00 + (R$5.00)x.
●❛st♦s ♥♦ ❇❛♥❝♦ B : R$10.00 + (R$9.00)x✳
❋❛③❡♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡✱ R$30.00 + (R$5.00)x < R$10.00 + (R$9.00)x t❡♠♦s 5 < x
✐st♦ s✐❣♥✐✜❝❛ q✉❡ s❡ ✉s❛♠♦s ♠❛✐s ❞❡ 5 ❢♦❧❤❛s é ♠❡❧❤♦r ♦s s❡r✈✐ç♦s ❞♦ ❇❛♥❝♦ A❀ s❡ ✉s❛♠♦s
x = 5 ❢♦❧❤❛s ♥ã♦ ❢❛③ ❞✐❢❡r❡♥ç❛ ❡ s❡ ✉s❛♠♦s ♠❡♥♦s ❞❡ 5 ❢♦❧❤❛s é ♠❡❧❤♦r ♦ ❇❛♥❝♦ B ✳
❊①❡♠♣❧♦ ✷✳✸✵✳
f (x) = kx + b ❡ ♦s ♥ú♠❡r♦s a1 , a2 ❡ a3 ❝♦♥st✐t✉❡♠ ✉♠❛ ♣r♦❣r❡ssã♦
♥ú♠❡r♦s f (a1 ), f (a2 ) ❡ f (a3 ) t❛♠❜é♠ ❝♦♥st✐t✉❡♠ ✉♠❛ ♣r♦❣r❡ssã♦ ❛r✐t♠é✲
▼♦str❡ q✉❡✱ s❡
❛r✐t♠ét✐❝❛✱ ♦s
t✐❝❛✳
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s a1 = a − r, a2 = a, ❡ a3 = a + r ❡♥tã♦ f (a1 ) = f (a − r), f (a2 ) = f (r),
❡ f (a3 ) = f (a + r)✱ ❧♦❣♦✿
f (a1 ) = k(a − r) + b = (ka + b) − kr❀
f (a2 ) = kr + b = (kr + b)❀
f (a3 ) = k(a + r) + b = (ka + b) + kr✳
P♦rt❛♥t♦ ♦s ♥ú♠❡r♦s f (a1 ), f (a2 ), ❡ f (a3 ) ❝♦♥st✐t✉❡♠ ✉♠❛ ♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛ ❞❡
r❛③ã♦ kr✳
❊①❡♠♣❧♦ ✷✳✸✶✳
24π ❝❡♥tí♠❡tr♦s ❝ú❜✐❝♦s✳ ❖ ♠❡t❛❧ ✉t✐❧✐③❛❞♦ ♣❛r❛
2
❛ t❛♠♣❛ ❡ ♣❛r❛ ❛ ❜❛s❡ ❝✉st❛ ❘$3, 00 ♣♦r cm ❡ ♦ ♠❛t❡r✐❛❧ ❡♠♣r❡❣❛❞♦ ♥❛ ♣❛rt❡ ❧❛t❡r❛❧ ❝✉st❛
2
❘$2, 00 ♣♦r cm ✳ ❈❛❧❝✉❧❛r ♦ ❝✉st♦ ❞❡ ♣r♦❞✉çã♦ ❞❛ ❧❛t❛ ❡♠ ❢✉♥çã♦ ❞❡ s❡✉ r❛✐♦✳
❖ ✈♦❧✉♠❡ ❞❡ ✉♠❛ ❧❛t❛ ❝✐❧í♥❞r✐❝❛ é ❞❡
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛ ♦ r❛✐♦ r ❞❛ ❜❛s❡ ❡ h ❛ ❛❧t✉r❛✱ ❧♦❣♦ s❡✉ ✈♦❧✉♠❡ é ❞❛❞♦ ♣♦r πr2 h ❡ ❞❛ ❝♦♥❞✐çã♦
24
❞♦ ♣r♦❜❧❡♠❛ r❡s✉❧t❛ 24π = πr2 h ♦♥❞❡ h = 2 ✳
r
❆ ár❡❛ t♦t❛❧ ❞♦ ❝✐❧✐♥❞r♦ é ❞❛❞❛ ♣❡❧❛ ❡①♣r❡ssã♦✿
ár❡❛ t♦t❛❧ ❂ ✷✭ár❡❛ ❞❛ ❜❛s❡✮ ✰ ✭ár❡❛ ❧❛t❡r❛❧✮
✽✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦r ♦✉tr♦ ❧❛❞♦✱ s❛❜❡♠♦s q✉❡✿ ár❡❛ ❞❛ ❜❛s❡ ❂
= 2πrh = 2πr
ár❡❛ ❧❛t❡r❛❧
❙❡❥❛
C(r)
πr2
❡
48
24
= π
2
r
r
♦ ❝✉st♦ ❞❡ ♣r♦❞✉çã♦❀ ❡♥tã♦✿
C(r) = (❘$3, 00).2(ár❡❛
❞❛ ❜❛s❡) + (❘$2, 00) · (ár❡❛ ❧❛t❡r❛❧)
= (❘$6, 00) · (πr2 ) + (❘$2, 00) · (
48
π)
r
✐st♦ é
C(r) = 6πr2 +
=
96
π r❡❛✐s
r
❊①❡♠♣❧♦ ✷✳✸✷✳
❯♠ ❢❛❜r✐❝❛♥t❡ ❞❡ ♣❛♥❡❧❛s ♣♦❞❡ ♣r♦❞✉③✐r ✉♠❛ ❞❡t❡r♠✐♥❛❞❛ ♣❛♥❡❧❛ ❛ ✉♠ ❝✉st♦ ❞❡ ❘$10
♣♦r ✉♥✐❞❛❞❡✳ ❊st❛ ❡st✐♠❛❞♦ q✉❡ s❡ ♦ ♣r❡ç♦ ❞❡ ✈❡♥❞❛ ❢♦r ❞❡
❞❡ ♣❛♥❡❧❛s ✈❡♥❞✐❞♦s ♣♦r ♠ês s❡rí❛
x✳ ❜✮ ❯t✐❧✐③❡
❘$35 ❝❛❞❛✳
❝♦♠♦ ❢✉♥çã♦ ❞❡
❞❡ ✈❡♥❞❛ ❢♦r
(300 − x)✳ ❛✮
x
❝❛❞❛ ♣❛♥❡❧❛✱ ❡♥tã♦ ♦ ♥ú♠❡r♦
❡①♣r❡ss❡ ♦ ❧✉❝r♦ ♠❡♥s❛❧ ❞♦ ❢❛❜r✐❝❛♥t❡
♦ r❡s✉❧t❛❞♦ ❞❛ ♣❛rt❡ ❛✮ ♣❛r❛ ❞❡t❡r♠✐♥❛r ♦ ❧✉❝r♦ s❡ ♦ ♣r❡ç♦
❙♦❧✉çã♦✳
❛✮ ❖ ❧✉❝r♦ ♣♦❞❡♠♦s ♦❜t❡r s✉❜tr❛✐♥❞♦ ❞❛ r❡❝❡✐t❛ t♦t❛❧ R(x)✱ ♦ ❝✉st♦ t♦t❛❧ C(x)❀ ✐st♦ é✿
R(x) = x(300−x) ❡ ❝✉st♦ t♦t❛❧ C(x) = 10(300−x)❀ ❧♦❣♦ ♦ ❧✉❝r♦ ♠❡♥s❛❧
L(x) = x(300 − x) − 10(300 − x) = (x − 10)(300 − x)✳
r❡❝❡✐t❛ t♦t❛❧
L(x)✱
é
❜✮ ◗✉❛♥❞♦ x = 35 r❡❛✐s✱ ♦ ❧✉❝r♦ L(35) = 6.625 r❡❛✐s✳
❊①❡♠♣❧♦ ✷✳✸✸✳
❊①♣r❡ss❛r ❛ ❞❡♣❡♥❞ê♥❝✐❛ ❢✉♥❝✐♦♥❛❧
❝♦♠♣r✐♠❡♥t♦
x
f (x)
❡♥tr❡ ♦ ❝❛t❡t♦ ❞❡ ✉♠ tr✐â♥❣✉❧♦ r❡tâ♥❣✉❧♦ ❡ ♦
❞♦ ♦✉tr♦ ❝❛t❡t♦✱ s❡♥❞♦ ❛ ❤✐♣♦t❡♥✉s❛ ❝♦♥st❛♥t❡ ✐❣✉❛❧ ❛
5✳
❙♦❧✉çã♦✳
❆♣❧✐❝❛♥❞♦ ♦ ❚❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s✱ t❡♠♦s ❞❛ ❋✐❣✉r❛ ✭✷✳✶✸✮✿
2
2
AC = AB + BC
2
2
2
BC = AC − AB ✱ ✐st♦
√
❆ss✐♠✱ f (x) = 25 − x2 ✳
❧♦❣♦✱
é
2
BC = 52 − x2
2
♦♥❞❡✿
BC =
√
25 − x2 ✳
❊①❡♠♣❧♦ ✷✳✸✹✳
❊①♣r❡ss❛r ❛ ár❡❛ ❞❡ ✉♠ tr❛♣é③✐♦ ✐sós❝❡❧❡s ❞❡ ❜❛s❡
❜❛s❡
a
❡
b
❝♦♠♦ ❢✉♥çã♦ ❞♦ â♥❣✉❧♦
α
❞❛
a✳
❙♦❧✉çã♦✳✳
✽✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
5✑
✑
✑
✑
✑
✑✑
C
B
α
x
C
❅
❅
❅
✑
✑
A
R
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
B
❅
❅
E
A
❋✐❣✉r❛ ✷✳✶✸✿
D
❋✐❣✉r❛ ✷✳✶✹✿
P❡❧♦ ❚❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s✱ ❛ ❛❧t✉r❛ ❞♦ tr❛♣é③✐♦ ❞❛ ❋✐❣✉r❛ ✭✷✳✶✹✮ é BE ✱ ❞❛ ❞❡✜♥✐çã♦
❞❛ t❛♥❣❡♥t❡ ❞❡ ✉♠ â♥❣✉❧♦✱ t❡♠♦s q✉❡✱ tan α =
BE
❀ ❞♦s ❞❛❞♦s ❞♦ ♣r♦❜❧❡♠❛ ✈❡♠ q✉❡
AE
a−b
✳
AD = a ❡ BC = b✱ ❧♦❣♦ AE =
2
a+b
AD + BC
a−b
× BE =
·
tan α
➪r❡❛ ❞♦ tr❛♣é③✐♦ ❂
2
2
2
2
a − b2
P♦rt❛♥t♦✱ ❛ ár❡❛ ❞♦ tr❛♣é③✐♦ é✿ f (α) =
tan α✳
4
❊①❡♠♣❧♦ ✷✳✸✺✳
❊①♣r❡ss❛r ❛ ár❡❛ ❞❡ ✉♠ tr❛♣é③✐♦ ✐sós❝❡❧❡s ❞❡ ❜❛s❡
❜❛s❡
a
❡
b
❝♦♠♦ ❢✉♥çã♦ ❞♦ â♥❣✉❧♦
α
❞❛
a✳
❙♦❧✉çã♦✳✳
P❡❧♦ ❚❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s✱ ❛ ❛❧t✉r❛ ❞♦ tr❛♣é③✐♦ ❞❛ ❋✐❣✉r❛ ✭✷✳✶✹✮ é BE ✱ ❞❛ ❞❡✜♥✐çã♦
❞❛ t❛♥❣❡♥t❡ ❞❡ ✉♠ â♥❣✉❧♦✱ t❡♠♦s q✉❡✱ tan α =
BE
❀ ❞♦s ❞❛❞♦s ❞♦ ♣r♦❜❧❡♠❛ ✈❡♠ q✉❡
AE
a−b
✳
AD = a ❡ BC = b✱ ❧♦❣♦ AE =
2
a−b
a+b
AD + BC
× BE =
·
tan α
➪r❡❛ ❞♦ tr❛♣é③✐♦ ❂
2
2
2
2
a − b2
P♦rt❛♥t♦✱ ❛ ár❡❛ ❞♦ tr❛♣é③✐♦ é✿ f (α) =
tan α✳
4
✽✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✷✲✷
1
✐♥t❡r♣r❡t❛r ♦ s❡❣✉✐♥t❡✿
1+x
f (f (x))
✷✳
f (cx)
✸✳
✶✳ ❙❡❥❛ f (x) =
✶✳
f (x + y)
✹✳
f (x) + f (y)
✺✳
❉❡t❡r♠✐♥❡ ♥ú♠❡r♦s c ❞❡ ♠♦❞♦ q✉❡ ❡①✐st❛♠ x t❛✐s q✉❡ f (cx) = f (x)✳
✻✳
❉❡t❡r♠✐♥❡ ♥ú♠❡r♦s c✱ t❛✐s q✉❡ f (cx) = f (x) ♣❛r❛ ✈❛❧♦r❡s ❞✐st✐♥t♦s ❞❛ ✈❛r✐á✈❡❧ x✳
✷✳ ❉❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
✶✳
✹✳
p
√
√
✷✳
g(x) = 1 − 1 − x
f (x) = 1 − x
√
√
f (x) = 1 − x2 + x2 − 1
✸✳
✺✳
1
1
+
h(x) =
x−1 x−2
√
√
h(x) = 1 − x + x − 2
✸✳ ❈❛❧❝✉❧❛r f (a) ♣❛r❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
✶✳
✸✳
✺✳
f (x) = x2 + 6x − 2
a = −2
✷✳
√
1
5x2 + 11
a=−
3
| x − 2 | , s❡✱ x 6= 2
f (x) =
x−2
1,
s❡✱ x = 2
f (x) =
✹✳
x+1
a=0
3 − x5
3x2 − 2x − 1
f (x) = 3
a=1
2x − 5x + 1
f (x) =
a = −2
✹✳ ❉❡s❡♥❤❛r ♦ ❣rá✜❝♦ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1. g(x) = f (x) + c
2. g(x) = f (x + c)
3. g(x) = c.f (x)
4. g(x) = f (cx)
5. g(x) = f (1/x)
6. g(x) = f (| x |)
7. g(x) = min .{f (x), 0}
8. g(x) = max .{f (x), 0}
✺✳ ❙❡❥❛♠ ♦s ❝♦♥❥✉♥t♦s A = [1, 4], B = [−1, 1] ❡ C = [−3, 1] ❡ ❝♦♥s✐❞❡r❡ ❛s ❢✉♥çõ❡s
f : A −→ R, g : B −→ R ❡ h : C −→ R✱ ❛ss✐♠ ❞❡✜♥✐❞❛s✿ ❛ ❝❛❞❛ ♥ú♠❡r♦ x
❝♦rr❡s♣♦♥❞❡ s❡✉ q✉❛❞r❛❞♦ x2 ✳ ◗✉❛✐s ❞❛s ❢✉♥çõ❡s sã♦ ✐♥❥❡t♦r❛s❄
✻✳ ❆ ❢✉♥çã♦ ❝♦♥st❛♥t❡ f (x) = k ✱ ♣♦❞❡ s❡r ✐♥❥❡t✐✈❛❄ ❊✱ s♦❜r❡❥❡t✐✈❛❄
✼✳ ❙❛❜❡✲s❡ q✉❡ −2 ❡ 3 sã♦ r❛í③❡s ❞❡ ✉♠❛ ❢✉♥çã♦ q✉❛❞rát✐❝❛✳ ❙❡ ♦ ♣♦♥t♦ (−1, 8)
♣❡rt❡♥❝❡ ❛♦ ❣rá✜❝♦ ❞❡ss❛ ❢✉♥çã♦✱ ❡♥tã♦✿
✽✳ ◆✉♠ ❝✐r❝✉✐t♦ ❛ t❡♥sã♦ ✈á ❞❡❝r❡s❝❡♥❞♦ ✉♥✐❢♦r♠❡♠❡♥t❡ ✭❝♦♥❢♦r♠❡ ❛ ❧❡✐ ❧✐♥❡❛r✮✳ ❆♦
✐♥✐❝✐♦ ❞♦ ❡①♣❡r✐♠❡♥t♦ ❛ t❡♥sã♦ ❡r❛ ✐❣✉❛❧ ❛ 12V ❡ ❛♦ ✜♥❛❧ ❞♦ ♠❡s♠♦ ❡①♣❡r✐♠❡♥t♦✱
✽✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
q✉❡ ❞✉r♦ 8sg ✱ ❛ t❡♥sã♦ ❜❛✐①♦ ❛té 6, 4V ✳ ❊①♣r❡ss❛r ❛ t❡♥sã♦ V ❝♦♠♦ ❢✉♥çã♦ ❞♦ t❡♠♣♦
t✳
✾✳ ❯♠❛ ❡s❢❡r❛ ❞❡ r❛✐♦ R t❡♠ ✐♥s❝r✐t♦ ✉♠ ❝♦♥❡ r❡t♦✳ ❆❝❤❛r ❛ ❞❡♣❡♥❞ê♥❝✐❛ ❢✉♥❝✐♦♥❛❧
❡♥tr❡ ❛ ár❡❛ ❞❛ s✉♣❡r❢í❝✐❡ ❧❛t❡r❛❧ S ❞♦ ❝♦♥❡ ❡ s✉❛ ❣❡r❛tr✐③ x✳ ■♥❞✐❝❛r ♦ ❞♦♠í♥✐♦ ❞❡
❞❡✜♥✐çã♦ ❞❡ ❡st❛ ❢✉♥çã♦✳
✶✵✳ ❈❡rt❛ q✉❛♥t✐❞❛❞❡ ❞❡ ❣ás ♦❝✉♣♦ ♦ ✈♦❧✉♠❡ ❞❡ 107cm3 à t❡♠♣❡r❛t✉r❛ ❞❡ 20o C ❀ ♣❛r❛
✉♠❛ t❡♠♣❡r❛t✉r❛ ❞❡ 40o C ♦ ✈♦❧✉♠❡ ❝❤❡❣♦✉ ❛ s❡r ✐❣✉❛❧ ❛ 114cm3 ✿
❆♣❧✐❝❛♥❞♦ ❛ ❧❡✐ ❞❡ ●❛②✲▲✉ss❛❝ ❢♦r♠❛r ❛ ❡q✉❛çã♦ q✉❡ ❡①♣r❡ss❡ ❛ ❞❡♣❡♥❞ê♥❝✐❛
❡♥tr❡ ♦ ✈♦❧✉♠❡ V ❞♦ ❣ás ❡ ❛ t❡♠♣❡r❛t✉r❛ T o C ✳
✶✳
✷✳
◗✉❛❧ s❡r✐❛ ♦ ✈♦❧✉♠❡ ❛ 0o C ❄
✶✶✳ ❖ ❞♦♥♦ ❞❡ ✉♠ r❡st❛✉r❛♥t❡ r❡s♦❧✈❡✉ ♠♦❞✐✜❝❛r ♦ t✐♣♦ ❞❡ ❝♦❜r❛♥ç❛✱ ♠✐st✉r❛♥❞♦ ♦
s✐st❡♠❛ ❛ q✉✐❧♦ ❝♦♠ ♦ ♣r❡ç♦ ✜①♦✳ ❊❧❡ ✐♥st✐t✉♦ ♦ s❡❣✉✐♥t❡ s✐st❡♠❛ ❞❡ ♣r❡ç♦ ♣❛r❛ ❛s
r❡❢❡✐çõ❡s✿
❆té 300g
R$3.00 ♣♦r r❡❢❡✐çã♦
❊♥tr❡ 300g ❡ 1kg
R$10.00 ♣♦r q✉✐❧♦
❆❝✐♠❛ ❞❡ 1kg
R$10.00 ♣♦r r❡❢❡✐çã♦
❘❡♣r❡s❡♥t❛r ❣r❛✜❝❛♠❡♥t❡ ♦ ♣r❡ç♦ ❞❛s r❡❢❡✐çõ❡s ♥❡ss❡ r❡st❛✉r❛♥t❡✳
✶✷✳ ❆ ♠❡❞✐❞❛ ❞❛ t❡♠♣❡r❛t✉r❛ ❡♠ ❣r❛✉s ❋❛❤r❡♥❤❡✐t é ✉♠❛ ❢✉♥çã♦ ❧✐♥❡❛r ❞❛ ♠❡❞✐❞❛ ❡♠
❣r❛✉s ❝❡♥tí❣r❛❞♦s✿
✶✳
❊s❝r❡✈❡r ❛ ❡q✉❛çã♦ ❞❡ ❡st❛ ❢✉♥çã♦ ✭❧❡♠❜r❡ q✉❡ 0o C = 32o F ❡ 100o C = 212o F ✮✳
❯t✐❧✐③❛r ❛ ❢✉♥çã♦ ♦❜t✐❞❛ ♥♦ ✐t❡♠ ❛♥t❡r✐♦r ♣❛r❛ tr❛♥s❢♦r♠❛r 15o C ❛ ❣r❛✉s ❋❛❤r❡✲
♥❤❡✐t✳
✷✳
✶✸✳ ❖ ✈❛❧♦r ❞❛ ❢✉♥çã♦ ❞❡ ❛r❣✉♠❡♥t♦ ✐♥t❡✐r♦ u = f (n) é ✐❣✉❛❧ ❛♦ ♥ú♠❡r♦ ❞❡ ❞✐✈✐s♦r❡s
✐♥t❡✐r♦s ❞♦ ❛r❣✉♠❡♥t♦ n ❞✐st✐♥t♦s ❞❡ 1 ❡ ❞♦ ♠❡s♠♦ n✳ ❋♦r♠❛r ❛ t❛❜❡❧❛ ❞♦s ✈❛❧♦r❡s
❞❡ u ♣❛r❛ 1 ≤ n ≤ 18✳
✶✹✳ ❯♠❛ ❜♦❧❛ ❢♦✐ ❛❜❛♥❞♦♥❛❞❛ ❞♦ t❡t♦ ❞❡ ✉♠ ❡❞✐❢í❝✐♦✳ ❆ ❛❧t✉r❛ ❞❛ ❜♦❧❛ ❡♠ ♠❡tr♦s ❞❡♣♦✐s
❞❡ t s❡❣✉♥❞♦s é ❞❛❞❛ ♣❡❧❛ ❢✉♥çã♦ H(t) = −16t2 + 256✳
✶✳
❊♠ q✉❡ ❛❧t✉r❛ ❡st❛rá ❛ ❜♦❧❛ ❞❡♣♦✐s ❞❡ 2 s❡❣✉♥❞♦s ❄
✷✳
◗✉❡ ❞✐stâ♥❝✐❛ t❡rá r❡❝♦rr✐❞♦ ❛ ❜♦❧❛ ♥♦ 3o s❡❣✉♥❞♦ ❄
✸✳
◗✉❛❧ é ❛ ❛❧t✉r❛ ❞♦ ❡❞✐❢í❝✐♦ ❄
✹✳
❉❡♣♦✐s ❞❡ q✉❛♥t♦s s❡❣✉♥❞♦s ❛ ❜♦❧❛ ❝❤❡❣❛rá ❛♦ s♦❧♦ ❄
✾✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✹
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❋✉♥çõ❡s ❡s♣❡❝✐❛✐s
✷✳✹✳✶ ❋✉♥çã♦ ❛✜♠
f : R −→ R é ❛q✉❡❧❛ ❞❡✜♥✐❞❛ ♣♦r f (x) = ax + b ∀ x ∈ R✱ ♦♥❞❡ a ❡ b sã♦
❝♦♥st❛♥t❡s r❡❛✐s ♥ã♦ ♥✉❧❛s❀ ♦ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ D(f ) = R ❡ ❛ ✐♠❛❣❡♠ Im(f ) = R❀ s❡✉
❣rá✜❝♦ é ✉♠❛ r❡t❛ ♦❜❧íq✉❛ ❛♦ ❡✐①♦ ❞❛s ❛❜s❝✐ss❛s ✭❡✐①♦✲x✮ ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✷✳✶✺✮❀ ❡❧❛
b
✐♥t❡r❝❡♣t❛ ♦ ❡✐①♦✲y ♥♦ ♣♦♥t♦ (0, b) ❡ ♦ ❡✐①♦✲x ♥♦ ♣♦♥t♦ (− , 0)✳
a
❋✉♥çã♦ ❛✜♠
❊①❡♠♣❧♦ ✷✳✸✻✳
❆ ❢✉♥çã♦ f (x) = 3x + 5 é ✉♠❛ ❢✉♥çã♦ ❛✜♠✱ s❡✉ ❞♦♠í♥✐♦ D(f ) = R ❡ s✉❛ ✐♠❛❣❡♠ ♦
❝♦♥❥✉♥t♦ Im(f ) = R✳
y✻
y✻
✒
4
4
3
−x
✛
· · ·−3 −2 −1
0
2
✲
1
−x
✛
x
✲
1
f (x) = b
2
2
1
3
✛
f (x) = ax + b
· · ·−3 −2 −1
3···
0
x
✲
1
2
3···
✠
−y ❄
−y ❄
❋✐❣✉r❛ ✷✳✶✻✿
❋✐❣✉r❛ ✷✳✶✺✿
❊①❡♠♣❧♦ ✷✳✸✼✳
x2 − 9
é ✉♠❛ ❢♦r♠❛ ❞✐s❢❛rç❛❞❛ ❞❛ ❢✉♥çã♦ ❛✜♠ g(x) = x + 3✳
x−3
❙❡✉ ❞♦♠í♥✐♦ é D(f ) = R − {3} ❡ Im(f ) = R − {6}✳
❆ ❢✉♥çã♦ f (x) =
✷✳✹✳✷ ❋✉♥çã♦ ❝♦♥st❛♥t❡
a = 0 ❡♥tã♦ ❛ ❢✉♥çã♦ f : R −→ R é ❝❤❛♠❛❞❛ ✏ ❢✉♥çã♦
f (x) = b ∀ x ∈ R✱ ♦♥❞❡ b é ✉♠ ♥ú♠❡r♦ r❡❛❧ ❝♦♥st❛♥t❡✳
◗✉❛♥❞♦✱ ♥❛ ❢✉♥çã♦ ❛✜♠✱ t❡♠♦s
❝♦♥st❛♥t❡ ✑
s❡♥❞♦ ❞❡✜♥✐❞❛ ♣♦r
❖ ❞♦♠í♥✐♦
❛
❋✐❣✉r❛
D(f ) = R
✭✷✳✶✻✮✳
❡
Im(f ) = { b }
❖❜s❡r✈❡✱ ❛ ❢✉♥çã♦ ❛ss♦❝✐❛ ❛ t♦❞♦
❡ ♦ ❣rá✜❝♦ é ✉♠❛ r❡t❛ ❤♦r✐③♦♥t❛❧ ❝♦♠♦ ♠♦str❛
x∈R
✉♠ ♠❡s♠♦ ♥ú♠❡r♦ r❡❛❧
b✳
❊①❡♠♣❧♦ ✷✳✸✽✳
❙❡❥❛ y = f (x) ♦♥❞❡ f (x) = 5✱ ❡♥tã♦ y = 5 r❡♣r❡s❡♥t❛ ❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡✱ é ✉♠❛ r❡t❛
♣❛r❛❧❡❧❛ ❛♦ ❡✐①♦ ❞❛s ❛❜s❝✐ss❛s ❛ ❝✐♥❝♦ ✉♥✐❞❛❞❡s ❞❡ ❞✐stâ♥❝✐❛ s✉♣❡r✐♦r♠❡♥t❡✳
✾✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✹✳✸
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❋✉♥çã♦ ✐❞❡♥t✐❞❛❞❡ ❡♠
R
R
◗✉❛♥❞♦✱ ♥❛ ❢✉♥çã♦ ❛✜♠✱ t❡♠♦s a = 1 ❡ b = 0✱ r❡s✉❧t❛ ❛ ❢✉♥çã♦ f : R −→ R ❡✱ é
❝❤❛♠❛❞❛ ✏ ❢✉♥çã♦
✐❞❡♥t✐❞❛❞❡ ✑
❞❡✜♥✐❞❛ ♣♦r f (x) = x ∀ x ∈ R✳
❖ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ D(f ) = R ❡ ❛ ✐♠❛❣❡♠ Im(f ) = R❀ ♦ ❣rá✜❝♦ é ✉♠❛ r❡t❛ ♦❜❧íq✉❛✱
q✉❡ ❢❛③ â♥❣✉❧♦ ❞❡ 45o ❝♦♠ ♦ ❡✐①♦ ❞❛s ❛❜s❝✐ss❛s✱ ✐st♦ é✱ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ ✐❞❡♥t✐❞❛❞❡ é
✉♠❛ r❡t❛ q✉❡ ❝♦♥tê♠ ❛s ❜✐ss❡tr✐③❡s ❞♦ 1o ❡ 3o q✉❛❞r❛♥t❡s ❡ q✉❡ ♣❛ss❛ ♣❡❧❛ ♦r✐❣❡♠✱ ❝♦♠♦
♠♦str❛ ❛
❋✐❣✉r❛
✭✷✳✶✼✮✳
y✻
y✻
4
3
2
· · ·−3 −2 −1
✠
✷✳✹✳✹
0
3
−x
✛
x
✲
1
2
f (x) = x
2
f (x) = x
1
−x
✛
4
✒
✏
· · ·−3 −2 ✏
−1✏
3···
✏
✮✏
✏
✏✏
✏✏
1
0
1
−y ❄
−y ❄
❋✐❣✉r❛ ✷✳✶✼✿
❋✐❣✉r❛ ✷✳✶✽✿
2
✶
✏
✏✏
x
✲
3···
❋✉♥çã♦ ❧✐♥❡❛r
❙❡✱ ♥❛ ❢✉♥çã♦ ❛✜♠ ❛ ❝♦♥st❛♥t❡ b = 0✱ t❡♠✲s❡ ❛ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r
f (x) = ax ∀ x ∈ R ❡ ❝❤❛♠❛❞❛ ✏ ❢✉♥çã♦ ❧✐♥❡❛r ✑❀ ♦ ❞♦♠í♥✐♦ D(f ) = R ❡ Im(f ) = R✱
s❡✉ ❣rá✜❝♦ é ✉♠❛ r❡t❛ ♦❜❧íq✉❛ q✉❡ ♥ã♦ ♥❡❝❡ss❛r✐❛♠❡♥t❡ ❢❛③ â♥❣✉❧♦ ❞❡ 45o ❣r❛✉s ❝♦♠ ♦
❡✐①♦✲x✱ ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✷✳✶✽✮✳ ➱ ✉♠❛ r❡t❛ q✉❡ ♥ã♦ é ♣❛r❛❧❡❧❛ ❛ ♥❡♥❤✉♠ ❞♦s ❡✐①♦s❀
♦ ♥ú♠❡r♦ a 6= 0 é ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❡ss❛ r❡t❛✳
y
= a é ❝♦♥st❛♥t❡✳ ❊①✲
❊st❛ ❢✉♥çã♦ q✉❡ ❡st❛❜❡❧❡❝❡ ❡♥tr❡ x ❡ y ✉♠❛ r❡❧❛çã♦ t❛❧ q✉❡
x
♣r❡ss❛♠♦s ❛ r❡❧❛çã♦ ♣♦r y = a · x✱ ♦♥❞❡ ✏ a✑ ❝♦♥st❛♥t❡✱ ❞✐③❡♠♦s q✉❡ ❛ ✈❛r✐❛çã♦ ❞❡ ✁✁y ✑ é
❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ ✈❛r✐❛çã♦ ❞❡ ✏ x✑✳
❙❡❥❛♠ x1 , x2 ∈ D(f ),
❆❞✐t✐✈✐❞❛❞❡✿
a, b ∈ R✱ ❛ ❢✉♥çã♦ ❧✐♥❡❛r ♣♦ss✉✐ ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✿
f (x1 + x2 ) = f (x1 ) + f (x2 )❀
❍♦♠♦❣❡♥❡✐❞❛❞❡✿
f (a · x1 ) = a · f (x1 )✳
f (a · x1 + b · x2 ) = a · f (x1 ) + b · f (x2 )
❆ ❢✉♥çã♦ ❛✜♠ f (x) = ax + b✱ ♦♥❞❡ a ❡ b sã♦ ❝♦♥st❛♥t❡s✱ é ❛ ❡q✉❛çã♦ ❞❡ ✉♠❛ r❡t❛ ♥♦
♣❧❛♥♦ R2 ❀ s❡✉ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ sã♦ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s s❛❧✈♦ ❛❧❣✉♠❛ r❡str✐çã♦✱ ❡ ♥ã♦
s❛t✐s❢❛③ ❡st❛s ❞✉❛s ú❧t✐♠❛s ♣r♦♣r✐❡❞❛❞❡s✳
✾✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✹✳✺
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊q✉❛çã♦ ❞❡ ✉♠❛ r❡t❛
❊①✐st❡♠ s✐t✉❛çõ❡s ♥❛s q✉❛✐s ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞❡ ✉♠❛ q✉❛♥t✐❞❛❞❡ ❝♦♠ r❡❧❛çã♦ ❛
♦✉tr❛ é ❝♦♥st❛♥t❡✳ P♦r ❡①❡♠♣❧♦✱ s✉♣♦♥❤❛♠♦s q✉❡ ♣❛r❛ ❢❛❜r✐❝❛r ✉♠ ❞❡t❡r♠✐♥❛❞♦ ♣r♦❞✉t♦
t❡♥❤❛♠♦s ❛ ♣❛❣❛r ❘$20, 00✱ ❛❧é♠ ❞❡ ✉♠❛ ❞❡s♣❡s❛ ✜①❛ s❡♠❛♥❛❧ ❞❡ ❘$300, 00✳
s❡
x
✉♥✐❞❛❞❡s ❢♦r❡♠ ♣r♦❞✉③✐❞❛s ♣♦r s❡♠❛♥❛ ❡
❢❛❜r✐❝❛♥t❡❀ ❡♥tã♦
y
❊♥tã♦
r❡❛✐s ❢♦r ♦ ❝✉st♦ t♦t❛❧ s❡♠❛♥❛❧ ♣❛r❛ ♦
y = 20x + 300✳
❙♦❧✉çõ❡s ♣❛r❛ ❡st❛ ❡q✉❛çã♦ sã♦ ❞❛❞❛s ♥❛ s❡❣✉✐♥t❡ t❛❜❡❧❛✿
x
y = 20x + 300
0
300
10
500
20
700
30
900
40
1500
❆ r❡❧❛çã♦ ❞❛❞❛ ♥♦ ❡①❡♠♣❧♦ ♣r❡❝❡❞❡♥t❡ r❡♣r❡✲
s❡♥t❛ ❛ ❡q✉❛çã♦ ❞❡ ✉♠❛ r❡t❛❀ ❡♠ ❣❡r❛❧✱ ❞❛❞♦s ❞♦✐s
♣♦♥t♦s
P (x1 , y1 )
❡
Q(x2 , y2 )
❞❡ ✉♠❛ r❡t❛✱ ♣❛r❛ ❞❡✲
R
t❡r♠✐♥❛r s✉❛ ❡q✉❛çã♦ ♥♦ ♣❧❛♥♦
2
P (x1 , y1 )
✳q
✳
✳✳
✳
✳✳
(x, y) •
✳
✳✳
q · · · · · ·✳✳q· · ·
Q(x2 , y2 )
R(x1 , y2 )
✻y
y1
♣r♦❝❡❞❡♠♦s ❞♦
s❡❣✉✐♥t❡ ♠♦❞♦✿
❈♦♥s✐❞❡r❡ ♦s ♣♦♥t♦s
tr✐â♥❣✉❧♦
P RQ
P (x1 , y1 )
❝♦♠♦ ♠♦str❛ ❛
❡
Q(x2 , y2 )
❋✐❣✉r❛
❞♦
✭✷✳✶✾✮✳
y2
✛
[
t❛♥❣❡♥t❡ ❞♦ â♥❣✉❧♦ P
QR é ❞❛❞❛ ♣♦r✿
y
−
y
1
2
❡st❡ ✈❛❧♦r ❞❛ t❛♥❣❡♥t❡ é ❞❡✲
tan(P[
QR) =
x1 − x2
♥♦♠✐♥❛❞♦ ❵❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ q✉❡ ♣❛ss❛
y1 − y2
♣❡❧♦s ♣♦♥t♦s P Q✑ ❀ ❡ ❞❡♥♦t❛❞❛ ♣♦r✿ m =
✳
x1 − x2
❙❡ (x, y) é ✉♠ ♣♦♥t♦ q✉❛✐sq✉❡r ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣♦r
❆
✲
−x
0
x2
x1
x
−y ❄
❵
♣❛r❛ tr✐â♥❣✉❧♦ r❡tâ♥❣✉❧♦ t❡♠♦s q✉❡✿
L✱ q✉❡
L : y − y1 = m(x − x1 )✳
P♦rt❛♥t♦✱ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛
♣❡❧❛ ❢ór♠✉❧❛✿
y1 − y2
y − y1
=
x − x1
x1 − x2
❋✐❣✉r❛ ✷✳✶✾✿
P
❡
✐st♦ é
♣❛ss❛ ♣❡❧♦s ♣♦♥t♦s
Q✱
❞❛s r❡❧❛çõ❡s ❣❡♦♠étr✐❝❛s
y − y1 = m(x − x1 )✳
P (x1 , y1 )
❡
Q(x2 , y2 )
é ❞❛❞❛
❊①❡♠♣❧♦ ✷✳✸✾✳
❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♥♦ ♣❧❛♥♦ ❝❛rt❡s✐❛♥♦✱ q✉❡ ♣❛ss❛ ♣❡❧♦s ♣♦♥t♦s P (−2, −5)
❡ Q(4, 3)✳
❙♦❧✉çã♦✳
❚❡♠♦s q✉❡ ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r
8
y − 3 = (x − 4)✳
6
m=
▲♦❣♦ ❛ ❡q✉❛çã♦ ♣❡❞✐❞❛
−5 − 3
8
= ❡ ❝♦♥s✐❞❡r❡ ♦ ♣♦♥t♦ Q(4, 3)❀ ❡♥tã♦
−2 − 4
6
é✿ 4x − 3y − 7 = 0✳
❖❜s❡r✈❛çã♦ ✷✳✺✳
❙✉♣♦♥❤❛ t❡♠♦s ❞✉❛s r❡t❛s L1 ❡ L2 ❞❡ ❝♦❡✜❝✐❡♥t❡s ❛♥❣✉❧❛r❡s m1 ❡ m2 ❡♥tã♦✱ ❛s ❞✉❛s
r❡t❛s sã♦ ♣❛r❛❧❡❧❛s s❡ m1 = m2 ❀ ❝❛s♦ ♦ ♣r♦❞✉t♦ m1 · m2 = −1 ❡❧❛s sã♦ ♣❡r♣❡♥❞✐❝✉❧❛r❡s✳
✾✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ ❞✐stâ♥❝✐❛ ❡♥tr❡ ❞♦✐s ♣♦♥t♦s ❞♦ ♣❧❛♥♦ A(a, b) ❡ B(c, d) é ❞❛❞❛ ♣❡❧❛ ❢ór♠✉❧❛
d(A, B) =
❊①❡♠♣❧♦ ✷✳✹✵✳
p
(c − a)2 + (d − b)2
❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦ ♣♦♥t♦ P (2, 5) ❡ t❡♠ ❝♦♠♦ ❝♦❡✜❝✐❡♥t❡
❛♥❣✉❧❛r m = 3✳
❙♦❧✉çã♦✳
❆♣❧✐❝❛♥❞♦ ❞✐r❡t❛♠❡♥t❡ ❛ ❢ór♠✉❧❛ t❡♠♦s q✉❡✿ y − 5 = 3(x − 2)❀ ❧♦❣♦ 3x − y − 1 = 0 é
❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♣❡❞✐❞❛✳
❊①❡♠♣❧♦ ✷✳✹✶✳
❉❛❞❛ ❛ r❡t❛ L1 : y = 5x − 3✱ ❞❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛✿
❛✮ L2
q✉❡ ♣❛ss❛ ♣❡❧♦ ♣♦♥t♦ A(4, 9) ❡ s❡❥❛ ♣❛r❛❧❡❧❛ ❛ L1 ❀
❜✮ L3
q✉❡ ♣❛ss❛ ♣❡❧♦ ♣♦♥t♦ B(−4, 6) ❡ s❡❥❛ ♣❡r♣❡♥❞✐❝✉❧❛r ❛ L1 ✳
❙♦❧✉çã♦✳
✭❛✮
❚❡♠♦s q✉❡ ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❡ L1 é m1 = 5 ❧♦❣♦✱ t❡♠ q✉❡ s❡r ✐❣✉❛❧ ❛♦ ❝♦❡✜❝✐❡♥t❡
❛♥❣✉❧❛r ❞❛ r❡t❛ L2 ✱ ❛ss✐♠ m2 = 5 ❡ L2 : y − 9 = 5(x − 4) ✐st♦ é L2 : y = 5x − 11✳
✭❜✮
❙❡♥❞♦ m1 = 5 ❡♥tã♦ ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❡ L3 é m3 = − ❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ L3
é y−6=
x 26
−1
(x − (−4)) ✐st♦ é L3 : y = − + ✳
5
5
5
1
5
❖❜s❡r✈❛çã♦ ✷✳✻✳
❆ ár❡❛ ❞♦ tr✐â♥❣✉❧♦ ❞❡t❡r♠✐♥❛❞❛ ♣❡❧♦s ♣♦♥t♦s P (x1 , y1 ), Q(x2 , y2 ) ❡ R(x3 , y3 ) é ❞❛❞❛
♣❡❧♦ ✈❛❧♦r ❛❜s♦❧✉t♦ ❞♦ ❞❡t❡r♠✐♥❛♥t❡✿ AP QR
1
=
2
x1 y1 1
x2 y2 1 ✳
x3 y3 1
❊①❡♠♣❧♦ ✷✳✹✷✳
❉❡t❡r♠✐♥❡ s❡ ♦s ♣♦♥t♦s P (2, 3), Q(7, 9) ❡ R(3, 8) ♣❡rt❡♥❝❡♠ ❛ ✉♠❛ ♠❡s♠❛ r❡t❛✳
❙♦❧✉çã♦✳
❖s três ♣♦♥t♦s ♣❡rt❡♥❝❡♠ ❛ ✉♠❛ ♠❡s♠❛ r❡t❛✱ s❡❀ ❛ ár❡❛ ❞♦ tr✐â♥❣✉❧♦ ❢♦r♠❛❞❛ ♣♦r ❡❧❡s é
✐❣✉❛❧ ❛ ③❡r♦✳
AP QR
1
=
2
2 3 1
7 9 1
3 8 1
19
1
= [(18 + 56 + 9) − (27 + 16 + 21)] =
2
2
▲♦❣♦✱ ♦s três ♣♦♥t♦s ♥ã♦ ♣❡rt❡♥❝❡♠ ❛ ✉♠❛ ♠❡s♠❛ r❡t❛✳
✾✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡♠♣❧♦ ✷✳✹✸✳
❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ q✉❡ ♣❛ss❡ ♣❡❧♦s s❡❣✉✐♥t❡s ♣♦♥t♦s✿
❛✮ A(3, 6) ❡ B(7, 6)
❜✮ M (5, 7) ❡ N (5, 9)
❙♦❧✉çã♦✳
❛✮
❖ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r é m =
6−6
= 0✱ ❛ ❡q✉❛çã♦ ♣❡❞✐❞❛ é✿ y − 6 = 0(x − 3) = 0✱
3−7
❡♥tã♦ y = 6✳ ➱ ✉♠❛ r❡t❛ ♣❛r❛❧❡❧❛ ❛♦ ❡✐①♦ ❞❛s ❛❜s❝✐ss❛s✳
❜✮
9−7
2
2
= ✱ ❛ ❡q✉❛çã♦ ♣❡❞✐❞❛ é✿ y − 9 = (x − 5)✱ ❡♥tã♦
5−5
0
0
0(y − 9) = 2(x − 5)✱ ❧♦❣♦ 0 = 2(x − 5) ✐st♦ é x = 5✳ ➱ ✉♠❛ r❡t❛ ♣❛r❛❧❡❧❛ ❛♦ ❡✐①♦ ❞❛s
❖ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r é m =
♦r❞❡♥❛❞❛s✳
❊①❡♠♣❧♦ ✷✳✹✹✳
❖s ✈ért✐❝❡s ❞❡ ✉♠ tr✐â♥❣✉❧♦ sã♦ ♦s ♣♦♥t♦s A(2, 4), B(3, −1) ❡ C(−5, 3)✳ ❉❡t❡r♠✐♥❡
❛ ❞✐stâ♥❝✐❛ ❞♦ ♣♦♥t♦ A ❛♦ ♣♦♥t♦ ❞❡ ✐♥t❡rs❡çã♦ ❞❛s ♠❡❞✐❛♥❛s✳
❙♦❧✉çã♦✳
❖s ♣♦♥t♦s ♠é❞✐♦s ❞♦s ❧❛❞♦s
(−1, 1)✳
AB, AC
5 3
3 7
BC sã♦ r❡s♣❡❝t✐✈❛♠❡♥t❡✿ ( , ), (− , )
2 2
2 2
(−1, 1) ♣❛r❛ A é
❡
❆ ❡q✉❛çã♦ ❞❛ ♠❡❞✐❛♥❛ ❞♦ ♣♦♥t♦
y−1=
4−1
(x + 1)
2+1
❆ ❡q✉❛çã♦ ❞❛ ♠❡❞✐❛♥❛ ❞♦ ♣♦♥t♦
y−
3 7
(− , )
2 2
♣❛r❛
−1 − 72
3
1
=
3 (x + )
2
2
3+ 2
❆ ❡q✉❛çã♦ ❞❛ ♠❡❞✐❛♥❛ ❞♦ ♣♦♥t♦
y−
⇒
5 3
( , )
2 2
3 − 32
5
3
=
5 (x − )
2
2
−5 − 2
x−y+2=0
B
⇒
♣❛r❛
⇒
C
é
x+y+1=0
é
2x + 10y − 20 = 0
❘❡s♦❧✈❡♥❞♦ ❡st❛s três ❡q✉❛çõ❡s t❡♠♦s ❛ ✐♥t❡rs❡çã♦ ❞❛s três ♠❡❞✐❛♥❛s é ♦ ♣♦♥t♦
❆ ❞✐stâ♥❝✐❛ ❞♦ ♣♦♥t♦
(0, 2)
♣❛r❛ ♦ ♣♦♥t♦
P♦rt❛♥t♦ ❛ ❞✐stâ♥❝✐❛ ♣r♦❝✉r❛❞❛ é
✷✳✹✳✻
√
A
é
2 2✳
❡
p
√
(2 − 0)2 + (4 − 2)2 = 2 2✳
(0, 2)✳
❋✉♥çã♦ ♠❛✐♦r ✐♥t❡✐r♦
f : R −→ R ❞❡♥♦t❛❞❛ f (x) = [|x|] ❞❡ ♠♦❞♦ q✉❡ ❛ ❝❛❞❛ ♥ú♠❡r♦ r❡❛❧ ❞♦
✐♥t❡r✈❛❧♦ n ≤ x < n + 1
∀ n ∈ Z ❛ss♦❝✐❛ ♦ ♥ú♠❡r♦ ✐♥t❡✐r♦ n ❀ ✐st♦ é [|x|] = n é ♦ ♠❛✐♦r
✐♥t❡✐r♦ q✉❡ ♥ã♦ s✉♣❡r❛ ♦ ♥ú♠❡r♦ x✳
➱ ❛ ❢✉♥çã♦
✾✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✷
❆ ❢✉♥çã♦ ♠❛✐♦r ✐♥t❡✐r♦
R
t❛♠❜é♠ é ❝❤❛♠❛❞❛ ❝♦♠♦ ✏ ❢✉♥çã♦ ❝♦❧❝❤❡t❡ ✑✳ ❖ ❣rá✜❝♦ ♠♦str❛✲
D(f ) = R
s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✷✵✮✳ ❆q✉✐✱
❡
Im(f ) = Z
❊①❡♠♣❧♦ ✷✳✹✺✳
❖❜s❡r✈❡✱ s❡
x
y = [|x|]
✷✳✹✳✼
f (x) = [|x|]
x ∈ [−2 − 1)
x ∈ [−1, 0)
−2
x ∈ [0, 1)
−1
x ∈ [1, 2)
0
x ∈ [2, 3)
1
2
f : R −→ R
Im(f ) = [0, +∞)✳
❞❡✜♥✐❞❛ ♣♦r✿
f (x) =
√
x✳
❙❡✉ ❞♦♠í♥✐♦
· · −3
· −2 −1
❙❡✉ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✷✶✮✳
4
3
2
1
−x
✛
x
✲
· · −3
· −2 −1 0
0 1 2 3· · ·
−y ❄
❋✐❣✉r❛ ✷✳✷✵✿
❋✐❣✉r❛ ✷✳✷✶✿
❋✉♥çã♦ s✐♥❛❧
❙❡✉ ❞♦♠í♥✐♦
D(f ) = R
❡ s✉❛ ✐♠❛❣❡♠
❋✐❣✉r❛ ✭✷✳✷✷✮✳
Im(f ) = { −1, 0, 1 }✱
❋✉♥çã♦ ✈❛❧♦r ❛❜s♦❧✉t♦ ❞❡
❆ ❢✉♥çã♦
x✑✳
x
✲
2 3· · ·
−y ❄
−1,
➱ ❛ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r✿ f (x) = Sgn(x) =
0,
1,
❖❜s❡r✈❡✱ ❛ ❢✉♥çã♦ f (x) = Sgn(x) é ❢✉♥çã♦ ❝♦♥st❛♥t❡ ∀ x ∈ R✳
❞❡
❡ s✉❛
y✻
4
3
2
1
−x
✛
✷✳✹✳✾
3
D(f ) = [0, +∞)
y✻
✷✳✹✳✽
x ∈ [3, 4)
❋✉♥çã♦ r❛✐③ q✉❛❞r❛❞❛
➱ ❛ ❢✉♥çã♦
✐♠❛❣❡♠
t❡♠♦s ❛ s❡❣✉✐♥t❡ t❛❜❡❧❛✿
f : R −→ R
❙❡✉ ❞♦♠í♥✐♦ é
❞❡✜♥✐❞❛ ♣♦r✿
s❡✱
s❡✱
s❡✱
x<0
x=0
x>0
♦ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛
x
f (x) =| x |
é ❝❤❛♠❛❞❛ ✏ ❢✉♥çã♦ ✈❛❧♦r ❛❜s♦❧✉t♦
D(f ) = R ❡ s✉❛ ✐♠❛❣❡♠ é Im(f ) = R+ = [0, +∞)✳
❙❡✉ ❣rá✜❝♦ ♠♦str❛✲s❡
♥❛ ❋✐❣✉r❛ ✭✷✳✷✸✮✳
✷ ❊st❛ ❢✉♥çã♦ t❛♠❜é♠ é ❝♦♥❤❡❝✐❞❛ ❝♦♠♦ ❢✉♥çã♦ ♣✐s♦ ❡ ❞❡♥♦t❛❞❛ ♣♦r
t❛♠❡♥t♦ ❞❛ ❢✉♥çã♦ ✐♥t❡✐r♦ ♠❛✐♦r✳ ❚❛♠❜é♠ ❡①✐st❡ ❛ ❢✉♥çã♦ t❡t♦
✾✻
f (x) = ⌊x⌋ ❝♦♠ ♦ ♠❡s♠♦ ❝♦♠♣♦r✲
g(x) = ⌈x⌉ ♦♥❞❡ k ≤ x < k + 1, k ∈ Z
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
y✻
4
y✻
3
2
−x
✛
· · ·−3 −2 −1
✛
❅
■
❅
❅
✲
1
x
✲
0 1
−1
−2
2
3···
−x
✛
✒
3
❅
f (x) =| x |
2
❅ 1
❅
· · ·−3 −2 −1
✳
✳
✳
x
✲
0
1
2
3···
−y ❄
−y ❄
❋✐❣✉r❛ ✷✳✷✸✿
❋✐❣✉r❛ ✷✳✷✷✿
✷✳✹✳✶✵
4
❋✉♥çã♦ q✉❛❞rát✐❝❛
f : R −→ R ❞❡✜♥✐❞❛ ♣♦r f (x) = ax2 + bx + c✱ ♦♥❞❡ a, b ❡ c sã♦ ❝♦♥st❛♥t❡s
2
r❡❛✐s ❝♦♠ a 6= 0❀ ♦ ❞♦♠í♥✐♦ D(f ) = R ❡ ❛ ✐♠❛❣❡♠ ✈❛r✐❛♠ ❞❡ ❛❝♦r❞♦ ❝♦♠ ❛ r❡❧❛çã♦ b = 4ac✱
➱ ❛ ❢✉♥çã♦
s❡✉ ❣rá✜❝♦ é ✉♠❛ ♣❛rá❜♦❧❛ ❡ s❡rá ❡st✉❞❛❞♦ ❡♠ ❞❡t❛❧❤❡s ♣♦st❡r✐♦r♠❡♥t❡✳ ❖ ❣rá✜❝♦ ❞❡ ✉♠❛
♣❛rá❜♦❧❛ ❛♣r❡s❡♥t❛ ✉♠ ♣♦♥t♦ ♠❛✐s ❛❧t♦ ✭a
< 0✮
♦✉ ✉♠ ♣♦♥t♦ ♠❛✐s ❜❛✐①♦ ✭a
> 0✮
r❡s♣❡✐t♦
❞♦ ❡✐①♦✲x✱ ❡ss❡ ♣♦♥t♦ ❞♦ ❣rá✜❝♦ é ❝❤❛♠❛❞♦ ❞❡ ✈ért✐❝❡✳
2xa+b = 0✱
b
b
❛ss✐♠✱ ♦ ♣♦♥t♦ (−
, f (− )) é ♦ ✈ért✐❝❡ ♣r♦❝✉r❛❞♦❀ ♣❛r❛ ♦ ❣rá✜❝♦ ❞❡ f (x)
2a
2a
b
b
b
❝♦♥s✐❞❡r❛r ♦s ♣♦♥t♦s x = −
+1 ❡ x = − −1✱
r❡❝♦♠❡♥❞❛✲s❡ ❛❧é♠ ❞♦ ✈❛❧♦r ❞❡ x = −
2a
2a
2a
b
b
♣❛r❛ ❡st❡s ♣♦♥t♦s ♦❜t❡r❡♠♦s f (−
+ 1) = f (− − 1)✳
2a
2a
P♦❞❡♠♦s ❞❡st❛❝❛r✱ ♣❛r❛ ❛❝❤❛r ♦ ✈ért✐❝❡ ❞❛ ♣❛rá❜♦❧❛ ♣♦❞❡♠♦s ✉s❛r ❛ r❡❧❛çã♦
b
♦♥❞❡ x = −
2a
✷✳✹✳✶✶
❋✉♥çã♦ r❛❝✐♦♥❛❧ ✐♥t❡✐r❛ ♦✉ ♣♦❧✐♥ô♠✐❝❛
❊♠ ♠❛t❡♠át✐❝❛✱ ❢✉♥çõ❡s ♣♦❧✐♥ô♠✐❝❛s ♦✉ ♣♦❧✐♥ô♠✐♦s sã♦ ✉♠❛ ❝❧❛ss❡ ✐♠♣♦rt❛♥t❡ ❞❡
❢✉♥çõ❡s s✐♠♣❧❡s ❡ ✐♥✜♥✐t❛♠❡♥t❡ ❞✐❢❡r❡♥❝✐á✈❡✐s✳
❉❡✈✐❞♦ à ♥❛t✉r❡③❛ ❞❛ s✉❛ ❡str✉t✉r❛✱ ♦s
♣♦❧✐♥ô♠✐♦s sã♦ ♠✉✐t♦ ❢❛❝❡✐s ❞❡ s❡ ❛✈❛❧✐❛r ❡ ♣♦r ❝♦♥s❡q✉ê♥❝✐❛ sã♦ ✉s❛❞♦s ❡①t❡♥s✐✈❛♠❡♥t❡
f : R −→ R ❞❡✜♥✐❞❛ ♣♦r
f (x) = an xn + an−1 xn−1 + · · · + a2 x2 + a1 x + a0 ✱ ♦♥❞❡ an 6= 0 ❡ an , an−1 , · · · a2 , a1 ❡ a0 sã♦
❝♦♥st❛♥t❡s r❡❛✐s✱ ❡st❛ ❢✉♥çã♦ t❛♠❜é♠ é ❝❤❛♠❛❞❛ ✏ ❢✉♥çã♦ ♣♦❧✐♥♦♠✐❛❧ ❞❡ ❣r❛✉ n✑❀ (n ∈ N✮✳
♥❛ ❛♥á❧✐s❡ ♥✉♠ér✐❝❛✳
❉✐③❡♠♦s ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ à ❢✉♥çã♦
n ❝♦♠ n ≥ 2
Im(f ) ❞❡♣❡♥❞❡
❖ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ ❞❡ ❣r❛✉
n❀
s❡✉ ❞♦♠í♥✐♦
D(f ) = R
❡ s✉❛ ✐♠❛❣❡♠
❞❡♥♦♠✐♥❛✲s❡ ♣❛rá❜♦❧❛ ❞❡ ♦r❞❡♠
❞❡
n
❡ ❞❛ ❝♦♥st❛♥t❡
an ✳
❆ss✐♠✱
♦ ❣r❛✉ ❞❡ ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ é ❡①♣r❡ss♦ ❛tr❛✈és ❞♦ ♠❛✐♦r ❡①♣♦❡♥t❡ ♥❛t✉r❛❧ ❡♥tr❡ ♦s
♠♦♥ô♠✐♦s q✉❡ ♦ ❢♦r♠❛♠✳
❉✐③❡♠♦s q✉❡ ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ é ♥✉❧❛ q✉❛♥❞♦ t♦❞♦s ♦s s❡✉s ❝♦❡✜❝✐❡♥t❡s
ai
❢♦r❡♠
✐❣✉❛✐s ❛ ③❡r♦✳ ❉✉❛s ❢✉♥çõ❡s ♣♦❧✐♥ô♠✐❝❛s sã♦ ✐❞ê♥t✐❝❛s q✉❛♥❞♦ ❛ s✉♠❛ ♦✉ ❞✐❢❡r❡♥ç❛ ❡♥tr❡
❡❧❛s ❛s tr❛♥s❢♦r♠❛ ❡♠ ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ ♥✉❧❛✳
✾✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡t❡r♠✐♥❛r ❛s r❛í③❡s ❞❡ ♣♦❧✐♥ô♠✐♦s✱ ♦✉ ✏r❡s♦❧✈❡r ❡q✉❛çõ❡s ❛❧❣é❜r✐❝❛s✑✱ é ✉♠ ❞♦s ♣r♦✲
❜❧❡♠❛s ♠❛✐s ❛♥t✐❣♦s ❞❛ ♠❛t❡♠át✐❝❛✳ ❆❧❣✉♥s ♣♦❧✐♥ô♠✐♦s✱ t❛✐s ❝♦♠♦✿
f (x) = x2 + 1
♥ã♦
♣♦ss✉❡♠ r❛í③❡s ❞❡♥tr♦ ❞♦ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s✳ ❙❡✱ ♥♦ ❡♥t❛♥t♦✱ ♦ ❝♦♥❥✉♥t♦ ❞❡ ❝❛♥❞✐✲
❞❛t♦s ♣♦ssí✈❡✐s ❢♦r ❡①♣❛♥❞✐❞♦ ❛♦ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s ✐♠❛❣✐♥ár✐♦s✱ ♦✉ s❡❥❛✱ ❝♦♥s✐❞❡r❛♥❞♦
♦ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s ❝♦♠♣❧❡①♦s✱ ❡♥tã♦ t♦❞♦ ♦ ♣♦❧✐♥ô♠✐♦ ✭♥ã♦✲❝♦♥st❛♥t❡✮ ♣♦ss✉✐ ♣❡❧♦
♠❡♥♦s ✉♠❛ r❛✐③ ✭t❡♦r❡♠❛ ❢✉♥❞❛♠❡♥t❛❧ ❞❛ á❧❣❡❜r❛✮✳
✷✳✹✳✶✷
❋✉♥çã♦ r❛❝✐♦♥❛❧ ❢r❛❝✐♦♥ár✐❛
➱ ❛ ❢✉♥çã♦
f : R −→ R
f (x) =
❞❡✜♥✐❞❛ ♣♦r✿
P (x)
an xn + an−1 xn−1 + · · · + a2 x2 + a1 x + a0
=
Q(x)
bm xm + bm−1 xm−1 + · · · + b2 x2 + b1 x + b0
P (x) ❡ Q(x) sã♦ ❢✉♥çõ❡s ♣♦❧✐♥♦♠✐❛✐s ❞❡ ❣r❛✉s n ❡ m r❡s♣❡❝t✐✈❛♠❡♥t❡ an bm 6= 0✱
❞♦♠í♥✐♦ D(f ) = { x ∈ R /. Q(x) 6= 0 } ❡ ❛ ✐♠❛❣❡♠ ✈ár✐❛✱ ❞❡♣❡♥❞❡ ❞❡ n, m ❡ an bm ✳
♦♥❞❡
❆❧❣✉♠❛s ✈❡③❡s✱ ✉♠❛ ❢✉♥çã♦ é ❞❡✜♥✐❞❛ ♣♦r ✉♠❛ r❡❣r❛
f (x)
s❡♠ ❡①♣❧✐❝✐t❛r♠♦s s❡✉ ❞♦♠í♥✐♦ ❡ ❝♦♥tr❛❞♦♠í♥✐♦✳
R
❋✐❝❛ s✉❜❡♥t❡♥❞✐❞♦ q✉❡ ♦ ❝♦♥tr❛❞♦♠í♥✐♦ é
♣❛r❛ ♦ q✉❛❧
f (x)
x 7−→ f (x)
♦
♦✉ s✐♠♣❧❡s♠❡♥t❡✱
❡ ♦ ❞♦♠í♥✐♦ é ♦ ♠❛✐♦r s✉❜❝♦♥❥✉♥t♦ ❞❡
R
é ✉♠ ♥ú♠❡r♦ r❡❛❧✳
❊①❡♠♣❧♦ ✷✳✹✻✳
❊s❝r❡✈❡r s♦♠❡♥t❡ ✉♠❛ ❡①♣r❡ssã♦ ♣❛r❛ ❛ ❢✉♥çã♦✿
f (x) =
(
0,
x,
s❡✱
s❡✱
x≤0
x>0
❙♦❧✉çã♦✳
x+ | x |
x+x
=
✳ P♦r ♦✉tr♦ ❧❛❞♦✱
2
2
x+ | x |
❡♥tã♦ | x |= −x ❛ss✐♠ 0 = x − x = x + (−x) = x+ | x |=
= f (x)✳
2
x+ | x |
✳
P♦rt❛♥t♦✱ f (x) =
2
◗✉❛♥❞♦
x > 0 t❡♠♦s | x |= x✱
❧♦❣♦
f (x) =
s❡
x≤0
❊①❡♠♣❧♦ ✷✳✹✼✳
❛✮
♣♦❧✐♥ô♠✐❝❛
❜✮
g
▼♦str❡ q✉❡ s❡
❡ ✉♠ ♥ú♠❡r♦
f (a) = 0✱
b
❡♥tã♦
é ❡✈✐❞❡♥t❡✮✳
❝✮
f ❡ q✉❛❧q✉❡r ♥ú♠❡r♦ a ❡①✐st❡ ✉♠❛ ❢✉♥çã♦
f (x) = (x − a)g(x) + b✳
▼♦str❡ q✉❡ ♣❛r❛ q✉❛❧q✉❡r ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛
▼♦str❡ q✉❡ s❡
f
t❛❧ q✉❡
f (x) = (x − a)g(x)
♣❛r❛ ❛❧❣✉♠❛ ❢✉♥çã♦
n ∈ N✱ ❡♥tã♦ f
q✉❡ f (a) = 0✳
é ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ ❞❡ ❣r❛✉
r❛í③❡s ❡ ❡①✐st❡♠ ♥♦ ♠á①✐♠♦
n
♥ú♠❡r♦s
a
✾✽
t❛✐s
g
✭❆ r❡❝í♣r♦❝❛
t❡♠ ♥♦ ♠á①✐♠♦
n
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❞✮ ▼♦str❡ q✉❡ ♣❛r❛ t♦❞♦ n ∈ N ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ ❞❡ ❣r❛✉ n ❝♦♠ r❛í③❡s✳ ❙❡
n
é ♣❛r ❛❝❤❛r ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ ❞❡ ❣r❛✉
n
s❡♠ r❛í③❡s✱ ❡ s❡
n
é í♠♣❛r ❛❝❤❛r
s♦♠❡♥t❡ ❝♦♠ ✉♠❛ r❛✐③✳
❛✮
❙♦❧✉çã♦✳
❙❡ ♦ ❣r❛✉ ❞❡
♦♥❞❡
g(x) = c
f
❡
é 1✱ ♣♦❞❡♠♦s ❡s❝r❡✈❡r f (x)
= cx+d = c(x−a)+(d+ac) = (x−a)g(x)+b✱
b = d + ac✳
n ∈ N✳ ❙✉♣♦♥❤❛ ♦ r❡s✉❧t❛❞♦ ✈á❧✐❞♦ ♣❛r❛ n = h✳ ❙❡ f é ❞❡ ❣r❛✉ h + 1
t❡♠ ❛ ❢♦r♠❛ f (x) = ah+1 xh+1 + ah xh + · · · + a1 x + a0 ✱ ❝♦♥s✐❞❡r❛♥❞♦ ❛ ❢✉♥çã♦ p(x) = f (x) −
ah+1 (xh+1 − a) ❡♥tã♦ ♦ ❣r❛✉ ❞❡ p(x) é n = h ❡ ♣❡❧❛ ❤✐♣ót❡s❡ ✐♥❞✉t✐✈❛ ♣♦❞❡♠♦s ❡s❝r❡✈❡r
p(x) = f (x) − ah+1 (xh+1 − a) = (x − a)g(x) + b ⇒ f (x) = (x − a)[p(x) + ah+1 ] + b✱ ❡
P♦r ✐♥❞✉çã♦ s♦❜r❡
t❡♠♦s ❛ ❢♦r♠❛ r❡q✉❡r✐❞❛✳
❜✮
❙♦❧✉çã♦✳
P❡❧❛ ♣❛rt❡ ❛✮ ♣♦❞❡♠♦s s✉♣♦r
❛ss✐♠
f (x) = (x − a)g(x)✳
f (x) = (x − a) + b✱ ❡♥tã♦ 0 = f (a) = (a − a)g(a) + b = b✱
❝✮
❙♦❧✉çã♦✳
f t❡♠ n r❛í③❡s✱ a1 , a2 , · · · , an ❝♣♠ a1 6= a2 ✱ ❡♥tã♦ ♣❡❧❛ ♣❛rt❡ ❜✮ ♣♦❞❡♠♦s
❡s❝r❡✈❡r f (x) = (x−a1 )g1 (x) ♦♥❞❡ ♦ ❣r❛✉ ❞❡ g1 (x) é n−1✳ P♦ré♠ f (a2 ) = (a2 −a1 )g1 (a2 ) ❞❡
♠♦❞♦ q✉❡ g1 (a2 ) = 0 ♣❡❧♦ ❢❛t♦ a1 6= a2 ✳ ▲♦❣♦ ♣♦❞❡♠♦s ❡s❝r❡✈❡r f (x) = (x−a1 )(x−a2 )g2 (x)
♦♥❞❡ ♦ ❣r❛✉ ❞❡ g2 (x) é n − 2✳
❙✉♣♦♥❤❛
Pr♦ss❡❣✉✐♥❞♦ ❞❡st❡ ♠♦❞♦ ♣♦❞❡♠♦s ♦❜t❡r
♣❛r❛ ❛❧❣✉♠
c 6= 0✳
➱ ó❜✈✐♦ q✉❡
❞✮
❙♦❧✉çã♦✳
f (a) 6= 0
s❡
f (x) = (x − a1 )(x − a2 )(x − a3 ) · · · (x − an ) · c
a 6= a1 , a2 , ·, an ✳ ❧♦❣♦ f ♣♦❞❡ t❡r n r❛í③❡s✳
f (x) = (x − 1)(x − 2)(x − 3) · (x − n)✱ ❡♥tã♦ f t❡♠ n r❛í③❡s✳ ❙❡ n é ♣❛r f (x) = xn + 2
t❡♠ r❛í③❡s ✭❡♠ R✮✱ s❡ n é í♠♣❛r f (x) = xn t❡♠ ❝♦♠♦ ú♥✐❝❛ r❛✐③ x = 0✳
❙❡
♥ã♦
✷✳✹✳✶✸
❋✉♥çõ❡s ❞❡ ♦❢❡rt❛ ❡ ❞❡♠❛♥❞❛✳
❊①✐st❡♠ ❝✐r❝✉♥st❛♥❝✐❛s r❡❧❛t✐✈❛s ❛ ✉♠ ❢❛❜r✐❝❛♥t❡✱ ♣❛r❛ ❛s q✉❛✐s ❛s ú♥✐❝❛s ✈❛r✐á✈❡✐s sã♦
♦ ♣r❡ç♦ ❞❡ ❝✉st♦ ❡ ❛ q✉❛♥t✐❞❛❞❡ ❞❡ ♠❡r❝❛❞♦r✐❛ ❞❡♠❛♥❞❛❞❛ ✭✈❡♥❞✐❞❛✮✳
❊♠ ❣❡r❛❧✱ ♦ ♥ú♠❡r♦ ❞❡ ♠❡r❝❛❞♦r✐❛s ❞❡♠❛♥❞❛❞❛s ♥♦ ♠❡r❝❛❞♦ ♣❡❧♦s ❝♦♥s✉♠✐❞♦r❡s ❞❡✲
♣❡♥❞❡ ❞♦ ♣r❡ç♦ ❞❛ ♠❡s♠❛✳ ◗✉❛♥❞♦ ♦s ♣r❡ç♦s ❜❛✐①❛♠✱ ❡♠ ❣❡r❛❧✱ ♦s ❝♦♥s✉♠✐❞♦r❡s ♣r♦❝✉r❛♠
♠❛✐s ❛ ♠❡r❝❛❞♦r✐❛❀ ❝❛s♦ ♦ ♣r❡ç♦ s✉❜❛✱ ♦ ♦♣♦st♦ ❛❝♦♥t❡❝❡✱ ♦s ❝♦♥s✉♠✐❞♦r❡s ✐rã♦ ♣r♦❝✉r❛r
♠❡♥♦s ♠❡r❝❛❞♦r✐❛s✳
❙❡❥❛
p
♦ ♣r❡ç♦ ❞❡ ✉♠❛ ✉♥✐❞❛❞❡ ❞❛ ♠❡r❝❛❞♦r✐❛✱ ❡ s❡❥❛
❞❡♠❛♥❞❛❞❛s✱ ✉♠❛ ❡q✉❛çã♦ q✉❡ r❡❧❛❝✐♦♥❛ ❛ q✉❛♥t✐❞❛❞❡
♣r❡ç♦ ❞❛❞♦ ♣♦r
p
s❡❣✉✐♥t❡s ❢♦r♠❛s✿
q✱
q
♦ ♥ú♠❡r♦ ❞❛s ♠❡r❝❛❞♦r✐❛s
❞❛ ♠❡r❝❛❞♦r✐❛ ❞❡♠❛♥❞❛❞❛ ❡ ♦
é ❝❤❛♠❛❞❛ ❞❡ ✏❡q✉❛çã♦ ❞❛ ❞❡♠❛♥❞❛✑ ✱ ❡❧❛ ♣♦❞❡ s❡r ❡s❝r✐t❛ ❡♠ ✉♠❛ ❞❛s
p = C(q)
♦✉
q = D(p)✳
✾✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❖s ❡❝♦♥♦♠✐st❛s✱ ❝♦♥tr❛r✐❛♥❞♦ ♦ ❝♦st✉♠❡ ❞♦s ♠❛t❡♠át✐❝♦s✱ r❡♣r❡s❡♥t❛♠ ❛ ✈❛r✐á✈❡❧ ✐♥✲
❞❡♣❡♥❞❡♥t❡ p ✭♣r❡ç♦✮ ❞❛ ❡q✉❛çã♦ q = D(p) ♥♦ ❡✐①♦ ✈❡rt✐❝❛❧ ❡ ❛ ✈❛r✐á✈❡❧ ❞❡♣❡♥❞❡♥t❡ q
✭q✉❛♥t✐❞❛❞❡ ❞❛ ❞❡♠❛♥❞❛✮ ♥♦ ❡✐①♦ ❤♦r✐③♦♥t❛❧✳
❯♠❛ ❝✉r✈❛ ❞❛ ❞❡♠❛♥❞❛ ✭♣r♦❝✉r❛✮ ❞❡✈❡ t❡r ♦ ❛s♣❡❝t♦ ❞❛ ❝✉r✈❛ ♠♦str❛❞❛ ♥❛ ❋✐❣✉r❛
✭✷✳✷✹✮❀ ♥✉♠❛ s✐t✉❛çã♦ ♥♦r♠❛❧✱ s❡ ♦ ♣r❡ç♦ ❛✉♠❡♥t❛✱ ❛ q✉❛♥t✐❞❛❞❡ ♦❢❡rt❛❞❛ ❛✉♠❡♥t❛rá✳ ❖
❣rá✜❝♦ ❞❛ ❡q✉❛çã♦ ❞❡ ♦❢❡rt❛ é s✐♠✐❧❛r ❝♦♠ ♦ ❞❛ ❋✐❣✉r❛ ✭✷✳✷✺✮✳
p ✻
p ✻
✲
✲
q
q
❈✉r✈❛ ❞❡ ♦❢❡rt❛
❋✐❣✉r❛ ✷✳✷✺✿
❈✉r✈❛ ❞❡ ❞❡♠❛♥❞❛
❋✐❣✉r❛ ✷✳✷✹✿
❉❡✜♥✐çã♦ ✷✳✶✷✳
• ❆ r❡❧❛çã♦ q = D(p) é ❝❤❛♠❛❞❛
✏❢✉♥çã♦ ❞❛ ❞❡♠❛♥❞❛✑ ✱
❡ D(p) é ♦ ♥ú♠❡r♦ ❞❡
✉♥✐❞❛❞❡s ❞❡ ♠❡r❝❛❞♦r✐❛ q✉❡ s❡rá ❞❡♠❛♥❞❛❞❛s s❡ p ❢♦r ♦ ♣r❡ç♦ ♣♦r ✉♥✐❞❛❞❡✳
• ❆ r❡❧❛çã♦ p = C(q) é ❝❤❛♠❛❞❛
✏❢✉♥çã♦ ❞♦ ❝✉st♦ t♦t❛❧✑ ✱
❡ C(q) é ♦ ♣r❡ç♦ ❞❡
✉♠❛ ✉♥✐❞❛❞❡ ❞❛ ♠❡r❝❛❞♦r✐❛ q✉❛♥❞♦ q ✉♥✐❞❛❞❡s sã♦ ❞❡♠❛♥❞❛❞❛s✳
• ❆ r❡❧❛çã♦ R = R(q) r❡♣r❡s❡♥t❛ ❛ ❢✉♥çã♦ r❡❝❡✐t❛ t♦t❛❧✱ ❣❡r❛❞❛ ♣❡❧❛ ✈❡♥❞❛ ❞❡
q ✉♥✐❞❛❞❡s ❞♦ ♣r♦❞✉t♦✳
• ❆ ❢✉♥çã♦ ❧✉❝r♦ t♦t❛❧ é ❞❡✜♥✐❞♦ ❝♦♠♦ s❡♥❞♦ ❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡ ❛ r❡❝❡✐t❛ t♦t❛❧ ❡
♦ ❝✉st♦ t♦t❛❧❀ L(q) = R(q)−C(q) ✐st♦ r❡♣r❡s❡♥t❛ ♦ ❧✉❝r♦ ❛♦ ✈❡♥❞❡r q ✉♥✐❞❛❞❡s
❞♦ ♣r♦❞✉t♦✳
◆♦ q✉❡ s❡❣✉❡ ✉t✐❧✐③❛r❡♠♦s ❛ s❡❣✉✐♥t❡ ♥♦t❛çã♦ ❞❡ ❢✉♥çõ❡s✿
a) C = C(q)
❈✉st♦ t♦t❛❧.
b) CM = CM (q)
❈✉st♦ ▼é❞✐♦.
c) R = R(q)
❘❡❝❡✐t❛ t♦t❛❧.
d) RM = RM (q)
❘❡❝❡✐t❛ ▼é❞✐❛.
e) D = D(q)
❉❡♠❛♥❞❛.
f ) S = S(p)
❖❢❡rt❛.
❊①❡♠♣❧♦ ✷✳✹✽✳
✶✵✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
p2 + 2q − 16 = 0✳ ❊♠ s✐t✉❛çõ❡s
√
16 − 2q q✉❛♥❞♦ 16 − 2q ≥
✈❛r✐á✈❡✐s q ❡ p ♥ã♦ sã♦ ♥❡❣❛t✐✈❛s✱ t❡♠♦s p =
❢✉♥çã♦ ❝✉st♦ t♦t❛❧ ❞♦ ♣r❡ç♦ ♣❛r❛ ❛ ❡q✉❛çã♦ ❞❛ ❞❡♠❛♥❞❛ é p = C(q) =
❈♦♥s✐❞❡r❡♠♦s ❛ s❡❣✉✐♥t❡ ❡q✉❛çã♦ ❞❛ ❞❡♠❛♥❞❛✿
❡❝♦♥ô♠✐❝❛s✱ ❛s
0✳
√
P♦rt❛♥t♦ ❛
16 − 2q ✳
❉❛ ❡q✉❛çã♦ ❞❛ ❞❡♠❛♥❞❛ t❡♠♦s
1
q = D(p) = 8 − p2
2
q✉❡ ❡①♣r❡ss❛
q
❝♦♠♦ ❢✉♥çã♦ ❞❡
p✳
❉❡✜♥✐çã♦ ✷✳✶✸✳
•
❛ r❡❧❛çã♦
•
CM = CM (q) ❞❡ ❝❛❞❛ ✉♥✐❞❛❞❡ é ♦❜t✐❞♦ ♠❡❞✐❛♥t❡
❖ ❝✉st♦ ♠é❞✐♦ ❞❛ ♣r♦❞✉çã♦
C(q)
CM (q) =
q
❝❤❛♠❛❞❛ ✏❢✉♥çã♦ ❝✉st♦ ♠é❞✐♦ ✑✳
❆♦ ❞✐✈✐❞✐r ❛ r❡❝❡✐t❛ t♦t❛❧
♦❜té♠✲s❡
R(q)
RM (q) =
q
R(q)
♣❡❧❛ q✉❛♥t✐❞❛❞❡
q
❞❡ ✉♥✐❞❛❞❡s ♣r♦❞✉③✐❞❛s
❝❤❛♠❛❞❛ ✏ ❢✉♥çã♦ r❡❝❡✐t❛ ♠é❞✐❛ ✑✳
❊①❡♠♣❧♦ ✷✳✹✾✳
❉❛❞❛s ❛s ❢✉♥çõ❡s ❞❡ ❝✉st♦ t♦t❛❧✱ ❞❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ ❞❡ ❝✉st♦ ♠é❞✐♦✿
❛✮
❜✮ C(q) = 300 +
C(q) = 2q 3 − 12q 2 + 50q + 40
60 q 2
+
q
6
❙♦❧✉çã♦✳
❛✮
❜✮
2q 3 − 12q 2 + 50q + 40
40
= 2q 2 − 12q + 50 +
q
q
q
300
+
60
+
300
q
q
6
CM (q) =
=
+ 60 + ✳
q
q
6
CM =
❊①❡♠♣❧♦ ✷✳✺✵✳
L ❡♠ r❡❛✐s q✉❡ ♦❜té♠ ❛♦ ❛❧✉❣❛r ✉♠ ♣ré❞✐♦
é ❞❛❞♦ ♣❡❧❛ ❡q✉❛çã♦ L(q) = −2q + 92q ✱ q✉❛❧ é ♥ú♠❡r♦ ❞❡ ❛♥❞❛r❡s q✉❡ t♦r♥❛
❯♠❛ ✐♠♦❜✐❧✐ár✐❛ ❡st✐♠❛ q✉❡ ♦ ❧✉❝r♦ ♠❡♥s❛❧
❞❡
q
❛♥❞❛r❡s✱
2
♠❛✐s r❡♥t❛❜❧❡ ♦ ❛❧✉❣✉❡❧ ❞♦ ♣ré❞✐♦❄
❙♦❧✉çã♦✳
L(q) = −2q 2 + 92q = 2(46q − q 2 ) ⇒ L(q) = 2[232 − 232 + 46q − q 2 ] =
2[232 − (23 − q)2 ] q✉❛♥❞♦ q = 23, L(23) = 1058 é ♦ ♠á①✐♠♦ ❛❜s♦❧✉t♦✳
P♦rt❛♥t♦✱ é ♠❛✐s r❡♥tá✈❡❧ ♦ ❛❧✉❣✉❡❧ ❞❡ ✉♠ ♣ré❞✐♦ ❞❡ 23 ❛♥❞❛r❡s✳
❚❡♠♦s✱
❊♠ ❣❡r❛❧✱ ❛♦ ❝♦♥❥✉♥t♦ ❞❡ ❡♠♣r❡s❛s q✉❡ ♣r♦❞✉③❡♠ ✉♠❛ ♠❡s♠❛ ♠❡r❝❛❞♦r✐❛ ❝❤❛♠❛♠♦s
❞❡ ✐♥❞ústr✐❛❀ ♣♦r ❡①❡♠♣❧♦✱ ❛♦ ❝♦♥❥✉♥t♦ ❞❡ t♦❞❛s ❛s ❡♠♣r❡s❛s ❞❡ ❝♦♥❢❡❝çã♦ ❞❡ ❝❛❧ç❛❞♦s ❞♦
❇r❛s✐❧✱ ❝❤❛♠❛♠♦s ✐♥❞ústr✐❛ ❞❡ ❝❛❧ç❛❞♦s ❞♦ ❇r❛s✐❧✳
❖ ♠❡r❝❛❞♦ ♣❛r❛ ✉♠❛ ❞❡t❡r♠✐♥❛❞❛ ♠❡r❝❛❞♦r✐❛ ❝♦♥st❛ ❞❛ ✐♥❞ústr✐❛ ❡ ❞♦s ❝♦♥s✉♠✐❞♦r❡s
✭❡♠ ❣❡r❛❧✮❀ ❛ ❡q✉❛çã♦ ❞❡ ♦❢❡rt❛ ❞♦ ♠❡r❝❛❞♦ é ❞❡t❡r♠✐♥❛❞❛ ♣❡❧❛s ❡q✉❛çõ❡s ❞❡ ♦❢❡rt❛ ❞❛s
❡♠♣r❡s❛s ✐♥t❡❣r❛♥t❡s ❞♦ ♠❡r❝❛❞♦❀ ❡ ❛ ❡q✉❛çã♦ ❞❡ ❞❡♠❛♥❞❛ ❞♦ ♠❡r❝❛❞♦ é ❞❡t❡r♠✐♥❛❞❛
♣❡❧❛s ❡q✉❛çõ❡s ❞❡ ❞❡♠❛♥❞❛ ❞❡ t♦❞♦s ♦s ❝♦♥s✉♠✐❞♦r❡s✳
✶✵✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❊①❡♠♣❧♦ ✷✳✺✶✳
❯♠❛ ❝♦♠♣❛♥❤✐❛ ❛ér❡❛ t❡♠ ❝♦♠♦ t❛r✐❢❛ ✜①❛ ❘$800 ❡ tr❛♥s♣♦rt❛
8.000
♣❛ss❛❣❡✐r♦s ❝❛❞❛
❞✐❛✳ ❆♦ ❝♦♥s✐❞❡r❛r ✉♠ ❛✉♠❡♥t♦ ♥❛ t❛r✐❢❛✱ ❛ ❝♦♠♣❛♥❤✐❛ ❞❡t❡r♠✐♥❛ q✉❡ ♣❡r❞❡rá
400
♣❛s✲
s❛❣❡✐r♦s ♣♦r ❝❛❞❛ ❘$50 ❞❡ ❛✉♠❡♥t♦✳ ❙♦❜ ❡st❛s ❝♦♥❞✐çõ❡s❀ q✉❛❧❀ ❞❡✈❡r s❡r ♦ ❛✉♠❡♥t♦ ♣❛r❛
q✉❡ ♦ ✐♥❣r❡ss♦ s❡❥❛ ♠á①✐♠♦❄
❙♦❧✉çã♦✳
❙❡❥❛ x ♦ ♥ú♠❡r♦ ❞❡ ❛✉♠❡♥t♦s ❞❡ ❘$50 ♥❛ t❛r✐❢❛✱ ❡♥tã♦ ❛ t❛r✐❢❛ r❡s✉❧t❛♥t❡ é ❘$(800 +
50x) ❡ ♦ ♥ú♠❡r♦ ❞❡ ♣❛ss❛❣❡✐r♦s s❡rá ❞❡ 8.000 − 400x✳
❆ ❢✉♥çã♦ q✉❡ ❞❡t❡r♠✐♥❛ ♦ ✐♥❣r❡ss♦ t♦t❛❧ é✿ I(x) = (800 + 50x)(8000 − 400x) =
20.000(320+4x−x2 ) ❝♦♠ 0 ≤ x ≤ 20 ⇒ I(x) = 20.000(320+4x−x2 ) = 20.000[324−
(4 − 4x + x2 )] = 20.000[324 − (x − 2)2 ]✳ ❖❜s❡r✈❡ q✉❡✱ q✉❛♥❞♦ x = 2 t❡r❡♠♦s ♠á①✐♠♦ ✈❛❧♦r
♣❛r❛ I(x)✳
▲♦❣♦✱ ♦ ❛✉♠❡♥t♦ t❡♠ q✉❡ s❡r ❞❡ ❘$100 ❡ ♦ ❝✉st♦ ❞❡ ❝❛❞❛ ♣❛ss❛❣❡♠ s❡rá ❞❡ ❘$900✳
❖❜s❡r✈❛çã♦ ✷✳✼✳
❖ ❡q✉✐❧í❜r✐♦ ❞❡ ♠❡r❝❛❞♦ ♦❝♦rr❡ q✉❛♥❞♦ ❛ q✉❛♥t✐❞❛❞❡ ❞❛ ♠❡r❝❛❞♦r✐❛ ❞❡♠❛♥❞❛❞❛✱ ❛ ✉♠
❞❡t❡r♠✐♥❛❞♦ ♣r❡ç♦✱ é ✐❣✉❛❧ à q✉❛♥t✐❞❛❞❡ ❞❡ ♠❡r❝❛❞♦r✐❛ ♦❢❡r❡❝✐❞❛ àq✉❡❧❡ ♣r❡ç♦✳
◗✉❛♥❞♦ ♦❝♦rr❡ ♦ ❡q✉✐❧í❜r✐♦ ❞❡ ♠❡r❝❛❞♦✱ ❛ q✉❛♥t✐❞❛❞❡ ❞❡ ♠❡r❝❛❞♦r✐❛ ♣r♦❞✉③✐❞❛ é ❝❤❛✲
♠❛❞❛ ✏q✉❛♥t✐❞❛❞❡ ❞❡ ❡q✉✐❧í❜r✐♦✑ ❀ ❡✱ ♦ ♣r❡ç♦ ❞❛ ♠❡r❝❛❞♦r✐❛ é ❝❤❛♠❛❞♦ ♣r❡ç♦ ❞❡ ❡q✉✐❧í❜r✐♦✳
❉❡✜♥✐çã♦ ✷✳✶✹✳
❉❡✜♥✐♠♦s ♦ ✏♣♦♥t♦ ❞❡ ❡q✉✐❧í❜r✐♦✑ ❝♦♠♦ ❛q✉❡❧❡ ♣♦♥t♦ ❞❡ ✐♥t❡rs❡çã♦ ❞♦ ❣rá✜❝♦ ❞❛
❝✉r✈❛ ❞❛ ♦❢❡rt❛ ❝♦♠ ♦ ❞❛ ❞❡♠❛♥❞❛✳ ❙✉❛s ❝♦♦r❞❡♥❛❞❛s sã♦ ♦ ♣r❡ç♦ ❞❡ ❡q✉✐❧í❜r✐♦ ❡
❛ q✉❛♥t✐❞❛❞❡ ❞❡ ❡q✉✐❧í❜r✐♦✳
◆❛ ❋✐❣✉r❛ ✭✷✳✷✻✮ ♠♦str❛✲s❡ ♦ ♣♦♥t♦ ❞❡ ❡q✉✐❧í❜r✐♦❀ s❡ ♦ ♣r❡ç♦ ❡stá ❛❝✐♠❛ ❞♦ ♣r❡ç♦ ❞❡
❡q✉✐❧í❜r✐♦✱ ❤á ❡①❝❡ss♦ ❞❡ ♦❢❡rt❛ ❡ ♦ ♣r❡ç♦ t❡♥❞❡ ❛ ❝❛✐r❀ s❡ ♦ ♣r❡ç♦ ❡stá ❛❜❛✐①♦ ❞♦ ♣♦♥t♦ ❞❡
❡q✉✐❧í❜r✐♦✱ ❤á ❡s❝❛ss❡③ ❞❡ ♦❢❡rt❛ ❡ ♦ ♣r❡ç♦ t❡♥❞❡ ❛ s✉❜✐r✳
❊♠ ❡❝♦♥♦♠✐❛✱ ♣❛rt✐❝✉❧❛r♠❡♥t❡ ♥♦s ❡st✉❞♦s r❡✲
❢❡r❡♥t❡s à ❝♦♥t❛❜✐❧✐❞❛❞❡ ❞❡ ❝✉st♦s✱ ♦ ♣♦♥t♦ ❞❡ ❡q✉✐✲
❧í❜r✐♦ ❡❝♦♥ô♠✐❝♦ é ♦ ♠♦♠❡♥t♦ q✉❛♥❞♦ ❛s r❡❝❡✐t❛s s❡
✐❣✉❛❧❛♠ ❛♦s ❝✉st♦s ❡ ❞❡s♣❡s❛s✳ ➱✱ ♣♦rt❛♥t♦✱ ♦ ♠♦✲
♠❡♥t♦ ❡♠ q✉❡ ✉♠ ♣r♦❞✉t♦ ❞❡✐①❛ ❞❡ ❝✉st❛r ❡ ♣❛ss❛
❛ ❞❛r ❧✉❝r♦✳
❆ ❡❧❡ ❛❞✐❝✐♦♥❛♠✲s❡ ♦s ❝✉st♦s ✜①♦s ❡ t♦❞♦s ♦s
❝✉st♦s ❞❡ ♦♣♦rt✉♥✐❞❛❞❡✱ ❝♦♠♦ ♣♦r ❡①❡♠♣❧♦ ♦s r❡❢❡✲
r❡♥t❡s ❛♦ ✉s♦ ❞♦ ❝❛♣✐t❛❧ ♣ró♣r✐♦✱ ❛♦ ♣♦ssí✈❡❧ ❛❧✉❣✉❡❧
❋✐❣✉r❛ ✷✳✷✻✿
❞❛s ❡❞✐✜❝❛çõ❡s ✭❝❛s♦ ❛ ❡♠♣r❡s❛ s❡❥❛ ♣r♦♣r✐❡tár✐❛✮✱
♣❡r❞❛ ❞❡ s❛❧ár✐♦s✱ ❡t❝✳
✶✵✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✷✲✸
✶✳ ◗✉❛❧ ♦ ♥ú♠❡r♦ q✉❡ ❡①❝❡❞❡ ❛ s❡✉ q✉❛❞r❛❞♦ ♦ ♠á①✐♠♦ ♣♦ssí✈❡❧❄
✷✳ ❆ ❞✐❢❡r❡♥ç❛ ❡♥tr❡ ❞♦✐s ♥ú♠❡r♦s é 8✳ 1.) ❉❡t❡r♠✐♥❡ ♦ ♠❡♥♦r ❞❡❧❡s ♣❛r❛ q✉❡ ♦ ♣r♦❞✉t♦
s❡❥❛ ♦ ♠❡♥♦r ♣♦ssí✈❡❧❀ 2.) ◗✉❛❧ é ♦ ♠❡♥♦r ✈❛❧♦r ❞❡ss❡ ♣r♦❞✉t♦ ❄
✸✳ ❙❡❥❛♠ f ❡ g ❢✉♥çõ❡s ❞❡ R ❡♠ R✱ s❡♥❞♦ R ♦ ❝♦♥❥✉♥t♦ ❞♦s ♥ú♠❡r♦s r❡❛✐s✱ ❞❛❞❛s ♣♦r
f (x) = 2x − 3 ❡ f (g(x)) = −4x + 1✳ ◆❡st❛s ❝♦♥❞✐çõ❡s✱ ❞❡t❡r♠✐♥❡ g(−1)✳
✹✳ ❉❡t❡r♠✐♥❡ ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ ❡q✉❛çã♦ ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦s ♣♦♥t♦s ✐♥❞✐❝❛❞♦s✿
1. A(1, −3) ❡ B(0, 1)
4. C(0, 1) ❡ D(0, 5)
7. M (−1, 6) ❡ P (5, 6)
2. M (0, 1) ❡ N (3, 2)
5. B(−1, 2) ❡ C(3, −5)
8. G(3, 6) ❡ H(1, 4)
3. P (−1, 3) ❡ Q(5, −2)
6. S(3, 9) ❡ T (3, 7)
9. P (5, 3) ❡ S(5, 2)
✺✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦s ♣♦♥t♦s ✐♥❞✐❝❛❞♦s❀ ❞❡s❡♥❤❛r ♦ ❣rá✜❝♦✿
1. A(1, −3) ❡ B(0, 1)
4. D(3, −1) ❡ E(1, 1)
7. F (2, 8) ❡ G(0, 0)
2. M (0, 1) ❡ N (3, 2)
5. A(3, −2) ❡ B(3, 2)
8. Q(7, 1) ❡ S(8, 12)
√
3. P (−1, 3) ❡ Q(5, −2)
6. R(−1, 3) ❡ U (3, −2)
9. S(6, 8) ❡ R(5, 12)
√
✻✳ ▼♦str❛r q✉❡ ♦s ♣♦♥t♦s P1 (3, 3), P2 (−3, −3), P3 (−3 3, 3 3) sã♦ ♦s ✈ért✐❝❡s ❞❡ ✉♠
tr✐â♥❣✉❧♦ ❡q✉✐❧át❡r♦✳
✼✳ ❙❡ P1 (−4, 2) ❡ P2 (4, 6) sã♦ ♦s ♣♦♥t♦s ❡①tr❡♠♦s ❞♦ s❡❣♠❡♥t♦s r❡t✐❧í♥❡♦ ♦r✐❡♥t❛❞♦
−−→
P1 P2 ✱ ❛❝❤❛r ❛s ❝♦♦r❞❡♥❛❞❛s ❞♦ ♣♦♥t♦ P (x, y) q✉❡ ❞✐✈✐❞❡ ❡st❡ s❡❣♠❡♥t♦ ♥❛ r❛③ã♦
P1 P : P P2 = −3✳
✽✳ ❉❡t❡r♠✐♥❛r ♦ â♥❣✉❧♦ ❛❣✉❞♦ ❞♦ ♣❛r❛❧❡❧♦❣r❛♠♦ ❝✉❥♦s ✈ért✐❝❡s sã♦ ♣♦♥t♦s A(−2, 1)✱
B(1, 5)✱ C(10, 7) ❡ D(7, 3)✳
✾✳ ❉❡♠♦♥str❛r ❛♥❛❧✐t✐❝❛♠❡♥t❡ q✉❡ ♦s s❡❣♠❡♥t♦s q✉❡ ✉♥❡♠ ♦s ♣♦♥t♦s ♠é❞✐♦s ❞♦s ❧❛❞♦s
s✉❝❡ss✐✈♦s ❞❡ q✉❛❧q✉❡r q✉❛❞r✐❧át❡r♦ ❢♦r♠❛♠ ✉♠ ♣❛r❛❧❡❧♦❣r❛♠♦✳
✶✵✳ Pr♦✈❛r ❛♥❛❧✐t✐❝❛♠❡♥t❡ q✉❡✱ s❡ ❛s ❞✐❛❣♦♥❛✐s ❞❡ ✉♠ ♣❛r❛❧❡❧♦❣r❛♠♦ sã♦ ♠✉t✉❛♠❡♥t❡
♣❡r♣❡♥❞✐❝✉❧❛r❡s ♦ ♣❛r❛❧❡❧♦❣r❛♠♦ é ✉♠ ❧♦s❛♥❣♦✳
✶✵✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✶✳ ❉❡t❡r♠✐♥❛r ❛ ❡q✉❛çã♦ ❞❛ ❧✐♥❤❛ r❡t❛ q✉❡ ❝♦♥tê♠ ♦ ♣♦♥t♦ (−3, 1) ❡ é ♣❛r❛❧❡❧❛ à r❡t❛
q✉❡ ♣❛ss❛ ♣❡❧♦s ❞♦✐s ♣♦♥t♦s (0, −2) ❡ (5, 2)✳
✶✷✳ ❉❡t❡r♠✐♥❛r ❛ ❡q✉❛çã♦ ❞❛ ♠❡❞✐❛tr✐③ ❞♦ s❡❣♠❡♥t♦ r❡t✐❧í♥❡♦ ❝✉❥♦s ❡①tr❡♠♦s sã♦ ♦s
♣♦♥t♦s (−2, 1) ❡ (3, −5)✳
✶✸✳ ▼♦str❡ q✉❡ ❞✉❛s r❡t❛s✱ L1 : Ax + By + C = 0 ❡ L2 : A′ x + B ′ y + C ′ = 0 sã♦
♣❡r♣❡♥❞✐❝✉❧❛r❡s✱ s❡ A.A′ + B.B ′ = 0✳
✶✹✳ ❆ ❡q✉❛çã♦ ❞❡ ✉♠❛ r❡t❛ L é 5x − 7y + 11 = 0✳ ❛✮ ❊s❝r❡✈❡r ❛ ❡q✉❛çã♦ q✉❡ r❡♣r❡s❡♥t❛
t♦❞❛s ❛s r❡t❛s ♣❛r❛❧❡❧❛s ❛ L✳ ❜✮ ❉❡t❡r♠✐♥❛r ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♣❛r❛❧❡❧❛ ❛ L q✉❡
♣❛ss❡ ♣♦r P (4, 2)✳
✶✺✳ ❖ ♣r❡ç♦ ✉♥✐tár✐♦ ❞❡ ❝❡rt♦ ♣r♦❞✉t♦ é 5✱ ❡ ♦ ❝✉st♦ ✜①♦ ❞❡ ♣r♦❞✉çã♦ é 40❀ ❝♦❧♦❝❛❞♦
♥♦ ♠❡r❝❛❞♦✱ ✈❡r✐✜❝♦✉✲s❡ q✉❡ ❛ ❞❡♠❛♥❞❛ ♣❛r❛ ❡ss❡ ♣r♦❞✉t♦ ❡r❛ ❞❛❞❛ ♣❡❧❛ r❡❧❛çã♦
q
p = 15 − ✳ ✭❛✮ ❉❡t❡r♠✐♥❡ ❛s ❢✉♥çõ❡s C ✭❈✉st♦✮ ❡ R ✭❘❡❝❡✐t❛✮ ♣❛r❛ ❡ss❡ ♣r♦❞✉t♦
5
❡ ❢❛ç❛ s❡✉s ❣rá✜❝♦s ♥✉♠ ♠❡s♠♦ s✐st❡♠❛ ❞❡ ❡✐①♦s✳ ✭❜✮ ❉❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ ▲✉❝r♦
❡ ❢❛ç❛ ♦ s❡✉ ❣rá✜❝♦✳ ❖❜s❡r✈❡ q✉❡ ♦ ❧✉❝r♦ L é ③❡r♦ q✉❛♥❞♦ C = R✳ ✭❝✮ P❛r❛ q✉❡
✈❛❧♦r❡s ❞❡ q t❡♠♦s L ≥ 0❄ ✭❞✮ ❉❡t❡r♠✐♥❡ ❢✉♥çõ❡s ❞❡ ❘❡❝❡✐t❛ ▼é❞✐❛ ❡ ❈✉st♦ ▼é❞✐♦
❛ ❢❛ç❛ s❡✉s ❣rá✜❝♦s✳
✶✻✳ ❚r❛ç❛r ❛ ❝✉r✈❛ ❝✉❥❛ ❡q✉❛çã♦ é✿
x2 + xy 2 − y 2 = 0✳
✶✼✳ ❯♠❛ ❢á❜r✐❝❛ ❞❡ ❡q✉✐♣❛♠❡♥t♦s ❡❧❡trô♥✐❝♦s ❡st❛ ❝♦❧♦❝❛♥❞♦ ✉♠ ♥♦✈♦ ♣r♦❞✉t♦ ♥♦ ♠❡r✲
❝❛❞♦✳ ❉✉r❛♥t❡ ♦ ♣r✐♠❡✐r♦ ❛♥♦ ♦ ❝✉st♦ ✜①♦ ♣❛r❛ ✐♥✐❝✐❛r ❛ ♥♦✈❛ ♣r♦❞✉çã♦ é ❞❡
❘$140.000 ❡ ♦ ❝✉st♦ ✈❛r✐á✈❡❧ ♣❛r❛ ♣r♦❞✉③✐r ❝❛❞❛ ✉♥✐❞❛❞❡ é ❘$25✳ ❉✉r❛♥t❡ ♦ ♣r✐✲
♠❡✐r♦ ❛♥♦ ♦ ♣r❡ç♦ ❞❡ ✈❡♥❞❛ é ❘$65 ♣♦r ✉♥✐❞❛❞❡✳ ✭❛✮ ❙❡ X ✉♥✐❞❛❞❡s sã♦ ✈❡♥❞✐❞❛s
❞✉r❛♥t❡ ♦ ♣r✐♠❡✐r♦ ❛♥♦✱ ❡①♣r❡ss❡ ♦ ❧✉❝r♦ ❞♦ ♣r✐♠❡✐r♦ ❛♥♦ ❝♦♠♦ ✉♠❛ ❢✉♥çã♦ ❞❡ X ✳
✭❜✮ ❊st✐♠❛✲s❡ q✉❡ 23.000 s❡rã♦ ✈❡♥❞✐❞❛s ❞✉r❛♥t❡ ♦ ♣r✐♠❡✐r♦ ❛♥♦✳ ❯s❡ ♦ r❡s✉❧t❛❞♦
❞❛ ♣❛rt❡ ✭❛✮ ♣❛r❛ ❞❡t❡r♠✐♥❛r ♦ ❧✉❝r♦ ❞♦ ♣r✐♠❡✐r♦ ❛♥♦✱ s❡ ♦s ❞❛❞♦s ❞❡ ✈❡♥❞❛ ❢♦r❡♠
❛t✐♥❣✐❞♦s✳ ✭❝✮ ◗✉❛♥t❛s ✉♥✐❞❛❞❡s ♣r❡❝✐s❛♠ s❡r ✈❡♥❞✐❞❛s ❞✉r❛♥t❡ ♦ ♣r✐♠❡✐r♦ ❛♥♦ ♣❛r❛
q✉❡ ❛ ❢á❜r✐❝❛ ♥ã♦ ❣❛♥❤❡ ♥❡♠ ♣❡r❞❛ ❄
✶✽✳ ❉❛❞❛s q = 4p−5 ❡ q =
150
+29 r❡s♣❡❝t✐✈❛♠❡♥t❡ ❢✉♥çõ❡s ❞❡ ♦❢❡rt❛ ❡ ❞❡♠❛♥❞❛ ♣❛r❛
p + 15
✉♠ ❝❡rt♦ ♣r♦❞✉t♦✱ ❢❛ç❛ s❡✉s ❣rá✜❝♦s ♥✉♠ ♠❡s♠♦ ❡✐①♦s ❞❡ ❝♦♦r❞❡♥❛❞❛s ❡ ❞❡t❡r♠✐♥❡
♦ ♣♦♥t♦ ❞❡ ❡q✉✐❧í❜r✐♦✳
✶✾✳ ❖ ❝✉st♦ t♦t❛❧ ♣❛r❛ ♣r♦❞✉③✐r q ✉♥✐❞❛❞❡s ❞❡ ✉♠ ❞❡t❡r♠✐♥❛❞♦ ♣r♦❞✉t♦ é C(q) = q 2 +
20q + 5 r❡❛✐s✱ ❡ ♦ ♣r❡ç♦ ❞❡ ✈❡♥❞❛ ❞❡ ✉♠❛ ✉♥✐❞❛❞❡ é ❞❡ (30 − q) r❡❛✐s✳ ❛✮ ❆❝❤❛r ❛
❢✉♥çã♦ ❞❡ ❧✉❝r♦ t♦t❛❧✳ ❜✮ ❆❝❤❛r ❛ ❢✉♥çã♦ ❞❡ r❡❝❡✐t❛ t♦t❛❧❀ ❝✮ ◗✉❛❧ é ♦ ❝✉st♦ ♠é❞✐♦
♣❛r❛ q = 10❄✳ ❞✮ ❉❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ ❞❡ ❞❡♠❛♥❞❛✳
✶✵✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✵✳ ❖ ❝✉st♦ ♠❡♥s❛❧ ✜①♦ ❞❡ ✉♠❛ ❢á❜r✐❝❛ q✉❡ ♣r♦❞✉③ ❡sq✉✐s✱ é ❘✩4.200 ❡ ♦ ❝✉st♦ ✈❛r✐á✈❡❧
❘$55 ♣♦r ♣❛r ❞❡ ❡sq✉✐s✳
❖ ♣r❡ç♦ ❞❡ ✈❡♥❞❛ é ❘$105 ♣♦r ♣❛r ❞❡ ❡sq✉✐s✳
✭❛✮
❙❡
x
♣❛r❡s ❞❡ ❡sq✉✐s sã♦ ✈❡♥❞✐❞♦s ❞✉r❛♥t❡ ✉♠ ♠ês✱ ❡①♣r❡ss❡ ♦ ❧✉❝r♦ ♠❡♥s❛❧ ❝♦♠♦ ❢✉♥çã♦
❞❡
x✳ ✭❜✮
❯s❡ ♦ r❡s✉❧t❛❞♦ ❞❛ ♣❛rt❡ ✭❛✮ ♣❛r❛ ❞❡t❡r♠✐♥❛r ♦ ❧✉❝r♦ ❞❡ ❞❡③❡♠❜r♦ s❡
♣❛r❡s ❞❡ ❡sq✉✐s ❢♦r❛♠ ✈❡♥❞✐❞♦s ♥❡ss❡ ♠ês✳
✭❝✮
600
◗✉❛♥t♦s ♣❛r❡s ❞❡ ❡sq✉✐s ❞❡✈❡♠ s❡r
✈❡♥❞✐❞♦s ♣❛r❛ q✉❡ ❛ ❢á❜r✐❝❛ ❡♥❝❡rr❡ ✉♠ ♠ês s❡♠ ❧✉❝r♦ ♥❡♠ ♣r❡❥✉í③♦❄
✷✶✳ ❯♠ ❢❛❜r✐❝❛♥t❡ ❞❡ ❞♦✐s t✐♣♦s ❞❡ r❛çã♦ ♣❛r❛ ❛✈❡s✱ ♣r♦❞✉③
x−3
r❛çã♦ A ❡ y t♦♥❡❧❛❞❛s ❞❛ r❛çã♦ B ♦♥❞❡ y =
✳
x−1
x
t♦♥❡❧❛❞❛s ♣♦r ❞✐❛ ❞❛
❉❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ r❡❝❡✐t❛ t♦t❛❧✱
s❛❜❡♥❞♦ q✉❡ ♦s ♣r❡ç♦s ✜①♦s ♣♦r t♦♥❡❧❛❞❛ sã♦ r❡s♣❡❝t✐✈❛♠❡♥t❡
p1
❡
p2
✷✷✳ ❆s ❡q✉❛çõ❡s ❞❡ ❞❡♠❛♥❞❛ ❡ ♦❢❡rt❛ ❞♦ ♠❡r❝❛❞♦ sã♦ r❡s♣❡❝t✐✈❛♠❡♥t❡
qp + 2 = 5p
❡
♦♥❞❡
p
♦♥❞❡
3
p2 = p1 ✳
4
q 2 + p2 − 36 = 0
é ♦ ♣r❡ç♦ ❡♠ r❡❛✐s ❘✩✳ ❚r❛❝❡ ✉♠ ❡s❜♦ç♦ ❞❛s ❝✉r✈❛s ❞❡ ♦❢❡rt❛
❡ ❞❡♠❛♥❞❛ ♥✉♠ ♠❡s♠♦ s✐st❡♠❛ ❞❡ ❝♦♦r❞❡♥❛❞❛s✳ ❉❡t❡r♠✐♥❡ ❛ q✉❛♥t✐❞❛❞❡ ❡ ♦ ♣r❡ç♦
❞❡ ❡q✉✐❧í❜r✐♦✳
✷✸✳ ❖ ♣❡rí♦❞♦ ❞❡ ✉♠ ♣ê♥❞✉❧♦ ✭♦ t❡♠♣♦✱ ♣❛r❛ ✉♠❛ ♦s❝✐❧❛çã♦ ❝♦♠♣❧❡t❛✮ é ❞✐r❡t❛♠❡♥t❡
♣r♦♣♦r❝✐♦♥❛❧ à r❛✐③ q✉❛❞r❛❞❛ ✭❞♦ ❝♦♠♣r✐♠❡♥t♦ ❞♦ ♣ê♥❞✉❧♦✳ ❡ s❡ ♦ ❝♦♠♣r✐♠❡♥t♦ ❢♦r
240 cm ♦ ♣❡rí♦❞♦ s❡rá ❞❡ 3 s✳ ✭❛✮ ❊①♣r❡ss❡ ♦ ♥ú♠❡r♦ ❞❡ s❡❣✉♥❞♦s ❞♦ ♣❡rí♦❞♦ ❞❡ ✉♠
♣ê♥❞✉❧♦ ❝♦♠♦ ❢✉♥çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ❝❡♥tí♠❡tr♦s ❞❡ s❡✉ ❝♦♠♣r✐♠❡♥t♦✳
♣❡rí♦❞♦ ❞❡ ✉♠ ♣ê♥❞✉❧♦ ❞❡
60 cm
Kg ✳
❆❝❤❡ ♦
❞❡ ❝♦♠♣r✐♠❡♥t♦✳
✷✹✳ ❆ ❢✉♥çã♦ ❞❡ ❝✉st♦ t♦t❛❧ ❞❡ ✉♠❛ ❡♠♣r❡s❛
❞❛❞♦ ❡♠
✭❜✮
C(x) = 0, 2x2 − 6x + 100 ♦♥❞❡ x é
♠é❞✐♦ ❡ ♦ ✈❛❧♦r ❞❡ x ♣❛r❛ q✉❡ ♦ ❝✉st♦
A&A
❉❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ ❞❡ ❝✉st♦
é
t♦t❛❧ s❡❥❛ ♠í♥✐♠♦✳
✷✺✳ ❈❛❧❝✉❧❛r ♦ ♣♦♥t♦ ❞❡ ❡q✉✐❧í❜r✐♦ ❞❡ ✉♠ ♠♦♥♦♣♦❧✐st❛ s❡ ❛ ❢✉♥çã♦ ❞❡ ❝✉st♦ é
2
0, 5q + 20q + 45
❡ ♦ ♣r❡ç♦ ❞❡ ✈❡♥❞❛ ❞❡ ❝❛❞❛ ✉♥✐❞❛❞❡ é
C(q) =
p = 60 − q ✳
q ✉♥✐❞❛❞❡s ❞❡ ✉♠ ❝❡rt♦ ♣r♦❞✉t♦✱ ♦ ❝✉st♦ t♦t❛❧ ❞❡
C(q) = q − 6q + 15q r❡❛✐s✳ ❊♠ q✉❡ ♥í✈❡❧ ❞❡ ♣r♦❞✉çã♦ ♦ ✏❝✉st♦
✷✻✳ ❆❞♠✐t❛♠♦s q✉❡✱ ❛♦ s❡ ❢❛❜r✐❝❛r❡♠
❢❛❜r✐❝❛çã♦ é ❞❡
3
2
♠é❞✐♦✑ ♣♦r ✉♥✐❞❛❞❡ s❡rá ♦ ♠❡♥♦r❄
✷✼✳ ❙ã♦ ❞❛❞❛s ❛s ❡q✉❛çõ❡s ❞❡ ♦❢❡rt❛ ❡ ❞❡♠❛♥❞❛ ❞❡ ✉♠ ❝❡rt♦ ♣r♦❞✉t♦✿
2
q − p + 4 = 0✳
❉❡t❡r♠✐♥❡ ❛ q✉❛♥t✐❞❛❞❡ ❡ ♦ ♣r❡ç♦ ❞❡ ❡q✉✐❧í❜r✐♦✳
2q = p − 12
❡
✷✽✳ ❉❡t❡r♠✐♥❡ ♦ ♣♦♥t♦ ❞❡ ✐♥t❡rs❡çã♦ ❡ ❞❡s❡♥❤❛r ♦ ❣rá✜❝♦ ❞❛s ❝✉r✈❛s✿
✶✳
R(q) = 100q,
✷✳
R(q) = 10q − 0, 5q 2 ,
✸✳
R(q) = 80q,
C(q) = 50 + 3q
C(q) = 10 + q
C(q) = 0, 1q 2 + 5q + 200
✶✵✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✾✳ ❚❡♠♦s ❛s ❡q✉❛çõ❡s ❞❡ ♦❢❡rt❛ ❡ ❞❡♠❛♥❞❛✱ ❞❡t❡r♠✐♥❛r ♦ ♣♦♥t♦ ❞❡ ❡q✉✐❧í❜r✐♦ ❡ ❞❡s❡♥❤❛r
♦ ❣rá✜❝♦ ♥✉♠ ♠❡s♠♦ s✐st❡♠❛ ❞❡ ❝♦♦r❞❡♥❛❞❛s✳
q = 50 + 2p
❡
❛✮
q = p+1
❡
q(p + 10) = 500✳
q = 10 − p ❀ ❜✮
q ✉♥✐❞❛❞❡s ❞❡ ✉♠❛ ♠❡r❝❛❞♦r✐❛ é
C(q) = 20q + 20.000✱ ❛ ❡q✉❛çã♦ ❞❛ ❞❡♠❛♥❞❛ é p + q = 5.000✱ ♦♥❞❡ q sã♦ ❛s ✉♥✐❞❛❞❡s
❞❡♠❛♥❞❛❞❛s ❛ ❝❛❞❛ s❡♠❛♥❛ ❛♦ ♣r❡ç♦ ✉♥✐tár✐♦ ❞❡ p r❡❛✐s✳ ❉❡t❡r♠✐♥❡ ♦ ❧✉❝r♦ ❛♦
✈❡♥❞❡r ❛s q ✉♥✐❞❛❞❡s✳
✸✵✳ ❯♠ ❝♦♠❡r❝✐❛♥t❡ ❡st✐♠❛ q✉❡ ♦ ❝✉st♦ ❞❡ ♣r♦❞✉çã♦ ❞❡
✸✶✳ ❙✉♣♦♥❤❛ q✉❡ ♦ ❝✉st♦ t♦t❛❧ s❡❥❛ ❞❛❞♦ ♣♦r
10q − 0, 5q
2
✳ ❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡
q
C(q) = 10 + q
R(q) =
♣❛r❛ ♦ q✉❛❧ s❡ ♦❜té♠ ✉t✐❧✐❞❛❞❡ ♠á①✐♠❛✳
✸✷✳ ❆ s❡❣✉✐♥t❡ ✏ ❜❛rr❛ ✑ ❡stá ❢♦r♠❛❞❛ ♣♦r três s❡❣✲
1; 2; 1 ❝❡♥✲
2; 3; 1 ✉♥✐❞❛❞❡s
♠❡♥t♦s ❞❡ ❝♦♠♣r✐♠❡♥t♦s ✐❣✉❛✐s ❛
tí♠❡tr♦s✱ ❡ ♦ ♣❡s♦ é ✐❣✉❛❧ ❛
❡ ❛ r❡❝❡✐t❛ t♦t❛❧
✛
✛
A
✳
✳
✳
1 ✲✛
x
2g
✳
✳
✳
2
✲
M
3g
✲✛
✳
✳
✳
✳
✳
✳
1 ✲
1g
✳
✳
✳
✳
✳
✳
❞❡ ♣❡s♦ r❡s♣❡❝t✐✈❛♠❡♥t❡✳
❖ ♣❡s♦ ❞♦ s❡❣♠❡♥t♦ ❞❡ ❝♦♠♣r✐♠❡♥t♦
q✉❡ ✈❛❧♦r❡s ❞❡
x
AM
é ✐❣✉❛❧ ❛
f (x)✱
q✉❡ é ❢✉♥çã♦ ❞❡
x✳
P❛r❛
❡stá ❞❡✜♥✐❞❛ ❡st❛ ❢✉♥çã♦❄✳ ❆♣r❡s❡♥t❛r s✉❛ ❢♦r♠❛ ❛♥❛❧ít✐❝❛ ❞❡st❛
❢✉♥çã♦ ❡ ❝♦♥str✉✐r s✉❡ ❣rá✜❝♦✳
f ❞❡ R ❡♠ R
f [f (x)] + f [f (y)] + 2f (x)f (y)✳
✸✸✳ ❉❛❞❛ ❛ r❡❧❛çã♦ ❞❡
❞❡✜♥✐❞❛ ♣♦r
✶✵✻
f (x) = x2 ✱
♠♦str❡ q✉❡
f (x2 + y 2 ) =
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✺
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❖♣❡r❛çõ❡s ❝♦♠ ❢✉♥çõ❡s
❉❡✜♥✐çã♦ ✷✳✶✺✳
❉✐③❡♠♦s q✉❡ ❞✉❛s ❢✉♥çõ❡s f : A −→ R ❡ g : A −→ R sã♦ ✐❣✉❛✐s q✉❛♥❞♦ D(f ) =
D(g) ❡ f (x) = g(x) ∀ x ∈ D(f )✳
❉❡✜♥✐çã♦ ✷✳✶✻✳
❙❡❥❛♠ f ❡ g ❞✉❛s ❢✉♥çõ❡s r❡❛✐s ❝♦♠ D(f ) = A ❡ D(g) = B s❡ A∩B 6= ∅ ❞❡✜♥✐♠♦s✿
.
(f + g)(x) = f (x) + g(x)
❛✮ ❋✉♥çã♦ s♦♠❛ ❞❡ f ❡ g :
❜✮ ❋✉♥çã♦ ❞✐❢❡r❡♥ç❛ ❞❡ f
❡
❝✮ ❋✉♥çã♦ ♣r♦❞✉t♦ ❞❡ f
g:
❡
❞✮ ❋✉♥çã♦ q✉♦❝✐❡♥t❡ ❞❡ f
g:
❡
❡
D(f + g) = A ∩ B ✳
.
(f − g)(x) = f (x) − g(x)
❡
D(f − g) = A ∩ B
.
(f · g)(x) = f (x)g(x) ❡ D(f · g) = A ∩ B
f
. f (x)
(x) =
s❡♠♣r❡ q✉❡ ♦ ❞♦♠í♥✐♦
g :
g
g(x)
f
D( ) = { x ∈ A ∩ B /. g(x) 6= 0 }
g
❝✉♠♣r❛✿
.
(kf )(x) = kf (x)
❡✮ Pr♦❞✉t♦ ❞❡ ✉♠❛ ❝♦♥st❛♥t❡ ♣♦r ✉♠❛ ❢✉♥çã♦ ✿
t❛♥t❡ ✳ ◆❡st❛ ❝❛s♦
k
é ❝♦♥s✲
D(kf ) = D(f )
.
| f | (x) =| f (x) |
❢✮ ❋✉♥çã♦ ✈❛❧♦r ❛❜s♦❧✉t♦ ✿
❊①❡♠♣❧♦ ✷✳✺✷✳
♦♥❞❡
❡
D(| f |) = D(f )
√
√
❉❛❞❛ ❛s ❢✉♥çõ❡s f (x) = 25 − x2 ❡ g(x) = x2 − 9 ❝♦♠ s❡✉s r❡s♣❡❝t✐✈♦s ❞♦♠í♥✐♦s
D(f ) = [−5, 5] ❡ D(g) = (−∞, −3] ∪ [3, +∞)✱ t❡♠♦s✿
√
❛✮
(f + g)(x) =
❜✮
(f − g)(x) =
❝✮
(f · g)(x) =
❞✮
√
25 − x2
f
(x) = √
,
g
x2 − 9
√
√
25 − x2 −
25 − x2 ·
❡✮
√
(kf )(x) = k 25 − x2
❢✮
| f | (x) =|
√
√
25 − x2 +
√
x2 − 9
√
x2 − 9
x 2−9
❡
❡
D(f + g) = [−5, −3] ∪ [3, 5]✳
❡
D(f − g) = [−5, −3] ∪ [3, 5]✳
D(f · g) = [−5, −3] ∪ [3, 5]✳
f
D( ) = [−5, −3) ∪ (3, 5]
g
❡
25 − x2 |=
D(kf ) = [−5, 5]
√
25 − x2
❡
D(| f |) = [−5, 5]
✶✵✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✺✳✶
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈♦♠♣♦s✐çã♦ ❞❡ ❢✉♥çõ❡s
❉❡✜♥✐çã♦ ✷✳✶✼✳
f : A −→ R ❡ g : B −→ R ❞✉❛s ❢✉♥çõ❡s t❛✐s q✉❡ Im(f ) ⊆ B ❀ ❛ ❢✉♥çã♦
.
(g ◦ f ) ❞❡✜♥✐❞❛ ♣♦r (g ◦ f )(x) = g(f (x)) ❞❡♥♦♠✐♥❛✲s❡ ✏ ❢✉♥çã♦ ❝♦♠♣♦st❛ ❞❡ g ❡ f ✑
❙❡❥❛♠
✭♥❡ss❛ ♦r❞❡♠✮✳
❖ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ g ◦ f é✿
D(g ◦ f ) = { x ∈ D(f ) /. f (x) ∈ D(g) }
❖ ❡sq✉❡♠❛ ❞❛ ❋✐❣✉r❛ ✭✷✳✷✼✮ ♠♦str❛ ♦ q✉❡ ❛❝♦♥t❡❝❡ ♥❛ ❝♦♠♣♦s✐çã♦ ❞❡ ❢✉♥çõ❡s✳
A
✬
x
✫
✩
f
❩
g◦f
✬
✲
✩
✤✜
B
✲
g
✲
✲ f (x)
❩
❩
❩
❩
❩
✪ ❩
❩
✫
✪
✚
✚
✚
✩
✬ ✩
✲
Im(f )
✣✢
C
✬
g(f (x))
❃
✚
✚
✚Im(g)
✚
✫ ✪
✚
✫
(g ◦ f )(x)
✪
❋✐❣✉r❛ ✷✳✷✼✿
❊①❡♠♣❧♦ ✷✳✺✸✳
A = { 1, 2, 3, 4, 5 } ❡ s❡❥❛♠ f, g : A −→ A ❞❡✜♥✐❞❛s ♣♦r✿ f (1) = 3, f (2) =
5, f (3) = 3, f (4) = 1, f (5) = 2, g(1) = 4, g(2) = 1, g(3) = 1, g(4) = 2, g(5) = 3 ✳
❉❡t❡r♠✐♥❡ g ◦ f ❡ f ◦ g ✳
❙❡❥❛
❙♦❧✉çã♦✳
(g ◦ f )(1) = g(f (1)) = g(3) = 1
(g ◦ f )(2) = g(f (2)) = g(5) = 3
(g ◦ f )(3) = g(f (3)) = g(3) = 1
(g ◦ f )(4) = g(f (4)) = g(1) = 4
(g ◦ f )(5) = g(f (5)) = g(2) = 1
❖❜s❡r✈❡✱ ❛s ❢✉♥çõ❡s g ◦ f ❡ f ◦ g ♥ã♦
(f ◦ g)(1) = f (g(1)) = f (4) = 1
(f ◦ g)(2) = f (g(2)) = f (1) = 3
(f ◦ g)(3) = f (g(3)) = f (1) = 3
(f ◦ g)(4) = f (g(4)) = f (2) = 5
(f ◦ g)(5) = f (g(5)) = f (3) = 3
tê♠ ❛ ♠❡s♠❛ ❞❡✜♥✐çã♦✳
❊①❡♠♣❧♦ ✷✳✺✹✳
❛✮
❉❛❞❛s ❛s ❢✉♥çõ❡s
f (x) = x2 − 1
❡
g(x) = 2x✱
✶✵✽
❝❛❧❝✉❧❛r
f [g(x)]
❡
g[f (x)]✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❜✮
❉❛❞❛s ❛s ❢✉♥çõ❡s f (x) = 5x ❡ f [g(x)] = 3x + 2✱ ❝❛❧❝✉❧❛r g(x)✳
❝✮
❉❛❞❛s ❛s ❢✉♥çõ❡s f (x) = x2 + 1 ❡ g(x) = 3x − 4✱ ❞❡t❡r♠✐♥❡ f [g(3)]✳
❙♦❧✉çã♦✳
g[f (x)] = g(x2 −1) = 2(x2 −1) = 2x2 −2✳
✭❛✮
f [g(x)] = f (2x) = (2x)2 −1 = 4x2 −1
✭❜✮
❈♦♠♦ f (x) = 5x✱ ❡♥tã♦ f [g(x)] = 5 · g(x)✳
P♦ré♠✱ f [g(x)] = 3x + 2❀ ❧♦❣♦ 5 · g(x) = 3x + 2✱ ❡ ❞❛í g(x) =
✭❝✮ g(3) = 3(3) − 4 = 5
(3x + 2)
✳
5
❡♥tã♦ f [g(3)] = f (5) = 52 + 1 = 25 + 1 = 26✳
❊①❡♠♣❧♦ ✷✳✺✺✳
❙❡❥❛♠ f ❡ g ❞✉❛s ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ♣♦r f (x) = 3x − 2 ❡ g(x) = x2 + 4x✳ ❉❡t❡r♠✐♥❡
❛s ❢✉♥çõ❡s g ◦ f ❡ f ◦ g ✳
❙♦❧✉çã♦✳
❚❡♠♦s ♦s s❡❣✉✐♥t❡s ❞♦♠í♥✐♦s ❡ ✐♠❛❣❡♥s ♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s ❢✉♥çõ❡s ✿ D(f ) = R, Im(f ) =
R, D(g) = R ❡ Im(g) = [−4, +∞)✳
✐✮
❉♦ ❢❛t♦ Im(f ) ⊆ D(g) ❡♥tã♦ (g ◦ f )(x) = g(f (x)) = [f (x)]2 + 4f (x)
[3x − 2]2 + 4[3x − 2] = 9x2 − 4✳
⇒
g(f (x)) =
P♦rt❛♥t♦✱ (g ◦ f )(x) = 9x2 − 4 ❡ D(g ◦ f ) = R✳
✐✐✮
❉♦ ❢❛t♦ Im(g) ⊆ D(f ) ❡♥tã♦ (f ◦ g)(x) = f (g(x)) = 3g(x) − 2
3(x2 + 4x) − 2 = 3x2 + 12x − 2✳
⇒
f (g(x)) =
P♦rt❛♥t♦✱ (f ◦ g)(x) = 3x2 + 12x − 2 ❡ D(f ◦ g) = R✳
▼✉✐t❛s ✈❡③❡s sã♦ ❞❛❞❛s ❢✉♥çõ❡s f (x) ❡ g(x) s❡♠ ❡s♣❡❝✐✜❝❛r q✉❛✐s sã♦ s❡✉s ❞♦♠í♥✐♦s❀
♣❛r❛ ♦❜t❡r gof ♦ ❞♦♠í♥✐♦ ❞❡ f ❞❡✈❡ s❡r ❡s❝♦❧❤✐❞♦ ❞❡ ♠♦❞♦ q✉❡ Im(f ) ⊆ D(g)✳
❊①❡♠♣❧♦ ✷✳✺✻✳
❙❡❥❛♠ ❛s ❢✉♥çõ❡s h(x) = 10 ❞❡✜♥✐❞❛ ❡♠ [−3, 4] ❡ s(x) = x2 − 8 ❞❡✜♥✐❞❛ ❡♠ [0, 7]✳
❉❡t❡r♠✐♥❡ (h ◦ s)(x) ❡ (s ◦ h)(x)✳
❙♦❧✉çã♦✳
✐✮
❙♦❧✉çã♦ ❞❡ (h ◦ s)(x)
❚❡♠♦s D(h) = [−3, 4] ❡ D(s) = [0, 7]✳
P♦r ♦✉tr♦ ❧❛❞♦✱ (h ◦ s)(x) = h(s(x)) = 10 ∀ x ∈ [0, 7] ❡ s(x) ∈ [−3, 4]❀ ✐st♦ é✱
∀ x ∈ [0, 7] ❡ −3 ≤ x2 − 8 ≤ 4 ❡♥tã♦ x ∈ [0, 7] ❡ 5 ≤ x2 ≤ 12✳
√
P♦rt❛♥t♦✱ (hos)(x) = 10 ∀ x ∈ [ 5,
√
12]
✶✵✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✐✐✮
❙♦❧✉çã♦ ❞❡ (s ◦ h)(x)✳
❖❜s❡r✈❡ q✉❡✱ (s◦h)(x) = s(h(x)) = [h(x)]2 −8 = 102 −8 = 92✱ ♣❛r❛ t♦❞♦ x ∈ [−3, 4]
❡ h(x) ∈ [0, 7]❀ ✐st♦ é ∀ x ∈ [−3, 4] ❡ 0 ≤ 10 ≤ 7 ✭✐st♦ ú❧t✐♠♦ é ❛❜s✉r❞♦✮✳
P♦rt❛♥t♦✱ ♥ã♦ ❡①✐st❡ (soh)(x)✳
❊①❡♠♣❧♦ ✷✳✺✼✳
❈♦♥s✐❞❡r❡♠♦s ❛s ❢✉♥çõ❡s
h(x) =
√
(g ◦ h)(x)✳
x − 15
❡
g(x) = x2 + 5❀
❞❡t❡r♠✐♥❡
(h ◦ g)(x)
❡
❙♦❧✉çã♦✳
✐✮
❚❡♠♦s D(h) = [15, +∞) ❡ D(g) = R✳ P♦r ♦✉tr♦ ❧❛❞♦✱ (h ◦ g)(x) = h(g(x)) =
p
p
√
g(x) − 15 = (x2 + 5) − 15 = x2 − 10✳
√
D(h ◦ g) = { x ∈ R /. g(x) ∈ [15, +∞)}✱ ✐st♦ é x ∈ R ❡ 15 ≤ x2 + 5✱ ❡♥tã♦ x ≤ − 10
√
♦✉ x ≥ 10✳
√
√
√
P♦rt❛♥t♦✱ (h ◦ g)(x) = x2 − 10 ∀ x ∈ (−∞, − 10] ∪ [ 10, +∞)✳
✐✐✮
√
❚❡♠♦s (g ◦ h)(x) = g(h(x)) = [h(x)]2 + 5 = [ x − 15]2 + 5 = x − 10✱ ✐st♦
[15, +∞) ❡ h(x) ∈ D(g) = R✱ ❡♥tã♦ ∀ x ∈ [15, +∞) ❡ x ∈ R✳
∀x ∈
P♦rt❛♥t♦✱ (g ◦ h)(x) = x − 10 ∀ x ∈ [15, +∞)✳
❊①❡♠♣❧♦ ✷✳✺✽✳
❈♦♥s✐❞❡r❡ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
f (x) =
❞❡t❡r♠✐♥❡
❙♦❧✉çã♦✳
(
f ◦g
x + 12,
5 − x,
s❡✱
s❡✱
x<1
1≤x
❡
g(x) =
(
x2 ,
4x + 12,
❙❡
s❡✱
4 ≤ x ≤ 16
;
−1≤x≤3
❡ ✐♥❞✐q✉❡ s❡✉ ❞♦♠í♥✐♦✳
❉❛ ❞❡✜♥✐çã♦ ❞❡ ❢✉♥çã♦ (
❝♦♠♣♦st❛ t❡♠♦s✿
g(x) + 12, s❡✱ g(x) < 1
(f ◦ g)(x) = f (g(x)) =
5 − g(x), s❡✱ 1 ≤ g(x)
✐✮
s❡✱
x2 + 12,
(4x + 12) + 12,
f (g(x)) =
5 − x2 ,
5 − (4x + 12),
x2 < 1 ❡ 4 ≤ x ≤ 16
⇒
✐st♦ é
s❡✱ x2 < 1 ❡ 4 ≤ x ≤ 16
s❡✱ 4x + 12 < 1 ❡ − 1 ≤ x ≤ 3
s❡✱ 1 ≤ x2 ❡ 4 ≤ x ≤ 16
s❡✱ 1 ≤ 4x + 12 ❡ − 1 ≤ x ≤ 3
(−1 < x < 1 ❡ 4 ≤ x ≤ 16)✱ ❧♦❣♦ x ∈
/ R✳
✶✶✵
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✐✐✮
◗✉❛♥❞♦
4x + 12 < 1 ❡
−1 ≤ x ≤ 3
x∈
/ R✳
✐✐✐✮
P❛r❛
1 ≤ x2
⇒
❡ 4 ≤ x ≤ 16
⇒
(x < −
11
4
❡
− 1 ≤ x ≤ 3)✱ ❧♦❣♦
⇒
[(x ≤ −1 ♦✉ 1 ≤ x) ❡ 4 ≤ x ≤ 16]
⇒
4 ≤ x ≤ 16
❧♦❣♦ f (g(x)) = 5 − x2 s❡ 4 ≤ x ≤ 16✳
✐✈✮
◗✉❛♥❞♦ ✭ 1 ≤ 4x + 12 ❡
− 1 ≤ x ≤ 3)
11
≤x ❡
4
(−
⇒
− 1 ≤ x ≤ 3)
⇒
−1 ≤ x ≤ 3
❧♦❣♦ f (g(x)) = 5 − (4x + 12) = −4x − 7 s❡ −1 ≤ x ≤ 3✳
P♦rt❛♥t♦✱ (f ◦ g)(x) =
(
5 − x2 ,
s❡✱ 4 ≤ x ≤ 16
−4x − 7, s❡✱ − 1 ≤ x ≤ 3
❊①❡♠♣❧♦ ✷✳✺✾✳
❙❡❥❛
❙♦❧✉çã♦✳
f (x) =
1
✱
1−x
❞❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦
(f ◦ f )(x) = f (f (x)) =
P♦r ♦✉tr♦ ❧❛❞♦✱
(f ◦ f ◦ f )(x)✳
x−1
1
1
1
=
=1−
1 =
1 − f (x)
x
x
1 − 1−x
(f ◦ f ◦ f )(x) = (f (f ◦ f ))(x) = f (f (f (x))) = 1 −
✐st♦ é (f ◦ f ◦ f )(x) = 1 −
1
1
1−x
1
✱
f (x)
= 1 − (1 − x) = x✳
P♦rt❛♥t♦ (f ◦ f ◦ f )(x) = x✳
✷✳✺✳✷
❋✉♥çã♦ ✐♥✈❡rs❛
❙❡❥❛ f : A −→ B ✉♠❛ ❢✉♥çã♦ ❜✐❥❡t✐✈❛✱ ❞♦ ❢❛t♦ Im(f ) = B ✐st♦ s✐❣♥✐✜❝❛ q✉❡ ♣❛r❛ t♦❞♦
y ∈ B ❡①✐st❡ ✉♠ ú♥✐❝♦ ❡❧❡♠❡♥t♦ x ∈ A✱ t❛❧ q✉❡ f (x) = y ✳ ❊♥tã♦ ♣♦❞❡♠♦s ❞❡✜♥✐r ❛ ❢✉♥çã♦
g : B −→ A t❛❧ q✉❡ ❛ ❝❛❞❛ y ∈ B ❝♦rr❡s♣♦♥❞❛ ✉♠ ú♥✐❝♦ x ∈ A t❛❧ q✉❡ g(y) = x✱ ✐st♦ é✿
g(y) = x s❡✱ ❡ s♦♠❡♥t❡ s❡ f (x) = y
✶✶✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡✜♥✐çã♦ ✷✳✶✽✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❋✉♥çã♦ ✐♥✈❡rs❛✳
f : A −→ B é ✉♠❛ ❢✉♥çã♦ ❜✐❥❡t✐✈❛✱ q✉❛♥❞♦ ❡①✐st❡✱ ❛ ❢✉♥çã♦ g : B −→ A t❛❧ q✉❡
f ◦ g = idB ❡ g ◦ f = idA ✱ ❞❡♥♦♠✐♥❛✲s❡ ❢✉♥çã♦ ✐♥✈❡rs❛ ❞❛ ❢✉♥çã♦ f ❡✱ é ❞❡♥♦t❛❞❛
−1
−1
♣♦r f
✳ ■st♦ é f ◦ f
= idB ❡ f −1 ◦ f = idA ♦♥❞❡ (x, y) ∈ f ❡ (y, x) ∈ f −1 .
❙❡
❆
❋✐❣✉r❛
✭✷✳✷✽✮ ✐❧✉str❛ ❛ r❡❧❛çã♦ q✉❡ ❡①✐st❡ ❡♥tr❡ ❛ ❢✉♥çã♦
A
★✥
❡ ❛ ❢✉♥çã♦ ✐♥✈❡rs❛
f −1 ✳
B
f
★✥
✲
y·
x·
✛
✧ ✦g
f
✧✦
= f −1
❋✐❣✉r❛ ✷✳✷✽✿ ❋✉♥çã♦ ✐♥✈❡rs❛
❉♦ ❞✐❛❣r❛♠❛ ❞❛
✐✮
✭✷✳✷✽✮ t❡♠♦s✿
f −1 ◦ f = idA
∀ x ∈ A✳
♦♥❞❡ ✭idA é ❢✉♥çã♦ ✐❞❡♥t✐❞❛❞❡ ❡♠
A✮
✐st♦ é
f −1 (f (x)) =
f ◦ f −1 = idB
∀ x ∈ B✳
♦♥❞❡ ✭idB é ❢✉♥çã♦ ✐❞❡♥t✐❞❛❞❡ ❡♠
B✮
✐st♦ é
f −1 (f (x)) =
❆ ❢✉♥çã♦
x,
✐✐✮
❋✐❣✉r❛
❆ ❢✉♥çã♦
x,
❊①❡♠♣❧♦ ✷✳✻✵✳
❉❛❞❛ ❛ ❢✉♥çã♦
f (x) =
❙♦❧✉çã♦✳
❙❡❥❛
y = f (x)✱
❡♥tã♦
x−1
x+2
y=
(x 6= 2)
x−1
✱
x+2
❝❛❧❝✉❧❡
f −1 (x)✳
❞❡✈❡♠♦s ✐s♦❧❛r
x
x−1
⇒ y(x + 2) = x − 1 ⇒
x+2
1 + 2y
1 + 2y
−(1 + 2y) ⇒ x = −
⇒ x=
✳
y−1
1−y
1 + 2y
▲♦❣♦✱ f −1 (y) =
✱ ❡♠ ❣❡r❛❧ ❛ ❢✉♥çã♦ ♥ã♦
1−y
❊♥tã♦
❡s❝r❡✈❡r
y=
y, t, z,
♥❡ss❛ ✐❣✉❛❧❞❛❞❡✳
yx + 2y = x − 1
f (x) =
y = f (x)✳
▼♦str❛r q✉❡✱ s❡
❢✉♥çã♦ ✐♥✈❡rs❛ ❞❡
√
n
a − xn ,
x > 0❀
y.x − x =
❞❡♣❡♥❞❡ ❞♦ ♣❛râ♠❡tr♦ é ✐♥❞✐❢❡r❡♥t❡
❡t❝✱ ❝♦♠♦ ✈❛r✐á✈❡❧❀ ❛ss✐♠ ♣♦❞❡♠♦s ❡s❝r❡✈❡r
❊①❡♠♣❧♦ ✷✳✻✶✳
⇒
t❡♠♦s q✉❡
f −1 (x) =
1 + 2x
✳
1−x
f (f (x)) = x✳
❉❡t❡r♠✐♥❡ ❛
❙♦❧✉çã♦✳
✶✶✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❚❡♠♦s ❞❛ ❤✐♣ót❡s❡ x > 0✱
f (f (x)) =
p
n
a−
[f (x)]n
=
q
n
p
√
a − [ n a − xn ]n = n a − [a − xn ] = x
√
√
P♦r ♦✉tr♦ ❧❛❞♦✱ s❡❥❛ y = f (x)✱ ❡♥tã♦ y = n a − xn ❛ss✐♠ x = n a − y n ✐st♦ é f −1 (y) =
√
√
n
a − y n ✱ s❡♥❞♦ ❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ✐♥❞❡♣❡♥❞❡♥t❡ ❞❛ ✈❛r✐á✈❡❧ r❡s✉❧t❛ f −1 (x) = n a − xn
✷✳✺✳✸ ❘❡❧❛çã♦ ❡♥tr❡ ♦ ❣rá✜❝♦ ❞❡ f ❡ ❞❡ f −1
❉❛ ❞❡✜♥✐çã♦ ❞❡ ❢✉♥çã♦ ✐♥✈❡rs❛ t❡♠♦s q✉❡✱ s❡ ♦ ♣♦♥t♦ P (a, b) ♣❡rt❡♥❝❡ ❛♦ ❣rá✜❝♦ ❞❛
❢✉♥çã♦ f ✱ ❡♥tã♦ Q(b, a) ♣❡rt❡♥❝❡ ❛♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ f −1 ❡ ✈✐❝❡✲✈❡rs❛✳ ❖❜s❡r✈❡ ♥❛ ❋✐❣✉r❛
✭✷✳✷✾✮ ❛ ✐❞❡♥t✐✜❝❛çã♦ ♥♦ ♣❧❛♥♦ ❞♦s ♣♦♥t♦s P (a, b) ❡ Q(b, a) ♥♦t❡✲s❡ q✉❡ sã♦ s✐♠étr✐❝♦s
r❡s♣❡✐t♦ ❞❛ r❡t❛ ❜✐ss❡tr✐③ y = x✳
■st♦ r❡s✉❧t❛ ❞♦ ❢❛t♦ s❡r ♦ q✉❛❞r✐❧át❡r♦ P AQB ✉♠ q✉❛❞r❛❞♦✱ ❞❡ ❧❛❞♦s AP = QB =
b − a = AQ = P B ✳
✻
y
b
a
· · · · · ·P✳✳·(a,
· · ·b)· · · · · · B(b, b)
✳✳
✳✳❅ d′
✳✳
✳✳ ❅
✳✳
✳✳ ❅
✳✳
d ✳✳
❅ ✳✳
✳✳
✳
A(a, a) ✳· · · · · · · · · · · ❅
· · ·✳✳· Q(b, a)
✳✳
✳✳
✳✳
✳✳
✳✳
✳
✳
✳✳
y=x✳
✳
✲
0
a
b
x
❋✐❣✉r❛ ✷✳✷✾✿
❋✐❣✉r❛ ✷✳✸✵✿
▲♦❣♦ P ❡ Q sã♦ ♦s ✈ért✐❝❡s ♦♣♦st♦s ❞♦ q✉❛❞r❛❞♦✱ ❡ ❝♦♥s✐❞❡r❛♥❞♦ q✉❡ ♥♦ q✉❛❞r❛❞♦ ❛s
❞✐❛❣♦♥❛✐s sã♦ ♣❡r♣❡♥❞✐❝✉❧❛r❡s ❡ ❝♦rt❛♠✲s❡ ♥♦ ♣♦♥t♦ ♠é❞✐♦✱ r❡s✉❧t❛ d = d′ ✱ ♦♥❞❡✿
d ❂ ❞✐stâ♥❝✐❛ ❞❡ P à ❜✐ss❡tr✐③ y = x✳
d′ ❂ ❞✐stâ♥❝✐❛ ❞❡ Q à ❜✐ss❡tr✐③ y = x
❙❡ ❝♦♥s✐❞❡r❛♠♦s ✉♠❛ ❢✉♥çã♦ f : A −→ B ❡ s✉❛ ❢✉♥çã♦ ✐♥✈❡rs❛ f −1 : B −→ A ❡♥tã♦
s❡✉s ❣rá✜❝♦s sã♦ s✐♠étr✐❝♦s r❡s♣❡✐t♦ ❞❛ ❜✐ss❡tr✐③ y = x✱ ♣♦✐s (x, y) ∈ Gf s❡ ❡ s♦♠❡♥t❡ s❡
(b, a) ∈ Gf −1 ✳
❆ ❋✐❣✉r❛ ✭✷✳✸✵✮ r❡♣r❡s❡♥t❛ ♦s ❣rá✜❝♦s ❞❛ ❢✉♥çã♦ f ❡ s✉❛ ✐♥✈❡rs❛ f −1 ✳
❊①❡♠♣❧♦ ✷✳✻✷✳
❆ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r f (x) = 3x+5 é ✐♥❥❡t✐✈❛✱ ❧♦❣♦ ❛❞♠✐t❡ ❢✉♥çã♦ ✐♥✈❡rs❛
f −1 : R −→ R✳ ❉❡t❡r♠✐♥❡♠♦s ❡st❛ ❢✉♥çã♦ ✐♥✈❡rs❛ f −1 ✳
❙♦❧✉çã♦✳
✶✶✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
Pr✐♠❡✐r♦ ♠ét♦❞♦✿
❙❛❜❡♠♦s q✉❡ f (f −1 (y)) = y ✱ ❧♦❣♦
f (f −1 (y)) = 3f −1 (y) + 5 = y
y−5
∀ y ∈ R✱ s❡♥❞♦ ❛ ✈❛r✐á✈❡❧ y ♥❛ ❢✉♥çã♦ f −1 ✐♥❞❡♣❡♥❞❡♥t❡✱
3
x−5
∀ x ∈ R✳
♣♦❞❡♠♦s ✉t✐❧✐③❛r ❛ ❧❡tr❛ x ❡ ♦❜t❡r f −1 (x) =
3
❞❡ ♦♥❞❡ f −1 (y) =
❙❡❣✉♥❞♦ ♠ét♦❞♦✿
❙✉♣♦♥❤❛ y = f (x)✱ ❡♥tã♦ y = 3x + 5 ♦♥❞❡✱ ✐s♦❧❛♥❞♦ ❛ ✈❛r✐á✈❡❧ x r❡s✉❧t❛✿ x =
❧♦❣♦ f −1 (y) =
y−5
3
x−5
3
∀ y ∈ R ♦✉ f −1 (x) =
y−5
✱
3
∀ x ∈ R✳
❊①❡♠♣❧♦ ✷✳✻✸✳
❉❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ ✐♥✈❡rs❛
f −1 (x)✱
s❡
❙♦❧✉çã♦✳
f (x + 1) = x2 − 3x + 2
∀ x ∈ R+ ✳
❙❡❥❛ t = x + 1✱ ❡♥tã♦ x = t − 1✱ ❧♦❣♦
f (t) = f (x + 1) = x2 − 3x + 2 = (t − 1)2 − 3(t − 1) + 2 = t2 − 5t + 6
♦❜s❡r✈❡✱ ❛ ❢✉♥çã♦ f (t) ❡①✐st❡ ♣❛r❛ t ≥ 1✳
2
2
❈♦♥s✐❞❡r❡♠♦s
p y = f (t) = t −5t+6 ❡♥tã♦ t −5t+6−y = 0✱ ♣❡❧❛ ❢ór♠✉❧❛ ❞❡ ❇❤❛s❦❛r❛
t❡♠♦s t =
5±
25 − 4(6 − y)
✱ ❛ss✐♠
2
25 − 4(6 − y) ≥ 0
⇒
1 + 4y ≥ 0
⇒
y≥−
1
4
p
25 − 4(6 − y)
1
♣❡❧❛ ❝♦♥❞✐çã♦ ❞❡ t✱ t❡♠♦s q✉❡ f −1 (y) =
s❡♠♣r❡ q✉❡ y ≥ − ✳
2
4
√
1
5
1
+
4x
5
+
s❡♠♣r❡ q✉❡ x ≥ − ; Im(f −1 ) = [ , +∞)✳
P♦rt❛♥t♦✱ f −1 (x) =
2
4
2
5+
❊①❡♠♣❧♦ ✷✳✻✹✳
❛✮
❙✉♣♦♥❤❛ f (x) = x + 1✳ ❊①✐st❡♠ ❢✉♥çõ❡s g t❛✐s q✉❡ f ◦ g = g ◦ f ❄
❜✮
❙✉♣♦♥❤❛ f s❡❥❛ ✉♠❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡✳ P❛r❛ q✉❛✐s ❢✉♥çõ❡s g ❝✉♠♣r❡ q✉❡ f ◦ g = g ◦ f ❄
❝✮
❙✉♣♦♥❤❛ q✉❡ f ◦g = g ◦f ♣❛r❛ t♦❞❛s ❛s ❢✉♥çõ❡s g ✳ ▼♦str❡ q✉❡ f é ❛ ❢✉♥çã♦ ✐❞❡♥t✐❞❛❞❡✳
❙♦❧✉çã♦✳
❛✮
❆ ❝♦♥❞✐çã♦ f ◦ g = g ◦ f s✐❣♥✐✜❝❛ q✉❡ g(x) + 1 = g(x + 1) ♣❛r❛ t♦❞♦ x ∈ R✳ ❊①✐st❡♠
♠✉✐t❛s ❢✉♥çõ❡s g q✉❡ ❝✉♠♣r❡♠ ❡st❛ ❝♦♥❞✐çã♦✳
✶✶✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❜✮
❙✉♣♦♥❤❛ f (x) = c, ∀ x ∈ R✱ ❡♥tã♦ f ◦ g = g ◦ f s❡ ❡ s♦♠❡♥t❡ s❡ c = f (g(x)) =
g(f (x)) = g(c) ✐st♦ é g(c) = c✳
❝✮
❙❡ f ◦ g = g ◦ f ♣❛r❛ t♦❞♦ g ✱ ❡♥tã♦ ❝✉♠♣r❡ ✐st♦ ♣❛r❛ t♦❞❛s ❛s ❢✉♥çõ❡s✱ ❡♠ ♣❛rt✐❝✉❧❛r
♣❛r❛ ❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡ g(x) = c❀ ❧♦❣♦ ❞❛ ♣❛rt❡ ❜✮ s❡❣✉❡ q✉❡ f (c) = c ♣❛r❛ t♦❞♦ c✳
❊①❡♠♣❧♦ ✷✳✻✺✳
ax + b
✭❝♦♥s✐❞❡r❛♥❞♦
▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ ✐♥✈❡rs❛ ❞❛ ❢✉♥çã♦ ❤♦♠♦❣rá✜❝❛ f (x) =
cx + d
ad − bc 6= 0✮ t❛♠❜é♠ é ❤♦♠♦❣rá✜❝❛✳
❙♦❧✉çã♦✳
❙❡❥❛ y = f (x)✱ ❡♥tã♦ y =
ax + b
cx + d
a
∀y =
6
✳
c
❆ ✐❣✉❛❧❞❛❞❡ y =
x=
dy − b
,
a − cy
ax + b
−d
❡①✐st❡ s❡♠♣r❡ q✉❡ x 6=
✳
cx + d
c
⇒
y(cx + d) = ax + b
⇒
x(yc − a) = b − dy
⇒
dx − b
t❡♠♦s ❛ ❢✉♥çã♦ ✐♥✈❡rs❛ ❞❡ f (x)✳
a − cx
x(ad − bc)
= x ❞❛ ❤✐♣ót❡s❡ ad 6= bc✳ ❉❡ ♠♦❞♦
❖❜s❡r✈❡✱ f ◦ f −1 (x) = f (f −1 (x)) =
ad − bc
❛♥á❧♦❣♦ ♠♦str❛✲s❡ q✉❡ f −1 ◦ f (x) = x✳
dx − b
P♦rt❛♥t♦ f −1 (x) =
é ❤♦♠♦❣rá✜❝❛✳
a − cx
❉❡♥♦t❛♥❞♦ ❝♦♠ f −1 (x) =
❊①❡♠♣❧♦ ✷✳✻✻✳
❊st✐♠❛✲s❡ q✉❡ ✉♠ ♦♣❡rár✐♦ ❞❡ ✉♠ ❡st❛❜❡❧❡❝✐♠❡♥t♦ q✉❡ ❢❛③ ♠♦❧❞✉r❛s ♣❛r❛ q✉❛❞r♦s ♣♦ss❛
♣✐♥t❛r y ♠♦❧❞✉r❛s ❞❡♣♦✐s x ❤♦r❛s ❞♦ ✐♥í❝✐♦ ❞♦ s❡✉ tr❛❜❛❧❤♦ q✉❡ ❝♦♠❡ç❛ às 08 : 00 ❤♦r❛s ❞❛
♠❛♥❤ã✱ ♦♥❞❡ y = 3x + 8x2 − x3 s❡ 0 ≤ x ≤ 4 ✳ ✭❛✮ ❆❝❤❡ ❛ t❛①❛ s❡❣✉♥❞♦ ❛ q✉❛❧ ♦ ♦♣❡rár✐♦
❡st❛ ♣✐♥t❛♥❞♦ às 10 : 00 ❤♦r❛s ❞❛ ♠❛♥❤ã✳✭❜✮ ❆❝❤❡ ♦ ♥ú♠❡r♦ ❞❡ ♠♦❧❞✉r❛s ♣r♦♥t❛s ❡♥tr❡
10 ❡ 11 : 00 ❤♦r❛s ❞❛ ♠❛♥❤ã✳
❙♦❧✉çã♦✳ ❛✮
❚❡♠♦s y = f (x) é ✉♠❛ ❢✉♥çã♦ q✉❡ ❞❡♣❡♥❞❡ ❞♦ t❡♠♣♦ x✳ ◆♦ ✐♥st❛♥t❡ x1 t❡♠♦s q✉❡
y = f (x1 ) = 3x1 + 8x21 − x31 ✳ ❙✉♣♦♥❤❛ ✉♠ ❧❛♣s♦ ❞❡ t❡♠♣♦ tr❛♥s❝♦rr✐❞♦ h ❞❡♣♦✐s ❞❡ x1 ✱
❡♥tã♦ y = f (x1 + h) = 3(x1 + h) + 8(x1 + h)2 + (x1 + h)3 ✳
❆ ❞✐❢❡r❡♥ç❛
f (x1 + h) − f (x1 )
△f
=
h
h
q✉❛♥❞♦ h ❢♦r tã♦ ♣❡q✉❡♥♦ ♣♦ssí✈❡❧✱ ❞❡t❡r♠✐♥❛ ❛ t❛①❛ s❡❣✉♥❞♦ ♦ q✉❛❧ ♦ ♦♣❡rár✐♦ ❡stá
♣✐♥t❛♥❞♦ x1 ❞❡♣♦✐s ❞❛s 08 : 00 ❞❛ ♠❛♥❤ã✳
■st♦ é✱ △f (x1 ) = 3[(x1 + h) − x1 ] + 8[(x1 + h)2 − x21 ] − [(x1 + h)3 − x31 ] =
= 3h + 8(2hx1 + h2 ) − (3hx21 + 3h2 x1 + h3 ) = h[3 + 8(2x1 + h) − (3x21 + 3hx1 + h2 )]
✶✶✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❡♥tã♦
△f (x1 )
h[3 + 8(2x1 + h) − (3x21 + 3hx1 + h2 )]
=
=
h
h
3 + 8(2x1 + h) − (3x21 + 3hx1 + h2 )
◗✉❛♥❞♦
h
△f (x1 )
= 3 + 8x1 − 3x21 ✳ ❆ t❛①❛
h
x1 = 2 ❝♦rr❡s♣♦♥❞❡ ❛s 10 : 00 ❤♦r❛s✳
❢♦r tã♦ ♣❡q✉❡♥♦ q✉❛♥t♦ ♦ ③❡r♦✱ t❡♠♦s
s❡❣✉♥❞♦ ♦ q✉❛❧ ♦ ♦♣❡rár✐♦ ❡stá ♣✐♥t❛♥❞♦ q✉❛♥❞♦
♣✐♥t❛♥❞♦
△f (2)
= 3 + 8(2) − 3(22 ) = 7✳ P♦rt❛♥t♦✱ ❛
h
às 10 : 00 ❤♦r❛s ❞❛ ♠❛♥❤ã é ❞❡ 7 q✉❛❞r♦s✳
❙♦❧✉çã♦✳
❜✮
▲♦❣♦✱
t❛①❛ s❡❣✉♥❞♦ ❛ q✉❛❧ ♦ ♦♣❡rár✐♦ ❡st❛
11 : 00 ❤♦r❛s ❡❧❡ ♣✐♥t♦✉ y = 3(3) + 8(32 ) − 33 = 54 q✉❛❞r♦s✳
2
3
❤♦r❛s ❡❧❡ ♣✐♥t♦✉ y = 3(2) + 8(2 ) − 2 = 30 q✉❛❞r♦s✳ ▲♦❣♦ ❡♥tr❡ ❛s 10 : 00
❞❛ ♠❛♥❤ã✱ ❡❧❡ ♣✐♥t♦✉ 54 − 30 = 24 q✉❛❞r♦s✳
❆té ❛s
10 : 00
11 : 00 ❤♦r❛s
❆té ❛s
❡
❊①❡♠♣❧♦ ✷✳✻✼✳
❙❡❥❛♠ ❛s ❢✉♥çõ❡s
D(f )
✶✳
❡
f (x) =
D(g)
x2
36 − x2
❡
✷✳
g(x) =
√
8 − 3t.
(f ◦g)(x)
❡
❆❝❤❛r❀
f
( )(x) ❡ s❡✉s r❡s♣❡❝t✐✈♦s ❞♦♠í♥✐♦s✳
g
❙♦❧✉çã♦✳
✶✳
D(f ) = R − {−6, 6}
✷✳
D(f ◦ g) = (−∞, 8/3] − {−
❡
D(g) = (−∞, 8/3]
28
}
3
❡
f
D( ) = (−∞, 8/3] − {−6}
g
8 − 3x
28 + 3x
f
x2
√
✳
( )(x) = −
g
(36 − x2 ) 8 − 3x
(f ◦ g)(x) = −
✶✶✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✷✲✹
ax + d
❝✉♠♣r❡ f (f (x)) = x
✶✳ P❛r❛ q✉❛✐s ♥ú♠❡r♦s r❡❛✐s a, b, c, d ❛ ❢✉♥çã♦ f (x) =
cx + b
♣❛r❛ t♦❞♦ x❄
✷✳ ❙❡ f é ✉♠❛ ❢✉♥çã♦ ❞❡ ✈❛r✐á✈❡❧ r❡❛❧ t❛❧ q✉❡ f (x − 2) = 2x2 + 1✱ ❞❡t❡r♠✐♥❛r✿
✶✳
f (a + 2) − f (1)
a−3
a 6= 3
✷✳
f (a + 2) − f (2)
a−2
a 6= 2
✸✳ ❙❡ f (4x + 1) = x2 + 4x − 5 é ❢✉♥çã♦ r❡❛❧✱ ❛❝❤❛r f (5x)✳
✹✳ ❙❡❥❛ f ❢✉♥çã♦ r❡❛❧ ❞❡✜♥✐❞❛ ♣♦r✿
f (x) =
(
2, s❡✱ 0 ≤ x ≤ 2
3, s❡✱ 2 < x < 3
❡
g(x) = f (x + 2) + f (2x)
❆❝❤❛r D(g)✳
✺✳ ❙❡❥❛ f : A −→ [0, 1]✳ ❉❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦ ❞❡ f s❡✿
1. f (x) =
|x+2|
x+2
2. f (x) = −x2 + 4x + 12
3. f (x) =
1 + 2x
3 − 5x
✻✳ ❉❡t❡r♠✐♥❛r ♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
r
r
√
12 + x
3. f (x) = 9 − 6x + x2
x−5
q
2
√
√
3x
4
4
2
4. f (x) = x − 4x + 12 + √
5.
f
(x)
=
1
−
4 + x2
4
−x − 20 + x2
(
| x + [|x|] | s❡✱ [|x|] é ♣❛r
p
6. g(x) =
x + [|x|], s❡✱ [|x|] é í♠♣❛r
1. f (x) =
x−2
x−1
2.f (x) =
4
✼✳ ❆ ❢✉♥çã♦ f (x) ❡st❛ ❞❡✜♥✐❞❛ ❝♦♠♦ s❡❣✉❡✿ ❡♠ ❝❛❞❛ ✉♠ ❞♦s ✐♥t❡r✈❛❧♦s n ≤ x < n + 1
1
♦♥❞❡ n é ✉♠ ✐♥t❡✐r♦ ♣♦s✐t✐✈♦✱ f (x) ✈❛r✐❛ ❧✐♥❡❛r♠❡♥t❡✱ s❡♥❞♦ f (n) = −1, f (n+ ) = 0✳
2
❈♦♥str✉✐r ♦ ❣rá✜❝♦ ❞❡st❛ ❢✉♥çã♦✳
✽✳ ❆ ❢✉♥çã♦ f ❡♠ R é t❛❧ q✉❡ f (2x) = 3x + 1✳ ❉❡t❡r♠✐♥❡ 2.f (3x + 1)✳
✾✳ ❙❡♥❞♦ f ❡ g ❞✉❛s ❢✉♥çõ❡s t❛✐s q✉❡ f ◦ g(x) = 2x + 1 ❡ g(x) = 2 − x✳ ❉❡t❡r♠✐♥❡ f (x)✳
✶✵✳ ❙❡ f (g(x)) = 5x − 2 ❡ f (x) = 5x + 4✱ ❡♥tã♦ g(x) é ✐❣✉❛❧ ❛✿
✶✶✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✶✳ ❉❛❞❛s ❛s ❢✉♥çõ❡s f (x) = 4x + 5 ❡ g(x) = 2x − 5k ✱ ♦❝♦rr❡rá g ◦ f (x) = f ◦ g(x) s❡ ❡
s♦♠❡♥t❡ s❡ k ❢♦r ✐❣✉❛❧ ❛✿
✶✷✳ ❙❡❥❛ f ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ❡♠ R t❛❧ q✉❡ f (x − 5) = 4x✳ ◆❡st❛s ❝♦♥❞✐çõ❡s✱ ♣❡❞❡✲s❡
❞❡t❡r♠✐♥❛r f (x + 5)✳
✶✸✳ ❙❡♥❞♦ f ❡ g ❞✉❛s ❢✉♥çõ❡s t❛✐s q✉❡✿ f (x) = ax + b ❡ g(x) = cx + d✳ ❙♦❜ q✉❡ ❝♦♥❞✐çõ❡s
♦❝♦rr❡rá ❛ ✐❣✉❛❧❞❛❞❡ g ◦ f (x) = f ◦ g(x)❄
✶✹✳ ❙❡❥❛♠ f (x) = x+2 ❡ g(x) = x2 +a✱ ❞❡t❡r♠✐♥❛r ♦ ✈❛❧♦r ❞❡ a ❞❡ ♠♦❞♦ q✉❡ (f ◦g)(3) =
(g ◦ f )(a − 1)✳
✶✺✳ ❉❡t❡r♠✐♥❡ ❞✉❛s ❢✉♥çõ❡s f ❡ g t❛✐s q✉❡ h = gof ♥♦s s❡❣✉✐♥t❡s ❝❛s♦s✿
1. h(x) = (x2 + 3)6
2. h(x) = 2sen2x
√
4. h(x) = x + 12
2
2x + 5
6. h(x) =
x−4
3. h(x) = 3(x+ | x |)
5. h(x) = x2 + 16x + 64
7. h(x) = sen2 4x + 5sen4x + 2
✶✻✳ ❉❛❞❛s ❛s ❢✉♥çõ❡s f (x) =| x + 1 | ❡ g(x) =| 2 − x |✳ ❉❡t❡r♠✐♥❡ f ◦ g ❡ g ◦ f ✳
✶✼✳ ❙❡❥❛♠ f ❡ g ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ♣♦r✿
f (x) =
(
2x2 + 5x,
s❡✱ x < 2
| x + 2 | −2x, s❡✱ x ≥ 2
❆❝❤❛r : 1. f (1) + g(1)
4.
f (4)
g(1)
g(x) =
2. f (0).g(0)
5. (f ◦ g)(−3)
(
x + 4,
s❡✱ x > 2
x2 − 3x, s❡✱ x ≤ 2
3. (f ◦ g)(2)
3
6. (g ◦ g)( )
2
✶✽✳ ❉❛❞❛ ❛ ❢✉♥çã♦ ❞❡ ♣r♦❞✉çã♦ 9p = 2q 2 ✱ ♦♥❞❡ q é ❛ q✉❛♥t✐❞❛❞❡ ❞❡ ✉♠ ✐♥s✉♠♦✱ ♦ q✉❡
❛❝♦♥t❡❝❡ ❝♦♠ ❛ ♣r♦❞✉çã♦ s❡ ❛ q✉❛♥t✐❞❛❞❡ ❞♦ ✐♥s✉♠♦ ❢♦r ❞✉♣❧✐❝❛❞❛❄ ❈♦♠♦ sã♦ ❡♥tã♦
♦s r❡t♦r♥♦s ❞❛ ♣r♦❞✉çã♦❄
✶✾✳ ❙❡❥❛♠ R = −2q 2 + 30q ❡ C = 3q + 72 ❛s ❢✉♥çõ❡s ❞❡ Receita ❡ Custo ♣❛r❛ ❝❡rt♦
♣r♦❞✉t♦✳ ✭❛✮ ❉❡t❡r♠✐♥❡ ♦ ♣♦♥t♦ ❞❡ ❡q✉✐❧í❜r✐♦ ✭❜r❡❛❦✲❡✈❡♥✮✳ ✭❜✮ ❋❛ç❛ ♦s ❣rá✜❝♦s
❞❡ C ❡ R ♥✉♠ ♠❡s♠♦ ❡✐①♦✳ ✭❝✮ ❉❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ ❧✉❝r♦ ❡ ❢❛ç❛ s❡✉ ❣rá✜❝♦✳ ✭❞✮
❉❡t❡r♠✐♥❡ ❛ ❢✉♥çã♦ ❧✉❝r♦ ♠é❞✐♦ ❡ ❢❛ç❛ s❡✉ ❣rá✜❝♦ ♣♦r ♣♦♥t♦s t♦♠❛❞♦s ♥♦ ✐♥t❡r✈❛❧♦
❞❡ ✈❛r✐❛çã♦ ❞❡ q ✳
√
✷✵✳ ❙❡❥❛ P = 20 x5 ✉♠❛ ❢✉♥çã♦ q✉❡ ❞á ❛ q✉❛♥t✐❞❛❞❡ P ❞❡ ❝❡rt♦ ♣r♦❞✉t♦ q✉❡ é ♣r♦❞✉✲
③✐❞❛ ❡♠ ❢✉♥çã♦ ❞❛ q✉❛♥t✐❞❛❞❡ x ❞❡ ❝❡rt♦ ✐♥s✉♠♦✳ ✭❛✮ ❊s❜♦ç❛r ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦✳
✶✶✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖ q✉❡ ❛❝♦♥t❡❝❡ ❝♦♠ ❛ ♣r♦❞✉çã♦ P s❡ ❛ q✉❛♥t✐❞❛❞❡ ❞❡ ✐♥s✉♠♦ ♣♦r ♠✉❧t✐♣❧✐❝❛❞❛
♣♦r 6✳
✭❜✮
✷✶✳ ❯♠ ❧❛❜♦r❛tór✐♦✱ ❛♦ ❧❛♥ç❛r ✉♠ ♥♦✈♦ ♣r♦❞✉t♦ ❞❡ ❜❡❧❡③❛✱ ❡st❛❜❡❧❡❝❡ ✉♠❛ ❢✉♥çã♦ q✉❡
❞á ❛ q✉❛♥t✐❞❛❞❡ ♣r♦❝✉r❛❞❛ y ♥♦ ♠❡r❝❛❞♦ ❡♠ ❢✉♥çã♦ ❞❛ q✉❛♥t✐❞❛❞❡ x ❞❡ ❝❛✐①❛s
❝♦♠ ❝❡rt❛ q✉❛♥t✐❞❛❞❡ ❞❡ ❛♠♦str❛s✱ q✉❡ ❢♦r❛♠ ❞✐str✐❜✉í❞❛s ❡♥tr❡ ❞♦♥❛s✲❞❡✲❝❛s❛✳ ❆
❢✉♥çã♦ ❡st❛❜❡❧❡❝✐❞❛ é ❞❛❞❛ ❝♦♠♦ y = 300 × (1, 3)x ✳ ✭❛✮ ◗✉❛❧ ❢♦✐ ❛ ♣r♦❝✉r❛ ❞♦
♣r♦❞✉t♦ ❛♥t❡s ❞❛ ❞✐str✐❜✉✐çã♦ ❞❛ ❛♠♦str❛❄✳ ❊ ❛♣ós ❛ ❞✐str✐❜✉✐çã♦ ❞❡ ❞✉❛s ❝❛✐①❛s❄
❊ ❛♣ós ❛ ❞✐str✐❜✉✐çã♦ ❞❛ q✉❛tr♦ ❝❛✐①❛s❄ ✭❜✮ ◗✉❛♥t❛s ❝❛✐①❛s ❞❛ ❛♠♦str❛ t❡♠ q✉❡
s❡r ❞✐str✐❜✉í❞❛s ♣❛r❛ q✉❡ ❛ q✉❛♥t✐❞❛❞❡ ♣r♦❝✉r❛❞❛ s❡❥❛ 3.000❄ ✭❝✮ ❊s❜♦❝❡ ♦ ❣rá✜❝♦
❞❛ ❢✉♥çã♦✳
✷✷✳ ❆ ❞❡♠❛♥❞❛ ♠❡♥s❛❧ ❞❡ ✉♠ ❝❡rt♦ ♣r♦❞✉t♦ ♣♦r ❝♦♥s✉♠✐❞♦r é ❢✉♥çã♦ ❞❡ s✉❛ r❡♥❞❛✱ ❞❡
30.000
✱ ♦♥❞❡ x é ❛ r❡♥❞❛ ❡♠ ♠✐❧❤❛r❡s
❛❝♦r❞♦ ❝♦♠ ❛ s❡❣✉✐♥t❡ ❡①♣r❡ssã♦✿ q = 400 −
x + 30
❞❡ r❡❛✐s ❡ q é ❛ q✉❛♥t✐❞❛❞❡ ❞♦ ♣r♦❞✉t♦ ❡♠ ❣r❛♠❛s✳ ✭❛✮ ❋❛ç❛ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦✳
✭❜✮ ❊ss❛ ❢✉♥çã♦ é ❝r❡s❝❡♥t❡ ♦✉ ❞❡❝r❡s❝❡♥t❡❄ ❆s t❛①❛s ❝r❡s❝❡♥t❡s ♦✉ ❞❡❝r❡s❝❡♥t❡s❄
P♦r q✉ê❄ ✭❝✮ ❊♠ q✉❡ ♣♦♥t♦ ❝♦rt❛ ♦ ❡✐①♦ ❤♦r✐③♦♥t❛❧ ❞♦s x✳ ◗✉❛❧ é ♦ s✐❣♥✐✜❝❛❞♦ ❞♦
❢❛t♦❄
✷✸✳ ❯♠ ❝♦♠❡r❝✐❛♥t❡ é ♦ r❡♣r❡s❡♥t❛♥t❡ ❞❡ ✈❡♥❞❛s ❞❡ ✉♠❛ ❝❡rt❛ ♠❡r❝❛❞♦r✐❛ ❡♠ ✉♠❛
❝✐❞❛❞❡✳ ❱❡♥❞❡ ❛t✉❛❧♠❡♥t❡ 200 ✉♥✐❞❛❞❡s ❡ ♦❜s❡r✈❛ q✉❡ ❛ ♣♦r❝❡♥t❛❣❡♠ ❞❡ ❝r❡s❝✐♠❡♥t♦
❞❡ ✈❡♥❞❛s é ❞❡ 25% ❛♦ ❛♥♦✳ ✭❛✮ ❉❡t❡r♠✐♥❡ ❢✉♥çã♦ y = f (x) q✉❡ ❞á ❛ q✉❛♥t✐❞❛❞❡
q✉❡ s❡rá ✈❡♥❞✐❞❛ ❡♠ ❢✉♥çã♦ ❞♦ t❡♠♣♦ ❡♠ ❛♥♦s✱ ❛ ♣❛rt✐r ❞❡ ❤♦❥❡✳ ✭❜✮ ◗✉❛♥t♦ ❡st❛rá
✈❡♥❞❡♥❞♦ ❞❛q✉✐ ❛ ❞♦✐s ❛♥♦s❄ ❊ ❞❛q✉✐ ❛ q✉❛tr♦ ❛♥♦s❄✳ ❊s❜♦❝❡ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦✳
✷✹✳ ❯♠❛ ✜r♠❛ ❞❡ s❡r✈✐ç♦s ❞❡ ❢♦t♦❝ó♣✐❛s t❡♠ ✉♠ ❝✉st♦ ✜①♦ ❞❡ ❘$800, 00 ♣♦r ♠ês ❡
❝✉st♦s ✈❛r✐á✈❡✐s ❞❡ 0, 06 ♣♦r ❢♦❧❤❛ q✉❡ r❡♣r♦❞✉③✳ ❊①♣r❡ss❡ ❛ ❢✉♥çã♦ ❝✉st♦ t♦t❛❧ ❡♠
❢✉♥çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ♣á❣✐♥❛s x ❝♦♣✐❛❞❛s ♣♦r ♠ês✳ ❙❡ ♦s ❝♦♥s✉♠✐❞♦r❡s ♣❛❣❛♠ 0, 1
♣♦r ❢♦❧❤❛✳ ◗✉❛♥t❛s ❢♦❧❤❛s ❛ ✜r♠❛ t❡♠ q✉❡ ♣r♦❞✉③✐r ♣❛r❛ ♥ã♦ t❡r ♣r❡❥✉í③♦❄
✷✺✳ ❆ ❡q✉❛çã♦ ❞❡ ❞❡♠❛♥❞❛ ❞❡ ✉♠ ❝❡rt♦ ♣r♦❞✉t♦ é q = 14 − 2p ❡ ❛ ❡q✉❛çã♦ ❞❡ ♦❢❡rt❛
q = 6p − 10✳ ❉❡t❡r♠✐♥❡ ♦ ♣♦♥t♦ ❞❡ ❡q✉✐❧í❜r✐♦✳
✷✻✳ ❙❡❥❛ ❛ ❢✉♥çã♦ y = xn , x > 0✳ P❛r❛ q✉❡ ✈❛❧♦r❡s ❞❡ x ❡st❛ ❢✉♥çã♦ t❡♠ ✈❛❧♦r❡s
♠❛✐♦r❡s q✉❡ ♦s ❞❡ s✉❛ ❢✉♥çã♦ ✐♥✈❡rs❛✳
ax + b
❝♦✐♥❝✐❞❛ ❝♦♠
✷✼✳ ◗✉❛❧ ❞❡✈❡ s❡r ❛ ❝♦♥❞✐çã♦ ♣❛r❛ q✉❡ ❛ ❢✉♥çã♦ ❤♦♠♦❣rá✜❝❛ y =
cx + d
s✉❛ ✐♥✈❡rs❛✳ ❙❛❜❡✲s❡ q✉❡ ad 6= bc✳
✷✽✳ ◗✉❛❧ é ❛ ❝❛r❛❝t❡ríst✐❝❛ ❞♦ ❣rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ❤♦♠♦❣rá✜❝❛ ✐❞❡♥t✐❝❛♠❡♥t❡ ❛ s✉❛
✐♥✈❡rs❛ ❄
✶✶✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✾✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ f (x) =
x2 + 2x + c
❛ss✉♠❡ q✉❛❧q✉❡r ✈❛❧♦r r❡❛❧ s✐ 0 < c ≤ 1✳
x2 + 4x + 3c
✸✵✳ ❖ ♣❡s♦ ❛♣r♦①✐♠❛❞♦ ❞♦s ♠ús❝✉❧♦s ❞❡ ✉♠❛ ♣❡ss♦❛ é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛ s❡✉
♣❡s♦ ❝♦r♣♦r❛❧✳ ✭✶✳✮ ❊①♣r❡ss❡ ♦ ♥ú♠❡r♦ ❞❡ q✉✐❧♦s ❞♦ ♣❡s♦ ❛♣r♦①✐♠❛❞♦ ❞♦s ♠ús❝✉❧♦s
❞❡ ✉♠❛ ♣❡ss♦❛ ❝♦♠♦ ❢✉♥çã♦ ❞❡ s❡✉ ♣❡s♦ ❝♦r♣♦r❛❧✱ s❛❜❡♥❞♦ q✉❡ ✉♠❛ ♣❡ss♦❛ ❝♦♠
68 kg t❡♠ ♣❡s♦ ❛♣r♦①✐♠❛❞♦ ❞❡ s❡✉s ♠ús❝✉❧♦s 27 kg ✳ ✭✷✳✮ ❆❝❤❡ ♦ ♣❡s♦ ♠✉s❝✉❧❛r
❛♣r♦①✐♠❛❞♦ ❞❡ ✉♠❛ ♣❡ss♦❛ ❝✉❥♦ ♣❡s♦ ❝♦r♣♦r❛❧ é ❞❡ 60 kg ✳
✸✶✳ ❯♠ ❢❛❜r✐❝❛♥t❡ ✈❡♥❞❡ ❝❡rt♦ ❛rt✐❣♦ ❛♦s ❞✐str✐❜✉✐❞♦r❡s ❛ ❘$20 ♣♦r ✉♥✐❞❛❞❡ ♣❛r❛ ♣❡❞✐❞♦s
♠❡♥♦r❡s ❞❡ 50 ✉♥✐❞❛❞❡s✳ ◆♦ ❝❛s♦ ❞❡ ♣❡❞✐❞♦s ❞❡ 50 ✉♥✐❞❛❞❡s ♦✉ ♠❛✐s ✭❛té 600✮✱ ♦
♣r❡ç♦ t❡♠ ✉♠ ❞❡s❝♦♥t♦ ❞❡ 2 ❝❡♥t❛✈♦s ✈❡③❡s ♦ ♥ú♠❡r♦ ❡♥❝♦♠❡♥❞❛❞♦✳ ◗✉❛❧ é ❛
q✉❛♥t✐❞❛❞❡ ❞❡ ❡♥❝♦♠❡♥❞❛ q✉❡ ♣r♦♣♦r❝✐♦♥❛ ♠❛✐♦r ✐♥❣r❡ss♦ ♣❛r❛ ♦ ❢❛❜r✐❝❛♥t❡❄
✸✷✳ ❉❡s❡♥❤❛r
♦ ❣rá✜❝♦ ❡ ❞❡t❡r♠✐♥❡ ♦ ❝✉st♦ ♠é❞✐♦ ❞❛ ❢✉♥çã♦ ❞❡ ❝✉st♦ t♦t❛❧ C(q) =
q+b
aq
♦♥❞❡ a, b ❡ c sã♦ ❝♦♥st❛♥t❡s ♣♦s✐t✐✈❛s b < c✳
q+c
✸✸✳ ❯♠❛ ♠❡r❝❡❛r✐❛ ❛♥✉♥❝✐❛ ❛ s❡❣✉✐♥t❡ ♣r♦♠♦çã♦✿
✏P❛r❛ ❝♦♠♣r❛s ❡♥tr❡
❣❛♥❤❡
(x/10)%
100, 00
❡
600, 00
r❡❛✐s ❝♦♠♣r❡
(x + 100)
r❡❛✐s ❡
❞❡ ❞❡s❝♦♥t♦ ♥❛ s✉❛ ❝♦♠♣r❛✳✑
◗✉❛❧ ❛ ♠❛✐♦r q✉❛♥t✐❛ q✉❡ s❡ ♣❛❣❛r✐❛ à ♠❡r❝❡❛r✐❛ ♥❡st❛ ♣r♦♠♦çã♦ ❄
✸✹✳ ❈♦♥s✐❞❡r❡♠♦s ❞✉❛s ❢✉♥çõ❡s f ❡ g ❞❡✜♥✐❞❛s ♣♦r✿
f (x) =| x − 2 | + | x − 1 |
2x − 1, s❡✱ x ≤ −1
❡ g(x) = 2,
s❡✱ − 1 < x < 1
2
x,
s❡✱ 1 ≤ x
❉❡t❡r♠✐♥❡ ❛s ❢✉♥çõ❡s f ◦ g ❡ g ◦ f ✳
✶✷✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✻
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❖✉tr♦s t✐♣♦s ❞❡ ❢✉♥çõ❡s r❡❛✐s
✷✳✻✳✶
❋✉♥çõ❡s ✐♠♣❧í❝✐t❛s
❙✉♣♦♥❤❛♠♦s t❡♠♦s ✉♠❛ ❡q✉❛çã♦ ❡♥✈♦❧✈❡♥❞♦ ❞✉❛s ✈❛r✐á✈❡✐s ❞✐❣❛♠♦s
f (x, y) = C
♦♥❞❡
C
❡
y✱
❞♦ t✐♣♦
é ✉♠❛ ❝♦♥st❛♥t❡ r❡❛❧✳ ●❡r❛❧♠❡♥t❡ ❡st❛ ❡q✉❛çã♦ ♣♦❞❡♠♦s r❡♣r❡s❡♥t❛r
x0y ✳
❣r❛✜❝❛♠❡♥t❡ ♠❡❞✐❛♥t❡ ❛❧❣✉♠❛ ❝✉r✈❛ ♥♦ ♣❧❛♥♦ ❝❛rt❡s✐❛♥♦
P❡r❣✉♥t❛✿
x
❊st❛ ❝✉r✈❛ ♣♦❞❡ s❡r ♦ ❣rá✜❝♦ ❞❡
✉♠❛ ❢✉♥çã♦ ❄
y✻
●❡r❛❧♠❡♥t❡ ✐st♦ ♥ã♦ ❛❝♦♥t❡❝❡✳
P❡r❣✉♥t❛✿
❊①✐st❡ ✉♠ ✏ tr❡❝❤♦ ✑ ❞❛ ❝✉r✈❛ q✉❡
s❡❥❛ ♣♦ssí✈❡❧ ❡①♣r✐♠✐r
x
✛
y ❝♦♠♦ ❢✉♥çã♦ ❞❡ x ✭♦✉ ❡♥tã♦
x✮❄❀
② ❝♦♠♦ ❢✉♥çã♦ ❞❡
f : A −→ B
3
✲
−3
✐st♦ é ♣♦❞❡♠♦s r❡♣r❡s❡♥t❛r
3
♣❛r❛ ❞❡t❡r♠✐♥❛❞♦s s✉❜❝♦♥❥✉♥t♦s ❞❡
−3
❄
♥ú♠❡r♦s r❡❛✐s❄✳
◗✉❛♥❞♦ ❛ r❡s♣♦st❛ é ❛✜r♠❛t✐✈❛✱ ❞✐③✲s❡ q✉❡ ❛
f : A −→ B é
❡q✉❛çã♦ f (x, y) = C ✳
❢✉♥çã♦
❋✐❣✉r❛ ✷✳✸✶✿
❞❡✜♥✐❞❛ ✐♠♣❧í❝✐t❛♠❡♥t❡ ♣❡❧❛
❊①❡♠♣❧♦ ✷✳✻✽✳
x2 + y 2 = 9✱ r❡♣r❡s❡♥t❛❞❛ ♥♦ ♣❧❛♥♦ ❝❛rt❡s✐❛♥♦ é
❝❡♥tr♦ (0, 0) ❡ r❛✐♦ 3 ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✷✳✸✶✮✳
❙❡❥❛ ❛ ❡q✉❛çã♦
❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❡
♦ ❣rá✜❝♦ ❞❡ ✉♠❛
❖❜s❡r✈❡ q✉❡ ❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ ♥ã♦ é ♦ ❣rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦❀ ♠❛s ♣♦❞❡♠♦s s❡♣❛r❛r ❡♠
✏ tr❡❝❤♦s✑ ♦ ❞♦♠í♥✐♦ ❞❡ss❛ r❡❧❛çã♦ ♣❛r❛ ♦❜t❡r
✐✮
❆ ❢✉♥çã♦
f : [−3, 3] −→ R
❞❡✜♥✐❞❛ ♣♦r
y
❝♦♠♦ ❢✉♥çã♦ ❞❡
f (x) =
❢❡rê♥❝✐❛ s✉♣❡r✐♦r ❛♦ ❡✐①♦✲x✳
✐✐✮
❆ ❢✉♥çã♦
f : [−3, 3] −→ R
❞❡✜♥✐❞❛ ♣♦r
❝✉♥❢❡rê♥❝✐❛ ✐♥❢❡r✐♦r ❛♦ ❡✐①♦✲x✳
✷✳✻✳✷
√
9 − x2
f (x) = −
√
x✳
❝✉❥♦ ❣rá✜❝♦ é ❛ s❡♠✐❝✐r❝✉♥✲
9 − x2
❝✉❥♦ ❣rá✜❝♦ é ❛ s❡♠✐❝✐r✲
❋✉♥çã♦ ♣❡r✐ó❞✐❝❛
❉❡✜♥✐çã♦ ✷✳✶✾✳
f : A −→ R é ♣❡r✐ó❞✐❝❛
x ∈ D(f )✱ t❡♠♦s✿
✐✐✮ f (x + t) = f (x)
❉✐③❡♠♦s q✉❡ ✉♠❛ ❢✉♥çã♦
t 6= 0✱ t❛❧ q✉❡ ♣❛r❛
✐✮ x + t ∈ D(f )
❖ ♥ú♠❡r♦
t
t♦❞♦
❞❡♥♦♠✐♥❛✲s❡ ✏ ✉♠ ♣❡rí♦❞♦ ❞❡
❖ ♠❡♥♦r ♣❡rí♦❞♦ ♣♦s✐t✐✈♦
❝❛s♦ ❞✐③❡♠♦s q✉❡
f
t
❞❡
f
q✉❛♥❞♦ ❡①✐st❡ ✉♠ ♥ú♠❡r♦ r❡❛❧
f ✑✳
q✉❛♥❞♦ ❡①✐st❛✱ ❞❡♥♦♠✐♥❛✲s❡ ✏ ♦ ♣❡rí♦❞♦ ❞❡
é ♣❡r✐ó❞✐❝❛ ❞❡ ♣❡rí♦❞♦
f ✑✱
❡ ♥❡st❡
t✳
✶✷✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❊①❡♠♣❧♦ ✷✳✻✾✳
❆ ❢✉♥çã♦ ♠❛♥t✐ss❛ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r f (x) = x − [|x|] é ♣❡r✐ó❞✐❝❛ ❞❡ ♣❡rí♦❞♦
t = 1✳ ❖❜s❡r✈❡ q✉❡ f (x + 1) = (x + 1) − [|x + 1|] = x + 1 − [|x|] − 1 = x − [|x|] = f (x) ❡
♥ã♦ ❡①✐st❡ ♦✉tr♦ ♥ú♠❡r♦ t t❛❧ q✉❡ 0 < t < 1 q✉❡ s❡❥❛ ♦ ♣❡rí♦❞♦ ❞❡ f ✱ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦
♠❛♥t✐ss❛ ✐❧✉str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✸✷✮✳
r
✻y
✛
✛
✲
−2
−1
0
1
2
3
−2
x
❄
r
✻y
r
−x
1
−x
1
r −1
−1
0
❄
✲
r
1
2
r
3
x
❋✐❣✉r❛ ✷✳✸✸✿
❋✐❣✉r❛ ✷✳✸✷✿
❊①❡♠♣❧♦ ✷✳✼✵✳
❆ ❢✉♥çã♦ ♠❛♥t✐ss❛ f : Z −→ {−1, 1} ❞❡✜♥✐❞❛ ♣♦r f (x) = (−1)x é ♣❡r✐ó❞✐❝❛ ❞❡ ♣❡rí♦❞♦
❞♦✐s✱ s❡✉ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✸✸✮
✷✳✻✳✸
❋✉♥çã♦ ❛❧❣é❜r✐❝❛
❉❡✜♥✐çã♦ ✷✳✷✵✳
❉✐③✲s❡ q✉❡ ✉♠❛ ❢✉♥çã♦ y = f (x) ❞❡✜♥✐❞❛ ♥✉♠ ❝♦♥❥✉♥t♦ A✱ é ❛❧❣é❜r✐❝❛ ❞❡ ❣r❛✉ n✱
q✉❛♥❞♦ ❡❧❛ é s♦❧✉çã♦ ❞❡ ✉♠❛ ❡q✉❛çã♦ ❛❧❣é❜r✐❝❛ ❞❛ ❢♦r♠❛✿
P (x, y) = P0 (x)yn + P1 (x)yn−1 + · · · + Pn−1 (x)y + Pn (x) = 0
P❛r❛ n ∈ N, n ≥ 1 ❡ P0 (x), P1 (x), · · · , Pn−1 (x), Pn (x) ♣♦❧✐♥ô♠✐♦s ❞❡ ✈❛r✐á✈❡❧ x✳
❊①❡♠♣❧♦ ✷✳✼✶✳
❆ ❢✉♥çã♦ y =
2
x + x − 1 = 0✳
√
3
x2 + 1 − x é ❛❧❣é❜r✐❝❛✱ ♣♦✐s ❡st❛ ❢✉♥çã♦ é s♦❧✉çã♦ ❞❛ ❡q✉❛çã♦ y 3 −
❊①❡♠♣❧♦ ✷✳✼✷✳
❚♦❞♦ ♣♦❧✐♥ô♠✐♦ y = P (x) é ✉♠❛ ❢✉♥çã♦ ❛❧❣é❜r✐❝❛✱ ♦❜s❡r✈❡ q✉❡ é s♦❧✉çã♦ ❞❛ ❡q✉❛çã♦
y − P (x) = 0 ♣❛r❛ t♦❞♦ x ∈ R✳
✶✷✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✻✳✹
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❋✉♥çã♦ ♣❛r✳ ❋✉♥çã♦ í♠♣❛r
❉❡✜♥✐çã♦ ✷✳✷✶✳
❛✮
❉✐③❡♠♦s q✉❡
❜✮
❉✐③❡♠♦s q✉❡
f : A −→ R é ✏ ❢✉♥çã♦ ♣❛r ✑✱ s❡ ♣❛r❛ t♦❞♦ x ∈ D(f )✱ t❡♠♦s✿
−x ∈ D(f ) ❡ f (−x) = f (x) ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✷✳✸✹✮ ♥❛ ❡sq✉❡r❞❛
f : A −→ R é ✏ ❢✉♥çã♦ í♠♣❛r ✑✱ s❡ ♣❛r❛ t♦❞♦ x ∈ D(f )✱ t❡♠♦s✿
−x ∈ D(f ) ❡ f (−x) = −f (x) ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✷✳✸✹✮ ♥❛ ❞✐r❡✐t❛✳
q✉❡
q✉❡
❋✐❣✉r❛ ✷✳✸✹✿
❊①❡♠♣❧♦ ✷✳✼✸✳
❆ ❢✉♥çã♦ f (x) = x4 ✱ ♣❛r❛ x ∈ R é ❢✉♥çã♦ ♣❛r✱ ♣♦✐s ♣❛r❛ t♦❞♦ x ∈ R ❡ −x ∈ R t❡♠♦s
f (−x) = (−x)4 = x4 = f (x)✳
❊①❡♠♣❧♦ ✷✳✼✹✳
❆ ❢✉♥çã♦ f (x) = x5 ✱ ♣❛r❛ x ∈ R é ❢✉♥çã♦ í♠♣❛r✱ ♣♦✐s ♣❛r❛ t♦❞♦ x ∈ R ❡ −x ∈ R
t❡♠♦s f (−x) = (−x)5 = −x5 = −f (x)✳
❖❜s❡r✈❛çã♦ ✷✳✽✳
❛✮
❖ ❣rá✜❝♦ ❞❡ t♦❞❛ ❢✉♥çã♦ í♠♣❛r é s✐♠étr✐❝❛ r❡s♣❡✐t♦ ❞♦ ♦r✐❣❡♠ ❞❡ ❝♦♦r❞❡♥❛❞❛s✳
❜✮
❖ ❣rá✜❝♦ ❞❡ t♦❞❛ ❢✉♥çã♦ ♣❛r é s✐♠étr✐❝❛ r❡s♣❡✐t♦ ❞♦ ❡✐①♦✲y ✳
❊①❡♠♣❧♦ ✷✳✼✺✳
❈❧❛ss✐✜q✉❡ ❛s ❢✉♥çõ❡s ❛❜❛✐①♦ ❡♠ ♣❛r❡s✱ í♠♣❛r❡s ♦✉ s❡♠ ♣❛r✐❞❛❞❡✿
❛✮ f (x) = 2x
❙♦❧✉çã♦✳
❛✮ f (−x) = 2(−x) = −2x
❜✮g(x) = x2 − 1
⇒
❝✮ h(x) = x2 − 5x + 6
f (−x) = −f (x)✱
✶✷✸
♣♦rt❛♥t♦
f
é í♠♣❛r✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❜✮ g(x) = x2 − 1
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
g(−x) = (−x)2 − 1 = x2 − 1
⇒
⇒
g(x) = g(−x)✱
♣♦rt❛♥t♦
g
é
♣❛r✳
❝✮ h(x) = x2 − 5x + 6
❈♦♠♦
❡
h(−x) = (−x)2 − 5(−x) + 6 = x2 + 5x + 6
h(x) 6= h(−x)✱
❡♥tã♦
h
♥ã♦ é ♣❛r❀ t❡♠♦s t❛♠❜é♠
−h(x) 6= h(−x)✱
❧♦❣♦
h
♥ã♦
é í♠♣❛r✳
P♦r ♥ã♦ s❡r ♣❛r ♥❡♠ í♠♣❛r✱ ❝♦♥❝❧✉í♠♦s q✉❡
✷✳✻✳✺
h
é ❢✉♥çã♦ s❡♠ ♣❛r✐❞❛❞❡✳
❋✉♥çã♦ ♠♦♥♦tô♥✐❝❛
❉❡✜♥✐çã♦ ✷✳✷✷✳
❙❡❥❛♠ I ✉♠ ✐♥t❡r✈❛❧♦ ❞❛ r❡t❛ R ❡ f : A −→ R ❢✉♥çã♦✱ s❡♥❞♦ I ⊆ A
❛✮ ❆ ❢✉♥çã♦ f é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ I ✱ s❡ ♣❛r❛ t♦❞♦ x1 , x2 ∈ I ❝♦♠
x1 < x2 ❡♥tã♦ f (x1 ) < f (x2 )✳
❜✮ ❯♠❛ ❢✉♥çã♦ f é ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ I ✱ s❡ ♣❛r❛ t♦❞♦ x1 , x2 ∈ I
❝♦♠ x1 < x2 ❡♥tã♦ f (x1 ) > f (x2 )✳
❝✮ ❯♠❛ ❢✉♥çã♦ f é ❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ I ✱ s❡ ♣❛r❛ t♦❞♦ x1 , x2 ∈ I ❝♦♠ x1 < x2
❡♥tã♦ f (x1 ) ≤ f (x2 )✳
❞✮ ❯♠❛ ❢✉♥çã♦ f é ❞❡❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ I ✱ s❡ ♣❛r❛ t♦❞♦ x1 , x2 ∈ I ❝♦♠ x1 < x2
❡♥tã♦ f (x1 ) ≥ f (x2 )✳
❊①❡♠♣❧♦ ✷✳✼✻✳
❆ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r f (x) = 5 é ❝r❡s❝❡♥t❡ ❡ ♥ã♦ ❝r❡s❝❡♥t❡ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✱ ❡st❛
❢✉♥çã♦ ♥ã♦ é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ♥❡♠ ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡✳
❊①❡♠♣❧♦ ✷✳✼✼✳
❆ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r f (x) = 5x + 2✱ é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
❆ ❢✉♥çã♦ g(x) = −x3 é ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
y✻
❊♠ q✉❛❧q✉❡r ✉♠ ❞♦s ❝❛s♦s✱ s❡ ❞✐③ q✉❡ ❛ ❢✉♥çã♦
f
é ♠♦♥♦tô♥✐❝❛ ♥♦ ✐♥t❡r✈❛❧♦
I❀
♥♦s ❝❛s♦s
❛✮
❡
❜✮
❡❧❛ t❛♠❜é♠ s❡ ❞✐③ ♠♦♥♦tô♥✐❝❛ ❡str✐t❛ ♥♦ ✐♥t❡r✈❛❧♦
I✳
2
✛
❊①❡♠♣❧♦ ✷✳✼✽✳
❆ ❢✉♥çã♦✿ f (x) =| x2 − 9 | é ❡str✐t❛♠❡♥t❡ ❝r❡s✲
❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ [−3, 0] ∪ [3, +∞) ❡ ❡str✐t❛♠❡♥t❡
❞❡❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ (−∞, −3] ∪ [0, 3]✳
✶✷✹
−x
✲
−3
3
0
x
❄
❋✐❣✉r❛ ✷✳✸✺✿
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❖ ❣rá✜❝♦ ❞❡st❛ ❢✉♥çã♦
f (x) ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛
✭✷✳✸✺✮✳
❖❜s❡r✈❛çã♦ ✷✳✾✳
❆ ❢✉♥çã♦
f : I −→ R
é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡✭❞❡❝r❡s❝❡♥t❡✮✱ s❡ ❡ s♦♠❡♥t❡ s❡✱
❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡ ✭❝r❡s❝❡♥t❡✮✳
−f
é
Pr♦♣r✐❡❞❛❞❡ ✷✳✶✳
❙❡ ❛ ❢✉♥çã♦
f : I −→ R
é ❡str✐t❛♠❡♥t❡ ♠♦♥♦tô♥✐❝❛✱ ❡♥tã♦
f
é ✐♥❥❡t✐✈❛✳
❉❡♠♦♥str❛çã♦✳
f : I −→ R s❡❥❛ ❡str✐t❛♠❡♥t❡ ♠♦♥♦tô♥✐❝❛ ❡ s❡❥❛♠ a, b ∈ I
❞❡ ♠♦❞♦ q✉❡ a 6= b✳ ▲♦❣♦ a < b ♦✉ b < a✳
❙✉♣♦♥❤❛♠♦s q✉❡ a < b ❡ f s❡❥❛ ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡✱ ❡♥tã♦ f (a) < f (b)✱ ❞❡ ♦♥❞❡
f (a) 6= f (b)✳
❊♠ q✉❛❧q✉❡r ❞♦s ❞♦✐s ❝❛s♦s s❡❣✉❡ q✉❡ f (a) 6= f (b)✳
P♦rt❛♥t♦✱ f é ✐♥❥❡t✐✈❛✳
❙✉♣♦♥❤❛♠♦s q✉❡ ❛ ❢✉♥çã♦
✷✳✻✳✻
❋✉♥çã♦ ❧✐♠✐t❛❞❛
❉❡✜♥✐çã♦ ✷✳✷✸✳
❙❡❥❛
❛✮
f : R −→ R
❝✮
s✉♣❡r✐♦r♠❡♥t❡✏ ✱ q✉❛♥❞♦ ❡①✐st❡
M1 ∈ R
t❛❧
f é ✏ ❧✐♠✐t❛❞❛
M2 ≤ f (x) ∀ x ∈ D(f )✳
✐♥❢❡r✐♦r♠❡♥t❡ ✑✱ q✉❛♥❞♦ ❡①✐st❡
M2 ∈ R
t❛❧
f (x) ≤ M1
❉✐③❡♠♦s q✉❡ ❛ ❢✉♥çã♦
q✉❡
D(f )✳
f é ✏❧✐♠✐t❛❞❛
∀ x ∈ D(f )✳
❉✐③❡♠♦s q✉❡ ❛ ❢✉♥çã♦
q✉❡
❜✮
✉♠❛ ❢✉♥çã♦ r❡❛❧ ❝♦♠ ❞♦♠í♥✐♦
❙❡ ✉♠❛ ❢✉♥çã♦ ❢♦r ❧✐♠✐t❛❞❛ s✉♣❡r✐♦r♠❡♥t❡ ❡ ✐♥❢❡r✐♦r♠❡♥t❡✱ ❞✐③✲s❡ q✉❡ ❡❧❛ é
M ∈ R
M = max .{ | M1 |, | M2 | }✳
✏ ❧✐♠✐t❛❞❛ ✑✱ ❡♠ ❝♦♥s❡q✉ê♥❝✐❛ t❡♠♦s q✉❡ ❡①✐st❡
M,
❞✮
∀ x ∈ D(f )✱
s❡♥❞♦
x ∈ D(f ) t❛❧ q✉❡ | f (x) |≥ M ♣❛r❛ ❛❧❣✉♠ M
❞✐③❡♠♦s q✉❡ f (x) é ✏❢✉♥çã♦ ♥ã♦ ❧✐♠✐t❛❞❛ ✑✳
❙❡ ❡①✐st❡
t❛❧ q✉❡
| f (x) |≤
s✉✜❝✐❡♥t❡♠❡♥t❡ ❣r❛♥❞❡✱
❊①❡♠♣❧♦ ✷✳✼✾✳
✐✮
f (x) = xx ♥ã♦ é ❧✐♠✐t❛❞❛ ❡♠ R✱ ♣♦✐s ✐♠❛❣✐♥❡✱ ♣❛r❛ ✉♠ ❡❧❡♠❡♥t♦ ❜❛st❛♥t❡
✏❣r❛♥❞❡✑ x ∈ R ❞♦ ❞♦♠í♥✐♦✱ ♥ã♦ ❝♦♥s❡❣✉✐r✐❛♠♦s ♦❜t❡r ♦✉tr♦ M ∈ R t❛❧ q✉❡ f s❡❥❛
❆ ❢✉♥çã♦
❧✐♠✐t❛❞❛✳
✶✷✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦rt❛♥t♦✱
✐✐✮
❆ ❢✉♥çã♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
f (x) = xx
g(x) = senx
A ⊆ D(R)✱
❧✐♠✐t❛❞♦ ❡♠ A✳
❙❡❥❛
é ♥ã♦ ❧✐♠✐t❛❞❛ ✭é ✐❧✐♠✐t❛❞❛✮✳
é ❧✐♠✐t❛❞❛✱ s❛❜❡✲s❡ q✉❡ q✉❡
f
s❡
é ❧✐♠✐t❛❞♦ ♣❛r❛ t♦❞♦
|g(x)| ≤ 1✳
x ∈ A✱
f
❞✐③❡♠♦s q✉❡
é ✉♠ ❝♦♥❥✉♥t♦
❉❡✜♥✐çã♦ ✷✳✷✹✳
❙❡❥❛
❛✮
f : R −→ R
❙❡ ✉♠❛ ❢✉♥çã♦
Im(f )
✉♠❛ ❢✉♥çã♦ r❡❛❧ ❝♦♠ ❞♦♠í♥✐♦
f
D(f )✳
❢♦r ❧✐♠✐t❛❞❛ s✉♣❡r✐♦r♠❡♥t❡✱ ♦ ♠❡♥♦r ❞♦s ❧✐♠✐t❡s s✉♣❡r✐♦r❡s ❞❛
sup .f (x)
❞❡♥♦♠✐♥❛✲s❡ ✏s✉♣r❡♠♦ ❞❛ ❢✉♥çã♦✏ ✱ ❡ ✐♥❞✐❝❛✲s❡ ❝♦♠✿
x∈D(f )
❜✮
❙❡ ❛ ❢✉♥çã♦
f
é ❧✐♠✐t❛❞❛ ✐♥❢❡r✐♦r♠❡♥t❡✱ ♦ ♠❛✐♦r ❞♦s ❧✐♠✐t❡s ✐♥❢❡r✐♦r❡s ❞❛
❞❡♥♦♠✐♥❛✲s❡ í♥✜♠♦ ❞❛ ❢✉♥çã♦✱ ❡ ✐♥❞✐❝❛✲s❡ ❝♦♠✿
Im(f )
inf .f (x)✳
x∈D(f )
❊①❡♠♣❧♦ ✷✳✽✵✳
✐✮
1
✱ ♦
x
sup .f (x) = ∞
❙❡❥❛ ❛ ❢✉♥çã♦
♣♦✐s ♦
f (x) =
inf .f (x) = 0✳
í♥✜♠♦
❊st❛ ❢✉♥çã♦ ♥ã♦ t❡♠ s✉♣r❡♠♦✱
x∈D(f )
x∈D(f )
✐✐✮
✐✐✐✮
❙❡❥❛
❙❡❥❛
g : (0, 1] −→ R✱
❡
h : (2, 6) −→ R✱
g(x) = 1 −
1
✳
x
❞❡✜♥✐❞❛ ♣♦r
❆q✉✐✱
sup .f (x) = 0
❡ ♦ ✐♥✜♠♦ ♥ã♦ ❡①✐st❡✳
x∈D(f )
h(x) = (x − 3)2 + 1✱
t❡♠♦s
inf .f (x) = 1
❡
x∈D(f )
sup .f (x) = 10
x∈D(f )
❉❡✜♥✐çã♦ ✷✳✷✺✳
❙❡❥❛
❛✮
f : R −→ R
✉♠❛ ❢✉♥çã♦ r❡❛❧ ❝♦♠ ❞♦♠í♥✐♦
❙❡ ♦ s✉♣r❡♠♦ ❞♦ ❝♦♥❥✉♥t♦
Im(f )
é t❛❧ q✉❡
sup .f (x) ≤ f (α),
∀ α ∈ D(f )✱
x∈D(f )
s✉♣r❡♠♦ é ❝❤❛♠❛❞♦ ❞❡ ♠á①✐♠♦ ❞❛ ❢✉♥çã♦
❜✮
D(f )✳
❙❡ ♦ í♥✜♠♦ ❞♦ ❝♦♥❥✉♥t♦
Im(f )
é t❛❧ q✉❡
f✱
❡ ✐♥❞✐❝❛✲s❡ ❝♦♠✿
f (β) ≤ inf .f (x),
í♥✜♠♦ é ❝❤❛♠❛❞♦ ❞❡ ♠í♥✐♠♦ ❞❛ ❢✉♥çã♦
x∈D(f )
f✱
❡ ✐♥❞✐❝❛✲s❡ ❝♦♠✿
max .f (x)
x∈D(f )
∀ α ∈ D(f )✱
min .f (x)
x∈A
♦
✳
♦
✳
❊①❡♠♣❧♦ ✷✳✽✶✳
✶✷✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
✶✳ ❆ ❢✉♥çã♦ ❝♦♥st❛♥t❡ f (x) = k, ∀ x ∈ R✭k ❝♦♥st❛♥t❡✮ é ❧✐♠✐t❛❞❛ ♦❜s❡r✈❡✱ sup .f (x) =
x∈R
max .f (x) = inf .f (x) = min .f (x) = k ✳
x∈R
x∈R
x∈R
✷✳ ❆ ❢✉♥çã♦ h(x) = x2 ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ A = (−2, 3) é ❧✐♠✐t❛❞❛ ♦❜s❡r✈❡✱ sup .h(x) = 9
❡ inf .h(x) = 0 = min .h(x) ♣♦ré♠♥ã♦ ❡①✐st❡ max .h(x)✳
x∈A
x∈A
x∈A
x∈A
✸✳ ❆ ❢✉♥çã♦ g(x) = x2 ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ A = [−2, 3] é ❧✐♠✐t❛❞❛ ♦❜s❡r✈❡✱ sup .h(x) =
x∈A
9 = max .h(x) ❡ inf .h(x) = 0 = min .h(x)✳
x∈A
✷✳✻✳✼
x∈A
x∈A
❋✉♥çã♦ ❡❧❡♠❡♥t❛r
❉❡✜♥✐çã♦ ✷✳✷✻✳ ❋✉♥çã♦ ❡❧❡♠❡♥t❛r✳
❯♠❛ ❢✉♥çã♦ ❡❧❡♠❡♥t❛r é ❛q✉❡❧❛ q✉❡ ♦❜té♠✲s❡ ♠❡❞✐❛♥t❡ ✉♠ ♥ú♠❡r♦ ✜♥✐t♦ ❞❡ ♦♣❡r❛✲
çõ❡s ❞❡ ❛❞✐çã♦✱ s✉❜tr❛çã♦✱ ♠✉❧t✐♣❧✐❝❛çã♦✱ ❞✐✈✐sã♦✱ ❡ ❝♦♠♣♦s✐çã♦ ❞❡ ❢✉♥çõ❡s ❝♦♠♦ ♣♦r
❡①❡♠♣❧♦✿ ❛s ❢✉♥çõ❡s ❝♦♥st❛♥t❡s❀ ❛ ❢✉♥çã♦ ♣♦tê♥❝✐❛ y = xn ❀ ❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧
y = ax ❀ ❛s ❢✉♥çõ❡s ❧♦❣❛rít♠✐❝❛s❀ tr✐❣♦♥♦♠étr✐❝❛s ❡ tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s✳
❙❡❥❛♠ f1 , f2 , f3 , · · · , fn ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ♥✉♠ ♠❡s♠♦ ❝♦♥❥✉♥t♦ A✱ ❡ a1 , a2 , a3 , · · · , an
♥ú♠❡r♦s r❡❛✐s s❡♥❞♦ n ∈ N✳
❉❡✜♥✐çã♦ ✷✳✷✼✳ ❈♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ✜♥✐t❛✳
❆ ❢✉♥çã♦ f : A −→ R ❞❡✜♥✐❞❛ ♣♦r✿ f = a1 f1 + a2 f1 + a3 f3 + · · · + an fn é
❞❡♥♦♠✐♥❛❞❛ ✉♠❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ✜♥✐t❛ ❞❡ f1 , f2 , f3 , · · · , fn ✳
▲♦❣♦✱ f é ✉♠❛ ❢✉♥çã♦ ❡❧❡♠❡♥t❛r✳
❊①❡♠♣❧♦ ✷✳✽✷✳
▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ f (x) = (x + 3)n ♣♦❞❡♠♦s ❡s❝r❡✈❡r ❝♦♠♦ ✉♠❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r
✜♥✐t❛✳
❉❡♠♦♥str❛çã♦✳
❙❛❜❡✲s❡ ♣❡❧♦ ❇✐♥ô♠✐♦ ❞❡ ◆❡✇t♦♥ q✉❡
f (x) = (x + 3)n =
n
X
k=0
= xn + 3nxn−1 +
n
k
!
× xn−k · 3k =
3n−2 n(m − 1) 3n−1 n
32 n(n − 1) n−2
x
+ ··· +
+
+ 3n
2!
2!
1
✶✷✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊s❝r❡✈❡♥❞♦ fk (x) = xn−k ✱ ❡ ak = 3k
n
k
!
✱ ❡♥tã♦ s❡❣✉❡ q✉❡
f (x) = (x + 3)n = a1 f1 (x) + a2 f2 (x) + a3 f3 (x) + · · · + an fn (x)
▲♦❣♦✱ f é ❞❡♥♦♠✐♥❛❞❛ ✉♠❛ ❝♦♠❜✐♥❛çã♦ ❧✐♥❡❛r ✜♥✐t❛✳
❊①❡♠♣❧♦ ✷✳✽✸✳
❖ ♣r❡ç♦ ❛ ♣❛❣❛r ♣❡❧❛ ❧♦❝❛çã♦ ❞❡ ✉♠ ❛✉t♦♠ó✈❡❧ é ❝♦♠♣♦st♦ ❞❡ ❞✉❛s ♣❛rt❡s✿ ✉♠❛ t❛r✐❢❛
✜①❛ ❞✐ár✐❛ ❞❡ R$40, 00 ❡ ✉♠❛ q✉❛♥t✐❛ ❞❡ R$0, 15 ♣♦r q✉✐❧ô♠❡tr♦ r♦❞❛❞♦✳ ▼♦str❡ q✉❡ ♦
♣r❡ç♦ ❛ s❡r ♣❛❣♦ ♣❡❧❛ ❧♦❝❛çã♦ ❞❡ ✉♠ ❞❡st❡s ❛✉t♦♠ó✈❡✐s ♣♦r 5 ❞✐❛s ❡ r♦❞❛♥❞♦ 1200 km s❡rá✱
❡♠ r❡❛✐s✱ ✐❣✉❛❧ ❛ R$380, 00✳
❙♦❧✉çã♦✳
❙❡❥❛ x ♦ ♥ú♠❡r♦ ❞❡ ❞✐❛s✱ ❡ y ♦s q✉✐❧ô♠❡tr♦s r♦❞❛❞♦s✱ ❡♥tã♦ ❛ ❢✉♥çã♦ q✉❡ ❞❡s❝r❡✈❡ ♦
❢❡♥ô♠❡♥♦ é f (x, y) = 40x + 0, 15y ✱ ❧♦❣♦ q✉❛♥❞♦ x = 5 ❡ y = 1200
f (5, 1200) = 40(5) + (0, 15)(1200) = 200 + 180 = 380
❊①❡♠♣❧♦ ✷✳✽✹✳
❯♠ ❣r✉♣♦ ❞❡ ❡st✉❞❛♥t❡s ❞❡❞✐❝❛❞♦s á ❝♦♥❢❡✐çã♦ ❞❡ ❛rt❡s✐❛♥❛ t❡♠ ✉♠ ❣❛st♦ ✜①♦ ❞❡
❘$600.00✱ ❡ ❡♠ ♠❛t❡r✐❛❧ ❣❛st❛ ❘$25.00 ♣♦r ✉♥✐❞❛❞❡ ♣r♦❞✉③✐❞❛✳ ❈❛❞❛ ✉♥✐❞❛❞❡ s❡rá ✈❡♥❞✐❞❛
♣♦r ❘$175.00✳
✶✳
◗✉❛♥t❛s ✉♥✐❞❛❞❡s ♦s ❡st✉❞❛♥t❡s t❡rã♦ q✉❡ ✈❡♥❞❡r ♣❛r❛ ❡①✐st✐r ❡q✉✐❧í❜r✐♦❄
✷✳
◗✉❛♥t❛s ✉♥✐❞❛❞❡s ♦s ❡st✉❞❛♥t❡s t❡rã♦ ✈❡♥❞❡r ♣❛r❛ ♦❜t❡r ❧✉❝r♦ ❞❡ ❘$450.00❄
❙♦❧✉çã♦✳
❙❡❥❛♠ x ✉♥✐❞❛❞❡s ♣r♦❞✉③✐❞❛s✱ ♦ ❣❛st♦ t♦t❛❧ ♣❛r❛ ❛ ♣r♦❞✉çã♦ ❞❡st❛s ✉♥✐❞❛❞❡s é ❞❛❞❛
♣❡❧❛ ❢✉♥çã♦ g(x) = 600 + 25x✱ s❡♥❞♦ q✉❡ ♦ ✐♥❣r❡ss♦ ♣❡❧❛ ✈❡♥❞❛ ❞❡st❛s x ✉♥✐❞❛❞❡s é ❞❛❞❛
♣❡❧❛ ❢✉♥çã♦ f (x) = 175x
✭❛✮
P❛r❛ ❛❝♦♥t❡❝❡r ❡q✉✐❧í❜r✐♦ ❞❡✈❡♠♦s t❡r q✉❡✿ g(x) = f (x)✱ ❡♥tã♦ 600 + 25x = 175x ❞❡
♦♥❞❡ 600 = 150x ♦ q✉❡ r❡s✉❧t❛ x = 4✳
P♦rt❛♥t♦✱ t❡♠ q✉❡ s❡r ✈❡♥❞✐❞❛s q✉❛tr♦ ✉♥✐❞❛❞❡s ♣❛r❛ ❡①✐st✐r ❡q✉✐❧í❜r✐♦✳
✭❜✮
❖ ❧✉❝r♦ é ❞❛❞❛ ♣❡❧❛ ❡①♣r❡ssã♦ f (x) = 450 + g(x)✱ ✐st♦ é 175x = 450 + (600 + 25x) ❞❡
♦♥❞❡ r❡s✉❧t❛ 150x = 1050✱ ❧♦❣♦ x = 7✳
❱❡♥❞❡♥❞♦ s❡t❡ ✉♥✐❞❛❞❡s ♦❜té♠✲s❡ ❧✉❝r♦ ❞❡ 450 r❡❛✐s✳
✶✷✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✷✲✺
✶✳ ❉❛❞❛ ❛ ❢✉♥çã♦ f (x) = √
❞❡ f (x)✳
1
x3
−1
❞❡t❡r♠✐♥❛r s✉❛ ❢✉♥çã♦ ✐♥✈❡rs❛ f −1 (x) ❡ ❛ ✐♠❛❣❡♠
✷✳ ▼♦str❡ q✉❡✱ ♣❛r❛ x > 0 ❛ ❡q✉❛çã♦ y+ | y | −x− | x |= 0 ❞❡t❡r♠✐♥❛ ❛ ❢✉♥çã♦
❝✉❥♦ ❣rá✜❝♦ s❡rá ❛ ❜✐ss❡tr✐③ ❞♦ ♣r✐♠❡✐r♦ â♥❣✉❧♦ ❝♦♦r❞❡♥❛❞♦✱ ❡♥t❛♥t♦ ♣❛r❛ x ≤ 0 sã♦
❛s ❝♦♦r❞❡♥❛❞❛s ❞❡ t♦❞♦s ♦s ♣♦♥t♦s ❞♦ t❡r❝❡✐r♦ q✉❛❞r❛♥t❡ ✭✐♥❝❧✉í❞♦s s❡✉s ♣♦♥t♦s ❞❡
❢r♦♥t❡✐r❛✮ ❛s q✉❡ ❝✉♠♣r❡♠ ❛ ❡q✉❛çã♦ ❞❛❞❛✳
✸✳ ❉❛❞❛s ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s r❡❛✐s✱ ❞❡t❡r♠✐♥❡ ❝❛s♦ ❡①✐st❛✱ s✉❛ ❢✉♥çã♦ ✐♥✈❡rs❛✳
1. f (x) = x2 − 5x + 6
√
4. h(x) = x2 − 4x + 4
x2 − 4
x+2
5. s(x) = x+ | x + 1 |
2. g(x) =
5
7 − 2x
√
6. t(x) = x + 2 − 5
3. f (x) =
✹✳ ❙❡ f (x) = x − 2a✱ ❞❡t❡r♠✐♥❛r ♦s ✈❛❧♦r❡s ❞❛ ❝♦♥st❛♥t❡ ❛ ❞❡ ♠♦❞♦ q✉❡ f (a2 ) =
f −1 (a − 2)✳
4 + 3x
✿
1 − 3x
2. ▼♦str❡ q✉❡ f é 1 − 1✳
✺✳ ❙❡❥❛ f : A −→ [−9, −1) ❞❡✜♥✐❞❛ ♣♦r f (x) =
1. ❉❡t❡r♠✐♥❛r A✳
3. f é s♦❜r❡❄✳
✻✳ ❙❡ f (x) = x + 2c ❡ f (c2 ) = f −1 (c)✱ ❛❝❤❛r ♦ ✈❛❧♦r ❞❡✿
1.
f (0) · f −1 (0)
2.
f (1)
✳
f −1 (1)
✼✳ ❈♦♥str✉✐r ♦ ❣rá✜❝♦ ❡ ❞❡t❡r♠✐♥❛r ❛ ✐♠❛❣❡♠ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
✶✳
✷✳
✸✳
✹✳
2
x −4
, s❡✱ x 6= −2
f (x) =
x+2
3,
s❡✱ x = −2
(
| 4 − x2 |, s❡✱ | x |< 3
f (x) =
5,
s❡✱ | x |≥ 3
| x + 3 |, s❡✱ − 4 ≤ x ≤ 0
f (x) =
3 − x2 ,
s❡✱ 0 < x ≤ 4
−2,
s❡✱ | x |> 4
2
(x − 1) , s❡✱ 0 ≤ x < 2
f (x) =
10 − x2 , s❡✱ 2 ≤ x ≤ 3
−2,
s❡✱ x < 0 ♦✉ x > 3
✶✷✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
− | x + 4 |,
x2 − 4x − 2,
f (x) =
−x2 + 10x − 22,
−3,
R
s❡✱ − 8 ≤ x ≤ 2
s❡✱ 2 < x ≤ 5
s❡✱ 5 < x ≤ 8
s❡✱ | x |> 8
✽✳ ❈♦♥str✉✐r ♦ ❣rá✜❝♦✱ ❞❡t❡r♠✐♥❛r ❛ ✐♠❛❣❡♠ ❡ ✈❡r✐✜q✉❡ s❡ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s sã♦
✐♥✈❡rsí✈❡✐s ✿
3
(x − 1) , s❡✱ 0 ≤ x < 2
1. f (x) =
10 − x2 , s❡✱ 2 ≤ x ≤ 3
−2,
s❡✱ x < 0 ♦✉ x > 3
| x + 3 |, s❡✱ − 4 ≤ x ≤ 0
3. f (x) =
3 − x2 ,
s❡✱ 0 < x ≤ 4
−2,
s❡✱ | x |> 4
| x + 4 |, s❡✱ − 8 ≤ x ≤ 2
x + 2,
s❡✱ 2 < x ≤ 5
5. f (x) =
x3 ,
s❡✱ 5 < x ≤ 8
−3,
s❡✱ | x |> 8
− | x + 4 |,
s❡✱ − 8 ≤ x ≤ 2
x2 − 4x − 2,
s❡✱ 2 < x ≤ 5
7. f (x) =
10x − x2 − 22, s❡✱ 5 < x ≤ 8
−3,
s❡✱ | x |> 8
2. f (x) = 5(x+ | x + 1 |)
4. f (x) = x2 − 5x + 6
6. f (x) =
(
| 4 − x2 |, s❡✱ | x |< 3
5,
s❡✱ | x |≥ 3
2
x −4
, s❡✱ x 6= −2
8. f (x) =
x+2
3,
s❡✱ x = 2
✾✳ ❉❡t❡r♠✐♥❡ ❞♦✐s ❝♦♥❥✉♥t♦s A ❡ B ♣❛r❛ q✉❡ ❛ ❡q✉❛çã♦ ❛ s❡❣✉✐r ❞❡t❡r♠✐♥❡ ✉♠❛ ❢✉♥çã♦
✐♠♣❧í❝✐t❛ f : A −→ B ✳
1.
4.
x2 y 2
+
=1
9
4
x+1
=y
x
2. x2 − y 2 = 1
5.
3. x2 − 3y + y 2 − 9y = −8
| x | + | y |= 2
6. yx2 − x − 9y = 0
✶✵✳ ❉❡t❡r♠✐♥❡ ✈❛❧♦r❡s ❞❡ a ❡ b ♥❛ ❡①♣r❡ssã♦ ❞❛ ❢✉♥çã♦ f (x) = ax2 + bx + 5 ♣❛r❛ ♦s q✉❛✐s
s❡❥❛ ✈á❧✐❞❛ ❛ ✐❞❡♥t✐❞❛❞❡ f (x + 1) − f (x) = 8x + 3✳
✶✶✳ ❱❡r✐✜q✉❡ s❡ ❛ ❢✉♥çã♦ ❛ s❡❣✉✐r é ♣❛r ♦ í♠♣❛r ❥✉st✐✜❝❛♥❞♦ s✉❛ r❡s♣♦st❛✳
1. f (x) = −x3 + x
2. f (x) = x · ex + x2
3. f (x) = −x + x3
4. f (x) =
5. h(x) =
6. w(t) = x · et
ex + e−x
2
x
|x|
2
✶✷✳ ❙❡ ♦ ❝♦♥❥✉♥t♦ A é s✐♠étr✐❝♦ ❡♠ r❡❧❛çã♦ à ♦r✐❣❡♠ ✭s❡ x ∈ A✱ ❡♥tã♦ −x ∈ A✮ ♣❛r❛
✶✸✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
f : A −→ R ♣r♦✈❡ q✉❡
f (x) + f (−x)
é ♣❛r✳
2
t♦❞❛
1.
R
❛ ❢✉♥çã♦✿
2.
f (x) − f (−x)
2
é í♠♣❛r✳
✶✸✳ ❆♣r❡s❡♥t❡ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❝♦♠♦ s♦♠❛ ❞❡ ✉♠❛ ❢✉♥çã♦ ♣❛r ❡ ♦✉tr❛
í♠♣❛r✿
1. y = x3 + 3x + 2
2. y = 1 − x3 − x4 − 2x5
✶✹✳ ▼♦str❡ q✉❡ ♦ ♣r♦❞✉t♦ ❞❡ ❞✉❛s ❢✉♥çõ❡s ♣❛r❡s ♦✉ í♠♣❛r❡s é ✉♠❛ ❢✉♥çã♦ ♣❛r ❡✱ ♦
♣r♦❞✉t♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ♣❛r ♣♦r ✉♠❛ í♠♣❛r é ❢✉♥çã♦ í♠♣❛r✳
n ♥❛t✉r❛❧
[0, +∞)✳
✶✺✳ ❙❡❥❛
✶✻✳ ❙❡❥❛
1
x
f (x) =
í♠♣❛r✳ ▼♦str❡ q✉❡
f (x) =
x ∈ I = (0, 1]✳
♣❛r❛
√
n
x
é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦
P❡r❣✉♥t❛✲s❡✿
✶✳ ❊st❛ ❢✉♥çã♦ é ❧✐♠✐t❛❞❛ s✉♣❡r✐♦r♠❡♥t❡❄
✷✳ ❊st❛ ❢✉♥çã♦ é ❧✐♠✐t❛❞❛ ✐♥❢❡r✐♦r♠❡♥t❡❄
✸✳ ❊①✐st❡
max .f (x)
x∈I
✹✳ ❊①✐st❡
❄
min .f (x)
x∈I
❄
✶✼✳ ❆♥á❧♦❣♦ ❛♦ ❡①❡r❝í❝✐♦ ❛♥t❡r✐♦r ♣❛r❛ ❛ ❢✉♥çã♦✿
✶✳
f (x) = x3 − x
✷✳
f (x) = x2 − 2x + 1
✶✽✳ ▼♦str❡ q✉❡
2x
x+2
q✉❛♥❞♦
x ∈ I = [−4, 4]✳
q✉❛♥❞♦
x ∈ I = [−4, 4]✳
é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ♥♦s ✐♥t❡r✈❛❧♦s
(−∞, −2)
❡
(−2, +∞)✳
✶✾✳ ▼♦str❡ q✉❡ t♦❞❛ ❢✉♥çã♦ ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ♦✉ ❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡ é ✐♥❥❡✲
t✐✈❛✳
n
R✳
✷✵✳ ❙❡❥❛
❡♠
✷✶✳ ❙❡♥❞♦
♥ú♠❡r♦ ♥❛t✉r❛❧ í♠♣❛r✱ ♠♦str❡ q✉❡
f (x) = senx
❡
g(x) = log x✱
✷✸✳ ❙❡❥❛
✷✹✳ ❙❡
f
f (x) = Ln(x)✳
▼♦str❡ q✉❡
é ✉♠❛ ❢✉♥çã♦ t❛❧ q✉❡
❡♥tã♦
✷✺✳ ❙❡❥❛♠
✶✳ ❙❡
f (2 + p)
❡
g
x+1
é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡
♣❛r❛ ♦ q✉❛❧
2 x > xn
π
g[f ( )]
2
♣❛r❛ t♦❞❛s ❛s
x ≥ 100✳
f (x) + f (x + 1) = f (x(x + 1))✳
f (1) = a, f (p) = b ❡ f (x + y) = f (x) · f (y),
∀ x, y ∈ R✱
é ✐❣✉❛❧ ❛✿
f : A −→ B
f
√
n
♣❡❞❡✲s❡ ❞❡t❡r♠✐♥❛r ♦ ✈❛❧♦r ❞❡
n∈Z
✷✷✳ ❉❡t❡r♠✐♥❡ ♦ ♣♦ssí✈❡❧ ✈❛❧♦r ♣❛r❛
f (x) =
❡
g : B −→ R
sã♦ ✐♥❥❡t✐✈❛s✱ ❡♥tã♦
❞✉❛s ❢✉♥çõ❡s✳ ❉❡♠♦♥str❡ q✉❡✿
g◦f
é ✐♥❥❡t✐✈❛❄
✶✸✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳
✸✳
✹✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❙❡ f ❡ g sã♦ s♦❜r❡❥❡t✐✈❛s✱ ❡♥tã♦ g ◦ f é s♦❜r❡❥❡t✐✈❛❄
❙❡ g ◦ f é ✐♥❥❡t✐✈❛✱ ❡♥tã♦ f é ✐♥❥❡t✐✈❛✳
❙❡ g ◦ f é s♦❜r❡❥❡t✐✈❛✱ ❡♥tã♦ g é s♦❜r❡❥❡t✐✈❛✳
✷✻✳ ❊♠ ✉♠ ❝❡rt♦ ❝❧✉❜❡ ❞❡ ❢✉t❡❜♦❧✱ ❛ t❛①❛ ❛♥✉❛❧ ❝♦❜r❛❞❛ ❛♦s só❝✐♦s é ❞❡ ❘$300, 00
❡ ♦ só❝✐♦ ♣♦❞❡ ✉t✐❧✐③❛r ❝❛♠♣♦ ❞❡ ❢✉t❡❜♦❧ ♣❛❣❛♥❞♦ ❘$2, 00 ♣♦r ❤♦r❛✳ ❊♠ ♦✉tr♦
❝❧✉❜❡✱ ❛ t❛①❛ é ❘$200, 00 ❡ ❝♦❜r❛♠ ❘$3, 00 ♣♦r ❤♦r❛ ❞❡ ✉s♦ ❞♦ ❝❛♠♣♦ ❞❡ ❢✉t❡❜♦❧✳
❈♦♥s✐❞❡r❛♥❞♦ ❛s q✉❡stõ❡s ✜♥❛♥❝❡✐r❛s❀ q✉❡ ❝❧✉❜❡ ✈♦❝ê ❡s❝♦❧❤❡r✐❛ ❄
✷✼✳ ❆s ❢✉♥çõ❡s ❞❡ ♦❢❡rt❛ ❡ ❞❡♠❛♥❞❛ ❞❡ ✉♠ ❝❡rt♦ ♣r♦❞✉t♦ sã♦ r❡s♣❡❝t✐✈❛♠❡♥t❡ S(p) =
p − 10 ❡ D(p) = 5.600p−1 ✳
✶✳
✷✳
❈❛❧❝✉❧❛r ♦ ♣r❡ç♦ ❞❡ ❡q✉✐❧í❜r✐♦ ❡ ♦ ♥ú♠❡r♦ ❝♦rr❡s♣♦♥❞❡♥t❡ ❞❡ ✉♥✐❞❛❞❡s ❡♠ ♦❢❡rt❛
❡ ❞❡♠❛♥❞❛✳
❈♦♥str✉í❛ ❛s ❣rá✜❝♦s ❞❛s ❢✉♥çõ❡s ♥✉♠ ♠❡s♠♦ ♣❛r ❞❡ ❡✐①♦s✳
✷✽✳ ❯♠ ♥ú♠❡r♦ ❞❡ ❞♦✐s ❛❧❣❛r✐s♠♦s ❡①❝❡❞❡ ❡♠ ✉♠❛ ✉♥✐❞❛❞❡ ♦ sê①t✉♣❧♦ ❞❛ s♦♠❛ ❞❡ s❡✉s
❛❧❣❛r✐s♠♦s ❞❡ss❡ ♥ú♠❡r♦✳ ❙❡ ❛ ♦r❞❡♠ ❞♦s ❛❧❣❛r✐s♠♦s ❞❡ss❡ ♥ú♠❡r♦ ❢♦r ✐♥✈❡rt✐❞❛✱ ♦
♥♦✈♦ ♥ú♠❡r♦ t❡rá ♥♦✈❡ ✉♥✐❞❛❞❡s ❛ ♠❡♥♦s ❞♦ q✉❡ ♦ ♥ú♠❡r♦ ♦r✐❣✐♥❛❧✳ ❊♥❝♦♥tr❛r ♦
♥ú♠❡r♦ ♦r✐❣✐♥❛❧✳
✷✾✳ ❆s ❡q✉❛çõ❡s ❞❡ ♦❢❡rt❛ ❡ ❞❡♠❛♥❞❛ ♥✉♠❛ ❞❡t❡r♠✐♥❛❞❛ ❢á❜r✐❝❛ ❡stã♦ ❞❛❞❛s ♣♦r q =
24 − p ❡ q = 10 p − 20✱ ❢✉♥çõ❡s ❧✐♥❡❛r❡s ❞♦ ♣r❡ç♦✳ ❉❡t❡r♠✐♥❡ ❛ q✉❛♥t✐❞❛❞❡ ❞❡
❡q✉✐❧í❜r✐♦✳
✸✵✳ ❆ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ♠❡♥s❛❧ ❞❡ ✉♠❛ ❡♠♣r❡s❛ é ❞✐r❡t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ♥ú♠❡r♦
❞❡ tr❛❜❛❧❤❛❞♦r❡s✱ s❛❜❡♥❞♦ q✉❡ 20 ❞♦s tr❛❜❛❧❤❛❞♦r❡s t❡♠ ✉♠❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦
❞❡ ❘$3000, 00✳
✶✳
✷✳
❊①♣r❡ss❡ ♦ ✈❛❧♦r ❞❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ♠❡♥s❛❧ ❝♦♠♦ ❢✉♥çã♦ ❞♦ ♥ú♠❡r♦ ❞❡
tr❛❜❛❧❤❛❞♦r❡s❀
◗✉❛❧ ❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ♣❛r❛ 18 tr❛❜❛❧❤❛❞♦r❡s❄
✶✸✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✼
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❋✉♥çõ❡s tr❛♥s❝❡♥❞❡♥t❡s
❈❤❛♠❛✲s❡ ❢✉♥çã♦ tr❛♥s❝❡♥❞❡♥t❡ ❛ ❛q✉❡❧❛ ❢✉♥çã♦ q✉❡ ♥ã♦ é ❛❧❣é❜r✐❝❛✳ ❙ã♦ ❢✉♥çõ❡s
tr❛♥s❝❡♥❞❡♥t❡s✿
❛✮ ❆ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❡ s✉❛ ✐♥✈❡rs❛✱ ❛ ❢✉♥çã♦ ❧♦❣❛r✐t♠♦✳
❜✮ ❆s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ❡ s✉❛s ✐♥✈❡rs❛s✳
✷✳✼✳✶
❆ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❞❡ ❜❛s❡
a
❉❡✜♥✐çã♦ ✷✳✷✽✳
❙❡ a > 0 ❡ r =
√
p
é ✉♠ ♥ú♠❡r♦ r❛❝✐♦♥❛❧ ❞❡✜♥❡✲s❡ ar = ap/q = q ap ✳
q
Pr♦♣r✐❡❞❛❞❡ ✷✳✷✳
P❛r❛ q✉❛❧q✉❡r ♣❛r ❞❡ ♥ú♠❡r♦s r, s ∈ Q t❡♠♦s ✿
a) ar .as = ar+s
a r ar
d)
= r b 6= 0
b
b
b) (ar )s = ars
ar
e)
= ar−s
as
c) (ab)r = ar .br
❉❡✜♥✐çã♦ ✷✳✷✾✳ ❋✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧✳
❙❡❥❛ a 6= 1 ✉♠ ♥ú♠❡r♦ r❡❛❧ ♣♦s✐t✐✈♦✳ ❆ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r f (x) = ax
é ❝❤❛♠❛❞❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❞❡ ❜❛s❡ a✳
❖ ❞♦♠í♥✐♦ ❞❡ ❡st❛ ❢✉♥çã♦ é D(f ) = R ❡ s✉❛ ✐♠❛❣❡♠ Im(f ) = R+ = (0, +∞)✳ P❛r❛
s❡✉ ❣rá✜❝♦ ❝♦♥s✐❞❡r❡♠♦s ❞♦✐s ❝❛s♦s ❝♦♠♦ s❡ ♦❜s❡r✈❛ ♥❛ ❋✐❣✉r❛ ✭✷✳✸✻✮✳
◗✉❛♥❞♦ 0 < a < 1
◗✉❛♥❞♦ a > 1
❋✐❣✉r❛ ✷✳✸✻✿ ❋✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧
Pr♦♣r✐❡❞❛❞❡ ✷✳✸✳
✶✸✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊✶✮
❙❡ 0 < a < 1✱ ❛ ❢✉♥çã♦ f (x) = ax é ❞❡❝r❡s❝❡♥t❡ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
❊✷✮
❙❡ a > 1✱ ❛ ❢✉♥çã♦ f (x) = ax é ❝r❡s❝❡♥t❡ ❡♠ t♦❞♦ ❡♠ s❡✉ ❞♦♠í♥✐♦✳
❊✸✮
❖ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❞❡ ❜❛s❡ ❛ ♣❛ss❛ ♣❡❧♦ ♣♦♥t♦ P (0, 1)✳
❊✹✮
❙❡ 0 < a < 1✱ ❡♥tã♦ ✿ ax t❡♥❞❡ ♣❛r❛ +∞ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ −∞✱ ❡ ax t❡♥❞❡ ♣❛r❛
−∞ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ +∞✳
❊✺✮
❙❡ a > 1 ❡♥tã♦ ✿ ax t❡♥❞❡ ♣❛r❛ +∞ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ +∞✱ ❡ ax t❡♥❞❡ ♣❛r❛ −∞
q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ −∞✳
❊✻✮ ax+z = ax .az
❡
ax−z =
ax
az
❊①❡♠♣❧♦ ✷✳✽✺✳
1
1
f (x) = (ax + a−x ) ❡ g(x) = (ax − a−x ) ♠♦str❡ q✉❡✿
2
2
✐✮ f (x + y) = f (x)f (y) + g(x)g(y)
✐✐✮ g(x + y) = f (x)g(y) + f (y)g(x)
❙❡❥❛♠
❙♦❧✉çã♦✳
✐✮
❚❡♠♦s✿
1
f (x + y) = (ax+y + a−x−y )
2
P♦r ♦✉tr♦ ❧❛❞♦✿
1
f (x) · f (y) = (ax + a−x ) ·
2
1 x
g(x) · g(y) = (a − a− x) ·
2
▲♦❣♦
1 y
(a + a−y ) =
2
1 y
(a − a−y ) =
2
✭✷✳✶✮
1 x+y
(a
+ ax−y + a−x+y + a−x−y) ✳
4
1 x+y
(a
− ax−y − a−x+y + a−x−y )✳
4
1
1
f (x) · f (y) + g(x) · g(y) = (2ax+y + 2a−x−y ) = (ax+y + a−x−y )
4
2
✭✷✳✷✮
❉❡ ✭✷✳✶✮ ❡ ✭✷✳✷✮ t❡♠♦s f (x + y) = f (x)f (y) + g(x)g(y)
❙♦❧✉çã♦✳
✐✐✮
❚❡♠♦s
1
g(x + y) = (ax+y − a−x−y )
2
✭✷✳✸✮
P♦r ♦✉tr♦ ❧❛❞♦❀
1
f (x)g(y) + f (y)g(x) = (ax + a−x )(ay − a−y ) + (ay + a−y )(ax − a−x ) =
4
1 x+y
x−y
−x+y
−a
+a
− a−x−y ) + (ay+x − ay−x + a−y+x − a−y−x )] =
= [(a
4
1 x+y
1
(2a
− 2a−x−y ) = (ax+y − a−x−y )
4
2
✶✸✹
✭✷✳✹✮
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
g(x + y) = f (x)g(y) + f (y)g(x)✳
❉❡ ✭✷✳✸✮ ❡ ✭✷✳✹✮ t❡♠♦s
✷✳✼✳✷
❋✉♥çã♦ ❧♦❣❛rít♠✐❝❛
❆ ❢✉♥çã♦ ❧♦❣❛rít♠✐❝❛ é ❛ ❢✉♥çã♦ ✐♥✈❡rs❛ ❞❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧✳
E1 ❡ E2 ❝♦♥❝❧✉✐✲s❡ q✉❡ ❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❞❡
a > 0 ❡ a 6= 1 é ✐♥❥❡t✐✈❛ ❡♠ s❡✉ ❞♦♠í♥✐♦ R ❡
❉❛s ♣r♦♣r✐❡❞❛❞❡s
x
f (x) = a
q✉❛♥❞♦
❜❛s❡
a
❞❛❞❛ ♣♦r
♣♦rt❛♥t♦ ❛❞♠✐t❡
❢✉♥çã♦ ✐♥✈❡rs❛✱ ❝❤❛♠❛❞❛ ✏ ❋✉♥çã♦ ❧♦❣❛rít♠✐❝❛ ❞❡ ❜❛s❡ ❛ ✑ ❡ ❡stá ❞❡✜♥✐❞❛ ♣❡❧❛ ❢✉♥çã♦
(0, +∞) −→ R
t❛❧ q✉❡
❙❡✉ ❞♦♠í♥✐♦ é
g(x) = loga x✳
D(g) = (0, +∞)
❡ s✉❛ ✐♠❛❣❡♠
Im(g) = R✳
g(x) = loga x
g(x) = loga x q✉❛♥❞♦ a > 1✳
◆❛ ❋✐❣✉r❛ ✭✷✳✸✼✮ ♠♦str❛✲s❡ ♦ ❣rá✜❝♦ ❞❡
s❡ ♠♦str❛ ♦ ❣rá✜❝♦ ❞❡
g :
s❡
0 < a < 1✳
y
y
✻
✻
x
✲
✛
−1
✛
1
◗✉❛♥❞♦
◆❛ ❋✐❣✉r❛ ✭✷✳✸✽✮
✲
−1
0<a<1
◗✉❛♥❞♦
1
x
a>1
❋✐❣✉r❛ ✷✳✸✽✿
❋✐❣✉r❛ ✷✳✸✼✿
P♦r ❞❡✜♥✐çã♦ ❞❡ ❢✉♥çã♦ ✐♥✈❡rs❛✱ t❡♠♦s✿
✶✮ f (g(x)) = x,
∀ x ∈ (0, +∞)
✷✮ g(f (x)) = x,
∀x∈R
♦✉
♦✉
aloga x = x ∀ x ∈ (0, +∞)✳
loga (ax ) = x ∀ x ∈ R
❊♠ r❡s✉♠♦✿
ay = x
s❡✱ ❡ s♦♠❡♥t❡ s❡
y = loga x✳
P♦r ❡①❡♠♣❧♦✱
34 = 81
s❡✱ ❡ s♦♠❡♥t❡ s❡
4 = log3 (81)
Pr♦♣r✐❡❞❛❞❡ ✷✳✹✳
▲✶✮
❙❡
0 < a < 1✱
▲✷✮
❙❡
a > 1✱
❋✉♥çã♦ ❧♦❣❛rít♠✐❝❛ ❞❡ ❜❛s❡
❛ ❢✉♥çã♦
❛ ❢✉♥çã♦
g(x) = loga x
g(x) = loga x
a✳
é ❞❡❝r❡s❝❡♥t❡ ❡♠
é ❝r❡s❝❡♥t❡ ❡♠
✶✸✺
R+ ✳
R+ ✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
▲✸✮
❙❡ A, B ❡ N sã♦ ♥ú♠❡r♦s r❡❛✐s ♣♦s✐t✐✈♦s✱ ❡♥tã♦✿
a)
c)
e)
loga (A × B) = loga A + loga B
B
B
logak (A ) =
loga A
k
logc A
logB A =
logc B
b)
A
= loga A − loga B
loga
B
d)
loga (Ar ) = r · loga A
r∈R
(❋ór♠✉❧❛ ❞❡ ♠✉❞❛♥ç❛ ❞❡ ❜❛s❡)
▲✹✮
❖ ❣rá✜❝♦ ❞❡ t♦❞❛ ❛ ❢✉♥çã♦ ❧♦❣❛rít♠✐❝❛ ♣❛ss❛ ♣♦r P (1, 0)✳
▲✺✮
❙❡ 0 < a < 1✱ ❡♥tã♦✿ t❡♥❞❡ ♣❛r❛ +∞ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ ③❡r♦ ✭♣❡❧❛ ❞✐r❡✐t❛✮✱ ❡
t❡♥❞❡ ♣❛r❛ −∞ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ +∞✳
▲✻✮
❙❡ a > 1✱ ❡♥tã♦ ✿ loga x t❡♥❞❡ ♣❛r❛ −∞ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ ③❡r♦ ✭♣❡❧❛ ❞✐r❡✐t❛✮✱ ❡
loga x t❡♥❞❡ ♣❛r❛ +∞ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ +∞✳
❉❡♠♦♥str❛çã♦✳
▲✸✲✭❡✮
❙✉♣♦♥❤❛ z = logB A✱ ❡♥tã♦ B z = A✳ ❈♦♥s✐❞❡r❛♥❞♦ ❧♦❣❛r✐t♠♦ ♥❛ ❜❛s❡ c t❡♠♦s✿
logc B z = logc A ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭▲✸✲❞✮ t❡♠♦s z · logc B = logc A✳
▲♦❣♦ z =
logc A
logc A
✐st♦ é logB A =
✳
logc B
logc B
❆♣❧✐❝❛çõ❡s
❊①❡♠♣❧♦ ✷✳✽✻✳
❯♠❛ r❛♠♣❛ ♣❛r❛ ♠❛♥♦❜r❛s ❞❡ ✏s❦❛t❡✑ ❞❡ ❛❧t✉r❛
❋✐❣✉r❛
✭✷✳✸✾✮✳
4m
é r❡♣r❡s❡♥t❛❞❛ ♣❡❧♦ ❡sq✉❡♠❛ ❞❛
❙❡ ❛ ♣❛rt❡ ❝✉r✈❛ ♣✉❞❡ss❡ s❡r ❛ss♦❝✐❛❞❛ ❛ ✉♠❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧✱ ❝♦♠♦
s❡r✐❛ ❡st❛ ❢✉♥çã♦❄
❙♦❧✉çã♦✳
❋✐❣✉r❛ ✷✳✸✾✿
✶✸✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❖❜s❡r✈❡✱ ♣♦❞❡♠♦s ♦❜t❡r ❛ s❡❣✉✐♥t❡ t❛❜❡❧❛ ❞❡ ✈❛❧♦r❡s✿
x
0m
1m
2m
3m
4m
f (x)
4m
2m
1m
0, 5m
0, 25m
x−2
1
✱ é ✉♠❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧✳
P♦rt❛♥t♦ f (x) =
2
❊①❡♠♣❧♦ ✷✳✽✼✳
❉❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ❞❛ ❢✉♥çã♦ f (x) = log 21
❙♦❧✉çã♦✳
❉❛ ❞❡✜♥✐çã♦ ❞❛ ❢✉♥çã♦ ❧♦❣❛r✐t♠♦ t❡♠♦s
3
5
3 − 5x
✳
x+7
−5(x − 35 )
3 − 5x
> 0 ✐st♦ é
> 0✳ ❖♥❞❡ ♦
x+7
(x + 7)
❞♦♠í♥✐♦ D(f ) = (−7, )✳
❊①❡♠♣❧♦ ✷✳✽✽✳
❙❡ a ❡ b sã♦ s♦❧✉çõ❡s ✐♥t❡✐r❛s ❞♦ s✐st❡♠❛✿ 2x = 210−y ❡ log2 x + log2 y = 4✱ ❡♥tã♦
2a + 2b é ✐❣✉❛❧ ❛✿
❙♦❧✉çã♦✳
❈♦♠♦ a ❡ b sã♦ s♦❧✉çõ❡s ❞♦ s✐st❡♠❛ ❡♥tã♦ 2a · 2b−10 = 1 ❡ log2 a + log2 b = 4
❞❡ ♦♥❞❡ 2a+b = 210 ❡ log2 (ab) = 4 ⇒ a + b = 10 ❡ ab = 24 = 16❀ ✐st♦ ❝✉♠♣r❡ s❡
a = 8 ❡ b = 2✳
P♦rt❛♥t♦ 2a + 2b = 28 + 22 = 260✳
❊①❡♠♣❧♦ ✷✳✽✾✳
❯♠ ❥✉✐③ ❞❡t❡r♠✐♥♦✉ ♦ ♣❛❣❛♠❡♥t♦ ❞❡ ✉♠❛ ✐♥❞❡♥✐③❛çã♦ ❛té ❝❡rt❛ ❞❛t❛✳ ❉❡t❡r♠✐♥♦✉
t❛♠❜é♠ q✉❡✱ ❝❛s♦ ♦ ♣❛❣❛♠❡♥t♦ ♥ã♦ ❢♦ss❡ ❢❡✐t♦✱ s❡r✐❛ ❝♦❜r❛❞❛ ✉♠❛ ♠✉❧t❛ ❞❡ R$3, 00 q✉❡
❞♦❜r❛r✐❛ ❛ ❝❛❞❛ ♠ês ❞❡ ❛tr❛s♦✳ ❊♠ q✉❛♥t♦s ♠ês❡s ❞❡ ❛tr❛s♦ ❡ss❛ ♠✉❧t❛ s❡r✐❛ s✉♣❡r✐♦r ❛
600.000, 00 r❡❛✐s❄
❙♦❧✉çã♦✳
❆ ♠✉❧t❛ ❞❡t❡r♠✐♥❛❞❛ ♣❡❧♦ ❥✉✐③ ♣♦❞❡ ♣❛r❡❝❡r ♣❡q✉❡♥❛✱ s❡ ♦ ❛tr❛s♦ ♥♦ ♣❛❣❛♠❡♥t♦ ❢♦r ❞❡
♣♦✉❝♦s ❞✐❛s✳ ▼❛s ❡❧❛ ❝r❡s❝❡ ❝♦♠ ✉♠❛ r❛♣✐❞❡③ ♠✉✐t♦ ❣r❛♥❞❡✳ ❈❤❛♠❛♥❞♦ ❞❡ x ♦ ♥ú♠❡r♦
❞❡ ❞✐❛s ❞❡ ❛tr❛s♦ ♥♦ ♣❛❣❛♠❡♥t♦✱ ♦ ✈❛❧♦r ❞❛ ❞í✈✐❞❛ s❡rá 3x ✳ ❱❡❥❛✿
1 ♠ês ❞❡ ❛tr❛s♦ ⇒ x = 1 ⇒ ♠✉❧t❛ = 31 = 3
2 ♠ês ❞❡ ❛tr❛s♦ ⇒ x = 2 ⇒ ♠✉❧t❛ = 32 = 9
3 ♠ês ❞❡ ❛tr❛s♦ ⇒ x = 3 ⇒ ♠✉❧t❛ = 33 = 27✱ ❡ ❛ss✐♠ ♣♦r ❞✐❛♥t❡✳
❈♦♠♦ ✈❡♠♦s✱ ❛s ♠✉❧t❛s ❝r❡s❝❡♠ ❡♠ ♣r♦❣r❡ssã♦ ❣❡♦♠étr✐❝❛✳
✶✸✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❉❡✈❡♠♦s ❝❛❧❝✉❧❛r ❡♠ q✉❡ ♠ês ❡ss❛ ♠✉❧t❛ ❛t✐♥❣❡
r❡s♦❧✈❡r ❛ ❡q✉❛çã♦✿
600.000, 00
R
r❡❛✐s✱ ♦✉ s❡❥❛✱ ❞❡✈❡♠♦s
x
3 = 600.000, 00✳
❆♣❧✐❝❛♥❞♦ ❧♦❣❛r✐t♠♦s✱
log 3x = log 600.000 = log(6 × 105 ) = log 6 + 5 · log 10
❝♦♠♦
log 10 = 1, log 6 = log(2 · 3) = log 2 + log 3
⇒
x log 3 = log 2 + log 3 + 5
P♦rt❛♥t♦✱ ❝♦♥❝❧✉í♠♦s✱ ♥♦
11o
x−1=
log 2 + 5
log 3
⇒
x=
5, 301
= 11, 11
0, 478
♠❡s ❞❡ ❛tr❛s♦ ❛ ♠✉❧t❛ t❡rá ♣❛ss❛❞♦ ❞❡
600.000, 00
r❡❛✐s
r❡❛✐s✳
❊①❡♠♣❧♦ ✷✳✾✵✳
❊♠ ✉♠❛ ❞❡t❡r♠✐♥❛❞❛ ❝✐❞❛❞❡ ❛ t❛①❛ ❞❡ ❝r❡s❝✐♠❡♥t♦ ♣♦♣✉❧❛❝✐♦♥❛❧ ❡ ❞❡
4%
❛♦ ❛♥♦✱
❛♣r♦①✐♠❛❞❛♠❡♥t❡✳ ❊♠ q✉❛♥t♦s ❛♥♦s ❛ ♣♦♣✉❧❛çã♦ ❞❡st❛ ❝✐❞❛❞❡ ✐rá ❞✉♣❧✐❝❛r✱ s❡ ❛ t❛①❛ ❞❡
❝r❡s❝✐♠❡♥t♦ ❝♦♥t✐♥✉❛r ❛ ♠❡s♠❛❄
❙♦❧✉çã♦✳
❙❡❥❛
P0
❛ ♣♦♣✉❧❛çã♦ ❞♦ ❛♥♦✲❜❛s❡✳
P0 (1, 04) = P1 ✳
❆ ♣♦♣✉❧❛çã♦
P0 (1, 04) = P2 ✱ ❡ ❛ss✐♠ ♣♦r ❞✐❛♥t❡✳
n
❛♣ós n ❛♥♦s s❡rá P0 (1, 04) = Pn
❛♣ós ❞♦✐s ❛♥♦s s❡rá
❆ ♣♦♣✉❧❛çã♦
❆♣ós ✉♠ ❛♥♦ s❡rá
2
❱❛♠♦s s✉♣♦r q✉❡ ❛ ♣♦♣✉❧❛çã♦ ❞✉♣❧✐❝❛ ❡♠ r❡❧❛çã♦ ❛♦ ❛♥♦✲❜❛s❡ ❛♣ós
Pn = 2P0
P0 (1, 04)n = 2P0
⇒
⇒
n=
⇒
n log 1, 04 = log 2
n
❛♥♦s✱ t❡♠♦s✿
⇒
0, 01703
log 1, 04
=
≈ 0, 0566
log 2
0, 30103
❆ss✐♠✱ t❡♠♦s q✉❡ ❛ ♣♦♣✉❧❛çã♦ ❞✉♣❧✐❝❛ ❡♠ ❛♣r♦①✐♠❛❞❛♠❡♥t❡
✶✸✽
P0 (1, 04)0,0566
❛♥♦s✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✷✲✻
✶✳ ◆♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s r❡s♦❧✈❛ ♣❛r❛ x✳
1.
log10 10000 = x
3.
logx 81 = 3
log10 0, 01 = x
√
5. eLnx = 3
4.
7.
log2 x = −5
8. Lnx = −2
9.
2.
log4
1
=x
256
6. x2 − 8x = log4 (256)−1
log35 x + log35 (x + 2) = 1
✷✳ ❚r❛ç❛r ♦ ❣rá✜❝♦ ♣❛r❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
x
1. y = −(6)
√
4. y = ( 3)x
7.
2. y = 4
x
5. y = π −2x
log4 x2
8.
log3 (x − 1)
x
5
3. y =
4
6. y = −(2−x
9.
loge ex
✸✳ ❉❡t❡r♠✐♥❡ s❡ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❞❛❞❛s sã♦ ✐♥✈❡rs❛s ✉♠❛ ❞❛ ♦✉tr❛ ❡s❜♦ç❛♥❞♦ s❡✉s
❣rá✜❝♦s ♥♦ ♠❡s♠♦ s✐st❡♠❛ ❞❡ ❡✐①♦s✳ ❈❛❧❝✉❧❛r s❡✉ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ♣❛r❛ ❝❛❞❛ ✉♠❛
❞❛s ❢✉♥çõ❡s✿
1. f (x) = 2ex
3. f (x) = e2x+1
√
g(x) = Ln x
2. f (x) = ex + 1 g(x) = Ln(x − 1)
g(x) = 1 − Ln2x
4. f (x) = e3x
g(x) = Lnx−3
✹✳ ❘❡s♦❧✈❡r ❛s s❡❣✉✐♥t❡s ❡q✉❛çõ❡s✿
1. x = log 1 36
6
4.
log25 x = 3
√
3
7. x(x−2) = log 10 10
2. x = log3√2 cos 30o
√
3
5. x = log2x ( 25)4 = 6
√
4
3
8. logx 10 10 =
3
√
3. x = log23 5 2
1
6. xx−1 =
27
1
1
9.
log 1 x =
4
3
2
✺✳ ▼♦str❡ q✉❡ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❞❛❞❛s sã♦ ✐♥✈❡rs❛s ✉♠❛ ❞❛ ♦✉tr❛ ❡s❜♦ç❛♥❞♦ s❡✉s
❣rá✜❝♦s ♥♦ ♠❡s♠♦ s✐st❡♠❛ ❞❡ ❡✐①♦s✳ ❈❛❧❝✉❧❛r s❡✉ ❞♦♠í♥✐♦ ❡ ✐♠❛❣❡♠ ♣❛r❛ ❝❛❞❛ ✉♠❛
❞❛s ❢✉♥çõ❡s✳
1. f (x) = e2x
√
g(x) = Ln x
2. f (x) = ex − 1 g(x) = Ln(x + 1)
✶✸✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
3. f (x) = ex−1
g(x) = 1 + Lnx
1−x
♠♦str❡ q✉❡
✻✳ ❙❡ f (x) = Ln
1+x
f
−1
x
4. f (x) = e 3
g(x) = Lnx3
ex/2 − e−x/2
✳
(x) = − x/2
e + e−x/2
✼✳ ❯♠❛ ❢✉♥çã♦ y = f (x) ❡st❛ ❞❛❞❛ ♣❡❧❛ ❡q✉❛çã♦ y 2 − 1 + log2 (x − 1) = 0✳ ❉❡t❡r♠✐♥❡
♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ❞❛ ❢✉♥çã♦✱ ❡ ❞❡✜♥❛ ❛ ❢✉♥çã♦ ✐♥✈❡rs❛ f −1 (x)✳
✽✳ ❙❡ f (x) = 4x ❡ x1 , x2 ❡ x3 sã♦ três ♥ú♠❡r♦s ❡♠ ♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛ ❡♥tã♦
❞❡♠♦♥str❛r q✉❡ f (x1 ), f (x2 ) ❡ f (x3 ) ❡stã♦ ❡♠ ♣r♦❣r❡ssã♦ ❣❡♦♠étr✐❝❛✳ ◗✉❛❧ é ❛
r❛③ã♦ ❄
✾✳ ❙✉♣♦♥❤❛ q✉❡ ❛ t ❤♦r❛s ❞❛ ♠❛❞r✉❣❛❞❛ ❛ t❡♠♣❡r❛t✉r❛ ❞❡ ✉♠❛ ❝✐❞❛❞❡ s❡❥❛✱ C(t) =
t2
− + 4t + 8 ❣r❛✉s ❝❡♥tí❣r❛❞♦s✳ ❛✮ ◗✉❡ t❡♠♣❡r❛t✉r❛ t✐♥❤❛ ❛s 14 ❤♦r❛s ❄ ❜✮ ❊♠ q✉❡
7
t❛♥t♦ ❛✉♠❡♥t♦✉ ♦✉ ❞✐♠✐♥✉✐✉ ❛ t❡♠♣❡r❛t✉r❛✱ ❡♥tr❡ 6 ❡ 7 ❤♦r❛s❄
✶✵✳ ❙✉♣♦♥❤❛ q✉❡ ♦ ❝✉st♦ t♦t❛❧ ♣❛r❛ ❢❛❜r✐❝❛r q ✉♥✐❞❛❞❡s ❞❡ ✉♠ ❝❡rt♦ ♣r♦❞✉t♦ s❡❥❛ ❞❛❞❛
♣❡❧❛ ❢✉♥çã♦ C(q) = q 3 − 30q 2 + 400q + 500✳
✶✳
❈❛❧❝✉❧❛r ♦ ❝✉st♦ ❞❡ ❢❛❜r✐❝❛çã♦ ❞❡ 20 ✉♥✐❞❛❞❡s✳
✷✳
❈❛❧❝✉❧❛r ♦ ❝✉st♦ ❞❡ ❢❛❜r✐❝❛çã♦ ❞❛ 20a ✉♥✐❞❛❞❡✳
✶✶✳ ❆ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ✭F.P.✮ ❞✐ár✐❛ ❞❡ ✉♠❛ ❡q✉✐♣❡ ❞❡ tr❛❜❛❧❤♦ é ❞✐r❡t❛♠❡♥t❡ ♣r♦✲
♣♦r❝✐♦♥❛❧ ❛♦ ♥ú♠❡r♦ ❞❡ tr❛❜❛❧❤❛❞♦r❡s ✭T ✮✱ ❡ ✉♠❛ ❡q✉✐♣❡ ❞❡ 12 tr❛❜❛❧❤❛❞♦r❡s t❡♠
✉♠❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ❞❡ ❘$540✳
✶✳
❊①♣r❡ss❡ ♦ ✈❛❧♦r t♦t❛❧ ❞❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ❞✐ár✐❛ ❝♦♠♦ ❢✉♥çã♦ ❞♦ ♥ú♠❡r♦ ❞❡
tr❛❜❛❧❤❛❞♦r❡s✳
✷✳
◗✉❛❧ ❛ ❢♦❧❤❛ ❞❡ ♣❛❣❛♠❡♥t♦ ❞❡ ✉♠❛ ❡q✉✐♣❡ ❞❡ 15 tr❛❜❛❧❤❛❞♦r❡s✳
✶✷✳ ◆✉♠❛ ❝✐❞❛❞❡ ❞❡ 70.000 ❤❛❜✐t❛♥t❡s ❛ t❛①❛ ❞❡ ❝r❡s❝✐♠❡♥t♦ ❞❡ ✉♠❛ ❡♣✐❞❡♠✐❛ é ❝♦♥✲
❥✉♥t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s ✐♥❢❡❝t❛❞❛s ❡ ❛♦ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s
♥ã♦ ✐♥❢❡❝t❛❞❛s✳✱
✶✳
❙❡ ❛ ❡♣✐❞❡♠✐❛ ❡st❛ ❝r❡s❝❡♥❞♦ ❛ r❛③ã♦ ❞❡ 20 ♣❡ss♦❛s ♣♦r ❞✐❛ q✉❛♥❞♦ 100 ♣❡ss♦❛s
❡stã♦ ✐♥❢❡❝t❛❞❛s✱ ❡①♣r❡ss❡ ❛ t❛①❛ ❞❡ ❝r❡s❝✐♠❡♥t♦ ❞❛ ❡♣✐❞❡♠✐❛ ❡♠ ❢✉♥çã♦ ❞❡
♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s ✐♥❢❡❝t❛❞❛s✳
✷✳
◗✉ã♦ rá♣✐❞♦ ❡stá s❡ ❡s♣❛❧❤❛♥❞♦ ❛ ❡♣✐❞❡♠✐❛ q✉❛♥❞♦ 400 ♣❡ss♦❛s ❡stã♦ ✐♥❢❡❝t❛❞❛s❄
✶✹✵
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✼✳✸
❋✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s
❊♠ ♠❛t❡♠át✐❝❛✱ ❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s sã♦ ❢✉♥çõ❡s ❛♥❣✉❧❛r❡s✱ ✐♠♣♦rt❛♥t❡s ♥♦
❡st✉❞♦ ❞♦s tr✐â♥❣✉❧♦s ❡ ♥❛ ♠♦❞❡❧❛çã♦ ❞❡ ❢❡♥ô♠❡♥♦s ♣❡r✐ó❞✐❝♦s✳ P♦❞❡♠ s❡r ❞❡✜♥✐❞❛s
❝♦♠♦ r❛③õ❡s ❡♥tr❡ ❞♦✐s ❧❛❞♦s ❞❡ ✉♠ tr✐â♥❣✉❧♦ r❡tâ♥❣✉❧♦ ❡♠ ❢✉♥çã♦ ❞❡ ✉♠ â♥❣✉❧♦✱ ♦✉✱
❞❡ ❢♦r♠❛ ♠❛✐s ❣❡r❛❧✱ ❝♦♠♦ r❛③õ❡s ❞❡ ❝♦♦r❞❡♥❛❞❛s ❞❡ ♣♦♥t♦s ♥♦ ❝ír❝✉❧♦ ✉♥✐tár✐♦✳ ◆❛
❛♥á❧✐s❡ ♠❛t❡♠át✐❝❛✱ ❡st❛s ❢✉♥çõ❡s r❡❝❡❜❡♠ ❞❡✜♥✐çõ❡s ❛✐♥❞❛ ♠❛✐s ❣❡r❛✐s✱ ♥❛ ❢♦r♠❛ ❞❡
sér✐❡s ✐♥✜♥✐t❛s ♦✉ ❝♦♠♦ s♦❧✉çõ❡s ♣❛r❛ ❝❡rt❛s ❡q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛✐s✳ ◆❡st❡ ú❧t✐♠♦ ❝❛s♦✱
❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ❡stã♦ ❞❡✜♥✐❞❛s ♥ã♦ só ♣❛r❛ â♥❣✉❧♦s r❡❛✐s✱ ❝♦♠♦ t❛♠❜é♠ ♣❛r❛
â♥❣✉❧♦s ❝♦♠♣❧❡①♦s✳
◆♦ ♣❧❛♥♦✲xy ✭❋✐❣✉r❛ ✭✷✳✹✵✮✮ ❝♦♥s✐❞❡r❡♠♦s ❛ ❝✐r✲
❝✉♥❢❡rê♥❝✐❛ ✉♥✐tár✐❛ ❞❡ ❝❡♥tr♦ ❛ ♦r✐❣❡♠ ❞❡ ❝♦♦r❞❡✲
♥❛❞❛s✱ ❡❧❛ t❡♠ ♣♦r ❡q✉❛çã♦ x2 + y 2 = 1✳
❙❡❥❛ A(1, 0) ♦ ♣♦♥t♦ ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ ✜①❛❞♦ ♥❛
♦r✐❣❡♠ ❞♦s ❛r❝♦s ♦r✐❡♥t❛❞♦s AT s♦❜r❡ ❛ ❝✐r❝✉♥❢❡✲
rê♥❝✐❛✳ ❊st❛ ♦r✐❡♥t❛çã♦ é ❛ ✉s✉❛❧✿ ♥♦ s❡♥t✐❞♦ ❛♥t✐✲
❤♦rár✐♦✱ é ♣♦s✐t✐✈❛ ❡ ♥♦ s❡♥t✐❞♦ ❤♦rár✐♦✱ é ♥❡❣❛t✐✈❛✳
❊st❛❜❡❧❡❝❡♠♦s ✉♠❛ ❝♦rr❡s♣♦♥❞ê♥❝✐❛ ❡♥tr❡ ♦s
♥ú♠❡r♦s r❡❛✐s ❡ ♦s ♣♦♥t♦s ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ ❞♦
♠♦❞♦ s❡❣✉✐♥t❡✿
❋✐❣✉r❛ ✷✳✹✵✿
❆♦ ♥ú♠❡r♦ r❡❛❧ t ❝♦rr❡s♣♦♥❞❡ ♦ ♣♦♥t♦ T ❞❛ ❝✐r✲
c ♠❡❞❡
❝✉♥❢❡rê♥❝✐❛✱ ❞❡ ♠♦❞♦ q✉❡ ♦ ❛r❝♦ ♦r✐❡♥t❛❞♦ AT
| t | r❛❞✐❛♥♦s✳ ❖ ❛r❝♦ t❡♠ ♦r✐❡♥t❛çã♦ ♣♦s✐t✐✈❛ s❡ t é ♣♦s✐t✐✈♦❀ ❡ ♦r✐❡♥t❛çã♦ ♥❡❣❛t✐✈❛ s❡ t é
♥❡❣❛t✐✈♦✳
❙❡ T (x, y) é ♦ ♣♦♥t♦ q✉❡ ❝♦rr❡s♣♦♥❞❡ ❛ s❡✉ ♥ú♠❡r♦ r❡❛❧ t✱ ❛ ❛❜s❝✐ss❛ x ❝❤❛♠❛✲s❡ ❞❡✿
❝♦ss❡♥♦ ❞❡ t ❡ s❡ ❞❡♥♦t❛ ✭cos t✮ ❡ ❛ ♦r❞❡♥❛❞❛ y ❞❡♥♦♠✐♥❛✲s❡ s❡♥♦ ❞❡ t ❡ ❞❡♥♦t❛✲s❡ sent ❡
♦ ♣♦♥t♦ T ❡s❝r❡✈❡✲s❡ x = cos t, y = sent ♦✉ T (cos x, sent)✳
P♦r ❡①❡♠♣❧♦✱ ❝♦♥s✐❞❡r❛♥❞♦ ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ 2π, ✭❧♦❣♦✱ s❡✉ r❛✐♦ é 1✮✱
π
π
π
❛♦ ♥ú♠❡r♦ ❝♦rr❡s♣♦♥❞❡ ♦ ♣♦♥t♦ B(0, 1)❀ ❧♦❣♦ cos = 0 ❡ sen = 1✳
2
2
2
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✱ ❛♦s ♥ú♠❡r♦s π ❡ 3π ❝♦rr❡s♣♦♥❞❡ ♦ ♣♦♥t♦ A′ (−1, 0)✱ ❡♥tã♦ cos π =
cos 3π = −1 ❡ senπ = sen3π = 0✳
❉❡st❛ ❝♦rr❡s♣♦♥❞ê♥❝✐❛ ♣♦❞❡♠♦s ❞❡❞✉③✐r ❛s ♣r♦♣r✐❡❞❛❞❡s✱ t❛✐s ❝♦♠♦✿
Pr♦♣r✐❡❞❛❞❡ ✷✳✺✳
✶✮
❈♦♠♦ T (cos t, sent) é ✉♠ ♣♦♥t♦ ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛✱ ❡ t❡♠♦s ❛ r❡❧❛çã♦ ❢✉♥❞❛♠❡♥t❛❧✿
cos2 t + sen2 t = 1✳
✷✮
❈♦♥s✐❞❡r❛♥❞♦ q✉❡ T ✈❛r✐❛ s♦❜r❡ ❛ ❝✐r❝✉♥❢❡rê♥❝✐❛✱ s✉❛ ❛❜s❝✐ss❛ ❡ s✉❛ ♦r❞❡♥❛❞❛ ✈❛r✐❛
❡♥tr❡ −1 ❡ 1 ✐st♦ é −1 ≤ cos t ≤ 1 ❡ −1 ≤ sent ≤ 1✳
✶✹✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✸✮
P❡r✐♦❞✐❝✐❞❛❞❡ ❞♦ s❡♥♦ ❡ ❝♦ss❡♥♦ ✿ ❙❡ ❛♦ ♥ú♠❡r♦ r❡❛❧ t ❝♦rr❡s♣♦♥❞❡ ♦ ♣♦♥t♦
T ❞❛
❝✐r❝✉♥❢❡rê♥❝✐❛ ❡ ❝♦♥s✐❞❡r❛♥❞♦ 2kπ ♣❛r❛ k ∈ Z✱ r❡♣r❡s❡♥t❛ ♦ ♥ú♠❡r♦ ❞❡ k ✈♦❧t❛s ❛♦
r❡❞♦r ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛✱ ❛♦ ♥ú♠❡r♦ r❡❛❧ t + 2kπ ❝♦rr❡s♣♦♥❞❡ ♦ ♠❡s♠♦ ♣♦♥t♦ T ✱ ❧♦❣♦
sent = sen(t + 2kπ) ❡ cos t = cos(t + 2kπ)✳
❖ ♠❡♥♦r ♥ú♠❡r♦ r❡❛❧ p > 0 ♣❛r❛ ♦ q✉❛❧ sent = sen(t + p) ❡ cos t = cos(t + p)✱
❞❡♥♦♠✐♥❛♠♦s ♣❡rí♦❞♦ ❞♦ s❡♥♦ ❡ ❝♦ss❡♥♦✳
✹✮
❆♦s ♥ú♠❡r♦s r❡❛✐s t ❡ −t ❝♦rr❡s♣♦♥❞❡ ♦s ♣♦♥t♦s T ❡ T ′ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ sã♦ s✐♠étr✐❝♦s
r❡s♣❡✐t♦ ❞♦ ❡✐①♦✲x ❡ ❡st❡s ♣♦♥t♦s t❡♠ ❛ ♠❡s♠❛ ❛❜s❝✐ss❛ ♣♦ré♠ s✉❛s ♦r❞❡♥❛❞❛s só
❞✐❢❡r❡♠ ♥♦ s✐♥❛❧❀ ✐st♦ é cos(−t) = cos t ❡ sen(−t) = −sent✳
✺✮
❆s ♣r♦♣r✐❡❞❛❞❡s ✭✐❞❡♥t✐❞❛❞❡s ✮ q✉❡ ❡st❛♠♦s ❞❡❞✉③✐♥❞♦ ❛♣r❡s❡♥t❛r❡♠♦s ❛♦ ❧❡✐t♦r ♣♦r
s✉❛ ✉t✐❧✐❞❛❞❡✳
a−b
a+b
sen
2
2
✶✳
sen.a − sen.b = 2 cos
✷✳
sen(a ± b) = sena cos b ± senb cos a
a−b
a+b
cos
cos a + cos b = 2 cos
2
2
✸✳
✹✳
✺✳
✻✳
cos(a ± b) = cos a cos b ∓ senb cos a
a+b
a−b
cos a − cos b = −2sen
sen
2
2
a+b
a−b
sena + senb = 2sen
cos
2
2
✼✳
1
sena · cos b = [sen(a + b) + sen(a − b)]
2
✽✳
sen2 a =
✾✳
1
sena · senb = [cos(a − b) − cos(a + b)]
2
✶✵✳
1 − cos 2a
2
cos2 a =
1 + cos 2a
2
1
cos a · cos b = [cos(a + b) + cos(a − b)]
2
❉♦ ❢❛t♦ q✉❡✱ ❛ ❝❛❞❛ ♥ú♠❡r♦ r❡❛❧ x✱ ♣♦❞❡♠♦s r❡❧❛❝✐♦♥❛r ❝♦♠ ♦ s❡♥♦ ❡ ❝♦ss❡♥♦✱ ✐st♦ é
❡①✐st❡♠ senx ❡ cos x ♣❛r❛ x ∈ R ❞❡✜♥❡✲s❡✿
✶✶✳
•
•
senx
cos x
cos x
cot x =
senx
tan x =
s❡✱
cos x 6= 0 ✐st♦ é
x 6= (2k + 1)
s❡✱
senx 6= 0 ✐st♦ é
x 6= kπ
✶✹✷
π
2
k∈Z
k∈Z
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
•
sec x =
1
s❡✱ cos x 6= 0 ✐st♦ é
cos x
•
csc x =
1
senx
s❡✱
x 6= (2k + 1)
senx 6= 0 ✐st♦ é x 6= kπ
π
2
k∈Z
k∈Z
P❛r❛ ♦s ✈❛❧♦r❡s ❞❡ x✱ ♣❛r❛ ♦s q✉❛✐s ❡①✐st❛♠ tan x, cot x, sec x ❡ csc x ✈❡r✐✜❝❛♠✲s❡ ❛s
s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✿
sec2 x − tan2 x = 1
| sec x |≥ 1
✶✳
✸✳
✷✳
✹✳
csc2 x − cot2 x = 1
| csc x |≥ 1
✷✳✼✳✸✳✶ ❋✉♥çã♦ s❡♥♦
❆ ❢✉♥çã♦ s❡♥♦ f : R −→ R é ❞❡✜♥✐❞❛ ♣♦r✿ f (x) = senx✱ ✐st♦ é ❛ss♦❝✐❛ ❛ ❝❛❞❛ ♥ú♠❡r♦
r❡❛❧ x ♦ ♥ú♠❡r♦ y = senx✳
❆❧❣✉♠❛s ❝❛r❛❝t❡ríst✐❝❛s ❞❛ ❢✉♥çã♦ s❡♥♦✿
❛✮ D(f ) = R
❜✮
Im(f ) = [−1, 1]
❆ ❢✉♥çã♦ s❡♥♦ é ♣❡r✐ó❞✐❝❛✱ s❡✉ ♣❡rí♦❞♦ é 2π ✳
✳ ✐st♦ é✱ ❛ ❢✉♥çã♦ s❡♥♦ é í♠♣❛r ❡ s❡✉ ❣rá✜❝♦ é s✐♠étr✐❝♦ r❡s♣❡✐t♦ ❞❛
♦r✐❣❡♠ ❡ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✹✶✮✳
❝✮ sen(−x) = −senx
❞✮
f (x) = senx é ♣♦s✐t✐✈❛ ♥♦ 1o ❡ 2o q✉❛❞r❛♥t❡s ✭♦r❞❡♥❛❞❛ ♣♦s✐t✐✈❛✮✳ f (x) = senx é
♥❡❣❛t✐✈❛ ♥♦ 3o ❡ 4o q✉❛❞r❛♥t❡s ✭♦r❞❡♥❛❞❛ ♥❡❣❛t✐✈❛✮✳
✻y
✻y
1
− π2
−π
0
1
π
2
x
✲
x
π
− π2
−π
−1
0
π
2
✲
π
−1
❋✐❣✉r❛ ✷✳✹✶✿ ❙❡♥♦
❋✐❣✉r❛ ✷✳✹✷✿ ❈♦ss❡♥♦✳
✷✳✼✳✸✳✷ ❋✉♥çã♦ ❝♦ss❡♥♦
❆ ❢✉♥çã♦ ❝♦ss❡♥♦ f : R −→ R é ❞❡✜♥✐❞❛ ♣♦r✿ f (x) = cos x
❆❧❣✉♠❛s ❝❛r❛❝t❡ríst✐❝❛s ❞❛ ❢✉♥çã♦ ❝♦ss❡♥♦✿
❛✮ D(f ) = R
Im(f ) = [−1, 1]
❜✮ cos(−x) = cos x✱
✐st♦ é✱ ❛ ❢✉♥çã♦ ❝♦ss❡♥♦ é ♣❛r ❡ s❡✉ ❣rá✜❝♦ é s✐♠étr✐❝♦ r❡s♣❡✐t♦ ❛♦
❡✐①♦✲y ❡ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✷✳✹✷✮✳
✶✹✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❝✮
❆ ❢✉♥çã♦ ❝♦ss❡♥♦ é ♣❡r✐ó❞✐❝❛✱ s❡✉ ♣❡rí♦❞♦ é 2π ✳
é ♣♦s✐t✐✈❛ ♥♦ 1o ❡ 4o q✉❛❞r❛♥t❡ ✭❛❜s❝✐ss❛ ♣♦s✐t✐✈❛✮✳ f (x) = cos x é
♥❡❣❛t✐✈❛ ♥♦ 2o ❡ 3o q✉❛❞r❛♥t❡ ✭❛❜s❝✐ss❛ ♥❡❣❛t✐✈❛✮✳
❞✮ f (x) = cos x
❆❧❣✉♠❛s ❝❛r❛❝t❡ríst✐❝❛s ❞❛ ❢✉♥çã♦ s❡♥♦ ❡ ❝♦ss❡♥♦✿
π
❉❡s❞❡ q✉❡ sen( + x) = cos x✱ ♦ ❣rá✜❝♦ ❞❡ y = senx tr❛♥s❢♦r♠❛✲s❡ ♥♦ ❣rá✜❝♦ ❞❡
2
π
y = cos x s❡ ❛ ♦r✐❣❡♠ s❡ ❞❡s❧♦❝❛ ❛♦ ♣♦♥t♦ ( , 0)✳
2
❋✉♥çã♦
❱❛❧♦r 0 ✭③❡r♦✮ ❡♠✿
❱❛❧♦r 1 ✭✉♠✮ ❡♠✿
senx
π
π
+ 2kπ
2
cos x
π
+ 2kπ
2
2π
❱❛❧♦r −1 ❡♠✿
3π
+ 2kπ
2
(2k + 1)π
✷✳✼✳✸✳✸ ❋✉♥çã♦ t❛♥❣❡♥t❡
❆ ❢✉♥çã♦ r❡❛❧ f : R −→ R ❝❤❛♠❛❞❛ ✧❢✉♥çã♦ t❛♥❣❡♥t❡✧é ❞❡✜♥✐❞❛ ♣♦r✿
f (x) = tan x =
senx
cos x
❆s ❝❛r❛❝t❡ríst✐❝❛s ✐♠♣♦rt❛♥t❡s ❞❛ ❢✉♥çã♦ t❛♥✲
❣❡♥t❡ sã♦ ❛s s❡❣✉✐♥t❡s✿
❛✮ D(f ) = R − {
❜✮
π
+ kπ,
2
k ∈ Z },
Im(f ) = R
❆ ❢✉♥çã♦ t❛♥❣❡♥t❡ é ♣❡r✐ó❞✐❝❛✱ s❡✉ ♣❡rí♦❞♦ é
π✳
❝✮ tan(−x) = − tan x ✐st♦ é✱
❛ ❢✉♥çã♦ t❛♥❣❡♥t❡ é
í♠♣❛r ❡ s❡✉ ❣rá✜❝♦ é s✐♠étr✐❝♦ r❡s♣❡✐t♦ ❞❛
♦r✐❣❡♠ ❝♦♠♦ s❡ ♠♦str❛ ♥❛ ❋✐❣✉r❛ ✭✷✳✹✸✮✳
❞✮
❋✐❣✉r❛ ✷✳✹✸✿ ❚❛♥❣❡♥t❡✳
f (x) = tan x é ♣♦s✐t✐✈❛ ♥♦ 1o ❡ 3o q✉❛❞r❛♥✲
t❡s ✭♣r♦❞✉t♦ ❞❛ ♦r❞❡♥❛❞❛ ♣❡❧❛ ❛❜s❝✐ss❛ ♣♦s✐t✐✈❛✮✳ f (x) = tan x é ♥❡❣❛t✐✈❛ ♥♦ 2o ❡
4o q✉❛❞r❛♥t❡s ✭♣r♦❞✉t♦ ❞❛ ♦r❞❡♥❛❞❛ ♣❡❧❛ ❛❜s❝✐ss❛ ♥❡❣❛t✐✈❛✮✳
❊①❡♠♣❧♦ ✷✳✾✶✳
❉❛❞❛s ❛s ❢✉♥çõ❡s f (x) = senx ❡ g(x) =
r❡s♣❡❝t✐✈♦s ❞♦♠í♥✐♦s ❞❡ ❞❡✜♥✐çã♦✳
❙♦❧✉çã♦✳
√
✶✹✹
1 − 9x2 ✱ ❞❡t❡r♠✐♥❡ f ◦ g ❡ g ◦ f ❡ s❡✉s
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
1o
√
(f ◦ g)(x) = f (g(x)) = seng(x) = sen 1 − 9x2 ✳ ❉♦ ❢❛t♦ s❡r t♦❞♦ ♦ ❝♦♥❥✉♥t♦ ❞❡
2
♥ú♠❡r♦s r❡❛✐s ♦ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ s❡♥♦✱ t❡♠♦s D(f ◦ g) = { x ∈ R /. 1 − 9x ≥ 0 }❀
❚❡♠♦s
✐st♦ é
D(f ◦ g) = { x ∈ R /. −
2o
❚❡♠♦s
0
(g ◦ f )(x) = g(f (x)) =
1
1
⇒ − ≤ senx ≤ ❛ss✐♠
3
3
p
1
1
≤x≤ }
3
3
1 − 9[f (x)]2 =
1
1
≤ senx ≤ }
3
3
❊①❡♠♣❧♦ ✷✳✾✷✳
❉❛❞❛s ❛s ❢✉♥çõ❡s f (x) = tan x ❡ g(x) =
r❡s♣❡❝t✐✈♦s ❞♦♠í♥✐♦s ❞❡ ❞❡✜♥✐çã♦✳
❙♦❧✉çã♦✳
1 − 9sen2 x✱
❧♦❣♦ t❡♠♦s
1 − 9x2 ≥
√
❡
(g ◦ f )(x) =
√
1 − 9sen2 x
1 − x2 ❞❡t❡r♠✐♥❡ f ◦ g ❡ g ◦ f ❡ s❡✉s
π
+ kπ, k ∈ Z } ❡ D(g) = [−1, 1]
2
√
√
(f ◦ g)(x) = f (g(x)) = tan g(x) = tan 1 − x2 ✳ ▲♦❣♦ (f ◦ g)(x) = tan 1 − x2 ❀
❙❛❜❡♠♦s q✉❡ ♦ ❞♦♠í♥✐♦
❚❡♠♦s
√
t❡♠♦s q✉❡
D(g ◦ f ) = { x ∈ R /. −
1o
√
(f og)(x) = sen 1 − 9x2
❡
D(f ) = R − {
♣❛r❛ ♦ ❝á❧❝✉❧♦ ❞♦ ❞♦♠í♥✐♦✿
D(f ◦ g) = { x ∈ D(g) /.
2o
√
1 − x2 6=
(g ◦ f )(x) = g(f (x)) =
√
2
1 − tan x❀ ❧♦❣♦ 1 − x2 ≥ 0 ⇒
❚❡♠♦s q✉❡
❆ss✐♠ t❡♠♦s q✉❡✿
π
+ kπ,
2
k ∈ Z }❀
✐st♦ é
D(f ◦ g) = [−1, 1]✳
p
√
1 − [f (x)]2 = 1 − tan2 x✱
−1 ≤ tan x ≤ 1✳
D(g ◦ f ) = { x ∈ D(g) /. − 1 ≤ tan x ≤ 1 } =
❡♥tã♦
(g ◦ f )(x) =
S
π
π
[kπ − , kπ + ]
4
4
k∈Z
✷✳✼✳✸✳✹ ❋✉♥çã♦ ❝♦t❛♥❣❡♥t❡
f :
❆ ✏❢✉♥çã♦ ❝♦t❛♥❣❡♥t❡✑ é ❞❡✜♥✐❞❛ ♣♦r✿
R −→ R
t❛❧ q✉❡✿
❆❧❣✉♠❛s
cos x
f (x) = cot x =
senx
❝❛r❛❝t❡ríst✐❝❛s
❞❛
❢✉♥çã♦
❝♦t❛♥✲
❣❡♥t❡✿
❛✮ D(f ) = R − { kπ,
❜✮ cot(−x) = − cot x✱
k ∈ Z };
Im(f ) = R
✐st♦ é✱ ❛ ❢✉♥çã♦ ❝♦t❛♥✲
❣❡♥t❡ é í♠♣❛r ❡ s❡✉ ❣rá✜❝♦ é s✐♠étr✐❝♦ r❡s✲
♣❡✐t♦ ❞❛ ♦r✐❣❡♠ ❝♦♠♦ s❡ ♠♦str❛ ♥❛
❋✐❣✉r❛
✭✷✳✹✹✮✳
❋✐❣✉r❛ ✷✳✹✹✿ ❈♦t❛♥❣❡♥t❡
❝✮
❆ ❝♦t❛♥❣❡♥t❡ é ❢✉♥çã♦ ♣❡r✐ó❞✐❝❛✱ s❡✉ ♣❡rí♦❞♦
é
π✳
✶✹✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✳✼✳✸✳✺ ❋✉♥çã♦ s❡❝❛♥t❡
1
➱ ❛ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r✿ f (x) = sec x =
csc x
❆❧❣✉♠❛s ❝❛r❛❝t❡ríst✐❝❛s ❞❛ ❢✉♥çã♦ s❡❝❛♥t❡✿
❛✮ D(f ) = R − {
❜✮
π
+ kπ,
2
k ∈ Z };
Im(f ) = (−∞, −1] ∪ [1, +∞)✳
❆ ❢✉♥çã♦ s❡❝❛♥t❡ é ♣❡r✐ó❞✐❝❛✱ s❡✉ ♣❡rí♦❞♦ é 2π ✳
✐st♦ é✱ ❛ ❢✉♥çã♦ s❡❝❛♥t❡ é ♣❛r ❡ s❡✉ ❣rá✜❝♦ é s✐♠étr✐❝♦ r❡s♣❡✐t♦ ❛♦
❡✐①♦✲y ❝♦♠♦ s❡ ♠♦str❛ ♥❛ ❋✐❣✉r❛ ✭✷✳✹✺✮✳
❝✮ sec(−x) = sec x
❋✐❣✉r❛ ✷✳✹✺✿ ❙❡❝❛♥t❡
❋✐❣✉r❛ ✷✳✹✻✿ ❈♦ss❡❝❛♥t❡
✷✳✼✳✸✳✻ ❋✉♥çã♦ ❝♦ss❡❝❛♥t❡
1
➱ ❛ ❢✉♥çã♦ f : R −→ R ❞❡✜♥✐❞❛ ♣♦r✿ f (x) = csc x =
✳
sec x
❆❧❣✉♠❛s ❝❛r❛❝t❡ríst✐❝❛s ❞❛ ❢✉♥çã♦ ❝♦ss❡❝❛♥t❡✿
❛✮ D(f ) = R − { π + kπ,
❜✮
k ∈ Z };
Im(f ) = (−∞, −1] ∪ [1, +∞)✳
❆ ❢✉♥çã♦ ❝♦ss❡❝❛♥t❡ é ♣❡r✐ó❞✐❝❛✱ s❡✉ ♣❡rí♦❞♦ é 2π ✳
❝✮ csc(−x) = − csc x✳
✐st♦ é✱ ❛ ❢✉♥çã♦ ❝♦ss❡❝❛♥t❡ é í♠♣❛r ❡ s❡✉ ❣rá✜❝♦ é s✐♠étr✐❝♦ r❡s♣❡✐t♦
❛♦ ❡✐①♦✲y ❝♦♠♦ s❡ ♠♦str❛ ♥❛ ❋✐❣✉r❛ ✭✷✳✹✻✮✳
❊①❡♠♣❧♦ ✷✳✾✸✳
❉❡t❡r♠✐♥❡ ❛ ár❡❛ ❞♦ ♣❛r❛❧❡❧♦❣r❛♠♦ ❞❛ ❜❛s❡
a✱
❧❛❞♦
b✱
❛❧t✉r❛
h
❡ â♥❣✉❧♦ ❞❛ ❜❛s❡
α✳
❙♦❧✉çã♦✳
❈♦♥s✐❞❡r❡ ♦ ♣❛r❛❧❡❧♦❣r❛♠♦ ❞❛ ❋✐❣✉r❛ ✭✷✳✹✼✮✳
h
❉❛ ❞❡✜♥✐çã♦ ❞❛ ❢✉♥çã♦ s❡♥♦ t❡♠♦s sena = ✱ ♦♥❞❡ h é ❛ ❛❧t✉r❛ ❞♦ ♣❛r❛❧❡❧♦❣r❛♠♦❀
b
❧♦❣♦✱ ❝♦♠♦ ❛ ár❡❛ é✿ A = (base)(altura)✳
▲♦❣♦✱ A = (a)(h) ⇒ A = (a)(b · senα)✳
P♦rt❛♥t♦ ❛ ár❡❛ ❞♦ tr❛♣é③✐♦ é A = ab · senα✳
✶✹✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
b
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❊s❝❛❞❛ 20m ✁
h
α
✁✁
✁
✁
✁ o
a
P
a
r
e
d
e
x
✁ 60
❋✐❣✉r❛ ✷✳✹✼✿
R
❋✐❣✉r❛ ✷✳✹✽✿
❊①❡♠♣❧♦ ✷✳✾✹✳
❯♠❛ ❡s❝❛❞❛ ❡stá ❡♥❝♦st❛❞❛ ❡♠ ✉♠❛ ♣❛r❡❞❡ ❢♦r♠❛♥❞♦ ✉♠ â♥❣✉❧♦ ❞❡
20
❙❡ ❛ ❡s❝❛❞❛ t❡♠
60o
❝♦♠ ♦ ❝❤ã♦✳
♠❡tr♦s ❞❡ ❝♦♠♣r✐♠❡♥t♦✱ q✉❡ ❛❧t✉r❛ ❞❛ ♣❛r❡❞❡ ❡❧❛ ❛t✐♥❣❡❄
❙♦❧✉çã♦✳
❆ ♣❛rt✐r ❞♦ ❞❡s❡♥❤♦ ❞❛
é ❝♦♥❤❡❝✐❞♦ t❡♠♦s✿
√
❋✐❣✉r❛
3
x
=
2
20
P♦rt❛♥t♦✱ ❛ ❡s❝❛❞❛ ❛t✐♥❣❡
x
❀ ❛ss✐♠✱ ❝♦♠♦ ♦ sen60o
20
√
⇒ x = 10 3 ⇒ x = 17, 32m✳
♣❛r❡❞❡✳
✭✷✳✹✽✮✱ t❡♠♦s q✉❡
√
⇒ 2x = 20 3
17, 32 m ❞❡ ❛❧t✉r❛ ❞❛
sen60o =
❊①❡♠♣❧♦ ✷✳✾✺✳
❉❡t❡r♠✐♥❡ ❞✉❛s ❢✉♥çõ❡s
f
❡
g
t❛✐s q✉❡
h(x) = sen4 4x + 5sen2 4x + 2
♦♥❞❡
h = gof ✳
❙♦❧✉çã♦✳
h(x) = sen4 4x + 5sen2 4x + 2 = [sen4x]4 + 5[sen4x]2 + 2✳
4
2
❈♦♥s✐❞❡r❡ f (x) = sen4x ❡ g(x) = x + 5x + 2✳
❖✉tr❛s r❡❧❛çõ❡s tr✐❣♦♥♦♠étr✐❝❛s
❊♠ tr✐❣♦♥♦♠❡tr✐❛✱ ❛ ❧❡✐ ❞♦s s❡♥♦s é ✉♠❛ r❡❧❛çã♦ ♠❛t❡♠át✐❝❛ ❞❡ ♣r♦♣♦rçã♦ s♦❜r❡ ❛
♠❡❞✐❞❛ ❞❡ tr✐â♥❣✉❧♦s ❛r❜✐trár✐♦s ❡♠ ✉♠ ♣❧❛♥♦✳
▲❡✐ ❞♦s s❡♥♦s✿
r❛✐♦
r✱
❞❡ ❧❛❞♦s
❊♠ ✉♠ tr✐â♥❣✉❧♦
BC ✱ AC
❡
AB
ABC
q✉❛❧q✉❡r✱ ✐♥s❝r✐t♦ ❡♠ ✉♠❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❡
✭❋✐❣✉r❛ ✭✷✳✹✾✮✮ q✉❡ ♠❡❞❡♠ r❡s♣❡❝t✐✈❛♠❡♥t❡
a, b
❡
c
❡
❝♦♠ â♥❣✉❧♦s ✐♥t❡r♥♦s✱ ❡ ✈❛❧❡ ❛ s❡❣✉✐♥t❡ r❡❧❛çã♦✿
a
▲❡✐ ❞♦s ❝♦ss❡♥♦s✿
b
senA
=
b
b
senB
=
b
senC
= 2r
ABC q✉❛❧q✉❡r✱ ❞❡ ❧❛❞♦s ♦♣♦st♦s ❛♦s â♥❣✉❧♦s
a, b ❡ c✱ ❝♦♠♦ ✐♥❞✐❝❛ ❛ ❋✐❣✉r❛ ✭✷✳✹✾✮✱ ✈❛❧❡♠ ❛s
❊♠ ✉♠ tr✐â♥❣✉❧♦
✐♥t❡r♥♦s ❡ ❝♦♠ ♠❡❞✐❞❛s r❡s♣❡❝t✐✈❛♠❡♥t❡
c
r❡❧❛çõ❡s✿
b
a2 = b2 + c2 − 2bc cos A,
b
b2 = a2 + c2 − 2ac cos B,
✶✹✼
b
c2 = a2 + b2 − 2ab cos C
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
▲❡✐ ❞❛s t❛♥❣❡♥t❡s✿ ❊♠ tr✐❣♦♥♦♠❡tr✐❛✱ ❛ ❧❡✐
❞❛s t❛♥❣❡♥t❡s ❡st❛❜❡❧❡❝❡ ❛ r❡❧❛çã♦ ❡♥tr❡ ❛s t❛♥✲
❣❡♥t❡s ❞❡ ❞♦✐s â♥❣✉❧♦s ❞❡ ✉♠ tr✐â♥❣✉❧♦ ❡ ♦s ❝♦♠✲
♣r✐♠❡♥t♦s ❞❡ s❡✉s ❧❛❞♦s ♦♣♦st♦s✳❚❛❧ ♣r♦♣♦s✐çã♦
❢♦✐ ❞❡s❝♦❜❡rt❛ ♣♦r ✈♦❧t❛ ❞❡
1580✱
♣❡❧♦ ♠❛t❡♠á✲
t✐❝♦ ❋r❛♥ç♦✐s ❱✐èt❡✳
❋✐❣✉r❛ ✷✳✹✾✿
a, b ❡ c ♦s ❝♦♠♣r✐♠❡♥t♦s ❞♦s três ❧❛❞♦s
tr✐â♥❣✉❧♦ ❡ α, β ❡ θ ✱ ♦s r❡s♣❡❝t✐✈♦s â♥❣✉❧♦s
❙❡❥❛♠
❞♦
♦♣♦st♦s ❛ ❡st❡s três ❧❛❞♦s✳ ❆ ❧❡✐ ❞❛s t❛♥❣❡♥t❡s ❡st❛❜❡❧❡❝❡ q✉❡
b − B)
b
tan 21 (α − β)
tan 12 (A
a−b
=
=
b + B)
b
a+b
tan 21 (α + β)
tan 21 (A
✷✳✼✳✹
❋✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s
❉❡st❛❝❛♠♦s q✉❡ ❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s sã♦ ♣❡r✐ó❞✐❝❛s✱ ♣♦rt❛♥t♦ ♥ã♦ sã♦ ✐♥❥❡t✐✈❛s❀
♥ã♦ ♦❜st❛♥t❡✱ r❡str✐♥❣✐♥❞♦ ❝♦♥✈❡♥✐❡♥t❡♠❡♥t❡ ♦ ❞♦♠í♥✐♦ ❞❡ ❝❛❞❛ ✉♠❛ ❞❡❧❛s✱ ♣♦❞❡♠♦s ♦❜t❡r
q✉❡ s❡❥❛♠ ✐♥❥❡t✐✈❛s✳ ◆❡ss❛ r❡str✐çã♦✱ ❛ ❢✉♥çã♦ tr✐❣♦♥♦♠étr✐❝❛ ❛❞♠✐t❡ ❢✉♥çã♦ ✐♥✈❡rs❛✳ ❊st❛s
r❡str✐çõ❡s sã♦ ❝❤❛♠❛❞❛s ❞❡ ✏
r❡str✐çã♦ ♣r✐♥❝✐♣❛❧ ✑✳
✷✳✼✳✹✳✶ ❋✉♥çã♦ ❛r❝s❡♥
❈♦♥s✐❞❡r❛♥❞♦ ❛ r❡str✐çã♦ ❞❛ ❢✉♥çã♦ s❡♥♦ ❛♦ ✐♥t❡r✈❛❧♦
π π
[− , ]
2 2
t❡rí❛♠♦s q✉❡ ❡❧❛ é
❜✐❥❡t✐✈❛✱ ❡♥tr❡t❛♥t♦✱ ❡♠ ❣❡r❛❧ ❡❧❛ ♥ã♦ ♦ é ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳ ❆ss✐♠✱
π π
sen : [− , ] −→ [−1, 1]
2 2
❋✐❣✉r❛
é ❜✐❥❡t✐✈❛✳ P♦rt❛♥t♦✱ ❛❞♠✐t❡ ❢✉♥çã♦ ✐♥✈❡rs❛ ✭
✭✷✳✺✵✮✮ q✉❡ é ❛ ❢✉♥çã♦ ✿
π π
arcsen : [−1, 1] −→ [− , ]
2 2
❞❡ ♠♦❞♦ q✉❡✿
x = arcseny
⇔
y = senx
✷✳✼✳✹✳✷ ❋✉♥çã♦ ❛r❝❝♦s
❊♠ ❣❡r❛❧ ❛ ❢✉♥çã♦ ❝♦ss❡♥♦ ♥ã♦ é ❜✐❥❡t✐✈❛ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
❙❡ ❝♦♥s✐❞❡r❛♠♦s ❛ r❡str✐çã♦ ❞❛ ❢✉♥çã♦ ❝♦ss❡♥♦ ❛♦ ✐♥t❡r✈❛❧♦
[0, π]❀
❡♥tã♦ t❡rí❛♠♦s q✉❡
❡❧❛ é ❜✐❥❡t✐✈❛✳
❆ss✐♠✱
cos : [0, π] −→ [−1, 1]
é ❢✉♥çã♦ ❜✐❥❡t✐✈❛✳
✶✹✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
π
2
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✻
y
y✻
π
y = arccos x
y = arcsenx
✲
−1
R
0
π
2
x
1
✲
− π2
−1
0
1
x
❋✐❣✉r❛ ✷✳✺✶✿ ❆r❝♦ ❝♦ss❡♥♦✳
❋✐❣✉r❛ ✷✳✺✵✿ ❆r❝♦ s❡♥♦✳
❋✐❣✉r❛
P♦rt❛♥t♦✱ ❛❞♠✐t❡ ❢✉♥çã♦ ✐♥✈❡rs❛ ✭
✭✷✳✺✶✮✮ q✉❡ é ❛ ❢✉♥çã♦ ✿
arccos : [−1, 1] −→ [0, π]
❞❡ ♠♦❞♦ q✉❡✿
⇒
x = arccos y
y = cos x
✷✳✼✳✹✳✸ ❋✉♥çã♦ ❛r❝t❛♥
❈❤❛♠❛✲s❡ r❡str✐çã♦ ♣r✐♥❝✐♣❛❧ ❞❛ t❛♥❣❡♥t❡ à ❢✉♥çã♦❀
❋✐❣✉r❛
❧♦❣♦ ❡❧❛ ❛❞♠✐t❡ ❢✉♥çã♦ ✐♥✈❡rs❛ ✭
π π
tan : [− , ] −→ R
2 2
é ❜✐❥❡t✐✈❛❀
✭✷✳✺✷✮✮ é ❛ ❢✉♥çã♦✿
π π
arctan : R −→ [− , ]
2 2
❞❡ ♠♦❞♦ q✉❡
⇔
x = arctan y
y = tan x✳
✻
y
✻
y
π
2
π
y = arctan x
−1
✲
0
1
x
π
2
y = arccotx
✲
− π2
0
❋✐❣✉r❛ ✷✳✺✷✿ ❆r❝♦ t❛♥❣❡♥t❡
x
❋✐❣✉r❛ ✷✳✺✸✿ ❆r❝♦ ❝♦t❛♥❣❡♥t❡
✷✳✼✳✹✳✹ ❋✉♥çã♦ ❛r❝❝t❣
❈❤❛♠❛✲s❡ r❡str✐çã♦ ♣r✐♥❝✐♣❛❧ ❞❛ ❝♦t❛♥❣❡♥t❡ à ❢✉♥çã♦❀
cot : [0, π] −→ R✳
✶✹✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❡❧❛ é ❜✐❥❡t✐✈❛❀ ❧♦❣♦ ❡❧❛ ❛❞♠✐t❡ ❝♦♠♦ ❢✉♥çã♦ ✐♥✈❡rs❛ ✭❋✐❣✉r❛ ✭✷✳✺✸✮✮ ❛ ❢✉♥çã♦✿
arccot : R −→ [0, π]
x = arccoty ⇔ y = cot x✳
❞❡ ♠♦❞♦ q✉❡
✷✳✼✳✹✳✺ ❋✉♥çã♦ ❛r❝s❡❝
❈❤❛♠❛✲s❡ r❡str✐çã♦ ♣r✐♥❝✐♣❛❧ ❞❛ s❡❝❛♥t❡ à ❢✉♥çã♦✿
sec : [0,
π
π
) ∪ ( , π] −→ (−∞, −1] ∪ [1, +∞)
2
2
❡st❛ ❢✉♥çã♦ é ❜✐❥❡t✐✈❛❀ ❧♦❣♦ ❡❧❛ ❛❞♠✐t❡ ❢✉♥çã♦ ✐♥✈❡rs❛✳
❙✉❛ ❢✉♥çã♦ ✐♥✈❡rs❛ é✿
arcsec : (−∞, −1] ∪ [1, +∞) −→ [0,
❞❡ ♠♦❞♦ q✉❡
x = arcsecy ⇔ y = sec x
π
π
) ∪ ( , π]
2
2
✭❋✐❣✉r❛ ✭✷✳✺✹✮✮
❋✐❣✉r❛ ✷✳✺✹✿ ❆r❝♦ s❡❝❛♥t❡
❋✐❣✉r❛ ✷✳✺✺✿ ❆r❝♦ ❝♦ss❡❝❛♥t❡✳
✷✳✼✳✹✳✻ ❋✉♥çã♦ ❛r❝❝s❝
❈❤❛♠❛✲s❡ r❡str✐çã♦ ♣r✐♥❝✐♣❛❧ ❞❛ ❝♦ss❡❝❛♥t❡ à ❢✉♥çã♦❀
π
π
csc : [− , 0) ∪ (0, ] −→ (−∞, −1] ∪ [1, +∞)
2
2
❡❧❛ é ❜✐❥❡t✐✈❛❀ ❡ ❛❞♠✐t❡ ❢✉♥çã♦ ✐♥✈❡rs❛ ✭❋✐❣✉r❛ ✭✷✳✺✺✮✮ é ❛ ❢✉♥çã♦✿
π
π
arccsc : (−∞, −1] ∪ [1, +∞) −→ [− , 0) ∪ (0, ]
2
2
❞❡ ♠♦❞♦ q✉❡✿
❊①❡♠♣❧♦ ✷✳✾✻✳
▼♦str❡ q✉❡
❙♦❧✉çã♦✳
x = arccscy
⇒
y = csc x✳
√
cos(arcsenx) = ± 1 − x2 .
✶✺✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❙❛❜❡♠♦s q✉❡ ❛ ❢✉♥çã♦ senx ❡ arcsenx ✉♠❛ é ❢✉♥çã♦ ✐♥✈❡rs❛ ❞❛ ♦✉tr❛❀ ❧♦❣♦ sen(arcsenx) =
x✳
P♦r ♦✉tr♦ ❧❛❞♦✱ ❞❛ ✐❞❡♥t✐❞❛❞❡ tr✐❣♦♥♦♠étr✐❝❛ sen2 x + cos2 x = 1 s❡❣✉❡ ♣♦r q✉❡stã♦ ❞❡
♥♦t❛çã♦ q✉❡ [senx]2 +[cos x]2 = 1✱ ❧♦❣♦ s❡♥❞♦ ♦ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ s❡♥♦ ❡ ❝♦ss❡♥♦ q✉❛✐sq✉❡r
♥ú♠❡r♦ r❡❛❧ ✈❡♠✱ q✉❡ [sen(arcsenx)]2 + [cos .(arcsenx)]2 = 1 ✐st♦ é x2 + [cos(arcsenx)]2 = 1
√
❡♥tã♦ cos(arcsenx) = ± 1 − x2 ✳
✷✳✼✳✺
❋✉♥çõ❡s ❤✐♣❡r❜ó❧✐❝❛s
❈♦♥s✐❞❡r❛♥❞♦ ❞✐❢❡r❡♥t❡s tr✐â♥❣✉❧♦s r❡tâ♥❣✉❧♦s ❝♦♠♦ ♥❛ ❋✐❣✉r❛ ✭✷✳✺✻✮ ❡ ❝❛❧❝✉❧❛♥❞♦ ❛
r❡❧❛çã♦ ❡♥tr❡ s❡✉s ❧❛❞♦s✱ ♦❜t❡r❡♠♦s q✉❡ ❡st❛s r❡❧❛çõ❡s sã♦ ✐♥❞❡♣❡♥❞❡♥t❡s ❞♦ ❝♦♠♣r✐♠❡♥t♦
❞❡ s❡✉s ❧❛❞♦s✳ ❆ss✐♠✱ s❛❜❡♠♦s q✉❡✿
senα =
BC
,
OC
cos α =
OB
,
OC
tan α =
BC
OB
cot α =
OB
BC
❊✱ s✉❛s ❝♦rr❡s♣♦♥❞❡♥t❡s r❡❧❛çõ❡s ✐♥✈❡rs❛s sã♦✿
csc α =
OC
,
BC
sec α =
OC
,
OB
r❡s♣❡❝t✐✈❛♠❡♥t❡✳
❋✐❣✉r❛ ✷✳✺✻✿
❋✐❣✉r❛ ✷✳✺✼✿
❆ ár❡❛ ❞♦ ❝ír❝✉❧♦ ❞❡ ❝❡♥tr♦ 0 ❡ r❛✐♦ OA = r é ✐❣✉❛❧ ❛ πr2 ✱ ❧♦❣♦ ❛ ár❡❛ ❞❡ ✉♠ s❡t♦r
❝✐r❝✉❧❛r ❞❡ â♥❣✉❧♦ 2α é αr2 ✳ ❈♦♥s✐❞❡r❛♥❞♦ r = 1✱ ❛ ár❡❛ ❞♦ s❡t♦r ❝✐r❝✉❧❛r ❞❡ â♥❣✉❧♦ 2α é
α✳
❈❤❛♠❛♠♦s x ❛ ár❡❛ ❞♦ s❡t♦r ❝✐r❝✉❧❛r ❞❡ â♥❣✉❧♦ 2α✱ ❡♥tã♦ senx = BC, cos x = OB ❡
tan x = BC/OB ❀ r❡s✉❧t❛ q✉❡ ❛ ❡q✉❛çã♦ ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❡ r❛✐♦ ✉♠ ❡ ❝❡♥tr♦ ❛ ♦r✐❣❡♠ ❞❡
❝♦♦r❞❡♥❛❞❛s é x2 + y 2 = 1✱ ❡ ❛ ❡q✉❛çã♦ ❞❡ ✉♠❛ ❤✐♣ér❜♦❧❡ ❡q✉✐❧át❡r❛ ❞❡ r❛✐♦ ✉♠ ❡ ❝❡♥tr♦
❛ ♦r✐❣❡♠ ❞❡ ❝♦♦r❞❡♥❛❞❛s é x2 − y 2 = 1✳
P♦❞❡♠♦s ❞❡✜♥✐r ♥❛ ❋✐❣✉r❛ ✭✷✳✺✼✮✱ ❛s s❡❣✉✐♥t❡s r❡❧❛çõ❡s✿
✶✺✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
BC
OA
OB
• ❈♦ss❡♥♦ ❤✐♣❡r❜ó❧✐❝♦✿
cosh α =
OA
BC
• ❚❛♥❣❡♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿
tanh α =
OB
OB
• ❈♦t❛♥❣❡♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿ coth α =
BC
OA
• ❙❡❝❛♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿
sechα =
OB
OA
• ❈♦ss❡❝❛♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿ cschα =
BC
❖❜s❡r✈❡ q✉❡ ❛s r❡❧❛çõ❡s coth α, sechα ❡ cschα sã♦ ✐♥✈❡rs❛s ❞❛s r❡❧❛çõ❡s tanh α, cosh α
❡ senhα r❡s♣❡❝t✐✈❛♠❡♥t❡✳
• ❙❡♥♦ ❤✐♣❡r❜ó❧✐❝♦✿
senhα =
❉♦ ♠❡s♠♦ ♠♦❞♦✱ ♣❛r❛ ♦ ❝❛s♦ ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ❤❛❜✐t✉❛✐s✱ ❛ ár❡❛ s♦♠❜r❡❛❞❛
❞❛ ❤✐♣ér❜♦❧❡ q✉❡ ❝♦rr❡s♣♦♥❞❡ ❛ ✉♠ â♥❣✉❧♦ 2α✱ ❝♦♥s✐❞❡r❛♥❞♦ OA = 1, é α✳
❙❡❥❛ x ❛ ár❡❛ ❞♦ s❡t♦r ❝✐r❝✉❧❛r ❞❡ â♥❣✉❧♦ 2α✱ ❡♥tã♦✿ senhx = BC, cosh x = OB ❡
tanh x = AD✳
❊♠ ❛❧❣✉♠❛s ♦❝❛s✐õ❡s ❛s ❝♦♠❜✐♥❛çõ❡s ❞❡ ex ❡ e−x ❛♣❛r❡❝❡♠ ❝♦♠ ❢r❡q✉ê♥❝✐❛❀ ❡♠ t❛✐s
♦❝❛s✐õ❡s ❛❝♦st✉♠❛✲s❡ ❛ ❡s❝r❡✈❡r ♦ ♠♦❞❡❧♦ ♠❛t❡♠át✐❝♦ ❝♦rr❡s♣♦♥❞❡♥t❡ ✉t✐❧✐③❛♥❞♦ ❛s ❢✉♥çõ❡s
f : R −→ R ❝❤❛♠❛❞❛s ❤✐♣❡r❜ó❧✐❝❛s✱ ❡ ❞❡✜♥✐❞❛s ❛ s❡❣✉✐r✿
• ❙❡♥♦ ❤✐♣❡r❜ó❧✐❝♦✿ f (x) = senhx =
ex − e−x
2
• ❈♦ss❡♥♦ ❤✐♣❡r❜ó❧✐❝♦✿ f (x) = cosh x =
ex + e−x
2
• ❚❛♥❣❡♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿ f (x) = tanh x =
cosh x
ex + e−x
=
ex − e−x
senhx
2
ex + e−x
• ❈♦ss❡❝❛♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿ f (x) = cschx =
✶✺✷
∀x∈R
ex − e−x
senhx
=
x
−x
e +e
cosh x
• ❈♦t❛♥❣❡♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿ f (x) = coth x =
• ❙❡❝❛♥t❡ ❤✐♣❡r❜ó❧✐❝♦✿ f (x) = sechx =
∀x∈R
2
ex − e−x
∀x∈R
∀ x ∈ R − {0}✳
∀x∈R
∀ x ∈ R − {0}
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✷✲✼
✶✳ ❱❡r✐✜q✉❡ s❡ ❛ ❢✉♥çã♦ ❛ s❡❣✉✐r é ♣❛r ♦ í♠♣❛r ❥✉st✐✜❝❛♥❞♦ s✉❛ r❡s♣♦st❛✳
1. f (x) = −x3 + x
4. f (x) = 5x − senx2
7. f (x) =
ex + e−x
2
2. f (x) = x · senx
x
5. h(x) =
|x|
3. f (x) = sen3x · cos x
6. f (x) = x · et
2
9. f (x) = x4 + cos3 x
8. g(x) = 5
✷✳ ❉❡t❡r♠✐♥❡ ❞✉❛s ❢✉♥çõ❡s f ❡ g t❛✐s q✉❡ h = gof ♥♦s s❡❣✉✐♥t❡s ❝❛s♦s✿
1. h(x) = (x2 + 3)6
2. h(x) = 3(x+ | x |)
3. h(x) = 2sen2x
2
x−4
5. h(x) = cos2 5x + 7 cos6 5x
6. h(x) = (x2 − 8)4
4. h(x) = √
x−2
3
2x + 5
7. h(x) =
8. h(x) = (cos 4x)2 − 4(cos 4x) 9. h(x) = 2tan 2x
x−4
✸✳ ❙❡ f : A −→ Im(f ) é ♠♦♥♦tô♥✐❝❛ ❡str✐t❛✱ ❡♥tã♦ f −1 : Im(f ) −→ A é ♠♦♥♦tô♥✐❝❛
❡str✐t❛ ❞♦ ♠❡s♠♦ t✐♣♦❄
h π πi
✳
2 2
✹✳ Pr♦✈❡ q✉❡ tan x é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ❡♠ − ,
✺✳ ❉❛❞♦ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ f (x) ✭❋✐❣✉r❛ ✷✳✺✽✮ ❡ ♦s
✈❛❧♦r❡s a ❡ b ❞❛ ✈❛r✐á✈❡❧ ✐♥❞❡♣❡♥❞❡♥t❡ x✳ ❉❡t❡r✲
♠✐♥❡ f (a) ❡ f (b) ♥♦ ❞❡s❡♥❤♦✳ ◗✉❛❧ é ❛ ✐♥t❡r♣r❡✲
t❛çã♦ ❣❡♦♠étr✐❝❛ ❞❛ r❡❧❛çã♦✿
✻y
x
✲
✛
a
b
F igura 2.58
f (b) − f (a)
b−a
h π πi
✻✳ Pr♦✈❡ q✉❡ ❛ ❢✉♥çã♦ sen : − ,
−→ R é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡✳
2 2
✼✳ ❙❡❥❛ f (x) = 2x2 +
5
1
2
+ + 5x✳ ▼♦str❡ q✉❡ f (x) = f ( )✳
2
x
x
x
✶✺✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✽✳ ❉❡t❡r♠✐♥❡ ♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ❞❛s ❢✉♥çõ❡s q✉❡ s❡ ✐♥❞✐❝❛♠✿
1. y = 1 − Lnx
√
4. y = Ln x − 4
1 − 2x
4
2. y = Ln(sen(2x − 1))
3. y = arccos
5. y = arcsen(x − 2)
6. y = Ln(Ln(x − 1))
x 1
11
− q✉❛♥❞♦ x ≤
❡ g(x) = 1 + x q✉❛♥❞♦
2 2
3
11
x > ✳ ❆❝❤❛r t♦❞❛s ❛s r❛í③❡s r❡❛✐s ❞❛ ❡q✉❛çã♦ [g(x)]2 = 7x + 25✳
3
✾✳ ❆ ❢✉♥çã♦ g(x) é ❞❡✜♥✐❞❛ ♣♦r✿ g(x) =
✶✵✳ ❆❝❤❛r ♦ ♠❛✐♦r ✈❛❧♦r ♣♦ssí✈❡❧ ♣❛r❛ n ♣❛r❛ ♦ q✉❛❧ 2x > xn ♣❛r❛ t♦❞❛s ❛s x ≥
100, ∀ n ∈ Z✳
✶✶✳ ❉❡t❡r♠✐♥❡ s❡ ❛s s❡❣✉✐♥t❡s ✐❣✉❛❧❞❛❞❡s sã♦ ✈❡r❞❛❞❡✐r❛s✿
1.
cosh2 x + senh2 x = cosh 2x
2.
3.
cosh(x + y) = cosh x. cosh y + senhy.senhx
4. 1 − coth2 x = csch2 x
5. senh(x + y) = senhx. cosh y + senhy. cosh x
7.. 2senhx. cosh x = senh2 x
cosh2 x − senh2 x = 1
6. 1 − tan2 x = sech2 x
✶✷✳ ❙❡❥❛ f (x) = senx − cos x✳ ▼♦str❡ q✉❡ f (1) > 0✳
✶✸✳ ❉❡t❡r♠✐♥❡ ♦ ♣❡rí♦❞♦ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1. y = 2sen(3x + 5)
x−1
3. y = − cos
2
2. y = 5 cos 2x
2t + 3
4. y = sen
6π
✶✹✳ ▼♦str❡ q✉❡ y = senhx ❡ y = tanhx sã♦ ❢✉♥çõ❡s í♠♣❛r❡s✱ ❡ y = cosh x é ❢✉♥çã♦ ♣❛r✳
✶✺✳ ❘❡s♦❧✈❡r ❣r❛✜❝❛♠❡♥t❡ ❛ ❡q✉❛çã♦✿
1. x = 2senx
2. x = tan x
3. 4senx = 4 − x
✶✻✳ ❯♠ ♥❛✈✐♦✱ ♥❛✈❡❣❛♥❞♦ ❡♠ ❧✐♥❤❛ r❡t❛✱ ♣❛ss❛ s✉❝❡ss✐✈❛♠❡♥t❡ ♣❡❧♦s ♣♦♥t♦s A, B ❡
C ✳ ◗✉❛♥❞♦ ♦ ♥❛✈✐♦ ❡stá ❡♠ A✱ ♦ ❝♦♠❛♥❞❛♥t❡ ♦❜s❡r✈❛ ♦ ❢❛r♦❧ ❡♠ F ✱ ❡ ❝❛❧❝✉❧❛ ♦
\
â♥❣✉❧♦ F[
AC = 30o ✳ ❆♣ós ♥❛✈❡❣❛r 4 ♠✐❧❤❛s ❛té B ✱ ✈❡r✐✜❝❛✲s❡ ♦ â♥❣✉❧♦ F
BC = 75o ✳
◗✉❛♥t❛s ♠✐❧❤❛s s❡♣❛r❛ ♦ ❢❛r♦❧ ❞♦ ♣♦♥t♦ B ❄
✶✺✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
C
✶✼✳ ❯♠❛ t♦rr❡ t❡♠ 20 ♠❡tr♦s ❞❡ ❛❧t✉r❛✳ ❙❡ ♣✉①❛r♠♦s
✉♠ ❝❛❜♦ ❞♦ t♦♣♦ ❛♦ ❝❤ã♦ ✭❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛
✷✳✺✾✮✱ q✉❛❧ s❡rá ♦ ❝♦♠♣r✐♠❡♥t♦ ❛♣r♦①✐♠❛❞♦ ✭x✮ ❞♦
❝❛❜♦❄
x
20
45o
A
B
F igura 2.59
✶✽✳ P❡❞r♦ ❡ ▼❛r❝♦s q✉❡ ❡stã♦ ❞✐st❛♥t❡s 2, 7 km ✉♠ ❞♦ ♦✉tr♦✱ ♦❜s❡r✈❛♠ ✉♠ ❤❡❧✐❝ó♣t❡r♦
q✉✐❡t♦ ♥♦ ❛r✱ P❡❞r♦ ✈ê ♦ ❤❡❧✐❝ó♣t❡r♦ s❡❣✉♥❞♦ ✉♠ â♥❣✉❧♦ ❞❡ 45o ❡ ▼❛r❝♦s✱ ❛♦ ♠❡s♠♦
t❡♠♣♦✱ ✈ê ♦ ❤❡❧✐❝ó♣t❡r♦ s❡❣✉♥❞♦ ✉♠ â♥❣✉❧♦ ❞❡ 60o ✳ ❆♣r♦①✐♠❛❞❛♠❡♥t❡ ❛ q✉❡ ❛❧t✉r❛
❡st❛✈❛ ♦ ❤❡❧✐❝ó♣t❡r♦❄
✶✾✳ ❯♠ ❛✈✐ã♦ ❧❡✈❛♥t❛ ✈ô♦ ❡ s♦❜❡ ❢❛③❡♥❞♦ ✉♠ â♥❣✉❧♦ ❞❡ 15o ❝♦♠ ❛ ❤♦r✐③♦♥t❛❧✳ ❆ q✉❡
❛❧t✉r❛ ❡st❛✈❛ ❡ q✉❛❧ é ❛ ❞✐stâ♥❝✐❛ ♣❡r❝♦rr✐❞❛ q✉❛♥❞♦ ♣❛ss❛ ♣❡❧❛ ✈❡rt✐❝❛❧ ♣♦r ✉♠❛
✐❣r❡❥❛ s✐t✉❛❞❛ ❛ 2 km ❞♦ ♣♦♥t♦ ❞❡ ♣❛rt✐❞❛❄
✷✵✳ ❱❡r✐✜❝❛r q✉❡✱ s❡ 0 < α < π ✱ ❡♥tã♦ cot
α
≥ 1 + cot α
2
π π
)✳ ❉❡t❡r♠✐♥❡ ♦ ❝♦♥❥✉♥t♦ ❞❡ t♦❞♦s ♦s ✈❛❧♦r❡s ❞❡ α t❛✐s q✉❡ t♦❞❛s ❛s
2 2
√
s♦❧✉çõ❡s ❞❛ ❡q✉❛çã♦ x4 − 4 48x2 + tan α = 0 ❡♠ x s❡ ❡♥❝♦♥tr❡♠ ❡♠ R✳
✷✶✳ ❙❡❥❛ α ∈ (− ,
✷✷✳ ❙❡ ♦s ❛r❝♦s ♣♦s✐t✐✈♦s α1 , α2 , α3 ❡ α4 s❡ ❡♥❝♦♥tr❛♠ ❡♥tr❡ 0 ❡ π ✱ ♠♦str❡ q✉❡
α1 + α2
2
✶✳
senα1 + senα2 ≤ 2 · sen
✷✳
senα1 + senα2 + senα3 + senα4 ≤ 4 · sen
α1 + α2 + α3 + α4
4
✷✸✳ ❱❡r✐✜❝❛r q✉❡
✶✳
tan 20o · tan 40o · tan 50o · tan 80o = 3.
✷✳
cos 20o − cos 80o = − cos 140o
✷✹✳ ❉❡t❡r♠✐♥❡ ♦ ♠á①✐♠♦ ♥ú♠❡r♦ ❞❡ r❛í③❡s ❞❛ ❡q✉❛çã♦ E(x) = log x − senx = 0✳
✷✺✳ ❯♠❛ ár✈♦r❡✱ ♣❛rt✐❞❛ ♣❡❧♦ ✈❡♥t♦✱ ♠❛♥té♠ s❡✉ tr♦♥❝♦ ♣❡r♣❡♥❞✐❝✉❧❛r ❛♦ s♦❧♦✱ ❢♦r♠❛♥❞♦
❝♦♠ ❡❧❡ ✉♠ tr✐â♥❣✉❧♦ r❡tâ♥❣✉❧♦✳ ❙❡ ❛ ♣❛rt❡ q✉❡❜r❛❞❛ ❢❛③ ✉♠ â♥❣✉❧♦ ❞❡ 60o ❝♦♠
♦ s♦❧♦ ❡ s❡ ♦ t♦♣♦ ❞❛ ár✈♦r❡ ❡stá ❛❣♦r❛ ❞✐st❛♥❝✐❛❞♦ 10 m ❞❡ s✉❛ ❜❛s❡✱ q✉❛❧ ❡r❛
❛♣r♦①✐♠❛❞❛♠❡♥t❡ ❛ ❛❧t✉r❛ ♦r✐❣✐♥❛❧ ❞❛ ár✈♦r❡❄
✷✻✳ ◆✉♠ tr✐â♥❣✉❧♦ △ABC ♦♥❞❡ AB = 10cm, AC = 12cm ❡ ♦ â♥❣✉❧♦ Ab é 30o ✱ ❞❡t❡r♠✐♥❡
❛ ár❡❛ ❞❡ss❡ tr✐â♥❣✉❧♦✳
✷✼✳ ❆ss♦❝✐❛♥❞♦ V ♣❛r❛ ❛s s❡♥t❡♥ç❛s ✈❡r❞❛❞❡✐r❛s ❡ F ♣❛r❛ ❛s ❢❛❧s❛s✱ ❛ss✐♥❛❧❡ ❛ ❛❧t❡r♥❛t✐✈❛
q✉❡ ❝♦♥tê♠ ❛ s❡q✉ê♥❝✐❛ ❝♦rr❡t❛✳
✶✺✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✐✮
❆ ❢✉♥çã♦ y = csc x · sec x é ♥❡❣❛t✐✈❛ ♥♦ 2o ❡ ♥♦ 4o q✉❛❞r❛♥t❡✳
3π
10
5
✱ q✉❛♥❞♦
< x < 2π ✱ ❡♥tã♦ cos x = ✳
13
2
13
✐✐✐✮ ❖ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ y = cot x é { x ∈ R / x ≤ kπ }✳
✐✐✮
✐✈✮
❙❡ senx = −
❆ ❢✉♥çã♦ y = tan x é ♣❡r✐ó❞✐❝❛✱ ❝♦♠ ♣❡rí♦❞♦ P = π rad✳
✷✽✳ ❆❝❤❛r ♦ ✐♥t❡r✈❛❧♦ ❞❡ ✈❛r✐❛çã♦ ❞❡ x ♣❛r❛ q✉❡ s❡❥❛ ✈á❧✐❞❛ ❛ ✐❞❡♥t✐❞❛❞❡✿
π
1. arcsenx + arccos x =
2
√
√
π
3. arcsen x + arccos x =
2
1 − x2
5. arccos
= 2arccotx
1 + x2
7.
9.
√
1 − x2 = arcsenx
2.
arccos
4.
1 − x2 = −arcsenx
1 − x2
arccos
= −2 arctan x
1 + x2
1
arctan x = arccot − π
x
1
arctan x = arccot
x
6.
1+x
arctan x + arctan 1 = arctan
8.
1−x
1+x
+ π 10.
arctan x + arctan 1 = arctan
1−x
arccos
√
✷✾✳ ▼♦str❡ q✉❡ ❛s s❡❣✉✐♥t❡s ❢ór♠✉❧❛s sã♦ ✈❡r❞❛❞❡✐r❛s✿
✶✳
✷✳
✸✳
✹✳
✺✳
cos 2x · sen( 3x
)
2
x
sen( 2 )
2π
2π
2π
3
2π
+ x) + cos(
+ x) · cos(
− x) + cos(
− x) cos x = −
cos x · cos(
3
3
3
3
4
9x
x
senx + sen2x + sen7x + sen8x = 4sen( ) · cos 3x · cos( )
2
2
cos 3x · cos 5x
tan x + tan 7x
=
tan 3x + tan 5x
cos x · cos 7x
π
1
1
= arctan + arctan
4
2
3
cos x + cos 2x + cos 3x =
✸✵✳ ❊①♣r❡ss❛r ❛ ár❡❛ ❞❡ ✉♠ tr❛♣é③✐♦ ✐sós❝❡❧❡s ❞❡ ❜❛s❡s a ❡ b ❝♦♠♦ ❢✉♥çã♦ ❞♦ â♥❣✉❧♦ β
❞❛ ❜❛s❡ a✳ ❈♦♥str✉✐r ♦ ❣rá✜❝♦ ♣❛r❛ a = 1 ❡ b = 3✳
✸✶✳ ❙❡❥❛ a ✉♠❛ ❝♦♥st❛♥t❡ r❡❛❧ ♣♦s✐t✐✈❛✳ ❘❡s♦❧✈❡r ❛ ❡q✉❛çã♦ ❡♠ R✱ s❡♥❞♦ 0 < x < a✳
√
❙✉❣❡stã♦✿
q
q
√
√
√
√
2
2
a a + a − x + 3a a − a2 − x2 = 2 2x
❈♦♥s✐❞❡r❛r a · senβ = x
✶✺✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
▼✐s❝❡❧â♥❡❛ ✷✲✶
9 − x2
♣❛r❛ x ≥ 0,
✶✳ ❉❛❞❛ ❛ ❢✉♥çã♦ f (x) =
4 − x2
x 6= 2✿
✶✳
▼♦str❡ q✉❡ f é ✐♥❥❡t✐✈❛
✷✳
❉❡t❡r♠✐♥❡ f −1
✸✳
❉❡t❡r♠✐♥❡ D(f −1 )
✹✳
❉❡t❡r♠✐♥❡ Im(f −1 )
✷✳ ❘❡s♦❧✈❡r ❣r❛✜❝❛♠❡♥t❡ ❛ ❡q✉❛çã♦✿ 2x − 2x = 0✳
✸✳ ❉❡t❡r♠✐♥❡ ❢✉♥çõ❡s f t❛✐s q✉❡ f (x2 ) − f (y 2 ) + 2x + 1 = f (x + y) · f (x − y) q✉❛✐sq❡r
q✉❡ s❡❥❛♠ ♦s ♥ú♠❡r♦s r❡❛✐s x, y ✳
✹✳ ❉❛❞❛ ❛ r❡❧❛çã♦✿ R(x) = 2x3 − 5x2 − 23x✱ ❞❡t❡r♠✐♥❡ t♦❞❛s ❛s r❛í③❡s ❞❛ ✐❣✉❛❧❞❛❞❡
R(x) = R(−2)✳
✺✳ ❉❡t❡r♠✐♥❡ t♦❞❛s ❛s r❛í③❡s ❞❛ ❡q✉❛çã♦ f (x) = f (5) s❛❜❡♥❞♦ q✉❡ ❛ r❡❧❛çã♦ f (x) =
x2 − 12x + 3 é ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ [−5, 5]✳
✻✳ ❙❡❥❛ f (n) ❛ s♦♠❛ ❞♦s n ♣r✐♠❡✐r♦s ❡❧❡♠❡♥t♦s ❞❡ ✉♠❛ ♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛✳ ▼♦str❡
q✉❡❀
f (n + 3) − 3f (n + 2) + 3f (n + 1) − f (n) = 0
✼✳ ❊s❜♦ç❛r ♦ ❣rá✜❝♦ ❞♦s ♣♦♥t♦s q✉❡ ❝✉♠♣r❡♠ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s r❡❧❛çõ❡s✿
✶✳
S = { (x, y) ∈ R2 /. y ≤ 2x,
y ≥ 2−x }
✷✳
S = { (x, y) ∈ R2 /. y ≤ 2−x ,
✸✳
S = { (x, y) ∈ R2 /. y ≤ 3x,
✹✳
S = { (x, y) ∈ R2 /. y ≤ log4 x,
✺✳
S = { (x, y) ∈ R2 /. y ≤ log0.6 x,
✻✳
S = { (x, y) ∈ R2 /. x ≤ log3 y,
✼✳
S = { (x, y) ∈ R2 /. x ≤ 2y,
y + x ≥ 0,
y + x < 0,
x2 + y 2 < 4 }
y ≤ 2−x }
x2 + y 2 ≤ 9,
x2 + y 2 < 16,
x2 + y 2 < 9,
y − x ≥ 0,
x>0}
x>0}
y >0}
x2 + y 2 < 16 }
✽✳ ❉✐❣❛ q✉❛✐s ❞❛s ❢✉♥çõ❡s sã♦ ♣❡r✐ó❞✐❝❛s✳ ◆♦s ❝❛s♦s ❛✜r♠❛t✐✈♦s✱ ❞❡t❡r♠✐♥❡ q✉❛♥❞♦
✶✺✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❡①✐st❡♠ ♦s ♣❡rí♦❞♦s✳
2. f (x) = 1 s❡ x ∈ Z
senx, s❡✱ x ≥ π
2
4. f (x) =
cos x, s❡✱ x < π
2
6. f (t) = cos(10t) + cos[(10 + π)t]
1. f (x) = x + [|x|]
(
1, s❡✱ x ∈ Q
3. f (x) =
0, s❡✱ x ∈ R − Q
5. f (x) = cos
x
x
+ cos
3
4
✾✳ ❖s ❧❛❞♦s ❞❡ ✉♠ tr✐â♥❣✉❧♦ ♠❡❞❡♠ 1 cm ❡ 2 cm r❡s♣❡❝t✐✈❛♠❡♥t❡✳ ❈♦♥str✉✐r ♦ ❣rá✜❝♦
❞❛ ár❡❛ ❞♦ tr✐â♥❣✉❧♦ ❝♦♠♦ ❢✉♥çã♦ ❞♦ â♥❣✉❧♦ x ❝♦♠♣r❡❡♥❞✐❞♦ ❡♥tr❡ t❛✐s ❧❛❞♦s✳
✶✵✳ ❉❡♠♦♥str❛r ❛s s❡❣✉✐♥t❡s ✐❞❡♥t✐❞❛❞❡s✿
✶✳
✷✳
Ln | csc x − cot x |= −Ln | csc x + cot x |
√
3Ln 3 f (x)
= Ln
❙❡ f (x) = −Ln | csc x + cot x |✱ ❡♥tã♦ e
senx
1 + cos x
ex − e−x
ex + e−x
❡ g(x) =
✳ ❉❡♠♦♥str❛r✿
2
2
g(2x) + g(2y)
x−y
g
x+y
·f
2.
(x + y)
=
1. f (x) + f (y) = 2f
2
2
f (2x) + f (2y)
f
x−y
x+y
·f
4. [f (x)]2 − [g(x)]2 = 1
3. g(x) + g(y) = 2g
2
2
✶✶✳ ❙❡❥❛♠ ❛s ❢✉♥çõ❡s✱ f (x) =
5. [f (x) + g(x)]n = f (nx) + g(nx) n ∈ N
6. f (x) é ❢✉♥çã♦ ♣❛r ❡✱ g(x) é ❢✉♥çã♦ í♠♣❛r✳
h x i2
h x i2
7.
f ( ) = [g(x)]2 + 1 ❡
g( ) = [f (x)]2 − 1
2
2
✶✷✳ ▼♦str❡ q✉❡✿
✶✳
✸✳
√
1 − x2
√
sec(arctan x) = 1 + x2
cos(arcsenx) =
✶✸✳ ❉❛ r❡❧❛çã♦ tan
✷✳
sen(arccos x) =
√
✹✳
csc(arccotx) =
√
1 − x2
1 + x2
α
tan α + m − 1
α
=
✱ ❞❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡ tan ✳
2
tan α + m + 1
2
✶✹✳ ❙❡ A ❡ C r❡♣r❡s❡♥t❛♠ r❡s♣❡❝t✐✈❛♠❡♥t❡ ♦ ♠❛✐♦r ❡ ♠❡♥♦r ❞♦s â♥❣✉❧♦s ❞❡ ✉♠ tr✐â♥❣✉❧♦
t❛✐s q✉❡ s❡✉s ❧❛❞♦s ❢♦r♠❛♠ ✉♠❛ ♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛✳ ▼♦str❡ q✉❡✿ 4(1−cos A)(1−
cos C) = cos A + cos C ✳
✶✺✳ ❉❡♠♦♥str❡ q✉❡ ✉♠ tr✐â♥❣✉❧♦ ❝✉❥♦s â♥❣✉❧♦s ✈❡r✐✜❝❛ ❛ r❡❧❛çã♦✿ 2 cos BsenC = senA
é ✐sós❝❡❧❡s✳
✶✺✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✶✻✳ ❆❝❤❛r ♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
✶✳
y=
p
Ln(senx)
✷✳
y = Ln(senx)
✶✼✳ ❱❡r✐✜❝❛r ❛s s❡❣✉✐♥t❡s ❢ór♠✉❧❛s✿
✶✳
✸✳
π
1
1
1
= arctan + arctan + arctan
4
2
5
8
1
1
1
π
= 2 arctan + arctan + 2 arctan
4
7
5
8
3
2 arctan
79
1
4
= arctan
2
3
π
1
= 5 arctan +
4
7
2. 2 arctan
4.
√
✶✽✳ ▼♦str❡ q✉❡ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ f (x) = loga (x + x2 + 1) é s✐♠étr✐❝♦ r❡s♣❡✐t♦ à
♦r✐❣❡♠ ❞❡ ❝♦♦r❞❡♥❛❞❛s✳ ❉❡t❡r♠✐♥❡ s✉❛ ❢✉♥çã♦ ✐♥✈❡rs❛✳
✶✾✳ ❊s❝r❡✈❡r ❡♠ ❢♦r♠❛ ❡①♣❧í❝✐t❛ ✉♠❛ ❢✉♥çã♦ y = f (x) ❞❛❞❛ ❡♠ ❢♦r♠❛ ✐♠♣❧í❝✐t❛ ♠❡❞✐❛♥t❡
❝❛❞❛ ✉♠❛ ❞❛s ❡q✉❛çõ❡s✿
1. x2 + y 2 = 1
4. x3 + y 3 = a3
x2 y 2
+ 2 =1
a2
b
x+y
5. 2 (x2 − 2) = x3 + 7
2.
3. Ln(x) + Ln(y + 1) = 4
6. (1 + x) cos y − x2 = 0
✷✵✳ ❙❡❥❛ f (x) = a · cos(bx + c)✳ ◗✉❛✐s ❞❡✈❡♠ s❡r ♦s ✈❛❧♦r❡s ❞❛s ❝♦♥st❛♥t❡s a, b ❡ c ♣❛r❛
♦❜t❡r ❛ ✐❞❡♥t✐❞❛❞❡ f (x + 1) − f (x) = senx ❄
✷✶✳ ❘❡s♦❧✈❡r ❛ ❡q✉❛çã♦✿
✶✳
✸✳
√
√
2senx = 1 − sen2x − 1 + sen2x
√
√
✷senx = 1 + sen2x + 1 − sen2x
✷✳
✷cos x =
√
1 − sen2x −
√
1 + sen2x
✷✷✳ ◆✉♠ ❝♦♥❡ ❝✐r❝✉❧❛r r❡t♦ ❝♦♠ r❛✐♦ ♥❛ ❜❛s❡ R ❡ ❛❧t✉r❛ H ❡♥❝♦♥tr❛✲s❡ ✐♥s❝r✐t♦ ✉♠
❝✐❧✐♥❞r♦ ♠♦❞♦ q✉❡ ♦s ♣❧❛♥♦s ❡ ♦s ❝❡♥tr♦s ❞❛s ❜❛s❡s ❝✐r❝✉❧❛r❡s ❞♦ ❝♦♥❡ ❡ ❝✐❧✐♥❞r♦
❝♦✐♥❝✐❞❡♠✳ ❉❡t❡r♠✐♥❡ ♦ r❛✐♦ ❞♦ ❝✐❧✐♥❞r♦ ♣❛r❛ q✉❡ s✉❛ s✉♣❡r❢í❝✐❡ t♦t❛❧ s❡❥❛ ♠á①✐♠❛✱
s❛❜❡✲s❡ q✉❡ H > 2R✳
✷✸✳ ❆♣r❡s❡♥t❛r ♦ ♥ú♠❡r♦ x ❝♦♠♦ s♦♠❛ ❞❡ ❞♦✐s ♥ú♠❡r♦s t❛✐s q✉❡ ❛ s♦♠❛ ❞❡ s❡✉s q✉❛✲
❞r❛❞♦s s❡❥❛ ❛ ♠❡♥♦r ♣♦ssí✈❡❧✳
✷✹✳ ❈♦♠ ✉♠ ❧á♣✐s ❝✉❥❛ ♣♦♥t❛ t❡♠ 0, 02mm ❞❡ ❡s♣❡ss✉r❛✱ ❞❡s❡❥❛✲s❡ tr❛ç❛r ♦ ❣rá✜❝♦ ❞❛
❢✉♥çã♦ f (x) = 2x ✳ ❆té q✉❡ ❞✐stâ♥❝✐❛ à ❡sq✉❡r❞❛ ❞♦ ❡✐①♦ ✈❡rt✐❝❛❧ ♣♦❞❡✲s❡ ✐r s❡♠ q✉❡
♦ ❣rá✜❝♦ ❛t✐♥❥❛ ♦ ❡✐①♦ ❤♦r✐③♦♥t❛❧❄
✷✺✳ ❙❡❥❛♠ a, b ∈ R t❛✐s q✉❡ a2 + b2 = 1 ❡ a 6= 1✱ ❞❡✜♥✐♠♦s tan
q✉❡ E = cos α + senα > 0✱ ♠♦str❡ q✉❡ E =
✶✺✾
√
1 + 2ab✳
b
α
=
✳ ❙❛❜❡♥❞♦
2
a+1
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✷✻✳ ❯♠ ❛r❛♠❡ ❞❡ ❝♦♠♣r✐♠❡♥t♦ x ❞❡✈❡✲s❡ ❞✐✈✐❞✐r ❡♠ ❞✉❛s ♣❛rt❡s✳ ❯♠❛ ❞❡❧❛s ❡st❛rá
❞❡st✐♥❛❞❛ ♣❛r❛ ❝♦♥str✉✐r ✉♠ q✉❛❞r❛❞♦✱ ❡ ❛ ♦✉tr❛ ♣❛r❛ ✉♠ tr✐â♥❣✉❧♦ ❡q✉✐❧át❡r♦✳
◗✉❛❧ é ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❡ ❝❛❞❛ ♣❛rt❡ ♣❛r❛ q✉❡ ❛ s♦♠❛ ❞❛s ár❡❛s ❞❛s ✜❣✉r❛s ♦❜t✐❞❛s
s❡❥❛ ❛ ♠❡♥♦r ♣♦ssí✈❡❧✳
✷✼✳ ❯♠ ♣r♦❥❡t♦ ❞❡ ▲❡✐ ♣❛r❛ ❝♦❜r❛♥ç❛ ❞❡ ✐♠♣♦st♦s✱ s♦❜r❡ ❝❛rr♦s ♣r❡✈ê q✉❡ ♦ ♣r♦♣r✐❡tár✐♦
❞❡ ✉♠ ❝❛rr♦ ♣❛❣❛rá ❘$100, 00 ♠❛✐s 7% ❞♦ ✈❛❧♦r ❡st✐♠❛❞♦ ❞♦ ❝❛rr♦✳ ❖✉tr♦ ♣r♦❥❡t♦
♣r♦♣õ❡ q✉❡ ♦ ♣r♦♣r✐❡tár✐♦ ♣❛❣✉❡ ❘$400, 00 ♠❛✐s 2% ❞♦ ✈❛❧♦r ❡st✐♠❛❞♦ ❞♦ ❝❛rr♦✳
❈♦♥s✐❞❡r❡ ❛♣❡♥❛s ♦s ❛s♣❡❝t♦s ✜♥❛♥❝❡✐r♦s❀ q✉❡ t✐♣♦ ❞♦ ❝♦❜r❛♥ç❛ s❡rá ♠❛✐s ❢❛✈♦rá✈❡❧
❛♦ ♣r♦♣r✐❡tár✐♦❄
✷✽✳ ❯♠ ✐♥✈❡st✐❞♦r ❛♣❧✐❝♦✉ ✉♠❛ q✉❛♥t✐❛ ❞❡ ❞✐♥❤❡✐r♦ ❡♠ ❛çõ❡s ✜♥❛♥❝❡✐r❛s ❝♦♠ r❡s❣❛t❡
❛♦ tér♠✐♥♦ ❞❡ 60 ❞✐❛s ❞❛ ❛♣❧✐❝❛çã♦✳ ◆♦s ♣r✐♠❡✐r♦s 30 ❞✐❛s ❞❛ ❛♣❧✐❝❛çã♦ s♦✉❜❡ q✉❡
♣❡r❞❡✉ 6% ❞♦ t♦t❛❧ ✐♥✈❡st✐❞♦✱ ❡ ❛♦ tér♠✐♥♦ ❞♦s 60 ❞✐❛s r❡❝✉♣❡r♦✉ 6% ❞❡ ❛q✉✐❧♦ q✉❡
r❡st♦✉ ❞♦s ♣r✐♠❡✐r♦s 30 ❞✐❛s ❞❛ ❛♣❧✐❝❛çã♦✳ ❆♦ tér♠✐♥♦ ❞♦s 60 ❞✐❛s r❡t✐r♦✉ t♦❞♦ s❡✉
❞✐♥❤❡✐r♦ r❡❝❡❜❡♥❞♦ R$40.000, 00✳ ◗✉❛❧ ❢♦✐ ❛ q✉❛♥t✐❛ ✐♥✐❝✐❛❧ ❛♣❧✐❝❛❞❛ ♣❡❧♦ ✐♥✈❡st✐❞♦r❄
✷✾✳ ❖❜s❡r✈❛çõ❡s ❢❡✐t❛s ❞✉r❛♥t❡ ❧♦♥❣♦ t❡♠♣♦ ♠♦str❛♠ q✉❡✱ ❛♣ó♦s ♣❡rí♦❞♦ ❞❡ ♠❡s♠❛
❞✉r❛çã♦✱ ❛ ♣♦♣✉❧❛çã♦ ❞❛ t❡rr❛ ✜❝❛ ♠✉❧t✐♣❧✐❝❛❞❛ ♣❡❧♦ ♠❡s♠♦ ❢❛t♦r✳ ❙❛❜❡♥❞♦ q✉❡
❡ss❛ ♣♦♣✉❧❛çã♦ ❡r❛ ❞❡ 2, 68 ❜✐❧❤õ❡s ❡♠ 1956 ❡ 3, 78 ❜✐❧❤õ❡s ❡♠ 1972✱ ♣❡❞❡✲s❡✿
✶✳
❖ t❡♠♣♦ ♥❡❝❡ssár✐♦ ♣❛r❛ q✉❡ ❛ ♣♦♣✉❧❛çã♦ ❞❛ t❡rr❛ ❞♦❜r❡ ❞❡ ✈❛❧♦r✳
✷✳
❆ ♣♦♣✉❧❛çã♦ ❡st✐♠❛❞❛ ♣❛r❛ ♦ ❛♥♦ 2012✳
✸✳
❊♠ q✉❡ ❛♥♦ ❛ ♣♦♣✉❧❛çã♦ ❞❛ t❡rr❛ ❡r❛ ❞❡ 1 ❜✐❧❤ã♦✳
✸✵✳ P❛r❛ ❞❡t❡r♠✐♥❛r ❛ ✐❞❛❞❡ ❞❡ ✉♠❛ r♦❝❤❛ ❤♦❥❡ ❛ ❝✐ê♥❝✐❛ ❢♦✐ ❝❛♣❛③ ❞❡ ❞❡s❡♥✈♦❧✈❡r ✉♠❛
té❝♥✐❝❛ ❜❛s❡❛❞❛ ♥❛ ❝♦♥❝❡♥tr❛çã♦ ❞❡ ♠❛t❡r✐❛❧ r❛❞✐♦❛t✐✈♦ ❞❡♥tr♦ ❞❡❧❛✳ P❛r❛ ❛❝❤❛r ❡st❛
❝♦♥❝❡♥tr❛çã♦ r❛❞✐♦❛t✐✈❛ ♠❛✐s ♥♦✈❛ ♥❛ r♦❝❤❛ ✉s❛♠♦s C(t) = k.3−t ❝♦♠♦ ❛ ❢ór♠✉❧❛✱
♦♥❞❡ C(t) r❡♣r❡s❡♥t❛ ❛ ❝♦♥❝❡♥tr❛çã♦ ❞❡ ♠❛t❡r✐❛❧ r❛❞✐♦❛t✐✈♦✱ t ♦ t❡♠♣♦ ♠❡❞✐❞♦ ❡♠
❝❡♥t❡♥❛s ❞❡ ❛♥♦s ❡ k ❛ ❝♦♥❝❡♥tr❛çã♦ ❞♦ ❡❧❡♠❡♥t♦ ♥♦ ♠♦♠❡♥t♦ ❡♠ q✉❡ ❛ r♦❝❤❛ ❢♦✐
❢♦r♠❛❞❛✳ ❙❡ k = 4, 500 ✶✳ ◗✉❛♥t♦ t❡♠♣♦ ❞❡✈❡ t❡r ♣❛ss❛❞♦ ♣❛r❛ ♥ós ❡♥❝♦♥tr❛r
✉♠❛ ❝♦♥❝❡♥tr❛çã♦ ❞❡ 1500❄ ✷✳ ◗✉❛❧ s❡r✐❛ ♦ ❢♦❝♦ r❛❞✐♦❛t✐✈♦ ❞❡♣♦✐s ❞❡ ❞♦✐s sé❝✉❧♦s❄
✶✻✵
09/02/2021
❈❛♣ít✉❧♦ ✸
▲■▼■❚❊❙
❆✉❣✉stí♥ ▲♦✉✐s ❈❛✉❝❤② ♥❛s❝❡✉ ♥♦ 21 ❞❡ ❛❣♦st♦ ❞❡ 1789✱
❡♠ P❛r✐s✱ ❋r❛♥ç❛✳ ❋❛❧❡❝❡✉ ❡♠ 23 ❞❡ ♠❛✐♦ ❞❡ 1857✱ ❡♠ ❙❝❡❛✉①
✭♣ró①✐♠♦ ❞❡ P❛r✐s✮✳
❊♠ 1802✱ ❡♥tr♦✉ ♥❛ ❊s❝♦❧❛ ❈❡♥tr❛❧ ❞♦ P❛♥t❡ã♦✱ ♦♥❞❡ ♣❛ss♦✉
❞♦✐s ❛♥♦s ❡st✉❞❛♥❞♦ ✐❞✐♦♠❛s✳ ❊♠ 1804✱ ✐♥❣r❡ss♦✉ ♥❛ ❊s❝♦❧❛
P♦❧✐té❝♥✐❝❛ ❡ ❣r❛❞✉♦✉✲s❡ ❡♠ 1807✱ ♣❛r❛ ❧♦❣♦ ✐♥❣r❡ss❛r ♥❛ ❊s❝♦❧❛
❞❡ ❊♥❣❡♥❤❛r✐❛ ❈✐✈✐❧✳ ❆✉❣✉stí♥ ❢♦✐ ❜❛st❛♥t❡ r❡❧✐❣✐♦s♦ ✭❝❛tó❧✐❝♦✮ ❡
✐ss♦ ♦❝❛s✐♦♥♦✉✲❧❤❡ ♠✉✐t♦s ♣r♦❜❧❡♠❛s ❞❡ r❡❧❛❝✐♦♥❛♠❡♥t♦✳
❖ ♣r✐♠❡✐r♦ ❛✈❛♥ç♦ ♥❛ ♠❛t❡♠át✐❝❛ ♠♦❞❡r♥❛ ♣♦r ❡❧❡ ♣r♦❞✉③✐❞♦
❢♦✐ ❛ ✐♥tr♦❞✉çã♦ ❞♦ r✐❣♦r ♥❛ ❛♥á❧✐s❡ ♠❛t❡♠át✐❝❛✳ ❖ s❡❣✉♥❞♦ ❢♦✐
♥♦ ❧❛❞♦ ♦♣♦st♦ ✲ ❝♦♠❜✐♥❛t♦r✐❛❧✳ P❛rt✐♥❞♦ ❞♦ ♣♦♥t♦ ❝❡♥tr❛❧ ❞♦
❆✳ ▲✳ ❈❛✉❝❤②
♠ét♦❞♦ ❞❡ ▲❛❣r❛♥❣❡✱ ♥❛ t❡♦r✐❛ ❞❛s ❡q✉❛çõ❡s✱ ❈❛✉❝❤② t♦r♥♦✉✲❛
❛❜str❛t❛ ❡ ❝♦♠❡ç♦✉ ❛ s✐st❡♠át✐❝❛ ❝r✐❛çã♦ ❞❛ t❡♦r✐❛ ❞♦s ❣r✉♣♦s✳
❈❛✉❝❤② ❢❡③ ✐♠♣♦rt❛♥t❡s ❝♦♥tr✐❜✉✐çõ❡s à ❆♥á❧✐s❡✱ ❚❡♦r✐❛ ❞❡ ❣r✉♣♦s✱ ❝♦♥✈❡r❣ê♥❝✐❛ ❡ ❞✐✈❡r❣ê♥❝✐❛
❞❡ ❙ér✐❡s ✐♥✜♥✐t❛s✱ ❊q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛✐s✱ ❉❡t❡r♠✐♥❛♥t❡s✱ ❚❡♦r✐❛ ❞❛s ♣r♦❜❛❜✐❧✐❞❛❞❡s ❡ ❛ ❋ís✐❝❛
▼❛t❡♠át✐❝❛✱ ❡♠ 1811✱ ♠♦str♦✉ q✉❡ ♦s â♥❣✉❧♦s ❞❡ ✉♠ ♣♦❧í❣♦♥♦ ❝♦♥✈❡①♦ sã♦ ❞❡t❡r♠✐♥❛❞♦s ♣♦r
s✉❛s ❢❛❝❡s✳
❙✉❛ ❛❜♦r❞❛❣❡♠ ❞❛ t❡♦r✐❛ ❞❛s ❡q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛✐s ❢♦✐ ✐♥♦✈❛❞♦r❛✱ ❞❡♠♦♥str❛♥❞♦ ❛ ❡①✐stê♥❝✐❛
❞❡ ✉♥✐❝✐❞❛❞❡ ❞❛s s♦❧✉çõ❡s✱ q✉❛♥❞♦ ❞❡✜♥✐❞❛s ❛s ❝♦♥❞✐çõ❡s ❞❡ ❝♦♥t♦r♥♦✳ ❊①❡r❝❡✉ ❣r❛♥❞❡ ✐♥✢✉ê♥❝✐❛
s♦❜r❡ ❛ ❢ís✐❝❛ ❞❡ ❡♥tã♦✱ ❛♦ s❡r ♦ ♣r✐♠❡✐r♦ ❛ ❢♦r♠✉❧❛r ❛s ❜❛s❡s ♠❛t❡♠át✐❝❛s ❞❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦
ét❡r✱ ♦ ✢✉✐❞♦ ❤✐♣♦tét✐❝♦ q✉❡ s❡r✈✐r✐❛ ❝♦♠♦ ♠❡✐♦ ❞❡ ♣r♦♣❛❣❛çã♦ ❞❛ ❧✉③✳
●r❛ç❛s ❛ s❡✉ ❢♦r♠❛❧✐s♠♦ ♠❛t❡♠át✐❝♦✱ ❛ ❛♥á❧✐s❡ ✐♥✜♥✐t❡s✐♠❛❧ ❛❞q✉✐r❡ só❧✐❞❛s ❜❛s❡s✳
❚❡✈❡ s❡r✐❛s ❞✐❢❡r❡♥ç❛s ♣❡ss♦❛✐s✱ ❝♦♠ ▲✐♦✉✈✐❧❧❡✱ ♣♦r ❝❛✉s❛ ❞❡ ✉♠❛ ♣♦s✐çã♦ ♥❛ ❊s❝♦❧❛ ❞❛ ❋r❛♥ç❛✳
❈❛✉❝❤② ♣r♦❞✉③✐✉ 789 ❛rt✐❣♦s ❝✐❡♥tí✜❝♦s✳
✸✳✶
❱✐③✐♥❤❛♥ç❛ ❞❡ ✉♠ ♣♦♥t♦
x ∈ R✱ ✉♠ ❝♦♥❥✉♥t♦ A ⊂ R é ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ x s❡ ❡①✐st❡ ✉♠ ✐♥t❡r✈❛❧♦ ❛❜❡rt♦
(a, b) t❛❧ q✉❡ x ∈ (a, b) ⊆ A✳ P♦r ❡①❡♠♣❧♦✱ ♦s ❝♦♥❥✉♥t♦s A = (−1, 2] ❡ B = (−1, 1)
sã♦ ✈✐③✐♥❤❛♥ç❛s ❞♦ ♣♦♥t♦ x = 0✱ ♣♦✐s A ❡ B sã♦ ❝♦♥❥✉♥t♦s q✉❡ ❝♦♥tê♠ ✐♥t❡r✈❛❧♦s ❛❜❡rt♦s
❙❡❥❛
✶✻✶
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❝♦♥t❡♥❞♦ x = 0✳
P❛r❛ ❡❢❡✐t♦ ❞❡ ♥♦ss♦ ❡st✉❞♦ ❞♦s ❧✐♠✐t❡s✱ q✉❛❧q✉❡r ✐♥t❡r✈❛❧♦ ❛❜❡rt♦ ❝♦♥t❡♥❞♦ ✉♠ ♣♦♥t♦
a ❝♦♠♦ s❡✉ ♣♦♥t♦ ♠é❞✐♦ s❡rá ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ a✱ ✐st♦ ❥✉st✐✜❝❛ ❛ s❡❣✉✐♥t❡ ❞❡✜♥✐çã♦✿
❉❡✜♥✐çã♦ ✸✳✶✳ ❱✐③✐♥❤❛♥ç❛✳
❙❡❥❛ a ∈ R✱ ❝❤❛♠❛♠♦s ❞❡ ✈✐③✐♥❤❛♥ç❛ ❛❜❡rt❛ ♦✉ ❜♦❧❛ ❛❜❡rt❛ ❞❡ ❝❡♥tr♦ a ❡ r❛✐♦ δ > 0✱
❡ ❞❡♥♦t❛♠♦s B(a, δ)✱ ❛♦ ✐♥t❡r✈❛❧♦ ❛❜❡rt♦ (a−δ, a+δ)❀ ✐st♦ é✿ B(a, δ) = (a−δ, a+δ)✳
◆❛ ❋✐❣✉r❛ ✭✸✳✶✮ ♦❜s❡r✈❛♠♦s q✉❡ ♦ ♣♦♥t♦ a é ♦ ♣♦♥t♦ ♠é❞✐♦ ❞♦ ✐♥t❡r✈❛❧♦ (a − δ, a + δ)✳
✛
✲✛
δ
✛
δ
✲
|
a
a−δ
✲
a+δ
❋✐❣✉r❛ ✸✳✶✿
❊①❡♠♣❧♦ ✸✳✶✳
P❛r❛ ♦ ♥ú♠❡r♦ a = 4✱ s✉❛s ✈✐③✐♥❤❛♥ç❛ sã♦✿
(4 − δ, 4 + δ),
1
1
(4 − , 4 + ),
3
3
2
2
(4 − , 4 + ),
5
5
···
❡t❝
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✳
✐✮
B(a, d) = { x ∈ R /. | x − a |< δ }
✐✐✮
❆ ✐♥t❡rs❡çã♦ ❞❡ ❞✉❛s ✈✐③✐♥❤❛♥ç❛s ❞❡ a✱ é ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ a✳
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
✸✳✷
▲✐♠✐t❡ ❞❡ ✉♠❛ ❢✉♥çã♦
❯♠ ❞♦s ❝♦♥❝❡✐t♦s ❜ás✐❝♦s ❡ ❢✉♥❞❛♠❡♥t❛✐s ❞♦ ❝á❧❝✉❧♦ é ♦ ❝♦♥❝❡✐t♦ ❞❡ ❧✐♠✐t❡✳ ❊st❡ ❝♦♥✲
❝❡✐t♦ é tã♦ ✐♠♣♦rt❛♥t❡ ♣❛r❛ ♣r❡❝✐s❛r ♦✉tr♦s✱ t❛✐s ❝♦♠♦ ❝♦♥t✐♥✉✐❞❛❞❡✱ ❞❡r✐✈❛çã♦✱ ✐♥t❡❣r❛çã♦✱
❡t❝✳ ◆♦ s❡❣✉✐♥t❡ ❡①❡♠♣❧♦ t❡r❡♠♦s ✉♠❛ ✐❞❡✐❛ ❞❡ ❧✐♠✐t❡ ❞❡ ✉♠❛ ❢✉♥çã♦✳
❊①❡♠♣❧♦ ✸✳✷✳
❈♦♥s✐❞❡r❡ ❞✉❛s ❢✉♥çõ❡s r❡❛✐s f ❡ g ❞❡ ❣rá✜❝♦ ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✸✳✷✮✱ ❛ss✐♠
(
x2 + 1
s❡ x 6= 2
❡ g(x) = 3 + x ♣❛r❛ x 6= 2✳
❞❡✜♥✐❞❛s✿ f (x) =
0
s❡ x = 2
✶✻✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
y✻
−x✛
5 · · · · · · ❜✳✳
✳✳
✳
✳
✳
✳✳
✳
✳✳
✳
✳✳
✳
✳
2
0
−3
g(x)
x
✲
−y ❄
❋✐❣✉r❛ ✸✳✷✿
❖❜s❡r✈❡ q✉❡
f (2) = 5
❡♥t❛♥t♦
g(2)
♥ã♦ ❡①✐st❡ ✭♥ã♦ ❡st❛ ❞❡✜♥✐❞♦✮✳ ❖ ❝♦♠♣♦rt❛♠❡♥t♦
2✱
❞❡st❛s ❞✉❛s ❢✉♥çõ❡s ❡♠ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡
❡①❝❧✉✐♥❞♦ ♦ ♣♦♥t♦
x=2
é ❡①❛t❛♠❡♥t❡ ♦
♠❡s♠♦ ❡ ♣♦❞❡ s❡r ❞❡s❝r✐t♦ ❛ss✐♠✿
✏ P❛r❛ ✈❛❧♦r❡s ❞❡
❡
g(x)
x
♣ró①✐♠♦s ❛♦ ♣♦♥t♦
a = 2✱
x 6= 2
❝♦♠
L = 5✑
❛♣r♦①✐♠❛♠✲s❡ ❛♦ ♥ú♠❡r♦
♦s ✈❛❧♦r❡s ❞❡
f (x)
y✻
· · · · · · · · ·✳✳✳
· · · · · · ✳✳✳❜ ✳✳✳
✳ ✳ ✳
· · · ✳✳✳ ✳✳✳ ✳✳✳
5+ε
B(5, ε)
5
5−ε
−x✛
g(x)
0
−3
✳ ✳ ✳
✳✳ ✳✳ ✳✳
✳ ✳ ✳
✳✳ ✳✳ ✳
✳ ✳
✳ ✳
2 − δ 22 + δ
| {z }✳
✳
B(2, δ)✳
x
✲
−y ❄
❋✐❣✉r❛ ✸✳✸✿
❋✐❣✉r❛ ✸✳✹✿
❯s❛♥❞♦ ✈✐③✐♥❤❛♥ç❛s✱ ❡st❛ ❞❡s❝r✐çã♦ ♣♦❞❡♠♦s ❡①♣r❡ss❛r ❛ss✐♠✿
✏ P❛r❛ t♦❞❛ ✈✐③✐♥❤❛♥ç❛
t♦❞♦
x 6= 2
❡
B(5, ε)
x ∈ B(2, δ)✱
❡♥tã♦
♣♦❞❡♠♦s ❞❡t❡r♠✐♥❛r ✉♠
f (x) ∈ B(5, ε)✑
5 é ♦ ❧✐♠✐t❡
lim .f (x) = 5✳
◗✉❛♥❞♦ ✐st♦ ♦❝♦rr❡ ❞✐③❡♠♦s q✉❡
♣❛r❛
2❀
❛ ❡s❝r✐t❛ ❡♠ sí♠❜♦❧♦s é✿
❆♥❛❧♦❣❛♠❡♥t❡ ♣❛r❛ ❛ ❢✉♥çã♦
❖❜s❡r✈❡ q✉❡ ♦ ❧✐♠✐t❡ ❞❡
g(x)
❞❡
δ > 0✱
t❛❧ q✉❡ ♣❛r❛
✭❋✐❣✉r❛ ✭✸✳✸✮✮✳
f (x)
q✉❛♥❞♦
x
t❡♥❞❡ ✭❛♣r♦①✐♠❛✲s❡✮
x→2
g(x)✱
lim .g(x) = 5 ✭❋✐❣✉r❛ ✭✸✳✹✮✮✳
x→2
♥ã♦ ❞❡♣❡♥❞❡ ❞♦ ✈❛❧♦r ❞❡ g(2)✱ q✉❡ ♥❡st❡ ❝❛s♦
t❡♠♦s
♥♦ ♣♦♥t♦
2
♥ã♦ ❡①✐st❡✱ s♦♠❡♥t❡ ❞❡♣❡♥❞❡ ❞♦s ✈❛❧♦r❡s ❞❡
g
q✉❛♥❞♦
✶✻✸
x
❡st❛ ♣ró①✐♠♦ ❞♦ ♣♦♥t♦
2✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✸✳✷✳
❙❡❥❛ f : R −→ R ✉♠❛ ❢✉♥çã♦ ❡ x = a ✉♠ ♣♦♥t♦ q✉❡ ♥ã♦ ♥❡❝❡ss❛r✐❛♠❡♥t❡ ♣❡rt❡♥ç❛
❛♦ ❞♦♠í♥✐♦ D(f )✱ ♣♦ré♠ t♦❞❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ a ❝♦♥tê♠ ♣♦♥t♦s ❞♦ ❞♦♠í♥✐♦ D(f )❀
❞✐③✲s❡ q✉❡ ♦ ❧✐♠✐t❡ ❞❡ f (x) é L✱ q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ a ❡ ❡s❝r❡✈❡✲s❡ lim .f (x) = L
x→a
q✉❛♥❞♦✿
•
∀ ε > 0, ∃ δ > 0 /. ∀ x ∈ D(f ), x 6= a ❡ a − δ < x < a + δ ❡♥tã♦
L − ε < f (x) < L + ε✳
❊♠ t❡r♠♦s ❞❡ ✈❛❧♦r ❛❜s♦❧✉t♦✱ ❡st❛ ❞❡✜♥✐çã♦ é ❡q✉✐✈❛❧❡♥t❡ ❛✿
• ∀ ε > 0,
∃ δ > 0 /. ∀x ∈ D(f ),
0 <| x − a |< δ ✐♠♣❧✐❝❛ | f (x) − L |< ε ✳
◆♦ ❝♦♥❝❡✐t♦ ❞❡ ❧✐♠✐t❡✱ ❛♣❛r❡❝❡ ♦ s❡❣✉✐♥t❡ ♣r♦❜❧❡♠❛✿
◗✉❡ tã♦ ♣❡rt♦ ❞♦ ♣♦♥t♦ x = a ❞❡✈❡ s❡r ♦ ✈❛❧♦r ❞❡ x ♣❛r❛ q✉❡ f (x) ❞✐st❡ ❞♦
✈❛❧♦r ❞❡ L✱ ✉♠ ♥ú♠❡r♦ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦ ❡ ✜①❛❞♦❄
❊①❡♠♣❧♦ ✸✳✸✳
x5 − 1
✱ ❝♦♠♣❧❡t❛♥❞♦ ❛ s❡❣✉✐♥t❡ t❛❜❡❧❛✱ ❡st✐♠❡ ♦ ✈❛❧♦r ❞♦ ❧✐♠✐t❡ lim f (x)
❙❡❥❛ f (x) = 6
x→1
x −1
x
0, 901
0, 9001
0, 90001
0, 900001
1, 01
1, 001
1, 0001
1, 00001
f (x)
❙♦❧✉çã♦✳
x
0, 901
0, 9001
0, 90001
0, 900001
f (x)
0, 8735844779
0, 87393816822
0, 8739735220
0, 8739770573
x
1, 01
1, 001
1, 0001
1, 00001
f (x)
0, 8291600330
0, 8329165975
0, 8332916660
0, 8333291667
❊①❡♠♣❧♦ ✸✳✹✳
❙❡ lim (4x + 3) = 11✳ ◗✉❡ tã♦ ♣❡rt♦ ❞❡ 2 ❞❡✈❡ ❡st❛r x ♣❛r❛ q✉❡ | f (x) − 11 |< 0.01❄
x→2
❙♦❧✉çã♦✳
❉❡s❡❥❛♠♦s q✉❡✿ | f (x) − 11 |< 0.01 ✭♥♦t❡ q✉❡ ε = 0.01✮✱ ♣♦ré♠
| f (x) − 11 |=| (4x + 3) − 11 | = 4 | x − 2 |< 0.01
⇒
| x − 2 |<
0, 01
4
❉❡ ❡st❛ ú❧t✐♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ t❡♠♦s q✉❡ | x − 2 |< 0, 0025 ♦ q✉❡ s✐❣♥✐✜❝❛ q✉❡ x ❡st❛ ❛
✉♠❛ ❞✐stâ♥❝✐❛ ❞❡ 2 ❡♠ ♠❡♥♦s ❞❡ 0, 0025 ✉♥✐❞❛❞❡s✳
✶✻✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✸✳✺✳
2x2 − 4x
✳
x→2 x2 − 5x + 6
❈❛❧❝✉❧❛r ♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡✿
❙♦❧✉çã♦✳
lim
2x(x − 2)
2x
2x2 − 4x
= lim
= lim
= −4
2
x→2 (x − 2)(x − 3)
x→2 x − 3
x→2 x − 5x + 6
lim
x − 2 6= 0✳
2x − 4x
lim
= −4✳
x→2 x2 − 5x + 6
✐st♦ é ♣♦ssí✈❡❧ ♣❡❧♦ ❢❛t♦
2
P♦rt❛♥t♦✱
❖❜s❡r✈❛çã♦ ✸✳✶✳
P❛r❛ ✈❡r✐✜❝❛r ♦ ❧✐♠✐t❡ lim f (x) = L ♠❡❞✐❛♥t❡ ❛ ❉❡✜♥✐çã♦ ✭✸✳✷✮✱ ✐♥✐❝✐❛❧♠❡♥t❡ t❡♠♦s
x→a
q✉❡ ❡s❝r❡✈❡r |f (x) − L| = |x − a| · |g(x)|✱ ❧♦❣♦ ❞❡✈❡♠♦s ❡s❝♦❧❤❡r ✉♠ ✈❛❧♦r ✐♥✐❝✐❛❧ δ = δ1
♣❛r❛ ❧✐♠✐t❛r |g(x)| ❞❡ t❛❧ ♠♦❞♦ q✉❡ 0 < |x − a| < δ ✐♠♣❧✐q✉❡ |g(x)| < M ❝♦♠ M ∈ R✳
❆ss✐♠✱ 0 < |x − a| < δ ⇒ |f (x) − L| = |x − a| · |g(x)| < |x − a| · M < δM = ε✳
ε
❖ ✈❛❧♦r ❛❞❡q✉❛❞♦ ♣❛r❛ δ = min .{1, }✳
M
❊①❡♠♣❧♦ ✸✳✻✳
❱❡r✐✜❝❛r ♠❡❞✐❛♥t❡ ❛ ❞❡✜♥✐çã♦ q✉❡ lim (3x2 + 2x + 4) = 9✳
x→1
❙♦❧✉çã♦✳
❆ ♠♦str❛r q✉❡ é ♣♦ssí✈❡❧ ❛❝❤❛r ✉♠
2
| (3x + 2x + 4) − 9 |< ε
δ > 0
♣❛r❛ q✉❛❧q✉❡r ♥ú♠❡r♦
❞❡ ♠♦❞♦ q✉❡
ε > 0✳
❙❡❣✉❡✿
0 <| x − 1 |< δ
✐♠♣❧✐q✉❡
| (3x2 + 2x + 4) − 9 |=| 3x2 + 2x − 5 |=| 3x + 5 | · | x − 1 |< δ | 3x + 5 |
> 0 ❞❡ ♠♦❞♦ q✉❡ | x − 1 |< δ1
♥ú♠❡r♦ M > 0 t❛❧ q✉❡ | 3x + 5 |< M
❙✉♣♦♥❤❛ ❡①✐st❛ ✉♠ δ1
é ❜✉s❝❛r❡♠♦s ✉♠
s❡♠♣r❡ q✉❡
| x − 1 |< δ1 ✱ ❡♥tã♦ −δ1 < x − 1 < δ1
❡♥tã♦ 3(1 − δ1 ) + 5 < 3x + 5 < 3(1 + δ1 ) + 5❀ ♣♦r ❡①❡♠♣❧♦
5 < 3x + 5 < 11 ❛ss✐♠
| 3x + 5 |< 11
δ = min .{1,
ε
}✳
11
1 − δ1 < x < 1 + δ1
❝♦♥s✐❞❡r❡ δ1 = 1 ❡ t❡r❡♠♦s
❧♦❣♦
✭✸✳✷✮
| 3x + 5 | · | x − 1 |< δ | 3x + 5 |< 11δ = ε
P♦r t❛♥t♦✱ ♣❛r❛ q✉❛❧q✉❡r ♥ú♠❡r♦
ε > 0✱
|(3x2 + 2x + 4) − 9| < ε
■st♦ ♠♦str❛ q✉❡✱ ♦ ❧✐♠✐t❡
| 3x + 5 |❀ ✐st♦
0 <| x − 1 |< δ1 ✳
t❡♥t❛r❡♠♦s ❧✐♠✐t❛r
❈♦♠ ❡❢❡✐t♦✱ s❡
❉❡ ✭✸✳✶✮ ❡ ✭✸✳✷✮ t❡♠♦s q✉❡
❡ ❝♦♥s✐❞❡r❛♥❞♦
s❡♠♣r❡ q✉❡
lim (3x2 + 2x + 4) = 9
x→1
✶✻✺
✭✸✳✶✮
δ = min .{1,
ε
}
11
s❡♠♣r❡ q✉❡
t❡♠♦s✿
0 < |x − 1| < δ
é ✈❡r❞❛❞❡✐r♦✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖❜s❡r✈❛çã♦ ✸✳✷✳
❛✮
❆♦ ❝♦♥s✐❞❡r❛r ✉♠ δ1 ♣❛rt✐❝✉❧❛r✱ ❡st❛♠♦s ❝♦♥s✐❞❡r❛♥❞♦ ❛ ✈✐③✐♥❤❛♥ç❛
B(a, δ1 ) = (a − δ1 , a + δ1 )
0 < |x − a| < δ1
❣❡r❛❧♠❡♥t❡ ♦ δ1 é ✉♠ ✈❛❧♦r ♣❡q✉❡♥♦✱ ♣♦❞❡✲s❡ ❝♦♥s✐❞❡r❛r |x − 1| < δ1 = 1 ♣♦ré♠ ❡st❡
ou
✈❛❧♦r ♣♦❞❡ r❡s✉❧t❛r ✐♥❛❞❡q✉❛❞♦ ❡♠ ❛❧❣✉♥s ❝❛s♦s ♣❡❧♦ q✉❡ ❞❡✈❡♠♦s ❝♦♥s✐❞❡r❛r ♦✉tr♦
♥ú♠❡r♦ ❛✐♥❞❛ ♠❡♥♦r✳
❜✮
❈♦♥s✐❞❡r❛r ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s ❞❡ ✈❛❧♦r ❛❜s♦❧✉t♦✿
❙❡ | x − a |< δ ❡♥tã♦ a − δ < x < a + δ ✳
✐✮
✐✐✮
❙❡ a < u < b ❡♥tã♦ | u |< max .{| a |, | b |}✳
P♦r ❡①❡♠♣❧♦✱ s❡
−4 < 3x − 9 < 2 ❡♥tã♦ |3x − 9| < 4 ♣♦✐s | − 4| = 4 =
max .{ | − 4|, | 2 | }✳
✐✐✐✮
❝✮
❙❡ a < u < b ❡♥tã♦✱ u2 < k 2 ♦♥❞❡ k = max .{| a |, | b |}
❙❡ δ > 0 ❝✉♠♣r❡ ❛ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡✱ q✉❛❧q✉❡r ♦✉tr♦ δ1 q✉❡ ❝✉♠♣r❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡
0 < δ1 < δ ✱ t❛♠❜é♠ ❝✉♠♣r❡ ❛ ❞❡✜♥✐çã♦✳
❊①❡♠♣❧♦ ✸✳✼✳
x2 − 16
✱ ✈❡r✐✜❝❛r ♠❡❞✐❛♥t❡ ❛ ❞❡✜♥✐çã♦ q✉❡ lim .f (x) = 8✳
❙❡❥❛ f (x) =
x→4
x−4
❙♦❧✉çã♦✳
P❛r❛ t♦❞♦ ε > 0✱ ❞❡✈❡✲s❡ ♠♦str❛r q✉❡ é ♣♦ssí✈❡❧ ❛❝❤❛r ✉♠ δ > 0 t❛❧ q✉❡ |f (x) − 8| < ε
s❡♠♣r❡ q✉❡ 0 < |x − 4| < δ ✳ ❖ ❢❛t♦ 0 < |x − 4|✱ ❡q✉✐✈❛❧❡ ❛ q✉❡ x 6= 4✳
|f (x) − 8| =
x2 − 8x + 16
x2 − 16
−8 =
= |x − 4| < δ = ε
x−4
x−4
▲♦❣♦✱ ∀ ε > 0✱ ❡①✐st❡ δ = ε t❛❧ q✉❡ |f (x) − 8| < ε s❡♠♣r❡ q✉❡ 0 < |x − 4| < δ ✳
❊①❡♠♣❧♦ ✸✳✽✳
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡
lim
x→4
√
x−3−1
✳
x−4
❙♦❧✉çã♦✳
lim
x→4
√
√
√
x−3−1
x−4
( x − 3 − 1)( x − 3 + 1)
√
√
= lim
=
= lim
x→4 (x − 4)( x − 3 + 1)
x→4
x−4
(x − 4)( x − 3 + 1)
❝♦♥s✐❞❡r❛♥❞♦ q✉❡ x ❡st❛ s❡ ❛♣r♦①✐♠❛♥❞♦ ❛ 4✱ ♣♦❞❡♠♦s s✐♠♣❧✐✜❝❛r ♣❛r❛ ♦❜t❡r
= lim √
x→4
1
= 0, 5
x−3+1
✶✻✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦rt❛♥t♦✱
lim
√
x→4
x−3−1
= 0, 5✳
x−4
❊①❡♠♣❧♦ ✸✳✾✳
❉❛❞❛ ❛ ❢✉♥çã♦
f (x) =
2
3( x + 1)
√
❞❡♠♦♥str❡ q✉❡
lim .f (x) =
x→4
2
✳
9
❙♦❧✉çã♦✳
√
2
2
2
2(2 − x)
√
√
−
=
=
=
f (x) −
9
3( x + 1) 9
9( x + 1)
P❛r❛ t♦❞♦ ε > 0✱ t❡♠✲s❡
√
√
2(2 − x)(2 + x)
1
2
√
√
√
=
< |4−x|· √
9
9( x + 1)(2 + x)
( x + 1)(2 + x)
✭✸✳✸✮
❙❡ | x − 4 |< δ1 ✱ ❡♥tã♦ −δ1 < x − 4 < δ1 ❧♦❣♦ 4 − δ1 < x < 4 + δ1 ✳
❈♦♥s✐❞❡r❛♥❞♦ δ1 = 1 t❡♠♦s 3 < x < 5 ❡♥tã♦✱
√
3+1<
√
x+1<
√
5+1
√
√
( 3 + 1) < ( x + 1)
⇒
√
s❛❜❡✲s❡ q✉❡✱ ♣❛r❛ ♥ú♠❡r♦s x ♣ró①✐♠♦s ❞❡ 4 ✈❛❧❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ 2 ≤ (2 + x)✱ ❡♥tã♦
√
√
√
2( 3 + 1) ≤ ( x + 1)(2 + x)
⇒
1
1
√ ≤ √
( x + 1)(2 + x)
2( 3 + 1)
√
❖❜s❡r✈❡✱ ❡♠ ✭✸✳✸✮ s❡❣✉❡ q✉❡
| f (x) −
≤
2
2
1
√ ≤
|≤ | 4 − x | √
9
9
( x + 1)(2 + x)
1
2
|x−4|
δ
= √
<√
=ε
|4−x| √
9
2( 3 + 1)
9( 3 + 1)
3+1
s❡♠♣r❡ q✉❡ | x − 4 |< δ ∀ ε > 0✳
√
❆ss✐♠✱ ❝♦♥s✐❞❡r❛♥❞♦ δ = min .{1, ε( 3 + 1)} ❡ | x − 4 |< δ ✱ ❞❡♠♦♥str❛♠♦s q✉❡
lim f (x) =
x→4
2
9
❖❜s❡r✈❛çã♦ ✸✳✸✳
✐✮
❈❛❧❝✉❧❛r ✉♠ ❧✐♠✐t❡ é ❞✐❢❡r❡♥t❡ ❞❡ ❞❡♠♦♥str❛r ♦ ♠❡s♠♦❀ ♣❛r❛ ♦ ❝á❧❝✉❧♦✱ ✉t✐❧✐③❛♠♦s
♣r♦♣r✐❡❞❛❞❡s ❞❡ ♥ú♠❡r♦s r❡❛✐s✱ ❡ ❞❡ ♠♦❞♦ ❞✐r❡t♦✱ t❡♥t❛♠♦s ❝❤❡❣❛r ❛ ✉♠ r❡s✉❧t❛❞♦❀
♥❛ ❞❡♠♦♥str❛çã♦✱ ✉t✐❧✐③❛♠♦s ❛ ❞❡✜♥✐çã♦✱ ❧♦❣♦ ❞❡✈❡♠♦s tr❛❜❛❧❤❛r ❝♦♠ ε ❡ δ ✳
✐✐✮
❙✉♣♦♥❤❛ q✉❡ ❡st❛♠♦s ❡st✉❞❛♥❞♦ ♦ ❧✐♠✐t❡ ❞❡ ✉♠❛ ❢✉♥çã♦ f (x) ♥✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡
x = a ❡✱ x = b s❡❥❛ ♦ ♣♦♥t♦ ♠❛✐s ♣ró①✐♠♦ ❞❡ x = a✱ ♦♥❞❡ ❛ ❢✉♥çã♦ f (x) ♥ã♦ ❡stá
1
2
❞❡✜♥✐❞❛✱ ❡♥tã♦ t❡♠♦s q✉❡ ❝♦♥s✐❞❡r❛r δ1 ≤ |a − b|✳
✶✻✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡♠♣❧♦ ✸✳✶✵✳
❈❛❧❝✉❧❛r ♦s ❧✐♠✐t❡s✿
❙♦❧✉çã♦✳
✐✮
✐✮
√
3
√
x2 + 3 x
lim
12
x→4
8−
x
x−8
lim √
3
x→8
x−2
✐✐✮
❖❜s❡r✈❡✱ ♣❡❧❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦ ❧✐♠✐t❡✿
P♦rt❛♥t♦✱
❙♦❧✉çã♦✳
✐✐✮
❚❡♠♦s
√
3
√
√
3
√
x2 + 3 x 4 2 + 3 4
lim
=
=
12
12
x→4
8−
8−
x
4
"√
#
√
√
3
3
16 + 6
x2 + 3 x
lim
=
✳
12
x→4
5
8−
x
√
√
√
(x − 8) = [ 3 x − 2][( 3 x)2 + 2( 3 x) + 22 ]❀
"√
3
16 + 6
5
#
❧♦❣♦✱ ♣❡❧❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦ ❧✐♠✐t❡✿
√
√
√
√
√
[ 3 x − 2][( 3 x)2 + 2( 3 x) + 22 ]
x−8
2
3
3
√
x)
+
2(
x) + 22 ] = 12
=
lim
=
lim
[(
lim √
3
3
x→8
x→8
x→8
x−2
x−2
P♦rt❛♥t♦✱
x−8
= 12✳
lim √
3
x→8
x−2
❊①❡♠♣❧♦ ✸✳✶✶✳
❙❡❥❛ f : N −→ N ❞❡✜♥✐❞❛ ♣♦r
❙♦❧✉çã♦✳
f (n + 1) = f (n) + 3 ❡ f (1) = 2✱ ❞❡t❡r♠✐♥❡ lim f (n)✳
n→20
f (2) = f (1) + 3✱ f (3) = f (2) + 3 = f (1) + 2(3)✱ f (4) = f (3) + 3 =
f (1) + 3(3)✱ ❡♠ ❣❡r❛❧ f (n) = f (1) + 3(n − 1) = 3n − 1✱ é ✉♠❛ ♣r♦❣r❡ssã♦ ❛r✐t♠ét✐❝❛✳ ▲♦❣♦
❚❡♠♦s
lim f (n) = lim 3n − 1 = 59
n→20
P♦rt❛♥t♦✱
n→20
lim f (n) = 59✳
n→20
❊①❡♠♣❧♦ ✸✳✶✷✳
❙❡❥❛ f : N −→ N ❞❡✜♥✐❞❛ ♣♦r
❙♦❧✉çã♦✳
f (n + 1) = 2f (n) ❡ f (1) = 3✱ ❞❡t❡r♠✐♥❡ lim f (n)✳
n→20
f (2) = 2f (1)✱ f (3) = 2f (2) = 22 f (1)✱ f (4) = 2f (3) = 23 f (1)✱
f (n) = 2n−1 f (1)✱ é ✉♠❛ ♣r♦❣r❡ssã♦ ❣❡♦♠étr✐❝❛✳ ▲♦❣♦
❚❡♠♦s
❡♠ ❣❡r❛❧
lim f (n) = lim 2n−1 f (1) = lim 3 × 2n−1 = 3 × 219
n→20
P♦rt❛♥t♦✱
n→20
n→20
lim f (n) = 3 × 219 ✳
n→20
✶✻✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✸✲✶
x5 − 32
❝♦♠♣❧❡t❛♥❞♦ ❛ s❡❣✉✐♥t❡ t❛❜❡❧❛✿
x→2 x6 − 64
✶✳ ❊st✐♠❡ ♦ ✈❛❧♦r ❞♦ ❧✐♠✐t❡ lim
x
1, 999
1, 9999
1, 99999
1, 999999
2, 01
2, 001
2, 0001
2, 00001
f (x)
✷✳ ❈❛❧❝✉❧❛r ♦ lim .g(x) ♣❛r❛ g(x) = √
x→1
x
0, 999
0, 9999
0, 99999
x+3
❝♦♠♣❧❡t❛♥❞♦ ❛ s❡❣✉✐♥t❡ t❛❜❡❧❛✿
x2 + 15 − 4
0, 999991
1, 01
1, 001
1, 0001
1, 00001
f (x)
✸✳ ❈❛❧❝✉❧❛r ♦ lim g(x) ♣❛r❛ g(x) =
x→3
x
2, 999
2, 9999
2, 99999
x−3
❝♦♠♣❧❡t❛♥❞♦ ❛ s❡❣✉✐♥t❡ t❛❜❡❧❛✿
x2 − 9
2, 999999
3, 01
3, 001
3, 0001
3, 00001
f (x)
✹✳ ❈❛❧❝✉❧❛r lim f (x) ♣❛r❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
x→a
2
x +5
, s❡✱ x > 1
x
2.
f (x) =
2
x − 1 , s❡✱ x < 1
x−1
q✉❛♥❞♦ a = 1
2
x −4
, s❡✱ x 6= 2
1. f (x) =
x−2
5,
s❡✱ x = 2
q✉❛♥❞♦ a = 2
✺✳ ❉❡♠♦♥str❛r q✉❡✿
✶✳
lim
x→4
2(x − 5)
=2
2x − 7
✷✳
x2
= −1
x→1 3x − 4
lim
✻✳ ❙❡❥❛ y = x2 ✳ ◗✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ 2❀ y t❡♥❞❡ ♣❛r❛ 4✳ ◗✉❛❧ é ♦ ✈❛❧♦r ♣❛r❛ δ ❡♠
0 <| x − 2 |< δ ❀ q✉❡✱ ❞ê ♣♦r r❡s✉❧t❛❞♦ | y − 4 |< ε = 0, 001❄
3
x2 − 1
✳ P❛r❛ x → 2 t❡♠♦s y → ✳ ◗✉❛❧ é ♦ ✈❛❧♦r ❞❡ δ ♣❛r❛ q✉❡ | x − 2 |< δ
2
x +1
5
3
❞ê ♣♦r r❡s✉❧t❛❞♦ | y − |< ε = 0, 1❄
5
✼✳ ❙❡❥❛ y =
✽✳ ❆♣❧✐❝❛♥❞♦ ❛ ❞❡✜♥✐çã♦✱ ❞❡♠♦♥str❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✱ ❛❝❤❛♥❞♦ ✉♠ ✈❛❧♦r ♣❛r❛ ✉♠
δ > 0✱ ♣❛r❛ ♦ ✈❛❧♦r ❞❡ ε ❞❛❞♦✳
1.
lim (5x − 3) = 12
x→3
ε = 0, 03
✶✻✾
2.
lim (3x + 5) = 11 ε = 0, 0012
x→2
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
3.
5.
7.
9.
R
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
x2 − 4
=4
ε = 0, 004
lim
x→2 x − 2
2
3x − 2x − 1
= 4 ε = 0, 015
lim
x→1
x−1
lim (7x2 − 20x + 2) = 5 ε = 0, 001
3x − 1
= −5 ε = 0, 001
lim
x→−3 3x2 − 25
x→3
4.
6.
8.
10.
√
1
x−1
lim
=
ε = 0, 015
x→1
x−1
2
2
4x − 1
lim
=2
ε = 0, 07
2x − 1
x→ 21
x2
lim
= 4 ε = 0, 001
x→2 7x − 13
2
x − 14
lim
= 5 ε = 0, 1
x→−3 10x + 29
✾✳ ❆♣❧✐❝❛♥❞♦ ❛ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡✱ ♠♦str❛r ❛s s❡❣✉✐♥t❡s ✐❣✉❛❧❞❛❞❡s✿
r
2 + x + x2
1. lim (3x − x) = 10
=4
3. lim
x→2
x→−2
2x + 5
x2 + 2x + 2
4
=4
6. lim 2
=2
4. lim
x→0 x − 2x + 1
x→3 x − 2
√
3
√
3x2 − 11
2
3
7. lim 6 − x = 1
8. lim (x + 2) = −6
9. lim
=−
x→−2
x→1
x→5
3
3
√
x−1
x−1
x+1
=2
11. lim √
=1
12. lim √
10. lim √ = 2
3
x→64
x→1
x→1
x
x+3
x2 + 3 − 2
2
x − 3x − 4
1
3x
|x|
=0
13. lim
= −5
14. lim 2
=
15. lim
x→−5 x + 8
x→−1 x + 1
x→4
2
x−3
r
√
2
1
8
|2−x|
x+1
x− 2
√ =−
16. lim
=
17. lim
=
18. lim
x→1 3x − 1
x→7 9x − 60
x→0 2x +
2
3
3
3
2
3x + 1
k x k +x
7
3x
19. lim
=1
=3
20. lim
=
21. lim
√
√
4
2
x→π 6x − 5π
5
x→ 2 x + 1
x→ 2 3 + x − x
2
1
4x + 1
8−x
kxk
=
=0
23. lim
24. lim
= −5
22. lim1
x→8 64 − x2
x→−1 3x + 2
16
x→ 2 x + 1
√
2x
sgn(x2 − 1)
1
2
25. lim 4x + 1 = 1
26. lim
=0
27. lim
=
x→0
x→0 63x − 1
x→3
x+4
7
√
16
2x − 4
k x k +2
−4x − 3
=
29. lim
= −4 30. lim
= −3
28. lim5
2
x→−4
x→−3
x
25
5x + 23
x+2
x→ 2
2
4+x
3
2. lim
=
2
x→5
x −9
4
8
3 + 2x
5. lim1
=
9
x→ 2 5 − x
2 − u2
n
s❡♥❞♦ u1 = 1✳ ❉❡t❡r♠✐♥❡ ♦s ♣r✐♠❡✐r♦s
✶✵✳ ❈♦♥s✐❞❡r❡ ❛ s✉❝❡ssã♦ un+1 = un +
2un
❡❧❡♠❡♥t♦s u2 , u3 , u4 ❡ ❝❛❧❝✉❧❡ ♦ ❧✐♠✐t❡ ❞❡ un q✉❛♥❞♦ n ❝r❡s❝❡ ✐♥❞❡✜♥✐❞❛♠❡♥t❡✳
√
✶✶✳ ❙❡❥❛ ❛ s✉❝❡ssã♦ ❞❡✜♥✐❞❛ ♣❡❧❛ r❡❧❛çã♦ ❞❡ r❡❝♦rrê♥❝✐❛ un = 2 + un−1 s❡♥❞♦ u1 =
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡ ❞❛ s✉❝❡ssã♦ un q✉❛♥❞♦ n ❝r❡s❝❡ ✐♥❞❡✜♥✐❞❛♠❡♥t❡✳
√
2✳
✶✷✳ ▼♦str❡ q✉❡ ❛ s❡q✉ê♥❝✐❛ un = 1 + (−1)n ♥ã♦ t❡♠ ❧✐♠✐t❡ q✉❛♥❞♦ n ❝r❡s❝❡ ✐♥❞❡✜♥✐❞❛✲
♠❡♥t❡✳
✶✼✵
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✸✳✷✳✶
Pr♦♣r✐❡❞❛❞❡s ❞♦s ❧✐♠✐t❡s
❙❛❜❡♠♦s ❞❛ s❡❣✉✐♥t❡ ♣r♦♣r✐❡❞❛❞❡ ❞❡ ♥ú♠❡r♦s r❡❛✐s✿
Pr♦♣r✐❡❞❛❞❡ ✸✳✷✳
✐✮
✐✐✮
❙❡❥❛ x ∈ R ❡ x ≥ 0✱ s❡ x < ε ♣❛r❛ t♦❞♦ ε > 0✱ ❡♥tã♦ x = 0✳
◗✉❛♥❞♦ | x |< ε,
∀ε>0
⇒
x = 0✳
❉❡♠♦♥str❛çã♦✳
✐✮
✐✐✮
❈♦♠♦ x ≥ 0✱ ❡♥tã♦ x = 0 ♦✉ x > 0✳ ❆ ♣♦ss✐❜✐❧✐❞❛❞❡ x > 0 ♥ã♦ ♣♦❞❡ ❛❝♦♥t❡❝❡r✱ ♣♦✐s s❡
x > 0 ❡♥tã♦ ❞♦ ❢❛t♦ x < ε ❡ ❝♦♠♦ ε > 0 ❡♠ ♣❛rt✐❝✉❧❛r ♣♦❞❡♠♦s ❡s❝♦❧❤❡r ε = x ❞❡
♦♥❞❡ ε = x < x ♦ q✉❡ é ❝♦♥tr❛❞✐tór✐♦✳ P♦r t❛♥t♦ x = 0✳
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✸✳
❯♥✐❝✐❞❛❞❡ ❞♦ ❧✐♠✐t❡✳
◗✉❛♥❞♦ ❡①✐st❛ ♦ ❧✐♠✐t❡ ❞❡ ✉♠❛ ❢✉♥çã♦✱ ❡st❡ ❧✐♠✐t❡ é ú♥✐❝♦✳
❉❡♠♦♥str❛çã♦✳
❙❡❥❛ ε > 0 q✉❛❧q✉❡r ♥ú♠❡r♦ r❡❛❧❀ ❡ s✉♣♦♥❤❛ q✉❡ lim .f (x) = L1 ❡ lim .f (x) = L2
x→a
x→a
s❡♥❞♦ L1 6= L2 ✳
❙❡rá s✉✜❝✐❡♥t❡ ♠♦str❛r q✉❡ | L1 − L2 |< ε ♣❛r❛ t♦❞♦ ε > 0✳
❉♦ ❢❛t♦ lim .f (x) = L1 ❞❛ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡ t❡♠♦s q✉❡✱ ❞❛❞♦ q✉❛❧q✉❡r ε > 0✱ ❡①✐st❡
x→a
✉♠ δ1 > 0 t❛❧ q✉❡
| f (x) − L1 |<
ε
2
s❡♠♣r❡ q✉❡ 0 <| x − a |< δ1
❞❡ ♠♦❞♦ ❛♥á❧♦❣♦ ❞❛❞♦ lim .f (x) = L2 ❞❛ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡ t❡♠♦s q✉❡✱ ❞❛❞♦ q✉❛❧q✉❡r
x→a
ε > 0✱ ❡①✐st❡ ✉♠ δ2 > 0 t❛❧ q✉❡
| f (x) − L2 |<
ε
2
s❡♠♣r❡ q✉❡ 0 <| x − a |< δ2
✳
❈♦♥s✐❞❡r❡ δ = min .{ δ1 , δ2 } ❡ 0 <| x − a |< δ ❡♥tã♦ ❝✉♠♣r❡♠✲s❡ ❛s ❞❡s✐❣✉❛❧❞❛❞❡s
ε
ε
❡ | f (x) − L2 |< ✳
| f (x) − L1 |<
2
2
❉❛s ♣r♦♣r✐❡❞❛❞❡s ❞❡ ♥ú♠❡r♦s r❡❛✐s✱ t❡♠♦s q✉❡✿ | L1 − L2 |=| L1 − f (x) + f (x) − L2 |≤
≤| f (x) − L1 | + | f (x) − L2 |<
ε ε
+ =ε
2 2
♣❛r❛ 0 <| x − a |< δ
❆ss✐♠ ♠♦str❛♠♦s q✉❡ ♣❛r❛ t♦❞♦ ε > 0✱ s❡♥❞♦ 0 <| x − a |< δ ✈❡r✐✜❝❛✲s❡ | L1 − L2 |< ε
♦ q✉❡ ✐♠♣❧✐❝❛ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✷✮ q✉❡ L1 = L2 ✳
✶✼✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
Pr♦♣r✐❡❞❛❞❡ ✸✳✹✳
❈♦♥s❡r✈❛çã♦ ❞♦ s✐♥❛❧✳
lim .f (x) = L 6= 0✱ ❡①✐st❡ ✉♠❛
∀ x ∈ B(a, δ) ❝♦♠ x 6= a✳
❙❡
x→a
s✐♥❛❧
✈✐③✐♥❤❛♥ç❛
B(a, δ)
t❛❧ q✉❡
f (x)
❡
L
t❡♠ ♦ ♠❡s♠♦
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✺✳
lim .f (x) = L ✱ ❡①✐st❡ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ B(a, δ) ❡ ✉♠ ♥ú♠❡r♦ M > 0 t❛❧ q✉❡ | f (x) |<
❙❡
M,
x→a
∀ x ∈ B(a, δ)
s❡♥❞♦
❉❡♠♦♥str❛çã♦✳
❉❛ ❤✐♣ót❡s❡
lim .f (x) = L
x→a
ε > 0,
❉❛❞♦
x 6= a✳
t❡♠♦s q✉❡✿
∃ δ > 0 /. ∀ x ∈ B(a, δ),
❉❛s ♣r♦♣r✐❡❞❛❞❡s ❞❡ ♥ú♠❡r♦s r❡❛✐s
M = ε+ | L |
s❛t✐s❢❛③
| f (x) − L |< ε✳
| f (x) | − | L |<| f (x) − L |< ε✱
| f (x) | − | L |< ε
❈♦♥s✐❞❡r❛♥❞♦
x 6= a
| f (x) |< ε+ | L |
❧♦❣♦
t❡♠♦s q✉❡
❡♥tã♦
| f (x) |< M
∀ x ∈ B(a, δ)
♣❛r❛
x 6= a✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✻✳
f
❙❡
❛✮
❜✮
❡
g
sã♦ ❢✉♥çõ❡s t❛✐s q✉❡ ❝✉♠♣r❛♠ ❛s ❤✐♣ót❡s❡s✿
f (x) ≤ g(x)
∀ x ∈ B(a, δ)
lim .f (x) = L
❡
x→a
❊♥tã♦
L ≤ M✱
❝♦♠
x 6= a✳
lim .g(x) = M ✳
x→a
✐st♦ é
lim .f (x) ≤ lim .g(x)✳
x→a
x→a
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✼✳
❛✮
❙✉♣♦♥❤❛♠♦s
❜✮
❙❡
❉♦ ❝♦♥❢r♦♥t♦✳
f (x) ≤ g(x) ≤ h(x)
♣♦ssí✈❡❧♠❡♥t❡ ♦ ♣ró♣r✐♦ a
lim .f (x) = L = lim .h(x)✱
x→a
x→a
♣❛r❛ t♦❞♦
❡♥tã♦
x
♥✉♠ ✐♥t❡r✈❛❧♦ ❛❜❡rt♦ ❝♦♥t❡♥❞♦
a✱
❡①❝❡t♦
lim .g(x) = L✳
x→a
❉❡♠♦♥str❛çã♦✳
P❡❧❛ ❤✐♣ót❡s❡ ❜✮ ♣❛r❛ ❝❛❞❛
ε>0
❡①✐st❡♠ ♣♦s✐t✐✈♦s δ1 ❡ δ2 t❛✐s q✉❡✿
0 <| x − a |< δ1
⇒
L − ε < f (x) < L + ε
✭✸✳✹✮
0 <| x − a |< δ2
⇒
L − ε < h(x) < L + ε
✭✸✳✺✮
✶✼✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
δ = min .{ δ1 , δ2 } ✱ ♣❛r❛ 0 <| x − a |< δ
❝♦♠♦ f (x) ≤ g(x) ≤ h(x)✳ ❊♥tã♦
❈♦♥s✐❞❡r❛♥❞♦
✭✸✳✹✮ ❡ ✭✸✳✺✮ ❡
0 <| x − a |< δ
✐st♦ é
0 <| x − a |< δ
✐♠♣❧✐❝❛
L − ε < f (x) ≤ g(x) ≤ h(x) < L + ε
✐♠♣❧✐❝❛
L − ε < g(x) < L + ε
P♦rt❛♥t♦✱
❝✉♠♣r❡✲s❡ s✐♠✉❧t❛♥❡❛♠❡♥t❡
⇒ | g(x) − L |< ε
lim .g(x) = L✳
x→a
❊st❛ ♣r♦♣r✐❡❞❛❞❡ ❞♦ ❝♦♥❢r♦♥t♦✱ t❛♠❜é♠ é ❝♦♥❤❡❝✐❞❛ ❝♦♠♦ ♦ ✏Pr✐♥❝í♣✐♦ ❞♦ ❙❛♥❞✉í❝❤❡✑✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✽✳
❙❡❥❛♠
❛✮
f
❡
g
❞✉❛s ❢✉♥çõ❡s t❛✐s q✉❡ ❝✉♠♣r❛♠ ❛s ❤✐♣ót❡s❡s✿
lim .f (x) = 0✳
x→a
❜✮
❊①✐st❡
❊♥tã♦
M >0
t❛❧ q✉❡
| g(x) |< M
∀ x ∈ B(a, δ)
❝♦♠
x 6= a✳
lim .f (x).g(x) = 0✳
x→a
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✸✳✶✸✳
f (x) = ax2 + bx + c ♦♥❞❡ a, b
∀ x ∈ R✳ ▼♦str❡ q✉❡ a = b = c = 0✳
❙✉♣♦♥❤❛♠♦s q✉❡
x3 |
❡
c
sã♦ ❝♦♥st❛♥t❡s t❛✐s q✉❡
| f (x) |≤|
❉❡♠♦♥str❛çã♦✳
0 ≤| ax2 + bx + c |≤| x3 |
lim | ax2 + bx + c |= c = 0✳
❈♦♠♦
q✉❡
❡
lim .0 = lim | x3 |= 0✱
x→0
x→0
♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✼✮ s❡❣✉❡
x→0
❊♥tã♦ ♣♦❞❡♠♦s ❡s❝r❡✈❡r
0 ≤| ax + b |≤| x2 |
lim | ax + b |= b = 0✳
❧♦❣♦
f (x) = ax2 + bx❀ ❛ss✐♠ 0 ≤| ax2 + bx |≤| x3 | ♣❛r❛ x 6= 0✱
∀ x ∈ R✱ ❛♣❧✐❝❛♥❞♦ ♥♦✈❛♠❡♥t❡ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✼✮ r❡s✉❧t❛
x→0
0 ≤| ax |≤| x3 | ♣❛r❛ x 6= 0✱ ❧♦❣♦ 0 ≤| a |≤| x |
R✱ ❛♣❧✐❝❛♥❞♦ ♥♦✈❛♠❡♥t❡ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✼✮ r❡s✉❧t❛ lim | a |= a = 0✳
x→0
P♦rt❛♥t♦✱ a = b = c = 0✳
❊♥tã♦ t❡♠♦s
f (x) = ax❀
Pr♦♣r✐❡❞❛❞❡ ✸✳✾✳
∀x ∈
Pr♦♣r✐❡❞❛❞❡s ❛❞✐❝✐♦♥❛✐s ❞♦s ❧✐♠✐t❡s✳
f ❡ g ❞✉❛s
lim .g(x) = M ❡♥tã♦✿
❙❡❥❛♠
❛ss✐♠
❢✉♥çõ❡s ❡
C
♥ú♠❡r♦ r❡❛❧ ❝♦♥st❛♥t❡✱ t❛✐s q✉❡
lim .f (x) = L
x→a
❡
x→a
❛✮
lim .C = C
x→a
✶✼✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❜✮
lim .C · f (x) = C · lim .f (x) = C · L
x→a
❝✮
x→a
lim [f (x) + g(x)] = lim ·f (x) + lim ·g(x) = L + M
x→a
❞✮
x→a
x→a
lim [f (x) · g(x)] = lim ·f (x) · lim ·g(x) = L · M
x→a
❡✮
x→a
lim
x→a
x→a
1
1
1
=
=
g(x)
lim ·g(x)
M
M 6= 0✳
s❡♠♣r❡ q✉❡
M 6= 0✳
x→a
lim ·f (x)
f (x)
L
lim
=
= x→a
x→a g(x)
lim ·g(x)
M
❢✮
s❡♠♣r❡ q✉❡
x→a
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✵✳
❙❡
❛✮
lim fi (x) = Li
x→a
i = 1, 2, 3, . . . , n
♣❛r❛ t♦❞♦
❡♥tã♦✿
lim [f1 (x) + f2 (x) + f3 (x) + · · · + fn (x)] = L1 + L2 + L3 + · · · + Ln
x→a
❜✮
lim [f1 (x) × f2 (x) × f3 (x) × · · · × fn (x)] = L1 × L2 × L3 × · · · × Ln
x→a
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✶✳
❙✉♣♦♥❤❛
◗✉❛♥❞♦
lim .f (x) = L
x→a
n ≤ 0✱
❡♥tã♦
L
n ∈ Z✱
❡
❡♥tã♦✱
lim .[f (x)]n = [lim .f (x)]n = Ln ✳
x→a
x→a
t❡♠ q✉❡ s❡r ❞✐❢❡r❡♥t❡ ❞❡ ③❡r♦✳
❉❡♠♦♥str❛çã♦✳
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✷✳
❙❡
lim f (x) = L
x→a
❡
n ∈ Z✱
❡♥tã♦✱
lim
x→a
♦♥❞❡
L
é ♥ú♠❡r♦ ♣♦s✐t✐✈♦ ❡
n
q
p
√
n
n
f (x) = n lim f (x) = L
x→a
q✉❛❧q✉❡r ✐♥t❡✐r♦ ♣♦s✐t✐✈♦ ♦✉
L < 0
❡
n
q✉❛❧q✉❡r ✐♥t❡✐r♦
♣♦s✐t✐✈♦ í♠♣❛r✳
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✸✳✶✹✳
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡✿
❙♦❧✉çã♦✳
5x2 − 10x − 6
lim
x→2
x3 − 10
✳
✶✼✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
−6
5x2 − 10x − 6
=
= 3✳
❆♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✾✮ ❢ ✮ ♦❜t❡♠♦s q✉❡ lim
3
x→2
x − 10
−2
❊①❡♠♣❧♦ ✸✳✶✺✳
❈❛❧❝✉❧❛r ♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡
lim
x→−1
❙♦❧✉çã♦✳
r
3x2 − 2x + 3
✳
x5 + 2
P❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✶✷✮ t❡♠♦s q✉❡✿
lim
x→−1
❊①❡♠♣❧♦ ✸✳✶✻✳
❈❛❧❝✉❧❛r
lim
x→0
❙♦❧✉çã♦✳
r
3x2 − 2x + 3
=
x5 + 2
x3 − 3x + 1
+1
x−4
s
lim
x→−1
r
√
3x2 − 2x + 3
8
2
=
=
2
x5 + 2
1
✳
P❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✾✮ ❢ ✮ r❡s✉❧t❛ q✉❡✱
lim
x→0
❊①❡♠♣❧♦ ✸✳✶✼✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
x3 − 3x + 1
+1
x−4
6x − 6
lim
x→1 x2 − 3x + 2
=
lim (x3 − 2x − 3)
x→0
lim (x − 4)
=
x→0
−3
3
=
−4
4
✳
❖❜s❡r✈❡✱ ❛♦ ❛♣❧✐❝❛r ❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✾✮ ❢ ✮ ❞❡ q✉♦❝✐❡♥t❡ ❞❡ ❧✐♠✐t❡s t❡rí❛♠♦s ✉♠ q✉♦❝✐✲
0
❡♥t❡ ❞❛ ❢♦r♠❛ ♥♦ ❧✐♠✐t❡✱ s❡♥❞♦ ❡st❛ ✉♠❛ ❢♦r♠❛ ✐♥❞❡t❡r♠✐♥❛❞❛✳ ◆♦ ♣♦ssí✈❡❧✱ ♣❛r❛ ❡✈✐t❛r
0
✐st♦ t❡♠♦s q✉❡ ❡s❝r❡✈❡r ♥✉♠❡r❛❞♦r ❡ ❞❡♥♦♠✐♥❛❞♦r ♥❛ ❢♦r♠❛ ❞❡ ❢❛t♦r❡s (x − 1) ❞♦ ♠♦❞♦
s❡❣✉✐♥t❡✿
lim
x→1
x2
6(x − 1)
6x − 6
= lim
x→1 (x − 1)(x − 2)
− 3x + 2
❉❡s❞❡ q✉❡ x → 1✱ ❡♥tã♦ (x − 1) → 0 ❛✐♥❞❛ (x − 1) ♥ã♦ é ③❡r♦❀ ❧♦❣♦ ♣♦❞❡♠♦s s✐♠♣❧✐✜❝❛r
♥♦ ❧✐♠✐t❡ ❛❝✐♠❛ ♣❛r❛ ♦❜t❡r✿
6(x − 1)
6
6
6x − 6
= lim
= lim
=
= −6
lim 2
x→1 (x − 1)(x − 2)
x→1 x − 2
x→1 x − 3x + 2
−1
❖❜s❡r✈❛çã♦ ✸✳✹✳
✐✮
❙ã♦ ❢♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s✿
0
,
0
∞
,
∞
∞ − ∞,
∞0 ,
✶✼✺
00 ,
0∞ ,
∞∞ ,
1∞ ,
0·∞
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❙❡✱ ♥♦ ❝á❧❝✉❧♦ ❞❡ ❧✐♠✐t❡s ❛♣❛r❡❝❡♠ ❛❧❣✉♠❛ ❞❡st❛s ❢♦r♠❛s✱ ♣❛r❛ ♦ ❝á❧❝✉❧♦ ❞❡ ❧✐♠✐t❡s
❞❡✈❡♠♦s ✉t✐❧✐③❛r ♣r♦❝❡ss♦s ♦✉ ❛rt✐❢í❝✐♦s ❝♦♠ ♦ ♣r♦♣ós✐t♦ ❞❡ ❡✈✐t❛r ❛ ❢♦r♠❛ ✐♥❞❡t❡r✲
♠✐♥❛❞❛✳
✐✐✮
❙❡❥❛
n ∈ N✱
♣❛r❛ ❛ r❛❝✐♦♥❛❧✐③❛çã♦✱ ❧❡♠❜r❡✿
a2 − b2 = (a + b) · (a − b)
an − bn = (a − b) · (an−1 + an−2 b + an−3 b2 + an−4 b3 + · · · + a2 bn−3 + abn−2 + bn−1 )
◗✉❛♥❞♦
n
é í♠♣❛r✿
an + bn = (a + b) · (an−1 − an−2 b + an−3 b2 − an−4 b3 + · · · + a2 bn−3 − abn−2 + bn−1 )
❊①❡♠♣❧♦ ✸✳✶✽✳
12
1
−
lim
x→2 2 − x
8 − x3
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
❖❜s❡r✈❡ q✉❡✿
✳
(4 + 2x + x2 )
12
12
1
= lim
=
−
−
lim
x→2 (2 − x)(4 + 2x + x2 )
x→2 2 − x
8 − x3
8 − x3
2x + x2 − 8
−(2 − x)(x + 4)
4 + 2x + x2 − 12
= lim
= lim
=
= lim
x→2
x→2 (2 − x)(4 + 2x + x2 )
x→2
8 − x3
8 − x3
P♦rt❛♥t♦✱
−6
1
−(x + 4)
=
=−
= lim
2
x→2 4 + 2x + x
12
2
1
12
1
=−
lim
−
2
x→2 2 − x
8−x
2
❊①❡♠♣❧♦ ✸✳✶✾✳
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡✿
lim
x→1
"√
❙♦❧✉çã♦✳
2x + 1 −
x−1
√ #
3
❊st❡ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛ ✐♥❞❡t❡r♠✐♥❛❞❛
lim
♥✉♠❡r❛❞♦r t❡♠♦s✿
x→1
"√
2x + 1 −
x−1
√ #
3
0
❀
0
❛ss✐♠✱ ♠✉❧t✐♣❧✐❝❛♥❞♦ ♣❡❧❛ ❝♦♥❥✉❣❛❞❛ ❞♦
" √
√ √
√ #
( 2x + 1 − 3)( 2x + 1 + 3)
√
= lim
=
√
x→1
(x − 1)( 2x + 1 + 3)
√
2
3
2(x − 1)
√
√
= lim √
=
= lim
√
x→1 ( 2x + 1 +
x→1 (x − 1)( 2x + 1 +
3
3)
3)
P♦rt❛♥t♦✱
lim
x→1
"√
2x + 1 −
x−1
√ #
3
=
√
3
✳
3
✶✼✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❊①❡♠♣❧♦ ✸✳✷✵✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡✿
❙♦❧✉çã♦✳
R
√
1 − x2 − 3x + 3
√
lim
x→1
4x2 − 3 − 1
◆♦ ❧✐♠✐t❡ ♠✉❧t✐♣❧✐❝❛♥❞♦ ♦ ♥✉♠❡r❛❞♦r ❡ ❞❡♥♦♠✐♥❛❞♦r ♣❡❧♦ ❢❛t♦r
F (x) = (1 +
√
√
x2 − 3x + 3)( 4x2 − 3 + 1)
√
√
(1 − x2 + 3x − 3)( 4x2 − 3 + 1)
(1 − x2 − 3x + 3)F (x)
√
√
= lim
=
lim
x→1
x→1
( 4x2 − 3 − 1)F (x)
(4x2 − 4)(1 + x2 − 3x + 3)
t❡♠♦s✿
"
#
√
−(x − 2)
−(x − 1)(x − 2)( 1 + 1)
1
√
= lim
= lim
=
x→1
x→1 4(x + 1)
8
4(x − 1)(x + 1)(1 + 1)
P♦rt❛♥t♦✱
√
1
1 − x2 − 3x + 3
√
=
lim
2
x→1
8
4x − 3 − 1
❊①❡♠♣❧♦ ✸✳✷✶✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡✿
lim
x→2
❙♦❧✉çã♦✳
√
3
√
x3 − 2x − 3 − 3 2x2 − 7
✳
2x3 + x − 18
P❛r❛ ♦ ❧✐♠✐t❡✱ ♠✉❧t✐♣❧✐❝❛♥❞♦ ♦ ♥✉♠❡r❛❞♦r ❡ ❞❡♥♦♠✐♥❛❞♦r ♣❡❧♦ ❢❛t♦r
√
√
√
√
3
3
3
3
F (x) = ( x3 − 2x − 3)2 + ( x3 − 2x − 3) · ( 2x2 − 7) + ( 2x2 − 7)2
t❡♠♦s
√
√
( 3 x3 − 2x − 3 − 3 2x2 − 7) · F (x)
lim
=
x→2
(2x3 + x − 18) · F (x)
(x3 − 2x − 3) − (2x2 − 7)
(x2 − 2)(x − 2)
lim
= lim
=
x→2
x→2 (2x2 + 4x + 9)(x − 2) · F (x)
(2x3 + x − 18) · F (x)
2
2
2
(x2 − 2)
=
=
=
lim
2
x→2 (2x + 4x + 9) · F (x)
25 · F (2)
(25)(3)
75
√
√
3 3
x − 2x − 3 − 3 2x2 − 7
2
lim
=
3
x→2
2x + x − 18
75
P♦rt❛♥t♦✱
❊①❡♠♣❧♦ ✸✳✷✷✳
❈♦♠♦ ✈❛r✐❛♠ ❛s r❛í③❡s ❞❛ ❡q✉❛çã♦ q✉❛❞r❛❞❛
s❡✉s ✈❛❧♦r❡s ❝♦♥st❛♥t❡s ✭b
> 0✮
❡ ♦ ♣❛râ♠❡tr♦
a
ax2 + bx + c = 0
q✉❛♥❞♦✱
b
❡
c
❝♦♥s❡r✈❛♠
t❡♥❞❡ ♣❛r❛ ③❡r♦ ❄
❙♦❧✉çã♦✳
❆♣❧✐❝❛♥❞♦ ❛ ❢ór♠✉❧❛ ❞❡ ❇❤❛s❦❛r❛ ❛s r❛í③❡s ❞❛ ❡q✉❛çã♦ sã♦✿
x1 =
−b +
√
b2 − 4ac
2a
❡
✶✼✼
x2 =
−b −
√
b2 − 4ac
2a
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
◗✉❛♥t♦ a → 0 ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛✿
P❛r❛ ❛ r❛✐③ x1
lim x1 = lim
a→0
a→0
−b +
√
√
(−b)2 − ( b2 − 4ac)2
b2 − 4ac
√
= lim
a→0 2a(−b −
2a
b2 − 4ac)
⇒
c
2c
√
=−
a→0 −b −
b
b2 − 4ac
lim x1 = lim
a→0
P❛r❛ ❛ r❛✐③ x2
lim x2 = lim
a→0
a→0
−b −
√
√
b2 − 4ac
(−b)2 − ( b2 − 4ac)2
√
= lim
a→0 2a(−b +
2a
b2 − 4ac)
⇒
2c
√
=∞
a→0 (−b +
b2 − 4ac)
lim x2 = lim
a→0
c
P♦rt❛♥t♦✱ ✉♠❛ ❞❛s r❛í③❡s ❝♦♥✈❡r❣❡ ♣❛r❛ − ❡ ❛ ♦✉tr❛ ❞✐✈❡r❣❡ ✭❛♣r♦①✐♠❛✲s❡ r❛♣✐❞❛♠❡♥t❡
b
❛♦ ✐♥✜♥✐t♦✮✳
✶✼✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✸✲✷
✶✳ ▼♦str❡ ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✳
✶✳
✷✳
⇒
x→a
lim .f (x) = L
⇒
x→a
lim .f (x) = L
⇒
x→a
x→a
✸✳
lim | f (x) |= 0✳
lim .f (x) = 0
x→a
x→a
lim [f (x) − L] = 0
lim | f (x) |=| L |✳
lim .f (x) = lim .f (a + h)
✹✳
x→a
h→0
✷✳ ❆♣r❡s❡♥t❛r ✉♠ ❡①❡♠♣❧♦ ❞❡ ♠♦❞♦ q✉❡✿
✶✳
❊①✐st❛ lim | f (x) | ❡ ♥ã♦ ❡①✐st❛ lim ·f (x)✳
✷✳
❊①✐st❛ lim [f (x) + g(x)] ❡ ♥ã♦ ❡①✐st❛♠ lim ·f (x) ❡ lim ·g(x) ✳
x→a
x→a
x→a
x→a
x→a
✸✳ ❈❛s♦ ❡①✐st❛♠ ♦s ❧✐♠✐t❡s lim ·f (x) ❡ lim [f (x) + g(x)]✳ ❊①✐st❡ lim ·g(x) ❄
x→a
x→a
x→a
✹✳ ❈❛s♦ ❡①✐st❛♠ ♦s ❧✐♠✐t❡s lim ·f (x) ❡ lim [f (x) · g(x)]✳ ❊①✐st❡ lim ·g(x) ❄
x→a
x→a
x→a
✺✳ ❈❛s♦ ❡①✐st❛ lim ·f (x) ❡ lim ·g(x) ♥ã♦ ❡①✐st❡✱ ❡♥tã♦ ❡①✐st❡ lim [f (x) + g(x)] ❄
x→a
x→a
x→a
✻✳ ▼♦str❡ q✉❡ lim f (x) ❡①✐st❡✱ s❡ ❡ s♦♠❡♥t❡ s❡ lim f (a + h) ❡①✐st❡✳
x→a
h→0
✼✳ ▼♦str❡ q✉❡ lim f (x) ❡①✐st❡✱ s❡ ❡ s♦♠❡♥t❡ s❡ lim f (x + a) ❡①✐st❡✳
x→a
x→0
✽✳ ▼♦str❡ q✉❡ lim f (x) ❡①✐st❡✱ s❡ ❡ s♦♠❡♥t❡ s❡ lim f (x3 ) ❡①✐st❡✳
x→0
x→0
✾✳ ❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦ f (x) =
lim .f (x) = m2 − 17✳
x2 − mx + 3x − 3m
✱ ❞❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s ❞❡ m t❛❧ q✉❡
x−m
x→m
✶✵✳ ❙❡❥❛ ❛ ❢✉♥çã♦ f (x) =
a > 0✳
x3 − 2a2 x + ax2
✱ ❡ lim .f (x) = 2a − 5✳ ❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡
x→1
2ax + x2
✶✶✳ ▼♦str❡ q✉❡✱ ❛♦ ❝r❡s❝❡r n ✐♥❞❡✜♥✐❞❛♠❡♥t❡✱ ❛ s❡q✉ê♥❝✐❛ un =
❧✐♠✐t❡✳ ❆ s❡q✉ê♥❝✐❛ vn =
2n + (−2)n
♥ã♦ t❡♠
2n
2n + (−2)n
t❡♠ ❧✐♠✐t❡❄ ❏✉st✐✜❝❛r s✉❛ r❡s♣♦st❛✳
3n
✶✼✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✶✷✳ ❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
4.
7.
10.
3x2 − 17x + 20
2.
lim
x→4 4x2 − 25x + 36
3x − 6
√
lim
5.
x→2 1 −
4x − 7
x+3
8.
lim √
x→−3
x2 + 7 − 4
"p
#
√
2+ 3x−2
lim
11.
x→8
x−8
#
√
x2 + 3 x − 2 − 4
lim p
√
3
x→2
4 − x 3x − 2
√
√ 2
b − x − b2 − a
lim
x→a
x−a
√
√
n
x− na
lim
a>0
x→a
x−a
"
13.
15.
17.
x5 − 1
lim
3.
x→1 x6 − 1
2
x − a2
6.
lim
x→a x3 − a3
√
3
x−1
lim √
9.
4
x→1
x−1
√
x−8
lim √
12.
3
x→64
x−4
14.
16.
18.
5x − 10
√
lim √
5
x→2
x− 52
√
24x−4−4
lim √
5
x→20
x + 12 − 2
#
"√
3
9x − 3
lim √
x→3
3x − 3
"√
#
√
3
x2 − 4 3 x + 4
lim
x→8
(x − 8)2
2x2n + 1 − 3x−2n
lim
x→1 3x2n − 5 + 2x−2n
#
" √
√
3x − 8 − x
√
lim
x→2+ 3x − 2 15 − 3x
2
x − (a − 1)x − a
lim
x→a x2 − (a − 2)x − 2a
✶✸✳ ❱❡r✐✜q✉❡ ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✱ ♣❛r❛ ❛s ❢✉♥çõ❡s ✐♥❞✐❝❛❞❛s✿
f (4 + h) − f (4)
1
1
lim
=−
s❡ f (x) = 2
h→0
h
50
x +4
f (−1 + h) − f (−1)
= −16
s❡ f (x) = 8x2
lim
h→0
h
✶✳
✷✳
✶✹✳ ❱❡r✐✜q✉❡ ♦ ❝á❧❝✉❧♦ ❞♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
3.
5.
7.
2
4
2
lim
=
− 2
x→2 3x − 6
2x − 5x + 2
9
4
4x + 9x3 + 3x2 + x + 3
lim
=1
x→−1
3x4 + 9x3 + 9x2 + 3x
3
11
2x − 5x2 − 2x − 3
=
lim
3
2
x→3 4x − 13x + 4x − 3
17
#
"√
√
x3 + 3 x − 3x − 1
27
√
=
lim
√
3
x→1 x + 3 3 x − 3 x2 − 1
8
2.
4.
6.
8.
7a4
x 7 − a7
=
lim 3
x→a x − a3
3
√
3
x + 27 − 3
32
=
lim √
4
x→0
27
x + 16 − 2
√
1
3− 5+x
√
=−
lim
x→4 1 −
3
5−x
3
x3 + 6x2 + 9x
=
lim
3
2
x→−3 x + 5x + 3x − 9
4
✶✺✳ ❙❡ f (2) = 6✱ ♦ q✉é ♣♦❞❡♠♦s ❝♦♥❝❧✉✐r ❞♦ lim .f (x)❄ ❏✉st✐✜❝❛r s✉❛ r❡s♣♦st❛✳
x→2
✶✻✳ ❙❡ lim .f (x) = 6✱ ♣♦❞❡♠♦s ♦❜t❡r ❝♦♥❝❧✉sã♦ ❛ r❡s♣❡✐t♦ ❞❡ f (2) ❏✉st✐✜❝❛r s✉❛ r❡s♣♦st❛✳
x→2
f (x)
g(x)
f (x)
✶✼✳ ❙❛❜❡✲s❡ q✉❡ lim
= 4 ❡ lim
= −6✳ Pr♦✈❡ q✉❡ lim
= −1
x→1 1 − x3
x→1 1 − x2
x→1 g(x)
f (x + 2)
f (x)
g(x + 2)
✶✽✳ ❙❡ lim √
= 3✳ ❈❛❧❝✉❧❛r✿ lim
✳
= 8 ❡ lim
x→−2
x→0 g(x)
x→−2
x2 − 4
−2x − 2
✶✽✵
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
R ♦ r❡tâ♥❣✉❧♦ q✉❡ s❡ ♦❜té♠ ❛♦ ✉♥✐r ♦s ♣♦♥t♦s ♠é❞✐♦s ❞♦s ❧❛❞♦s ❞♦ q✉❛❞r✐❧át❡r♦
♣❡r✐♠❡tr♦ ❞❡ R
✳
Q✱ ♦ q✉❛❧ t❡♠ s❡✉s ✈ért✐❝❡s (±x, 0) ❡ (0, ±y)✳ ❈❛❧❝✉❧❡ lim+
x→0 ♣❡r✐♠❡tr♦ ❞❡ Q
✶✾✳ ❙❡❥❛
R$1.500.000, 00✱ ❡
❡st❛ q✉❛♥t✐❛ ❢♦✐ ❞❡♣r❡❝✐❛❞❛ ♣❡❧♦ ♠ét♦❞♦ ❞❛ ❧✐♥❤❛ r❡t❛ ♣♦r 15 ❛♥♦s✱ ❛ ♣❛rt✐r ❞❡ 1985✳
◗✉❛❧ ❢♦✐ ♦ ✈❛❧♦r ❧íq✉✐❞♦ ❞♦ ♣ré❞✐♦ ❡♠ 1993✳
✷✵✳ ❖s ❝✉st♦s ❞❛ ❝♦♥str✉çã♦ ❞❡ ✉♠ ♣ré❞✐♦ ❞❡ ❛♣❛rt❛♠❡♥t♦s ❢♦r❛♠ ❞❡
✷✶✳ ❙❡❥❛♠
f : [a, b] −→ R
▼♦str❡ q✉❡ ❡①✐st❡
g : [a, b] −→ R
❡
❢✉♥çõ❡s t❛✐s q✉❡✿
δ > 0 t❛❧ q✉❡✿ ∀ 0 < |x−c| < δ
f (x) > g(x),
| x |< ε,
✷✸✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
lim .f (x) = L 6= 0✱ ❡①✐st❡ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ B(a, δ)
s✐♥❛❧
∀ x ∈ B(a, δ) ❝♦♠ x 6= a✳
L
t❡♠ ♦ ♠❡s♠♦
✷✹✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
❛✮
lim .f (x) = L
❡
L ≤ M✱
✷✺✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
❛✮
g
❡
t❛❧ q✉❡
❝♦♠
x 6= a✳
lim .g(x) = M ✳
x→a
✐st♦ é
f
f (x)
sã♦ ❢✉♥çõ❡s t❛✐s q✉❡ ❝✉♠♣r❛♠ ❛s ❤✐♣ót❡s❡s✿
∀ x ∈ B(a, δ)
x→a
❊♥tã♦
❜✮
f
c ∈ (a, b)✳
x = 0✳
x→a
f (x) ≤ g(x)
❜✮
⇒
x→c
✷✷✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
❡
∀ε>0
⇒
lim f (x) > lim g(x)✳
x→c
❡
g
lim .f (x) ≤ lim .g(x)✳
x→a
x→a
❞✉❛s ❢✉♥çõ❡s t❛✐s q✉❡ ❝✉♠♣r❛♠ ❛s ❤✐♣ót❡s❡s✿
lim .f (x) = 0✳
x→a
❊①✐st❡
M >0
t❛❧ q✉❡
| g(x) |< M
∀ x ∈ B(a, δ)
❝♦♠
x 6= a✳
lim .f (x).g(x) = 0✳
❊♥tã♦
x→a
f ❡ g ❞✉❛s ❢✉♥çõ❡s ❡ C ♥ú♠❡r♦ r❡❛❧ ❝♦♥st❛♥t❡✱ t❛✐s q✉❡ lim .f (x) =
x→a
lim .g(x) = M ❡♥tã♦✿
✷✻✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
L
❛✮
❜✮
❝✮
❞✮
❡✮
❡
x→a
lim .C = C
x→a
lim .C · f (x) = C · lim .f (x) = C · L
x→a
x→a
lim [f (x) + g(x)] = lim ·f (x) + lim ·g(x) = L + M
x→a
x→a
x→a
lim [f (x) · g(x)] = lim ·f (x) · lim ·g(x) = L · M
x→a
x→a
1
1
1
lim
=
=
s❡♠♣r❡ q✉❡ M 6= 0✳
x→a g(x)
lim ·g(x)
M
x→a
x→a
❢✮
lim ·f (x)
f (x)
L
x→a
lim
=
=
x→a g(x)
lim ·g(x)
M
✷✼✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
s❡♠♣r❡ q✉❡
x→a
lim fi (x) = Li
x→a
♣❛r❛ t♦❞♦
✶✽✶
M 6= 0✳
i = 1, 2, 3, . . . , n
❡♥tã♦✿
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❛✮
❜✮
lim [f1 (x) + f2 (x) + f3 (x) + · · · + fn (x)] = L1 + L2 + L3 + · · · + Ln
x→a
lim [f1 (x) × f2 (x) × f3 (x) × · · · × fn (x)] = L1 × L2 × L3 × · · · × Ln
x→a
lim .f (x) = L ❡ n ∈ Z✱ ❡♥tã♦✱ lim .[f (x)]n = [lim .f (x)]n = Ln ✳
x→a
x→a
n ≤ 0✱ ❡♥tã♦ L t❡♠ q✉❡ s❡r ❞✐❢❡r❡♥t❡ ❞❡ ③❡r♦❄
✷✽✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
◗✉❛♥❞♦
✷✾✳ ❉❡♠♦♥str❡ q✉❡✱ s❡
x→a
lim f (x) = L
x→a
lim
x→a
♦♥❞❡
p
n
❡
n ∈ Z✱
f (x) =
❡♥tã♦
q
n
lim f (x) =
x→a
√
n
L
L é ♥ú♠❡r♦ ♣♦s✐t✐✈♦ ❡ n q✉❛❧q✉❡r ✐♥t❡✐r♦ ♣♦s✐t✐✈♦ ♦✉ L < 0 ❡ n q✉❛❧q✉❡r ✐♥t❡✐r♦
♣♦s✐t✐✈♦ í♠♣❛r✳
✶✽✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✸✳✸
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
▲✐♠✐t❡s ❧❛t❡r❛✐s
❆♦ ❝❛❧❝✉❧❛r♠♦s lim .f (x)✱ ♦ ♣r♦❜❧❡♠❛ r❡❞✉③✲s❡ ❛ ❝❛❧❝✉❧❛r ♦ ♥ú♠❡r♦ L ♣❛r❛ ♦ q✉❛❧
x→a
❛♣r♦①✐♠❛♠✲s❡ ♦s ✈❛❧♦r❡s ❞❡ f (x) q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ a✱ t❛♥t♦ ♣❛r❛ ✈❛❧♦r❡s ♠❛✐♦r❡s q✉❡
a ✭♣❡❧❛ ❞✐r❡✐t❛✮ q✉❛♥t♦ ♣❛r❛ ✈❛❧♦r❡s
( ❞❡ ♠❡♥♦r❡s q✉❡ a ✭♣❡❧❛ ❡sq✉❡r❞❛✮✳
x − 1, s❡✱ x < 2
❈♦♥s✐❞❡r❛♥❞♦ ❛ ❢✉♥çã♦ f (x) =
✱
5 − x, s❡✱ x ≥ 2
y ✻
♦❜s❡r✈❛✲s❡ ♦ s❡❣✉✐♥t❡✿
3
❛✮ ◗✉❛♥❞♦ x ❛♣r♦①✐♠❛✲s❡ ❛ 2 ♣❡❧❛ ❞✐r❡✐t❛✱ f (x)
❛♣r♦①✐♠❛✲s❡ ❛ 3 ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✸✳✺✮❀
✐st♦ é ❝❤❛♠❛❞♦ ❞❡ ❧✐♠✐t❡ ❧❛t❡r❛❧ ❞❡ f (x)
q✉❛♥❞♦ x t❡♥❞❡ ❛ 2 ♣❡❧❛ ❞✐r❡✐t❛✱ ❡ ❡s❝r❡✈❡✲s❡
❆ f (x)
❆
❆
❆
x
❆ ✲
2
3❆
❆
❆
❆
1
−x✛
−2
lim .f (x) = 3
0
−y
x→2+
❜✮ ◗✉❛♥❞♦ x ❛♣r♦①✐♠❛✲s❡ ❛ 2 ♣❡❧❛ ❡sq✉❡r❞❛✱ f (x)
❄
❛♣r♦①✐♠❛✲s❡ ❛ 1 ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✸✳✺✮❀
❋✐❣✉r❛ ✸✳✺✿
✐st♦ é ❝❤❛♠❛❞♦ ❞❡ ❧✐♠✐t❡ ❧❛t❡r❛❧ ❞❡ f (x)
q✉❛♥❞♦ x t❡♥❞❡ ❛ 2 ♣❡❧❛ ❡sq✉❡r❞❛✱ ❡ ❞❡♥♦t❛❞♦ lim− .f (x) = 1✳
x→2
❊♠ ❣❡r❛❧ t❡♠♦s ❛s s❡❣✉✐♥t❡s ❞❡✜♥✐çõ❡s✿
❉❡✜♥✐çã♦ ✸✳✸✳
❙❡❥❛♠ a < c ❡ f (x) ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ (a, c)❀ ❞✐③❡♠♦s q✉❡ L é ♦
❧✐♠✐t❡ ❧❛t❡r❛❧ ❞❡ f (x) q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ ❛ ♣❡❧❛ ❞✐r❡✐t❛ ❡ ❞❡♥♦t❛♠♦s lim+ .f (x)
x→a
♦✉ f (a+ )❀ s❡✱ ❞❛❞♦ ε > 0, ∃δ > 0 /. ∀ x ∈ D(f ), | f (x) − L |< ε s❡♠♣r❡ q✉❡
0 < x − a < δ✳
❉❡✜♥✐çã♦ ✸✳✹✳
❙❡❥❛♠ b < a ❡ f (x) ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ (b, a)❀ ❞✐③❡♠♦s q✉❡ L é ♦
❧✐♠✐t❡ ❧❛t❡r❛❧ ❞❡ f (x) q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ a ♣❡❧❛ ❡sq✉❡r❞❛ ❡ ❞❡♥♦t❛♠♦s lim− .f (x)
x→a
♦✉ f (a− ) s❡✱ ❞❛❞♦ ε > 0, ∃δ > 0 /. ∀ x ∈ D(f ), | f (x) − L |< ε s❡♠♣r❡ q✉❡
0 < a − x < δ✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✸✳
lim .f (x) = L s❡✱ ❡ s♦♠❡♥t❡ s❡ lim+ .f (x) = lim− .f (x) = L✳
x→a
❉❡♠♦♥str❛çã♦✳
x→a
x→a
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
✶✽✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖❜s❡r✈❛çã♦ ✸✳✺✳
◆♦s s❡❣✉✐♥t❡s ❝❛s♦s ♦
✐✮
lim .f (x)
x→a
♥ã♦ ❡①✐st❡✿
◗✉❛♥❞♦ ♥ã♦ ❡①✐st❡ ✉♠ ❞♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s✳
✐✐✮
◗✉❛♥❞♦ ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s ❡①✐st❡♠ ❡ sã♦ ❞✐❢❡r❡♥t❡s✳
✸✳
◗✉❛♥❞♦ ♦ ❧✐♠✐t❡ ♥ã♦ ❢♦r ✉♠ ♥ú♠❡r♦ r❡❛❧ L✱ ✐st♦ é q✉❛♥❞♦ ♦ ❧✐♠✐t❡ ❢♦r ±∞✳
◗✉❛♥❞♦ ❛ ❢✉♥çã♦ ❡st✐✈❡r ❞❡✜♥✐❞❛ ♣❛r❛ x < a ❡ x > a✱ ❣❡r❛❧♠❡♥t❡ ❛♦ ❝❛❧❝✉❧❛r lim .f (x)
x→a
é ♥❡❝❡ssár✐♦ ❝❛❧❝✉❧❛r ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s ❞❡ f (x)
❊①❡♠♣❧♦ ✸✳✷✸✳
2
2x − 1, s❡✱ x > 1
❉❡t❡r♠✐♥❡ ♦ lim .g(x) ✱ s❡ g(x) = 1,
s❡✱ x = 1
x→1
2 − x,
s❡✱ x < 1
❙♦❧✉çã♦✳
❖❜s❡r✈❡ q✉❡✱ ♥✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ x = 1 ❛
❢✉♥çã♦ ❡st❛ ❞❡✜♥✐❞❛ ❞❡ ❞✐❢❡r❡♥t❡s ♠♦❞♦s ✭❋✐❣✉r❛
✭✸✳✻✮✮✱ é ♣♦r ✐ss♦ q✉❡ é ♥❡❝❡ssár✐♦ ❝❛❧❝✉❧❛r ♦s ❧✐♠✐✲
t❡s ❧❛t❡r❛✐s✳
lim+ .g(x) = lim+ (2x2 − 1) = 1 ✱ ♣♦r ♦✉tr♦ ❧❛❞♦✿
x→1
x→1
lim .g(x) = lim− (2 − x) = 1✳
x→1−
x→1
P♦rt❛♥t♦✱ lim .g(x) = 1
x→1
❊①❡♠♣❧♦ ✸✳✷✹✳
❙❡❥❛
♠✐t❡
|x+2|
✱
4 + 2x
lim .f (x)✳
f (x) =
❞❡t❡r♠✐♥❡ s❡ ❡①✐st❡ ♦ ❧✐✲
❋✐❣✉r❛ ✸✳✻✿
x→−2
❙♦❧✉çã♦✳
❈♦♠♦ | x + 2 |=
(
x + 2,
s❡✱ x ≥ −2
❡♥tã♦✿
−x − 2, s❡✱ x < −2
lim + .f (x) = lim +
1
1
x+2
= lim + = ,
4 + 2x x→−2 2
2
lim − .f (x) = lim −
−1
−1
−x − 2
= lim −
=
x→−2
4 + 2x
2
2
x→−2
x→−2
x→−2
x→−2
❖❜s❡r✈❡ q✉❡ ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s sã♦ ❞✐❢❡r❡♥t❡s✱ ❧♦❣♦ ♥ã♦ ❡①✐st❡ lim .f (x)
x→−2
❊①❡♠♣❧♦ ✸✳✷✺✳
❖s ❝✉st♦s ❞❡ tr❛♥s♣♦rt❡ ❞❡ ♠❡r❝❛❞♦r✐❛s sã♦ ✉s✉❛❧♠❡♥t❡ ❝❛❧❝✉❧❛❞♦s ♣♦r ✉♠❛ ❢ór♠✉❧❛ q✉❡
r❡s✉❧t❛ ❡♠ ❝✉st♦s ♠❛✐s ❜❛✐①♦s ♣♦r q✉✐❧♦ à ♠❡❞✐❞❛ q✉❡ ❛ ❝❛r❣❛ ❛✉♠❡♥t❛✳ ❙✉♣♦♥❤❛♠♦s q✉❡
✶✽✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
x
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
s❡❥❛ ♦ ♣❡s♦ ❞❡ ✉♠❛ ❝❛r❣❛ ❛ s❡r tr❛♥s♣♦rt❛❞❛✱ ❡
♦ ❝✉st♦ t♦t❛❧ ❡♠ r❡❛✐s✳
❆❝❤❡ ❝❛❞❛ ✉♠ ❞♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
❛✮
0, 85x,
C(x) =
0, 75x,
0, 60x,
lim .C(x)
x→50
❜✮
❡
s❡✱
s❡✱
s❡✱
0 < x ≤ 50
50 < x ≤ 200
200 < x
lim .C(x)
x→200
❙♦❧✉çã♦✳
❛✮ P❛r❛ ❝❛❧❝✉❧❛r ♦ ❧✐♠✐t❡✱ x→50
lim .C(x) ✱ t❡♠♦s q✉❡ ❛❝❤❛r ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s✿
lim (0, 85x) = 42, 5 ❡
x→50−
❡①✐st❡
lim .C(x)✳
lim .C(x) =
x→50−
lim .C(x) = lim+ (0, 75x) = 37, 5❀ s❡♥❞♦ ❞✐❢❡r❡♥t❡s ♥ã♦
x→50+
x→50
x→50
❜✮ ❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✿
lim .C(x) = lim − (0, 75x) = 150
x→200−
x→200
x→200+
x→200
❡
lim .C(x) = lim + (0, 60x) = 120 ❀
❙❡♥❞♦ ❞✐❢❡r❡♥t❡s ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s✱ ❧♦❣♦ ♥ã♦ ❡①✐st❡
lim .C(x)
x→200
❙❡ ❞❡s❡❥❛♠♦s s❛❜❡r ♦ ❝✉st♦ ❞❡ tr❛♥s♣♦rt❡ ❞❡ x = 50 q✉✐❧♦s✱ t❡rí❛♠♦s ❛ ♣❛❣❛r C(50) =
(0, 80)(50) = 42, 5 r❡❛✐s✱ ❡ ❞❡ x = 200 é C(200) = (0, 75)(200) = 150 r❡❛✐s✳
✸✳✹ ▲✐♠✐t❡s ❛♦ ✐♥✜♥✐t♦
1
❆ ❢✉♥çã♦ f (x) = 2 ✱ ❡stá ❞❡✜♥✐❞❛ ❞❡ t❛❧ ♠♦❞♦ q✉❡ ♦s ✈❛❧♦r❡s f (x) ✜❝❛♠ ❛r❜✐tr❛✲
x
r✐❛♠❡♥t❡ ♣❡q✉❡♥♦s q✉❛♥❞♦ ❝♦♥s✐❞❡r❛♠♦s ♦s ✈❛❧♦r❡s ❞❡ x ♦s ♠❛✐s ❣r❛♥❞❡s ♣♦ssí✈❡✐s ✭❡♠
✈❛❧♦r ❛❜s♦❧✉t♦✮✳ ❆ss✐♠✱ f é ❧♦❝❛❧♠❡♥t❡ ❧✐♠✐t❛❞❛ ♣❛r❛ ✈❛❧♦r❡s ❡①tr❡♠❛♠❡♥t❡ ❣r❛♥❞❡s ❞❡ x✱
♣ró①✐♠♦s ❞♦ ✐♥✜♥✐t♦✳ ❊♠❜♦r❛ ❡①✐st❛ ♦ ❧✐♠✐t❡ ❞❡ f q✉❛♥❞♦ x → ∞✱ ❡ ✐st♦ ❞❡✈❡ ✜❝❛r ❝❧❛r♦✱
♣♦✐s ♥ã♦ ❡①✐st❡ ✉♠ ♥ú♠❡r♦ x = a ♥❛s ❝♦♥❞✐çõ❡s ❞❛ ❉❡✜♥✐çã♦ ✭✸✳✷✮ ❞❡ ❧✐♠✐t❡s✳ ❙❡ ❡s❝r❡✈❡
1
= 0✳
x→∞ x2
lim
❉❡✜♥✐çã♦ ✸✳✺✳
f : (a, +∞) −→ R ✱ ✉♠❛ ❢✉♥çã♦ ❡ L ∈ R✱ ❞✐③❡♠♦s q✉❡ L é ♦ ❧✐♠✐t❡
q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ +∞ ❡ ❡s❝r❡✈❡♠♦s
lim .f (x) = L s❡✱ ❡ s♦♠❡♥t❡
❙❡❥❛
x→+∞
ε > 0✱
❡①✐st❡
N >0
t❛❧ q✉❡
| f (x) − L |< ε
s❡♠♣r❡ q✉❡
❞❡
f (x)
s❡ ❞❛❞♦
x > N✳
❉❡✜♥✐çã♦ ✸✳✻✳
g : (−∞, b) −→ R✱ ✉♠❛ ❢✉♥çã♦ ❡ L ∈ R✱ ❞✐③❡♠♦s q✉❡ L é ♦ ❧✐♠✐t❡ ❞❡ g(x)
q✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ −∞ ❡ ❡s❝r❡✈❡♠♦s
lim .g(x) = L s❡✱ ❡ s♦♠❡♥t❡ s❡ ❞❛❞♦
❙❡❥❛
x→−∞
ε>0
✱ ❡①✐st❡
N >0
t❛❧ q✉❡
| g(x) − L |< ε
✶✽✺
s❡♠♣r❡ q✉❡
x < −N = M ✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡st❛s ❞❡✜♥✐çõ❡s✱ ♣♦❞❡♠♦s ✐♥t❡r♣r❡t❛r q✉❡✱ ❡♠ t❛♥t♦ s❡❥❛ ♠❛✐♦r ✭♦✉ ♠❡♥♦r✮ ♦ ✈❛❧♦r
❞❡ x✱ ❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡ f (x) ❡ L é ❝❛❞❛ ✈❡③ ♠❡♥♦r✱ ♦ q✉❛❧ s✐❣♥✐✜❝❛ q✉❡ f (x) ❛♣r♦①✐♠❛✲s❡
❝❛❞❛ ✈❡③ ♠❛s ♣❛r❛ L ❝♦♠♦ ♦❜s❡r✈❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✸✳✼✮✳
❋✐❣✉r❛ ✸✳✼✿
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✹✳
❙❡❥❛ n ∈ N ❡♥tã♦✿
✐✮
lim
x→+∞
❉❡♠♦♥str❛çã♦✳
✐✮
✐✐✮
1
=0
xn
✐✐✮
lim
x→−∞
1
ε
1
=0
xn
1
ε
1
< ε ❀ ❛ss✐♠✱ ❞❛❞♦
xn
1
1
ε > 0✱ ❡①✐st❡ N > 0 t❛❧ q✉❡ | n |< ε s❡♠♣r❡ q✉❡ x > N ✳ P♦rt❛♥t♦ lim n = 0✳
x→+∞
x
x
❉❛❞♦ ε > 0✱ ❡①✐st❡ N = √
> 0 t❛❧ q✉❡ ♣❛r❛ x > N = √
t❡♠♦s
n
n
1
ε
1
ε
> 0 t❛❧ q✉❡ ♣❛r❛ x < −N = − √
❆♥❛❧♦❣❛♠❡♥t❡✳ ❉❛❞♦ ε > 0✱ ❡①✐st❡ N = √
n
n
1
ε
1
x
t❡♠♦s −x > √
❡♥tã♦✱ 0 < − <
n
√
n
ε ✐st♦ é |
▲♦❣♦✱ ❞❛❞♦ ε > 0✱ ❡①✐st❡ N > 0✱ t❡♠♦s |
1
|< ε✳
xn
1
|< ε s❡♠♣r❡ q✉❡ x < −N ✳
xn
1
= 0✳
x→−∞ xn
P♦rt❛♥t♦ lim
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✺✳
❙❡❥❛♠ f ❡ g ❞✉❛s ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ❡♠ (a, +∞) ❡ (b, +∞) r❡s♣❡❝t✐✈❛♠❡♥t❡❀ s❡
lim .f (x) = L ❡ lim .g(x) = M ❡♥tã♦✿
xto+∞
❛✮
❜✮
❝✮
xto+∞
lim [C · f (x)] = C · L ♣❛r❛ C ❝♦♥st❛♥t❡✳
x→+∞
lim [f (x) + g(x)] = lim .f (x) + lim .g(x) = L + M
xto+∞
xto+∞
xto+∞
lim [f (x) × g(x)] = lim .f (x) × lim .g(x) = L × M
xto+∞
xto+∞
xto+∞
✶✽✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❞✮
lim
xto+∞
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
lim .f (x)
f (x)
L
xto+∞
=
=
❞❡s❞❡ q✉❡ M 6= 0✳
g(x)
lim .g(x)
M
xto+∞
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
◗✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ −∞ ♦❜té♠✲s❡ ♣r♦♣r✐❡❞❛❞❡s s✐♠✐❧❛r❡s ❛s ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✶✺✮✳
❆♣❧✐❝❛çã♦ ❞♦s ❧✐♠✐t❡s ❛♦ ✐♥✜♥✐t♦
❊①❡♠♣❧♦ ✸✳✷✻✳
lim
❈❛❧❝✉❧❛r✿
x→+∞
❙♦❧✉çã♦✳
❚❡♠♦s
❞❛❞❡
lim
x→+∞
3x2 − 6x + 2
x2 + 2x − 3
lim
x→+∞
❊①❡♠♣❧♦ ✸✳✷✼✳
a
✳
"
x2 3 −
3x2 − 6x + 2
=
lim
x→+∞ x2 1 +
x2 + 2x − 3
✭✸✳✶✹✮ ♦❜t❡♠♦s
❙✉♣♦♥❤❛✱
6
x
2
x
+
−
#
2
x2
3
x2
✱ ❧♦❣♦ ❛♣❧✐❝❛♥❞♦ ❛
Pr♦♣r✐❡✲
3−0+0
3x2 − 6x + 2
=
= 3✳
x2 + 2x − 3
1+0−0
√
√
lim [ ax2 + bx + c − ax2 ]✳
♥ú♠❡r♦ ♣♦s✐t✐✈♦✱ ❝❛❧❝✉❧❛r
x→+∞
❙♦❧✉çã♦✳
√
√
lim [ ax2 + bx + c − ax2 ] =
❚❡♠♦s
x→+∞
" √
#
√
√
√
( ax2 + bx + c − ax2 )( ax2 + bx + c + ax2 )
√
lim
=
√
x→+∞
( ax2 + bx + c + ax2 )
= lim
x→+∞
√
bx + c
ax2 + bx + c +
√
ax2
❊①❡♠♣❧♦ ✸✳✷✽✳
❙✉♣♦♥❤❛
a
♥ú♠❡r♦ ♣♦s✐t✐✈♦✱ ❝❛❧❝✉❧❛r
x b+
= lim q
x→+∞
x
a + xb +
c
x
c
x2
b
√ = 2 √a
+ a
√
√
lim [ ax2 + bx + c + ax2 ]✳
x→+∞
❙♦❧✉çã♦✳
√
√
lim [ ax2 + bx + c + ax2 ] = (+∞) + (+∞) = +∞✳
x→+∞
❊①❡♠♣❧♦ ✸✳✷✾✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡
❙♦❧✉çã♦✳
lim
x→+∞
√
4 − x2
2x − 4
√
4 − x2
❡ s❡✉ ❞♦♠í♥✐♦ é ♦ ❝♦♥❥✉♥t♦ [−2, 2)✱ ✐st♦ s✐❣♥✐✜❝❛ q✉❡
2x
√− 4 2
4−x
♥ã♦ ♣♦❞❡♠♦s ❝❛❧❝✉❧❛r lim
✳
x→+∞
2x − 4
❚❡♠♦s ❛ ❢✉♥çã♦ f (x) =
P♦rt❛♥t♦ ♥ã♦ ❡①✐st❡ ♦ ❧✐♠✐t❡✳
✶✽✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡♠♣❧♦ ✸✳✸✵✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
"√
3
❈❛❧❝✉❧❛r
lim
n→+∞
n2 + n
n+1
R
#
❙♦❧✉çã♦✳
3
❖❜s❡r✈❡✱ q✉❡
lim
n→+∞
lim
n2 + n
= lim
n→+∞
n+1
q
3
1+
√
3
n→+∞
√
#
"√
n2
· lim
n n→+∞ 1 +
1
n
1
n
3
√
3
1
1+0
·
= lim √
=0
n→+∞ 3 n
(1 + 0)
❊①❡♠♣❧♦ ✸✳✸✶✳
lim
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡✿
x→∞
❙♦❧✉çã♦✳
❉♦ ❢❛t♦
x → ∞✱
q
1
3
1+ n
= ⇒
n 1 + n1
n2
"√
x2 + 1 + 3x
2x − 5
❡♥tã♦ t❡♠♦s q✉❡ ❝❛❧❝✉❧❛r ♦ ❧✐♠✐t❡ q✉❛♥❞♦
lim
x→+∞
"√
#
x → +∞
#
#
" √
x2 + 1 + 3x
x( 1 + x−2 + 3)
= lim
=
x→+∞
2x − 5
x(2 − 5x−1 )
# √
1 + x−2 + 3
1+0+3
=2
=
lim
−1
x→+∞
2 − 5x
2−0
√
q✉❛♥❞♦ x → −∞✱ ❝♦♠♦
x2 =| x |= −x✱ ♣❛r❛
❡
x → −∞✿
"√
P❛r❛ ♦ ❝á❧❝✉❧♦
✈❛❧♦r❡s ♥❡❣❛t✐✈♦s ❞❡
x
"
#
#
√
| x | 1 + x−2 + 3x
x2 + 1 + 3x
= lim
=
lim
x→−∞
x→−∞
2x − 5
x(2 − 5x−1 )
"
#
" √
#
√
√
x(− 1 + x−2 + 3)
− 1 + x−2 + 3
− 1+0+3
lim
= lim
=1
=
x→−∞
x→−∞
x(2 − 5x−1 )
2 − 5x−1
2−0
"√
#
x2 + 1 + 3x
❖s ❧✐♠✐t❡s sã♦ ❞✐❢❡r❡♥t❡s❀ ♣♦rt❛♥t♦✱ ♥ã♦ ❡①✐st❡
lim
✳
x→∞
2x − 5
"√
❡♥tã♦✿
❊①❡♠♣❧♦ ✸✳✸✷✳
❈❛❧❝✉❧❛r✿
√
lim [ 4x2 + 3x − 1 + 2x]
x→−∞
✳
❙♦❧✉çã♦✳
√
√ 2
(
4x
+
3x
−
1
+
2x)(
4x2 + 3x − 1 − 2x)
2
√
lim [ 4x + 3x − 1 + 2x] = lim
=
x→−∞
x→−∞
4x2 + 3x − 1 − 2x
√
✶✽✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
x(3 − x−1 )
4x2 + 3x − 1 − 4x2
√
= lim
=
lim √
x→−∞ | x |
x→−∞
4x2 + 3x − 1 − 2x
4 + 3x−1 − x−2 − 2x
3
x(3 − x−1 )
√
=−
lim
x→−∞ x(− 4 + 3x−1 − x−2 − 2)
4
√
3
P♦rt❛♥t♦✱
lim [ 4x2 + 3x − 1 + 2x] = − ✳
x→−∞
4
❊①❡♠♣❧♦ ✸✳✸✸✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡✿
lim [5 +
x→−∞
√
4x2 − x + 3 + 2x]✳
❙♦❧✉çã♦✳
lim [5 +
√
x→−∞
√
4x2 − x + 3 + 2x] = lim [ 4x2 − x + 3 + 2x + 5] =
x→−∞
√
= lim [ 4x2 − x + 3 + 2x] + lim 5
x→−∞
x→−∞
√
√ 2
( 4x − x + 3 + 2x)( 4x2 − x + 3 − 2x)
√
+ lim 5 =
= lim
x→−∞
x→−∞
4x2 − x + 3 − 2x
2
4x − x + 3 − 4x2
x(−1 + 3x−1 )
√
lim √
+ 5 = lim
+5=
x→−∞
x→−∞ |x| 4 − x−1 + 3x−2 − 2x
4x2 − x + 3 − 2x
−1
21
x(−1 + 3x−1 )
√
+5=
+5=
lim
−1
−2
x→−∞ −x( 4 − x
−4
4
+ 3x − 2)
P♦rt❛♥t♦✱
lim [5 +
x→−∞
√
4x2 − x + 3 + 2x] =
21
✳
4
❊①❡♠♣❧♦ ✸✳✸✹✳
❉❡t❡r♠✐♥❡ ♦ ❧✐♠✐t❡ ❞❛s s❡❣✉✐♥t❡s s❡q✉ê♥❝✐❛s✿
❛✮
❜✮
❝✮
1 1
1
(−1)n−1
1, − , , − , · · ·
, ···
2 3
4
n
2n
4 6 8
, , , ···
, ···
3 5 7
2n − 1
q p
√ p √
√
2, 2 2, 2 2 2 · · ·
2,
❙♦❧✉çã♦✳
❛✮
❖ t❡r♠♦ ❣❡r❛❧ ❞❛ s❡q✉ê♥❝✐❛ ❡st❛ ❞❛❞♦ ♣♦r
n
♣❛r r❡s✉❧t❛
sn =
1
(−1)n−1
= lim
= 0❀
n→+∞ n
n→+∞
n
lim
−1
= 0✳
n→+∞ n
(−1)n−1
,
n
♣❛r❛ ♦ ❝❛s♦
∀ n ∈ N,
n
í♠♣❛r
n > 1✱
❧♦❣♦ s❡
(−1)n−1
=
n→+∞
n
lim
lim
P♦rt❛♥t♦✱
(−1)n−1
=0
lim
n→+∞
n
✶✽✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
2n
✱ ❝❛❧❝✉❧❛♥❞♦ ♦ ❧✐♠✐t❡ t❡♠♦s✿
2n − 1
2n
2
2n
lim
= lim
=1
= 1✳ P♦rt❛♥t♦ lim
1
n→+∞ 2n − 1
n→+∞
n→+∞ 2n − 1
2−
n
❜✮
❖❜s❡r✈❡ q✉❡ ♦ t❡r♠♦ ❣❡r❛❧ ❞❛ s❡q✉ê♥❝✐❛ é✿ an =
❝✮
❱❡r✐✜❝❛r q✉❡ ♦ ❧✐♠✐t❡ é 2✱ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✸✳✸✺✳
▼♦str❡ q✉❡
❉❡♠♦♥str❛çã♦✳
1
lim+ .f ( ) = lim .f (x)✳
x→+∞
x→0
x
❙❡❥❛ L = lim .f (x)✱ ❡♥tã♦ ♣❡❧❛ ❞❡✜♥✐çã♦ ❞❡st❡ ❧✐♠✐t❡ t❡♠♦s
x→+∞
∀ ǫ > 0,
∃N > 0 /. |f (x) − L| < ǫ s❡♠♣r❡ q✉❡ x > N
1
1
1
1
= M > 0✱ s❡ 0 <
< x✱ ❡♥tã♦ 0 < < M ✱ ❝♦♠ ✐st♦ |f ( ) − L| <
N
M
x
x
1
ǫ✱ s❡♠♣r❡ q✉❡ 0 < x✱ ❛ss✐♠ lim+ .f ( ) = L✳
x→0
x
1
P♦rt❛♥t♦✱ lim+ .f ( ) = lim .f (x)✳
x→+∞
x→0
x
P♦❞❡♠♦s s✉♣♦r
✶✾✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✸✲✸
✶✳ ❈❛❧❝✉❧❛r ♦s
s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
√
√
3
5x + 3 − 3x + 1
x 2 − a2
√
1. lim
a>0
2. lim
x→1
x→a 2x2 − ax − a2
√
√
3 x −23x + 2
5
x+1−36x+1+2
x − 2x − 4x + 8
√
√
4. lim 18
3. lim
25
x→0
x→−2
3x2 + 3x − 6
x
+
1
+
x+1−2
#
"
√
√
5
3
3
3
3
5
|x −1|
h +1+ h +1+h −2
√
5. lim
6. lim
x→1 | x − 1 | + | x − 1 |2
h→0
h − h h2 + 1
"
#
√
2− x−1
1 − x2
p
0 < a 6= 1
7. lim
8. lim
√
x→5 1 − 3 3 −
x→1 (1 − ax)2 − (a − x)2
x − 1#
"
√
√
√ 2
x2 + 3 x − 3 − 9
x − 2x + 6 − x2 + 2x − 6
10. lim
9. lim p
√
3
x→3
x→3
x2 − 4x + 3
9 − x 4x − 3
q
√
√
#
" p√
a+b
3
a
+
x
+
b
+
x
−
2
x
+
−9x + 1 − 2
2
√
√
12. lim
11. lim
√
3
x→−3
a→b
2 − x + 11
a+x− b+x
q
√
2
2
−
2x
−
b
x + 2ax + a + 3 x3 + a−b
3
b > 0, a > 0✳
√
✶✸✳
lim
√
a→b
a+x− x+b
√
√
x+a+b− a+b
a > 0, b > 0
✶✹✳
lim
x→0
x
✷✳ ❙✉♣♦♥❤❛ lim− f (x) < lim+ f (x) ✭❝♦♥str✉✐r ♦ ❣rá✜❝♦✮ ▼♦str❡ q✉❡ ❡①✐st❡ ❛❧❣✉♠ δ > 0
x→a
x→a
t❛❧ q✉❡ f (x) < f (y) s❡♠♣r❡ q✉❡ x < a < y, | x − a |< δ ❡ | y − a |< δ ✳ ❈✉♠♣r❡✲s❡
❛ r❡❝í♣r♦❝❛❄
✸✳ ❱❡r✐✜q✉❡ ♦ ❝á❧❝✉❧♦ ❞♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
✶✳
✷✳
✸✳
✹✳
√
5x − 10
lim √
√
x→20
2 5− x
!
r
q
8x
5
2−
1
√
400 − x2 = − 20
5
√
n
x−1−1
6m
4 − x2
√
√
=
;
m, n ∈ N, n 6= 0
lim
m
2
x→2
n
x−1−1
3− x +5
q
p
q
a−b
b−a
3
2
2
3
3
x + 2 − x + 3 − 2x − (b − a)
(b + x)2 (9x + 4)
√
=
lim
√
3
a→b
12x2
a+x− 3x+b
p√
2
| x − 3 | +26 | x + 3 | −26
3x + 33
q
lim
= −69
2
x→3
4 − 2 3 x +15x−6
x+3
✶✾✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺✳
lim
x→−5
"
k
1
5
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
#
p
√
3
100x + 2sgn(16 − x4 ) k + 3 x2 + 2 + x + 4
272
p
=
√
189
x2 + −5x + 6 − 6
✹✳ ❉❛r ❡①❡♠♣❧♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ♠♦♥ót♦♥❛ t❛❧ q✉❡ lim f (x) = 1✳
x→∞
✺✳ P❛r❛ ❝❛❞❛ ✉♠ ❞♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s✱ tr❛ç❛r ♦ ❣rá✜❝♦ ❡ ❝❛❧❝✉❧❛r ♦ ❧✐♠✐t❡ ✐♥❞✐❝❛❞♦
❝❛s♦ ❡①✐st❛❀ ❥✉st✐✜❝❛r s✉❛ r❡s♣♦st❛✳
x+ | 2 − x |
2
( x −4
x2 ,
s❡✱ x ≤ 2
f (x) =
8 − 2x, s❡✱ x > 2
3
x − 2x2 − 5x + 6
, s❡✱ x < 3
x−3
√
f (x) =
x + 1 − 1,
s❡✱ x ≥ 3
x+2
2
3 + x , s❡✱ x < 0
f (x) =
0,
s❡✱ x = 0
2
11 − x , s❡✱ x > 0
x−5
√
,
s❡✱ x ≥ 5
1
−
x−4
f (x) =
2
x − 12x + 35 , s❡✱
<5
x−5
2
s❡✱ x < 2
6x − x ,
f (x) =
6,
s❡✱ x = 2
2
2x − x − 3, s❡✱ x > 2
2
s❡✱ x < 1
1−x ,
f (x) =
1,
s❡✱ 1 < x ≤ 2
| x − 3 |, s❡✱ x > 2
1. f (x) =
2.
3.
4.
5.
6.
7.
lim .f (x)
x→2+
lim .f (x)
x→2−
lim .f (x)
x→2
lim .f (x)
x→3
lim .f (x)
x→0
lim .f (x)
x→5
lim .f (x)
x→2
lim .f (x)
x→1
lim .f (x)
x→2
✻✳ ◆♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s ❞❡t❡r♠✐♥❡ s❡ ❡①✐st❡ ♦ ❧✐♠✐t❡❀ ❝❛s♦ ❝♦♥trár✐♦ ❥✉st✐✜❝❛r s✉❛
r❡s♣♦st❛✳
✶✳
lim5
x→ 3
✸✳
✺✳
✼✳
lim
x→0
p
| x | +[|3x|] + 4
p
[|9 + x2 |]
x3 − x2 + 3x − 3
x→1
x−1
x3 − 2x2 − 4x + 8
lim
x→2
|x−2|
lim
✷✳
✹✳
✻✳
✽✳
p
| x | +[|3x|] + 4
x→ 2
√
√
x+ x−1−1
√
lim
x→1+
x2 − 1
3
2
x − x + 3x − 3
lim
x→1
|x−1|
x2 + [| x3 |]
lim
x→ 61 [|3x|] − 10
lim5
✶✾✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✾✳
✶✶✳
✶✸✳
✶✺✳
✶✻✳
✶✼✳
✶✽✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
x2 + [| x3 |]
lim
x→6 [|2x|] + 10
✶✵✳
lim [3x + sgn(| x2 − 1 | −1)]
✶✷✳
x→0
lim
√
x→−1+
lim
√ [x
x→ 2
2
R
√
−9x + 3 x − 2
x+1
− sgn(| x2 − 1 | −1)]
2
2
4
2
lim
✶✹✳
lim
√ [x − sgn(| x − 1 | −1)]
√ [x + 5 + sgn(| x − 1 | −1)]
x→ 2
x→ 2
" √
#
√
√
√
9
36
3
x−1− x−1
x −1+ x−1
√
√
−
lim
36
x→1+ 3x2 − 3 +
x−1
x2 − 1
√
√
√
5 5 x − 2 + 3 3 2 − x + 2 2x − 1 + 6x2 − 6
lim−
2
x→1
x
√
√ x −
√
√
3
3
2
2
x − x + x + 3 x − 3x
lim+
x→1
(x − 1)2
√
√
√
√
5 5 x + 2 + 4 4 −1 − 2x + 3 3 2 + x − 2 −1 − 2x + 5x + 3
lim
x→1−
x2 − x
✼✳ ❈❛❧❝✉❧❛r s❡ ❡①✐st❡♠ ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
4.
7.
10.
n3 − 100n2 + 1
lim
n→∞ 100n2 + 15n
n
lim
n→∞ n − 1
(n + 1)4 − (n − 1)4
lim
n→∞ (n + 1)4 + (n − 1)4
√
5
n3 + 2n − 1
lim
n→∞
n+2
2.
5.
8.
11.
√
n
2−1
lim √
n
n→∞
2+1
(2n + 1)2
lim
n→∞
2n2
(n + 1)2
lim
n→∞
2n2
n3
lim
+n
n→∞ n2 + 1
3.
6.
9.
12.
2n − 1
n→∞ 2n + 1
n+1
lim
n→∞
n
2
n −1
lim
n→∞ 2n2 + 1
n2 + 5
lim
n→∞ n2 − 3
lim
✽✳ ❉❡♠♦♥str❛r q✉❡✿
✶✳
✸✳
lim .f (x) = lim− .f (−x)
x→0+
✷✳
x→0
lim f (| x |) = lim+ .f (x)
x→0
x→0
lim .f (x2 ) = lim+ .f (x)
x→0
x→0
✾✳ ❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦s ❧✐♠✐t❡s✱ ❝❛s♦ ❡①✐st❛✿
1.
3.
5.
7.
9.
(n + 2)✦ + (n + 1)✦
lim
n→∞
(n + 3)✦
(2n + 1)4 − (n − 1)4
lim
n→∞ (2n + 1)4 + (n − 1)4
(n + 1)3 − (n − 1)3
n→∞ (n + 1)2 + (n − 1)2
n3 + n
lim 4
n→∞ n − 3n2 + 1
n2 − 2n + 1
lim
n→1
n3 − n
lim
2.
4.
6.
8.
10.
1
+ (1 + 2 + 3 + · · · + n)
lim
n→∞ n2
1 + 2 + 3 + ··· + n n
lim
−
n→∞
n+2
2
√
√
3
3
4
n − 2n + 1 + n + 1
√
lim √
4
n→∞
n6 + 6n5 + 2 − 5 n7 + 3n3 + 1
1
1
1
lim
+
+ ···
n→∞ 1 × 3
3×5
(2n − 1)(2n + 1)
n−4
n+2
lim 2
+
n→1 n − 5n + 4
3(n2 − 3n + 2)
✶✾✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
11.
13.
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
xm − 1
m, n ∈ Z
x→1 xn − 1
100n3 + 3n2
lim
n→∞ 0, 001n4 − 100n3 + 1
lim
R
(2n + 1)(3n2 + n + 2)
3n2
−
n→∞ 2n + 1
4n2
1
1
−
lim
n→2 n(n − 2)2
n2 − 3n + 2
lim
12.
14.
✶✵✳ ❙❡ f é ✉♠❛ ❢✉♥çã♦ ❧✐♠✐t❛❞❛ ❡♠ ✐♥t❡r✈❛❧♦s ❧✐♠✐t❛❞♦s✳ ▼♦str❡ q✉❡✿
lim [f (x + 1) − f (x)]
x→∞
f (x)
x→∞ x
⇒
lim
✶✶✳ ❱❡r✐✜❝❛r ♦ ✈❛❧♦r ❞♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
3.
5.
.7
9.
✶✶✳
✶✷✳
4n3 + 2n2 − 5
1
=−
2.
3
n→+∞ n + 2 − 8n
2
3n2 − 2 n2 − 4n
+
=∞
4.
lim
n→+∞ 2n + 1
n−3
s
8n − 4
√ √
= −2
6.
lim 3
n→+∞
(3 − n)( n + 2)
√
5
8.
lim [ n2 − 5n + 6 − n] = −
n→+∞
2
q
√
lim [ n 2n − 5n + 6 − n] = −∞ 10.
lim
n→+∞
r
√
√
5n3 − n2 + n − 1
=0
n→−∞ n4 − n3 − 2n + 1
2n + 3
√ =2
lim
n→+∞ n + 3 n
q
p
√
n+ n+ n+3
√
lim
=1
n→+∞
n+3
√
lim [ n2 − 2n + 4 + n] = 1
n→−∞
√
( n2 + 1 + n)2
√
lim
=4
3
n→∞
n6 + 1
lim
a+b
=0
a + a2 n2 + b + a2 n2 − 2 a2 n2 −
n→+∞
2
√
√
7
a7 n 7 + a + n 2 − 4
1+a
√
lim √
=
5
4
n→+∞
1−a
a − 1 − a5 n5 + n4 − 25a2 + 144
lim
✶✷✳ ▼♦str❡ q✉❡
✶✸✳ ▼♦str❡ q✉❡
lim .f (x) = lim .f (−x)✳
x→+∞
✶✳
x→−∞
1
lim− .f ( ) = lim .f (x)
x→−∞
x→0
x
✷✳
1
lim+ .f ( ) = lim .f (x)✳
x→+∞
x→0
x
an xn + an−1 xn−1 + · · · a1 x + a0
❡①✐st❡ s❡✱ ❡ s♦♠❡♥t❡ s❡ m ≥ n✳
x→+∞ bm xm + bm−1 xm−1 + · · · b1 x + b0
◗✉❛❧ é ♦ ✈❛❧♦r ❞♦ ❧✐♠✐t❡ s❡ m = n❄✳ ❊ q✉❛♥❞♦ m < n ❄
✶✹✳ ▼♦str❡ q✉❡ lim
✶✺✳ ❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
✶✳
✷✳
✸✳
x3
x2
−
x→+∞ 2x2 − 1
2x + 1
n
an x + an−1 xn−1 + · · · a1 x + a0
lim
x→+∞ bm xm + bm−1 xm−1 + · · · b1 x + b0
(x + 1) + (x + 2)2 + (x + 3)3 + · · · + (x + n)n
lim
x→+∞
xn − nn
lim
✶✾✹
n ∈ N✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
✸✳✺ ▲✐♠✐t❡s ✐♥✜♥✐t♦s
1
❖❜s❡r✈❡ q✉❡ ❛ ♠❡s♠❛ ❢✉♥çã♦ ❞❛ s❡çã♦ ❛♥t❡r✐♦r f (x) = 2 ✱ ❡stá ❞❡✜♥✐❞❛ ❞❡ t❛❧ ♠♦❞♦
x
q✉❡ ♦s ✈❛❧♦r❡s f (x) ✜❝❛♠ ❛r❜✐tr❛r✐❛♠❡♥t❡ ❣r❛♥❞❡s✱ ❝♦♥s✐❞❡r❛♥❞♦ x ♠❛✐s ❡ ♠❛✐s ♣ró①✐♠♦
❞❡ 0✳ ❆ss✐♠✱ f ♥ã♦ é ❧♦❝❛❧♠❡♥t❡ ❧✐♠✐t❛❞❛ ❡♠ x = 0✱ ❡♠❜♦r❛ ♥ã♦ ❡①✐st❛ ♦ ❧✐♠✐t❡ ❞❡ f
❡♠ x = 0✱ ❡ ✐st♦ ❞❡✈❡ ✜❝❛r ❝❧❛r♦✱ ♣♦✐s ♥ã♦ ❡①✐st❡ ✉♠ ♥ú♠❡r♦ L ∈ R ♥❛s ❝♦♥❞✐çõ❡s ❞❛
1
❉❡✜♥✐çã♦ ✭✸✳✷✮ ❞❡ ❧✐♠✐t❡s✳ ◆❡st❛ s✐t✉❛çã♦ s❡ ❡s❝r❡✈❡ lim 2 = ∞✳
x→0 x
❙❡❥❛ f ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♥✉♠ ✐♥t❡r✈❛❧♦ ❛❜❡rt♦ I q✉❡ ❝♦♥t❡♥❤❛ ❛♦ ♥ú♠❡r♦ a✱ ♣♦❞❡♥❞♦
♦ ♥ú♠❡r♦ a ♥ã♦ ❡st❛r ♥♦ ❞♦♠í♥✐♦ ❞❡ f ✳
❉❡✜♥✐çã♦ ✸✳✼✳
❉✐③❡♠♦s q✉❡ ♦ ❧✐♠✐t❡ ❞❡
f (x) é +∞ q✉❛♥❞♦ x t❡♥❞❡ ❛♦ ♣♦♥t♦ a ❡ ❡s❝r❡✈❡♠♦s
lim .f (x) = +∞❀ s❡✱ ❞❛❞♦ K > 0 ✭tã♦ ❣r❛♥❞❡ ❝♦♠♦ q✉✐s❡r✮✱ ❡①✐st❡ δ > 0 t❛❧ q✉❡
x→a
0 <| x − a |< δ ✐♠♣❧✐❝❛ f (x) > K ✳
❉❡✜♥✐çã♦ ✸✳✽✳
f (x) é −∞ q✉❛♥❞♦ x t❡♥❞❡ ❛♦ ♣♦♥t♦ a ❡ ❡s❝r❡✈❡♠♦s
lim .f (x) = −∞❀ s❡✱ ❞❛❞♦ K > 0 ✭tã♦ ❣r❛♥❞❡ ❝♦♠♦ q✉✐s❡r✮✱ ❡①✐st❡ δ > 0 t❛❧ q✉❡
x→a
0 <| x − a |< δ ✐♠♣❧✐❝❛ f (x) < −K ✳
❉✐③❡♠♦s q✉❡ ♦ ❧✐♠✐t❡ ❞❡
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✻✳
1
✐✮ lim+ = +∞
x→0
x
✐✐✮
lim−
x→0
1
= −∞
x
❉❡♠♦♥str❛çã♦✳
✐✮ P❛r❛ q✉❛❧q✉❡r K > 0✱ ❡①✐st❡ δ =
P♦rt❛♥t♦ lim+
x→0
1
= +∞✳
x
✐✐✮ P❛r❛ q✉❛❧q✉❡r K > 0✱ ❡①✐st❡ δ =
P♦rt❛♥t♦ lim−
x→0
1
= −∞✳
x
1
1
1
> 0 t❛❧ q✉❡ 0 < x < δ =
❀ ❡♥tã♦ > K ✳
K
K
x
1
1
1
> 0 t❛❧ q✉❡ −δ = − < x < 0❀ ❡♥tã♦ < −K ✳
K
K
x
❖s ❞♦✐s ❧✐♠✐t❡s sã♦ ❞❡♥♦t❛❞♦s ♣♦r
1
1
= +∞ ❡ − = −∞ r❡s♣❡❝t✐✈❛♠❡♥t❡✳
+
0
0
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✼✳
❙❡
n
✐✮
é ✉♠ ✐♥t❡✐r♦ ♣♦s✐t✐✈♦✱ ❡♥tã♦✿
1
lim+ n = +∞
x→0 x
✐✐✮
✶✾✺
1
lim− n =
x→0 x
(
+∞,
−∞,
s❡✱
s❡✱
n
n
é ♣❛r
é í♠♣❛r
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❉❡✜♥✐çã♦ ✸✳✾✳
❙❡❥❛ f ✉♠❛ ❢✉♥çã♦ ❞❡ ❞♦♠í♥✐♦ D(f )✳ ❊♥tã♦✿
✐✮ ❙❡ D(f ) = (a, +∞) ❞❡✜♥❡✲s❡✿
❛✮ x→+∞
lim .f (x) = +∞ ⇔ ∀ K > 0, ∃M > 0 t❛❧ q✉❡ x > M
❜✮ x→+∞
lim .f (x) = −∞ ⇔ ∀ K > 0, ∃M > 0 t❛❧ q✉❡ x > M
✐✐✮ ❙❡ D(f ) = (−∞, b) ❞❡✜♥❡✲s❡✿
❛✮ x→−∞
lim f (x) = +∞ ⇔ ∀ K > 0, ∃M > 0 t❛❧ q✉❡ x < −M
❜✮ x→−∞
lim f (x) = −∞ ⇔ ∀ K > 0, ∃M > 0 t❛❧ q✉❡ x < −M
⇒
f (x) > K ✳
⇒
f (x) < −K ✳
f (x) > K ✳
⇒
f (x) < −K ✳
⇒
❆ ❉❡✜♥✐çã♦ ✭✸✳✾✮ ✐✮✲❛✮ s✐❣♥✐✜❝❛ q✉❡ ♣❛r❛ ✈❛❧♦r❡s ❞❡ x ♣♦s✐t✐✈♦s ♠✉✐t♦ ❣r❛♥❞❡s✱ ♦s
✈❛❧♦r❡s ❞❡ f (x) t❛♠❜é♠ sã♦ ♣♦s✐t✐✈♦s ❡ ♠✉✐t♦ ❣r❛♥❞❡s✳ ❙✐♠✐❧❛r ✐♥t❡r♣r❡t❛çã♦ ♣❛r❛ ❛s
♦✉tr❛s ❞❡✜♥✐çõ❡s✳
❊①❡♠♣❧♦ ✸✳✸✻✳
▼♦str❡ q✉❡
❙♦❧✉çã♦✳
lim x2 = +∞✳
x→+∞
❙❡❥❛ K > 0✱ ❝♦♥s✐❞❡r❛♥❞♦ M =
❊①❡♠♣❧♦ ✸✳✸✼✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ ❧✐♠✐t❡✿
❙♦❧✉çã♦✳
√
K t❡♠♦s✱ s❡ x >
√
K
⇒
x2 > K ✳
√
1+ x
lim
x→2+ x − 2
√
√
√
1+ x
1
= lim+ (1 + x) ·
= (1 + 2)(+∞) = +∞✳
lim+
x→2 √
x→2
x−2
x−2
1+ x
= +∞✳
P♦rt❛♥t♦✱ lim+
x→2
x−2
❖❜s❡r✈❛çã♦ ✸✳✻✳
P♦r ❝♦♠♦❞✐❞❛❞❡ ❡s❝r❡✈❡♠♦s ♦ sí♠❜♦❧♦ ∞ ✭✐♥✜♥✐t♦✮ ❝♦♠ ♦ s✐❣♥✐✜❝❛❞♦ s❡❣✉✐♥t❡✿ lim .f (x) =
x→a
∞ s❡✱ ❡ s♦♠❡♥t❡ s❡ lim .|f (x)| = +∞✳
x→a
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✽✳
❙❡❥❛♠ a ∈ R ❛s ❢✉♥çõ❡s f (x), g(x) ❡ C 6= 0 ♥ú♠❡r♦ r❡❛❧ ✜①♦✱ t❛✐s q✉❡ lim .f (x) = 0
x→a
❡ lim .g(x) = C ❡♥tã♦✿
x→a
✐✮ ❙❡ C > 0 ❡ f (x) → 0 ❛tr❛✈és ❞♦s ✈❛❧♦r❡s ♣♦s✐t✐✈♦s ❞❡ f (x)✱ ❡♥tã♦ x→a
lim
✶✾✻
g(x)
= +∞✳
f (x)
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
g(x)
= −∞✳
x→a f (x)
✐✐✮ ❙❡ C > 0 ❡ f (x) → 0 ❛tr❛✈és ❞♦s ✈❛❧♦r❡s ♥❡❣❛t✐✈♦s ❞❡ f (x)✱ ❡♥tã♦ lim
g(x)
= −∞✳
x→a f (x)
✐✐✐✮ ❙❡ C < 0 ❡ f (x) → 0 ❛tr❛✈és ❞♦s ✈❛❧♦r❡s ♣♦s✐t✐✈♦s ❞❡ f (x)✱ ❡♥tã♦ lim
g(x)
= +∞✳
x→a f (x)
✐✈✮ ❙❡ C < 0 ❡ f (x) → 0 ❛tr❛✈és ❞♦s ✈❛❧♦r❡s ♥❡❣❛t✐✈♦s ❞❡ f (x)✱ ❡♥tã♦ lim
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❆
Pr♦♣r✐❡❞❛❞❡
C
=
0+
✐✮
(
✭✸✳✶✽✮ ♣♦❞❡♠♦s r❡s✉♠✐r ❞♦ ♠♦❞♦ s❡❣✉✐♥t❡✿
+∞,
−∞,
C>0
C<0
s❡✱
s❡✱
C
=
0−
✐✐✮
(
+∞,
−∞,
s❡✱
s❡✱
C<0
C>0
Pr♦♣r✐❡❞❛❞❡ ✸✳✶✾✳
❙❡❥❛♠
❛✮
f
❡
g
❞✉❛s ❢✉♥çõ❡s r❡❛✐s t❛✐s q✉❡✿
lim .f (x) = ±∞
x→±∞
❡
lim .g(x) = ±∞
x→±∞
lim [f (x) · g(x)] = +∞
lim [f (x) + g(x)] = ±∞
❡♥tã♦✿
x→±∞
❡
x→±∞
❜✮
lim .f (x) = ±∞,
L>0
x→±∞
❡
❝✮
lim [f (x) · g(x)] = +∞
❞✮
lim .f (x) = ±∞,
❡♥tã♦✿
lim .g(x) = ±∞
❡♥tã♦✿
lim [f (x)+g(x)] = ±∞
x→±∞
L<0
❡
lim [f (x) · g(x)] = ±∞
x→±∞
lim [f (x)+g(x)] = ±∞
x→±∞
x→±∞
lim .f (x) = −∞,
x→±∞
❡✮
lim .g(x) = ±∞
x→±∞
x→±∞
x→±∞
❡
❡
lim .f (x) = L,
x→±∞
❡
lim .g(x) = +∞
x→±∞
L 6= 0
❡
❡♥tã♦✿
lim .g(x) = ±∞
x→±∞
lim [f (x) · g(x)] = −∞
x→±∞
❡♥tã♦✿
f (x)
= 0✳
x→±∞ g(x)
lim
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳ ❆♦ s✉❜st✐t✉✐r ❛ ❡①♣r❡ssã♦
x→a
❆
❡st❛s ♣r♦♣r✐❡❞❛❞❡s ♣❡r♠❛♥❡❝❡♠ ✈á❧✐❞❛s✳
Pr♦♣r✐❡❞❛❞❡
x → ±∞
♣♦r
✭✸✳✶✾✮ ♣♦❞❡♠♦s r❡s✉♠✐r✱ ✉s❛♥❞♦ ♦s s❡❣✉✐♥t❡s sí♠❜♦❧♦s ♣❛r❛ K ❝♦♥st❛♥t❡
✶✾✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❞✐❢❡r❡♥t❡ ❞❡ ③❡r♦✳
i) K + (+∞) = +∞
ii) K + (−∞) = −∞
iii (+∞) + (+∞) = +∞
iv) (−∞) + (−∞) = −∞
v) (+∞) · (+∞) = +∞
vii) (+∞) · (−∞) = −∞
(
+∞,
ix) K · (+∞) =
−∞,
(
+∞,
xi) K · (−∞) =
−∞,
vi) (−∞) · (−∞) = +∞
K
=0
viii)
±∞
(
+∞, s❡✱ n ∈ N é ♣❛r
x) (−∞)n =
−∞, s❡✱ n ∈ N é í♠♣❛r
s❡✱ K > 0
s❡✱ K < 0
s❡✱ K < 0
s❡✱ K > 0
❊①❡♠♣❧♦ ✸✳✸✽✳
❙❡❥❛
f (x) =
❙♦❧✉çã♦✳
5x4 + 1
✱
x2 + x − 2
❝❛❧❝✉❧❛r
lim .f (x), lim+ .f (x)
x→1−
x→1
❡
lim .f (x)✳
x→1
6
❆♦ s✉❜st✐t✉✐r♠♦s x = 1 ❡♠ f (x)✱ ♦❜s❡r✈❛♠♦s q✉❡ t❡♠♦s ❛ ❢♦r♠❛ ♦ q✉❛❧ ✐♥❞✐❝❛ q✉❡
0
♦ ❝á❧❝✉❧♦ ❞♦s três ❧✐♠✐t❡s é ✐♥✜♥✐t♦✳ P❛r❛ ❞❡t❡r♠✐♥❛r ♦ s✐♥❛❧ ❞❡ ∞(+∞ ♦✉ −∞) ❞❡✈❡♠♦s
❝❛❧❝✉❧❛r ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❛ ❢✉♥çã♦ ♣❛r❛ ✈❛❧♦r❡s ♣ró①✐♠♦s ❛ x = 1✳
✐✮
✐✐✮
lim [5x4 + 1] = 6
x→1
lim [x2 + x − 2] = 0
x→1
P❛r❛ x < 1 ✭♣ró①✐♠♦ ❛ 1✮ t❡♠♦s (x − 1) < 0 ❡ (x + 2) > 0❀ ❧♦❣♦ ♦ ♣r♦❞✉t♦
(x − 1).(x + 2) < 0✱ ❛ss✐♠ lim− (x + 2)(x − 1) = 0− ✳
x→1
❆♥❛❧♦❣❛♠❡♥t❡✱ ♣❛r❛ x > 1 ✭♣ró①✐♠♦ ❛ 1✮ t❡♠♦s (x − 1) > 0 ❡ (x + 2) > 0❀ ❧♦❣♦ ♦
♣r♦❞✉t♦ (x − 1).(x + 2) > 0✱ ❛ss✐♠ lim+ (x + 2)(x − 1) = 0+ ✳
x→1
❊♥tã♦✿
❛✮ lim .f (x) = lim
x→1−
x→1−
❜✮ lim .f (x) = lim
x→1+
x→1+
❝✮ lim .f (x) = lim
x→1
x→1
6
5x4 + 1
= lim− − = −∞✳
2
x→1
x +x−2
0
6
5x4 + 1
= lim+ + = +∞✳
2
x→1
x +x−2
0
5x4 + 1
= +∞✳ ❡♥tã♦ lim .f (x) = +∞✳
x→1
x2 + x − 2
❊①❡♠♣❧♦ ✸✳✸✾✳
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡
lim
x→3−
3x + 1
2
x −x−6
✳
✶✾✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❙♦❧✉çã♦✳
lim
x→3−
3x + 1
10
3x + 1
= lim−
= lim−
= −∞
x→3
x→3
x2 − x − 6
(x − 3)(x + 2)
(x − 3) · 5
❊①❡♠♣❧♦ ✸✳✹✵✳
lim
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡✿
x→−3
❙♦❧✉çã♦✳
−5x − 81
(x + 3)(x − 1)
✳
❈❛❧❝✉❧❡♠♦s ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s✿
lim
x→−3+
−5x − 81
1
−96
−5x − 81
= lim +
=
.(+∞) = (+∞)
x→−3
(x + 3)(x − 1)
x−1
x+3
−4
1
−96
−5x − 81
−5x − 81
lim
= lim −
=
.(−∞) = (−∞)
x→−3− (x + 3)(x − 1)
x→−3
x−1
x+3
−4
−5x − 81
= ∞✳
P♦rt❛♥t♦✱
lim
x→−3 (x + 3)(x − 1)
❊①❡♠♣❧♦ ✸✳✹✶✳
x2 − 5x + 4
lim √
x→3
x2 − 5x + 6
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡✿
❙♦❧✉çã♦✳
◆♦ ❝á❧❝✉❧♦ ❞❡ ❧✐♠✐t❡s ❧❛t❡r❛✐s q✉❛♥❞♦
lim
x→3+
lim
✳
t❡♠♦s✿
1
x2 − 5x + 4
2
√
= lim+ [x − 5x + 4] √
= (−2).(+∞) = −∞
x→3
x2 − 5x + 6
x2 − 5x + 6
◗✉❛♥❞♦
x→3−
x → 3+
x → 3−
t❡♠♦s✿
x2 − 5x + 4
1
1
2
√
= lim+ [x − 5x + 4] √
= (−2).( √ ) = ∄
2
2
x→3
x − 5x + 6
x − 5x + 6
0−
x2 − 5x + 4
lim √
= ∄✱
x→3
x2 − 5x + 6
P♦rt❛♥t♦✱
✭♥ã♦ ❡①✐st❡✮✳
❊①❡♠♣❧♦ ✸✳✹✷✳
❈❛❧❝✉❧❛r✱
P (x)
x→±∞ Q(x)
lim
♦♥❞❡
P (x) ❡ Q(x) sã♦ ♣♦❧✐♥ô♠✐♦s ❞❡ ❣r❛✉ n ❡ m r❡s♣❡❝t✐✈❛♠❡♥t❡✳
❙♦❧✉çã♦✳
P (x)
a0 xn + a1 xn−1 + a2 xn−2 + · · · + an−1 x + an
=
lim
= lim
x→±∞ Q(x)
x→±∞ b0 xm + b1 xm−1 + b2 xm−2 + · · · + bm−1 x + bm
= lim
x→±∞
"
xn (a0 +
xm (b0 +
a1
x
b1
x
+
+
a2
x2
an−1
+ xann )
xn−1
bm
+ xbm−1
m−1 + xm
+ ··· +
bm−2
x2
+ ···
✶✾✾
#
= lim
x→±∞
a0 xn
b0 x m
⇒
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
∞,
P (x) a0
,
=
lim
b0
x→±∞ Q(x)
0,
❊①❡♠♣❧♦ ✸✳✹✸✳
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡
❙♦❧✉çã♦✳
P♦rt❛♥t♦✱
lim
x→+∞
6x3 − 2x + 1
5x2 − 3
s❡✱
n>m
s❡✱
n=m
s❡✱
n<m
R
✳
3
2
+ x13 )
x (6 − x2
6x3 − 2x + 1
=
= lim
lim
x→+∞
x→+∞
5x2 − 3
x2 (5 − x32 )
x(6 − 0 + 0)
+∞
lim
=
= +∞
x→+∞
(5 − 0)
5
3
6x − 2x + 1
= +∞✳
lim
x→+∞
5x2 − 3
❊①❡♠♣❧♦ ✸✳✹✹✳
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡
lim
x→2+
√
3
8 − x3
x2 − 4
✳
❙♦❧✉çã♦✳
lim
x→2+
s
s
3
2
8 − x3
8
−
x
3 (2 − x)(4 + 2x + x )
3
=
lim
=
lim
=
x→2+
x2 − 4
(x2 − 4)3 x→2+
(x + 2)3 (x − 2)3
√
3
s
P♦rt❛♥t♦✱
✸✳✻
✸✳✻✳✶
(4 + 2x + x2 )
= lim+ 3
= lim
x→2
−(x + 2)3 (2 − x)2 x→2+
√
3
8 − x3
= −∞✳
lim
x→2+
x2 − 4
s
3
12
= −∞
−64(x − 2)2
▲✐♠✐t❡ ❞❡ ❢✉♥çõ❡s tr❛♥s❝❡♥❞❡♥t❡s
▲✐♠✐t❡s tr✐❣♦♥♦♠étr✐❝♦s
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞❡ ❧✐♠✐t❡s tr✐❣♦♥♦♠étr✐❝♦s ❝♦♥s✐❞❡r❡♠♦s ❛ s❡❣✉✐♥t❡ ♣r♦♣r✐❡❞❛❞❡✳
Pr♦♣r✐❡❞❛❞❡ ✸✳✷✵✳
1.
4.
lim .senx = 0
tan x
=1
lim
x→0
x
x→0
❉❡♠♦♥str❛çã♦✳
2.
5.
lim . cos x = 1
1 − cos x
lim
=0
x→0
x
x→0
3.
6.
h senx i
=1
x
1 − cos x
1
lim
=
2
x→0
x
2
lim
x→0
✶✳
✷✵✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
π
❆ ❢✉♥çã♦ s❡♥♦ ✈❡r✐✜❝❛ | senx |≤| x | ♣❛r❛ t♦❞♦ x ∈ (0, )✳
2
▼♦str❛r❡✐ q✉❡✱ ♣❛r❛ t♦❞♦ ε > 0✱ ❡①✐st❡ δ > 0 t❛❧ q✉❡ |
senx |< ε s❡♠♣r❡ q✉❡ 0 <| x |< δ ✳
π
❙❡❥❛ ε > 0 q✉❛❧q✉❡r ❡ ❝♦♥s✐❞❡r❡ δ1 = ε ❡ δ = min .{ δ1 , }❀
2
❧♦❣♦ ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ 0 <| x |< δ ✈❡r✐✜❝❛✲s❡ q✉❡
| senx |<| x |< δ ≤ ε
❋✐❣✉r❛ ✸✳✽✿
■st♦ é✱ | senx |< ε✳
P♦rt❛♥t♦ lim .senx = 0✳
x→0
❉❡♠♦♥str❛çã♦✳
✷✳
p
❖❜s❡r✈❡ q✉❡✱ lim . cos x = lim . 1 − (senx)2 =
x→0
❉❡♠♦♥str❛çã♦✳
✸✳
x→0
q
1 − [lim .senx]2 = 1✳
x→0
d ≤ AT ✳
❉❛ ❋✐❣✉r❛ ✭✸✳✽✮ t❡♠♦s ❛s ❞❡s✐❣✉❛❧❞❛❞❡s✿ BB ′ ≤ ❆r❝♦AC
π
❊♥tã♦ senx < x < tan x✱ s❡♥❞♦ ❛ ❢✉♥çã♦ senx ♣♦s✐t✐✈❛ ♥♦ ✐♥t❡r✈❛❧♦ (0, ) t❡♠♦s
2
x
1
senx
1 <
<
❧♦❣♦✱ cos x <
< 1 ❛♣❧✐❝❛♥❞♦ ♦ ❧✐♠✐t❡✱ ♣❡❧❛ ♣❛rt❡
senx
cos x
x
✷✳
❞❡ ❡st❛
♣r♦♣r✐❡❞❛❞❡ ❡ ❞❛ ♣r♦♣r✐❡❞❛❞❡ ❞♦ s❛♥❞✉í❝❤❡ s❡❣✉❡✲s❡ q✉❡✿
lim+
x→0
senx
=1
x
✭✸✳✻✮
❙❡❥❛ x = −t✱ ❡♥tã♦ q✉❛♥❞♦ x → 0− t❡♠♦s t → 0+ ✱ ❛ss✐♠✿ lim−
x→0
−sent
lim+
✱ ❡♥tã♦✿
t→0
−t
senx
sen(−t)
= lim+
=
t→0
x
(−t)
senx
sent
= lim+
=1
t→0
x→0
x
t
senx
❉❡ ✭✸✳✻✮ ❡ ✭✸✳✼✮ s❡❣✉❡✲s❡ q✉❡ lim
=1
x→0 x
❉❡♠♦♥str❛çã♦✳
✹✳
❉❡♠♦♥str❛çã♦✳
✺✳
lim−
✭✸✳✼✮
tan x
1
senx
senx
1
❚❡♠♦s lim
= lim
·
= lim
· lim
=1
x→0
x→0
x→0
x→0
x
x
cos x
x
cos x
❉❡ ✐❞❡♥t✐❞❛❞❡s tr✐❣♦♥♦♠étr✐❝❛s t❡♠♦s✿
1 − cos x 1 + cos x
1 − cos x
= lim
·
=
x→0
x→0
x
x
1 + cos x
lim
senx
0
senx
sen2 x
= lim
·
= 1. = 0
x→0 x
x→0 x(1 + cos x)
1 + cos x
2
lim
❉❡♠♦♥str❛çã♦✳
✻✳
✷✵✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
1 − cos x 1 + cos x
1 − cos x
=
lim
·
=
x→0
x→0
x2
x2
1 + cos x
lim
h senx i2
1
1
1
sen2 x
lim 2
= lim
= 1. =
x→0 x (1 + cos x)
x→0
x
1 + cos x
2
2
✸✳✻✳✷
▲✐♠✐t❡s ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞♦s ❧✐♠✐t❡s ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s✱ é ♥❡❝❡ssár✐♦ ❝♦♥✲
s✐❞❡r❛r ♦s ❧✐♠✐t❡s q✉❡ s❡ ♠❡♥❝✐♦♥❛♠ ♥❛ s❡❣✉✐♥t❡ ♣r♦♣r✐❡❞❛❞❡✿
Pr♦♣r✐❡❞❛❞❡ ✸✳✷✶✳
❛✮
π
lim . arccos x = +
x→0
2
arctan x
lim
=1
x→0
x
π
lim . arctan x = +
x→+∞
2
❜✮
lim .arcsenx = 0
x→0
arcsenx
❝✮ lim
=1
x→0
x
π
❡✮
lim . arctan x = −
x→−∞
2
❞✮
❢✮
❉❡♠♦♥str❛çã♦✳
❛✮
❈♦♥s✐❞❡r❡ ❛ s❡❣✉✐♥t❡ ♠✉❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡✐s✿
π
2
t≤
▲♦❣♦✱
❝✮
✱ ❡♥tã♦
x = sent
✱ s❡
x→0
t❡♠♦s
t = arcsenx
♦♥❞❡
−1 ≤ x ≤ 1
❡
−
π
≤
2
t → 0✳
lim .arcsenx = lim .t = 0.
x→0
t→0
❋❛③❡♥❞♦ ♠✉❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡✐s ❝♦♠♦ ♥❛ ❞❡♠♦♥str❛çã♦ ❞❛ ♣❛rt❡
❛✮ t❡♠♦s lim
t
= 1.
t→0 sent
x→0
arcsenx
=
x
lim
❊①❡♠♣❧♦ ✸✳✹✺✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
sen6x
✳
x→0
x
lim
6x = t❀ ❡♥tã♦ q✉❛♥❞♦ x → 0✱ t❡r❡♠♦s q✉❡ t = 6x →
6 · sen6x
sen6x
sent
sen6x
= lim
= 6. lim
= 6. lim
= 6(1) = 6✳
lim
x→0
x→0 6x
t→0 t
x→0
x
6x
❈♦♥s✐❞❡r❡ ❛ ♠✉❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡✐s
0
❛ss✐♠✱
❊①❡♠♣❧♦ ✸✳✹✻✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ ❧✐♠✐t❡
❙♦❧✉çã♦✳
❖❜s❡r✈❡ q✉❡
ax → 0
❡
bx → 0✱
senax
x→0 senbx
lim
✳
senax a.bx
a
senax
= lim
·
= lim ·
lim
x→0 senbx
x→0
x→0 senbx
a.bx
b
senax
ax
✱ q✉❛♥❞♦
senbx
bx
x → 0
t❡♠♦s
❛ss✐♠ r❡s✉❧t❛ q✉❡✿
a
·
x→0 b
lim
senax
ax
senbx
bx
h
senax
ax→0 ax
lim
a
= .h
b lim
bx→0
✷✵✷
i
a
a
i = .1 =
senbx
b
b
bx
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦rt❛♥t♦✱
a
senax
= ✳
x→0 senbx
b
sen2 (sen3x)
lim
x→0 1 − cos(sen4x)
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
R
lim
❊①❡♠♣❧♦ ✸✳✹✼✳
◗✉❛♥❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
x→0
✈❛r✐á✈❡❧✱ s❡❣✉❡ q✉❡
✳
t = sen3x → 0
t → 0 ❡ r → 0 ❡♥tã♦✿
t❡♠♦s
❡
r = sen4x → 0❀
❧♦❣♦ ❢❛③❡♥❞♦ ♠✉❞❛♥ç❛ ❞❡
h
i2
2 sen(sen3x)
(sen3x)
sen3x
sen (sen3x)
[sen(sen3x)]
i=
h
lim
= lim
= lim
1−cos(sen4x)
x→0 1 − cos(sen4x)
x→0 1 − cos(sen4x)
x→0
2
(sen 4x)
sen2 4x
2
2
h
h
i2
i2
sent
sen3x
lim
9
lim
9 3x
sen3x
9
9[1]2 [1]2
t→0 t
3x→0 3x
h
h
i=
i
·
= lim
=
· 1 =
i
h
2
2
2
1−cos(sen4x)
x→0
r
16[1]
8
lim 1−cos
16 sen4x
2
16 lim sen4x
4x
sen2 4x
r2
4x
r→0
sen3x 2 h sen(sen3x) i2
4x→0
P♦rt❛♥t♦✱
lim
x→0
9
sen2 (sen3x)
= ✳
1 − cos(sen4x)
8
❊①❡♠♣❧♦ ✸✳✹✽✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ ❧✐♠✐t❡
❙♦❧✉çã♦✳
cos x − cos(sen4x)
lim
x→0
x2
✳
cos x − cos(sen4x)
1 − cos(sen4x) 1 − cos x
lim
= lim
=
−
x→0
x→0
x2
x2
x2
1 − cos(sen4x)
= lim
x→0
x2
sen4x
sen4x
2
− lim
x→0
1 − cos x
=
x2
2
1
1 − cos(sen4x) sen4x
− =
= lim
2
x→0
sen 4x
x
2
2
sen4x
1
1
15
1
1 − cos(sen4x)
· lim
− = · 16(1)2 − =
= lim
2
4x→0
sen4x→0
sen 4x
x
2
2
2
2
cos x − cos(sen4x)
15
P♦rt❛♥t♦✱ lim
= .
2
x→0
x
2
❊①❡♠♣❧♦ ✸✳✹✾✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞♦ ❧✐♠✐t❡
❙♦❧✉çã♦✳
arcsen(x − 2)
lim
x→2
x2 − 2x
✷✵✸
✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❚❡♠♦s ❛♣❧✐❝❛♥❞♦ ❛
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
Pr♦♣r✐❡❞❛❞❡
R
✭✸✳✷✵✮ ❝✮ q✉❡✿
arcsen(x − 2) 1
1
1
arcsen(x − 2)
= lim
= (1) · = .
·
lim
2
x→2
x→2
x − 2x
x−2
x
2
2
arcsen(x − 2)
1
= .
lim
2
x→2
x − 2x
2
P♦rt❛♥t♦
❊①❡♠♣❧♦ ✸✳✺✵✳
lim
❈❛❧❝✉❧❛r
x→0+
❙♦❧✉çã♦✳
√
arcsen(3x) tan x
√
✳
x csc x − cot x
❉♦ ❢❛t♦ s❡r ❛ t❛♥❣❡♥t❡ ♣♦s✐t✐✈❛ q✉❛♥❞♦
< 0✱ ❧♦❣♦ ♥ã♦ t❡♠ s❡♥t✐❞♦
3x → 0+ ❡ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✸✳✷✵✮
√
x → 0+ ❡♥tã♦ ❡①✐st❡ tan x❀ ♣❛r❛ ♦ ❝❛s♦ x < 0
❧✐♠✐t❡ x → 0− ✳ ❖❜s❡r✈❡ q✉❡ q✉❛♥❞♦ x → 0+
t❡♠♦s tan x
♦
❡♥tã♦
❝✮ s❡❣✉❡✿
lim
x→0+
√
r
3 · arcsen(3x)
tan x
arcsen(3x) tan x
√
= lim+
=
x→0
(3x)
csc x − cot x
x csc x − cot x
= 3(1) lim+
x→0
P♦rt❛♥t♦✱
✸✳✻✳✸
r
lim
x→0+
tan x
= 3. lim+
x→0
csc x − cot x
s
x·
√
√
arcsen(3x) tan x
√
= 3 2.
x csc x − cot x
tan x
x
x
csc x 1−cos
2
x
= 3.
s
√
1
1 = 3 2
1( 2 )
▲✐♠✐t❡ ❞❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧ ❡ ❧♦❣❛rít♠✐❝❛
❈♦♥s✐❞❡r❡ ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s s❡♠ ❞❡♠♦♥str❛çã♦✿
✶✳
✸✳
nn
=0
n→+∞ n!
lim
✷✳
h
i
lim Ln[f (x)] = Ln lim f (x)
n→a
n→a
❊①❡♠♣❧♦ ✸✳✺✶✳
❈❛❧❝✉❧❛r
lim
x→0
√
x
✹✳
√
n
lim
n→+∞
lim
n→+∞
n=1
n
1
=e
1+
n
♦♥❞❡
e ≈ 2, 71828182 · · ·
1 + x✳
❙♦❧✉çã♦✳
1
→ +∞✱ ❢❛③❡♥❞♦
x
n
√
1
x
r❡s✉❧t❛✿
lim 1 + x = lim 1 +
= e✳
x→0
n→+∞
n
√
P♦rt❛♥t♦✱
lim x 1 + x = e✳
◗✉❛♥❞♦
x → 0✱
❡♥tã♦
n=
♠✉❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡❧ ♥♦ ❧✐♠✐t❡ ♦r✐❣✐♥❛❧
x→0
✷✵✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✸✳✺✷✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
Ln(1 + x)
✳
x→0
x
lim
1
1
Ln(1 + x)
x
x
= lim Ln(1 + x) = Ln lim (1 + x) = Lne = 1.
❚❡♠♦s✿ lim
x→0
x→0
x→0
x
Ln(1 + x)
P♦rt❛♥t♦✱ lim
= 1✳
x→0
x
❊①❡♠♣❧♦ ✸✳✺✸✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
lim
n→+∞
h
1+
a in
✱ s❡♥❞♦ a > 0 ♥ú♠❡r♦ r❡❛❧ q✉❛❧q✉❡r✿
n
n
→ +∞✱ ❧♦❣♦
a
"
m a
n #a
h
1
a in
1 a
1+
= lim
= ea
lim 1 +
1+ n
= lim
m→+∞
n→+∞
n→+∞
n
m
a
❙❡ n → +∞✱ ❡♥tã♦ m =
P♦rt❛♥t♦✱ lim
n→+∞
h
1+
a in
= ea
n
❊①❡♠♣❧♦ ✸✳✺✹✳
ah − 1
= Ln(a)✳
h→0
h
❱❡r✐✜❝❛r ❛ s❡❣✉✐♥t❡ ✐❣✉❛❧❞❛❞❡✿
❙♦❧✉çã♦✳
lim
❙❡❥❛ s = ah − 1✱ ❡♥tã♦ h · Ln(a) = Ln(s + 1)✱ q✉❛♥❞♦ h → 0 t❡♠♦s s → 0✱ ♥♦ ❧✐♠✐t❡✿
s
s · Ln(a)
s · Ln(a)
s · Ln(a)
ah − 1
= lim = lim
= lim
= lim
h
s→0 Ln(s + 1)
h→0 h
h→0 h · Ln(a)
h→0 Ln(a )
h→0
h
⇒
lim
ah − 1
1
= Ln(a)
= Ln(a) ·
h→0
h
lim Ln(s+1)
s
lim
s→0
✐st♦ ♣❡❧♦ ❊①❡♠♣❧♦ ✭✸✳✺✷✮✳
ah − 1
= Ln(a)
h→0
h
P♦rt❛♥t♦✱ lim
❊①❡♠♣❧♦ ✸✳✺✺✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
lim
x→∞
f (x)
1+
x
x
s❡♥❞♦ lim .f (x) ✉♠ ♥ú♠❡r♦ ✜♥✐t♦✳
x→∞
f (x)
✱ ♣❡❧♦ ❢❛t♦ s❡r lim .f (x) ✉♠ ♥ú♠❡r♦ r❡❛❧ ✜♥✐t♦✱ q✉❛♥❞♦ x → ∞, m → 0✳
x→∞
x
x
f (x)
❈♦♥s✐❞❡r❡ y = 1 +
❡♥tã♦ ♣❡❧❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦ ❧♦❣❛r✐t♠♦✿
x
❙❡❥❛ m =
Ln(y) = x · Ln(1 + m) =
Ln(1 + m)
f (x)
· Ln(1 + m) = f (x) ·
m
m
✷✵✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
f (x)
lim Ln(y) = lim Ln 1 +
x→∞
x→∞
x
♣❡❧♦ ❊①❡♠♣❧♦ ✭✸✳✺✷✮ s❡❣✉❡✿
x
= lim f (x) ·
x→∞
Ln(1 + m)
m
R
⇒
Ln(1 + m)
Ln lim y = lim f (x) · lim
= lim f (x).(1) = lim f (x)
x→∞
x→∞
m→0
x→∞
x→∞
m
lim .f (x)
▲♦❣♦ Ln lim y = lim .f (x) ⇒ lim y = ex→∞
✳
x→∞
x→∞
x→∞ x
f (x)
lim .f (x)
= ex→∞
✳
P♦rt❛♥t♦✱ lim 1 +
x→∞
x
❊①❡♠♣❧♦ ✸✳✺✻✳
(1 + α)n − 1
✳
α→0
α
lim
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
❙❡❥❛ m = (1 + α)n − 1✱ ❡♥tã♦ Ln(m + 1) = n · Ln(1 + α)❀ q✉❛♥❞♦✱ α → 0, m → 0✱ ❧♦❣♦
♥♦ ❧✐♠✐t❡ t❡♠♦s✿
(1 + α)n − 1
m
m · n · Ln(1 + α)
= lim . = lim .
=
α→0
α→0 α
α→0 α · n · Ln(1 + α)
α
lim
Ln(1 + α)
m
m · n · Ln(1 + α)
·n=
= lim
= lim .
α→0
α→0
α · Ln(1 + m)
α
Ln(1 + m)
Ln(1 + α)
·
α→0
α
❆♣❧✐❝❛♥❞♦ r❡s✉❧t❛❞♦ ❞♦ ❊①❡♠♣❧♦ ✭✸✳✺✷✮✱ = lim
(1 + α)n − 1
= (1)(1)n = n✳
α→0
α
P♦rt❛♥t♦✱ lim
1
·n = n✳
Ln(1 + m)
lim
m→0
m
❖❜s❡r✈❛çã♦ ✸✳✼✳
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞♦s ❧✐♠✐t❡s ❞❛ ❢♦r♠❛
1o
❈❛s♦ ✿
2o
❈❛s♦ ✿
g(x)
x→a
B
=A ✳
x→a
❙❡ ❡①✐st❡♠ lim .f (x) = A 6= 1 ❡ lim .g(x) = B s❡♥❞♦ B = ±∞✱ ❡♥tã♦ ♦ ❧✐♠✐t❡✿
x→a
lim [f (x)]g(x)
x→a
✳
❝♦♥s✐❞❡r❡ ♦s s❡❣✉✐♥t❡s ❝❛s♦s✿
❙❡ ❡①✐st❡♠ lim .f (x) = A ❡ lim .g(x) = B ❡ sã♦ ✜♥✐t♦s✱ ❡♥tã♦ ♦ ❧✐♠✐t❡
lim [f (x)]
x→a
lim [f (x)]g(x)
x→a
x→a
+∞, s❡✱ A > 1 ❡ B = +∞
−∞, s❡✱ A > 1 ❡ B = −∞
=
0,
s❡✱
0 < A < 1 ❡ B = +∞
+∞, s❡✱ 0 < A < 1 ❡ B = −∞
✷✵✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
3o ❈❛s♦ ✿ ❙❡ lim .f (x) = 1 ❡ lim .g(x) = ±∞❀ ♥❡st❛ ❝❛s♦ 1±∞ é ✉♠❛ ❢♦r♠❛ ✐♥❞❡t❡r✲
x→a
x→a
♠✐♥❛❞❛❀ ❧♦❣♦ t❡♠♦s q✉❡ ❞❡✜♥✐r h(x) = f (x) − 1 ❞❡ ♠♦❞♦ q✉❡ lim .h(x) = 0❀ ❧♦❣♦
ih(x).g(x) x→a
h
1
lim .h(x).g(x)
g(x)
g(x)
= ex→a
✳
lim [f (x)]
= lim [1 + h(x)]
= lim [1 + h(x)] h(x)
x→a
x→a
❊①❡♠♣❧♦ ✸✳✺✼✳
❈❛❧❝✉❧❛r✿
x→a
x2 − 25
lim
x→5
x−5
❛✮
(x−3)
❜✮
lim
x→+∞
3x + 2
x−4
(x+5)
✳
❙♦❧✉çã♦✳
❛✮
❆♣❧✐❝❛♥❞♦ 1 ❝❛s♦ ❞❛ ❖❜s❡r✈❛çã♦ ✭✸✳✼✮✱ t❡♠♦s✿
o
x2 − 25
P♦rt❛♥t♦ lim
x→5
x−5
❜✮
(x−3)
x2 − 25
lim
x→5
x−5
(x−3)
= 102 = 100✳
= 100✳
❆♣❧✐❝❛♥❞♦ ♦ s❡❣✉♥❞♦ ❝❛s♦ ❞❛ ❖❜s❡r✈❛çã♦ ✭✸✳✼✮✱ t❡♠♦s✿
lim
x→+∞
P♦rt❛♥t♦ lim
x→+∞
❊①❡♠♣❧♦ ✸✳✺✽✳
❈❛❧❝✉❧❛r✿
❛✮
3x + 2
x−4
3x + 2
=3 ❡
x−4
(x+5)
mx − nx
lim
x→0
x
lim (x + 5) = +∞
x→+∞
= +∞✳
amx − 1
lim nx
x→0 a
−1
❜✮
❝✮
ex−1 − ax−1
lim
x→1
x2 − 1
❙♦❧✉çã♦✳
❛✮
P❡❧♦ ❊①❡♠♣❧♦ ✭✸✳✺✹✮✱ ♦❜s❡r✈❡ q✉❡✱
x
(m − 1) − (nx − 1)
mx − nx
= lim
=
lim
x→0
x→0
x
x
mx − 1 nx − 1
m
lim
−
= Ln(m) − Ln(n) = Ln
x→0
x
x
n
P♦rt❛♥t♦✱
❜✮
mx − nx
m
✳
lim
= Ln
x→0
x
n
◗✉❛♥❞♦ x → 0 ❡♥tã♦ mx → 0 ❡ nx → 0✱ ♣♦❞❡♠♦s ❡s❝r❡✈❡r✿
amx − 1
amx −1
h mx i
amx − 1
m Ln(a)
m
mx
mx
lim nx
= lim
·lim anx
= ·
=
anx − 1 = lim
−1
x→0 a
x→0 nx
x→0 nx x→0
−1
n Ln(a)
n
nx
nx
h mx i
amx − 1
m
P♦rt❛♥t♦✱ lim nx
= ✳
x→0 a
−1
n
✷✵✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
x−1
(e
− 1) − (ax−1 − 1)
ex−1 − ax−1
= lim
=
lim
x→1
x→1
x2 − 1
x2 − 1
❝✮ ❚❡♠✲s❡✿
x−1
(ex−1 − 1) − (ax−1 − 1)
e
− 1 ax−1 − 1
= lim
= lim
− 2
=
x→1
x→1
x2 − 1
x2 − 1
x −1
x−1
x−1
x−1
1
e
−1
a
−1
1
1
e
− 1 ax−1 − 1
= lim
·
= lim
− lim
=
−
x→1 x + 1
x−1
x−1
2 x→1 x − 1
2 x→1 x − 1
❋❛③❡♥❞♦
y =x−1
❡♥tã♦ q✉❛♥❞♦
x → 1, y → 0❀
❧♦❣♦
x−1
x−1
y
y
e
−1
a
−1
e −1
a −1
1
1
1
1
lim
− lim
= lim
− lim
=
2 x→1 x − 1
2 x→1 x − 1
2 y→0
y
2 y→0
y
P♦rt❛♥t♦✱
1
1
= − [Ln(e) − Ln(a)] = [1 − Ln(a)]
2
2
x−1
1
e
− ax−1
= [1 − Ln(a)]✳
lim
2
x→1
x −1
2
❆♣❧✐❝❛çõ❡s ❞✐✈❡rs❛s ❞❡ ❧✐♠✐t❡s
❊①❡♠♣❧♦ ✸✳✺✾✳
❈❛❧❝✉❧❛r✿
sena + sen3x
lim
x→0 sena − sen3x
❛✮
1
sen3x
❜✮
lim
x→+∞
x3 + 3x2 + 2x − 1
x3 + 2x − 5
x+1
❙♦❧✉çã♦✳
❛✮ ❊st❡ ❧✐♠✐t❡ é ❞♦ 3o ❈❛s♦ s❛ ❖❜s❡r✈❛çã♦ ✭✸✳✼✮ ✱ ❝♦♥s✐❞❡r❡ y =
1
sen3x
✱ ♦❜s❡r✈❡ q✉❡✿
x → 0, (sen3x) → 0 ❡ y → ∞✳ ▲♦❣♦ ✿
1
1
1+
sena + sen3x sen3x
sena + sen3x sen3x
lim
= lim
= lim
x→0 sena − sen3x
sen3x→0 sena − sen3x
sen3x→0 1 −
= lim
y→∞
"
1+
1−
1
y·sena
1
y·sena
#y
= lim
y→∞
""
1+
1−
❉♦ ❢❛t♦
2sen3x
sena − sen3x
❡
1
#y·sena # sena
e1
= −1
e
sena + sen3x
sena − sen3x
lim g(x) = 0✳
❖✉tr♦ ♠♦❞♦ ❞❡ r❡s♦❧✈❡r é ❝♦♥s✐❞❡r❛♥❞♦
h(x) = f (x) − 1 =
1
y·sena
1
y·sena
f (x) =
❡
1
sena
sen3x
sena
sen3x
sena
1
sen3x
2
= e sena .
g(x) =
1
✱ ❡♥tã♦
sen3x
y→0
2
2
=
✳
sena − sen3x
sena
1
2
sena + sen3x sen3x
= e sena .
lim
x→0 sena − sen3x
lim .h(x)g(x) = lim
y→0
P♦rt❛♥t♦✱
y→0
✷✵✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❜✮ ❖❜s❡r✈❡✱
x3 + 2x − 5
3x2 + 4
3x2 + 4
x3 + 3x2 + 2x − 1
=
+
=
1
+
✱
x3 + 2x − 5
x3 + 2x − 5 x3 + 2x − 5
x3 + 2x − 5
lim
x→+∞
❙❡❥❛♠
h(x) =
▲♦❣♦ ♣❡❧♦
3o
x3 + 3x2 + 2x − 1
x3 + 2x − 5
3x2 + 4
x3 + 2x − 5
❈❛s♦ ❞❛
lim .h(x)(x+1)
ex→+∞
P♦rt❛♥t♦✱
= lim
x→+∞
#
√
Ln 5 cos 8x
lim
x→0
5x2
❜✮
q
12
x
√
lim
4 − 3 cos x
x→0
#
√
√
1
Ln 5 cos 8x
= lim · 2 · Ln 5 cos 8x
lim
2
x→0 5x
x→0
5x
x→0
.
g(x) = x + 1 ❝♦♠♦ lim .h(x) = 0 ❡ lim .g(x) = ∞✳
x→+∞
x→+∞
3
x+1
x + 3x2 + 2x − 1
❖❜s❡r✈❛çã♦ ✭✸✳✼✮ s❡❣✉❡ q✉❡✱ lim
=
x→+∞
x3 + 2x − 5
"
lim
x+1
❡
"
❈❛❧❝✉❧❛r✿ ❛✮
❛✮ ❚❡♠♦s✿
3x2 + 4
1+ 3
x + 2x − 5
= e3 ✳
x+1
3
x + 3x2 + 2x − 1
= e3 ✳
lim
x→+∞
x3 + 2x − 5
❊①❡♠♣❧♦ ✸✳✻✵✳
❙♦❧✉çã♦✳
x+1
❡♥tã♦
"
#
√
5
h
√
5
1
Ln cos 8x
== Ln lim ( cos 8x) 5x2
2
x→0
5x
❆♣❧✐❝❛♥❞♦ ❛ ♣❛rt❡
3a
❞❛ ❖❜s❡r✈❛çã♦ ✭✸✳✼✮ q✉❛♥❞♦
⇒
i
1
= Ln lim (cos 8x) 25x2
x→0
f (x) = cos 8x✱
♦❜s❡r✈❡
f (x) → 1✳
1
✱ ♣♦✐s ,
g(x) → +∞ q✉❛♥❞♦ x → 0✳
g(x) =
25x2
i cos 8x2
h
i
h
1
64
25x
g(x)
= Ln lim [1 + cos 8x] cos 8x
▲♦❣♦ Ln lim .f (x)
= Ln[e− 50 ]✳
x→0
x→0
" √
#
Ln 5 cos 8x
64
P♦rt❛♥t♦✱ lim
✳
=
−
x→0
5x2
50
❙❡❥❛
h(x) = cos 8x − 1
❜✮ ❙❡❥❛♠ h(x) = 3(1 −
√
(4 − 3 cos x) − 1
√
x→0
P♦rt❛♥t♦✱
lim
x→0
1
3
✱ ❡♥tã♦ lim h(x).g(x) =
2
x→0
2x
8
lim .h(x) = 0 ❡ lim .g(x) = +∞✱ t❡♠♦s✿
cos x)
s❡♥❞♦
lim
q
❡
q
❡
g(x) =
x→0
4 − 3 cos x
4 − 3 cos x
h(x) =
x→0
√
√
❡ ❝♦♠♦
12
x
12
x
1
√
3
= lim 4 − 3 cos x 2x2 = e 8
x→0
3
= e8 ✳
✷✵✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✸✳✻✶✳
n · sen(n!)
✳
n→∞
n2 + 2
lim
❉❡t❡r♠✐♥❡ ♦ ❝á❧❝✉❧♦ ❞♦ ❧✐♠✐t❡✿
❙♦❧✉çã♦✳
P❛r❛ t♦❞♦
n∈N
s❛❜❡✲s❡ q✉❡
n
> 0, ∀ n ∈ N✱
n2 + 2
n
n · sen(n!)
n
− 2
≤
≤ 2
✳
2
n +2
n +2
n +2
−1 ≤ senn! ≤ 1✱
♠✉❧t✐♣❧✐❝❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞♦ s❡♥♦ t❡♠♦s q✉❡
❝♦♠♦
❡♥tã♦
❈❛❧❝✉❧❛♥❞♦ ♦ ❧✐♠✐t❡✿
− lim
n→∞ n2
P♦rt❛♥t♦✱
n
n · sen(n!)
n
≤ lim
≤ lim 2
2
n→∞ n + 2
+ 2 n→∞ n + 2
⇒
n · senn!
≤0
n→∞ n2 + 2
0 ≤ lim
n · sen(n!)
= 0✳
n→∞
n2 + 2
lim
❊①❡♠♣❧♦ ✸✳✻✷✳
❈❛❧❝✉❧❛r✿
❙♦❧✉çã♦✳
❙❡❥❛
senπx
✳
x→1 sen3πx
lim
y = x−1✱ ❧♦❣♦ y → 0 q✉❛♥❞♦ x → 1✳
❙❡❣✉❡
senπx
senπ(y + 1)
= lim
x→1 sen3πx
y→0 sen3π(y + 1)
L = lim
πsen(πy)
1
sen(πy)
sen(πy) cos π + senπ cos(πy)
πy
=
= lim
= lim
L = lim
y→0 sen(3πy)
πy→0 3π · sen(3πy)
y→0 sen(3πy) cos(3π) + sen(3π) cos(3πy)
3
3πy
P♦rt❛♥t♦✱
1
senπx
=
x→1 sen3πx
3
lim
❊①❡♠♣❧♦ ✸✳✻✸✳
❈❛❧❝✉❧❛r ♦ ❧✐♠✐t❡ ✿
❙♦❧✉çã♦✳
tan πx
.
x→−2 x + 2
lim
❈♦♥s✐❞❡r❡ ❛ s❡❣✉✐♥t❡ ♠✉❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡❧✿
=
tan πy − tan 2π
tan πy − 0
senπy
=
= tan πy =
1 + tan πy · tan 2π
1 + tan πy · 0
cos πy
1
senπy
senπy
tan πx
= lim
= lim
·
=
x→−2 y · cos πy
y→0
x→−2 x + 2
y
cos πy
y → 0✱ t❡♠♦s πy → 0✱ ❧♦❣♦✿
◆♦ ❧✐♠✐t❡✿
◗✉❛♥❞♦
y = x + 2✱ ❡♥tã♦✿ tan πx = tan π(y − 2) =
lim
π
senπy
π
tan πx
= lim
· lim
=1· =π
πy→0 πy
πy→0 cos πy
x→−2 x + 2
1
lim
P♦rt❛♥t♦✱
lim
x→−2
tan πx
= π✳
x+2
✷✶✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✸✲✹
✶✳ ❱❡r✐✜❝❛r ♦ ❝á❧❝✉❧♦ ❞♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
3.
5.
7.
9.
x+2
lim+ 2
= +∞
x→2 x − 4
√
16 − x2
= −∞
lim−
x→4
x−4
2x2 − 5x − 3
= −∞
lim+
x→1
x−1
3x2 − 9x − 6
lim− 2
= +∞
x→2
x +x−6
√
5
x6
√ = −∞
lim √
x→+∞ 7 x − 7 x4
2.
4.
6.
8.
10.
√
x2 − 9
lim+
= +∞
x→3
x−3
1
3
=∞
lim
− 2
x→2 x − 2
x −4
3x3 + 2x2 − 1
lim
= −∞
x→−∞ 2x2 − 3x + 5
5x3 + 1
lim+
= +∞
x→20 20x3 − 800x
1
1
lim
= +∞
− 2
x→1 1 − x
x − 2x − 1
✷✳ ❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
3.
5.
7.
2x
x+1
x
lim
−
− 2
x→+∞ 3x − 2
4x
6x − 1
√
√
6
6 x7 + 3 x
lim √
√
x→+∞ 5 5 x4 + 4 x
√
lim 4(x x2 + 1 − x2 )
lim−
x→2
x→−∞
4.
6.
3x2 − 9x − 6
x2 + x − 6
x5
√
5
7 x + 3 x8
√
lim (x x2 + 1 − x2 )
x→−∞
√
4 − x2
lim 2
x→2 x + 1
√
3x + 4x2 − x3 + x
lim
x→−∞
x2 + 5x + 1
lim
2.
x→+∞
√
3
8.
√
5
1
x
✸✳ ▼♦str❡ q✉❡✱ lim+ .f (x) = ∞ s❡✱ ❡ s♦♠❡♥t❡ s❡ lim .f ( ) = ∞✳
x→+∞
x→0
✹✳ ❉❡t❡r♠✐♥❡ ❝♦♥st❛♥t❡s a ❡ b t❛✐s q✉❡✿
✶✳
✸✳
x3 + 1 √ 2
+ x + 2 − ax = 0
lim
x→+∞ x2 + 1
i
h√
x2 − x + 1 − ax − b = 0
lim
✷✳
lim
x→+∞
x2 + 1
− ax − b = 0
x+1
x→+∞
1 + 2x
✺✳ ◗✉❛♥❞♦ x → 0 t❡♠♦s y =
→ ∞✳ ◗✉❡ ❝♦♥❞✐çõ❡s ❞❡✈❡ ❝✉♠♣r✐r x ♣❛r❛ q✉❡
x 4
t❡♥❤❛♠♦s ❛ ❞❡s✐❣✉❛❧❞❛❞❡ | y |> 10 ❄
x
é ✐♥✜♥✐t❛♠❡♥t❡ ❣r❛♥❞❡ q✉❛♥❞♦ x → 3✳ ◗✉❛❧ ❞❡✈❡
✻✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ y =
x−3
s❡r ♦ ✈❛❧♦r ❞❡ x ♣❛r❛ q✉❡ ❛ ♠❛❣♥✐t✉❞❡ | y | s❡❥❛ ♠❛✐♦r q✉❡ 1000❄
✷✶✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✼✳ ❱❡r✐✜❝❛r q✉❡✿
✶✳
arcsenx = arctan √
x
1 − x2
✷✳
arctan x − arctan y = arctan
x−y
✳
1 + xy
πx
✽✳ ❙❡❥❛♠ f (x) = sen +cos(arctan x) ❡ g(x) = sec(2−x)−tan(arcsec(−x))✳ ❈❛❧❝✉❧❛r
4
f (1) − g(2)✳
✾✳ ◆♦ s❡♥t✐❞♦ ❞❛ ❉❡✜♥✐çã♦ ✭✸✳✼✮✿
✶✳
✷✳
1
= +∞✳
x→3 (x − 3)2
❉❡♠♦♥str❛r q✉❡✿
lim
❉❡♠♦♥str❡ q✉❡✿ s❡ g(x) > β > 0 ♣❛r❛ t♦❞♦ x✱ ❡ s❡ lim g(x) = 0✱ ❡♥tã♦
x→a
1
= +∞✳
lim
x→a g(x)
✶✵✳ ❯♠ tr✐â♥❣✉❧♦ r❡tâ♥❣✉❧♦ ✐sós❝❡❧❡s ❝✉❥❛ ❜❛s❡
❡st❛ ❞✐✈✐❞✐❞❛ ❡♠ 2n ♣❛rt❡s ✭q✉❛❞r❛❞♦s✮ t❡♠
✐♥s❝r✐t♦ ✉♠❛ ✜❣✉r❛ ❡s❝❛❧♦♥❛❞❛ s❡❣✉♥❞♦ ❛ ❋✐✲
❣✉r❛ (3.9)✳ ❉❡♠♦♥str❡ q✉❡ ❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡
❛ ár❡❛ ❞♦ tr✐â♥❣✉❧♦ ❡ ❛ ✜❣✉r❛ ❡s❝❛❧♦♥❛❞❛ é
✐♥✜♥✐t❡s✐♠❛❧ q✉❛♥❞♦ n ❝r❡s❝❡ ✐♥✜♥✐t❛♠❡♥t❡✳
❅
❅
❅
❅
✳✳ · · · ✳✳
✳
✳
❅
❅
❅
❅
F igura 3.9
✶✶✳ P❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s ❡s❜♦ç❛r ♦ ❣rá✜❝♦ ♥♦ ✐♥t❡r✈❛❧♦ [−2π, 2π]
1. f (x) = cos
πkxk
2
πx
2. f (x) = 2 cos
2
πx
4. f (x) = sen
2
6. f (x) = sen2 | x |
π
8. f (x) = 2 tan
+ senx
2
3. f (x) = sen(π k x k)
5. f (x) =| sen | x ||
π
7. f (x) = sen x −
4
✶✷✳ ❱❡r✐✜❝❛r ♦ ❝á❧❝✉❧♦ ❞♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
3.
5.
7.
tan x − senx
= 0.5
x→0
x3
9
1 − cos 3x
=
lim
x→0 1 − cos 4x
16
2
1−x
2
lim
=
x→1 senπx
π
a2
1 − cos ax
=
lim
x→0
x2
2
lim
2.
4.
6.
8.
tan ax − tan3 x
=a
a 6= 1
x→0
tan x
1−a
x − senax
lim
=
b 6= −1, a 6= 0
x→0 x + senbx
1+b
1
sen(π − x)
lim
=
x→π x(π − x)
π
cos x
=1
limπ π
x→ 2 ( − x)
2
lim
✷✶✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
9.
11.
13.
15.
17.
19.
√
3
1 − 2 cos x
=−
limπ
x→ 3
π − 3x
3
3
1 − x3
lim
=
x→1 sen(1 − x2 )
2
√ 2
2x
√
=2
lim
x→0 tan x sec x − 1
x6
lim
=4
x→0 (tan x − senx)2
tan(1 + cos x)
= −1
lim
x→π cos(tan x) − 1
π − 2 arccos x
lim
=2
x→0
x
π2
1 + cos πx
=
x→1 x2 − 2x + 1
2
sen(1 − x)
lim √
= −2
x→1
x−1
lim
10.
12.
lim .4x · cot 4x = 1
14.
x→0
πx π 2
π
=
. tan
x→0 x
2
2
√
1
sen( x2 + 4 − 2)
lim
=
2
x→0
x
4
arcsen5x
lim
=5
x→0 arctan x
lim
16.
18.
20.
✶✸✳ ❈♦♥s✐❞❡r❡ ✉♠ tr✐â♥❣✉❧♦ ❡q✉✐❧át❡r♦ ❞❡ ❧❛❞♦ a✳ ❙✉❛s três ❛❧t✉r❛s s❡r✈❡♠ ♣❛r❛ ❣❡r❛r
✉♠ ♥♦✈♦ tr✐â♥❣✉❧♦ ❡q✉✐❧át❡r♦ ❡ ❛ss✐♠ s✉❝❡ss✐✈❛♠❡♥t❡ n ✈❡③❡s✳ ❉❡t❡r♠✐♥❡ ♦ ❧✐♠✐t❡
❞❛ s♦♠❛ ❞❛s ár❡❛s ❞❡ t♦❞♦s ♦s tr✐â♥❣✉❧♦s q✉❛♥❞♦ n → +∞✳
✶✹✳ ❯♠ ❝ír❝✉❧♦ ❞❡ r❛✐♦ r t❡♠ ✐♥s❝r✐t♦ ✉♠ q✉❛❞r❛❞♦❀ ❡st❡ t❡♠ ✐♥s❝r✐t♦ ✉♠ ❝ír❝✉❧♦ ♦ q✉❛❧
t❡♠ ✐♥s❝r✐t♦ ✉♠ q✉❛❞r❛❞♦✱ ❡ ❛ss✐♠ s✉❝❡ss✐✈❛♠❡♥t❡ n ✈❡③❡s✳ ❉❡t❡r♠✐♥❡ ♦ ❧✐♠✐t❡ ❞❛s
s♦♠❛ ❞❛s ár❡❛s ❞❡ t♦❞♦s ♦s q✉❛❞r❛❞♦s q✉❛♥❞♦ n → +∞✳ ❉❡ ♠♦❞♦ ❛♥á❧♦❣♦ ♣❛r❛ ❛
s♦♠❛ ❞❛s ár❡❛s ❞❡ t♦❞♦s ♦s ❝ír❝✉❧♦s✳
✶✺✳ ▼♦str❡ q✉❡✱ s❡ f ❡ g sã♦ ❞✉❛s ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ❡♠ (a, +∞) ❡ (b, +∞) r❡s♣❡❝t✐✲
✈❛♠❡♥t❡❀ s❡ lim .f (x) = L ❡ lim .g(x) = M ❡♥tã♦✿
xto+∞
xto+∞
lim [C · f (x)] = C · L ♣❛r❛ C ❝♦♥st❛♥t❡✳
❛✮
x→+∞
❜✮
lim [f (x) + g(x)] = lim .f (x) + lim .g(x) = L + M
x→+∞
❝✮
x→+∞
x→+∞
lim [f (x) × g(x)] = lim .f (x) × lim .g(x) = L × M
x→+∞
❞✮
lim
x→+∞
x→+∞
x→+∞
lim .f (x)
L
f (x)
x→+∞
=
=
❞❡s❞❡ q✉❡ M 6= 0✳
g(x)
lim .g(x)
M
x→+∞
✶✻✳ ❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
4.
7.
cos x
limπ
x→ 2 (π − 2x)
x
lim √
x→0
1 − cos x
lim (sec x − tan x)
x→ π2
2.
5.
8.
lim x. tan
x→+∞
a
x
senx + x
x→ 4
x
(1 − senx)3
limπ
x→ 2 (1 + cos 2x)3
limπ
✷✶✸
3.
6.
9.
lim
x→0
1−
√
cos x
x2
arctan 3x
x→0 arcsen4x
1 − cos 2x
limπ
π
x→ 3 sen(x − )
3
lim
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
10.
12.
14.
16.
18.
20.
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
√
x4 − x4 sen2 x
lim
x→0
1 − cos x
x.sen(sen2x)
lim
x→0 1 − cos(sen4x)
√
2 − cos x − cos x
lim
x→0
x2
1
2
−
lim
x→0 sen2 x
1 − cos x
tan(h + x) − tan h
lim
x→0
x
sec(h + x) − sec h
lim
x→0
x
R
√
√
x( 1 + cos x − 2)
√
lim
x→0
1 − cos x
sen(h + x) − senh
lim
x→0
x
cot(h + x) − cot h
lim
x→0
x
tan ax
lim
x→0 (1 + cos ax)(sec ax)
cos(h + x) − cos h
lim
x→0
x
100sen3x + 200 cos x
lim
x→+∞
x
11.
13.
15.
17.
19.
21.
✶✼✳ ❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
4.
7.
senx
x→∞ x
Ln cos x
lim
x→0
x2
lim
1
]
lim x [1 − cos
x→∞
x
2
ax − a−x
a>0
✶✵✳
lim x
x→∞ a + a−x
1 − cos(1 − cos x)
✶✷✳
lim
x→0
x
ax
a>0
✶✹✳
lim
x→∞ ax + 1
√
✶✽✳ ❱❡r✐✜❝❛r q✉❡ lim x x = 1✳
2.
5.
8.
arctan x
x→∞
x
arcsenx
lim
x→1 tan πx
2
√
lim senx cos x
lim
x→0
✶✶✳
✶✸✳
✶✺✳
3.
6.
9.
x + senx
x→∞ x + cos x
x
1
lim 1 + n
x→+∞
x
senx
senx x−senx
lim
x→0
x
lim
q
√
√
lim x( x2 + x4 + 1 − x 2)
x→∞
lim
√
x
lim
√
x
x→0
x→0
cos x + senx
cos x + asenbx
x→+∞
✶✾✳ ▼♦str❡ q✉❡ s❡ lim f (x) = ∞✱ ❡♥tã♦ ❡①✐st❡ ✉♠❛ s❡q✉ê♥❝✐❛ {xn }n∈N+ ❞❡ ♥ú♠❡r♦s
x→∞
r❡❛✐s t❛✐s q✉❡ f (xn ) > n✳
✷✶✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
▼✐s❝❡❧â♥❡❛ ✸✲✶
✶✳ ❙✉♣♦♥❤❛✲s❡ q✉❡ ❛s ❢✉♥çõ❡s f (x) ❡ g(x) tê♠ ❛ s❡❣✉✐♥t❡ ♣r♦♣r✐❡❞❛❞❡✿
❡ s❡
✧P❛r❛ ❝❛❞❛ ε > 0 ❡ t♦❞♦ x ∈ R❀ s❡ 0 <| x−2 |< sen2 (
0 <| x − 2 |< ε2 ✱
❡♥tã♦
| g(x) − 4 |< ε✳✧
ε2
)+ε✱ ❡♥tã♦ | f (x)−2 |< ε
9
P❛r❛ ❝❛❞❛ ε > 0 ❛❝❤❛r ✉♠ δ > 0 ❞❡ ♠♦❞♦ q✉❡✱ ♣❛r❛ t♦❞♦ x ∈ R ✿
✶✳
❙❡ 0 <| x − 2 |< δ ✱ ❡♥tã♦ | f (x) + g(x) − 6 |< ε✳
✷✳
❙❡ 0 <| x − 2 |< δ ✱ ❡♥tã♦ | f (x) · g(x) − 8 |< ε✳
✸✳
❙❡ 0 <| x − 2 |< δ ✱ ❡♥tã♦
1
1
< ε✳
−
g(x) 4
✹✳
❙❡ 0 <| x − 2 |< δ ✱ ❡♥tã♦
f (x) 1
−
< ε✳
g(x) 2
f (x)
= 0✳
x→0 x
✷✳ ▼♦str❡ q✉❡✱ s❡ lim f (x) = 0 ✱ ❡♥tã♦ lim
x→0
✸✳ ▼♦str❡ q✉❡✿
✶✳
lim+ f (x) = lim− f (−x)
x→0
✸✳
✷✳
x→0
2
✹✳
lim f (x ) = lim+ f (x)
x→0
✹✳ ❙❡❥❛ f (x) =
x→0
(
lim f (| x |) = lim+ f (x)
x→0
lim
x→0−
x→0
f ( x1 )
= lim f (x)
x→−∞
0, s❡✱ x ∈ Q
1, s❡✱ x ∈ I = R − Q
▼♦str❡ q✉❡ ♥ã♦ ❡①✐st❡ ♦ ❧✐♠✐t❡ lim .f (x)✱ q✉❛❧q✉❡r q✉❡ s❡❥❛ a ∈ R✳
x→a
✺✳ ❙❡❥❛ f (x) =
(
x,
s❡✱ x ∈ Q
−x, s❡✱ x ∈ I = R − Q
▼♦str❡ q✉❡ ♥ã♦ ❡①✐st❡ ♦ ❧✐♠✐t❡ ✱ ♣❛r❛ q✉❛❧q✉❡r a 6= 0✳
f (x)
f (ax)
= L ❡ a 6= 0✱ ❡♥tã♦ lim
= aL
x→0 x
x→0
x
✻✳ ▼♦str❡ q✉❡ s❡ lim
(ax + 1)n
✼✳ ❈❛❧❝✉❧❛r lim
✳ ❈♦♥s✐❞❡r❡ s❡♣❛r❛❞❛♠❡♥t❡ ♦s ❝❛s♦s ❡♠ q✉❡ n s❡❥❛✿ ❛✮ ✉♠
x→∞ xn + A
✐♥t❡✐r♦ ♣♦s✐t✐✈♦❀ ❜✮ ✉♠ ✐♥t❡✐r♦ ♥❡❣❛t✐✈♦❀ ❝✮ ③❡r♦✳
✷✶✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✽✳ ❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
ex−2 − e2−x
x→2 sen(x − 2)
lim
4.
1 − cos x −
x→0
x4
7.
xn
lim
x→+∞ ex
lim
2.
x2
2
n∈N
5.
8.
limπ
x→ 2
tan x
tan 3x
3.
tan x − x
6.
x→0 x − senx
" r #4x
15
lim cos
9.
x→0
x
lim
ex−3 + e3−x − 2
x→3 1 − cos(x − 3)
lim
Lnx
x→+∞ xα
lim
xα
lim
x→+∞ ex
α > 0, α ∈
/N
α > 0, α ∈
/N
✾✳ ▼♦str❡ ❛tr❛✈és ❞❡ ✉♠ ❡①❡♠♣❧♦ q✉❡ s❡ ❡①✐st❡ ✉♠❛ s❡q✉ê♥❝✐❛ {xn }n∈N+ ❞❡ ♥ú♠❡r♦s
r❡❛✐s t❛✐s q✉❡ f (xn ) > n✱ ❡♥tã♦ ♥ã♦ ♥❡❝❡ss❛r✐❛♠❡♥t❡ ❡①✐st❡ ♦ ❧✐♠✐t❡ ❞❡ f (xn ) q✉❛♥❞♦
n → +∞✳
✶✵✳ ❙❡❥❛♠ f : [a, b] −→ R ❡ g : [a, b] −→ R ❢✉♥çõ❡s t❛✐s q✉❡✿
lim
x→c
f (x)
=1
g(x)
⇒
lim f (x) = lim g(x)
x→c
x→c
♣❛r❛ c ∈ (a, b)✳
✶✶✳ ❉❡♠♦♥str❡ q✉❡✱ lim .f (x) = L s❡✱ ❡ s♦♠❡♥t❡ s❡ lim+ .f (x) = lim− .f (x) = L✳
x→a
x→a
x→a
✶✷✳ ❯♠ ❡q✉✐♣❛♠❡♥t♦ ❢♦✐ ❝♦♠♣r❛❞♦ ♣♦r ❘$20.000 ❡ ❡s♣❡r❛✲s❡ q✉❡ s❡✉ ✈❛❧♦r ✜♥❛❧ ❞❡♣♦✐s
❞❡ 10 ❛♥♦s ❞❡ ✉s♦ s❡❥❛ R$1.500✳ ❙❡ ♦ ♠ét♦❞♦ ❞❛ ❧✐♥❤❛ r❡t❛ ❢♦r ✉s❛❞♦ ♣❛r❛ ❞❡♣r❡✲
❝✐❛r ♦ ❡q✉✐♣❛♠❡♥t♦ ❞❡ ❘$20.000 ❛ ❘$1.500 ❡♠ 10 ❛♥♦s✱ q✉❛❧ ♦ ✈❛❧♦r ❧íq✉✐❞♦ ❞♦
❡q✉✐♣❛♠❡♥t♦ ❞❡♣♦✐s ❞❡ 6 ❛♥♦s❄✳ ◗✉❛♥❞♦ ♦ ✈❛❧♦r ❞♦ ❡q✉✐♣❛♠❡♥t♦ é 0 ✭③❡r♦✮ r❡❛✐s❄
✷✶✻
09/02/2021
❈❛♣ít✉❧♦ ✹
❈❖◆❚■◆❯■❉❆❉❊
❑❛r❧ ❚❤❡♦❞♦r ❲✐❧❤❡❧♠ ❲❡✐❡rstr❛ss ♥❛s❝❡✉ ❡♠ ❖st❡♥✲
❢❡❧❞✱ ♥♦ ❞✐str✐t♦ ❞❡ ▼ü♥st❡r✱ ❆❧❡♠❛♥❤❛✱ ♥♦
1815✱
❡ ❢❛❧❡❝❡✉ ❡♠ ❇❡r❧✐♥✱ ❡♠
14
❈♦♠
19
31
❞❡ ❢❡✈❡r❡✐r♦ ❞❡
❞❡ ♦✉t✉❜r♦ ❞❡
1897✳
❛♥♦s✱ ✐♥❣r❡ss♦✉ ❛♦ ■♥st✐t✉t♦ ❈❛tó❧✐❝♦ ❞❡ P❛❞❡r❜♦r♥✳
❙✉❛ ❛t✉❛çã♦ ♥❛ ❊s❝♦❧❛ ❢♦✐ ❜r✐❧❤❛♥t❡✱ ❝♦♥q✉✐st❛♥❞♦✱ ❝♦♠ r❡❣✉❧❛✲
r✐❞❛❞❡ ❡s♣❛♥t♦s❛✱ t♦❞♦s ♦s ♣rê♠✐♦s q✉❡ ❛❧♠❡❥❛✈❛✳ ▼❛tr✐❝✉❧♦✉✲s❡
♥❛ ❊s❝♦❧❛ ❞❡ ▼ü♥st❡r✱ ❡♠
❞❡r♠❛♥♥
s❡ q✉❡
13
1839✱
❝♦♥❤❡❝❡♥❞♦ ❛❧✐ ❈❤r✐st♦♣❤ ●✉✲
(1798−1851)✱ ❡s♣❡❝✐❛❧✐st❛ ❡♠ ❢✉♥çõ❡s ❡❧í♣t✐❝❛s✳
❈♦♥t❛✲
❛❧✉♥♦s ❝♦♠♣❛r❡❝❡r❛♠ à ❛✉❧❛ ✐♥❛✉❣✉r❛❧ ❞❡ ●✉❞❡r♠❛♥♥
❡ q✉❡ à s❡❣✉♥❞❛ ❛✉❧❛ só ❝♦♠♣❛r❡❝❡✉ ❲❡✐❡rstr❛ss✳
❊♠
❚❤❡♦❞♦r ❲❡✐❡rstr❛ss
1841✱
❲❡✐❡rstr❛ss ❛♣r❡s❡♥t♦✉✲s❡ ♣❛r❛ ♦s ❡①❛♠❡s ✜♥❛✐s✱
❝♦♠♣♦st♦s ❞❡ ✉♠❛ ♣❛rt❡ ❡s❝r✐t❛ ❡ ✉♠❛ ♣❛rt❡ ♦r❛❧✳ P❛r❛ ♦ ❡①❛♠❡
❡s❝r✐t♦✱ três t❡♠❛s ❢♦r❛♠ s✉❣❡r✐❞♦s✳ ❯♠ ❞♦s ♣r♦❜❧❡♠❛s ❡r❛ ❡①✲
tr❡♠❛♠❡♥t❡ ❝♦♠♣❧✐❝❛❞♦✿ ✏ ❉❡t❡r♠✐♥❛r ❞❡s❡♥✈♦❧✈✐♠❡♥t♦s ❡♠ sér✐❡ ❞❡ ♣♦tê♥❝✐❛s ❞❛s ❢✉♥çõ❡s ❡❧í♣✲
t✐❝❛s✑✳ ❑❛r❧✱ ❞❡♣♦✐s ❞❡ ✉♠ ❛♥♦ ❞❡ tr❛❜❛❧❤♦s✱ ❝♦♥s❡❣✉✐✉ r❡s♦❧✈ê✲❧♦✱ r❡❝❡❜❡♥❞♦ ❡❧♦❣✐♦s❛s r❡❢❡rê♥❝✐❛s
❞❡ ●✉❞❡r♠❛♥♥✳ P❛ss❛♥❞♦ ❡♠ s❡❣✉✐❞❛✱ ♣❡❧♦ ❡①❛♠❡ ♦r❛❧✱ ❲❡✐❡rstr❛ss ♦❜t❡✈❡ ❛✜♥❛❧✱ s❡✉ tít✉❧♦ ❞❡
♣r♦❢❡ss♦r✱ ❛❝♦♠♣❛♥❤❛❞♦ ❞❡ ✉♠ ❝❡rt✐✜❝❛❞♦ ❡s♣❡❝✐❛❧✱ ♣♦r ✏ s✉❛s ❝♦♥tr✐❜✉✐çõ❡s à ♠❛t❡♠át✐❝❛✳✑
❊♠
1842✱
❲❡✐❡rstr❛ss ❢♦✐ ♣r♦❢❡ss♦r ❛✉①✐❧✐❛r ❞❡ ♠❛t❡♠át✐❝❛ ❡ ❢ís✐❝❛ ♥♦ Pr♦✲●②♠♥❛s✐✉♠ ❞❡
❉❡✉ts❝❤✲❑rö♥❡✱ ♥❛ Prúss✐❛ ❖r✐❡♥t❛❧✳ ❙❡✐s ❛♥♦s ♠❛✐s t❛r❞❡✱ ❢♦✐ tr❛♥s❢❡r✐❞♦ ♣❛r❛ ♦ ✐♥st✐t✉t♦ ❞❡
❇r❛✉♥s❜❡r❣✱ ♦♥❞❡ ♣❡r♠❛♥❡❝❡✉ ❞❡
1848
❛
1854✳
❖ ❝❛tá❧♦❣♦ ❞❛ ❡s❝♦❧❛✱ ❞♦ ❛♥♦ ❞❡
1848✱
❝♦♥té♠ ✉♠
tr❛❜❛❧❤♦ ❞❡ ❲❡✐❡rstr❛ss ✏ ❈♦♥tr✐❜✉✐çõ❡s ♣❛r❛ ❛ t❡♦r✐❛ ❞❛s ✐♥t❡❣r❛✐s ❆❜❡❧✐❛♥❛s✑✱ q✉❡ ❝❡rt❛♠❡♥t❡ ❤á
❞❡ t❡r ♣r♦✈♦❝❛❞♦ ♦ ❡s♣❛♥t♦ ❞❡ s❡✉s ❝♦❧❡❣❛s✳
❋♦✐ ♥♦♠❡❛❞♦ ♣r♦❢❡ss♦r ❞❡ ♠❛t❡♠át✐❝❛ ❞❛ ❊s❝♦❧❛ P♦❧✐té❝♥✐❝❛ ❞❡ ❇❡r❧✐♠ ❡♠ ❥✉❧❤♦ ❞❡
1856✳
❖ ❡st✉❞♦ ❞❛ ♠❛t❡♠át✐❝❛✱ ❡♠ ♠♦❧❞❡s ♠❛✐s ♦✉ ♠❡♥♦s ✐♥t✉✐t✐✈♦s✱ s♦❢r❡✉ ✉♠ sér✐♦ ❝❤♦q✉❡ ♥♦
♠♦♠❡♥t♦ ❡♠ q✉❡ ❲❡✐❡rstr❛ss ✐♥✈❡♥t♦✉✿
✏❯♠❛ ❝✉r✈❛ ❝♦♥tí♥✉❛ q✉❡ ♥ã♦ ❛❞♠✐t✐❛ t❛♥❣❡♥t❡ ❡♠
q✉❛❧q✉❡r ❞❡ s❡✉s ♣♦♥t♦s✑✳
❲❡✐❡rstr❛ss ❞❡❞✉③ ♦ s✐st❡♠❛ ❞❡ ♥ú♠❡r♦s r❡❛✐s
R
❛ ♣❛rt✐r ❞♦s ♥ú♠❡r♦s ♥❛t✉r❛✐s✳ ❉❡❞❡❦✐♥❞
✉t✐❧✐③❛ ♦s ✏ ❝♦rt❡s✑✱ ❡♥t❛♥t♦ q✉❡ ❲❡✐❡rstr❛ss ❡♠♣r❡❣❛ ❛s ❝❧❛ss❡s ❞❡ r❛❝✐♦♥❛✐s✳ ❆s ❞✉❛s t❡♦r✐❛s ❡stã♦
s✉❥❡✐t❛s à ♠❡s♠❛ ❝rít✐❝❛ q✉❡ ♦s ❧ó❣✐❝♦s ❛♣❧✐❝❛♠ às ✐❞❡✐❛s ❞❡ ❈❛♥t♦r✳ ❲❡✐❡rstr❛ss r❡♣r❡s❡♥t❛ ✉♠❛
❡s♣é❝✐❡ ❞❡ sí♥t❡s❡ ❞♦ ♠♦✈✐♠❡♥t♦ ❡♠ ❢❛✈♦r ❞❡ ♠❛✐♦r r✐❣♦r ♥❛ ♠❛t❡♠át✐❝❛✳
✷✶✼
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✹✳✶
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❈♦♥❝❡✐t♦s ❜ás✐❝♦s
■♥t✉✐t✐✈❛♠❡♥t❡✱ ♦ ❣rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ♥✉♠ ✐♥t❡r✈❛❧♦ (a, b) ⊆ R ♣♦❞❡ s❡r
❞❡s❡♥❤❛❞♦ s❡♠ ❧❡✈❛♥t❛r ♦ ❧á♣✐s ❞♦ ♣❛♣❡❧ ♣❛r❛ ❡ss❡ ✐♥t❡r✈❛❧♦ (a, b)✳ ◆❛s ❢✉♥çõ❡s ❞❡s❝♦♥tí✲
♥✉❛s✱ ❡st❡ ❣rá✜❝♦ é ✐♥t❡rr♦♠♣✐❞♦ ♥♦s ♣♦♥t♦s ❞❡ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡✳ ❉❡❝♦rr❡ ❞✐st♦ q✉❡ ✉♠❛
❢✉♥çã♦ é ❝♦♥tí♥✉❛ s❡ ❛ ♣❡q✉❡♥❛s ✈❛r✐❛çõ❡s ❞❡ ❡❧❡♠❡♥t♦s ❞♦ s❡✉ ❞♦♠í♥✐♦ ❝♦rr❡s♣♦♥❞❡♠ ♣❡✲
q✉❡♥❛s ✈❛r✐❛çõ❡s ♥❛s ✐♠❛❣❡♥s ❞❡st❡s ❡❧❡♠❡♥t♦s✳ ◆♦s ♣♦♥t♦s ♦♥❞❡ ❛ ❢✉♥çã♦ ♥ã♦ é ❝♦♥tí♥✉❛✱
❞✐③❡♠♦s q✉❡ ❛ ❢✉♥çã♦ é ❞❡s❝♦♥tí♥✉❛✱ ♦✉ q✉❡ s❡ tr❛t❛ ❞❡ ✉♠ ♣♦♥t♦ ❞❡ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡✳
❆ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❡ ❢✉♥çõ❡s é ✉♠ ❞♦s ♣r✐♥❝✐♣❛✐s ❝♦♥❝❡✐t♦s ❞❛ t♦♣♦❧♦❣✐❛✶ ✳
❙❡❥❛♠ f ❡ g ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ♥✉♠ ♠❡s♠♦ ✐♥t❡r✈❛❧♦✱ s❡❣✉♥❞♦ ♦s ❣rá✜❝♦s ♠♦str❛❞♦s
♥❛ ❋✐❣✉r❛ ✭✹✳✶✮✳
❋✐❣✉r❛ ✹✳✶✿
❖❜s❡r✈❡✲s❡ q✉❡ ❡st❛s ❢✉♥çõ❡s tê♠ ❝♦♠♣♦rt❛♠❡♥t♦s ❞✐st✐♥t♦s ♥♦ ♣♦♥t♦ x = a✳
❊♥t❛♥t♦ ♦ ❣rá✜❝♦ ❞❡ f ✈❛r✐❛ ❝♦♥t✐♥✉❛♠❡♥t❡ ♥❛s
♣r♦①✐♠✐❞❛❞❡s ❞❡ x = a✱ ✭♥ã♦ t❡♠ ❢✉r♦s✮❀ ♦ ❣rá✜❝♦
❞❡ g ❛♣r❡s❡♥t❛ ✉♠ s❛❧t♦ ♥♦ ♣♦♥t♦ ❞❡ ❛❜s❝✐ss❛ x = a✳
❆ ♣r♦♣r✐❡❞❛❞❡ q✉❡ t❡♠ ❛ ❢✉♥çã♦ f ✱ ❞❡ t❡r ♦ ❣rá✲
✜❝♦ ✈❛r✐❛♥❞♦ ❝♦♥t✐♥✉❛♠❡♥t❡ ♥❛s ♣r♦①✐♠✐❞❛❞❡s ❞♦
♣♦♥t♦ x = a✱ ♣♦❞❡ s❡r ❞❡s❝r✐t❛ ❞♦ ♠♦❞♦ s❡❣✉✐♥t❡✿
∀ ε > 0,
s❡ ❛❝♦♥t❡❝❡
∃ δ > 0 /. ∀ x ∈ D(f )
❋✐❣✉r❛ ✹✳✷✿
a − δ < x < a + δ ✱ ❡♥tã♦✿
f (a) − ε < f (x) < f (a) + ε
✭✹✳✶✮
●❡♦♠❡tr✐❝❛♠❡♥t❡✱ s✐❣♥✐✜❝❛ q✉❡✱ s❡ x ❡st❛ ♣ró①✐♠♦ ❞❡ a ❡♥tã♦ f (x) ❡st❛ ♣ró①✐♠♦ ❞❡
f (a)✱ ✐st♦ é lim .f (x) = f (a) ✭❋✐❣✉r❛ ✭✹✳✷✮✮✳
x→a
❆ ❡①♣r❡ssã♦ ✭✹✳✶✮ ♣♦❞❡ s❡r ❡s❝r✐t❛ ❞♦ ♠♦❞♦ s❡❣✉✐♥t❡✿
✶ ❆ t♦♣♦❧♦❣✐❛ é ♦ r❛♠♦ ❞❛ ♠❛t❡♠át✐❝❛ ❞❡❞✐❝❛❞❛ ❛♦ ❡st✉❞♦ ❞❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦s só❧✐❞♦s q✉❡ ♣❡r♠❛♥❡❝❡♠
✐♥❛❧t❡r❛❞♦s ♣♦r tr❛♥s❢♦r♠❛çõ❡s ❝♦♥tí♥✉❛s✳
✷✶✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P❛r❛ t♦❞♦✱
❙❡ ❛ ❢✉♥çã♦
ε > 0,
f (x)
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
∃ δ > 0/.
| x − a |< δ
✐♠♣❧✐❝❛
❝✉♠♣r❡ ❡st❛ ❝♦♥❞✐çã♦✱ ❞✐③❡♠♦s q✉❡
| f (x) − f (a) |< ε✳
f
é ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦
x = a✳
❉❡✜♥✐çã♦ ✹✳✶✳
❙❡❥❛ y = f (x) ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♥♦ ❝♦♥❥✉♥t♦ A ⊆ R✱ ❡ a ∈ A❀ ❞✐③✲s❡✱ q✉❡ f é ❝♦♥tí♥✉❛
♥♦ ♣♦♥t♦ x = a✱ s❡ s❛t✐s❢❛③ ❛s três ❝♦♥❞✐çõ❡s ✿
✐✮
❊①✐st❡
✐✐✮ ❊①✐st❡ x→a
lim .f (x)✳
f (x)✳
✐✐✐✮ x→a
lim .f (x) = f (a)✳
❙❡ ❛❧❣✉♠❛ ❞❛s três ❝♦♥❞✐çõ❡s ♥ã♦ s❡ ❝✉♠♣r❡✱ ❞✐③❡♠♦s q✉❡
f
é ❞❡s❝♦♥tí♥✉❛ ❡♠
x = a✳
❊①❡♠♣❧♦ ✹✳✶✳
❉❡t❡r♠✐♥❡ s❡ ❛ ❢✉♥çã♦ f (x) é ❝♦♥tí♥✉❛ ❡♠ x = 3✿
x2 − 9
x2 − 2x − 3
f (x) =
3
2
❙♦❧✉çã♦✳
✐✮
✐✐✮
✐✐✐✮
f (3) =
s❡✱
0 < x < 5,
x 6= 3
x=3
s❡
3
✳
2
3
(x + 3)(x − 3)
x2 − 9
= lim
= ✱
x→3 (x + 1)(x − 3)
x→3 x2 − 2x − 3
2
lim .f (x) = lim
x→3
lim .f (x) =
x→3
P♦rt❛♥t♦✱
f (x)
❡①✐st❡ ♦ ❧✐♠✐t❡✳
3
✳
2
é ❝♦♥tí♥✉❛ ❡♠
x = 3✳
❊①❡♠♣❧♦ ✹✳✷✳
❙✉♣♦♥❤❛ q✉❡ ♦ ❝✉st♦ ❞❡ tr❛♥s♣♦rt❡ ❞❡ t❛①❛ ♣♦st❛❧ s❡❥❛✿ R$0, 30 ❛té 300 ❣r❛♠❛s✱ ❡
R$1, 70 s❡ ♦ ♣❡s♦ ❢♦r ♠❛✐♦r q✉❡ 300 ❣r❛♠❛s ❡ ♠❡♥♦r ♦✉ ✐❣✉❛❧ ❛ 500 ❣r❛♠❛s✳ ❙❡ x ❣r❛♠❛s
r❡♣r❡s❡♥t❛ ♦ ♣❡s♦ ❞❡ ✉♠❛ ❝❛rt❛ (0 < x ≤ 500)✱ ❡①♣r❡ss❡ ❛ t❛①❛ ♣♦st❛❧ ❝♦♠♦ ❢✉♥çã♦ ❞❡ x✳
❙♦❧✉çã♦✳
❚❡♠♦s
f (x) = 0, 30x
s❡
0 < x ≤ 300❀ f (x) = 1, 70x
f (x) =
(
0, 30x,
1, 70x,
♦❜s❡r✈❡ q✉❡ ❛ ❢✉♥çã♦ ♥ã♦ é ❝♦♥tí♥✉❛ ❡♠
s❡✱
s❡✱
s❡
300 < x ≤ 500❀
✐st♦ é✿
0 < x ≤ 300
;
300 < x ≤ 500
x = 300✳
✷✶✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡♠♣❧♦ ✹✳✸✳
❉❛❞❛ ❛ ❢✉♥çã♦✿
2
x − 6x + 1,
f (x) =
2x + 6,
3
x − 15,
❉❡t❡r♠✐♥❡ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❡
f
❡♠
s❡✱
s❡✱
s❡✱
x=2
❡
1<x≤2
2<x≤3
3<x<5
x = 3✳
❙♦❧✉çã♦✳
P❛r❛ ♦ ♣♦♥t♦ x = 2✳
❡①✐st❡✳
✐✮ f (2) = −7
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞❡ lim .f (x) é ♥❡❝❡ssár✐♦ ❝❛❧❝✉❧❛r ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s✳
✐✐✮
x→2
lim− .f (x) = lim− (x2 − 6x + 1) = −7;
x→2
x→2
lim .f (x) = lim+ (2x + 6) = 10
x→2+
x→2
P♦rt❛♥t♦✱ ♥ã♦ ❡①✐st❡ lim .f (x)❀ ❛ss✐♠✱ f (x) ♥ã♦ é ❝♦♥tí♥✉❛ ❡♠ x = 2✳
x→2
P❛r❛ ♦ ♣♦♥t♦ x = 3✳
✐✮ f (3) = 12
❡①✐st❡✳
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞❡ lim .f (x) é ♥❡❝❡ssár✐♦ ❝❛❧❝✉❧❛r ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s✳
✐✐✮
x→3
lim .f (x) = lim− (2x + 6) = 12;
x→3−
x→3
lim .f (x) = lim+ (x3 − 15) = 12
x→3+
x→3
P♦rt❛♥t♦✱ lim .f (x) = 12❀ ❡①✐st❡✳
x→3
✐✐✐✮
lim .f (x) = 12 = f (3)✳
x→3
❖❜s❡r✈❛çã♦ ✹✳✶✳
✐✮
❙✉♣♦♥❤❛ f (x) ❞❡s❝♦♥tí♥✉❛ ❡♠ x = a✱ ❞❡ ♠♦❞♦ q✉❡ ❡①✐st❛♠ f (a) ∈ R ❡ lim .f (x)
x→a
♣♦ré♠ lim .f (x) 6= f (a) ✱ ❡♥tã♦ ❞✐③✲s❡ q✉❡ ❛ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ é ❡✈✐tá✈❡❧ ♦✉ r❡♠♦✈í✈❡❧ ❀
x→a
♣♦✐s ♣♦❞❡♠♦s r❡❞❡✜♥✐r ❛ ❢✉♥çã♦ f (x) ❞❡ ♠♦❞♦ q✉❡ lim .f (x) = f (a) ✱ ✐st♦ é ❛ ❢✉♥çã♦
x→a
f r❡❞❡✜♥✐❞❛ r❡s✉❧t❛ s❡r ❝♦♥tí♥✉❛ ❡♠ x = a✳
✐✐✮
❙❡ ❛ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ ❡♠ x = a ♥ã♦ é ❡✈✐tá✈❡❧ ♦✉ r❡♠♦✈í✈❡❧✱ ❝❤❛♠❛✲s❡ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡
❡ss❡♥❝✐❛❧ ❀ ❡st❡ ❝❛s♦ ♦❝♦rr❡ q✉❛♥❞♦ lim .f (x) ♥ã♦ ❡①✐st❡ ♦✉ ♥ã♦ é ✜♥✐t♦✳
x→a
❊①❡♠♣❧♦ ✹✳✹✳
❉❡t❡r♠✐♥❡ ♦s ♣♦♥t♦s ❞❡ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❢✉♥çã♦✿
❙♦❧✉çã♦✳
✷✷✵
f (x) =
6x + 24
✳
+ 3x − 4
x2
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❖❜s❡r✈❡ q✉❡ x2 + 3x − 4 = (x + 4)(x − 1)✳ ❖ ❞❡♥♦♠✐♥❛❞♦r ❞❛ ❢✉♥çã♦ é ③❡r♦ q✉❛♥❞♦
x = −4 ♦✉ x = 1✱ ❡ss❡s sã♦ ♦s ♣♦ssí✈❡✐s ♣♦♥t♦s ❞❡ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡✱ ♣♦✐s f ♥ã♦ ❡st❛
6
❡ lim .f (x) = ∞✳
❞❡✜♥✐❞❛ ♥❡ss❡s ♣♦♥t♦s ❡ ♦s ❧✐♠✐t❡s r❡s♣❡❝t✐✈♦s sã♦✿ lim .f (x) = −
x→1
x→−4
5
❆ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ ❡♠ x = 1 é ❡ss❡♥❝✐❛❧ ❡ ♥♦ ♣♦♥t♦ x = −4 é ❡✈✐tá✈❡❧❀ ♣❛r❛ ♦s ❞❡♠❛✐s
✈❛❧♦r❡s ❞❡ x ❛ ❢✉♥çã♦ é ❝♦♥tí♥✉❛✳
6x + 24
s❡✱ x 6= −4
+ 3x − 4
P♦❞❡♠♦s r❡❞❡✜♥✐r ❛ ❢✉♥çã♦ f (x) ❛ss✐♠✿ g(x) =
−6
s❡✱ x = −4
5
❖❜s❡r✈❡ q✉❡ g(x) é ❝♦♥tí♥✉❛ ❡♠ x = −4✱ ❡♥t❛♥t♦ ❛ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ ❡♠ x = 1 é
x2
❡ss❡♥❝✐❛❧✳
P❛r❛ ❛❧❣✉♠❛s ❞❡♠♦♥str❛çõ❡s ❞❡ ♣r♦♣r✐❡❞❛❞❡s ❞❡ ❢✉♥çõ❡s ❝♦♥tí♥✉❛s✱ ❛❧❣✉♠❛s ✈❡③❡s é
út✐❧ ❛ s❡❣✉✐♥t❡ ❞❡✜♥✐çã♦✱ ❡q✉✐✈❛❧❡♥t❡ à ❉❡✜♥✐çã♦ ✭✹✳✶✮✳
❉❡✜♥✐çã♦ ✹✳✷✳
❙❡❥❛ y = f (x) ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♥♦ ❝♦♥❥✉♥t♦ A ⊆ R✱ ❡ a ∈ A❀ ❞✐③✲s❡✱ q✉❡ f é ❝♦♥tí♥✉❛
♥♦ ♣♦♥t♦ x = a✱ s❡✿
❉❛❞♦ ε > 0, ∃ δ > 0/. x ∈ B(a, δ)✱ ❡♥tã♦ f (x) ∈ B(f (a), ε)❀ ♦✉
❉❛❞♦ ε > 0, ∃ δ > 0/. |x − a| < δ ⇒ |f (x) − f (a)| < ε✳
❉❡✜♥✐çã♦ ✹✳✸✳ ❈♦♥t✐♥✉✐❞❛❞❡ ♥✉♠ ❝♦♥❥✉♥t♦
❯♠❛ ❢✉♥çã♦ f : A −→ R✱ ❞✐③✲s❡ q✉❡ é ❝♦♥tí♥✉❛ ♥♦ ❝♦♥❥✉♥t♦ B ⊆ A s❡✱ ❡ s♦♠❡♥t❡
s❡ é ❝♦♥tí♥✉❛ ❡♠ x = a, ∀ a ∈ B ✳
❊①❡♠♣❧♦ ✹✳✺✳
▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡ é ❝♦♥tí♥✉❛ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
❙♦❧✉çã♦✳
❙❡❥❛♠ k ∈ R ✉♠❛ ❝♦♥st❛♥t❡✱ ❡ f : A −→ R ❞❡✜♥✐❞❛ ♣♦r f (x) = k ∀ x ∈ A✱ ❡♥tã♦
f (a) = k ∀ a ∈ A✳ ▲♦❣♦✱ ❞❛❞♦ ε > 0 ❡①✐st❡ δ > 0✱ ♣♦✐s
| f (x) − f (a) |=| k − k |=| (x − a) + (a − x) |≤ 2 | x − a |< ε
⇒
δ=
ε
2
P♦rt❛♥t♦✱ s❡♥❞♦ x = a ✉♠ ❡❧❡♠❡♥t♦ ❛r❜✐trár✐♦✱ f (x) = k é ❝♦♥tí♥✉❛ ♥♦ ❝♦♥❥✉♥t♦ A✳
❊①❡♠♣❧♦ ✹✳✻✳
▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ f (x) = x2 é ❝♦♥tí♥✉❛ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
❙♦❧✉çã♦✳
✷✷✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❙❡❥❛ f : A −→ R ❞❡✜♥✐❞❛ ♣♦r f (x) = x2 ∀ x ∈ A✱ ❡♥tã♦ f (a) = a2 ♣❛r❛ x = a✱ ♦♥❞❡
a ∈ A❀ ❛ss✐♠ ❞❛❞♦ ε > 0✱ ❡①✐st❡ δ > 0 t❛❧ q✉❡✿
| f (x) − f (a) |=| x2 − a2 |=| x − a | · | x + a |< | x − a | (| x | + | a |)
✭✹✳✷✮
❙❡ a = 0 ❛ ❞❡s✐❣✉❛❧❞❛❞❡ é ✐♠❡❞✐❛t❛✳
P♦r ♦✉tr♦ ❧❛❞♦ s❡❥❛ a 6= 0✱ q✉❛♥❞♦ | x − a |< δ ❡ ❞❛ ♣r♦♣r✐❡❞❛❞❡ || x | − | a || < |
x − a | < δ s❡❣✉❡✲s❡ q✉❡ | x | < δ+ | a |✱ ❝♦♥s✐❞❡r❡ ✉♠ δ1 =
<
|a|
✱ ❡♥tã♦ t❡♠♦s | x |<
2
3|a|
|a|
+|a|=
2
2
✭✹✳✸✮
❉❡ ✭✹✳✷✮ ❡ ✭✹✳✸✮ s❡❣✉❡ q✉❡✿
| f (x) − f (a) | < | x − a | (| x | + | a |) <| x − a | .(
3|a|
5|a|
+ | a |) <
|x−a|< ε
2
2
2ε
|a|
,
} t❡♠♦s✱ ♣❛r❛ t♦❞♦ ε > 0 ❝✉♠♣r❡✲s❡ | f (x) −
2 5|a|
f (a) |< ε s❡♠♣r❡ q✉❡ | x − a |< δ ✳
❈♦♥s✐❞❡r❛♥❞♦ δ = min .{
Pr♦♣r✐❡❞❛❞❡ ✹✳✶✳
❙❡❥❛♠
f (x)
❡
g(x)
❞✉❛s ❢✉♥çõ❡s r❡❛✐s ❡ ❝♦♥tí♥✉❛s ❡♠
x=a
❡
k
✉♠❛ ❝♦♥st❛♥t❡ r❡❛❧✱
❡♥tã♦✿
✐✮
k · f (x) é ❝♦♥tí♥✉❛ ❡♠ x = a✳
✐✐✮ (f ± g)(x) é ❝♦♥tí♥✉❛ ❡♠ x = a✳
✐✐✐✮ (f · g)(x) é ❝♦♥tí♥✉❛ ❡♠ x = a✳
✐✈✮ | f | (x) é ❝♦♥tí♥✉❛ ❡♠ x = a✳
f
(x) é ❝♦♥tí♥✉❛ ❡♠ x = a✱ ❞❡s❞❡ q✉❡ g(a) 6= 0✳
✈✮
g
✭✐✐✮
❉❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❡ f (x) ❡ g(x) t❡♠♦s lim .f (x) = f (a) ❡
lim .g(x) = g(a)
x→a
x→a
❞❛ ❞❡✜♥✐çã♦ ❞❛ ❢✉♥çã♦ (f ± g)(x) = f (x) ± g(x) ❡ ❞❛ ♣r♦♣r✐❡❞❛❞❡ ❞❡ ❧✐♠✐t❡ ❞❛ s♦♠❛✱
s❡❣✉❡✲s❡ q✉❡✿
❉❡♠♦♥str❛çã♦✳
lim (f ± g)(x) = lim [f (x) ± g(x)] = lim .f (x) ± lim .g(x) = f (a) ± g(a) = (f ± g)(a)
x→a
x→a
x→a
x→a
P♦rt❛♥t♦ ❛ ❢✉♥çã♦ (f ± g)(x) é ❝♦♥tí♥✉❛ ❡♠ x = a✳
❆s ♦✉tr❛s ♣r♦♣r✐❡❞❛❞❡s ♠♦str❛♠✲s❡ ❛♣❧✐❝❛♥❞♦ ♣r♦♣r✐❡❞❛❞❡s ❞❡ ❧✐♠✐t❡✱ é ❡①❡r❝í❝✐♦ ♣❛r❛
♦ ❧❡✐t♦r✳
❖❜s❡r✈❛çã♦ ✹✳✷✳
❆ r❡❝í♣r♦❝❛ ❞❛ Pr♦♣r✐❡❞❛❞❡
✭✹✳✶✮
♥ã♦ ♥❡❝❡ss❛r✐❛♠❡♥t❡ é ✈❡r❞❛❞❡✐r❛ ❝♦♠♦ s❡ ♠♦str❛
♥♦ s❡❣✉✐♥t❡ ❡①❡♠♣❧♦✳
✷✷✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡♠♣❧♦ ✹✳✼✳
❆s ❢✉♥çõ❡s r❡❛✐s f (x), g(x) ❡ h(x) ❞❡✜♥✐❞❛s ♣♦r✿
g(x) =
(
1, s❡✱ x ≤ 0
0, s❡✱ x > 0
h(x) =
f (x) =
(
(
0, s❡✱ x ≤ 0
1, s❡✱ x > 0
−1, s❡✱ x ≤ 0
1,
s❡✱ x > 0
♥ã♦ sã♦ ❝♦♥tí♥✉❛s ❡♠ x = 0✳
P♦ré♠✱ ♣❛r❛ t♦❞♦ x ∈ R t❡♠♦s f (x) + g(x) = 1, f (x) · g(x) = 0 ❡ | h(x) |= 1✱❛ss✐♠✱
❡st❛s três ú❧t✐♠❛s ❢✉♥çõ❡s sã♦ ❝♦♥tí♥✉❛s ❡♠ t♦❞♦ R✳
Pr♦♣r✐❡❞❛❞❡ ✹✳✷✳
✐✮
f : R −→ R ✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛✱ ✐st♦ é f (x) = a0 xn + a1 xn−1 + a2 xn−2 + · · · +
an−1 x + an , a0 6= 0 ❡♥tã♦ f (x) é ❝♦♥tí♥✉❛ ∀ x ∈ R✳
❙❡❥❛
✐✐✮
f : R −→ R
❙❡❥❛
✉♠❛ ❢✉♥çã♦ r❛❝✐♦♥❛❧✱ ✐st♦ é✿
f (x) =
❡♥tã♦
f (x)
a0 xn + a1 xn−1 + a2 xn−2 + · · · + an−1 x + an
b0 xm + b1 xm−1 + b2 xm−2 + · · · + bm−1 x + bm
é ❝♦♥tí♥✉❛ ♥♦ ❝♦♥❥✉♥t♦✿
{ x ∈ R/.
b0 xm + b1 xm−1 + b2 xm−2 + · · · + bm−1 x + bm 6= 0 }
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✹✳✽✳
❉❡t❡r♠✐♥❛r ♦s ✈❛❧♦r❡s ❞❡
x2 − 1
f (x) = 2
x −9
❛✮
x✱
♣❛r❛ ♦s q✉❛✐s ❛s ❢✉♥çõ❡s ❞❛❞❛s s❡❥❛♠ ❝♦♥tí♥✉❛s✿
❜✮
g(x) =| x2 − 16 |
❝✮ h(x) = x5 (x + 3)7
❙♦❧✉çã♦✳
✭❛✮
❚❡♠♦s f (x) é ❢✉♥çã♦ r❛❝✐♦♥❛❧ ❡ s❡✉ ❞♦♠í♥✐♦ é D(f ) = { x ∈ R/. x 6= ±3 }❀ ❧♦❣♦ ❡❧❛
é ❝♦♥tí♥✉❛ ❡♠ D(f )✳
✭❜✮
❆ Pr♦♣r✐❡❞❛❞❡ ✭✹✳✶✮✲ ✈✮✱ ❣❛r❛♥t❡ q✉❡ g(x) =| x2 − 16 | s❡❥❛ ❝♦♥tí♥✉❛ ♣❛r❛ t♦❞♦ x ∈ R✳
✭❝✮
❆ ❢✉♥çã♦ h(x) = x5 (x + 3)7 é ♣♦❧✐♥ô♠✐❝❛✱ ❡♥tã♦ ❡❧❛ é ❝♦♥tí♥✉❛ ♣❛r❛ t♦❞♦ x ∈ R✳
Pr♦♣r✐❡❞❛❞❡ ✹✳✸✳
f : A −→ R ❡ g : B −→ R ❢✉♥çõ❡s r❡❛✐s t❛✐s q✉❡ Im(f ) ⊆ B ✱ s❡♥❞♦ f
x = a ❡ g ❝♦♥tí♥✉❛ ❡♠ y = f (a)✱ ❡♥tã♦ g ◦ f é ❝♦♥tí♥✉❛ ❡♠ x = a✳
❈♦♥s✐❞❡r❡
❝♦♥tí♥✉❛ ❡♠
✷✷✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡♠♦♥str❛çã♦✳
❆ ♠♦str❛r q✉❡ ❞❛❞♦ ε > 0, ∃ δ > 0 /. | g(f (x)) − g(f (a)) |< ε s❡♠♣r❡ q✉❡
| x − a |< δ ✳
❈♦♠ ❡❢❡✐t♦✱ ❞♦ ❢❛t♦ g ❝♦♥tí♥✉❛ ❡♠ f (a) = b t❡♠♦s✱ ❞❛❞♦ ε > 0 ∃ δ1 > 0/. s❡ y ∈
B, | g(y) − g(b) |< ε s❡♠♣r❡ q✉❡✿
✭✹✳✹✮
| y − b |< δ1
P♦r ♦✉tr♦ ❧❛❞♦✱ f é ❝♦♥tí♥✉❛ ❡♠ x = a✱ ❡♥tã♦ ❞❛❞♦ ε1 > 0✱ ❡♠ ♣❛rt✐❝✉❧❛r ♣♦❞❡♠♦s
❝♦♥s✐❞❡r❛r ε1 = δ1 ✱ ❡①✐st❡ δ > 0 t❛❧ q✉❡ s❡ x ∈ A, | f (x) − f (a) |< δ1 s❡♠♣r❡ q✉❡
✭✹✳✺✮
| x − a |< δ
❉♦ ❢❛t♦ Im(f ) ⊆ B ♣♦❞❡♠♦s ❡❢❡t✉❛r ❛ ❝♦♠♣♦s✐çã♦ ❡♥tr❡ ❛s ❢✉♥çõ❡s g ❡ f ♣❛r❛ ♦❜t❡r
(g ◦ f )(x) = g(f (x)) ♣❛r❛ t♦❞♦ x ∈ A ❡ y = f (x)❀ ❡♥tã♦ ❞❡ ✭✹✳✹✮ ❡ ✭✹✳✺✮ ♦❜té♠✲s❡ q✉❡✱
❞❛❞♦ ε > 0, ∃ δ > 0 /. s❡ x ∈ A, | g(y) − g(b) |=| g(f (x)) − g(f (a)) |< ε s❡♠♣r❡
q✉❡ | y − b |=| f (x) − f (a) |< δ1 s❡♠♣r❡ q✉❡ | x − a |< δ ✳
P♦rt❛♥t♦✱ ❞❛❞♦ ε > 0, ∃ δ > 0/. s❡ x ∈ A, | g(f (x)) − g(f (a)) |< ε s❡♠♣r❡ q✉❡
| x − a |< δ ✳
Pr♦♣r✐❡❞❛❞❡ ✹✳✹✳
❙❡❥❛♠
✐✮
f : A −→ R
❡
✐✐✮
lim .f (x) = b
x→a
❡♥tã♦
g : B −→ R
g
❢✉♥çõ❡s r❡❛✐s t❛✐s q✉❡
❝♦♥tí♥✉❛ ❡♠
Im(f ) ⊆ B
❡✿
y = b✳
lim g(f (x)) = g(lim .f (x)) = g(b)
x→a
x→a
❉❡♠♦♥str❛çã♦✳
❉❡✜♥✐♠♦s h(x) =
(
f (x), s❡✱ x 6= a
0,
s❡✱ x = a
❞❛ ❤✐♣ót❡s❡ ✐✮ t❡♠♦s h é ❝♦♥tí♥✉❛ ❡♠ x = a❀ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✹✳✸✮ ❛ ❢✉♥çã♦ goh é
❝♦♥tí♥✉❛ ❡♠ x = a✱ ✐st♦ é✿ lim (g ◦ f )(x) = (g ◦ h)(a) = g(h(a)) = g(b) = g(lim ·f (x))✳
x→a
x→a
P♦r ♦✉tr♦ ❧❛❞♦✱ ❛s ❢✉♥çõ❡s f ❡ h sã♦ ❞✐❢❡r❡♥t❡s s♦♠❡♥t❡ ♥♦ ♣♦♥t♦ x = a✱ ❡♥tã♦ lim (g ◦
x→a
h)(x) = lim (g ◦ f )(x)✳
x→a
P♦rt❛♥t♦✱ lim (g ◦ f )(x) = lim ·g(f (x)) = g(lim ·f (x))✳
x→a
x→a
x→a
✷✷✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✹✲✶
✶✳ ▼♦str❡ ✉t✐❧✐③❛♥❞♦
ε
❡
δ
q✉❡ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s é ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦
✐♥❞✐❝❛❞♦✳
1. f (x) = −5x + 6,
3. f (x) = x4 ,
2. f (x) = 3x2 + 5,
a = −2
a=3
4. f (x) = x2 + 5x + 6,
a=1
a = −1
B(a, r) ❡ ✉♠ ♥ú♠❡r♦ r❡❛❧ M > 0
| f (x) − f (a) |≤ M | x − a |, ∀ x ∈ B(a, r)✳ ▼♦str❡
✷✳ ❙✉♣♦♥❤❛ q✉❡ ❡①✐st❛ ✉♠❛ ✈✐③✐♥❤❛♥ç❛
❝✉♠♣r❡ ❛ ❝♦♥❞✐çã♦✿
❝♦♥tí♥✉❛ ❡♠
x = a✳
✸✳ ▼♦str❡ q✉❡ s❡
✹✳ ▼♦str❡ q✉❡
lim .f (x) = L > 0✱
x→a
f (x) = [|x|]
❡♥tã♦
x = a✱
é ❝♦♥tí♥✉❛ ❡♠ t♦❞♦
x=a
fi
é ❝♦♥tí♥✉❛ ❡♠
x = a✳
✷✳
f1 × f2 × f3 × · · · × fn
é ❝♦♥tí♥✉❛ ❡♠
x = a✳
✻✳ P❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✳
✶✳
✷✳
✸✳
✹✳
✺✳
f (x) =
f (x) =
(
é
♦♥❞❡
a ∈ R − Z✳
i = 1, 2, 3, · · · n
sã♦ ❢✉♥çõ❡s
❡♥tã♦✿
f1 + f2 + f3 + · · · + fn
(
f
x→a
✶✳
✐♥❞✐❝❛❞♦s✳
q✉❡
p
√
lim . n f (x) = n L✳
✺✳ ❯s❛♥❞♦ ♦ ♣r✐♥❝í♣✐♦ ❞❡ ✐♥❞✉çã♦✱ ♠♦str❡ q✉❡ s❡✿
❝♦♥tí♥✉❛s ❡♠
t❛❧ q✉❡
3x − 3
2
x2
1− | x |
s❡✱
s❡✱
s❡✱
s❡✱
x 6= 1
x=1
❉❡t❡r♠✐♥❡ s❡ ❡❧❛ é ❝♦♥tí♥✉❛ ♥♦s ♣♦♥t♦s
a=1
x ≥ −1
x < −1
a = −1
2
s❡✱
x<1
1−x
f (x) =
a = 1, a = −1
1− | x | s❡✱ x > 1
1
s❡✱
x=1
x + 2 s❡✱ − 2 ≤ x ≤ −1
f (x) =
a = 1, a = −1
1
s❡✱
−1<x<1
2 − x s❡✱ 1 ≤ x
2
x −x−2
s❡✱
x 6= ±2
| x2 − 4 |
a = 2, a = −2
f (x) =
4
s❡✱
x = ±2
3
✷✷✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✻✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
s❡✱ − 3 ≤ x ≤ 0
−1
f (x) =
x − 1 s❡✱ 0 < x < 2
5 − x2 s❡✱ 2 ≤ x
R
a=0 a=2
✼✳ ❉❛r ❡①❡♠♣❧♦ ❞❡ ✉♠❛ ❢✉♥çã♦ f ❞❡✜♥✐❞❛ ❡♠ R q✉❡ ♥ã♦ s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ ♥❡♥❤✉♠
♣♦♥t♦ x ∈ R✱ ♣♦ré♠ q✉❡✱ | f (x) | s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ t♦❞♦ R✳
✽✳ P❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s✱ ❞❡t❡r♠✐♥❡ s❡ é ♣♦ssí✈❡❧ ❞❡t❡r♠✐♥❛r ✉♠ ♥ú♠❡r♦ L ♣❛r❛
q✉❡ ❛ ❢✉♥çã♦ f s❡❥❛ ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦ x = a✳ ◆♦ ❝❛s♦ ❛✜r♠❛t✐✈♦ ❞❡t❡r♠✐♥❡ L✱ ❝❛s♦
❝♦♥trár✐♦ ❥✉st✐✜❝❛r s✉❛ r❡s♣♦st❛✳
✶✳
✷✳
✸✳
✹✳
✺✳
✻✳
✼✳
✽✳
2
x − 3x − 4
s❡✱ x 6= 4
f (x) =
a = 4✳
x−4
L
s❡✱ x = 4
s❡✱ x > 0
|x|
2
f (x) =
a = 0✳
1 − x s❡✱ x < 0
L
s❡✱ x = 0
2
s❡✱ | x |< 1
1−x
f (x) =
a = ±1✳
| x | −1 s❡✱ | x |> 1
L
s❡✱ | x |= 1
√
x−2
, s❡✱ x 6= 4
a = 4✳
f (x) =
x−4
L
s❡✱ x = 4
| x | −2 s❡✱ | x |< 2
f (x) =
a = 2, a = −2✳
4 − x2 s❡✱ | x |> 2
L
s❡✱ | x |= 2
2
Sgn(9 − x ) s❡✱ | x |> 4
f (x) =
a = 4✳
| x2 − 16 | −1 s❡✱ | x |< 4
L
s❡✱ | x |= 4
2
| x − 2x − 3 |
, s❡✱ x 6= 3
a = 3✳
f (x) =
x−3
L,
s❡✱ x = 3
(
4 − x2 s❡✱ | x |< 2
f (x) =
a = 2, a = −2✳
L
s❡✱ | x |> 2
✾✳ ❉❡t❡r♠✐♥❡ ♦ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s ❞❡ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❢✉♥çã♦ y = f (x)✿
0
x
f (x) =
−x2 + 4x − 2
4−x
✷✷✻
s❡✱
s❡✱
s❡✱
s❡✱
x<0
0≤x<1
1≤x<3
x≥3
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✶✵✳ ❊st✉❞❡ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❢✉♥çã♦ f (x) =
π
1
♥♦
♣♦♥t♦
x
=
✳
2 + 2tan x
2
✶✶✳ ❊st✉❞❡ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❢✉♥çã♦ g(x) =
sen( x1 )
√ ♥♦ ♣♦♥t♦ x = 0✳
1+ xe
R
✶✷✳ P❛r❛ t♦❞♦ ♥ú♠❡r♦ r❡❛❧ x = a✱ ❛❝❤❛r ✉♠❛ ❢✉♥çã♦ q✉❡ s❡❥❛ ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦ x = a✱
♣♦ré♠ q✉❡ ♥ã♦ s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ ♥❡♥❤✉♠ ♦✉tr♦ ♣♦♥t♦✳
✶✸✳ ❙✉♣♦♥❤❛ f (x) ❝✉♠♣r❡ f (x + y) = f (x) + f (y)✱ ❡ q✉❡ f s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ x = 0✳
▼♦str❡ q✉❡ f é ❝♦♥tí♥✉❛ ❡♠ x = a ∀ a ∈ R✳
1 1 1
✶✹✳ ❉❡t❡r♠✐♥❡ ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ❡♠ t♦❞♦ R q✉❡ s❡❥❛ ❞❡s❝♦♥tí♥✉❛ ❡♠ 1, , , , · · ·
2 3 4
❡ q✉❡ s❡❥❛ ❝♦♥tí♥✉❛ ♥♦s ❞❡♠❛✐s ♣♦♥t♦s✳
✶✺✳
❙✉♣♦♥❤❛ f é ✉♠❛ ❢✉♥çã♦ q✉❡ ❝✉♠♣r❡ | f (x) |≥| x | ∀ x ∈ R✳ ❉❡♠♦♥str❛r q✉❡
f é ❝♦♥tí♥✉❛ ❡♠ x = 0 ✭❧❡♠❜r❡ q✉❡ f (0) t❡♠ q✉❡ s❡r 0✮✳
✶✳
✷✳
❉❛r ✉♠ ❡①❡♠♣❧♦ ❞❡ ✉♠❛ ❢✉♥çã♦ f q✉❡ ♥ã♦ s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ ♥❡♥❤✉♠ x = a✳
❙✉♣♦♥❤❛✲s❡ q✉❡ g s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ x = 0,
▼♦str❡ q✉❡ f é ❝♦♥tí♥✉❛ ❡♠ x = 0✳
✸✳
g(0) = 0 ❡ | f (x) |≤| g(x) |
∀x ∈ R✳
✶✻✳ ❖s r❛✐♦s ❞❡ três ❝✐❧✐♥❞r♦s s✉♣❡r♣♦st♦s ♠❡❞❡♠ 3, 2 ❡ 1 ♠❡tr♦s r❡s♣❡❝t✐✈❛♠❡♥t❡✳ ❆s
❛❧t✉r❛s ❞❡ ❝❛❞❛ ✉♠ ❞♦s ❝✐❧✐♥❞r♦s é 5m✳ ❊①♣r❡ss❛r ❛ ár❡❛ ❞❛ s❡çã♦ tr❛♥s✈❡rs❛❧ ❞♦
❝♦r♣♦ ❣❡r❛❞♦ ❝♦♠♦ ❢✉♥çã♦ ❞❛ ❞✐stâ♥❝✐❛ q✉❡ r❡❧❛❝✐♦♥❛ ❛ s❡çã♦ ❡ ❛ ❜❛s❡ ✐♥❢❡r✐♦r ❞♦
❝✐❧✐♥❞r♦ q✉❡ ♦❝✉♣❛ ❛ ♣❛rt❡ ❜❛✐①❛ ❞♦ ❝♦r♣♦✳ ❙❡rá ❡st❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛❄ ❈♦♥str✉✐r ♦
❣rá✜❝♦✳
✶✼✳ ❈♦♠♦ ❞❡✈❡♠♦s ❡❧❡❣❡r ♦ ♥ú♠❡r♦
( α ♣❛r❛ q✉❡ ❛ ❢✉♥çã♦ f (x) s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ R❄
x + 1, s❡✱ x ≤ 1
❈♦♥str✉✐r s❡✉ ❣rá✜❝♦✳ f (x) =
✳
α,
s❡✱ x > 1
✶✽✳ ❉❡t❡r♠✐♥❡ ♦s ♥ú♠❡r♦s A ❡ B ❞❡ ♠♦❞♦ q✉❡ ❛ ❢✉♥çã♦ g(x) s❡❥❛ ❝♦♥tí♥✉❛ ♥♦ ❝♦♥❥✉♥t♦
❞❡ ♥ú♠❡r♦s r❡❛✐s R✳
π
−2senx
s❡✱ x ≤ −
π
π 2
Asenx + B s❡✱ − < x <
g(x) =
2π
2
cos x
s❡✱ x ≥
2
✶✾✳ ❉❡t❡r♠✐♥❡ ♦ (✈❛❧♦r ❞❡ a ❞❡ ♠♦❞♦ q✉❡ ❛ ❢✉♥çã♦ g(x) s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ t♦❞❛ ❛ r❡t❛
x + 2 s❡✱ x ≤ 3
r❡❛❧✳ g(x) =
ax + 7 s❡✱ x > 3
✷✷✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✵✳ ❉❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s
( ❞❡ b ❡ c ❞❡ ♠♦❞♦ q✉❡ ❛ ❢✉♥çã♦ f (x) s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ t♦❞❛ ❛
x+1
s❡✱ 1 < x < 3
r❡t❛ r❡❛❧✳ f (x) =
2
x + bx + c s❡✱ | x − 2 |≥ 1
✷✶✳ ❙❡ lim .f (x) ❡①✐st❡✱ ♣♦ré♠ é ❞✐❢❡r❡♥t❡ ❞❡ f (a)✱ ❞✐③❡♠♦s q✉❡ f t❡♠ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡
x→a
❡✈✐tá✈❡❧ ❡♠ x = a ✳
1
♣❛r❛ x 6= 0✳ ❆ ❢✉♥çã♦ f t❡♠ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ ❡✈✐tá✈❡❧ ❡♠ x = 0
x
1
❄ ◗✉❡ ❛❝♦♥t❡❝❡ s❡ f (x) = x · sen ♣❛r❛ x 6= 0 ❡ f (0) = 1 ❄
x
✷✳ ❙✉♣♦♥❤❛ q✉❡ g t❡♥❤❛ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ ❡✈✐tá✈❡❧ ❡♠ x = a✳ ❙❡❥❛ h(x) = g(x) ♣❛r❛
x 6= a ❡ s❡❥❛ h(a) = lim .g(x)✳ ▼♦str❡ q✉❡ h é ❝♦♥tí♥✉❛ ❡♠ x = a✳
✶✳
❙❡ f (x) = sen
x→a
✸✳
p
1
p
s❡ é ✉♠❛ ❢r❛çã♦ ✐rr❡❞✉tí✈❡❧✳ ◗✉❛❧ é ❛
q
q
q
❢✉♥çã♦ g ❞❡✜♥✐❞❛ ♣♦r g(x) = lim .f (y)
❙❡❥❛ f (x) = 0 s❡ x ∈ Q✱ ❡ f ( ) =
y→x
✷✷✳ ◆✉♠❛ ❝♦♠✉♥✐❞❛❞❡ ❞❡ 8.000 ♣❡ss♦❛s✱ ❛ r❛③ã♦ s❡❣✉♥❞♦ ❛ q✉❛❧ ✉♠ ❜♦❛t♦ s❡ ❡s♣❛❧❤❛ é
❝♦♥❥✉♥t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s q✉❡ ♦✉✈✐r❛♠ ♦ ❜♦❛t♦ ❡ ❛♦ ♥ú♠❡r♦
❞❡ ♣❡ss♦❛s q✉❡ ♥ã♦ ♦ ♦✉✈✐r❛♠✳
✶✳
❙❡ ♦ ❜♦❛t♦ ❡stá s❡ ❡s♣❛❧❤❛♥❞♦ ❛ ✉♠❛ r❛③ã♦ ❞❡ 20 ♣❡ss♦❛s ♣♦r ❤♦r❛ q✉❛♥❞♦ 200
♣❡ss♦❛s ♦ ♦✉✈✐r❛♠✱ ❡①♣r❡ss❡ ❛ t❛①❛ s❡❣✉♥❞♦ ♦ q✉❛❧ ♦ ❜♦❛t♦ ❡st❛ s❡ ❡s♣❛❧❤❛♥❞♦
❝♦♠♦ ❢✉♥çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s q✉❡ ♦ ♦✉✈✐r❛♠✳
✷✳
◗✉ã♦ rá♣✐❞♦ ♦ ❜♦❛t♦ ❡stá s❡ ❡s♣❛❧❤❛♥❞♦ q✉❛♥❞♦ 500 ♣❡ss♦❛s ♦ ♦✉✈✐r❛♠❄
✷✸✳ ❯♠❛ ❞❡t❡r♠✐♥❛❞❛ ❧❛❣♦❛ ♣♦❞❡ s✉♣♦rt❛r ✉♠ ♠á①✐♠♦ ❞❡ 14.000 ♣❡✐①❡s✱ ❡ ❛ t❛①❛ ❞❡
❝r❡s❝✐♠❡♥t♦ ❞❡❧❡s é ❝♦♥❥✉♥t❛♠❡♥t❡ ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ♥ú♠❡r♦ ♣r❡s❡♥t❡ ❡ à ❞✐❢❡r❡♥ç❛
❡♥tr❡ 14.000 ❡ ❛ q✉❛♥t✐❞❛❞❡ ❡①✐st❡♥t❡✳ ❛✮ ❙❡ f (x) ♣❡✐①❡s ♣♦r ❞✐❛ ❢♦r ❛ t❛①❛ ❞❡
❝r❡s❝✐♠❡♥t♦ q✉❛♥❞♦ ❤♦✉✈❡r x ♣❡✐①❡s✱ ❡s❝r❡✈❛ ✉♠❛ ❢✉♥çã♦ q✉❡ ❞❡✜♥❛ f (x)✳ ❜✮ ▼♦str❡
q✉❡ f (x) é ❝♦♥tí♥✉❛ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
✷✷✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✹✳✷
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈♦♥t✐♥✉✐❞❛❞❡ ❡♠ ✐♥t❡r✈❛❧♦s
❉❡✜♥✐çã♦ ✹✳✹✳
❯♠❛ ❢✉♥çã♦ f : (a, b) −→ R é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ (a, b) ✱ s❡ é ❝♦♥tí♥✉❛ ❡♠ t♦❞♦
x ∈ (a, b)✳
❊①❡♠♣❧♦ ✹✳✾✳
❆s ❢✉♥çõ❡s ♣♦❧✐♥♦♠✐❛✐s✱ tr✐❣♦♥♦♠étr✐❝❛s✿ s❡♥♦ ❡ ❝♦s❡♥♦✱ ❛s ❡①♣♦♥❡♥❝✐❛✐s ❡ ♦s ❧♦❣❛r✐t✲
♠♦s sã♦ ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ❡♠ s❡✉s r❡s♣❡❝t✐✈♦s ❞♦♠í♥✐♦s ❞❡ ❞❡✜♥✐çã♦✳
❆ ♣❛rá❜♦❧❛✱ ❝♦♠♦ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛✱ é ✉♠ ❡①❡♠♣❧♦ ❞❡ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠ t♦❞♦ s❡✉
❞♦♠í♥✐♦ R✳
❉❡✜♥✐çã♦ ✹✳✺✳
❛✮ ❯♠❛ ❢✉♥çã♦ f : (a, b) −→ R é ❝♦♥tí♥✉❛ ♣❡❧❛ ❞✐r❡✐t❛ ❞❡ x = a✱ s❡ lim+ .f (x) =
x→a
f (a)✳
❜✮ ❯♠❛ ❢✉♥çã♦ f : (a, b) −→ R é ❝♦♥tí♥✉❛ ♣❡❧❛ ❡sq✉❡r❞❛ x = b✱ s❡ lim− .f (x) =
x→b
f (b)✳
❉❡✜♥✐çã♦ ✹✳✻✳
❯♠❛ ❢✉♥çã♦ f : (a, b] −→ R é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ (a, b]✱ s❡ ❝✉♠♣r❡ ❛s ❞✉❛s
❝♦♥❞✐çõ❡s✿
1a
f é ❝♦♥tí♥✉❛ ❡♠ (a, b)✳
2a
f é ❝♦♥tí♥✉❛ ♣❡❧❛ ❡sq✉❡r❞❛ ❡♠ x = b✳
❉❡✜♥✐çã♦ ✹✳✼✳
❯♠❛ ❢✉♥çã♦ f : [a, b) −→ R é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ [a, b)✱ s❡ ❝✉♠♣r❡ ❛s ❞✉❛s
❝♦♥❞✐çõ❡s✿
1a
f é ❝♦♥tí♥✉❛ ❡♠ (a, b)✳
2a
f é ❝♦♥tí♥✉❛ ♣❡❧❛ ❞✐r❡✐t❛ ❡♠ x = a✳
❉❡✜♥✐çõ❡s ❛♥á❧♦❣❛s ♣♦❞❡♠♦s ♦❜t❡r ♣❛r❛ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❡ ❢✉♥çõ❡s ❡♠ ✐♥t❡r✈❛❧♦s ❞❛
❢♦r♠❛ (−∞, b] ❡ [a, +∞)
✷✷✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✹✳✽✳
❯♠❛ ❢✉♥çã♦
❝♦♥❞✐çõ❡s✿
f : [a, b] −→ R
é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦
1a
f é ❝♦♥tí♥✉❛ ❡♠ (a, b)✳
2a
f é ❝♦♥tí♥✉❛ ♣❡❧❛ ❞✐r❡✐t❛ ❡♠ x = a✳
3a
f é ❝♦♥tí♥✉❛ ♣❡❧❛ ❡sq✉❡r❞❛ ❡♠ x = b✳
[a, b]
✱ s❡ ❝✉♠♣r❡ ❛s três
❊①❡♠♣❧♦ ✹✳✶✵✳
f (x) = [|x|], x ∈ R✱
❡①✐st❡ lim .f (x)✳
❙❡❥❛
♥ã♦
♠♦str❡ q✉❡
f
é ❝♦♥tí♥✉❛ ♣❡❧❛ ❞✐r❡✐t❛ ❡♠ t♦❞♦
n∈Z
❡ q✉❡
x→n
❙♦❧✉çã♦✳
P❡❧❛ ❞❡✜♥✐çã♦ ❞❡ f (x) = [|x|]✱ t❡♠♦s x ∈ [n, n + 1)✱ ❡♥tã♦ [|x|] = n ❧♦❣♦ lim+ .f (x) =
x→n
lim+ [|x|] = lim+ n = n = f (n) ❛ss✐♠✱ f é ❝♦♥tí♥✉❛ ♣❡❧❛ ❞✐r❡✐t❛ ❞❡ x = n✳
x→n
x→n
P♦r ♦✉tr♦ ❧❛❞♦✱ ♣❛r❛ t♦❞♦ x ∈ [n − 1, n) t❡♠♦s f (x) = [|x|] = n − 1✱ ❧♦❣♦ lim− .f (x) =
x→n
lim− [|x|] = lim− (n − 1) = n − 1✳
x→n
x→n
❈♦♠♦ ♦s ❧✐♠✐t❡s ❧❛t❡r❛✐s sã♦ ❞✐st✐♥t♦s ❡♥tã♦ ♥ã♦ ❡①✐st❡ lim .f (x)✳
x→n
❊①❡♠♣❧♦ ✹✳✶✶✳
❯♠ ❢❛❜r✐❝❛♥t❡ ♣♦❞❡ ♦❜t❡r ✉♠ ❧✉❝r♦ ❞❡
❘$30, 00
❡♠ ❝❛❞❛ ✐t❡♠ s❡ ♥ã♦ ♠❛✐s ❞❡
✐t❡♥s ❢♦r❡♠ ♣r♦❞✉③✐❞♦s ♣♦r s❡♠❛♥❛✳ ❖ ❧✉❝r♦ ❡♠ ❝❛❞❛ ✐t❡♠ ❜❛✐①❛
❛❝✐♠❛ ❞❡
❘$0, 30
1.000
♣❛r❛ t♦❞♦ ✐t❡♠
❛✮ ❙❡ x ✐t❡♥s ❢♦r❡♠ ♣r♦❞✉③✐❞♦s ♣♦r s❡♠❛♥❛✱ ❡①♣r❡ss❡ ♦ ❧✉❝r♦ s❡♠❛♥❛❧ ❞♦
❝♦♠♦ ❢✉♥çã♦ ❞❡ x✳ ❙✉♣♦♥❤❛ ❧✉❝r♦ ♥ã♦ ♥❡❣❛t✐✈♦✳ ❜✮ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ ❞❛
1.000✳
❢❛❜r✐❝❛♥t❡
♣❛rt❡ ❛✮ é ❝♦♥tí♥✉❛ ❡♠
x = 1.000❀
♣♦rt❛♥t♦ ❝♦♥tí♥✉❛ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦✳
❙♦❧✉çã♦✳
❙❡❥❛ L(x) ♦ ❧✉❝r♦ s❡♠❛♥❛❧ ❛ ❝❛❞❛ x ✐t❡♥s ♣r♦❞✉③✐❞♦s✱ ❡♥tã♦ t❡♠♦s L(x) = 30x s❡
0 ≤ x < 1000 ❡ L(x) = (30 − 0, 30)x s❡ 0 ≤ x < 1.000✳
▲♦❣♦ L(x) =
(
30x,
s❡✱ 0 ≤ x < 1.000
✳
29, 7x, s❡✱ x ≥ 1.000
P♦rt❛♥t♦ ❛ ❢✉♥çã♦ ♥ã♦ é ❝♦♥tí♥✉❛ ❡♠ x = 1.000✳
❊①❡♠♣❧♦ ✹✳✶✷✳
❉❡t❡r♠✐♥❡ ♦s ✐♥t❡r✈❛❧♦s ❞❡ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❢✉♥çã♦✿
❙♦❧✉çã♦✳
✷✸✵
f (x) =
r
x2 − 9
✳
25 − x2
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ sã♦ t♦❞♦s ♦s ♥ú♠❡r♦s r❡❛✐s ♣❛r❛ ♦s q✉❛✐s ❛ r❛✐③ q✉❛❞r❛❞❛ ❞❡
2
x −9
x2 − 9
s❡❥❛
✉♠
♥ú♠❡r♦
r❡❛❧✱
r❡s♦❧✈❡♥❞♦
≥ 0 s❡❣✉❡ q✉❡ ♦ ❞♦♠í♥✐♦
25 − x2
25 − x2
D(f ) = { x ∈ R /. x ∈ (−5, −3] ∪ [3, 5) }
❊st✉❞♦ ❞❛ ❝♦♥t✐♥✉✐❞❛❞❡ ♥♦ ✐♥t❡r✈❛❧♦ (−5, −3]✳
✐✮ f
é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ (−5, −3)✳
✐✐✮
lim .f (x) = 0 = f (−3)✳
x→−3−
P♦rt❛♥t♦ ✱ f é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ (−5, −3]✳
❊st✉❞♦ ❞❛ ❝♦♥t✐♥✉✐❞❛❞❡ ♥♦ ✐♥t❡r✈❛❧♦ [3, 5)✳
✐✮ f
é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ (3, 5)✳
✐✐✮ lim .f (x) = 0 = f (3)✳
x→3+
P♦rt❛♥t♦✱ f é ❝♦♥tí♥✉❛ ❡♠ [3, 5)
✹✳✷✳✶
❋✉♥çõ❡s ❝♦♥tí♥✉❛s ❡♠ ✐♥t❡r✈❛❧♦s ❢❡❝❤❛❞♦s
Pr♦♣r✐❡❞❛❞❡ ✹✳✺✳
f : R −→ R ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡
lim xn = x✱ ❡♥tã♦ lim f (xn ) = f (x)✳
❈♦♥s✐❞❡r❡
q✉❡
n→+∞
s❡❥❛
xn
✉♠❛ s✉❝❡ssã♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s t❛✐s
n→+∞
❉❡♠♦♥str❛çã♦✳
❉❛ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡s ❛♦ ✐♥✜♥✐t♦s t❡♠♦s✱ s❡ lim xn = x❀ ❡♥tã♦ ❞❛❞♦ ε1 > 0✱ ❡①✐st❡
n→+∞
N > 0 t❛❧ q✉❡ | xn − x |< ε1 s❡♠♣r❡ q✉❡ N > n✳
❙❡♥❞♦ f ❝♦♥tí♥✉❛ ❡♠ R ❡♠ ♣❛rt✐❝✉❧❛r ♥♦ ♥ú♠❡r♦ xn ∈ R✱ ❡♥tã♦ lim f (xn ) = f (x)
xn →x
❞❡st❛ ❞❡✜♥✐çã♦ t❡♠♦s✱ ∀ε > 0, ∃δ > 0 t❛❧ q✉❡ | f (xn )−f (x) |< ε s❡♠♣r❡ q✉❡ | xn −x |< δ ✳
❋❛③❡♥❞♦ δ = ε1 , ∀ ε > 0, N > 0 ❡ ∃δ > 0 t❛❧ q✉❡ | f (xn ) − f (x) |< ε s❡♠♣r❡ q✉❡
| xn − x |< δ q✉❛♥❞♦ N > n✳
■st♦ é ∀ ε > 0, ∃ N > 0 t❛❧ q✉❡ | f (xn ) − f (x) |< ε1 s❡♠♣r❡ q✉❡ N > n✳
P♦rt❛♥t♦✱ lim f (xn ) = f (x)✳
n→+∞
❚❡♦r❡♠❛ ✹✳✶✳
❚❡♦r❡♠❛ ❞❡ ❇♦❧③❛♥♦✳
f : R −→ R✱ é ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠ [a, b]
♠❡♥♦s ✉♠ ♣♦♥t♦ c ∈ (a, b) t❛❧ q✉❡ f (c) = 0✳
❙❡
❡
f (a) · f (b) < 0✱
❡♥tã♦ ❡①✐st❡ ♣❡❧♦
❉❡♠♦♥str❛çã♦✳
✷✸✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
f (a) · f (b) < 0
f (b) > 0✳
❉❛ ❤✐♣ót❡s❡
f (a) < 0
❡
❡♥tã♦
f (a)
❡
f (b)
tê♠ s✐♥❛✐s ❝♦♥trár✐♦s✳ ❙✉♣♦♥❤❛♠♦s q✉❡
a+b
✱ s❡ f (m) = 0✱ ❡st❛ ♣r♦♣r✐❡❞❛❞❡ ❡stá ♠♦str❛❞❛✳
2
❙✉♣♦♥❤❛♠♦s f (m) 6= 0✱ ❡♥tã♦ ❡①✐st❡ ✉♠ ✐♥t❡r✈❛❧♦ [a1 , b1 ] ⊂ [a, b]
b1 = m✱ t❛❧ q✉❡ f (a1 ) < 0 ❡ f (b1 ) > 0✳
❙❡❥❛
R
m=
a1 + b1
✱
2
❝♦♠
a1 = m
♦✉
f (m1 ) = 0✱ ❡st❛ ♣r♦♣r✐❡❞❛❞❡ ❡st❛ ♠♦str❛❞❛✳ ❆♣ós ❞❡ r❡♣❡t✐r
❡st❡ ♣r♦❝❡ss♦ ✉♠ ♥ú♠❡r♦ n ❞❡ ✈❡③❡s❀ t❡♠♦s q✉❡ ❡①✐st❡ ✉♠ ✐♥t❡r✈❛❧♦ [an , bn ] ⊂ [a, b] t❛❧
b−a
✳
q✉❡ f (an ) < 0 ❡ f (bn ) > 0❀ ❛ ❞✐stâ♥❝✐❛ ❡♥tr❡ ♦s ♣♦♥t♦s an ❡ bn é
2n
❆♣ós r❡✐t❡r❛❞❛s ✈❡③❡s ❡st❡ ♣r♦❝❡ss♦✱ ❝♦♥str✉í♠♦s ✉♠❛ s✉❝❡ssã♦ ♥ã♦ ❞❡❝r❡s❝❡♥t❡ a ≤
a1 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ✱ ❧✐♠✐t❛❞❛ s✉♣❡r✐♦r♠❡♥t❡❀ s❡❥❛ lim .an = c1 ✳
❙❡❥❛
m1 =
s❡
n→+∞
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦ ❝♦♥str✉í♠♦s ✉♠❛ s✉❝❡ssã♦ ♥ã♦ ❝r❡s❝❡♥t❡ ❧✐♠✐t❛❞❛ ✐♥❢❡r✐♦r♠❡♥t❡
b1 ≥ b2 ≥ b3 ≥ b 4 ≥ · · · ❀
b≥
lim .bn = c2 ✳
b−a
P♦r ♦✉tr♦ ❧❛❞♦✱ lim [bn − an ] = lim
= 0 ❡♥tã♦ lim .bn = lim .an = c2 =
n→+∞
n→+∞
n→+∞
n→+∞
2n
c1 = c✳
❈♦♠♦
P❡❧❛
f (xn )
f (x)
é ❝♦♥tí♥✉❛ ❡♠
Pr♦♣r✐❡❞❛❞❡
t❡♠ ❧✐♠✐t❡
n→+∞
x = c✱
t❡♠♦s
lim .f (x) = f (c)✳
x→c
✭✹✳✺✮ s❛❜❡✲s❡ q✉❡ s❡ ✉♠❛ s✉❝❡ssã♦
f (c)❀
▲♦❣♦✱ ♣❛r❛ t♦❞♦
f (c) ≥ 0✳
s❡❥❛
❡♥tã♦
{xn } t❡♠ ❧✐♠✐t❡ c✱ ❡♥tã♦ ❛ s✉❝❡ssã♦
lim f (an ) = f (c) = lim f (bn )✳
n→+∞
n→+∞
n ∈ N ❛ ❞❡s✐❣✉❛❧❞❛❞❡ f (an ) < 0 ✐♠♣❧✐❝❛ f (c) ≤ 0
P♦rt❛♥t♦✱ ❡①✐st❡ ♣❡❧♦ ♠❡♥♦s ✉♠ ♣♦♥t♦
c ∈ (a, b)
t❛❧ q✉❡
❡
f (bn ) > 0✱ ✐♠♣❧✐❝❛
f (c) = 0✳
❖❜s❡r✈❡ ❛ ✐♥t❡r♣r❡t❛çã♦ ❣❡♦♠étr✐❝❛ ❞❡st❡ t❡♦r❡♠❛✿
❖ ❣rá✜❝♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ q✉❡ ✉♥❡ ♦s ♣♦♥t♦s P (a, f (a)) ❡ Q(b, f (b))
♦♥❞❡ f (a) ❡ f (b) sã♦ ❞❡ s✐♥❛✐s ❝♦♥trár✐♦s✱ ❝♦rt❛ ♦ ❡✐①♦✲x ❡♠ ♣❡❧♦ ♠❡♥♦s ✉♠
♣♦♥t♦ ✑✳ ✭❋✐❣✉r❛ ✭✹✳✸✮✮✳
✏
❋✐❣✉r❛ ✹✳✸✿
❋✐❣✉r❛ ✹✳✹✿
✷✸✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ ❝♦♥❞✐çã♦ ❞❡ s❡r f ❝♦♥tí♥✉❛ ❡♠ [a, b] é ♥❡❝❡ssár✐❛❀ ❛ ❋✐❣✉r❛ ✭✹✳✹✮ ♠♦str❛ q✉❡ s❡ f é
❞❡s❝♦♥tí♥✉❛ ❡♠ [a, b] ❛ ♣r♦♣r✐❡❞❛❞❡ ♥❡♠ s❡♠♣r❡ ✈❡r✐✜❝❛✲s❡✳
❊①❡♠♣❧♦ ✹✳✶✸✳
▼♦str❡ q✉❡✱ s❡
✐✮
f : R −→ R
é ❝♦♥tí♥✉❛ ❡ ❝✉♠♣r❡✿
lim f (x) = K > 0
x→+∞
✐✐✮
lim f (x) = N < 0
x→−∞
❊♥tã♦ ❡①✐st❡
x0 ∈ R
t❛❧ q✉❡
f (x0 ) = x0 ✳
❉❡♠♦♥str❛çã♦✳
❉❛ ❤✐♣ót❡s❡ ✐✮ t❡♠♦s q✉❡ ∀ ε1 > 0, ∃ M1 > 0 ✭s✉✜❝✐❡♥t❡♠❡♥t❡ ❣r❛♥❞❡✮ t❛❧ q✉❡✱ s❡
x > M1 ⇒ |f (x) − K| < ε1 ❀ ❧♦❣♦ x > M1 ⇒ K − ε1 < f (x) < K + ε1 ✳
❈♦♠♦ tr❛t❛✲s❡ ❞❡ q✉❛❧q✉❡r ε1 > 0✱ ♣♦❞❡♠♦s ❝♦♥s✐❞❡r❛r ♣♦r ❡①❡♠♣❧♦ ε1 = 10−100 ✱
❛ss✐♠✱ s❡ x > M1 ⇒ K − 10−100 < f (x) < K + 10−100 ✳
❆ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡ ❛♦ ✐♥✜♥✐t♦ ❣❛r❛♥t❡ ❛✐♥❞❛ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠ M1′ > K + 10−100
t❛❧ q✉❡ x2 > M1′ ♣❛r❛ ❛❧❣✉♠ x2 ∈ R✳
▲♦❣♦✱ s❡ x2 > M1′ ⇒ f (x2 ) < K + 10−100 < M1′ < x2 ⇒ f (x2 ) < x2 ✳
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✳
❉❛ ❤✐♣ót❡s❡ ✐✐✮ t❡♠♦s q✉❡ ∀ ε2 > 0, ∃ M2 < 0 ✭s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✮ t❛❧ q✉❡✱ s❡
x < M2 ⇒ |f (x) − N | < ε2 ❀ ❧♦❣♦ x < M2 ⇒ N − ε2 < f (x) < N + ε2 ✳
❊♠ ♣❛rt✐❝✉❧❛r✱ ♣♦❞❡♠♦s ❝♦♥s✐❞❡r❛r ε2 = 10−100 ✱ ❛ss✐♠✱ s❡ x < M2 ⇒ N −10−100 <
f (x) < N + 10−100 ✳ ❆ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡ ❛ ♠❡♥♦s ✐♥✜♥✐t♦ ❣❛r❛♥t❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠
M2′ < N − 10−100 t❛❧ q✉❡ x1 < M2′ ♣❛r❛ ❛❧❣✉♠ x1 ∈ R✳
▲♦❣♦✱ s❡ x1 < M2′ ⇒ x1 < M2′ < N − 10−100 < f (x1 ) ⇒ x1 < f (x1 )✳
❈♦♥s✐❞❡r❡♠♦s ❛ ❢✉♥çã♦ g : [x1 , x2 ] −→ R ❞❡✜♥✐❞❛ ♣♦r g(x) = f (x) − x✱ ❧♦❣♦ ❝♦♠♦ f é
❝♦♥tí♥✉❛✱ t❡♠♦s q✉❡ g é ❝♦♥tí♥✉❛ ❡♠ [x1 , x2 ]✱ ❛✐♥❞❛ ♠❛✐s✱ t❡♠♦s q✉❡ g(x1 ) = f (x1 )−x1 > 0
❡ g(x2 ) = f (x2 ) − x2 < 0✳
❖ ❚❡♦r❡♠❛ ❞❡ ❇♦❧③❛♥♦ ❣❛r❛♥t❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ x0 ∈ [x1 , x2 ] t❛❧ q✉❡ g(x0 ) = 0 ⇒
f (x0 ) = x0 ✳
P♦rt❛♥t♦✱ ❡①✐st❡ x0 ∈ R t❛❧ q✉❡ f (x0 ) = x0 ✳
Pr♦♣r✐❡❞❛❞❡ ✹✳✻✳
❙❡
f
❉❛ ❧✐♠✐t❛çã♦ ❣❧♦❜❛❧✳
é ❝♦♥tí♥✉❛ ❡♠
[a, b]✱
❡♥tã♦
f
é ❧✐♠✐t❛❞❛ ❡♠
[a, b]✳
❉❡♠♦♥str❛çã♦✳
❈♦♥s✐❞❡r❡♠♦s ♦ ❝♦♥❥✉♥t♦ A = { x ∈ [a, b] /. f é ❧✐♠✐t❛❞❛ }✱ ♦❜s❡r✈❡ q✉❡ A 6= ∅ ♣♦✐s
s❡♥❞♦ f ❝♦♥tí♥✉❛ ❡♠ a ♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ❧✐♠✐t❛çã♦ ❧♦❝❛❧✱ ❡①✐st❡ M > 0 ❡ δ > 0 t❛❧ q✉❡
| f (x) |< M, x ∈ [a, a + δ] ✐st♦ é a + δ ∈ A✳
✷✸✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
■♥✈❡rs❛♠❡♥t❡
❈♦♠♦ A é ❧✐♠✐t❛❞♦ ❛❞♠✐t❡ s✉♣r❡♠♦✳ ❙❡❥❛ c = sup .A✱ ❡✈✐❞❡♥t❡♠❡♥t❡ c ≤ b✳ ❙✉♣♦✲
♥❤❛♠♦s q✉❡ c < b✱ ❡♥tã♦ ♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ❧✐♠✐t❛çã♦ ❧♦❝❛❧✱ ∃ M1 > 0 ❡ δ1 > 0 t❛❧
q✉❡ | f (x) |< M1 , ∀ x ∈ [c − δ1 , c + δ1 ]✳ ❈♦♠♦ f é ❧✐♠✐t❛❞❛ ❡♠ [a, c − δ1 ] ♣❛r❛ ❛❧❣✉♠
M2 > 0✱ ❝♦♥s✐❞❡r❛♥❞♦ M3 = max .{M1 , M2 } t❡♠♦s | f (x) |< M3 , ∀ x ∈ [a, c + δ1 ] ♦♥❞❡
c + δ1 ∈ A ♦ q✉❛❧ ❝♦♥tr❛❞✐③ ♦ ❢❛t♦ ❞❡ q✉❡ c = sup .A❀ ♣♦rt❛♥t♦ c ♥ã♦ é ❡str✐t❛♠❡♥t❡ ♠❡♥♦r
q✉❡ b✳ ❈♦♠♦ c ≤ b s❡❣✉❡✲s❡ q✉❡ c = b✳
P❡❧♦ ✉♠ r❛❝✐♦❝í♥✐♦ ❛♥á❧♦❣♦✱ ❝♦♠♦ f é ❝♦♥tí♥✉❛ ❡♠ b✱ ❡❧❛
é ❧✐♠✐t❛❞❛ ❡♠ [b − δ2 , b] ♣❛r❛ ❛❧❣✉♠ δ2 > 0 ❡ s❡♥❞♦ ❧✐♠✐t❛❞♦
❡♠ [a, b − δ2 ] ✭✐st♦ ♣❡❧♦ ❛♥t❡r✐♦r✮ s❡❣✉❡✲s❡ q✉❡ f é ❧✐♠✐t❛❞❛
❡♠ [a, b]✳
◆♦ s❡❣✉✐♥t❡ ❡①❡♠♣❧♦ ♠♦str❛✲s❡ q✉❡ s❡ f ♥ã♦ é ❝♦♥tí♥✉❛
❡♠ [a, b] ❛ ❢✉♥çã♦ ♥ã♦ ♥❡❝❡ss❛r✐❛♠❡♥t❡ é ❧✐♠✐t❛❞❛✳
❊①❡♠♣❧♦ ✹✳✶✹✳
❙❡❥❛
❋✐❣✉r❛ ✹✳✺✿
1
, s❡✱ 0 ≤ x < 3
3−x
f (x) =
1,
s❡✱ x = 3
❆ ❋✐❣✉r❛ ✭✹✳✺✮ ♠♦str❛ ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ f ✱ ♦❜s❡r✈❡ q✉❡ f ♥ã♦ é ❧✐♠✐t❛❞❛✳
❚❡♦r❡♠❛ ✹✳✷✳ ❚❡♦r❡♠❛ ❞❡ ❲❡✐❡rstr❛ss✳
f é ❝♦♥tí♥✉❛ ❡♠ [a, b]✱ ❡♥tã♦ ❡❧❛ ♣♦ss✉✐ ✉♠ ♣♦♥t♦ ❞❡ ♠í♥✐♠♦ ❡ ✉♠ ♣♦♥t♦ ❞❡ ♠á①✐♠♦
[a, b]❀ ✐st♦ é✱ ❡①✐st❡♠ x1 , x2 ∈ [a, b] t❛✐s q✉❡✿
❙❡
❡♠
m = f (x1 ) = min .{ f (x) /. x ∈ [a, b] }✳
M = f (x2 ) = max .{ f (x) /. x ∈ [a, b] }❀
♦✉✱
f (x1 ) ≤ f (x) ≤ f (x2 )
∀ x ∈ [a, b]✳
❉❡♠♦♥str❛çã♦✳
❈♦♠♦ f é ❝♦♥tí♥✉❛ ❡♠ [a, b]✱ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✹✳✻✮✱ ♦ ❝♦♥❥✉♥t♦ A = { f (x) /. x ∈
[a, b] } é ❧✐♠✐t❛❞♦ ♥ã♦ ✈❛③✐♦❀ ❡♥tã♦ A ❛❞♠✐t❡ ✉♠ s✉♣r❡♠♦ M ❡ ✉♠ í♥✜♠♦ m ❀ ✐st♦ é
m ≤ f (x) ≤ M ∀ x ∈ [a, b]✳ ❆ ♠♦str❛r q✉❡ ❡①✐st❡ x1 ∈ [a, b] t❛❧ q✉❡ f (x1 ) = m ✐st♦ é
m = min .A✳
❙✉♣♦♥❤❛♠♦s ✭♣❡❧♦ ❛❜s✉r❞♦✮ q✉❡ ∀ x ∈ [a, b] t❡♠♦s f (x) > m ♦✉ f (x) − m > 0✳
❆ ❢✉♥çã♦ g : [a, b] −→ R ❞❡✜♥✐❞❛ ♣♦r g(x) =
1
é ❝♦♥tí♥✉❛ ❞♦ ❢❛t♦ s❡r ♦
f (x) − m
q✉♦❝✐❡♥t❡ ❞❡ ❞✉❛s ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ❝♦♠ ❞❡♥♦♠✐♥❛❞♦r ❞✐st✐♥t♦ ❞❡ ③❡r♦✳ P❡❧❛ Pr♦♣r✐❡❞❛❞❡
✭✹✳✻✮ ❡①✐st❡ ✉♠ ♥ú♠❡r♦ L > 0 t❛❧ q✉❡
1
<L
f (x) − m
✷✸✹
x ∈ [a, b]✱ ❧♦❣♦ f (x) − m >
1
✐st♦
L
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
1
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
1
R
1
é f (x) > m +
x ∈ [a, b]❀ ♣♦ré♠ m + > m✱ ♦ q✉❛❧ é ✉♠❛ ❝♦♥tr❛❞✐çã♦✱ ♣♦✐s m +
L
L
L
é ✉♠ ❧✐♠✐t❡ ✐♥❢❡r✐♦r ♠❛✐♦r q✉❡ ♦ í♥✜♠♦ m✳
P♦rt❛♥t♦ ❝♦♥❝❧✉í♠♦s q✉❡ ❡①✐st❡ ♣❡❧♦ ♠❡♥♦s ✉♠ ♣♦♥t♦ x1 ∈ [a, b] t❛❧ q✉❡ f (x1 ) = m =
min A✳
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦ ♠♦str❛✲s❡ q✉❡ ❡①✐st❡ x2 ∈ [a, b] t❛❧ q✉❡ f (x2 ) = M ✳
❊st❡ ú❧t✐♠♦ t❡♦r❡♠❛ ♥♦s ♠♦str❛ q✉❡ t♦❞❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ f ✱ ❞❡✜♥✐❞❛ ❡♠ ✉♠ ✐♥t❡r✈❛❧♦
❢❡❝❤❛❞♦ ❡ ❧✐♠✐t❛❞♦ [a, b]✱ ❛ss✉♠❡ ♣❡❧♦ ♠❡♥♦s ✉♠ ✈❛❧♦r ♠í♥✐♠♦ m = f (x1 ) ❡ ♣❡❧♦ ♠❡♥♦s
✉♠ ✈❛❧♦r ♠á①✐♠♦ M = f (x2 ✮✳
❊①❡♠♣❧♦ ✹✳✶✺✳
1
❈♦♥s✐❞❡r❡♠♦s ❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ f : (0, 1] −→ R✱ ❞❡✜♥✐❞❛ ♣♦r f (x) = ♣❛r❛ t♦❞♦
x
x ∈ (0, 1]✳
❈♦♠♦ f ((0, 1]) = [1, +∞)✱ ♥ã♦ ❡①✐st❡ x2 ∈ (0, 1] t❛❧ q✉❡ f (x) ≤ f (x2 ) ♣❛r❛ t♦❞♦
x ∈ (0, 1]✳ ◆♦t❡♠♦s q✉❡✱ ❛♣❡s❛r ❞❡ (0, 1] s❡r ❧✐♠✐t❛❞♦✱ ❡❧❡ ♥ã♦ é ❢❡❝❤❛❞♦✳
❊①❡♠♣❧♦ ✹✳✶✻✳
❈♦♥s✐❞❡r❡♠♦s ❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ f : (0, 1) −→ R✱ ❞❡✜♥✐❞❛ ♣♦r f (x) = x ♣❛r❛ t♦❞♦
x ∈ (0, 1)✳
❈♦♠♦ f ((0, 1)) = (0, 1)✱ ♥ã♦ ❡①✐st❡♠ x1 , x2 ∈ (0, 1) t❛✐s q✉❡ f (x1 ) ≤ f (x) ≤ f (x2 )
♣❛r❛ t♦❞♦ x ∈ (0, 1)✳ ◆♦t❡♠♦s q✉❡✱ ❛♣❡s❛r ❞❡ (0, 1) s❡r ❧✐♠✐t❛❞♦✱ ❡❧❡ ♥ã♦ é ❢❡❝❤❛❞♦
❊①❡♠♣❧♦ ✹✳✶✼✳
❙❡❥❛ f : [a, b] −→ R ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠ [a, b] t❛❧ q✉❡ f (x) > 0 ♣❛r❛ t♦❞♦
x ∈ [a, b]✳ ❊♥tã♦ ❡①✐st❡ δ > 0 t❛❧ q✉❡ f (x) ≥ δ ♣❛r❛ t♦❞♦ x ∈ [a, b]✳
❉❡ ❢❛t♦✱ ♣❡❧♦ ❚❡♦r❡♠❛ ✭✹✳✷✮ ❡①✐st❡ x1 ∈ [a, b] t❛❧ q✉❡ f (x1 ) ≤ f (x) ♣❛r❛ t♦❞♦ x ∈ [a, b]✳
❈♦♠♦ f (x1 ) > 0✱ ❜❛st❛ t♦♠❛r δ = f (x1 ) ♣❛r❛ ❝♦♥❝❧✉✐r ❛ ✈❛❧✐❞❛❞❡ ❞❛ ♥♦ss❛ ❛✜r♠❛çã♦✳
❉♦ ✈❛❧♦r ✐♥t❡r♠❡❞✐ár✐♦✳
❙❡ f é ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠ [a, b], m ❡ M sã♦ ♦ ♠í♥✐♠♦ ❡ ♠á①✐♠♦ ❞❡ f ❡♠ [a, b]
r❡s♣❡❝t✐✈❛♠❡♥t❡ ❡ d é t❛❧ q✉❡ m < d < M ✱ ❡♥tã♦ ❡①✐st❡ c ∈ (a, b) t❛❧ q✉❡ f (c) = d✳
❚❡♦r❡♠❛ ✹✳✸✳
❉❡♠♦♥str❛çã♦✳
P❡❧♦ ❚❡♦r❡♠❛ ✭✹✳✷✮✱ ❡①✐st❡♠ x1 , x2 ∈ [a, b] t❛✐s q✉❡ f (x1 ) = m ❡ f (x2 ) = M ✳
❆ ❢✉♥çã♦ g(x) = f (x) − d é ❝♦♥tí♥✉❛ ❡♠ [a, b]❀ ❝♦♥s❡q✉❡♥t❡♠❡♥t❡ ♥♦ ✐♥t❡r✈❛❧♦ ❞❡
❡①tr❡♠♦s x1 ❡ x2 ✳
❖❜s❡r✈❡ q✉❡ g(x1 ) = f (x1 ) − d = m − d < 0 ❡ g(x2 ) = f (x2 ) − d = M − d > 0✱
❧♦❣♦✱ ♣❡❧♦ ❚❡♦r❡♠❛ ✭✹✳✶✮ ❡①✐st❡ c ♥♦ ✐♥t❡r✈❛❧♦ ❞❡ ❡①tr❡♠♦s x1 ❡ x2 t❛❧ q✉❡ g(c) = 0✱ ✐st♦
é f (c) = d✳
✷✸✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✹✳✶✽✳
❖ ♣♦❧✐♥ô♠✐♦ p(x) = x3 + x − 1 ♣♦ss✉✐ ✉♠❛ r❛✐③ ♥♦ ✐♥t❡r✈❛❧♦ (0, 1)✳
❉❡ ❢❛t♦✱ t❡♠♦s p(0) = −1 < 0 ❡ p(1) = 1 > 0✳ ❈♦♠♦ p(x) é ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛
♥♦ ✐♥t❡r✈❛❧♦ (0, 1)✱ s❡❣✉❡ ❞♦ t❡♦r❡♠❛ ❞♦ ✈❛❧♦r ✐♥t❡r♠é❞✐♦ q✉❡ ❡①✐st❡ x ∈ (0, 1) t❛❧ q✉❡
p(x) = 0✳
❊①❡♠♣❧♦ ✹✳✶✾✳
❉❛❞❛ ❛ ❢✉♥çã♦ f (x) =
x−1
✱ ❞❡t❡r♠✐♥❡ ✉♠ ✈❛❧♦r c ∈ [0, 2] ❞♦ ❚❡♦r❡♠❛
x2 + 1
✭✹✳✸✮
❞♦
✈❛❧♦r ✐♥t❡r♠❡❞✐ár✐♦✱ ❡ ✈❡r✐✜q✉❡ ❛ ✈❛❧✐❞❛❞❡ ❞♦ r❡s✉❧t❛❞♦✳
❙♦❧✉çã♦✳
❚❡♠♦s q✉❡
−
1
✱
2
f (0) = −1
❡
f (2) =
❧♦❣♦ ❞❡✈❡♠♦s ❞❡t❡r♠✐♥❛r
x0
1
✳
5
❈♦♥s✐❞❡r❡♠♦s ✉♠ ✈❛❧♦r ❡♥tr❡
−1
❡
1
✱ ♣♦r ❡①❡♠♣❧♦
5
♥❛ ✐❣✉❛❧❞❛❞❡✿
x−1
1
=−
2
x +1
2
❉❡ ♦♥❞❡ ♦❜t❡♠♦s x
1
− ∈ [−1, 51 ]✳
2
√
√
√
= −1± 2✱ ♦ ✈❛❧♦r x0 = −1+ 2 ∈ [0, 2] ❞❡ ♠♦❞♦ q✉❡ f (−1+ 2) =
◆ã♦ ❝♦♥s✐❞❡r❡♠♦s ♦ ✈❛❧♦r
x = −1 −
√
2
♣❡❧♦ ❢❛t♦ ♥ã♦ ♣❡rt❡♥❝❡r ❛♦ ✐♥t❡r✈❛❧♦
[0, 2]✳
Pr♦♣r✐❡❞❛❞❡ ✹✳✼✳
❙❡ n é í♠♣❛r✱ ❡♥tã♦ q✉❛❧q✉❡r ❡q✉❛çã♦ xn + an−1 xn−1 + an−2 xn−2 + · · · + a1 x + a0 = 0
♣♦ss✉✐ ✉♠❛ r❛✐③ r❡❛❧✳
❉❡♠♦♥str❛çã♦✳
❙❡❥❛
h
an−1 an−2 an−3
a2
a1
a0 i
f (x) = xn 1 +
+ 2 + 3 + · · · + n−2 + n−1 + n
x
x
x
x
x
x
♦❜s❡r✈❡ q✉❡✿
a2
a1
a0
an−1 an−2 an−3
+ 2 + 3 + · · · + n−2 + n−1 + n ≤
x
x
x
x
x
x
an−1
an−3
a2
a1
a0
an−2
+
+ · · · + n−2 + n−1 + n
✭✹✳✻✮
+
2
3
x
x
x
x
x
x
❊s❝♦❧❤❡♠♦s ✉♠ x q✉❡ ❝✉♠♣r❡ ♦ s❡❣✉✐♥t❡✿
| x |> 1, | x |> 2n | an−1 |, | x |> 2n | an−2 |, · · · , | x |> 2n | a1 |, | x |> 2n | a0 |✱
≤
❡♥tã♦
| xk |>| x |
❉❡ ✭✹✳✻✮
❡
an−1 an−2 an−3
+ 2 + 3
x
x
x
≤
1
| an−k |
an−k
an−k
=
<
<
k
x
x
2n | an−k |
2n
a2
a1
a0
+ · · · + n−2 + n−1 + n ≤
x
x
x
1
1
1
1
1
1
+
+ ··· +
+
+
=
2n 2n
2n 2n 2n
2
✷✸✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
▲♦❣♦✱
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
a2
a1
a0
1
1
an−1 an−2 an−3
− <
+ 2 + 3 + · · · + n−2 + n−1 + n ≤
❡
2
x
x
x
x
x
x
2
1
a2
a1
a0
an−1 an−2 an−3
<1+
+ 2 + 3 + · · · + n−2 + n−1 + n
2
x
x
x
x
x
x
❙✉♣♦♥❤❛ ✉♠ x1 > 0✱ ❡♥tã♦✿
a2
an−1 an−2 an−3
a1
a0
x21
2
≤ x1 1 +
+ 2 + 3 + · · · + n−2 + n−1 + n = f (x1 )
0≤
2
x1
x1
x1
x1
x1
x1
❉❡ ♠♦❞♦ q✉❡ f (x1 ) > 0✳ P♦r ♦✉tr♦ ❧❛❞♦✱ q✉❛♥❞♦ x2 < 0✱ ❡♥tã♦ xn2 < 0 ✭n é í♠♣❛r✮ ❡ ✿
x22
a1
a0
an−1 an−2 an−3
a2
2
0≥
≥ x2 1 +
+ 2 + 3 + · · · + n−2 + n−1 + n = f (x2 )
2
x2
x2
x2
x2
x2
x2
❞❡ ♠♦❞♦ q✉❡ f (x2 ) < 0✳
❖❜s❡r✈❡ q✉❡ f (x1 )·f (x2 ) < 0✱ ❛♣❧✐❝❛♥❞♦ ♦ ❚❡♦r❡♠❛ ✭✹✳✶✮ ❡①✐st❡ ✉♠ ♥ú♠❡r♦ x ∈ [x1 , x2 ]
❞❡ ♠♦❞♦ q✉❡ f (x) = 0✳
❊①❡♠♣❧♦ ✹✳✷✵✳ ❖✉tr❛ ❞❡♠♦♥str❛çã♦ ❞❛ Pr♦♣r✐❡❞❛❞❡
▼♦str❡ q✉❡ s❡✱
a1 x + a0 = 0
n
é í♠♣❛r✱ ❡♥tã♦ q✉❛❧q✉❡r ❡q✉❛çã♦
♣♦ss✉✐ ✉♠❛ r❛✐③ r❡❛❧✳
❉❡♠♦♥str❛çã♦✳
h
a
a
a
✭✹✳✼✮
xn + an−1 xn−1 + an−2 xn−2 + · · · +
a
a
a i
n−3
2
1
0
❙❡❥❛ f (x) = xn 1 + n−1 + n−2
+ 3 + · · · + n−2 + n−1 + n
2
x
x
x
x
x
x
f (x) = xn · g(x)✱ ♦♥❞❡
g(x) = 1 +
♦❜s❡r✈❡ q✉❡✿
a2
a1
a0
an−1 an−2 an−3
+ 2 + 3 + · · · + n−2 + n−1 + n
x
x
x
x
x
x
P♦r ♦✉tr♦ ❧❛❞♦✱ lim g(x) = 1 ❧♦❣♦ ♣❡❧❛ ❞❡✜♥✐çã♦ ❞❡ ❧✐♠✐t❡ ❛♦ ✐♥✜♥✐t♦✱ t❡♠♦s ∀ ε >
x→∞
∃ n > 0 t❛❧ q✉❡ | g(x) − 1 |< ε, s❡♠♣r❡ q✉❡ | x |> n✳
1
1
s❡♠♣r❡ q✉❡ | x |> n✳ ▲♦❣♦
❊♠ ♣❛rt✐❝✉❧❛r✱ ❝♦♥s✐❞❡r❡ ε = ✱ ❛ss✐♠ | g(x) − 1 |<
2
2
1
3
< g(x) < ✳
2
2
❉♦ ❢❛t♦ | x |> n ✱ ❡①✐st❡ x1 > 0 ❡ ♠✉❧t✐♣❧✐❝❛♥❞♦ ❡st❛ ú❧t✐♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ ♣♦r xn1 > 0
3xn
xn
t❡♠♦s q✉❡ 0 < 1 < xn1 · g(x1 ) = f (x1 ) < 1 ⇒ 0 < f (x1 )✳
2
2
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✱ ❞♦ ❢❛t♦ | x |> n✱ ❡①✐st❡ x2 < 0 t❛❧ q✉❡ ❞♦ ❢❛t♦ n í♠♣❛r xn2 < 0 ⇒
xn
3xn
0 > 2 > xn2 · g(x2 ) = f (x2 ) > 2
⇒
f (x2 ) < 0✳
2
2
P♦rt❛♥t♦✱ ♣❛r❛ x1 , x2 ∈ R t❛❧ q✉❡✱ f (x1 ) · f (x2 ) < 0 ♣❡❧❛ ❚❡♦r❡♠❛ ✭✹✳✶✮ ❡①✐st❡ c ∈ R
t❛❧ q✉❡ f (c) = 0✳
0,
✷✸✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
P❛r❛ ❡st❡ ❡①❡♠♣❧♦✱ ❧❡♠❜r❡ q✉❡ D(f ) = R✳
Pr♦♣r✐❡❞❛❞❡ ✹✳✽✳
❙❡ n é ♣❛r ❡ f (x) = xn + an−1 xn−1 + an−2 xn−2 + · · · + a1 x + a0 = 0✱ ❡♥tã♦ ❡①✐st❡ ✉♠
♥ú♠❡r♦ y t❛❧ q✉❡ f (y) ≤ f (x) ♣❛r❛ t♦❞♦ x ∈ R✳
❉❡♠♦♥str❛çã♦✳
❈♦♥s✐❞❡r❡ M = max .{ 1, 2n | an−1 |, 2n | an−2 |, · · · , 2n | a1 |, 2n | a0 | }✱ ❡♥tã♦ ♣❛r❛
t♦❞♦ | x |≥ M t❡♠♦s
1
a2
a1
a0
an−1 an−2 an−3
<1+
+ 2 + 3 + · · · + n−2 + n−1 + n
2
x
x
x
x
x
x
❉♦ ❢❛t♦ n ♣❛r✱ xn ≥ 0 ♣❛r❛ t♦❞♦ x✱ ❞❡ ♠♦❞♦ q✉❡✿
h
x2
a2
a1
a0 i
an−1 an−2 an−3
2
0≤
≤x 1+
+ 2 + 3 + · · · + n−2 + n−1 + n = f (x)
2
x
x
x
x
x
x
s❡♠♣r❡ q✉❡ | x |≥ M ✳ ❈♦♥s✐❞❡r❡♠♦s ♦ ♥ú♠❡r♦ f (0)✱ ❡ s❡❥❛ b > 0 ✉♠ ♥ú♠❡r♦ t❛❧ q✉❡
bn ≥ 2f (0) ❡ t❛♠❜é♠ b > M ✳
xn
bn
≥
≥ f (0)✳
2
2
(−b)n
xn
≥
≥ f (0)❀ ❧♦❣♦ ✱ s❡ x ≥ b ♦✉ x ≤ −b
❆♥❛❧♦❣❛♠❡♥t❡✱ s❡ x ≤ −b ❡♥tã♦ f (x) ≥
2
2
❡♥tã♦ f (x) ≥ f (0)✳ ❆♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✹✳✼✮ ♣❛r❛ ❛ ❢✉♥çã♦ f (x) ♥♦ ✐♥t❡r✈❛❧♦ [−b, b]✱
❡①✐st❡ y t❛❧ q✉❡✿
❙❡ − b ≤ x ≤ b, ❡♥tã♦ f (y) ≤ f (x)
✭✹✳✼✮
❊♥tã♦ s❡ x ≥ b t❡♠♦s f (x) ≥
❊♠ ♣❛rt✐❝✉❧❛r f (x) ≤ f (0)✳ ❉❡st❡ ♠♦❞♦
❙❡ x ≥ b ♦✉ x ≤ −b ❡♥tã♦ f (x) ≥ f (0) ≥ f (y)
✭✹✳✽✮
❈♦♠❜✐♥❛♥❞♦ ✭✹✳✼✮ ❡ ✭✹✳✽✮ t❡♠♦s f (y) ≤ f (x) ♣❛r❛ t♦❞♦ x ∈ R✳
❊①❡♠♣❧♦ ✹✳✷✶✳
▼♦str❡ q✉❡✱ s❡ f : [0; 1] −→ R ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠ [0, 1] t❛❧ q✉❡ f (x) ∈ [0, 1] ♣❛r❛
t♦❞♦ x ∈ [0, 1]✳ ❊♥tã♦ ❡①✐st❡ x ∈ [0, 1] t❛❧ q✉❡ f (x) = x✱ ♦✉ s❡❥❛✱ f ♣♦ss✉✐ ♣❡❧♦ ♠❡♥♦s ✉♠
♣♦♥t♦ ✜①♦✳
❈♦♠ ❡❢❡✐t♦✱ s❡ f (0) = 0 ♦✉ f (1) = 1✱ ♥❛❞❛ ❛ ♠♦str❛r✳
❙✉♣♦♥❤❛♠♦s q✉❡ f (0) 6= 0 ❡ f (1) 6= 1 ❡♥tã♦ ❝♦♠♦ f (0) ≥ 0 ❡ f (1) ≤ 1✱ ♥❡❝❡ss❛r✐❛✲
♠❡♥t❡ f (0) > 0 ❡ f (1) < 1✳
❉❡✜♥❛♠♦s g(x) = f (x) − x ♣❛r❛ t♦❞♦ x ∈ [0, 1] ❡♥tã♦ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✹✳✶✮ s❡❣✉❡✲s❡
g é ❝♦♥tí♥✉❛✳ ❈♦♠♦ g(1) = f (1) − 1 < 0 < f (0) − 0 = g(0)✱ ♣❡❧♦ ❚❡♦r❡♠❛ ❞♦ ✈❛❧♦r
✐♥t❡r♠❡❞✐ár✐♦✱ ❡①✐st❡ x ∈ (0, 1) t❛❧ q✉❡ g(x) = 0✱ ✐st♦ é f (x) = x✳
✷✸✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✹✲✷
✶✳ ❉❛❞❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✱ ❞❡t❡r♠✐♥❡ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ♥♦s ✐♥t❡r✈❛❧♦s ✐♥❞✐❝❛❞♦s✿
✶✳
| 16 − x4 |
4 − x2
f (x) =
−8
8
s❡ x 6= ±2
s❡ x = −2 ♥♦s ✐♥t❡r✈❛❧♦s✿
s❡ x = 2
(−∞, −2); (−∞, −2]; (−2, 2); [−2,
3
2
|x +x −x−1|
x2 − 3x + 2
✷✳
f (x) =
−4
4
2); [−2, 2]; (−2, 2]; [2, +∞); (2, +∞)✳
s❡ x 6= 1 ❡ x 6= 2
s❡ x = 1
s❡ x = 2
♥♦s ✐♥t❡r✈❛❧♦s✿
(−∞, 1); (−∞, 1]; (1, 2); [1, 2]; [2, +∞); (2, +∞)✳
p
✸✳
f (x) = | x | −[|x|] ❡♠ (0, 1], [0, 1], [1, 3]✳
✹✳
f (x) = (x − 1)[|x|]
❡♠ [0, 2]✳
✷✳ P❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s✱ ❡st❛❜❡❧❡❝❡r s❡ ❛ ❢✉♥çã♦ é ❝♦♥tí♥✉❛ ♥♦s ✐♥t❡r✈❛❧♦s ✐♥❞✐✲
❝❛❞♦s✳ ❈♦♥str✉✐r ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦✳
✶✳
✷✳
✸✳
✹✳
✺✳
✻✳
x+2
❡♠ (2, 4)✳
− 3x − 10
x−6
s❡ x 6= 4
2
x − 2x − 8
f (x) =
❡♠ (−1, 6)
−2
s❡ x = 4
x+4
s❡ x 6= ±4
x2 − 16
1
❡♠ (−5, 5)✳
f (x) =
s❡ x = −4
−
8
2
s❡ x = 4
2
s❡ − 1 < x ≤ 2
x − 6x + 1
f (x) =
❡♠ (−1, 5).
2x − 6
s❡ 2 < x ≤ 3
2
4x − 3 − x
s❡ 3 < x < 5
(
x−4
s❡ − 1 < x ≤ 2
f (x) =
❡♠ (−1, 5)✳
x2 − 6
s❡ 2 < x < 5
(x − 1) | x − 2 |
s❡ 0 < x < 4, x 6= 1
| x2 − 1 |
f (x) =
❡♠ (0, 4)
1
s❡ x = 1
2
f (x) =
x2
✷✸✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✸✳ ❉❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
a
❡
b
R
❞❡ t❛❧ ♠♦❞♦ q✉❡ ❝❛❞❛ ✉♠❛ ❞❛s ❢✉♥çõ❡s s❡❥❛ ❝♦♥tí♥✉❛ ❡♠
s❡✉ ❞♦♠í♥✐♦✳
✶✳
✷✳
✸✳
s❡
x < −2
x + 2a
f (x) =
3ax + b
s❡
−2≤x≤1
6x − 2b
s❡
x>1
3
s❡✱
− ≤x≤0
b
2
| 2x2 − 3x − 9 |
3
f (x) =
, s❡✱ x < −
♦✉
x>3
2
2x − 3x − 9
2
3
a
s❡✱
0≤x≤
2
√
3
3 − 3x + 3
s❡
x<8
3
a(√
x − 2)
f (x) =
ab,
s❡✱
x=8
2
s❡
x>8
b· | 2x − 7 |
✹✳ ❉❡t❡r♠✐♥❡ ♦ ✐♥t❡r✈❛❧♦ ❞❡ ❝♦♥t✐♥✉✐❞❛❞❡ ♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1 − x + [|x|]
h 1 i
1. f (x) =
x
s❡
s❡
x≥0
2. f (x) =
x<0
5. f (x) =| x − [|x|]+ | [|1 − x|] |
1
s❡ x < 0
x
x2
s❡ 0 ≤ x < 5
7. f (x) =
2
x − 4x − 5
s❡ x > 5
|x−5|
3
s❡ x ≤ −1
x + 3x + 3
9. f (x) =
|x−2|
s❡ − 1 < x ≤ 4
8x − x2 − 15
s❡ x > 4
✶✳
f (x) = sgn(x)
❡
✷✳
f (x) = sgn(x)
❡
✸✳
✹✳
x+ | x |
2
(
1
s❡
f (x) =
0
s❡
f (x) =
R
♣❛r❛ ❛s ❢✉♥çõ❡s
f og
4. f (x) =
r
8. f (x) =
p
16 − x2
x−6
x2 − 16
x−6
q
√
3
6. f (x) = 4 − x − 2
3. f (x) =| 1 − x + [|x|] − [|1 − x|] |
✺✳ ❆♥❛❧✐s❡ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❡♠
r
10. f (x) =
❡
gof
| x | −[|x|]
| 4x − 3 | −1
[|3 − 4x|]
✱ s❡✿
g(x) = x − x3 ✳
❡
g(x) = 1 + x − [|x|]✳
(
x
s❡
x<0
g(x) =
✳
x2
s❡
x≥0
(
2
| x |≤ 1
❡
g(x) =
2 − x2
| x |> 1
✷✹✵
s❡
s❡
| x |> 2
| x |≤ 2
✳
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✻✳ ❉❛r ❡①❡♠♣❧♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ❡♠ [0, 1] q✉❡ ♥ã♦ t❡♥❤❛ ♠á①✐♠♦ ♥❡♠ ♠í♥✐♠♦
❡♠ t❛❧ ✐♥t❡r✈❛❧♦ ✳
✼✳ ❙❡ f (x) = x4 −5x+3✱ ❧♦❝❛❧✐③❛r ✉♠ ✐♥t❡r✈❛❧♦ [a, b] ♦♥❞❡ t❡♥❤❛ ✉♠❛ r❛✐③ r❡❛❧✱ ❥✉st✐✜q✉❡
s✉❛ r❡s♣♦st❛✳
x2 + 1
✱ ❝❛❧❝✉❧❛r ♦ ✈❛❧♦r q✉❡ ❝✉♠♣r❡ ♦ ❚❡♦r❡♠❛ ✭✹✳✸✮ ✭❞♦ ✈❛❧♦r ✐♥t❡r♠❡✲
✽✳ ❙❡❥❛ f (x) =
x
❞✐ár✐♦✮ ♣❛r❛ d = 3✱ ❡♠ [1, 6]✳
✾✳ ❙❡❥❛ f : [a; b] −→ R ❝♦♥tí♥✉❛ ❡♠ [a; b]✳ ❯s❛♥❞♦ ♦ ❚❡♦r❡♠❛ ❞❡ ❲❡✐❡rstr❛ss ♠♦str❡
q✉❡ ❡①✐st❡ C > 0 t❛❧ q✉❡ |f (x)| ≤ C ♣❛r❛ t♦❞♦ x ∈ [a; b]✳
✶✵✳ ❈♦♥s✐❞❡r❡ ✉♠ ✐♥t❡r✈❛❧♦ ♥ã♦ tr✐✈✐❛❧ I ⊂ R ❡ ✉♠❛ ❢✉♥çã♦ f : I −→ R ❝♦♥tí♥✉❛ ❡♠ I ✳
▼♦str❡ q✉❡ f (I) = { f (x) /. x ∈ I } é ✉♠ ✐♥t❡r✈❛❧♦✳
sen(x2 )
/. x ∈ [−1, 2] }✳ ▼♦str❡ q✉❡ ♦ ❝♦♥❥✉♥t♦ T é ✉♠ ✐♥t❡r✈❛❧♦
✶✶✳ ❙❡❥❛ T = { 4
x +1
❢❡❝❤❛❞♦ ❡ ❧✐♠✐t❛❞♦✳
❙✉❣❡stã♦✿ ❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦ f : [−1, 2] −→ R✱ ❞❡✜♥✐❞❛ ♣♦r f (x) =
sen(x2 )
✳
x4 + 1
✶✷✳ ▼♦str❡ q✉❡ ❛ ❡q✉❛çã♦ x5 + 3x − 2 = 0 t❡♠ ✉♠❛ r❛✐③ ♥♦ ✐♥t❡r✈❛❧♦ (0, 1)✳
1
✳
+2
1
❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ [0, 1]✳
❙✉❣❡stã♦✿ ❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦ f (x) = x5 − 4
x +2
✶✸✳ ▼♦str❡ q✉❡ ❡①✐st❡ x ∈ (0, 1) t❛❧ q✉❡ x5 =
x4
π
2
✶✹✳ ▼♦str❡ q✉❡ ❡①✐st❡ x ∈ ( , π) t❛❧ q✉❡ senx = x − 1✳
π
2
❙✉❣❡stã♦✿ ❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦ f (x) = senx − x + 1 ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ ( , π)✳
✶✺✳ ❙❡❥❛ f : [0, 1] −→ R ❝♦♥tí♥✉❛ ❡♠ [0, 1] t❛❧ q✉❡ f (0) > 0 ❡ f (1) < 1✳ ▼♦str❡ q✉❡
√
❡①✐st❡ x ∈ (0, 1) t❛❧ q✉❡ f (x) = x✳
senπx
s❡❥❛ ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ (0, 1)✳ ❉❡✜♥✐r
x(x − 1)
f ❡♠ x = 0 ❡ x = 1 ❞❡ ♠♦❞♦ q✉❡ f s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ [0, 1]✳
✶✻✳ ❙✉♣♦♥❤❛♠♦s q✉❡ ❛ ❢✉♥çã♦ f (x) =
✶✼✳ ❙✉♣♦♥❤❛♠♦s q✉❡ ❛ ❢✉♥çã♦ f ❡stá ❞❡✜♥✐❞❛ ♥♦ ✐♥t❡r✈❛❧♦ (0, 1) ♣♦r f (x) =
❘❡❞❡✜♥✐r f ♣❛r❛ q✉❡ s❡❥❛ ❝♦♥tí♥✉❛ ❡♠ [0, 1]✳
1 − cos(2πx)
✳
x2 (1 − x)2
✶✽✳ ❯♠❛ ❡❞✐t♦r❛ ✈❡♥❞❡ 10.000 ❧✐✈r♦s ❞❡ ♠❛t❡♠át✐❝❛ ❛♣❧✐❝❛❞❛ q✉❛♥❞♦ ♦ ♣r❡ç♦ ✉♥✐tár✐♦
é ❞❡ ❘$15, 00✱ ❛ ❡❞✐t♦r❛ ❞❡t❡r♠✐♥♦✉ q✉❡ ♣♦❞❡ ✈❡♥❞❡r 2.000 ✉♥✐❞❛❞❡s ❛ ♠❛✐s ❝♦♠
✉♠❛ r❡❞✉çã♦ ❞❡ ❘$3, 00 ♥♦ ♣r❡ç♦ ✉♥✐tár✐♦✳ ❆❝❤❡ ❛ ❡q✉❛çã♦ ❞❡ ❞❡♠❛♥❞❛✱ s✉♣♦♥❞♦✲❛
❧✐♥❡❛r✱ ❡ tr❛❝❡ ♦ ❣rá✜❝♦ r❡s♣❡❝t✐✈♦✳
✷✹✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✶✾✳ ◆✉♠❛ ♣❡q✉❡♥❛ ❝✐❞❛❞❡✱ ❝♦♠ ♣♦♣✉❧❛çã♦ ❞❡
5.000 ❤❛❜✐t❛♥t❡s✱ ❛ t❛①❛ ❞❡ ❝r❡s❝✐♠❡♥t♦ ❞❡
✉♠❛ ❡♣✐❞❡♠✐❛ ✭❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞♦ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s ✐♥❢❡❝t❛❞❛s✮ é ❝♦♥❥✉♥t❛♠❡♥t❡
♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s ✐♥❢❡❝t❛❞❛s ❡ ❛♦ ♥ú♠❡r♦ ❞❡ ♣❡ss♦❛s ♥ã♦ ✐♥❢❡❝t❛❞❛s✳
✭❛✮ ❙❡ ❛ ❡♣✐❞❡♠✐❛ ❡stá ❝r❡s❝❡♥❞♦ à r❛③ã♦ ❞❡ 9 ♣❡ss♦❛s ♣♦r ❞✐❛ q✉❛♥❞♦ 100 ♣❡ss♦❛s
❡stã♦ ✐♥❢❡❝t❛❞❛s✱ ❡①♣r❡ss❡ ❛ t❛①❛ ❞❡ ❝r❡s❝✐♠❡♥t♦ ❞❛ ❡♣✐❞❡♠✐❛ ❝♦♠♦ ❢✉♥çã♦ ❞♦ ♥ú♠❡r♦
❞❡ ♣❡ss♦❛s ✐♥❢❡❝t❛❞❛s✳ ✭❜✮ ◗✉ã♦ rá♣✐❞♦ ❡stá s❡ ❛❢❛st❛♥❞♦ ❛ ❡♣✐❞❡♠✐❛✱ q✉❛♥❞♦
200
♣❡ss♦❛s ❡stã♦ ✐♥❢❡❝t❛❞❛s ❄
✷✹✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
▼✐s❝❡❧â♥❡❛ ✹✲✶
✶✳ ❉❡t❡r♠✐♥❡ q✉❛✐s ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❡stã♦ ❧✐♠✐t❛❞❛s s✉♣❡r✐♦r ❡ ✐♥❢❡r✐♦r♠❡♥t❡ ♥♦
✐♥t❡r✈❛❧♦ ✐♥❞✐❝❛❞♦❀ ❡ q✉❛✐s ❞❡❧❛s ❛❧❝❛♥ç❛♠ s❡✉s ✈❛❧♦r❡s ❞❡ ♠á①✐♠♦ ♦✉ ♠í♥✐♠♦✳
✶✳
f (x) = x2 ❡♠ (−1, 1)
✷✳
g(x) = x3 ❡♠ (−1, 1)
✸✳
h(x) = x2 ❡♠ R
✹✳
f (x) = x2 ❡♠ [0, +∞)
✷✳ P❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✱ ❞❡t❡r♠✐♥❡ ✉♠ ✐♥t❡✐r♦ n t❛❧ q✉❡ f (x) = 0 ♣❛r❛
❛❧❣✉♠ x ∈ [n, n + 1]✳
✶✳
f (x) = x3 − x + 3
✷✳
g(x) = x5 + 5x4 + 2x + 1
✸✳
f (x) = x5 + x + 1
✹✳
f (x) = 4x2 − 4x + 1
✸✳ ✶✳ ▼♦str❡ q✉❡ s❡ f é ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠ [a, b]✱ ❡♥tã♦ ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ g q✉❡
é ❝♦♥tí♥✉❛ ❡♠ R✱ ❡ q✉❡ ❝✉♠♣r❡ g(x) = f (x) ∀ x ∈ [a, b]✳ ✭❙✉❣❡stã♦✿ ❝♦♥s✐❞❡r❡ ✉♠❛
❢✉♥çã♦ g(x) ❝♦♥st❛♥t❡ ❡♠ (−∞, a] ∪ [b, +∞)✳
❖❜s❡r✈❡ q✉❡ ❛ ❛✜r♠❛çã♦ ❡♠ ✭✶✳✮ ❞❡st❡ ✐t❡♠ é ❢❛❧s❛ s❡ s✉❜st✐t✉✐r♠♦s ♦ ✐♥t❡r✈❛❧♦
[a, b] ♣♦r (a, b)✳ ❏✉st✐✜❝❛r✳
✷✳
✹✳ ❙❡❥❛ f : [0, 4] → R ❞❛❞❛ ♣♦r f (x) =
✶✳
✷✳
2x − x2
✱ ♣❡❞❡✲s❡✿
x + x2
Pr♦✈❛r q✉❡ x = 4 é ♦ ♣♦♥t♦ ♠í♥✐♠♦ ❞❡ f ✐st♦ é f (4) ≤ f (x)✱ ♣❛r❛ t♦❞♦ x ∈ [0, 4]✳
Pr♦✈❛r q✉❡ ∃ x2 ∈ [0, 2] t❛❧ q✉❡ f (x2 ) é ♦ ✈❛❧♦r ♠á①✐♠♦ ❞❡ f ✱ ✐st♦ é f (x2 ) ≥
∀ x ∈ [0, 4]
sen 1 , s❡✱ x 6= 0
❀
✺✳ ❙❡❥❛ f (x) =
x
1,
s❡✱ x = 0
f (x),
1
f t❡♠ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡ ❡✈✐tá✈❡❧ ❡♠ x = 0❄✳ ❊ q✉❛♥❞♦ s❡ s✉❜st✐t✉✐ f (x) = x.sen( )
x
♣❛r❛ x 6= 0 ❄
✻✳ ❙❡❥❛ f : [a, b] −→ R ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ♥ã♦ ❝♦♥st❛♥t❡ ❡♠ [a, b]✳ Pr♦✈❛r q✉❡
Im(f ) = [m, M ] ♦♥❞❡ m = min .f (x) ❡ M = max .f (x)✳
x∈[a, b]
x∈[a, b]
✼✳ Pr♦✈❛r q✉❡ ♦ ♣♦❧✐♥ô♠✐♦ P (x) = 4x3 − 14x2 + 14x − 3 t❡♠ três r❛í③❡s r❡❛✐s ❞✐❢❡r❡♥t❡s✳
✽✳ ❙✉♣♦♥❤❛♠♦s q✉❡ f : [0, 1] −→ [0, 1] s❡❥❛ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛✳ Pr♦✈❛r q✉❡ ❡①✐st❡
c ∈ [0, 1] t❛❧ q✉❡ f (c) = c
✷✹✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✾✳ ▼♦str❡ q✉❡ ❡①✐st❡ ❛❧❣✉♠ ♥ú♠❡r♦
✶✳
x179 +
163
= 119
1 + + sen2 x
x∈R
R
t❛❧ q✉❡✿
✷✳
x2
senx = x − 1✳
✶✵✳ ❉❡t❡r♠✐♥❡ q✉❛✐s ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❡stã♦ ❧✐♠✐t❛❞❛s s✉♣❡r✐♦r ❡ ✐♥❢❡r✐♦r♠❡♥t❡ ♥♦
✐♥t❡r✈❛❧♦ ✐♥❞✐❝❛❞♦❀ ❡ q✉❛✐s ❞❡❧❛s ❛❧❝❛♥ç❛♠ s❡✉s ✈❛❧♦r❡s ❞❡ ♠á①✐♠♦ ♦✉ ♠í♥✐♠♦✳
✶✳
✷✳
✸✳
✹✳
✺✳
f (x) =
(
x2 ,
a + 2,
0,
f (x) =
1
,
q
1,
f (x) =
1
,
q
s❡✱
s❡✱
s❡✱
s❡✱
x<a
x≥a
❡♠
x∈I=R−Q
p
x=
é ❢r❛çã♦
q
[−a − 1, a + 1]
❡♠
✐rr❡❞✉tí✈❡❧
x∈I=R−Q
p
s❡✱
x=
é ❢r❛çã♦ ✐rr❡❞✉tí✈❡❧
q
√
g(x) = sen2 (cos x + 1 + a2 ) ❡♠ [0, a3 ]✳
h(x) = |[x|]
[0, 1]
s❡✱
❡♠
❡♠
[0, 1]
[0, a]✳
✷✹✹
09/02/2021
❈❛♣ít✉❧♦ ✺
❉❊❘■❱❆❉❆❙
✑❋❡r♠❛t ♦ ✈❡r❞❛❞❡✐r♦ ✐♥✈❡♥t♦r ❞♦ ❝á❧❝✉❧♦ ❞✐❢❡r❡♥❝✐❛❧
···✑
▲❆P▲❆❈❊
P✐❡rr❡ ❉❡ ❋❡r♠❛t ♥❛s❝❡✉ ❡♠ ❇❡❛✉♠♦♥t ♥❛ ❋r❛♥ç❛✱ ♥♦ ❛♥♦ ❞❡
1601✱
❡ ❢❛❧❡❝❡✉ ❡♠ ❈❛str❡s✱ ❡♠
12 ❞❡ ❥❛♥❡✐r♦ ❞❡ 1665✳
❈❡❞♦✱ ♠❛✲
♥✐❢❡st♦✉ ✐♥t❡r❡ss❡ ♣❡❧♦ ❡st✉❞♦ ❞❡ ❧í♥❣✉❛s ❡str❛♥❣❡✐r❛s✱ ❧✐t❡r❛t✉r❛
❝❧áss✐❝❛✱ ❝✐ê♥❝✐❛ ❡ ♠❛t❡♠át✐❝❛❀ ❢♦✐ ❡❞✉❝❛❞♦ ❡♠ ❝❛s❛✳ ❚rês ❛♥♦s
❞❡♣♦✐s ❞❡ s❡ ❢♦r♠❛r ❡♠ ❞✐r❡✐t♦ ♣❡❧❛✱ ❯♥✐✈❡rs✐❞❛❞❡ ❞❡ ❖r❧é❛♥s✱
t♦r♥♦✉✲s❡ ❝♦♥s❡❧❤❡✐r♦ ❞♦ P❛r❧❛♠❡♥t♦ ❞❡ ❚♦❧♦✉s❡✱ ❡♠
1634❀
❡r❛
♠✉✐t♦ ♦❝✉♣❛❞♦❀ ❡♠ s✉❛s ❤♦r❛s ❧✐✈r❡s t❡✈❡ t❡♠♣♦ ♣❛r❛ s❡ ❞❡❞✐❝❛r
à ❧✐t❡r❛t✉r❛ ❝❧áss✐❝❛✱ ✐♥❝❧✉s✐✈❡ ❝✐ê♥❝✐❛ ❡ ♠❛t❡♠át✐❝❛✳
❊♠
1629✱
❡❧❡ ❝♦♠❡ç♦✉ ❛ ❢❛③❡r ❞❡s❝♦❜❡rt❛s ❞❡ ✐♠♣♦rtâ♥❝✐❛ ❝❛✲
♣✐t❛❧ ❡♠ ♠❛t❡♠át✐❝❛✳ ◆❡ss❡ ❛♥♦✱ ❡❧❡ ❝♦♠❡ç♦✉ ❛ ♣r❛t✐❝❛r ✉♠ ❞♦s
P✳ ❋❡r♠❛t
❡s♣♦rt❡s ❢❛✈♦r✐t♦s ❞♦ t❡♠♣♦✿ ❛ ✏r❡st❛✉r❛çã♦✑ ❞❡ ♦❜r❛s ♣❡r❞✐❞❛s
❞❛ ❛♥t✐❣✉✐❞❛❞❡✱ ❝♦♠ ❜❛s❡ ❡♠ ✐♥❢♦r♠❛çõ❡s ❡♥❝♦♥tr❛❞❛s ♥♦s tr❛✲
t❛❞♦s ❝❧áss✐❝♦s ♣r❡s❡r✈❛❞♦s✳ ❋❡r♠❛t s❡ ♣r♦♣ôs ❛ r❡❝♦♥str✉✐r ♦s
❧✉❣❛r❡s ♣❧❛♥♦s ❞❡ ❆♣♦❧ô♥✐♦✱ ❜❛s❡❛❞♦ ❡♠ ❛❧✉sõ❡s ❝♦♥t✐❞❛s ♥❛ ❈♦✲
❧❡çã♦ ▼❛t❡♠át✐❝❛ ❞❡ P❛♣✉s✳
❙✉❛s ♦❜r❛s ❝♦♥s✐st❡♠ ❡♠ ❛rt✐❣♦s ✐s♦❧❛❞♦s✳
❙❡✉s r❡s✉❧t❛❞♦s ♠❛✐s
✐♠♣r❡ss✐♦♥❛♥t❡s ❢♦r❛♠ ❡♥❝♦♥tr❛❞♦s ❞❡♣♦✐s ❞❡ s✉❛ ♠♦rt❡✳
❋✉♥❞❛❞♦r ❞❛ ♠♦❞❡r♥❛ t❡♦r✐❛ ❞♦s ♥ú♠❡r♦s✱ ❋❡r♠❛t ❛♥t❡❝✐♣♦✉✲s❡ ❛ ❉❡s❝❛rt❡s✱ ❞❡s❝♦❜r✐✉ ❡♠
1636
♦ ♣r✐♥❝í♣✐♦ ❢✉♥❞❛♠❡♥t❛❧ ❞❛ ❣❡♦♠❡tr✐❛ ❛♥❛❧ít✐❝❛✳
❋❡r♠❛t ♥ã♦ ❝♦♥❝♦r❞♦✉ ❝♦♠ ❉❡s❝❛rt❡s ❡ ❞❡✉ ê♥❢❛s❡ ❛♦ ❡s❜♦ç♦ ❞❡ s♦❧✉çõ❡s ❞❡ ❡q✉❛çõ❡s ✐♥❞❡t❡r✲
♠✐♥❛❞❛s ❛♦ ✐♥✈❡③ ❞❡ à ❝♦♥str✉çã♦ ❣❡♦♠étr✐❝❛ ❞❛s s♦❧✉çõ❡s ❞❡ ❡q✉❛çõ❡s ❛❧❣é❜r✐❝❛s ❞❡t❡r♠✐♥❛❞❛s✳
❋❡r♠❛t ❧✐♠✐t♦✉ s✉❛ ❡①♣♦s✐çã♦ ♥♦ ❝✉rt♦ tr❛t❛❞♦ ✐♥t✐t✉❧❛❞♦ ✏■♥tr♦❞✉çã♦ ❛♦s ❧✉❣❛r❡s ♣❧❛♥♦s ❡ só❧✐✲
❞♦s✑✳
P❡rt❡♥❝❡ ❛ ❋❡r♠❛t ❛ ❢❛♠♦s❛ ❝♦♥❥❡t✉r❛ s♦❜r❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ❡♠ ♥ú♠❡r♦s ✐♥t❡✐r♦s
xn + y n = z n ✱ ♣❛r❛ n ∈ N✱ ❞❡♠♦♥str❛❞❛ ❡♠ 1993✳
♣❛r❛ ❛ ❡q✉❛çã♦
✷✹✺
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺✳✶
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❈♦♥❝❡✐t♦s ❜ás✐❝♦s
❯♠ ❞♦s ❝♦♥❝❡✐t♦s ❜ás✐❝♦s ❞♦ ❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡ ■♥t❡❣r❛❧ é ♦ ❞❛ ❞❡r✐✈❛❞❛✳ ❆s ❝✐ê♥❝✐❛s
❡♠ ❣❡r❛❧ t✐✈❡r❛♠ ❣r❛♥❞❡ ✐♠♣✉❧s♦ ❡♠ s❡✉ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ♣❡❧❛ ♥❡❝❡ss✐❞❛❞❡ ❞❡ r❡s♦❧✉çã♦
❞❡ ♣r♦❜❧❡♠❛s ❝♦♥❝r❡t♦s✳ ❖s ❞♦✐s ♣r♦❜❧❡♠❛s ♣rát✐❝♦s s❡❣✉✐♥t❡s sã♦ ♦s q✉❡ ♣r♦♣✐❝✐❛r❛♠ ❛
❝r✐❛çã♦ ❞♦ ❝♦♥❝❡✐t♦ ❞❡ ❞❡r✐✈❛❞❛✿
✶✳ ❉❡t❡r♠✐♥❛r ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❛ ✉♠❛ ❝✉r✈❛ ♥✉♠ ♣♦♥t♦ ❞❛❞♦✳
✷✳ ❉❛❞❛ ❛ ❧❡✐ ❤♦rár✐❛ ❞♦ ♠♦✈✐♠❡♥t♦ ❞❡ ✉♠❛ ♣❛rtí❝✉❧❛ ✈✐♥❝✉❧❛❞❛ ❛ ✉♠❛ r❡t❛✳ ■st♦ é✱ ✉♠❛
❡q✉❛çã♦
s = f (t)
q✉❡ ❞á ❛ ♣♦s✐çã♦ ❞❛ ♣❛rtí❝✉❧❛ s♦❜r❡ ❛ r❡t❛ ❡♠ ❝❛❞❛ ✐♥st❛♥t❡
t✱
❞❡t❡r♠✐♥❛r ❛ ✈❡❧♦❝✐❞❛❞❡ ❞❛ ♣❛rtí❝✉❧❛ ❡♠ ❝❛❞❛ ✐♥st❛♥t❡✳
❉❡ ✐♥í❝✐♦✱ ❛s ❞❡✜♥✐çõ❡s ♥ã♦ t✐♥❤❛♠ ♣r❡❝✐sã♦✳
❏á ❡♠
1.629
P✐❡rr❡ ❋❡r♠❛t ❢❛③✐❛ ✉♠❛
❛❜♦r❞❛❣❡♠ ❞♦ ♣r✐♠❡✐r♦ ♣r♦❜❧❡♠❛✱ t❡♥❞♦ ❡♥❝♦♥tr❛❞♦ ✉♠❛ ♠❛♥❡✐r❛ ❞❡ ❝♦♥str✉✐r t❛♥❣❡♥t❡s
❛ ✉♠❛ ♣❛rá❜♦❧❛✱ ❡ q✉❡ ❝♦♥t✐♥❤❛ ✐♠♣❧✐❝✐t❛♠❡♥t❡ ❛ ✐❞❡✐❛ ❞❡ ❞❡r✐✈❛❞❛✳ ❇❡♠ ♠❛✐s t❛r❞❡✱ s❡
♣❡r❝❡❜❡✉ q✉❡ ♦s ❞♦✐s ♣r♦❜❧❡♠❛s t✐♥❤❛♠ ❛❧❣♦ ❡♠ ❝♦♠✉♠ ❡ q✉❡ ❛ ✐❞❡✐❛ ❣❡r❛❧ q✉❡ ♣❡r♠✐t✐r✐❛
r❡s♦❧✈ê✲❧♦s ♥❡❝❡ss❛r✐❛♠❡♥t❡ ❧❡✈❛r✐❛ ❛ ♥♦çã♦ ❞❡ ❞❡r✐✈❛❞❛ ♥✉♠ ♣♦♥t♦✳
P♦r ♦✉tr♦ ❧❛❞♦✱ ❛ ✐♥tr♦❞✉çã♦ ❞❡ ❝♦♦r❞❡♥❛❞❛s ❝❛rt❡s✐❛♥❛s✱ ❛❧é♠ ❞❡ ❢❛❝✐❧✐t❛r ♦ ❡st✉❞♦
❞❡ ❝✉r✈❛s ❥á ❝♦♥❤❡❝✐❞❛s✱ ♣❡r♠✐t✐✉ ❛ ✏ ❝r✐❛çã♦ ✑ ❞❡ ♥♦✈❛s ❝✉r✈❛s✱ ✐♠❛❣❡♥s ❣❡♦♠étr✐❝❛s ❞❡
❢✉♥çõ❡s ❞❡✜♥✐❞❛s ♣♦r r❡❧❛çõ❡s ❡♥tr❡ ✈❛r✐á✈❡✐s✳ ❊♥q✉❛♥t♦ s❡ ❞❡❞✐❝❛✈❛ ❛♦ ❡st✉❞♦ ❞❡ ❛❧❣✉♠❛s
❞❡st❛s ❢✉♥çõ❡s✱ ❋❡r♠❛t ❞❡✉ ❝♦♥t❛ ❞❛s ❧✐♠✐t❛çõ❡s ❞♦ ❝♦♥❝❡✐t♦ ❝❧áss✐❝♦ ❞❡ r❡t❛ t❛♥❣❡♥t❡ ❛
✉♠❛ ❝✉r✈❛ ❝♦♠♦ s❡♥❞♦ ❛q✉❡❧❛ q✉❡ ❡♥❝♦♥tr❛✈❛ ❛ ❝✉r✈❛ ♥✉♠ ú♥✐❝♦ ♣♦♥t♦✳
❚♦r♥♦✉✲s❡ ❛ss✐♠ ✐♠♣♦rt❛♥t❡ r❡❢♦r♠✉❧❛r t❛❧ ❝♦♥✲
❝❡✐t♦ ❡ ❡♥❝♦♥tr❛r ✉♠ ♣r♦❝❡ss♦ ❞❡ tr❛ç❛r ✉♠❛ t❛♥❣❡♥t❡
❛ ✉♠ ❣rá✜❝♦ ♥✉♠ ❞❛❞♦ ♣♦♥t♦ ✲ ❡st❛ ❞✐✜❝✉❧❞❛❞❡ ✜❝♦✉
✻y
❝♦♥❤❡❝✐❞❛ ♥❛ ❍✐stór✐❛ ❞❛ ▼❛t❡♠át✐❝❛ ❝♦♠♦ ♦ ✏ Pr♦✲
❜❧❡♠❛ ❞❛ ❚❛♥❣❡♥t❡ ✑✳ ❋❡r♠❛t r❡s♦❧✈❡✉ ❡st❛ ❞✐✜❝✉❧❞❛❞❡
✲
❞❡ ✉♠❛ ♠❛♥❡✐r❛ ♠✉✐t♦ s✐♠♣❧❡s✿ ♣❛r❛ ❞❡t❡r♠✐♥❛r ✉♠❛
t❛♥❣❡♥t❡ ❛ ✉♠❛ ❝✉r✈❛ ♥✉♠ ♣♦♥t♦
P
x
❝♦♥s✐❞❡r♦✉ ♦✉tr♦
Q s♦❜r❡ ❛ ❝✉r✈❛❀ ❝♦♥s✐❞❡r♦✉ ❛ r❡t❛ P Q s❡❝❛♥t❡ à
❝✉r✈❛✳ ❙❡❣✉✐❞❛♠❡♥t❡ ❢❡③ ❞❡s❧✐③❛r Q ❛♦ ❧♦♥❣♦ ❞❛ ❝✉r✈❛
❡♠ ❞✐r❡çã♦ ❛ P ✱ ♦❜t❡♥❞♦ ❞❡st❡ ♠♦❞♦ r❡t❛s P Q q✉❡ s❡
❛♣r♦①✐♠❛✈❛♠ ❞❡ ✉♠❛ r❡t❛ t ❛ q✉❡ P✳ ❋❡r♠❛t ❝❤❛♠♦✉
P ✑ ✭❋✐❣✉r❛ ✭✺✳✶✮✮✳
♣♦♥t♦
❋✐❣✉r❛ ✺✳✶✿
✏ ❛ r❡t❛ t❛♥❣❡♥t❡ à ❝✉r✈❛ ♥♦ ♣♦♥t♦
▼❛✐s✱ ❋❡r♠❛t ♥♦t♦✉ q✉❡ ♣❛r❛ ❝❡rt❛s ❢✉♥çõ❡s✱ ♥♦s ♣♦♥t♦s ♦♥❞❡ ❛ ❝✉r✈❛ ❛ss✉♠✐❛ ✈❛❧♦r❡s
❡①tr❡♠♦s✱ ❛ t❛♥❣❡♥t❡ ❛♦ ❣rá✜❝♦ ❞❡✈✐❛ s❡r ✉♠❛ r❡t❛ ❤♦r✐③♦♥t❛❧✱ ❥á q✉❡ ❛♦ ❝♦♠♣❛r❛r ♦ ✈❛❧♦r
P (x, f (x)) ❝♦♠ ♦ ✈❛❧♦r ❛ss✉♠✐❞♦ ♥♦ ♦✉tr♦ ♣♦♥t♦
Q(x + E, f (x + E)) ♣ró①✐♠♦ ❞❡ P ✱ ❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡ f (x + E) ❡ f (x) ❡r❛ ♠✉✐t♦ ♣❡q✉❡♥❛✱
q✉❛s❡ ♥✉❧❛✱ q✉❛♥❞♦ ❝♦♠♣❛r❛❞❛ ❝♦♠ ♦ ✈❛❧♦r ❞❡ E ✱ ❞✐❢❡r❡♥ç❛ ❞❛s ❛❜s❝✐ss❛s ❞❡ Q ❡ P ✳
❛ss✉♠✐❞♦ ♣❡❧❛ ❢✉♥çã♦ ♥✉♠ ❞❡ss❡s ♣♦♥t♦s
✷✹✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❆ss✐♠✱ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❞❡t❡r♠✐♥❛r ❡①tr❡♠♦s ❡ ❞❡ ❞❡t❡r♠✐♥❛r t❛♥❣❡♥t❡s ❛ ❝✉r✈❛s ♣❛ss❛♠ ❛
❡st❛r ✐♥t✐♠❛♠❡♥t❡ r❡❧❛❝✐♦♥❛❞♦s✳ ❊st❛s ✐❞❡✐❛s ❝♦♥st✐t✉ír❛♠ ♦ ❡♠❜r✐ã♦ ❞♦ ❝♦♥❝❡✐t♦ ❞❡ ✏ ❉❡r✐✲
✈❛❞❛ ✑ ❡ ❧❡✈♦✉ ▲❛♣❧❛❝❡ ❛ ❝♦♥s✐❞❡r❛r ✏❋❡r♠❛t ♦ ✈❡r❞❛❞❡✐r♦ ✐♥✈❡♥t♦r ❞♦ ❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧✑✳
❈♦♥t✉❞♦✱ ❋❡r♠❛t ♥ã♦ ❞✐s♣✉♥❤❛ ❞❡ ♥♦t❛çã♦ ❛♣r♦♣r✐❛❞❛ ❡ ♦ ❝♦♥❝❡✐t♦ ❞❡ ❧✐♠✐t❡ ♥ã♦ ❡st❛✈❛
❛✐♥❞❛ ❝❧❛r❛♠❡♥t❡ ❞❡✜♥✐❞♦✳
◆♦ sé❝✉❧♦
XVII✱
▲❡✐❜♥✐t③ ❛❧❣❡❜r✐③❛ ♦ ❈á❧❝✉❧♦ ■♥✜♥✐t❡s✐♠❛❧✱
✐♥tr♦❞✉③✐♥❞♦ ♦s ❝♦♥❝❡✐t♦s ❞❡ ✈❛r✐á✈❡❧✱ ❝♦♥st❛♥t❡ ❡ ♣❛râ♠❡tr♦✱ ❜❡♠ ❝♦♠♦ ❛ ♥♦t❛çã♦
dy
♣❛r❛ ❞❡s✐❣♥❛r ❛ ♠❡♥♦r ♣♦ssí✈❡❧ ❞❛s ❞✐❢❡r❡♥ç❛s ❡♠
❆ss✐♠✱ ❡♠❜♦r❛ só ♥♦ sé❝✉❧♦
XIX
x
❡ ❡♠
dx
❡
y✳
❈❛✉❝❤② ❤❛❥❛ ✐♥tr♦❞✉③✐❞♦ ❢♦r♠❛❧♠❡♥t❡ ♦ ❝♦♥❝❡✐t♦ ❞❡
❧✐♠✐t❡ ❡ ♦ ❝♦♥❝❡✐t♦ ❞❡ ❞❡r✐✈❛❞❛✱ ♥♦ ✐♥í❝✐♦ ❞♦ sé❝✉❧♦
XVII✱ ❝♦♠ ▲❡✐❜♥✐t③ ❡ ◆❡✇t♦♥✱ ♦ ❈á❧❝✉❧♦
❉✐❢❡r❡♥❝✐❛❧ t♦r♥❛✲s❡ ✉♠ ✐♥str✉♠❡♥t♦ ❝❛❞❛ ✈❡③ ♠❛✐s ✐♥❞✐s♣❡♥sá✈❡❧✱ ♣❡❧❛ s✉❛ ❛♣❧✐❝❛❜✐❧✐❞❛❞❡
❛♦s ♠❛✐s ❞✐✈❡rs♦s ❝❛♠♣♦s ❞❛ ❝✐ê♥❝✐❛✳
❉❡✜♥✐çã♦ ✺✳✶✳
P♦♥t♦ ❞❡ ❛❝✉♠✉❧❛çã♦✳
❖ ♣♦♥t♦ ❧✐♠✐t❡ ♦✉ ♣♦♥t♦ ❞❡ ❛❝✉♠✉❧❛çã♦✱ é ✉♠ ♣♦♥t♦ ❡♠ ✉♠ ❝♦♥❥✉♥t♦ q✉❡ ♣♦❞❡ s❡r
❛♣r♦①✐♠❛❞♦ tã♦ ❜❡♠ q✉❛♥t♦ s❡ q✉❡✐r❛ ♣♦r ✐♥✜♥✐t♦s ♦✉tr♦s ♣♦♥t♦s ❞♦ ❝♦♥❥✉♥t♦ ✳
✺✳✷
❉❡r✐✈❛❞❛ ❞❡ ✉♠❛ ❢✉♥çã♦
❙❡❥❛ ❛ ❢✉♥çã♦
f : A −→ R✱
❡ ✉♠ ♣♦♥t♦ ❞❡ ❛❝✉♠✉❧❛çã♦
a ∈ A✳
f ♣❛ss❛ ❞♦ ♣♦♥t♦ a ∈ A ♣❛r❛ ❛♦ ♣♦♥t♦
x ∈ A✱ s♦❢r❡♥❞♦ ✉♠ ❛❝rés❝✐♠♦ ♦✉ ✐♥❝r❡♠❡♥t♦ ∆x = x − a✱ ♦s ❝♦rr❡s♣♦♥❞❡♥t❡s ✈❛❧♦r❡s
❞❛❞♦s ♣❡❧❛ ❢✉♥çã♦ ♣❛ss❛♠ ❞❡ f (a) ♣❛r❛ f (a + ∆x)✱ s♦❢r❡♥❞♦ t❛♠❜é♠ ✉♠ ✐♥❝r❡♠❡♥t♦
◗✉❛♥❞♦ ❛ ✈❛r✐á✈❡❧ ✐♥❞❡♣❡♥❞❡♥t❡ ❞❛ ❢✉♥çã♦
∆y = f (x) − f (a) = f (a + ∆x) − f (a)
❉❡✜♥✐çã♦ ✺✳✷✳
❚❛①❛ ♠é❞✐❛ ❞❡ ✈❛r✐❛çã♦✳
❈❤❛♠❛✲s❡ ✏t❛①❛ ♠é❞✐❛ ❞❡ ✈❛r✐❛çã♦✑ ❞❛ ❢✉♥çã♦
❡♥t❡✿
s❡♥❞♦ ❡st❛ ❢✉♥çã♦
f
r❡❧❛t✐✈❛ ❛♦ ♣♦♥t♦
f (x) − f (a)
f (a + ∆x) − f (a)
∆y
=
=
∆x
x−a
∆x
❞❡✜♥✐❞❛ ❡♠ t♦❞♦ x ∈ A✱ ❡①❝❡t♦ ♣♦ss✐✈❡❧♠❡♥t❡
a∈A
❡♠
❛♦ q✉♦❝✐✲
x = a✳
❊①❡♠♣❧♦ ✺✳✶✳
❙❡❥❛ ❛ ❢✉♥çã♦
a = 3✳
f (x) = x2
❚❡♠♦s✿
❛ q✉❛❧✱ ♣❛r❛
x 6= 3✱
❝♦♥str✉❛♠♦s ❛ t❛①❛ ♠é❞✐❛ ❞❡ ✈❛r✐❛çã♦ r❡❧❛t✐✈❛ ❛♦ ♣♦♥t♦
x2 − 3 2
(x − 3)(x + 3)
∆y
=
=
∆x
x−3
(x − 3)
♣♦❞❡ s❡r ❡s❝r✐t❛
✭✺✳✶✮
∆y
= x + 3✳
∆x
✷✹✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
0
◆♦t❡✲s❡ q✉❡✱ s❡ ✜③❡r♠♦s x = 3 ❡♠ ✭✺✳✶✮✱ ♦❜t❡♠♦s ❛ ❢♦r♠❛ ✐♥❞❡t❡r♠✐♥❛❞❛ ✳ ❊♥tr❡✲
0
t❛♥t♦✱ ♣♦❞❡ s❡r q✉❡ ❡①✐st❛ ♦ ❧✐♠✐t❡ ❞❛ r❛③ã♦ ✭✺✳✶✮ q✉❛♥❞♦ x → 3 ♦✉ q✉❛♥❞♦ ∆x → 0 ❡
❡ss❡ ❧✐♠✐t❡ s❡❥❛ ✜♥✐t♦✳
❉❡✜♥✐çã♦ ✺✳✸✳ ❉❡r✐✈❛❞❛ ❞❡ ✉♠❛ ❢✉♥çã♦ ❡♠ ✉♠ ♣♦♥t♦✳
❙❡❥❛ f : A −→ R ✉♠❛ ❢✉♥çã♦✱ ❞✐③❡♠♦s q✉❡ f é ❞❡r✐✈á✈❡❧ ♥♦ ♣♦♥t♦ ❞❡ ❛❝✉♠✉❧❛çã♦
a ∈ A✱ q✉❛♥❞♦ ♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡ ❡①✐st❡ ❡✱ é ✜♥✐t♦✿
∆y
f (a + ∆x) − f (a)
= lim
∆x→0 ∆x
∆x→0
∆x
✭✺✳✷✮
lim
◗✉❛♥❞♦ f s❡❥❛ ❞❡r✐✈á✈❡❧ ❡♠ x = a✱ ♦ ❧✐♠✐t❡ ✭✺✳✷✮ é ❝❤❛♠❛❞♦ ❞❡r✐✈❛❞❛ ❞❡ f ♥♦ ♣♦♥t♦
a✱ ❡ é ✐♥❞✐❝❛❞♦ ❝♦♠ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ♥♦t❛çõ❡s✿ f ′ (a);
Df (a) ♦✉
♣❡❝t✐✈❛♠❡♥t❡✱ ❛ ❏✳ ▲✳ ▲❛❣r❛♥❣❡✱ ❆✳ ▲✳ ❈❛✉❝❤②✱ ❡ ●✳ ❲✳ ▲❡✐❜♥✐t③✳
df
(a) ❞❡✈✐❞❛s✱ r❡s✲
dx
❖❜s❡r✈❛çã♦ ✺✳✶✳
❆ ❉❡✜♥✐çã♦ ✭✺✳✷✮ é ❡q✉✐✈❛❧❡♥t❡ ❛✿
f ′ (a) = lim
x→a
f (a + ∆x) − f (a)
f (x) − f (a)
= lim
∆x→0
x−a
∆x
❉❡✜♥✐çã♦ ✺✳✹✳ ❋✉♥çã♦ ❞❡r✐✈❛❞❛✳
❙❡❥❛ f : R −→ R ✉♠❛ ❢✉♥çã♦✱ ❞❡s✐❣♥❡♠♦s ♣♦r B = { x ∈ R /. f ′ (x) ❡①✐st❛ }✱ s❡
B 6= ∅ ❛ ❢✉♥çã♦✿
f ′ : B ⊆ R −→
R
′
x
7→ f (x)
❞❡✜♥✐❞❛ ❡♠ B é ❞❡♥♦♠✐♥❛❞❛ ❢✉♥çã♦ ❞❡r✐✈❛❞❛ ❞❡ f ✱ ♦✉ s✐♠♣❧❡s♠❡♥t❡ ♣r✐♠❡✐r❛
df
✳
❞❡r✐✈❛❞❛ ❞❡ f ✱ ❡ é ✐♥❞✐❝❛❞❛ ❝♦♠ ✉♠❛ ❞❛s ♥♦t❛çõ❡s ✿ f ′ ; Df ;
dx
❊①❡♠♣❧♦ ✺✳✷✳ ❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡✳
Pr♦✈❡ q✉❡ ❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡ f (x) = k ♦♥❞❡ k ∈ R✱ é ❞❡r✐✈á✈❡❧ ❡♠ t♦❞♦ ♣♦♥t♦ a ∈ R
❡ f ′ (a) = 0✳
❙♦❧✉çã♦✳
P❛r❛ t♦❞♦ a ∈ R t❡♠♦s✿ lim
x→a
k−k
f (x) − f (a)
= lim
= 0✱ ✐st♦ é✱ f ′ (a) = 0 ∀ x ∈ R✳
x→a
x−a
x−a
P♦rt❛♥t♦✱ s✉❛ ❢✉♥çã♦ ❞❡r✐✈❛❞❛ é f ′ (x) = 0,
∀ x ∈ R✳
❊①❡♠♣❧♦ ✺✳✸✳ ❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ ❛✜♠✳
✷✹✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
Pr♦✈❛r q✉❡ ❛ ❢✉♥çã♦
f (x) = cx + d
′
f (a) = c✳
(c, d ∈ R, c 6= 0✮
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
a∈R
❡✱
é ❞❡r✐✈á✈❡❧ ❡♠ t♦❞♦
❙♦❧✉çã♦✳
❈♦♠ ❡❢❡✐t♦✱ ♣❛r❛ t♦❞♦ a ∈ R t❡♠♦s✿
(cx + d) − (ca + d)
c(x − a)
f (x) − f (a)
= lim
= lim
=c
x→a
x→a x − a
x→a
x−a
x−a
f ′ (a) = lim
❆ss✐♠✱ ♦❜t❡♠♦s ❞❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ f (x) = cx + d✱ ❡ ❛ ❢✉♥çã♦ f ′ (x) = c,
P♦rt❛♥t♦✱ f ′ (a) = c✳
❊①❡♠♣❧♦ ✺✳✹✳
❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦
▼♦str❡ q✉❡✱ s❡
f (x) = x2 ✱
❡♥tã♦
∀ x ∈ R✳
f (x) = x2 ✳
f
é ❞❡r✐✈á✈❡❧ ❡♠ t♦❞♦
❙♦❧✉çã♦✳
x∈R
❡ t❡♠♦s
f ′ (x) = 2x
❚❡♠♦s✱ ♣❛r❛ t♦❞♦ x ∈ R ❡ h = ∆x✿
f (x + h) − f (x)
(x + h)2 − x2
= lim
= lim (2x + h) = 2x
h→0
h→0
h→0
(x + h) − x
h
f ′ (x) = lim
P♦rt❛♥t♦✱ f ′ (x) = 2x,
❊①❡♠♣❧♦ ✺✳✺✳
❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦
▼♦str❡ q✉❡ ❛ ❢✉♥çã♦
′
f (x) = nx
∀ x ∈ R✳
f (x) = xn
n−1
f (x) = xn ✳
(n ∈ N,
n 6= 2)
é ❞❡r✐✈á✈❡❧ ❡♠ t♦❞♦
x∈R
❡ t❡♠♦s
❙♦❧✉çã♦✳
f (x + ∆x) − f (x)
(x + ∆x)n − xn
= lim
=
∆x→0
∆x→0
∆x
∆x
P❛r❛ t♦❞♦ x ∈ R t❡♠♦s✿ f ′ (x) = lim
[(x + ∆x) − x][(x + ∆x)n−1 + x(x + ∆x)n−2 + · · · + xn−2 (x + ∆x) + xn−1 ]
=
∆x→0
∆x
= lim
lim [(x + ∆x)n−1 + x(x + ∆x)n−2 + · · · + xn−2 (x + ∆x) + xn−1 ] = nxn−1
∆x→0
✐st♦ é✱ f ′ (x) = nxn−1 ✳
❊①❡♠♣❧♦ ✺✳✻✳
▼♦str❡ q✉❡ ❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
f (x) =| x |
♥ã♦ é ❞❡r✐✈á✈❡❧ ❡♠
x=0
|x|
f (x) − f (0)
= lim
✳
x→0
x−0
x
|x|
|x|
=1 ❡
lim−
= −1✳
❉❛ ❞❡✜♥✐çã♦ ❞♦ ✈❛❧♦r ❛❜s♦❧✉t♦✱ s❡❣✉❡✿
lim+
x→0
x→0
x
x
P♦rt❛♥t♦✱ ♥ã♦ ❡①✐st❡ f ′ (0)✱ ♣♦ré♠ ✈❡r✐✜❝❛✲s❡ q✉❡ f é ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠ x = 0✳
❉❛ ❞❡✜♥✐çã♦ ❞❛ ❞❡r✐✈❛❞❛ f ′ (0) = lim
x→0
✷✹✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✺✳✼✳ ❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ ❡①♣♦♥❡♥❝✐❛❧✳
Pr♦✈❡ q✉❡ ❛ ❢✉♥çã♦
f (x) = ax
♣❛r❛
a>0
❡
f ′ (x) = ax Lna✳
a 6= 1
é ❞❡r✐✈á✈❡❧ ❡♠ t♦❞♦
x ∈ R✱
❡ t❡♠♦s
❙♦❧✉çã♦✳
ah − 1
ah − 1
ax+h − ax
= lim ax ·
= ax · lim
✱ ❡ s❡♥❞♦✱
h→0
h→0
h→0
h
h
h
ah − 1
ax+h − ax
♣❡❧♦ ❧✐♠✐t❡ ♥♦tá✈❡❧ ❞♦ ❊①❡♠♣❧♦ ✭✸✳✺✹✮✱ lim
= Lna✱ s❡❣✉❡✲s❡ q✉❡ lim
=
h→0
h→0
h
h
x
a · Lna✳
P❛r❛ t♦❞♦ x ∈ R t❡♠♦s✿ lim
P♦rt❛♥t♦ ✱ f (x) = ax é ❞❡r✐✈á✈❡❧ ❡ t❡♠♦s f ′ (x) = ax · Lna✳
◆♦ ❝❛s♦ ♣❛rt✐❝✉❧❛r ❡♠ q✉❡ a = e t❡rí❛♠♦s✱ f ′ (x) = ex ✱ ♣♦✐s Lne = 1✳
❊①❡♠♣❧♦ ✺✳✽✳ ❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦
Pr♦✈❡ q✉❡ s❡
f (x) = senx✱
❡♥tã♦
sen x✳
f ′ (x) = cos x✳
❙♦❧✉çã♦✳
sen(x + h) − senx)
f (x + h) − f (x)
= lim
=
h→0
h→0
h
h
❚❡♠♦s✿ lim
senx(cos h − 1) senh · cos x
senx · cos h + senh · cos x − senx
= lim
+
= lim
h→0
h→0
h
h
h
cos h − 1
senh
+ cos x · lim
= (senx)(0) + (cos x)(1) = cos x
h→0
h→0 h
h
= senx · lim
▲♦❣♦✱ ❛ ❢✉♥çã♦ ❞❡r✐✈❛❞❛ ♣❛r❛ f (x) = senx é ❛ ❢✉♥çã♦ f ′ (x) = cos x✳
✺✳✷✳✶
❘❡t❛ t❛♥❣❡♥t❡✳ ❘❡t❛ ♥♦r♠❛❧
❈♦♥s✐❞❡r❡ ✉♠❛ ❝✉r✈❛ C ✱ ❡ ✉♠ ♣♦♥t♦ ✜①♦ P ❡♠ t❛❧
❝✉r✈❛✱ ❡ s❡❥❛ ✉♠❛ r❡t❛ s❡❝❛♥t❡ q✉❡ ❝♦rt❛ à ❝✉r✈❛ C ♥♦s
♣♦♥t♦s P ❡ Q✱ ♦♥❞❡ ❡ P 6= Q ❡ ♦ ♣♦♥t♦ Q ∈ C ✳
◗✉❛♥❞♦ Q ❛♣r♦①✐♠❛✲s❡ ✐♥❞❡✜♥✐❞❛♠❡♥t❡ ❛♦ ♣♦♥t♦
P ✱ ❛tr❛✈és ❞❛ ❝✉r✈❛ C ✱ ❛ s❡❝❛♥t❡ ♦❝✉♣❛rá ❞✐✈❡rs❛s ♣♦✲
s✐çõ❡s✳ ❙❡✱ ❝♦♠ ❛ ❛♣r♦①✐♠❛çã♦ ✐❧✐♠✐t❛❞❛ ❞♦ ♣♦♥t♦ Q
❛tr❛✈és ❞❛ ❝✉r✈❛ C ♣❛r❛ ♦ ♣♦♥t♦ P ✱ ❛ s❡❝❛♥t❡ t❡♥❞❡ ❛
♦❝✉♣❛r ❛ ♣♦s✐çã♦ ❞❡ ✉♠❛ r❡t❛ ❞❡♥♦♠✐♥❛❞❛ LT ✱ ❝❤❛♠❛✲
s❡ ❛ ❡st❛ ú❧t✐♠❛ ❞❡ r❡t❛ t❛♥❣❡♥t❡ à ❝✉r✈❛ C ♥♦ ♣♦♥t♦
P ✱ ❝♦♠♦ ✐♥❞✐❝❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✺✳✷✮✳
❋✐❣✉r❛ ✺✳✷✿
❙❡❥❛ f : R −→ R✱ ❢✉♥çã♦ ❞❡r✐✈á✈❡❧ ❡♠ x = a❀
❝♦♥s✐❞❡r❛♥❞♦ ❛ ✐♥t❡r♣r❡t❛çã♦ ❣❡♦♠étr✐❝❛ ❞❛ ❞❡r✐✈❛❞❛ f ′ (a) t❡♠♦s ❛s s❡❣✉✐♥t❡s ❞❡✜♥✐çõ❡s✿
✷✺✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡✜♥✐çã♦ ✺✳✺✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❘❡t❛ t❛♥❣❡♥t❡✳
❆ r❡t❛ t❛♥❣❡♥t❡ ❛♦ ❣rá✜❝♦ ❞❡
y = f (x)
♥♦ ♣♦♥t♦
P (a, f (a))
t❡♠ ♣♦r ❡q✉❛çã♦✿
LT : y − f (a) = f ′ (a)(x − a)
❉❡✜♥✐çã♦ ✺✳✻✳
❘❡t❛ ♥♦r♠❛❧✳
❆ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦ ♣♦♥t♦
❞❡
f
❡♠
P✱
P (a, f (a))
❡ é ♣❡r♣❡♥❞✐❝✉❧❛r à r❡t❛ t❛♥❣❡♥t❡ ♥♦ ❣rá✜❝♦
é ❝❤❛♠❛❞❛ ✏❘❡t❛ ♥♦r♠❛❧ ❛♦ ❣rá✜❝♦ ❞❡
f
♥♦ ♣♦♥t♦
P ✑✳
✭❋✐❣✉r❛
✭✺✳✸✮✮✳
❙❡ f ′ (a) 6= 0 ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♥♦r♠❛❧ é ❞❛❞❛ ♣♦r✿
LN : y − f (a) = −
1
f ′ (a)
(x − a)✳
❙❡ f ′ (a) = 0✱ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♥♦r♠❛❧ é✿ LN :
x = a✳
❖ ❝♦♠♣r✐♠❡♥t♦ ❞♦ s❡❣♠❡♥t♦ ❞❛ t❛♥❣❡♥t❡ AP ✱ ❝♦♠✲
♣r❡❡♥❞✐❞♦ ❡♥tr❡ ♦ ♣♦♥t♦ ❞❡ t❛♥❣ê♥❝✐❛ ❡ ♦ ❡✐①♦ x✱ é ❝❤❛✲
♠❛❞♦ ❞❡ ❝♦♠♣r✐♠❡♥t♦ ❞❛ t❛♥❣❡♥t❡✱ ❡ é ❞❡♥♦t❛❞♦ ♣♦r
T✳
❆ ♣r♦❥❡çã♦ ❞❡ AP s♦❜r❡ ♦ ❡✐①♦ x✱ ✐st♦ é AB é
❋✐❣✉r❛ ✺✳✸✿
❝❤❛♠❛❞♦ s✉❜t❛♥❣❡♥t❡✱ ❡ s❡✉ ❝♦♠♣r✐♠❡♥t♦ ❞❡♥♦t❛✲s❡
❝♦♠ ST ✳ ❖ ❝♦♠♣r✐♠❡♥t♦ ❞♦ s❡❣♠❡♥t♦ ❞❛ ♥♦r♠❛❧ P C ✱
❝♦♠♣r❡❡♥❞✐❞♦ ❡♥tr❡ ♦ ♣♦♥t♦ ❞❡ t❛♥❣ê♥❝✐❛ ❡ ♦ ❡✐①♦ x✱ é ❝❤❛♠❛❞♦ ❞❡ ❝♦♠♣r✐♠❡♥t♦ ❞❛
♥♦r♠❛❧✱ ❡ é ❞❡♥♦t❛❞♦ ❝♦♠ N ✳ ❆ ♣r♦❥❡çã♦ ❞❡ P C s♦❜r❡ ♦ ❡✐①♦ x✱ é ❝❤❛♠❛❞♦ s✉❜♥♦r♠❛❧ ❡
s❡✉ ❝♦♠♣r✐♠❡♥t♦ ❞❡♥♦t❛✲s❡ ❝♦♠ SN ✳
❉❛ ❋✐❣✉r❛ ✭✺✳✸✮ t❡♠♦s✿
f (a)
f (a)
= ′
tan α
f (a)
•
ST =| AB |=
•
q
f (a) p ′
(f (a))2 + 1
T =| AP |= (f (a))2 + ST2 = ′
f (a)
•
SN =| BC |=| f (a) · tan α |=| f (a) · f ′ (a) |
•
N =| P C |=
p
p
2
= f (a) · (f ′ (a))2 + 1
(f (a))2 + SN
➚ ❧✉③ ❞❡st❛ ✐♥t❡r♣r❡t❛çã♦ ❣❡♦♠étr✐❝❛✱ ♣♦❞❡♠♦s ❞❡✜♥✐r✿
r(∆x) := f (a + ∆x) − f (a) − f ′ (a)∆x
✷✺✶
✭✺✳✸✮
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❞❡ ♦♥❞❡✱ ❡♠ ✈✐rt✉❞❡ ❞❛ ❞❡✜♥✐çã♦ ❞❛ ❞❡r✐✈❛❞❛ ❡ ❞❛ ✐❣✉❛❧❞❛❞❡ ✭✺✳✸✮✱ s❡❣✉❡ q✉❡
r(∆x)
=0
∆x→0 ∆x
lim
✭✺✳✹✮
❱❡❥❛♠♦s t❛❧ ❢❛t♦ ❣❡♦♠❡tr✐❝❛♠❡♥t❡✳
❖❜s❡r✈❡✱ ❛ ♠❡❞✐❞❛ q✉❡ ∆x → 0✱ ♦ ♣♦♥t♦
a + ∆x t❡♥❞❡ ♣❛r❛ ♦ ♣♦♥t♦ a✱ ❛s r❡t❛s s❡❝❛♥t❡s
❛♦s ♣♦♥t♦s (a, f (a)) ❡ (a + ∆x, f (a + ∆x))
t❡♥❞❡♠ à r❡t❛ t❛♥❣❡♥t❡ ♥♦ ♣♦♥t♦ (a, f (a)) ❡ ♦
r❡st♦ r(∆x) t❡♥❞❡ ♠♦❞✉❧❛r♠❡♥t❡ ♣❛r❛ ③❡r♦✳
◆♦t❡♠♦s q✉❡ ♦ ♣r♦❞✉t♦ f ′ (a) · ∆x ♣♦❞❡ s❡r
❡♥❝❛r❛❞♦✱ ❛ ♠❡❞✐❞❛ q✉❡ ∆x ✈❛r✐❛ ❡♠ R ✱ ❝♦♠♦
✉♠❛ ❛♣❧✐❝❛çã♦ ❧✐♥❡❛r T : R −→ R✱ ❞❡✜♥✐❞❛ ♣♦r
T (∆x) = f ′ (a) · ∆x ✭q✉❡ ❞❡♣❡♥❞❡ ❞♦ ♣♦♥t♦ a✮
❋✐❣✉r❛ ✺✳✹✿ ❖ ❝♦♥❝❡✐t♦ ❞❡ ❞❡r✐✈❛❞❛ ❛ss♦✲
❞❡ ♠♦❞♦ q✉❡ ❞❡✜♥✐♥❞♦✲s❡✱ ❝♦♠♦ ❡♠ ✭✺✳✸✮✱
❝✐❛❞♦ à ❡①✐stê♥❝✐❛ ❞❡ ❛♣❧✐❝❛çõ❡s ❧✐♥❡❛r❡s✳
r(∆x) := f (a + ∆x) − f (a) − T (∆x)
t❡♠♦s
r(∆x)
= 0✳
∆x→0 ∆x
lim
◆♦ ❝❛s♦ ✉♥✐❞✐♠❡♥s✐♦♥❛❧✱ ♦ ❝♦♥❝❡✐t♦ ❞❡ ❞❡r✐✈❛❞❛ à ❧✉③ ❞♦ ❡①♣♦st♦ ❛❝✐♠❛ ♣♦❞❡ ♥ã♦
❛❥✉❞❛r ♠✉✐t♦✳ ❈♦♥t✉❞♦✱ q✉❛♥❞♦ ❝♦♥s✐❞❡r❛♠♦s ❢✉♥çõ❡s r❡❛✐s ❞❡ ♠❛✐s ❞❡ ✉♠❛ ✈❛r✐á✈❡❧✱ ❡st❛
♥♦✈❛ ♠❛♥❡✐r❛ ❞❡ ❝♦♥❝❡❜❡r ♦ ❝♦♥❝❡✐t♦ ❞❡ ❞❡r✐✈❛❞❛ é ❞❡ ❢✉♥❞❛♠❡♥t❛❧ ✐♠♣♦rtâ♥❝✐❛✱ ❝♦♥❢♦r♠❡
s❡rá ❛❜♦r❞❛❞♦ ♣♦st❡r✐♦r♠❡♥t❡ ❡♠ ❞✐s❝✐♣❧✐♥❛ ❈á❧❝✉❧♦ ❞❡ ❱ár✐❛s ❱❛r✐á✈❡✐s✳
❊①❡♠♣❧♦ ✺✳✾✳
❉❛❞❛ ❛ ❢✉♥çã♦ g(x) = x2 + 3x − 2✱ ♦❜t❡r ❛s ❡q✉❛çõ❡s ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❡ r❡t❛ ♥♦r♠❛❧
❛♦ ❣rá✜❝♦ ❞❡ f ♥♦ ♣♦♥t♦ P (2, 8) ❡ ❞❡t❡r♠✐♥❡ ♦s ❝♦♠♣r✐♠❡♥t♦s ❞❛ r❡t❛ t❛♥❣❡♥t❡✱ ♥♦r♠❛❧✱
s✉❜t❛♥❣❡♥t❡ ❡ s✉❜♥♦r♠❛❧✳
❙♦❧✉çã♦✳
❈♦♠♦ g(2) = 8✱ ❡♥tã♦ P (2, 8) ♣❡rt❡♥❝❡ ❛♦ ❣rá✜❝♦ ❞❡ g(x)✳
P♦r ♦✉tr♦ ❧❛❞♦✱ g ′ (x) = 2x+3✱ ❧♦❣♦ g ′ (2) = 7✱ ❛ss✐♠ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ ♣❡❞✐❞❛
é✿ LT : y − 8 = 7(x − 2) ✐st♦ é 7x − y = 6✳
❖ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ ♥♦r♠❛❧ é m = −
1
1
=
−
❡ s✉❛ ❡q✉❛çã♦✱ LN : y − 8 =
g ′ (2)
7
1
− (x − 2) ✐st♦ é✿ LN : x + 7y = 58✳
7
√
40 √
❖ ❝♦♠♣r✐♠❡♥t♦ ❞❛ t❛♥❣❡♥t❡ é✿ T =
2❀ ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❛ ♥♦r♠❛❧ é ✿ N = 40 2❀ ♦
7
√
8
❝♦♠♣r✐♠❡♥t♦ ❞❛ s✉❜t❛♥❣❡♥t❡ é ✿ ST = ❡✱ ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❛ s✉❜♥♦r♠❛❧ é ✿ SN = 40 2✳
7
✷✺✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❊①❡♠♣❧♦ ✺✳✶✵✳
❙❡❥❛ f (x) = x2 − x − 2✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❛♦ ❣rá✜❝♦ ❞❡ f q✉❡
s❡❥❛ ♣❛r❛❧❡❧❛ à r❡t❛ L : x + y = 8✳
❙♦❧✉çã♦✳
❖ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ L é m = −1✳
❖ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ ❛ ❞❡t❡r♠✐♥❛r ❡ f ′ (x) = 2x − 1✳
❉❡s❞❡ q✉❡ ❛s r❡t❛s t❡♠ q✉❡ s❡r ♣❛r❛❧❡❧❛s✱ f ′ (x) = −1 ♦ q✉❡ ✐♠♣❧✐❝❛ 2x − 1 = −1 ❧♦❣♦
x = 0 ❡ ♦ ♣♦♥t♦ ❞❡ t❛♥❣ê♥❝✐❛ ❛❝♦♥t❡❝❡ ❡♠ P (0, f (0)) ✐st♦ é ❡♠ P (0, −2)✳
P♦rt❛♥t♦✱ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♣❡❞✐❞❛ é✿ y − (−2) = −1(x − 0) ✐st♦ é x + y = −2✳
❊①❡♠♣❧♦ ✺✳✶✶✳
❆ r❡t❛ L ♣❛ss❛ ♣❡❧♦s ♣♦♥t♦s P (4, 5) ❡ Q(9, 11) ❡✱ é ♥♦r♠❛❧ ❛♦ ❣rá✜❝♦ ❞❡ h(x) = x2 − 4
❡♠ R(a, h(a))✳ ❉❡t❡r♠✐♥❡ R ❡ ❛ ❡q✉❛çã♦ ❞❡ L✳
❙♦❧✉çã♦✳
❆♣❧✐❝❛♥❞♦ ❞❡r✐✈❛❞❛s✱ ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ ♥♦r♠❛❧ L é ✿m = −
1
h′ (a)
=−
1
✳
2a
P♦r ♦✉tr♦ ❧❛❞♦✱ ❛♣❧✐❝❛♥❞♦ ❛ ❞❡✜♥✐çã♦✱ ❞❛❞♦s ♦s ♣♦♥t♦s P ❡ Q ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛
6
11 − 5
= ✳
9−4
5
2
1
6
5
5
551
551
−5
▲♦❣♦ − =
⇒ a=−
❡ h(a) =
❀ ❡♥tã♦ R(− , −
)
−4 = −
2a
5
12
12
144
12
144
6
❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ L é ✿ y − 5 = (x − 4)✳
5
P♦rt❛♥t♦✱ L : 6x − 5y = −1✳
r❡t❛ ♥♦r♠❛❧ L é ❞❛❞♦ ♣♦r m =
✺✳✸
❉❡r✐✈❛❞❛s ❧❛t❡r❛✐s
❙❡❥❛ f : A −→ R ✉♠❛ ❢✉♥çã♦✱ ❡ ♦ ♣♦♥t♦ ❞❡ ❛❝✉♠✉❧❛çã♦ a ∈ A✳
❉❡✜♥✐çã♦ ✺✳✼✳ ❉❡r✐✈❛❞❛ á ❡sq✉❡r❞❛✳
❉✐③✲s❡ q✉❡ f é ❞❡r✐✈á✈❡❧ à ❡sq✉❡r❞❛ ♥♦ ♣♦♥t♦ x = a✱ q✉❛♥❞♦ ❡①✐st❡ ❡ é ✜♥✐t♦ ♦
❧✐♠✐t❡✿
lim−
x→a
f (x) − f (a)
x−a
❊st❡ ❧✐♠✐t❡ é ❝❤❛♠❛❞♦ ❞❡r✐✈❛❞❛ ❞❡ f à ❡sq✉❡r❞❛ ❞♦ ♣♦♥t♦ x = a✱ ❡ ✐♥❞✐❝❛❞♦ ❝♦♠ ✉♠❛
❞❛s ♥♦t❛çõ❡s✿ f ′ (a− );
Df (a− );
df −
(a )✳
dx
✷✺✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✺✳✽✳ ❉❡r✐✈❛❞❛ à ❞✐r❡✐t❛✳
❉✐③✲s❡ q✉❡ f é ❞❡r✐✈á✈❡❧ à ❞✐r❡✐t❛ ♥♦ ♣♦♥t♦ x = a q✉❛♥❞♦ ❡①✐st❡ ❡ é ✜♥✐t♦ ♦ ❧✐♠✐t❡✿
f (x) − f (a)
x−a
lim+
x→a
❊st❡ ❧✐♠✐t❡ é ❝❤❛♠❛❞♦ ❞❡r✐✈❛❞❛ ❞❡ f à ❞✐r❡✐t❛ ❞♦ ♣♦♥t♦ x = a ❡ ✐♥❞✐❝❛❞♦ ❝♦♠ ✉♠❛ ❞❛s
♥♦t❛çõ❡s✿ f ′ (a+ );
df +
(a )✳
dx
Df (a+ );
❊①❡♠♣❧♦ ✺✳✶✷✳
❈❛❧❝✉❧❡ ❛s ❞❡r✐✈❛❞❛s ❧❛t❡r❛✐s ♥♦ ♣♦♥t♦ a = 0 ❞❛ ❢✉♥çã♦✿
f (x) =
(
s❡ x ≤ 0
s❡ x > 0
x
x2
❙♦❧✉çã♦✳
❉❛ ❉❡✜♥✐çã♦ ✭✺✳✻✮✱ t❡♠♦s q✉❡ lim−
x→0
t❛♥t♦✱ f ′ (0− ) = 1✳
x−0
f (x) − f (0)
= lim−
= lim− ·1 = 1✳ P♦r
x→0
x→0
x−0
x
x2 − 0
f (x) − f (0)
= lim+
= lim+ ·x = 0✳
x→0
x→0
x→0
x−0
x
′ +
▲♦❣♦✱ f (0 ) = 0✳ ◆ã♦ ❡①✐st❡ ❞❡r✐✈❛❞❛ ❞❡ f (x) ♥♦ ♣♦♥t♦ x = 0✳
P♦r ♦✉tr♦ ❧❛❞♦✱ ♣❡❧❛ ❉❡✜♥✐çã♦ ✭✺✳✼✮ lim+
❊①❡♠♣❧♦ ✺✳✶✸✳
❈❛❧❝✉❧❡ ❛s ❞❡r✐✈❛❞❛s ❧❛t❡r❛✐s ❞❛ ❢✉♥çã♦ f (x) =| x | ♥♦ ♣♦♥t♦ x = 0✳
❙♦❧✉çã♦✳
P❡❧♦ ♠♦str❛❞♦ ♥♦ ❊①❡♠♣❧♦ ✭✺✳✻✮✱ r❡s✉❧t❛ q✉❡✿
f (x) − f (0)
|x|
=
=
x−0
x
(
1
−1
s❡ x > 0
s❡ x < 0
❧♦❣♦✱ f ′ (0− ) = −1 ❡ f ′ (0+ ) = 1❀ ♣♦rt❛♥t♦ f (x) =| x | ♥ã♦ é ❞❡r✐✈á✈❡❧ ❡♠ x = 0✳
❊①❡♠♣❧♦ ✺✳✶✹✳
Pr♦✈❡ q✉❡ ❛ ❢✉♥çã♦ f (x) =
x = 0✳
(
x
1
s❡ x ≥ 0
♥ã♦ é ❞❡r✐✈á✈❡❧ à ❡sq✉❡r❞❛ ♥♦ ♣♦♥t♦
s❡ x < 0
❙♦❧✉çã♦✳
❉❡✱ ❢❛t♦ t❡♠♦s lim−
x→0
f (x) − f (0)
1−0
1
= lim−
= lim− = −∞✱ ❡ ❛ ❢✉♥çã♦ ♥ã♦ é
x→0 x − 0
x→0 x
x−0
❞❡r✐✈á✈❡❧ à ❡sq✉❡r❞❛✱ ♣♦rq✉❡ ♦ ❧✐♠✐t❡ ❧❛t❡r❛❧ à ❡sq✉❡r❞❛ ♥ã♦ é ✜♥✐t♦ ✭é ✐♥✜♥✐t♦✮✳
✷✺✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✳
❙❡❥❛ f : R −→ R ✉♠❛ ❢✉♥çã♦✱ f é ❞❡r✐✈á✈❡❧ ❡♠ x = a s❡✱ ❡ s♦♠❡♥t❡ s❡✱ ❡①✐st❡♠ ❡ sã♦
✐❣✉❛✐s ❛s ❞❡r✐✈❛❞❛s ❧❛t❡r❛✐s f ′ (a− ) ❡ f ′ (a+ )✳
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
✺✳✹
❉❡r✐✈❛❜✐❧✐❞❛❞❡ ❡ ❝♦♥t✐♥✉✐❞❛❞❡
Pr♦♣r✐❡❞❛❞❡ ✺✳✷✳
❙❡ ✉♠❛ ❢✉♥çã♦ y = f (x) é ❞❡r✐✈á✈❡❧ ♥♦ ♣♦♥t♦ x = a✱ ❡♥tã♦ ❡❧❛ é ❝♦♥tí♥✉❛ ❡♠ x = a✳
❉❡♠♦♥str❛çã♦✳
f (x) − f (a)
❡①✐st❡ ❡✱ é ✜♥✐t♦✳
x→a
x−a
P♦r ❤✐♣ót❡s❡✱ f é ❞❡r✐✈á✈❡❧ ❡♠ x = a❀ ❡♥tã♦ f ′ (a) = lim
P♦r ♦✉tr♦ ❧❛❞♦✱ ♣❛r❛ t♦❞♦ x ∈ D(f ),
f (x) − f (a) =
x 6= a✱ ❛ s❡❣✉✐♥t❡ ✐❞❡♥t✐❞❛❞❡ é ✈á❧✐❞❛✿
f (x) − f (a)
· (x − a)
x−a
❊♥tã♦ ❝❛❧❝✉❧❛♥❞♦ ♦ ❧✐♠✐t❡ ❡♠ [f (x) − f (a)] q✉❛♥❞♦ x → a✱ ❡ ❛♣❧✐❝❛♥❞♦ ❛ ♣r♦♣r✐❡❞❛❞❡
❞♦ ♣r♦❞✉t♦ ❞❡ ❧✐♠✐t❡s ❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ f ′ (a)✱ t❡♠♦s✿
f (x) − f (a)
· (x − a) = f ′ (a).0 = 0
x→a
x−a
lim [f (x) − f (a)] = lim
x→a
✐st♦ é lim [f (x) − f (a)] = 0✳
x→a
P♦rt❛♥t♦✱ lim f (x) = f (a) ❀ ✐st♦ é f é ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦ x = a✳
x→a
❖❜s❡r✈❛çã♦ ✺✳✷✳
❆ r❡❝í♣r♦❝❛ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✷✮ ♥ã♦ é ✈❡r❞❛❞❡✐r❛✱ ✐st♦ é✱ ✉♠❛ ❢✉♥çã♦ ♣♦❞❡ s❡r ❝♦♥tí✲
♥✉❛ ♥✉♠ ♣♦♥t♦✱ s❡♠ q✉❡ s❡❥❛ ❞❡r✐✈á✈❡❧ ♥❡ss❡ ♣♦♥t♦✳
❯♠ ❡①❡♠♣❧♦ é ❞❛❞♦ ♣❡❧❛ ❢✉♥çã♦ f (x) =| x | q✉❡ é ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦ x = 0✱ ♣♦ré♠
♥ã♦ é ❞❡r✐✈á✈❡❧ ♥❡ss❡ ♣♦♥t♦ ✭✈❡❥❛ ♦ ❊①❡♠♣❧♦ ✭✺✳✻✮✮✳
❖✉tr♦ ❡①❡♠♣❧♦ é ❞❛❞♦ ♣❡❧❛ ❢✉♥çã♦
f (x) =
(
x
x2
s❡ x ≤ 0
s❡ x > 0
❡❧❛ é ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦ x = 0✱ ♣♦ré♠ ♥ã♦ é ❞❡r✐✈á✈❡❧ ♥❡ss❡ ♣♦♥t♦✳
❊①❡♠♣❧♦ ✺✳✶✺✳
❆♥❛❧✐s❛r ❛ ❞❡r✐✈❛❜✐❧✐❞❛❞❡ ❡♠ x = 2 ♣❛r❛ ❛ ❢✉♥çã♦ f (x) ❞❡✜♥✐❞❛ ♣♦r✿
✷✺✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
f (x) =
(
❙♦❧✉çã♦✳
2 − x2
x2 − 4x + 4
R
s❡ x ≤ 2
s❡ x > 2
❆ ❢✉♥çã♦ é ❝♦♥tí♥✉❛ ❡♠ x = 2✱ ♣♦ré♠ ♥ã♦ é ❞❡r✐✈á✈❡❧ ❡♠ x = 2❀ ♦❜s❡r✈❡ q✉❡ ❛s
❞❡r✐✈❛❞❛s ❧❛t❡r❛✐s sã♦ ❞✐❢❡r❡♥t❡s✿
f ′ (2− ) = lim−
x→2
f ′ (2+ ) = lim+
x→2
❊①❡♠♣❧♦ ✺✳✶✻✳
(2 − x2 ) − (2 − 22 )
f (x) − f (2)
= lim−
= −4
x→2
x−2
x−2
(x2 − 4x + 4) − (2 − 22 )
f (x) − f (2)
= lim+
= +∞
x→2
x−2
x−2
❉❡t❡r♠✐♥❡ ✈❛❧♦r❡s a ❡ b ♣❛r❛ q✉❡ ❡①✐st❛ f ′ (1) s❡✿ f (x) =
❙♦❧✉çã♦✳
(
ax + b, s❡✱ x ≥ 1
x2 ,
s❡✱ x < 1
❈♦♠♦ f ′ (1) ❡①✐st❡✱ ❡♥tã♦ f é ❝♦♥tí♥✉❛ ❡♠ x = 1❀ ✐st♦ é f (1) = 1 = a + b ❡ f ′ (1− ) =
f ′ (1+ )✱ ❝♦♠♦ f ′ (1− ) = 2 ❡ f (1+ ) = a ♦❜té♠✲s❡ q✉❡ a = 2✱ ❝♦♥s❡q✉❡♥t❡♠❡♥t❡ b = −1✳
❊①❡♠♣❧♦ ✺✳✶✼✳
❉❡t❡r♠✐♥❡ s❡ ❛ ❢✉♥çã♦ f (x) =
❙♦❧✉çã♦✳
(
x2 , s❡✱ x é r❛❝✐♦♥❛❧
é ❞❡r✐✈á✈❡❧ ❡♠ x = 0✳
0, s❡✱ x é ✐rr❛❝✐♦♥❛❧
❉❛ ❞❡✜♥✐çã♦ ❞❡ ❢✉♥çã♦ ❞❡r✐✈á✈❡❧ ♥♦ ♣♦♥t♦ x = 0 t❡♠♦s✿
f (h) − 02
f (h)
f (h) − f (0)
= lim
= lim
h→0
h→0 h
h→0
h
h
f ′ (0) = lim
♣♦ré♠✱
f (h)
=
h
(
h, s❡✱ h é r❛❝✐♦♥❛❧
❧♦❣♦✱ é ❞❡r✐✈á✈❡❧ ❡♠ x = 0 ❡ ❡♠ q✉❛✐sq✉❡r ❞♦s
0, s❡✱ h é ✐rr❛❝✐♦♥❛❧
f (h)
=0✳
h→0 h
P♦rt❛♥t♦✱ f ′ (0) = 0✳
❞♦✐s ❝❛s♦s lim
❊①❡♠♣❧♦ ✺✳✶✽✳
❉❡t❡r♠✐♥❡ s❡ ❛ ❢✉♥çã♦ f (x) ❛ss✐♠ ❞❡✜♥✐❞❛ ✿
f (x) =
(
x, s❡✱ x ≥ 0
1, s❡✱ x < 0
é ❞❡r✐✈á✈❡❧ ❡♠ x = 0✳
❙♦❧✉çã♦✳
✷✺✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
Pr♦♣r✐❡❞❛❞❡ ✭✺✳✷✮ t❡♠♦s✿
❡♠ x = a✱ ❡♥tã♦ ❡❧❛ ♥ã♦ é ❞❡r✐✈á✈❡❧ ❡♠ x = a✑✳
❈♦♥s✐❞❡r❛♥❞♦ ❛ r❡❝í♣r♦❝❛ ❞❛
❖❜s❡r✈❡ q✉❡ ❛ ❢✉♥çã♦
✺✳✹✳✶
✏
❙❡ ✉♠❛ ❢✉♥çã♦ ♥ã♦ é ❝♦♥tí♥✉❛
f (x) ♥ã♦ é ❝♦♥tí♥✉❛ ❡♠ x = 0❀ ❧♦❣♦ ❡❧❛ ♥ã♦ é ❞❡r✐✈á✈❡❧ ❡♠ x = 0✳
❘❡❣r❛s ❞❡ ❞❡r✐✈❛çã♦
Pr♦♣r✐❡❞❛❞❡ ✺✳✸✳
❙❡❥❛♠ f ❡ g ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ♥✉♠ ❝♦♥❥✉♥t♦ A ⊆ R ❡ ❞❡r✐✈á✈❡✐s ❡♠ a ∈ A✱ ❡ k ∈ R
✉♠❛ ❝♦♥st❛♥t❡✳
f
1
s❡ g(a) 6= 0✱ sã♦ ❞❡r✐✈á✈❡✐s ❡♠ x = a✱
❊♥tã♦✱ ❛s ❢✉♥çõ❡s kf, f + g ✱ ❡ t❛♠❜é♠ ❡
g
g
❡ t❡♠♦s✿
✐✮
(kf )′ (a) = kf ′ (a)✳
✐✐✮
(f + g)′ (a) = f ′ (a) + g ′ (a)✳
✐✐✐✮
(f g)′ (a) = f ′ (a)g(a) + f (a)g ′ (a)✳
′
g ′ (a)
1
s❡♠♣r❡ q✉❡ g(a) 6= 0✳
(a) = −
g
(g(a))2
′
f
f ′ (a)g(a) − f (a)g ′ (a)
s❡♠♣r❡ q✉❡ g(a) 6= 0✳
(a) =
g
(g(a))2
✐✈✮
✈✮
❉❡♠♦♥str❛çã♦✳ ✭✐✮
❉♦ ❢❛t♦ s❡r
k
✉♠❛ ❝♦♥st❛♥t❡ t❡♠♦s✿
(kf )(x) − (kf )(a)
kf (x) − kf (a)
f (x) − f (a)
(kf ) (a) = lim
=
= lim
= lim k ·
x→a
x→a
x→a
x−a
x−a
x−a
′
f (x) − f (a)
= k · lim
= k · f ′ (a)
x→a
x−a
P♦rt❛♥t♦✱
kf
é ❞❡r✐✈á✈❡❧ ❡♠
x = a✱
❡
(kf )′ (a) = kf ′ (a)✳
❉❡♠♦♥str❛çã♦✳ ✭✐✐✮
(f + g)(x) − (f + g)(a)
f (x) − f (a) g(x) − g(a)
(f + g) (a) = lim
=
= lim
+
x→a
x→a
x−a
x−a
x−a
′
❡ ❝♦♠♦
f
❡
g
sã♦ ❞❡r✐✈á✈❡✐s ❡♠
x = a✱
g(x) − g(a)
f (x) − f (a)
+ lim
= f ′ (a) + g ′ (a)
x→a
x→a
x−a
x−a
lim
P♦rt❛♥t♦✱
f +g
é ❞❡r✐✈á✈❡❧ ❡♠
x=a
❡
(f + g)′ (a) = f ′ (a) + g ′ (a)
❉❡♠♦♥str❛çã♦✳ ✭✐✐✐✮
✷✺✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❚❡♠♦s✱ ❛❞✐❝✐♦♥❛♥❞♦ ❡ s✉❜str❛✐♥❞♦
f (a) · g(x)
(f · g)(x) − (f · g)(a)
=
x→a
x−a
(f g)′ (a) = lim
f (x) · g(x) − f (a) · g(x) + f (a) · g(x) − f (a) · g(a)
=
lim
x→a
x−a
f (x) − f (a)
g(x) − g(a)
= lim
· g(x) + f (a) ·
x→a
x−a
x−a
f
❈♦♠♦
g
❡
sã♦ ❞❡r✐✈á✈❡✐s ❡♠
x = a✱
❡❧❛s sã♦ ❝♦♥tí♥✉❛s ❡♠
x = a❀
✭✺✳✺✮
❧♦❣♦✱ ❡♠ ✭✺✳✺✮ ✿
g(x) − g(a)
f (x) − f (a)
=
· g(x) + f (a) ·
(f g) (a) = lim
x→a
x−a
x−a
′
g(x) − g(a)
f (x) − f (a)
· lim g(x) + f (a) · lim
= f ′ (a)g(a) + f (a)g ′ (a)
lim
x→a
x→a
x→a
x−a
x−a
P♦rt❛♥t♦✱
(f.g)(x)
g
x=a
❡
(f.g)′ (a) = f ′ (a)g(a) + f (a)g ′ (a)✳
✭✐✈✮
❉❡♠♦♥str❛çã♦✳
❈♦♠♦
é ❞❡r✐✈á✈❡❧ ❡♠
é ❞❡r✐✈á✈❡❧ ❡♠
x = a✱
é ❝♦♥tí♥✉❛ ❡♠
x=a
❡ s❡♥❞♦✱ ♣♦r ❤✐♣ót❡s❡
g(a) 6= 0✱
♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ❝♦♥s❡r✈❛çã♦ ❞♦ s✐♥❛❧ ❞❡ ✉♠❛ ❢✉♥çã♦ ♥✉♠❛ ✈✐③✐♥❤❛♥ç❛✱ ❡①✐st❡ ✉♠❛
❜♦❧❛
B(a, r)✱
t❛❧ q✉❡ ♣❛r❛ q✉❛❧q✉❡r
✐st♦ s❡❣✉❡ q✉❡
g(x) 6= 0
▲♦❣♦✱ ♣❛r❛
❡♠
x ∈ B(a, r)❀
′
1
(a) = lim
x→a
g
= lim −
x→a
P♦rt❛♥t♦✱
1
g
❉❡♠♦♥str❛çã♦✳
g(x)−g(a)
g(a)·g(x)
x−a
B(a, r)✳
x ∈ B(a, r)✱
t❡♠♦s
g(x)
t❡♠ ♦ ♠❡s♠♦ s✐♥❛❧
g(a)❀
❞❡
t❡♠♦s✿
1
g
(x) −
x−a
1
g
(a)
= lim
x→a
1
g(x)
−
1
g(a)
x−a
= lim
x→a
g(a)−g(x)
g(a)·g(x)
x−a
=
1
g(x) − g(a)
1
· lim
= −g ′ (a) ·
x→a
x→a g(x) · g(a)
x−a
(g(a))2
= − lim
é ❞❡r✐✈á✈❡❧ ❡♠
x = a✱
❡ t❡♠✲s❡✿
✭✈✮
′
1
1
· g ′ (a)✳
(a) = −
2
g
(g(a))
f
1
= f · ❡✱ ♣♦r ❤✐♣ót❡s❡ f ❡ g ❞❡r✐✈á✈❡✐s ❡♠ x = a✱ ❧♦❣♦ ♣♦r ✭✐✈✮ ❞❡st❛
g
g
f
1
é ❞❡r✐✈á✈❡❧
♣r♦♣r✐❡❞❛❞❡ s❡❣✉❡ q✉❡ ✱ ✭♣♦✐s g(a) 6= 0✮ é ❞❡r✐✈á✈❡❧❀ ❞❡ ✭✐✐✐✮ s❡❣✉❡✲s❡ q✉❡ ❡
g
g
❡♠ x = a✱ ❛ss✐♠✿
❖❜s❡r✈❡ q✉❡✱
′
′
−g ′ (a)
1
1
f
=
+ f (a) ·
(a) = f ·
(a) = f ′ (a) ·
g
g
g(a)
(g(a))2
✷✺✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
=
f ′ (a) · g(a) − f (a) · g ′ (a)
(g(a))2
❊①❡♠♣❧♦ ✺✳✶✾✳
❉❛❞❛ ❛ ❢✉♥çã♦ f (x) = (x2 − 3x)2 ❞❡t❡r♠✐♥❡ f ′ (x)✳
❙♦❧✉çã♦✳
f (x) = (x2 − 3x)2 = (x2 − 3x)(x2 − 3x)✱ ❡♥tã♦ ❛♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮ ✐✐✐✮ s❡❣✉❡
f ′ (x) = (2x − 3)(x2 − 3x) + (x2 − 3x)(2x − 3) = 2(x2 − 3x)(2x − 3)✳
Pr♦♣r✐❡❞❛❞❡ ✺✳✹✳
❙❡❥❛♠ f1 , f2 , · · · , fn ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ♥✉♠ ♠❡s♠♦ ❝♦♥❥✉♥t♦ A✱ ❡ ❞❡r✐✈á✈❡✐s ❡♠
x = a ∈ A ❡♥tã♦✿
✐✮
f1 + f2 + · · · + fn é ❞❡r✐✈á✈❡❧ ❡♠ x = a ❡ t❡♠♦s✿
(f1 + f2 + · · · + fn )′ (a) = f1′ (a) + f2′ (a) + · · · + fn′ (a)✳
✐✐✮
f1 × f2 × · · · × fn é ❞❡r✐✈á✈❡❧ ❡♠ x = a ❡ t❡♠♦s✿
(f1 × f2 × · · · × fn )′ (a) =
= f1′ (a) × f2 (a) · · · fn (a) + f1 (a) × f2′ (a) · · · fn (a) + · · · + f1 (a) × f2 (a) · · · fn′ (a)✳
❉❡♠♦♥str❛çã♦✳ ✭✐✮
❆ ❞❡♠♦♥str❛çã♦ é ❢❡✐t❛ ♣♦r ✐♥❞✉çã♦ ✜♥✐t❛ ✳ ❉❡ ❢❛t♦ ✱ ♣❛r❛ n = 2 ❡❧❛ é ✈❡r❞❛❞❡✐r❛ ♣❡❧❛
Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮ ✭✐✐✮✱ ✐st♦ é ✱ s❡ f1 ❡ f2 sã♦ ❞❡r✐✈á✈❡✐s ❡♠ x = a❀ ❡♥tã♦ f1 + f2 é ❞❡r✐✈á✈❡❧
❡♠ x = a ❡ t❡♠♦s (f1 + f2 )′ (a) = f1′ (a) + f2′ (a)✳
❙✉♣♦♥❤❛ ♣❛r❛ n = p ✈❡r❞❛❞❡✐r❛✱ ✐st♦ é✱ (f1 +f2 +· · ·+fp )′ (a) = f1′ (a)+f2′ (a)+· · ·+fp′ (a)✱
♠♦str❡♠♦s ♣❛r❛ n = p + 1✳
P❛r❛ n = p + 1✱ ♣♦❞❡♠♦s ❡s❝r❡✈❡r f1 + f2 + · · · + fp + fp+1 = (f1 + f2 + · · · + fp ) + fp+1 ✳
❊✱ ❝♦♠♦ g = f1 + f2 + · · · + fp é ❞❡r✐✈á✈❡❧ ❡♠ x = a ✭ ❤✐♣ót❡s❡ ❞❡ ✐♥❞✉çã♦✮ ❡ t❛♠❜é♠ fp+1
s❡❣✉❡✲s❡ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮✭✐✐✮ q✉❡✿ (f1 + f2 + · · · + fp + fp+1 )′ (a) = (f1 + f2 + · · · +
′
′
fp )′ (a) + fp+1
(a) = f1′ (a) + f2′ (a) + · · · + fp′ (a) + fp+1
(a)✳
▲♦❣♦✱ ❡❧❛ é ✈❡r❞❛❞❡✐r❛ ♣❛r❛ t♦❞♦ n ∈ N✳
❉❡♠♦♥str❛çã♦✳ ✭✐✐✮
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✺✳✷✵✳
❉❛❞❛ f (x) = 3x5 + x4 − x3 + 1 ❝❛❧❝✉❧❡✿
❙♦❧✉çã♦✳ ❛✮
❛✮ f ′ (x);
b)f ′ (1)✳
P❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮ ♣❛rt❡ ✭✐✮ ❡ ✭✐✐✮ t❡♠♦s✿
✷✺✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
f ′ (x) = (3x5 )′ + (x4 )′ + (−x3 )′ + (1)′ = 3(x5 )′ + 4x3 − (x3 )′ + 0 =
= 15x4 + 4x3 − 3x2 = 15x4 + 4x3 − 3x2
❙♦❧✉çã♦✳ ❜✮
➱ ✉♠❛ s✉❜st✐t✉✐çã♦ ❞✐r❡t❛✱
f ′ (1) = 15(1)4 + 4(1)3 − 3(1)2 = 16✳
❊①❡♠♣❧♦ ✺✳✷✶✳
f (x) = (x2 + x + 1) · x3
❉❛❞❛
❙♦❧✉çã♦✳
❝❛❧❝✉❧❛r
f ′ (x)✳
❆♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮ ♣❛rt❡ ✭✐✐✐✮ ❡ ✭✐✮ t❡♠♦s✿
f ′ (x) = (x2 + x + 1)′ · x3 + (x2 + x + 1) · (x3 )′ =
= (2x + 1 + 0) · x3 + (x2 + x + 1) · 3x2 = x2 (2x2 + x + 3x2 + 3x + 3) =
= x2 (5x2 + 4x + 3)
P♦rt❛♥t♦✱
f ′ (x) = x2 (5x2 + 4x + 3)✳
❊①❡♠♣❧♦ ✺✳✷✷✳
❙❡
f (x) = x
❡
❙♦❧✉çã♦✳
❚❡♠♦s✿
▲♦❣♦✱
g(x) =| x |✱
f ′ (x) = 1✱
❝❛❧❝✉❧❛r
♣❛r❛ t♦❞♦
x∈R
(f + g)′ (x) = f ′ (x) + g ′ (x) =
(f + g)′ (x)✳
❡
(
g ′ (x) =
(
2,
0,
x≥0
x<0
s❡✱
s❡✱
1,
−1,
s❡✱
s❡✱
x≥0
x<0
✳
❊①❡♠♣❧♦ ✺✳✷✸✳
❉❛❞❛
f (x) =
❙♦❧✉çã♦✳
❙❡♥❞♦
1
✱
xn
f (x) =
1
xn
x ∈ R − {0}
♣❛r❛
♣❛r❛
n ∈ N❀
❡
n ∈ N✱
❝❛❧❝✉❧❡
f ′ (x)✳
t❡♠♦s ♣♦r ❛♣❧✐❝❛çõ❡s ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮ ✭✐✈✮✱ ♣❛r❛
n ′
0 − (x )
−n · xn−1
t♦❞♦ x ∈ R − {0}✿ f (x) =
=
= −nx−n−1 ✳
n
2
2n
(x )
x
−n
′
−n−1
P♦rt❛♥t♦✱ f (x) = −n · x
= n+1 ✳
x
′
❊①❡♠♣❧♦ ✺✳✷✹✳
❉❛❞❛
❙♦❧✉çã♦✳
f (x) =
x+2
,
1−x
x 6= 1✱
❝❛❧❝✉❧❡
f ′ (x)✳
✷✻✵
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❚❡♠♦s✱ ♣♦r ❛♣❧✐❝❛çã♦ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮✲✭✈✮✱ ♣❛r❛
x 6= 1✿
(x + 2)′ (1 − x) − (x + 2)(1 − x)′
1 · (1 − x) − (x + 2)(−1)
3
=
=
2
2
(1 − x)
(1 − x)
(1 − x)2
3
′
P♦rt❛♥t♦✱ f (x) =
(1 − x)2
f ′ (x) =
❊①❡♠♣❧♦ ✺✳✷✺✳
❉❛❞❛ ❛ ❢✉♥çã♦
f (x) =
❙♦❧✉çã♦✳
x · ex
✱
1 + x2
❝❛❧❝✉❧❛r
f ′ (x)✳
❆♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮✲✭✈✮ ❡ ♦ ❊①❡♠♣❧♦ ✭✺✳✼✮✱ ✈❡♠✿
f ′ (x) =
(x · ex )′ (1 + x2 ) − x · ex (1 + x2 )′
(1 · ex + x · ex )(1 + x2 ) − x · ex · 2x
=
=
(1 + x2 )2
(1 + x2 )2
=
P♦rt❛♥t♦✱
ex (1 + x − x2 + x3 )
ex + x · ex + x2 ex + x3 ex − 2x2 ex
=
(1 + x2 )2
(1 + x2 )2
f ′ (x) =
ex (1 + x − x2 + x3 )
(1 + x2 )2
❖❜s❡r✈❛çã♦ ✺✳✸✳
❛✮ ◗✉❛♥❞♦ n ∈ Z ❡ f (x) = xn ✱ ❡♥tã♦ f ′ (x) = n.xn−1 ✳
❜✮ ❊♠ ❣❡r❛❧✱ s❡ c é ✉♠ ♥ú♠❡r♦ r❛❝✐♦♥❛❧ ❡ f (x) = xc ✱ ❡♥tã♦ ❛ ❞❡r✐✈❛❞❛ f ′ (x) = c · xc−1 ✳
P♦r ❡①❡♠♣❧♦✱ s❡
f (x) =
√
5
x✱
❡♥tã♦
f ′ (x) =
1√
5
x−4 ✳
5
❊①❡♠♣❧♦ ✺✳✷✻✳
❉❛❞❛ ❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
f (x) = (x2 − 2x)3 ✱
❞❡t❡r♠✐♥❡
f ′ (x)✳
f (x) = (x2 − 2x)3 = (x2 − 2x)(x2 −
2x)(x2 − 2x) ❧♦❣♦ f ′ (x) = (x2 − 2x)′ (x2 − 2x)(x2 − 2x) + (x2 − 2x)(x2 − 2x)′ (x2 − 2x) +
(x2 − 2x)(x2 − 2x)(x2 − 2x)′ ✱ ✐st♦ é✿ f ′ (x) = (2x − 2)(x2 − 2x)(x2 − 2x) + (x2 − 2x)(2x −
2)(x2 − 2x) + (x2 − 2x)(x2 − 2x)(2x − 2) = 3(2x − 2)(x2 − 2x)2 = 6(x − 1)(x2 − 2x)2 ✳
P♦rt❛♥t♦✱ f ′ (x) = 6(x − 1)(x2 − 2x)2 ✳
❆♣❧✐❝❛♥❞♦✲s❡ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮✲✭✐✐✐✮ t❡♠♦s✿
❊①❡♠♣❧♦ ✺✳✷✼✳
❉❛❞❛ ❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
ax5 + bx4 + c
✱
f (x) = √
a2 + b 2 + c 2
❞❡t❡r♠✐♥❡
f ′ (x)✳
❆♣❧✐❝❛♥❞♦✲s❡ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮✭✐✐✮ ❡ ❝♦♥s✐❞❡r❛♥❞♦ q✉❡
1
f (x) = √
· (ax5 + bx4 + c)✱
2
2
2
a +b +c
5ax4 + 4bx3
✳
P♦rt❛♥t♦✱ f ′ (a) = √
a2 + b2 + c2
❡♥tã♦
a, b ❡ c sã♦ ❝♦♥st❛♥t❡s✱ t❡♠♦s✿
1
f ′ (x) = √
· (5ax4 + 4bx3 )✳
2
2
2
a +b +c
✷✻✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺✳✹✳✷
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❉❡r✐✈❛❞❛ ❞❡ ♦r❞❡♠ s✉♣❡r✐♦r
❙❡❥❛ f : R −→ R ✉♠❛ ❢✉♥çã♦✱ ❡ B = { x ∈ D(f ) /. f é ❞❡r✐✈á✈❡❧ ❡♠ x } =
6 ∅✳ ❆ ❢✉♥çã♦
f ❞❡✜♥✐❞❛ ❡♠ B é ❝❤❛♠❛❞❛ ❢✉♥çã♦ ❞❡r✐✈❛❞❛ ❞❡ f (x) ♦✉ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ❞❡ f (x) ❡ é
❞❡♥♦t❛❞❛ ♣❡❧❛ ❢✉♥çã♦ f ′ (x)✳ ❙✉♣♦♥❤❛ q✉❡ ❡①✐st❛ ✉♠ s✉❜❝♦♥❥✉♥t♦ ♥ã♦ ✈❛③✐♦ ❡♠ B ♣❛r❛
♦ q✉❛❧ f ′ (x) ❛❞♠✐t❛ ❞❡r✐✈❛❞❛❀ ✐st♦ é ♣❛r❛ ♦ q✉❛❧ (f ′ )′ (x) ❡①✐st❛✳ ❆ ❞❡r✐✈❛❞❛ ❞❛ ♣r✐♠❡✐r❛
❞❡r✐✈❛❞❛ ❞❡ f ′ (x) é ❝❤❛♠❛❞❛ s❡❣✉♥❞❛ ❞❡r✐✈❛❞❛ ❞❡ f (x) ❡ ✐♥❞✐❝❛❞❛ ❝♦♠ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s
♥♦t❛çõ❡s✿
f ′′ (x),
d2 f (x)
,
dx2
Dx2 f (x),
d2 y
dx2
s❡ y = f (x)
◗✉❛♥❞♦ f ′′ (a) ❡①✐st❡✱ ❞✐③❡♠♦s q✉❡ f (x) é ❞✉❛s ✈❡③❡s ❞❡r✐✈á✈❡❧ ❡♠ x = a ❡ ♦ ♥ú♠❡r♦
f ′′ (a) é ❝❤❛♠❛❞♦ ❞❡ ✲ s❡❣✉♥❞❛ ❞❡r✐✈❛❞❛ ❞❡ f ❡♠ x = a✳
❙✉♣♦♥❤❛ q✉❡ ❡①✐st❛ ✉♠ s✉❜❝♦♥❥✉♥t♦ ♥ã♦ ✈❛③✐♦ ❡♠ B ♣❛r❛ ♦ q✉❛❧ f ′′ (x) ❛❞♠✐t❛ ❞❡r✐✈❛❞❛❀
✐st♦ é ♣❛r❛ ♦ q✉❛❧ (f ′′ )′ (x) ❡①✐st❛✳ ❆ ❞❡r✐✈❛❞❛ ❞❛ s❡❣✉♥❞❛ ❞❡r✐✈❛❞❛ ❞❡ f (x) é ❝❤❛♠❛❞❛ ❞❡
t❡r❝❡✐r❛ ❞❡r✐✈❛❞❛ ❞❡ f (x)✱ ❡ ✐♥❞✐❝❛❞❛ ❝♦♠ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ♥♦t❛çõ❡s✿
f ′′′ (x),
d3 f (x)
,
dx3
Dx3 f (x),
d3 y
dx3
s❡ y = f (x)
◗✉❛♥❞♦ f ′′′ (a) ❡①✐st❡✱ ❞✐③❡♠♦s q✉❡ f (x) é três ✈❡③❡s ❞❡r✐✈á✈❡❧ ❡♠ x = a ❡ ♦ ♥ú♠❡r♦
f ′′′ (a) é ❝❤❛♠❛❞♦ ❞❡ t❡r❝❡✐r❛ ❞❡r✐✈❛❞❛ ❞❡ f ❡♠ x = a✳
❉❡r✐✈❛♥❞♦ s✉❝❡ss✐✈❛♠❡♥t❡ ❛ ❢✉♥çã♦ f (x) ✭s❡♠♣r❡ q✉❡ s❡❥❛ ♣♦ssí✈❡❧✮✱ ♦❜té♠✲s❡ ❛ n✲
és✐♠❛ ❞❡r✐✈❛❞❛ ♦✉ ❞❡r✐✈❛❞❛ ❞❡ ♦r❞❡♠ n ❞❛ ❢✉♥çã♦ f (x)✱ ❡ ✐♥❞✐❝❛✲s❡ ❝♦♠ ❛❧❣✉♠❛ ❞❛s
s❡❣✉✐♥t❡s ♥♦t❛çõ❡s✿
f (n) (x),
dn f (x)
,
dxn
Dxn f (x),
dn y
dxn
s❡ y = f (x)
Pr♦♣r✐❡❞❛❞❡ ✺✳✺✳ ❋ór♠✉❧❛ ❞❡ ▲❡✐❜♥✐t③✳
❙✉♣♦♥❤❛♠♦s q✉❡ ❛s ❢✉♥çõ❡s
s✉❜❝♦♥❥✉♥t♦
A
❞❡ ♥ú♠❡r♦s r❡❛✐s✳
❡ t❡♠♦s✿
=
··· +
f (x)
!
n
f (n) (x) · g(x) +
0
g(x) s❡❥❛♠ ❞❡r✐✈á✈❡✐s ❛té ❛ ♦r❞❡♠ n ♥✉♠ ♠❡s♠♦
❊♥tã♦ y = f (x) · g(x) é ❞❡r✐✈á✈❡❧ ❛té ❛ ♦r❞❡♠ n ❡♠ A
❡
dn y
= [f (x) · g(x)](n) =
dxn
!
!
n
n
f (n−1) (x) · g ′ (x) +
f (n−2) (x) · g”(x) + · · ·
1
2
!
n
f ′′ (x) · g (n−2) (x) +
n−2
!
n
f ′ (x) · g (n−1) (x) +
n−1
✷✻✷
!
n
f (x) · g (n) (x)
n
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✺✳✷✽✳
❉❛❞❛ ❛s ❢✉♥çõ❡s
❙♦❧✉çã♦✳
✭✐✮
f (x) =| 5x2 − 3x + 9 |
f (x) =| 5x2 − 3x + 9 |=
(
10x − 3,
f ′ (x) =
−(10x − 3),
❙♦❧✉çã♦✳
(
s❡✱
g(x) = 5x
5x2 − 3x + 9
−(5x2 − 3x + 9)
❝❛❧❝✉❧❛r✿
✐✮ f ”(x)
✐✐✮ g”(x)✳
5x2 − 3x ≥ −9
s❡✱ 5x2 − 3x < −9
(
10
s❡✱ 5x2 − 3x ≥ −9
5x2 − 3x ≥ −9
❡ f ′′ (x) =
−10 s❡✱ 5x2 − 3x < −9
5x2 − 3x < −9
s❡✱
✭✐✐✮
g(x) = 5x ♣❡❧♦ ❊①❡♠♣❧♦
5x · Ln5 · Ln5 ❛ss✐♠ g ′′ (x) = 5x · (Ln5)2 ✳
P❛r❛ ❛ ❢✉♥çã♦
❊①❡♠♣❧♦ ✺✳✷✾✳
h(x) =
❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦
❡
❙♦❧✉çã♦✳
x
✱
3x − 1
s❡✱
g ′ (x) = 5x · Ln5✱
✭✺✳✼✮ t❡♠♦s
❞❡t❡r♠✐♥❡
❧♦❣♦
h(n) (x)✳
−1
1
✱ ❡♥tã♦ h′ (x) =
= −(3x − 1)−2 ✳
2
3
(3x − 1)
h′′ (x) = −(−2)(3)(3x − 1)−3 , h”′ (x) = −(−2)(−3)(3)2 (3x − 1)−4 ,
(−1)4 · 4! · 33
−(−2)(−3)(−4)(3)3 (3x − 1)−5 ✐st♦ é h(4) (x) =
(3x − 1)5
❙✉♣♦♥❤❛
x 6=
▼♦str❛✲s❡ ♣♦r ✐♥❞✉çã♦ q✉❡✱
✺✳✹✳✸
I
❡
J
f : I −→ J
(−1)n · n! · 3n−1
✳
(x) =
(3x − 1)n+1
f
✉♠❛ ❢✉♥çã♦ ♠♦♥ót♦♥❛ ✭❝r❡s❝❡♥t❡ ♦✉ ❞❡❝r❡s❝❡♥t❡✮ ❡str✐t❛ ❡ s♦❜r❡❥❡t✐✈❛
g : J −→ I
✐♥t❡r✈❛❧♦s r❡❛✐s✳ ❊♥tã♦ ❡①✐st❡✱ ❛ ❢✉♥çã♦ ✐♥✈❡rs❛
Pr♦♣r✐❡❞❛❞❡ ✺✳✻✳
❙❡
h
(n)
h(4) (x) =
❉❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ ✐♥✈❡rs❛
❙❡❥❛
❡
g”(x) =
❡ ❛♠❜❛s sã♦ ❝♦♥tí♥✉❛s✳
❘❡❣r❛ ❞❛ ❞❡r✐✈❛❞❛ ❞❡ ❢✉♥çã♦ ✐♥✈❡rs❛✳
é ❞❡r✐✈á✈❡❧ ❡♠
x=b∈I
1
1
g ′ (a) = ′
= ′
✳
f (b)
f (g(a))
❡
f ′ (b) 6= 0✱
❡♥tã♦✱
g
é ❞❡r✐✈á✈❡❧ ❡♠
a = f (b)
❡ t❡♠♦s✿
❉❡♠♦♥str❛çã♦✳
y 6= a
g(y) − g(a) 6= 0 ❡ ✿
❈♦♠ ❡❢❡✐t♦✱ ❝♦♠♦ ♣❛r❛
❛ss✐♠ t❡r❡♠♦s
❝♦rr❡s♣♦♥❞❡
g(y) − g(a)
=
y−a
g(y) 6= g(a)✱
1
=
y−a
g(y) − g(a)
✷✻✸
♣♦✐s
g
é ♠♦♥ót♦♥❛ ❡str✐t❛✱
1
f (x)−f (b)
x−b
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
P❛ss❛♥❞♦ ❛♦ ❧✐♠✐t❡ q✉❛♥❞♦ y → a✱ ❝♦♠♦ x = g(y) → b = g(a)✱ ♣♦✐s g é ❞❡r✐✈á✈❡❧❀
g(y) − g(a)
=
y→a
y−a
(b)
❡✱ s❡♥❞♦ ♣♦r ❤✐♣ót❡s❡ lim f (x)−f
= f ′ (b) 6= 0✱ s❡❣✉❡✲s❡✿ g ′ (a) = lim
x−b
x→b
1
1
1
1
= ′
= ′
✳
lim
=
y−a
y→a
f (x) − f (b)
f (b)
f (g(a))
lim
g(y) − g(a)
x→b
x−b
❊①❡♠♣❧♦ ✺✳✸✵✳
❉❛❞❛ ❛ ❢✉♥çã♦
g(x) =
√
n
n ∈ Z,
x,
❙♦❧✉çã♦✳
❝❛❧❝✉❧❡
g ′ (x)✳
√
❆ ❢✉♥çã♦ g(x) = n x✱ ❞❡✜♥✐❞❛ ♣♦r g : R −→ R s❡ n é í♠♣❛r ♦✉ ❣✿ g : R+ −→ R+ s❡
√
n é ♣❛r✳ ❊♠ q✉❛❧q✉❡r ❝❛s♦ y = g(x) = n x s❡✱ ❡ s♦♠❡♥t❡ s❡✱ x = f (y) = y n ✳ ❈♦♠♦ ❥á
❡st✉❞❛♠♦s ❛♥t❡r✐♦r♠❡♥t❡✱ s❡ f (y) = y n ❡♥tã♦ f ′ (y) = ny n−1 ❡ f ′ (y) 6= 0✳
▲♦❣♦✱ ♣❡❧❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✻✮✱
g ′ (x) =
1
f ′ (y)
=
1
1
= √
n
n−1
ny
n( x)n−1
1
♣❛r❛ x 6= 0✳ ❊st❡ r❡s✉❧t❛❞♦ ♣♦❞❡ s❡r ♣♦st♦ s♦❜ ❢♦r♠❛ ❞❡ ❡①♣♦❡♥t❡ ✐st♦ é✱ g(x) = x n ❡♥tã♦
1−n
1
1
1
= ·x n ✳
g (x) = ·
n−1
n x n
n
′
❊①❡♠♣❧♦ ✺✳✸✶✳
❉❛❞❛ ❛ ❢✉♥çã♦
g(x) = loga x
✱ ♣❛r❛
❙♦❧✉çã♦✳
x ∈ R+ ✱
❝❛❧❝✉❧❡
g ′ (x)✳
❚❡♠♦s ✿ y = g(x) = loga x s❡✱ ❡ s♦♠❡♥t❡ s❡ x = f (y) = ay ✳
❉❛❞♦ f (y) = ay ✱ ♣❡❧♦ ❊①❡♠♣❧♦ ✭✺✳✼✮ s❡❣✉❡ q✉❡ f ′ (y) = ay Lna 6= 0 q✉❛♥❞♦ ay > 0 ❡
1
1
=
· Lna
x · Lna
1
1
q✉❛♥❞♦ x > 0✳ ◆♦ ❝❛s♦ ♣❛rt✐❝✉❧❛r ❡♠ q✉❡ g(x) = Lnx t❡♠♦s q✉❡✿ g ′ (x) =
= ✱
x · Lne
x
❧❡♠❜r❡ q✉❡ Lne = loge e = 1✳
a > 0✱ ❧♦❣♦ ♣❡❧❛ r❡❣r❛ ❞❡ ❞❡r✐✈❛❞❛ ❞❡ ❢✉♥çã♦ ✐♥✈❡rs❛ g ′ (x) =
1
f ′ (y)
=
ay
Pr♦♣r✐❡❞❛❞❡ ✺✳✼✳
f : A −→ R é ❞❡r✐✈á✈❡❧ ♥♦ ♣♦♥t♦ a ∈ A✱ ❡♥tã♦ ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ N (h)✱ t❛❧
f (a + h) − f (a) = f ′ (a) · h + N (h) · h ♣❛r❛ t♦❞♦ x = a + h ∈ A ❡ N (h) = 0 = N (0)✳
❙❡
q✉❡✿
❉❡♠♦♥str❛çã♦✳
f (a + h) − f (a)
= f ′ (a) ❛ss✐♠✱
h→0
h
❉❡ ❢❛t♦✱ s❡♥❞♦ f ❞❡r✐✈á✈❡❧ ❡♠ x = a t❡♠♦s✿ lim
f (a + h) − f (a)
− f ′ (a) = 0✳
h→0
h
f (a + h) − f (a)
, s❡✱ h =
6 0
❉❡✜♥✐♠♦s✿ N (h) =
h
0,
s❡✱ h = 0
♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛ lim
✷✻✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❚❡♠✱ ♣❛r❛ h 6= 0, N (h) · h = f (a + h) − f (a) − f ′ (a) · h✳
P♦rt❛♥t♦✱ f (a + h) − f (a) = f ′ (a) · h + N (h) · h✳
✺✳✹✳✹
❘❡❣r❛ ❞❛ ❝❛❞❡✐❛
Pr♦♣r✐❡❞❛❞❡ ✺✳✽✳
f : A −→ R ❡ g : B −→ R ❢✉♥çõ❡s t❛✐s q✉❡ Im(f ) ⊆ B ✳ ❙❡ f é ❞❡r✐✈á✈❡❧ ❡♠
x = a ∈ A ❡ g é ❞❡r✐✈á✈❡❧ ❡♠ b = f (a) ∈ B ✱ ❡♥tã♦✱ g ◦ f é ❞❡r✐✈á✈❡❧ ❡♠ x = a ❡ t❡♠♦s✿
(g ◦ f )′ (a) = g ′ (f (a)) · f ′ (a)✳
❙❡❥❛♠
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✱ é s✉✜❝✐❡♥t❡ ❛♣❧✐❝❛r ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✼✮
❊①❡♠♣❧♦ ✺✳✸✷✳
❉❛❞❛ ❛ ❢✉♥çã♦
g(x) =
√
❙♦❧✉çã♦✳
P❛r❛ ❛ ❢✉♥çã♦ g(x) =
√
x2 − 15
❝❛❧❝✉❧❛r✿
g ′′ (x)✳
x2 − 15 t❡♠♦s g ′ (x) = √
√
′′
g (x) =
x
✱ ❧♦❣♦✿
− 15
x2
2
x2 − 15 − √xx2 −15
−15
√
= √
( x2 − 15)2
( x2 − 15)3
15
✳
( x2 − 15)3
❛ss✐♠✱ g ′′ (x) = − √
❊①❡♠♣❧♦ ✺✳✸✸✳
❉❛❞❛
F (x) = (x3 + 1)2 ✱
❝❛❧❝✉❧❡
F ′ (x)
❙♦❧✉çã♦✳
❖❜s❡r✈❛♥❞♦ q✉❡ F (x) = (x3 +1)·(x3 +1) ♣♦❞❡♠♦s ❛♣❧✐❝❛r ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✸✮✱ ♦❜t❡♥❞♦
✿
F ′ (x) = (x3 + 1)′ (x3 + 1) + (x3 + 1)(x3 + 1)′ = (3x2 )(x3 + 1) + (x3 + 1)(3x2 ) = 6x2 (x3 + 1)
❊①❡♠♣❧♦ ✺✳✸✹✳
❉❛❞❛
❙♦❧✉çã♦✳
F (x) = (x2 + 4x − 2)100 ✱
❝❛❧❝✉❧❡
F ′ (x)✳
❆ ❢✉♥çã♦ F (x) é ❝♦♠♣♦st❛ g ◦ f ❞❛s ❢✉♥çõ❡s g(y) = y 100 ❡ f (x) = x2 + 4x − 2❀ ❞❡s❞❡
q✉❡ g ′ (y) = 100y 99 ❡ f ′ (x) = 2x + 4✱ s❡❣✉❡✲s❡ q✉❡
F ′ (x) = 100(f (x)) · (4x − 2) = 100(x2 + 4x − 2)99 (2x + 4)
P♦rt❛♥t♦✱ F ′ (x) = 200(x2 + 4x − 2)99 (x + 2)✳
✷✻✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✺✳✸✺✳
❉❛❞❛
F (x) = ax
3 −x2 +1
✱ ❝❛❧❝✉❧❡
F ′ (x)✳
❙♦❧✉çã♦✳
❆ ❢✉♥çã♦ F (x) é ❝♦♠♣♦st❛ g ◦ f ❞❛s ❢✉♥çõ❡s g(y) = ay ❡ f (x) = x3 − x2 + 1✱ ❧♦❣♦
g ′ (y) = ay · Lna ❡ f ′ (x) = 3x2 − 2x✳
❆ss✐♠✱ F ′ (x) = (g ◦ f )′ (x) = g ′ (f (x)) · f ′ (x) =
3 −x2 +1
[af (x) · Lna](3x2 − 2x) = ax
P♦rt❛♥t♦✱ F ′ (x) = ax
❊①❡♠♣❧♦ ✺✳✸✻✳
p
❉❛❞❛
F (x) = x q =
3 −x2 +1
√
q
xp ✱
· [Lna](3x2 − 2x)
· (3x2 − 2x) · [Lna]✳
❝❛❧❝✉❧❡
F ′ (x)✳
❙♦❧✉çã♦✳
❚❡♠♦s q✉❡ F (x) é ❛ ❝♦♠♣♦st❛ gof ❞❛s ❢✉♥çõ❡s g(y) =
√
q
y ❡ f (x) = xp ✱ ❡♥tã♦
1 1q −1
y
❡ f ′ (x) = p · xp−1 ✳ ❆ss✐♠✱ F ′ (x) = (g ◦ f )′ (x) = g ′ (f (x)) · f ′ (x) =
q
1
1
1
1
p p−q
[f (x)] q −1 · pxp−1 = [xp ] q −1 · pxp−1 = x p ✳
q
q
q
p−q
p
′
P♦rt❛♥t♦✱ F (x) = q x p ✳
g ′ (y) =
❊①❡♠♣❧♦ ✺✳✸✼✳
❉❛❞❛ ❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
F (x) = loga (2x3 + 4x2 − 1)
❝❛❧❝✉❧❡
F ′ (x)✳
❆ ❢✉♥çã♦ F (x) é ❝♦♠♣♦st❛ g ◦ f ❞❛s ❢✉♥çõ❡s g(y) = loga y ❡ f (x) = 2x3 + 4x2 − 1 ❡
t❡♠♦s g ′ (y) =
1
❡ f ′ (x) = 6x2 + 8x✳
yLna
1
· (6x2 + 8x)✳
2 − 1)Lna
+
4x
2x(3x + 4)
1
′
P♦rt❛♥t♦✱ F (x) =
✳
Lna
2x3 + 4x2 − 1
▲♦❣♦✱ F ′ (x) = g ′ (f (x)) · f ′ (x) =
✺✳✹✳✺
(2x3
❉❡r✐✈❛❞❛ ❞❡ ✉♠❛ ❢✉♥çã♦ ✐♠♣❧í❝✐t❛
◆♦s ♣r♦❜❧❡♠❛s ❞❡ ❛♣❧✐❝❛çã♦✱ ♥❡♠ s❡♠♣r❡ é ♣♦ssí✈❡❧ ❛❝❤❛r ✉♠❛ s♦❧✉çã♦ q✉❡ ❞❡s❝r❡✈❛
✉♠ ♠♦❞❡❧♦ ❝♦♠♦ ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ❡①♣❧✐❝✐t❛♠❡♥t❡ ❡♠ t❡r♠♦s ❞❛ ✈❛r✐á✈❡❧ ✐♥❞❡♣❡♥❞❡♥t❡✳
❆❧❣✉♠❛s ✈❡③❡s ❛ ❢✉♥çã♦ é ❞❛❞❛ ❡♠ ❢♦r♠❛ ✐♠♣❧í❝✐t❛ ❝♦♠♦ ♣♦r ❡①❡♠♣❧♦✿
x4 − x3 y + 3xy 2 − y 3 = 0
❆q✉✐ y é ✉♠❛ ❢✉♥çã♦ q✉❡ ❞❡♣❡♥❞❡ ❞❡ x✱ ♠❛✐s ♥ã♦ ❡stá ❞❛❞❛ ♥❛ ❢♦r♠❛ ❡①♣❧í❝✐t❛ ❝♦♠♦
✉♠❛ ❢✉♥çã♦ ❞❡ x❀ ✐st♦ é y = f (x)✳
✷✻✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❙❡❥❛ E(x, y) = 0 ✉♠❛ ❡q✉❛çã♦ ❞❡ ✈❛r✐á✈❡✐s x ❡ y ✳ ❙❡ ❛♦ s✉❜st✐t✉✐r y ♣♦r f (x) ❛
❡q✉❛çã♦ tr❛♥s❢♦r♠❛✲s❡ ♥✉♠❛ ✐❞❡♥t✐❞❛❞❡ ❡♥tã♦ ❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r y = f (x) é ❝❤❛♠❛❞❛
❞❡ ❢✉♥çã♦ ✐♠♣❧í❝✐t❛ ❞❡t❡r♠✐♥❛❞❛ ♣❡❧❛ ❡q✉❛çã♦ E(x, y) = 0✳
P♦r ❡①❡♠♣❧♦✱ s✉♣♦♥❤❛♠♦s ❛ ❡q✉❛çã♦ E(x, y) = y 2 −x−2 = 0 ❞❡t❡r♠✐♥❛ ✐♠♣❧✐❝✐t❛♠❡♥t❡
√
√
❛s ❢✉♥çõ❡s y = x + 2 ❡ y = − x + 2✱ ♣♦❞❡♠♦s s✉♣♦r y = f (x)✱ ❡♥tã♦ ♥❛ ❡q✉❛çã♦
E(x, y) = 0 r❡s✉❧t❛✿ [f (x)]2 − x − 2 = 0 ♦♥❞❡ [f (x)]2 = x + 2✳
❉❡r✐✈❛♥❞♦ ❡♠ r❡❧❛çã♦ à ✈❛r✐á✈❡❧ x t❡♠♦s 2f (x) · f ′ (x) = 1 ❛ss✐♠ f ′ (x) =
f ′ (x) = √
1
1
♦✉ y ′ = √
✳
x+2
x+2
1
✳ ▲♦❣♦✱
2f (x)
d 2
(y ) =
dx
√
1
d(x + 2)
❡♥tã♦ 2y · y ′ = 1 ❛ss✐♠ y ′ = ✳ ❙❡ ❝♦♥s✐❞❡r❛♠♦s ❛ ✐❣✉❛❧❞❛❞❡ y = − x + 2 ♦
dx
2y
❊st❡ r❡s✉❧t❛❞♦ ♣♦❞❡♠♦s ♦❜t❡r s❡♠ s✉❜st✐t✉✐r y ♣♦r f (x)✱ ♦❜s❡r✈❡ q✉❡
r❡s✉❧t❛❞♦ ♣❡r♠❛♥❡❝❡ ✈á❧✐❞♦✳
❊♠ ❣❡r❛❧✱ s❡ ❛ ❡q✉❛çã♦ E(x, y) = 0 ❞❡✜♥❡ ✐♠♣❧✐❝✐t❛♠❡♥t❡ ❛ ❢✉♥çã♦ y = f (x)✱ ♣❛r❛
dy
é s✉✜❝✐❡♥t❡ ❞❡r✐✈❛r ❛ ❡q✉❛çã♦ ❝♦♥s✐❞❡r❛♥❞♦ ❛ ✈❛r✐á✈❡❧ y ❝♦♠♦ ❢✉♥çã♦ ❞❡ x ❡ ❞❛
♦❜t❡r
dx
❡q✉❛çã♦ r❡s✉❧t❛♥t❡ ✐s♦❧❛r ❛ ✈❛r✐á✈❡❧ y ❀ ✐st♦ é✿
dE
dy
dx
= − dE
dx
dy
❊①❡♠♣❧♦ ✺✳✸✽✳
❆s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❞❡✜♥❡♠ ✐♠♣❧✐❝✐t❛♠❡♥t❡ ✉♠❛ ❢✉♥çã♦ y = f (x)✱ ❞❡t❡r♠✐♥❡ ❛ ❞❡r✐✲
✈❛❞❛ y ′ ✳
x2 + y 2 = 6
❛✮
❝✮
❜✮
4x2 − 16y 2 − 64 = 0
❞✮
y 2 − 5x − 8 = 0
xy 2 − x2 y − y 3 = 9x
❙♦❧✉çã♦✳ ✭❛✮
√
❖❜s❡r✈❡ q✉❡ y = ± 6 − x2 ❡✱ ♥❛ ❡q✉❛çã♦ x2 + y 2 = 6 ❛♦ ❞❡r✐✈❛r ❡♠ r❡❧❛çã♦ à ✈❛r✐á✈❡❧
x
x
✳
x r❡s✉❧t❛ 2x + 2y · y ′ = 0✱ ♦♥❞❡ y ′ = − ✱ ✐st♦ é y ′ = ∓ √
2
❙♦❧✉çã♦✳
y
✭❜✮
6−x
P❛r❛ ❡ ❡q✉❛çã♦ y 2 − 5x − 8 = 0 s❡❣✉❡✲s❡ q✉❡ 2yy ′ − 5 = 0✱ ❧♦❣♦ y ′ =
√
5
y = ± 5x + 8 ❡♥tã♦ y ′ = ± √
2 5x + 8
5
✱ ❝♦♠♦
2y
❙♦❧✉çã♦✳ ✭❝✮
x
❆♦ ❞❡r✐✈❛r ❛ ❡q✉❛çã♦ 4x2 − 16y 2 − 64 = 0✱ r❡s✉❧t❛ 8x − 32y · y ′ = 0✱ ♦♥❞❡ y ′ =
❡
s✉❜st✐t✉✐♥❞♦ 2y = ±
√
x2
x
− 16 s❡❣✉❡✲s❡ q✉❡ y = ± √
2 x2 − 16
4y
′
❙♦❧✉çã♦✳ ✭❞✮
❉❡r✐✈❛♥❞♦ ❛ ❡q✉❛çã♦ xy 2 −x2 y −y 3 = 9x✱ t❡♠♦s (y 2 +2xyy ′ )−(2xy +x2 y ′ )−3y 2 ·y ′ = 9
❡♥tã♦ y ′ (2xy − x2 − 3y 2 ) = 9 − y 2 + 2xy ✳
✷✻✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦rt❛♥t♦✱ y ′ =
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
9 − y 2 + 2xy
✳
2xy − x2 − 3y 2
❊①❡♠♣❧♦ ✺✳✸✾✳
❉❛❞❛ ❛ ❡q✉❛çã♦
❙♦❧✉çã♦✳
x5 + y 5 − 2xy = 0
❡
y = f (x)✱
❞❡t❡r♠✐♥❡
f ′ (1)✳
❉❡r✐✈❛♥❞♦ ✐♠♣❧✐❝✐t❛♠❡♥t❡✱ 5x4 + 5y 4 · y ′ − 2y − 2xy ′ = 0 ♦♥❞❡ y ′ (5y 4 − 2x) = 2y − 5x4 ✳
◆❛ ❡q✉❛çã♦ ♦r✐❣✐♥❛❧ q✉❛♥❞♦ x = 1 t❡♠♦s y = 1 ❡ y ′ =
2(1) − 5(1)4
= −1✳
5(1)4 − 2(1)
P♦rt❛♥t♦✱ f ′ (1) = −1✳
❊①❡♠♣❧♦ ✺✳✹✵✳
2y − 5x4
✱ ❡♥tã♦ f ′ (1) =
5y 4 − 2x
√
√
2
2
❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ ♥♦ ♣♦♥t♦ (
,−
) à ❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❡ ❝❡♥tr♦
2
2
♥❛ ♦r✐❣❡♠ ❡ r❛✐♦ ❛ ✉♥✐❞❛❞❡✳
❙♦❧✉çã♦✳
❆ ❡q✉❛çã♦ ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ é ❞❛❞❛ ♣♦r x2 + y 2 = 1✳ ❙❛❜❡♠♦s q✉❡ ♦ ❝♦❡✜❝✐❡♥t❡
❛♥❣✉❧❛r ❞❛ r❡t❛ t❛♥❣❡♥t❡ ♥✉♠ ♣♦♥t♦ à ❝✐r❝✉♥❢❡rê♥❝✐❛✱ é ❞❛❞❛ ♣❡❧♦ ✈❛❧♦r ❞❡ s✉❛ ❞❡r✐✈❛❞❛
♥❡ss❡ ♣♦♥t♦✳
❉❡r✐✈❛♥❞♦ ✐♠♣❧✐❝✐t❛♠❡♥t❡ ❡ ❡q✉❛çã♦ ❞❛ ❝✉r✈❛✱ t❡♠♦s q✉❡✿
2x + 2y
dy
=0
dx
⇒
dy
x
=−
dx
y
√
√
2
dy
2
2
= − 2√ = 1
❊♠ ♣❛rt✐❝✉❧❛r✱ ♣❛r❛ ♦ ♣♦♥t♦ ( , − ) r❡s✉❧t❛ q✉❡
2
2
dx
− 22
√
√
√
2
2
▲♦❣♦✱ y − (− ) = 1(x −
) ⇒ y = x − 2✳
2
2
√
P♦rt❛♥t♦✱ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♣❡❞✐❞❛ é✱ y = x − 2✳
√
✷✻✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡r❝í❝✐♦s ✺✲✶
✶✳ ❆♣❧✐❝❛♥❞♦ ❛ ❞❡✜♥✐çã♦✱ ❝❛❧❝✉❧❛r ❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s
❢✉♥çõ❡s ❡ ✐♥❞✐❝❛r s❡✉ ❞♦♠í♥✐♦✳
1. f (x) = 6x2 − 5x + 2
4. f (x) = √
✷✳ ❉❛❞❛ f (x) =
√
1
x+3
x✱ ❝❛❧❝✉❧❡ ✿
2x + 3
3x − 2
x
6. f (x) =
3−x
2. f (x) = x3 − 3x2
5. f (x) =
✶✳
√
3. f (x) =
16 − x2
f (2)❀
✷✳
f ′ (x)✳
✸✳ ❉❛❞❛ f (x) = x2 + 4x − 5✱ ❝❛❧❝✉❧❡ f ′ (−1)✳
1
x
✹✳ ❉❛❞❛ f (x) = ,
x 6= 0✱ ❝❛❧❝✉❧❡✿
f ′ (2)❀
✶✳
f ′ (x)✳
✷✳
✺✳ ❉❡t❡r♠✐♥❡ q✉❛✐s ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s sã♦ ❞❡r✐✈á✈❡✐s ♥♦s ♣♦♥t♦s ✐♥❞✐❝❛❞♦s✿
✶✳
✷✳
f (x) =
f (x) =
(
(
(
x + 3,
s❡✱ x ≤ 3
−x + 5, s❡ x > 3
a=3
x2 − 9, s❡✱ x < 3
√
x + 3, s❡ x ≥ 3
a=3
(1 − x)2 , s❡✱ x ≥ 1
√
1 − x, s❡ x < 1
✸✳
f (x) =
✹✳
f (x) =| x2 − 4 |
a=2
s❡✱ x < 0
|x+2|
2
f (x) =
2−x ,
s❡✱ 0 ≤ x < 2
2
x − 4x + 2, s❡ 2 ≤ x
✺✳
a=1
a=0
❡
a = 2✳
✻✳ ▼♦str❡ q✉❡✿ ✭✶✳✮ ❙❡ f é ❢✉♥çã♦ ♣❛r✱ ❡♥tã♦ f ′ (x) = −f ′ (−x)✳ ✭✷✳✮ ❙❡ f é ❢✉♥çã♦
í♠♣❛r✱ ❡♥tã♦ f ′ (x) = f ′ (−x)✳
✼✳ ❉❡✜♥❡✲s❡ ♦ â♥❣✉❧♦ ❡♥tr❡ ❛s ❝✉r✈❛s y = f1 (x) ❡ y = f2 (x) ♥♦ ♣♦♥t♦ ❞❡ ✐♥t❡rs❡çã♦
M (x0 , y0 )✱ ❛♦ ♠❡♥♦r â♥❣✉❧♦ ❝♦♠♣r❡❡♥❞✐❞♦ ❡♥tr❡ ❛s t❛♥❣❡♥t❡s r❡s♣❡❝t✐✈❛s ♥♦ ♣♦♥t♦
M ✳ ❊st❡ â♥❣✉❧♦ é ❞❡t❡r♠✐♥❛❞♦ ♣❡❧❛ ❢ór♠✉❧❛ s❡❣✉✐♥t❡✿ tan ϕ =
✶✳
f2′ (x0 ) − f1′ (x0 )
✳
1 + f1′ (x0 ) · f2′ (x0 )
❉❡t❡r♠✐♥❡ ♦ â♥❣✉❧♦ q✉❡ ❢♦r♠❛ ❝♦♠ ♦ ❡✐①♦ ❞❛s ❛❜s❝✐ss❛s ❛ t❛♥❣❡♥t❡ à ❝✉r✈❛
y=
2x5 x3
−
tr❛ç❛❞❛ ♥♦ ♣♦♥t♦ x = 1✳
3
9
✷✻✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✷✳ ❉❡t❡r♠✐♥❡ ♦ â♥❣✉❧♦ ❝♦♠♣r❡❡♥❞✐❞♦ ❡♥tr❡ ❛s ♣❛rá❜♦❧❛s
✸✳ ❉❡t❡r♠✐♥❡ ♦ â♥❣✉❧♦ ❡♥tr❡ ❛ ♣❛rá❜♦❧❛
y = 4 − x2
y = 8 − x2
❡
R
y = x2 ✳
❡ ♦ r❛✐♦ ✈❡t♦r ❞♦ ♣♦♥t♦
M (1, 3)
❞❡st❛ ❧✐♥❤❛✳
✽✳ P❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❞❡t❡r♠✐♥❡ ❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛✳
1. f (x) =
3
x4
|x|
1 + x2
1 − x2
4. f (x) =
1 + x2
2. f (x) =
r
x−1
3. f (x) = (x − 1) 3
x+1
s
4 − x2
5. f (x) =
(1 + x2 )3
p
6. f (x) = (5 − x) 7 (x + 5)6
x3
8. f (x) = p
(1 − x2 )3
7. f (x) = x2 | x |3
4x + 6
x2 + 3x + 4
r
√
2
f (x) = 2x +
x
p
f (x) = 3 (x3 − | x |3 )2
s
√
1− x
√
f (x) =
1+ x
x
√
f (x) =
a2 · a2 + x2
10. f (x) =| x2 − 9 |
√
√
1+x+ 1−x
√
12. f (x) = √
1+x− 1−x
√
a2 x
14. f (x) = x x2 − a2 − √
x 2 − a2
1p
1p
16. f (x) = n (1 + x3 )8 − 3 (1 + x3 )5
8
5
√
√
18. f (x) = ( x + 1 + x − 1)4
9. f (x) = √
11.
13.
15.
17.
✾✳ ❉❛❞❛ ❛ ❢✉♥çã♦✿
f (x) =
(
x,
0,
s❡✱
s❡✱
x 6= 0
x=0
✶✳ Pr♦✈❛r q✉❡ ❡❧❛ é ❝♦♥tí♥✉❛ ♥♦ ♣♦♥t♦
♣❡❞❡✲s❡✿
x = 0✳
✷✳ ❈❛❧❝✉❧❛r ❛s ❞❡r✐✈❛❞❛s ❧❛t❡r❛✐s ❞❡ss❛ ❢✉♥çã♦ ♥♦ ♣♦♥t♦
✶✵✳ ❙✉♣♦♥❤❛ ❛ ❢✉♥çã♦
✶✳
✷✳
✶✶✳ ❙❡❥❛
y = f (x)
s❡❥❛ ❞❡r✐✈á✈❡❧ ❡♠
x✳
x = 0✳
▼♦str❡ ♦ s❡❣✉✐♥t❡✿
f (x + h) − f (x − h)
h→0
2h
f (x + h) − f (x − k)
f ′ (x) = lim +
k+h→0
h+k
f ′ (x) = lim
g(x) = xn
❡
0 ≤ k ≤ n❀
♠♦str❡ q✉❡✿
n!
xn−k ✳
(n − k)!
f é ❞❡r✐✈á✈❡❧ ❡♠ x = a✱ ❡♥tã♦ | f (x) | t❛♠❜é♠
f (a) 6= 0✳ ❉❛r ✉♠ ❡①❡♠♣❧♦ q✉❛♥❞♦ f (a) = 0✳
✶✷✳ ▼♦str❡ q✉❡ s❡
s❡♠♣r❡ q✉❡
g (k) (x) =
✷✼✵
é ❞❡r✐✈á✈❡❧ ❡♠
x=a
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✶✸✳ P❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s
1
x
f (x) = 17
f (x) =
✶✳
✸✳
✶✹✳ ❉❡t❡r♠✐♥❡
❞❡t❡r♠✐♥❡
f (f ′ (xc))✳
f (x) = x2
✷✳
f (x) = 17x
✹✳
f ′ (x)
f (x)✱
R
❡♠ tér♠✐♥♦s ❞❡
g ′ (x)
s❡✿
1. f (x) = g(x + g(a))
2. f (x) = g(x. · g(a))
4. f (x) = g(x)(x − a)
5. f (x) = g(a)(x − a)
3. f (x) = g(x + g(x))
6. f (x + 3) = g(x2 )
✶✺✳ ❉❡t❡r♠✐♥❡ ❛s ❞❡r✐✈❛❞❛s ❞❛s ❢✉♥çõ❡s ✐♥✈❡rs❛s ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1
x+1
1. f (x) = x2
2. g(x) = 3x2 − x
3. h(x) =
4. f (x) = (x + 2)2
5. g(x) =
6. h(x) = (x2 − 1)2
✶✻✳ ❙❡❥❛
t = 2 − 3s + 3s2 ✱
❞❡t❡r♠✐♥❡
ds
dt
✶✼✳ ❙❡❥❛
x = y 3 − 4y + 1✳
❉❡t❡r♠✐♥❡
dx
✳
dy
x
x−1
♠❡❞✐❛♥t❡
s
✶✽✳ ❉❡t❡r♠✐♥❡ ❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ✐♠♣❧í❝✐t❛ ♣❛r❛ ❛s ❢✉♥çõ❡s
x2 y 2
+ 2 =1
a2
b
4
4. x + y 4 = x2 y 2
1.
2.
√
x+
√
y=
√
a
5. xy = y x
y = f (x)
✳
3. x3 − y 3 = 3axy
p
√
√
3
3
x2 + 3 y 2 = a2
6.
✶✾✳ ◗✉❡ â♥❣✉❧♦ ❢♦r♠❛ ❝♦♠ ♦ ❡✐①♦ ❞❛s ❛❜s❝✐ss❛s ❝♦♠ ❛ r❡t❛ t❛♥❣❡♥t❡ à ❝✉r✈❛
tr❛ç❛❞❛ ♥♦ ♣♦♥t♦ ❝♦♠ ❛❜s❝✐ss❛
x = x0 ❄
✷✵✳ ❊s❝r❡✈❡r ❛s ❡q✉❛çõ❡s ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❡ ♥♦r♠❛❧ à ❝✉r✈❛
♣♦♥t♦
y=
2x5 x2
− ✱
3
9
x2 + 2xy 2 + 3y 4 = 6
♥♦
M (1, −1)✳
✷✶✳ ▼♦str❡ q✉❡ ❛ t❛♥❣❡♥t❡ à ❡❧✐♣s❡
xx0 yy0
+ 2 = 1✳
a2
b
x2 y 2
+ = 1 ♥♦ ♣♦♥t♦ M (x0 , y0 ) é ❞❛❞❛ ♣❡❧❛ ✐❣✉❛❧❞❛❞❡
a2 b2
✷✷✳ ▼♦str❡ q✉❡ ❛ t❛♥❣❡♥t❡ à ❤✐♣ér❜♦❧❡
✐❣✉❛❧❞❛❞❡
xx0 yy0
− 2 = 1✳
a2
b
y2
x2
−
=1
a2
b2
✷✸✳ ❉❡t❡r♠✐♥❡ ❛s ❡q✉❛çõ❡s ❞❛s t❛♥❣❡♥t❡s á ❤✐♣ér❜♦❧❡
❝✉❧❛r❡s á r❡t❛
2x + 4y − 3 = 0
✷✼✶
♥♦ ♣♦♥t♦
M (x0 , y0 )
x2 y 2
−
=1
2
7
é ❞❛❞❛ ♣❡❧❛
q✉❡ s❡❥❛♠ ♣❡r♣❡♥❞✐✲
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✷✹✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❛♦ ❣rá✜❝♦ f (x) =
R
1
1
❞❡ ♥♦ ♣♦♥t♦ (6, )✳
x
6
8
✷✺✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❛♦ ❣rá✜❝♦ ❞❡ g(x) =
q✉❡ ♣❛ss❛ ♣❡❧♦
1+x
♣♦♥t♦ (−3, −4)✳ ❈♦♠♣❛r❡ ❝♦♠ ♦ ❊①❡r❝í❝✐♦ ✭✷✹✮ ❡ ❡♥❝♦♥tr❡ ✉♠❛ ❡①♣❧✐❝❛çã♦ r❛③♦á✈❡❧
♣❛r❛ ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❡ss❛ r❡t❛✳
✷✻✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ à ❤✐♣ér❜♦❧❡ ❞❡ ❡q✉❛çã♦ 2x2 − 3y 2 − 12 = 0✱
√
♥♦ ♣♦♥t♦ (2 3, 2)
✷✼✳ ❈❛❧❝✉❧❡ ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ ♥♦r♠❛❧ ❛♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ g(x) =
♥♦ ♣♦♥t♦ (3, g(3)) ✳
✷✽✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ ♥♦r♠❛❧ à ❝✉r✈❛ y =
x2
√
3
x2 − 1✱
8
✱ ♥♦ ♣♦♥t♦ ❞❡ ❛❜s❝✐ss❛ 2✳
+4
✷✾✳ ❉❡t❡r♠✐♥❡ ❛ ❞❡❝❧✐✈✐❞❛❞❡ ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❛♦ ❣rá✜❝♦ ❞❡ 2x3 y − x2 + 2xy − y 3 = −1✱
♥♦ ♣♦♥t♦ (1, 2) ✳
✸✵✳ ❉❡t❡r♠✐♥❡ ❛ ❡q✉❛çã♦ ❞❛ r❡t❛ t❛♥❣❡♥t❡ à ❝✉r✈❛ y =
à r❡t❛ 8x − 4y − 1 = 0✳
√
x ❞❡ ♠♦❞♦ q✉❡ ❡❧❛ s❡❥❛ ♣❛r❛❧❡❧❛
3 3
✸✶✳ ▼♦str❡ q✉❡ ❛ r❡t❛ ♥♦r♠❛❧ à ❝✉r✈❛ x3 + y 3 = 3xy ♥♦ ♣♦♥t♦ ( , )✱ ♣❛ss❛ ♣❡❧❛ ♦r✐❣❡♠
2 2
❞❡ ❝♦♦r❞❡♥❛❞❛s✳
✸✷✳ ❉❡ 1988 ❛ 2000✱ ❛ r❡❝❡✐t❛ ✭❡♠ ♠✐❧❤õ❡s ❞❡ r❡❛✐s✮ ❞❡ ✉♠❛ ❝♦♠♣❛♥❤✐❛ t✐♥❤❛ ❝♦♠♦
♠♦❞❡❧♦ ♠❛t❡♠át✐❝♦ R(t) = 0, 87t4 − 15, 82t3 + 147, 96t2 − 542, 75t + 784, 93✱ ♦♥❞❡
t = 5 ❝♦rr❡s♣♦♥❞❡ ❛ 1988✳ ◗✉❛❧ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞❛ r❡❝❡✐t❛ ❞❛ ❝♦♠♣❛♥❤✐❛ ❡♠
1993❄
✸✸✳ ❯♠❛ ❡♠♣r❡s❛ ❞❡ ❡❧❡trô♥✐❝♦s ✉t✐❧✐③❛ 600 ❝❛✐①❛s ❞❡ tr❛♥s✐st♦r❡s ♣♦r ❛♥♦✳ ❖ ❝✉st♦
❞❡ ❛r♠❛③❡♥❛♠❡♥t♦ ❞❡ ✉♠❛ ❝❛✐①❛ ♣♦r ✉♠ ❛♥♦ é ❞❡ 45 ❝❡♥t❛✈♦s ❞❡ r❡❛❧✱ ❡ ❣❛st♦s
❡♠ tr❛♥s♣♦rt❡ ❞❡ ❡♥✈✐♦ é ❞❡ R$30, 00 ♣♦r ♦r❞❡♠✳ ◗✉❛♥t❛s ❝❛✐①❛s ❞❡✈❡rá ♣❡❞✐r ❛
❡♠♣r❡s❛ ❡♠ ❝❛❞❛ ❡♥✈✐♦ ♣❛r❛ ♠❛♥t❡r ♦ ❝✉st♦ t♦t❛❧ ♠í♥✐♠♦❄
✸✹✳ ❯♠ ♣r♦❞✉t♦r ❞❡ ❧❛r❛♥❥❛s ❡♠ ●♦✐â♥✐❛ ❡st✐♠❛ q✉❡✱ s❡ ♣❧❛♥t❛ 60 ❧❛r❛♥❥❡✐r❛s ♥✉♠❛
❞❡t❡r♠✐♥❛❞❛ ár❡❛✱ ❛ ♣r♦❞✉çã♦ ♠é❞✐❛ ♣♦r ár✈♦r❡ s❡r✐❛ ❞❡ 400 ❧❛r❛♥❥❛s ♣♦r ár✈♦r❡✳ ❖
♣r♦❞✉t♦r s❛❜❡ t❛♠❜é♠ q✉❡ ♣♦r ❝❛❞❛ ár✈♦r❡ ❛❞✐❝✐♦♥❛❧ ❞❡ ❧❛r❛♥❥❛ ♣❧❛♥t❛❞♦ ♥❛ ♠❡s♠❛
ár❡❛✱ ❛ ♠é❞✐❛ ❞❡ ♣r♦❞✉çã♦ ❞❡ ❝❛❞❛ ár✈♦r❡ ❞✐♠✐♥✉✐ ❡♠ 4 ❧❛r❛♥❥❛s✳ ◗✉❛♥t❛s ár✈♦r❡s
❞❡✈❡ ♣❧❛♥t❛r ♦ ♣r♦❞✉t♦r ♣❛r❛ ♠❛①✐♠✐③❛r ❛ ♣r♦❞✉çã♦ t♦t❛❧❄
✷✼✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺✳✺
❉❡r✐✈❛❞❛ ❞❡ ❢✉♥çõ❡s tr❛♥s❝❡♥❞❡♥t❡s
✺✳✺✳✶
❉❡r✐✈❛❞❛ ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s
❆s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s sã♦ ❞❡r✐✈á✈❡✐s ❡♠ s❡✉s r❡s♣❡❝t✐✈♦s ❞♦♠í♥✐♦s ❡ t❡♠♦s ❛
s❡❣✉✐♥t❡ ♣r♦♣r✐❡❞❛❞❡✿
Pr♦♣r✐❡❞❛❞❡ ✺✳✾✳
f ′ (x) = cos x✳
❛✮
❙❡
f (x) = senx✱
❜✮
❙❡
f (x) = cos x✱
❡♥tã♦
f ′ (x) = −senx✳
❝✮
❙❡
f (x) = tan x✱
❡♥tã♦
f ′ (x) = sec2 x✳
❞✮
❙❡
f (x) = cot x✱
❡♥tã♦
f ′ (x) = − csc2 x✳
❡✮
❙❡
f (x) = sec x✱
❡♥tã♦
f ′ (x) = tan x · sec x✳
❢✮
❙❡
f (x) = csc x✱
❡♥tã♦
f ′ (x) = − cot x · csc x✳
❉❡♠♦♥str❛çã♦✳
❡♥tã♦
✭❛✮
❈♦♥s✐❞❡r❡ f (x) = senx ❡♥tã♦✱ ❞❛ ❞❡✜♥✐çã♦ ❞❡ ❞❡r✐✈❛❞❛ t❡♠♦s✿
sen(x + h) − senx
senx · cos h + senh · cos x − senx
= lim
h→0
h→0
h
h
f ′ (x) = lim
cos h − 1
senh
senx(cos h − 1) + senh · cos x
= senx · lim
+ cos x · lim
=
h→0
h→0 h
h→0
h
h
= (senx).(0) + (cos x)(1)
= lim
P♦rt❛♥t♦ s❡✱ f (x) = senx✱ ❡♥tã♦ f ′ (x) = cos x
❉❡♠♦♥str❛çã♦✳
✭❜✮
❈♦♥s✐❞❡r❡ f (x) = cos x ❡♥tã♦✱ ❞❛ ❞❡✜♥✐çã♦ ❞❡ ❞❡r✐✈❛❞❛ t❡♠♦s✿
cos x · cos h − senh · senx − cos x
cos(x + h) − cos x
= lim
h→0
h→0
h
h
f ′ (x) = lim
cos h − 1
senh
cos x(cos h − 1) − senh · senx
= cos x · lim
− senx · lim
=
h→0
h→0
h→0 h
h
h
= lim
(cos x).(0) − (senx)(1)
P♦rt❛♥t♦ s❡✱ f (x) = cos x✱ ❡♥tã♦ f ′ (x) = −senx
❉❡♠♦♥str❛çã♦✳
✭❝✮
✷✼✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❚❡♠♦s
senx
❞❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ❞❡r✐✈❛❞❛
cos x
′
(senx) cos x − senx(cos x)′
✱ ✐st♦ é
f ′ (x) =
cos2 x
f (x) = tan x✱
❞✉❛s ❢✉♥çõ❡s✱ r❡s✉❧t❛
❡♥tã♦
f (x) =
f ′ (x) =
P♦rt❛♥t♦ s❡✱
f (x) = tan x✱
❞♦ q✉♦❝✐❡♥t❡ ❞❡
cos2 x + sen2 x
1
=
= sec2 x
2
cos x
cos2 x
❡♥tã♦
f ′ (x) = sec2 x✳
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✵✳
❙❡❥❛
u = u(x)
❢✉♥çã♦ ❞❡r✐✈á✈❡❧ ❡♠
x✱
❡♥tã♦✿
❛✮
❙❡
f (x) = sen[u(x)]✱
❡♥tã♦
f ′ (x) = {cos[u(x)]} · u′ (x).
❜✮
❙❡
f (x) = cos[u(x)]✱
❡♥tã♦
f ′ (x) = −{sen[u(x)]} · u′ (x)✳
❝✮
❙❡
f (x) = tan g[u(x)]✱
❞✮
❙❡
f (x) = cot[u(x)]✱
❡♥tã♦
f ′ (x) = −{csc2 [u(x)]} · u′ (x)✳
❡✮
❙❡
f (x) = sec[u(x)]✱
❡♥tã♦
f ′ (x) = {tan[u(x)] · sec[u(x)]} · u′ (x)✳
❢✮
❙❡
f (x) = csc[u(x)]✱
❡♥tã♦
f ′ (x) = −{cot[u(x)] · csc[u(x)]} · u′ (x)✳
❡♥tã♦
f ′ (x) = {sec2 [u(x)]} · u′ (x)✳
❊①❡♠♣❧♦ ✺✳✹✶✳
❉❡t❡r♠✐♥❡ ❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ♣❛r❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
❛✮
❞✮
❙♦❧✉çã♦✳
f (x) = sen2 (5x − 3)
x · senx
f (x) =
1 + x2
❜✮
❡✮
g(x) = cos2 (a − x)
4
❝✮
h(x) = sen3
3
h(x) = sen x · cos x✳
3
❛✮
f (x) = sen2 (5x − 3)✱
5sen(10x − 6)
❜✮
g(x) = cos2 (a − x)✱ ❡♥tã♦ g ′ (x) = −{2 cos(a − x)sen(a − x)}(−1)✱ ✐st♦ é g ′ (x) =
sen(2a − 2x)✳
x 1
x
x
x
′
2 x
✱ ❡♥tã♦ h (x) = {3sen
cos
}· ✱ ❧♦❣♦ h′ (x) = sen2
cos
h(x) = sen3
3
3
3
3
3
3
x · senx
f (x) =
❡♥tã♦✿
1 + x2
(1 + x2 )[x · senx]′ − (1 + x2 )′ x · senx
f ′ (x) =
=
(1 + x2 )2
❝✮
❞✮
♦♥❞❡
❡♥tã♦
f ′ (x) = 2sen(5x − 3) · cos(5x − 3) · 5❀
x
✐st♦ é
f ′ (x) =
(1 + x2 )[senx + x · cos x] − (2x)[x · senx]
=
(1 + x2 )2
2
2
(1 − x )senx + (1 + x )x · cos x
f ′ (x) =
(1 + x2 )2
✷✼✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
h(x) = sen4 x · cos3 x✱ ❡♥tã♦ h′ (x) = [4sen3 x · cos x] cos3 x + sen4 x[3 cos2 x · (−senx)]❀
′
3
2
2
2
✐st♦ é h (x) = sen x cos x(4 cos x − 3sen x)✳
❡✮
❊①❡♠♣❧♦ ✺✳✹✷✳
p
4
❙❡❥❛♠ ❛s ❢✉♥çõ❡s✿
sec
√
x✳
❉❡t❡r♠✐♥❡
1
f (x) = tan3 x + sec2 x − ,
x
f ′ (1), g ′ (0) ❡ h′ (1)✳
g(x) = sen(tan x + sec x)
❡
h(x) =
❙♦❧✉çã♦✳
1
′
2
2
✱ ❡♥tã♦ f (x) = 3 tan x · sec x + 2 sec x ·
x
1
1
tan x · sec x + 2 ❛ss✐♠ f ′ (x) = tan x · sec2 x(3 tan x + 2) + 2 ❡ f ′ (1) = tan 1 · sec2 1 ·
x
x
1
2
(3 tan 1 + 2) + 2 = tan 1 · sec 1 · (3 tan 1 + 2) + 1✳
1
′
2
P♦rt❛♥t♦✱ f (1) = tan 1 · sec 1 · (3 tan 1 + 2) + 1
❛✮
❉❛❞❛ ❛ ❢✉♥çã♦
f (x) = tan3 x + sec2 x −
❜✮
P❛r❛ ❛ ❢✉♥çã♦
g(x) = sen(tan x + sec x)
t❡♠♦s
g ′ (x) = [cos(tan x + sec x)] · (sec2 x + sec x · tan x)
⇒
g ′ (x) = sec x · [cos(tan x + sec x)] · (sec x + tan x)
⇒
g ′ (0) = sec 0 · [cos(tan 0 + sec 0)] · (sec 0 + tan 0) = cos(1)
g ′ (0) = cos 1✳
p √
h(x) = 4 sec x✱
P♦rt❛♥t♦✱
❝✮
❙❡
1
h (x) =
4
′
P♦rt❛♥t♦✱
✺✳✺✳✷
❡♥tã♦
p
√
√
q
4
√ −3
√
√
sec x · tan x
4
√
(sec x) [sec x · tan x] =
8 x
p
√
√
4
sec x · tan x
′
√
h (1) =
✳
8 x
❉❡r✐✈❛❞❛ ❞❛s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✶✳
❆s ❢✉♥çõ❡s tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s sã♦ ❞❡r✐✈á✈❡✐s ❡♠ s❡✉ ❞♦♠í♥✐♦ ❡ t❡♠♦s✿
f ′ (x) = √
1
,
1 − x2
❛✮
❙❡
f (x) = arcsenx✱
❜✮
❙❡
f (x) = arccos x✱
❡♥tã♦
f ′ (x) = − √
❝✮
❙❡
f (x) = arctan x✱
❡♥tã♦
f ′ (x) =
❞✮
❙❡
f (x) = arccotx✱
❡♥tã♦
f ′ (x) = −
❡♥tã♦
| x |< 1✳
1
,
1 − x2
1
,
1 + x2
1
,
1 + x2
✷✼✺
| x |< 1✳
x ∈ R✳
x ∈ R✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
1
√
,
| x | x2 − 1
❡✮
❙❡
f (x) = arcsecx✱
❡♥tã♦
f ′ (x) =
❢✮
❙❡
f (x) = arccscx✱
❡♥tã♦
f ′ (x) = −
| x |> 1✳
1
√
,
| x | x2 − 1
| x |> 1✳
✭❛✮
❉❡♠♦♥str❛çã♦✳
π π
]✳
2 2
p
dx
❉❛ ✐❣✉❛❧❞❛❞❡ y = arcsenx s❡❣✉❡ q✉❡ x = seny ❡
= cos y = 1 − sen2 y ♦♥❞❡✱
dy
p
√
2
2
dx = 1 − sen y · dy = 1 − x · dy ✳
dy
1
1
P♦rt❛♥t♦✱
✱
✐st♦
é
f ′ (x) = √
♣❛r❛ | x |< 1✳
=√
dx
1 − x2
1 − x2
❙❡❥❛ f (x) = arcsenx✱ ❡ y = f (x)✱ ❡♥tã♦ x ∈ [−1, 1] ❡ y ∈ [− ,
✭❡✮
❉❡♠♦♥str❛çã♦✳
❙❡❥❛ f (x) = y = arcsecx✱ ❡♥tã♦ ❞❛ ❞❡✜♥✐çã♦ ❞❛ ❢✉♥çã♦ tr✐❣♦♥♦♠étr✐❝❛ ✐♥✈❡rs❛✱
x ∈ (−∞, −1] ∪ [1, +∞)
❡
π
π
y ∈ [0, ) ∪ ( , π]
2
2
P♦❞❡♠♦s ❡s❝r❡✈❡r x = sec y ✱ ❞❡r✐✈❛♥❞♦ ❡♠ r❡❧❛çã♦ à ✈❛r✐á✈❡❧ y s❡❣✉❡
p
dx
= sec y · tan y = sec y · sec2 y − 1
dy
p
p
π
) ❡ tan y = sec2 y − 1 ✐st♦ é dx = x · sec2 y − 1 · dy ❀ s❡
2
p
p
π
x ∈ (−∞, −1] ❡♥tã♦ y ∈ ( , π] ❡ tan y = − sec2 y − 1✱ ❧♦❣♦ dx = sec y· sec2 y − 1·dy =|
2
√
x | · x2 − 1 · dy ✳
dy
1
√
P♦rt❛♥t♦✱
=
, | x |> 1✳
dx
| x | x2 − 1
s❡ x ∈ [1, +∞) ❡♥tã♦ y ∈ [0,
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✷✳
❙❡❥❛
u = u(x)
❢✉♥çã♦ ❞❡r✐✈á✈❡❧ r❡s♣❡✐t♦ à ✈❛r✐á✈❡❧
❛✮
❙❡
f (x) = arcsen[u(x)]✱
❡♥tã♦
❜✮
❙❡
f (x) = arccos[u(x)]✱
❡♥tã♦
x✱
❡♥tã♦✿
u′ (x)
f ′ (x) = p
✳
1 − [u(x)]2
u′ (x)
✳
f ′ (x) = − p
1 − [u(x)]2
❝✮
❙❡
f (x) = arctan[u(x)]✱
❡♥tã♦
u′ (x)
f (x) =
✳
1 + [u(x)]2
❞✮
❙❡
f (x) = arccot[u(x)]✱
❡♥tã♦
f ′ (x) = −
❡✮
❙❡
f (x) = arcsec[u(x)]✱
❡♥tã♦
f ′ (x) =
′
u′ (x)
✳
1 + [u(x)]2
u′ (x)
p
✳
| u(x) | [u(x)]2 − 1
✷✼✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❢✮
❙❡
f (x) = arccsc[u(x)]✱
❊①❡♠♣❧♦ ✺✳✹✸✳
❡♥tã♦
f ′ (x) = −
√
f (x) = arcsen 1 − x2
❉❛❞❛ ❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
❈♦♥s✐❞❡r❡✲s❡ ❛ ❢✉♥çã♦
f (x) = arcsen[u(x)]✱
u(x) =
√
u′ (x)
p
✳
| u(x) | [u(x)]2 − 1
q✉❛♥❞♦
1 − x2
❡♥tã♦
| x |≤ 1❀
❞❡t❡r♠✐♥❡
f ′ (x)✳
x
✱ ❧♦❣♦ ❝♦♥s✐❞❡r❛♥❞♦
1 − x2
✐♥❞❡♣❡♥❞❡♥t❡ x s❡❣✉❡✲s❡
u′ (x) = − √
❡ ❞❡r✐✈❛♥❞♦ ❡♠ r❡❧❛çã♦ à ✈❛r✐á✈❡❧
1
u′ (x)
=p
· u′ (x)
f ′ (x) = p
2
2
1 − [u(x)]
1 − [u(x)]
⇒
1
x
x
1
√
√
√
f ′ (x) = − q
·
=
−
·
√
1 − x2
1 − x2
x2
1 − [ 1 − x2 ] 2
q✉❛♥❞♦
0 <| x |< 1❀
f ′ (x) = −
✐st♦ é
❊①❡♠♣❧♦ ✺✳✹✹✳
❙❡❥❛♠
y = cos(x2 + y 3 )
❡
x
√
| x | 1 − x2
y = f (x)✱
q✉❛♥❞♦
❞❡t❡r♠✐♥❡
0 <| x |< 1✳
y′✳
❙♦❧✉çã♦✳
du
u(x, y) = x2 + y 3 ✱ ❡♥tã♦ y = cos[u(x, y)] ❡ y ′ = −sen[u(x, y)]. ✳
dx
❡q✉❛çã♦ u(x, y) = 0 ❞❡t❡r♠✐♥❛ ❛ ❢✉♥çã♦ ✐♠♣❧í❝✐t❛ y = f (x)✱ ❧♦❣♦
❈♦♥s✐❞❡r❡
❆
y ′ = −sen[u(x, y)] · [2x + 3y 2 · y ′ ] = −2x · sen(x2 + y 3 ) − 3y 2 · y ′ · sen(x2 + y 3 )
♦♥❞❡
y′ =
−2x · sen(x2 + y 3 )
✳
1 + 3y 2 · sen(x2 + y 3 )
❊①❡♠♣❧♦ ✺✳✹✺✳
❉❛❞❛ ❛ ❢✉♥çã♦
❙♦❧✉çã♦✳✳
❖❜s❡r✈❡ q✉❡
u′ (x) =
3a2 x − x3
g(x) = arctan
a(a2 − 3x2 )
3a2 x − x3
u(x) =
a(a2 − 3x2 )
✱ ❞❡t❡r♠✐♥❡
g ′ (x)✳
❧♦❣♦✱ ❞❡r✐✈❛♥❞♦ ❡♠ r❡❧❛çã♦ ❛
x
t❡♠♦s✿
3a(x4 + 2a2 x2 + a4 )
(3a2 − 3x2 )[a(a2 − 3x2 )] − (3a2 x − x3 )(−6ax)
=
a2 (a2 − 3x2 )2
a2 (a2 − 3x2 )2
P♦r ♦✉tr♦ ❧❛❞♦
g ′ (x) =
1+
h
g(x) = arctan[u(x)]✱
1
3a2 x−x3
a(a2 −3x2 )
i2 ·
❡♥tã♦
g ′ (x) =
1
· u′ (x)
1 + [u(x)]2
✐st♦ é
3a(x4 + 2a2 x2 + a4 )
3a(x2 + a2 )2
=
a2 (a2 − 3x2 )2
a2 (a 2 − 3x2 )2 + (3a2 x − x3 )2
✷✼✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ss✐♠
✺✳✺✳✸
g ′ (x) =
3a
✳
a2 + x2
❉❡r✐✈❛❞❛ ❞❛s ❢✉♥çõ❡s✿ ❊①♣♦♥❡♥❝✐❛❧ ❡ ❧♦❣❛rít♠✐❝❛
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✸✳
❆s ❢✉♥çõ❡s ❡①♣♦♥❡♥❝✐❛❧ ❡ ❧♦❣❛rít♠✐❝❛ sã♦ ❞❡r✐✈á✈❡✐s ❡♠ s❡✉s ❝♦rr❡s♣♦♥❞❡♥t❡s ❞♦♠í♥✐♦s✱
❡ t❡♠♦s✿
❛✮
❙❡
f (x) = ax ,
x ∈ R✱
❡♥tã♦
f ′ (x) = ax · Lna,
❜✮
❙❡
f (x) = ex ,
x ∈ R✱
❡♥tã♦
f ′ (x) = ex ,
❝✮
❙❡
f (x) = loga x,
❞✮
❙❡
f (x) = Lnx,
❡✮
❙❡
f (x) = Ln | x |,
❉❡♠♦♥str❛çã♦✳
x > 0✱
x > 0✱
f ′ (x) =
❡♥tã♦
❡♥tã♦
x 6= 0✱
❡♥tã♦
∀ x ∈ R✳
1
,
x · Lna
1
,
x
f ′ (x) =
∀ x ∈ R✳
f ′ (x) =
∀x > 0✳
∀ x > 0✳
1
,
x
∀ x 6= 0✳
✭❛✮
f (x) = ax , x ∈ R ❡♥tã♦ a > 0 ♦✉ a 6= 1✳
a
− ax
ah − 1
lim
= ax · lim
= ax Lna✳
h→0
h→0
h
h
❙❡
❉♦ ❊①❡♠♣❧♦
5.7
f ′ (x) =
t❡♠♦s✿
x+h
❉❡♠♦♥str❛çã♦✳
❙❡
♣❛rt❡
✭❜✮
f (x) = ex , x ∈ R✱ ❡♥tã♦ é ✉♠
❛✮ t❡♠♦s f ′ (x) = ex · Lne = ex ✳
❉❡♠♦♥str❛çã♦✳
❙❡
❝❛s♦ ♣❛rt✐❝✉❧❛r ❞❡
f (x) = loga x, x > 0✱
f ′ (x) =
❡♥tã♦ ♣❡❧♦ ♠♦str❛❞♦ ♥❛
✭❝✮
❡♥tã♦
y = loga x
♠❡♥t❡ ❡st❛ ú❧t✐♠❛ ✐❣✉❛❧❞❛❞❡ ❡♠ r❡❧❛çã♦ ❛
✐st♦ é✿
a = e✱
x
s❡ ❡ s♦♠❡♥t❡ s❡
x = ay
❞❡r✐✈❛♥❞♦ ✐♠♣❧✐❝✐t❛✲
1 = ay · y ′ · Lna✱
t❡♠♦s✿
1
✳
x · Lna
❧♦❣♦
y′ =
ay
1
· Lna
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✹✳
❙❡
u = u(x)
❛✮
❙❡
f (x) = au(x) ✱
❡♥tã♦
f ′ (x) = au(x) · Lna · u′ (x)✳
❜✮
❙❡
f (x) = eu(x) ✱
❡♥tã♦
f ′ (x) = eu(x) · u′ (x)✳
❝✮
❙❡
f (x) = loga [u(x)],
❞✮
❙❡
f (x) = Ln[u(x)],
❡
v = v(x)
sã♦ ❢✉♥çõ❡s ❞❡r✐✈á✈❡✐s r❡s♣❡✐t♦ à ✈❛r✐á✈❡❧
u(x) > 0✱
u(x) > 0✱
❡♥tã♦
❡♥tã♦
f ′ (x) =
f ′ (x) =
✷✼✽
x✱
t❡♠♦s✿
1
· u′ (x)✳
u(x) · Lna
1
· u′ (x)✳
u(x)
09/02/2021
❀
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❡✮
❙❡
f (x) = [u(x)]v(x) ✱
❉❡♠♦♥str❛çã♦✳
❡♥tã♦✿
f ′ (x) = [u(x)]v(x) [v ′ (x) · Ln[u(x)] +
v(x) ′
· u (x)]
u(x)
✭❡✮
❆ ❞❡♠♦♥str❛çã♦ ❞❡ ✭❛✮✱ ✭❜✮✱ ✭❝✮ ❡ ✭❞✮ é ✐♠❡❞✐❛t❛✳
❙❡❥❛ f (x) = u(x)v(x) ❡♥tã♦ f (x) = eLn[u(x)]
f ′ (x) = eLn[u(x)]
= eLn[u(x)]
v(x)
v(x)
v(x)
· (v(x) · Ln[u(x)])′ =
v ′ (x) · Ln[u(x)] +
❆ss✐♠✱ f ′ (x) = [u(x)]v(x) [v ′ (x) · Ln[u(x)] +
❊①❡♠♣❧♦ ✺✳✹✻✳
❉❡t❡r♠✐♥❡ ❛ ❞❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
= ev(x)·Ln[u(x)] ✱ ❧♦❣♦
y=
r
v(x) ′
· u (x).
u(x)
v(x) ′
· u (x)]✳
u(x)
x(x − 1)
✳
x−2
1
2
❉❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ❢✉♥çã♦ ❧♦❣❛rít♠✐❝❛ t❡♠♦s q✉❡ Lny = [Lnx+Ln(x−1)−Ln(x−2)]❀
1 1
1
1
y′
= [ +
−
]✳
y
2 x x−1 x−2
1
1
x2 − 4x + 2
y 1
✳
−
]✱ ✐st♦ é y ′ = p
P♦rt❛♥t♦✱ y ′ = [ +
2 x x−1 x−2
2 x(x − 1)(x − 2)3
❞❡r✐✈❛♥❞♦
❊①❡♠♣❧♦ ✺✳✹✼✳
❉❡t❡r♠✐♥❡ ❛ ❞❡r✐✈❛❞❛ ❞❛ s❡❣✉✐♥t❡ ❢✉♥çã♦✿
❙♦❧✉çã♦✳
1
y = 1+
x
x
✳
1
❊♠ ♠♦❞♦ ❞❡ ❧♦❣❛rít♠✐❝❛ t❡♠♦s Lny = x · Ln 1 +
= x[Ln(x + 1) − Lnx]✱ ❝❛❧❝✉❧❛♥❞♦
x
y′
1
1
1
1
❛ ❞❡r✐✈❛❞❛ ♣r✐♠❡✐r❛ = [Ln(x + 1) − Lnx] + x ·
−
= Ln 1 +
−
✳
y
x+1 x
x
1+x
x
1
1
1
1
1
′
P♦rt❛♥t♦✱ y = y[Ln 1 +
−
−
]= 1+
]✳
· [Ln 1 +
x
1+x
x
x
1+x
✺✳✺✳✹
❉❡r✐✈❛❞❛ ❞❛s ❡q✉❛çõ❡s ♣❛r❛♠étr✐❝❛s
❖ ❣rá✜❝♦ ❞❡ ✉♠❛ ❝✉r✈❛ y = f (x) é ❝♦♠♣♦st♦ ♣❡❧♦s ♣♦♥t♦s P (x, y) ♥♦ ♣❧❛♥♦ ❝❛rt❡s✐❛♥♦✳
P♦r ❡①❡♠♣❧♦✱ ❛ tr❛❥❡tór✐❛ ❞❡ ✉♠❛ ♣❛rtí❝✉❧❛ ❡♠ ♠♦✈✐♠❡♥t♦ ♥♦ ♣❧❛♥♦ é ❞❡s❝r✐t❛ ♣♦r ✉♠ ♣❛r
❞❡ ❡q✉❛çõ❡s ❡♠ ❢✉♥çã♦ ❞♦ t❡♠♣♦ ♥❛ ❢♦r♠❛ x = x(t) ❡ y = y(t)❀ ❡st❛s ❡q✉❛çõ❡s ❞❡s❝r❡✈❡♠
♦ ♠❡❧❤♦r ♦ ♠♦✈✐♠❡♥t♦✱ ❛ ♣♦s✐çã♦ ❞❛ ♣❛rtí❝✉❧❛ (x, y) = (x(t), y(t)) ❡♠ q✉❛❧q✉❡r ✐♥st❛♥t❡
t✳
P♦r ❡①❡♠♣❧♦✱ x = cos t, y = sent, 0 ≤ t ≤ 2π ❞❡s❝r❡✈❡ ♦ ❞❡s❧♦❝❛♠❡♥t♦ ❞❡ ✉♠❛
❝✐r❝✉♥❢❡rê♥❝✐❛ ♥♦ s❡♥t✐❞♦ ❛♥t✐✲❤♦rár✐♦✳
✷✼✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✺✳✾✳ ❈✉r✈❛ ♣❛r❛♠❡tr✐③❛❞❛✳
❙❡ x ❡ y ✱ sã♦ ❞❛❞❛s ❝♦♠♦ ❢✉♥çõ❡s x = x(t) ❡ y = y(t) ❛♦ ❧♦♥❣♦ ❞❡ ✉♠ ✐♥t❡r✈❛❧♦
❞❡ ✈❛❧♦r❡s ❞❡ t✱ ❡♥tã♦ ♦ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s (x, y) = (x(t), y(t)) ❞❡✜♥✐❞♦ ♣♦r ❡ss❛s
❡q✉❛çõ❡s é ✉♠❛ ❝✉r✈❛ ♣❛r❛♠❡tr✐③❛❞❛✳ ❆s ❡q✉❛çõ❡s sã♦ ❡q✉❛çõ❡s ♣❛r❛♠étr✐❝❛s ♣❛r❛
❛ ❝✉r✈❛✳
t
❆ ✈❛r✐á✈❡❧
é ✉♠ ♣❛râ♠❡tr♦ ♣❛r❛ ❛ ❝✉r✈❛✱ ❡ s❡✉ ❞♦♠í♥✐♦ é ❝❤❛♠❛❞♦ ✏✐♥t❡r✈❛❧♦ ❞♦
♣❛râ♠❡tr♦✑✱ q✉❛♥❞♦
é ♦ ♣♦♥t♦ ✜♥❛❧✳
a ≤ t ≤ b✱ ♦ ♣♦♥t♦ (x(a), y(a)) é ♦ ♣♦♥t♦ ✐♥✐❝✐❛❧ ❡ ♦ ♣♦♥t♦ (x(b), y(b))
❯♠❛ ❝✉r✈❛ ♣❛r❛♠❡tr✐③❛❞❛
❞❡r✐✈á✈❡✐s ❡♠
t✳
x = x(t)
❡
y = y(t)
s❡rá ❞❡r✐✈á✈❡❧ ❡♠
t✱
s❡
x
❡
y
❢♦r❡♠
❊st❛s ❞❡r✐✈❛❞❛s ♥✉♠ ♣♦♥t♦ ❡stã♦ r❡❧❛❝✐♦♥❛❞❛s ❝♦♠ ❛ r❡❣r❛ ❞❛ ❝❛❞❡✐❛
dy
dy dx
=
·
dt
dx dt
❖❜s❡r✈❛çã♦ ✺✳✹✳ ❈✉r✈❛ ♣❛r❛♠❡tr✐③❛❞❛✳
❙❡ ❛s três ❞❡r✐✈❛❞❛s ❡①✐st❡♠ ❡
dx
6= 0✱ ❡♥tã♦
dt
dy/dt
dy
=
dx
dx/dt
❊①❡♠♣❧♦ ✺✳✹✽✳
d2 y
❉❡t❡r♠✐♥❡ 2 ✱ ❡♠ ❢✉♥çã♦ ❞❡ t✱ s❡ x = 2t − t2 ❡ y = 3t − t3
dt
❙♦❧✉çã♦✳
❚❡♠✲s❡ q✉❡
❖❜s❡r✈❡ q✉❡
dy
dy/dt
=
=
dx
dx/dt
d2 y
d dy
=
=
dt2
dt dt
y′ =
3d
=
4 dt
P♦rt❛♥t♦✱
1+t
1−t
3(1 − t2 )
3(1 + t)
=
✳
2(1 − t)
2
3(1 + t)
d dy/dx
d
2
=
✱
dt dx/dt
dt 2(1 − t)
=
❡♥tã♦
3
3
2
=
·
2
4 (1 − t)
2(1 − t)2
3
d2 y
=
✳
dt2
2(1 − t)2
✷✽✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✺✲✷
✶✳ P❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✱ ❞❡t❡r♠✐♥❡ s✉❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ❡♠ r❡❧❛çã♦
à ✈❛r✐á✈❡❧ x✳
y = sen2 (3 − 5x)
x · senx
y=
1 + x2
tan x
y=
sen2x
sen2x
y=
tan x
[sen(nx)]m
y=
[cos(mx)]n
1.
4.
7.
10.
13.
y = sen(cos x)
16.
y=
✶✾✳
2.
y = cos2 (x − a)
5.
y = sen4 x · cos3 x
6.
senx + cos x
y=
9.
senx − cos x
y = sen(nx) · senn x 12.
8.
11.
14.
y=
cot x − 1
tan x + 1
15.
17.
y = sen2 x + cos2 x
18.
sec(1 − x)
sec(1 − x) + tan(1 − x)
hxi
y = sen3
3
tan x − 1
y=
tan x + 1
sec x − tan x
y=
sec x + tan x
1 + cos 2x
y=
1 − cos 2x
csc x + cot x
y=
csc
√ x − cot x
cos 2x + 1
y=
2
3.
✷✵✳
y=
√
√
1 − senx− 1 + senx
✷✳ ❉❡t❡r♠✐♥❡ ❝♦♥st❛♥t❡s A ❡ B ❞❡ ♠♦❞♦ q✉❡ y = A · sen3x − B · cos 3x✱ ❝✉♠♣r❛ ❛
✐❣✉❛❧❞❛❞❡✿ y ′ + 5y = 18 cos 3x✳
✸✳ ❉❡t❡r♠✐♥❡ ❛ ❞❡r✐✈❛❞❛ ✐♠♣❧í❝✐t❛ ♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1.
y = cos(x − y)
2.
3.
cot(xy) + xy = 0
4.
5.
7.
9.
cos(xy) = y · tan(xy)
y = sen(cos(x2 + y 2 ))
cos(x + y) = y · senx
6.
8.
10.
tan y = 3x2 + tan(x + y)
r
r
x
y
−
=2
y
x
y = sen2 x + cos2 y
sen(x + y) + sen(x − y) = 1
y = sen(x + y)
✹✳ ❉❡s❡♥❤❛r ♦ ❣rá✜❝♦ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1.
4.
y = x · arctan x
2.
y = arcsen(x2 + 3x − 10) 5.
y = x − 2 arctan x 3.
√
6.
y = arccos x
y = arcsec(x2 )
√
y = arccos 1 − x2
arcsenx
✱ ❝✉♠♣r❡ ❛ ❡q✉❛çã♦ ❞✐❢❡r❡♥❝✐❛❧ ✿ (1 − x2 ).y ′ − xy − 1 = 0❄
1 − x2
✺✳ ❆ r❡❧❛çã♦ y = √
❏✉st✐✜q✉❡ s✉❛ r❡s♣♦st❛✳
x2 · sen 1 , s❡✱ x 6= 0
′
✻✳ ❈❛❧❝✉❧❛r f (x) ❡ s❡✉ ❞♦♠í♥✐♦ ♣❛r❛ ❛ ❢✉♥çã♦✿ f (x) =
x2
0,
s❡✱ x = 0
✷✽✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✼✳ ❉❡r✐✈❛r
y = Ln(x)
❡♠ r❡❧❛çã♦ ❛
u = esenx ✳
✽✳ ❉❡t❡r♠✐♥❡ ❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
x
y = arctan √
2
1 − x
1
y = arcsec
2
2x − 1
tan x
1
y = √ arctan √
2
2
hxi
2
+ arctan
y = arctan
x
2
5 tan x2 + 4
2
y = arctan
3
hyi 3
xy = arctan
x
x = arcsen(1 − y)
r
r
x
y
+
=8
y
x
1.
3.
5.
7.
9.
11.
13.
15.
2x
y = arctan
1 − x2 √
√
x
y = (x + a) · arctan
− ax
a
b + a cos x
y = arccos
a + b cos x
h x i √a2 − x2
y = arcsen
+
x
a
3senx
y = arctan
4 + 5 cos x
p
2
2
x + y = b · arctan xy
2.
4.
6.
8.
10.
12.
arccos(xy) = arcsen(x + y)
r
r
y
x
+
=2
x
y
14.
16.
✾✳ ❉❡t❡r♠✐♥❡ ❡①♣r❡ssõ❡s ❝♦♠✉♥s ♣❛r❛ ❛s ❞❡r✐✈❛❞❛s ❞❡ ♦r❞❡♠
1. y = senax + cos bx
2. y = sen2 x
4. y = sen4 x + cos4 x
5. y =
x2
n
❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1
ax + b
x
6. y = 2
x −1
3. y =
1
− 3x + 2
1
f (x) = x2 · sen s❡ x 6= 0 ❡ f (0) = 0✳ ❙✉♣♦♥❤❛♠♦s q✉❡ g(x) ❡ h(x) s❡❥❛♠
x
′
2
′
❢✉♥çõ❡s t❛✐s q✉❡✿ h (x) = sen (sen(x + 1)), h(0) = 3, g (x) = f (x + 1) ❡ g(0) = 0✳
✶✵✳ ❙❡❥❛
❆❝❤❛r✿
❛✮
(f oh)′ (0)
✶✶✳ ❉❡t❡r♠✐♥❡
√
dy
dx
❜✮
(gof )′ (0)
❝✮
k ′ (x2 )✱
✶✷✳ ❙❡❥❛
√
√
f (x) = 0 s❡ x ∈ Q
a∈R
k(x) = h(x2 )✳
♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
x2
xarcsen( x) + 1 −
√
√
4 tan x + 1 − 2 tan x
√
3.
y = Ln √
4 tan x + 1 + 2 tan x
p
5. y = Ln[x.senx + cos x + (x · senx + cos x)2 + 1]
1. y =
♦♥❞❡
❡
p
q
s❡
x∈
/ Q✳
▼♦str❡ q✉❡
✷✽✷
f
2Ln2 senx + 3
2. y = Ln
2Ln2 senx − 3
r
1−x
4. y = arctan
1+x
♥ã♦ é ❞✐❢❡r❡♥❝✐á✈❡❧ ❡♠ ♥❡♥❤✉♠
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✶✸✳ ❙❡❥❛♠ ❛s ❢✉♥çõ❡s y = x3 · Ln(x) ❡ z = Ln(x)✳ ❊st❛❜❡❧❡ç❛ ✉♠❛ r❡❧❛çã♦ ❡♥tr❡ y (n) ❡
z (n−3) ♣❛r❛ n ≥ 4✳
✶✹✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ y =
x−3
❝✉♠♣r❡ ❛ r❡❧❛çã♦✿ 2(y ′ )2 = (y − 1)y”✳
x+4
✶✺✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ y = (x2 − 1)n ❝✉♠♣r❡ ❛ r❡❧❛çã♦✿
(x2 − 1)y (n+2) + 2xy (n+1) − 2(n + 1)y (n) = 0,
∀n ∈ N,
n≥2
✶✻✳ ❙❡❥❛♠ f (x) ❡ g(x) ❢✉♥çõ❡s ❞❡ x✳ ❈♦♥s✐❞❡r❡ ❛s s❡❣✉✐♥t❡s ✐❣✉❛❧❞❛❞❡s✿ y = f (x) −
g ′ (x), z = g(x) + f ′ (x), Y = f ′ (x)senx − g ′ (x) cos x ❡ Z = f ′ (x) cos x + g ′ (x)senx✳
dy
dx
▼♦str❡ q✉❡ ✈❡r✐✜❝❛✲s❡ ❛ ✐❞❡♥t✐❞❛❞❡✿
2
+
dz
dx
2
=+
dY
dx
2
+
2
dZ
dx
✳
√
✶✼✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ y = (x+ x2 + 1)k ❝✉♠♣r❡ ❛ r❡❧❛çã♦✿ (x2 +1)y ′′ +x·y ′ −k 2 ·y = 0✳
✶✽✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ y = A · sen(̟t + ̟0 ) + B · cos(̟t + ̟0 ) ♦♥❞❡ A, B, ̟ ❡ ̟0
sã♦ ❝♦♥st❛♥t❡s❀ ❝✉♠♣r❡ ❛ r❡❧❛çã♦✿
d2 y
+ ̟ 2 y = 0✳
dt2
✶✾✳ ▼♦str❡ q✉❡ s❡ ax2 + 2bxy + cy 2 + 2gx + 2f y + h = 0 t❡♠♦s✿
dy
ax + by + g
=−
dx
bx + cy + f
✶✳
A
d2 y
=
2
dx
(bx + cy + f )3
✷✳
❖♥❞❡ A é ❝♦♥st❛♥t❡ q✉❡ ♥ã♦ ❞❡♣❡♥❞❡ ❞❡ x ❡ y ✳
d
✷✵✳ ❙❡❥❛♠ u, v, z três ❢✉♥çõ❡s ❞❡ ✈❛r✐á✈❡❧ x t❛✐s q✉❡✿ y =
dx
dz
dy
d
u y·
= 0✳
−z·
▼♦str❡ q✉❡
dx
dx
dx
dy
u·
dx
d
,z =
dx
dz
u·
✳
dx
✷✶✳ ❱❡r✐✜❝❛r q✉❡ ♦ ❞❡t❡r♠✐♥❛♥t❡ D(x) ♥ã♦ ❞❡♣❡♥❞❡ ❞❡ x ✭é ✉♠❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡✮✿
D(x) =
cos(x + a) sen(x + a) 1
cos(x + b) sen(x + b) 1
cos(x + c) sen(x + c) 1
✷✷✳ ❉❡t❡r♠✐♥❡ ❛ ❞❡r✐✈❛❞❛ n✲és✐♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
y=
✶✳
1−x
1+x
✷✳
y=
3x + 2
x2 − 4
✷✸✳ ❉❡t❡r♠✐♥❡ ❛s ❞❡r✐✈❛❞❛s n✲és✐♠❛ ♣❛r❛ ❛s ❢✉♥çõ❡s✿
1.
4.
y = Ln(x + 1) 2.
y = sen2 x
5.
y = arctan(x)
3.
4
4
y = sen x + cos x 6.
✷✽✸
✸✳
y=
mx + p
x2 − a2
y = sen3 x + cos3 x
y = senx · sen2x · sen3x
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
x2 · sen 1 , s❡✱ x 6= 0
✷✹✳ Pr♦✈❡ q✉❡ ❛ ❢✉♥çã♦✿ f (x) =
é ❞❡r✐✈á✈❡❧ ❡♠ x = 0 ❡
x
0,
s❡✱ x = 0
f ′ (0) = 0✳
✷✺✳ ❙❡ y = a · cos x + b · senx ❡ z = a · senx + b · cos x✱ ❞❡t❡r♠✐♥❡ ❝♦♥❞✐çõ❡s ♣❛r❛ q✉❡
y (m) z (n) = y (n) z (m) ✱ ♦♥❞❡ m, n ∈ N✳
x · sen 1 , s❡✱ x 6= 0
♥ã♦ é ❞❡r✐✈á✈❡❧ ♥❡♠ à ❡s✲
✷✻✳ Pr♦✈❡ q✉❡ ❛ ❢✉♥çã♦✿ f (x) =
x
0,
s❡✱ x = 0
q✉❡r❞❛ ♥❡♠ à ❞✐r❡✐t❛ ♥♦ ♣♦♥t♦ x = 0✳
✷✼✳ ▼♦str❡ ♣♦r r❡❝♦rrê♥❝✐❛ q✉❡ ❛ ❞❡r✐✈❛❞❛ ❞❡ ♦r❞❡♠ n ❞❡✿
n−1
√
x
é
(n)
✶✳
y=x
✷✳
y = ex·cos α · cos(x · sen(α))
✸✳
y = eax · sen(bx + c)
·
e
y
√
x
e
xn+1
é
y (n)
y (n) = ex·cos α · cos[x · senα + n · α]
p
b
= (a2 + b2 )n · eax [sen(bx + c) + n · arctan( )]
a
x
1
π
− arctan( )✱ ❛ n✲és✐♠❛ ❞❡r✐✈❛❞❛ ❞❡ y = 2
2
a
a + x2
sen(n + 1)θ
= (−1)n · n! p
✳
a (a2 + x2 )n+1
✷✽✳ ▼♦str❡ q✉❡✱ q✉❛♥❞♦ θ =
y (n)
é
= (−1)
n
é
✷✾✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ y = ex +2e2x s❛t✐s❢❛③ ❛ ❡q✉❛çã♦ ❞✐❢❡r❡♥❝✐❛❧✿ y ′′′ −6y ′′ +11y ′ = 6y ✳
✸✵✳ ▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ y = x3 s❛t✐s❢❛③ ❛ ❡q✉❛çã♦ ❞✐❢❡r❡♥❝✐❛❧✿ y (v) + y (iv) + y ′′′ + y ′′ +
y ′ + y = x3 + 3x2 + 6x + 6✳
✸✶✳ ❈❛❧❝✉❧❛r ❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ ❡♠ x = 0 ♣❛r❛ ❛ ❢✉♥çã♦
p
f (x) = 3 Ln(arcsenx + arccos x)2 + √
√
5
x2 − 1
x2 − 5x + 4
✸✷✳ ❯♠ ❝❧✉❜❡ ✉♥✐✈❡rs✐tár✐♦ ❧❡✈❛♥t❛ ❢✉♥❞♦s ✈❡♥❞❡♥❞♦ ❜❛rr❛s ❞❡ ❝❤♦❝♦❧❛t❡ ❛ ❘$1, 00 ❝❛❞❛✳
❖ ❝❧✉❜❡ ♣❛❣❛ ❘$0, 60 ♣♦r ❝❛❞❛ ❜❛rr❛ ❡ t❡♠ ✉♠ ❝✉st♦ ❛♥✉❛❧ ✜①♦ ❞❡ ❘$250, 00✳ ❊s❝r❡✈❛
♦ ❧✉❝r♦ L ❝♦♠♦ ❢✉♥çã♦ ❞❡ x✱ ♥ú♠❡r♦ ❞❡ ❜❛rr❛s ❞❡ ❝❤♦❝♦❧❛t❡ ✈❡♥❞✐❞❛s✳ ▼♦str❡ q✉❡
❛ ❞❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ ❧✉❝r♦ é ❝♦♥st❛♥t❡ ❡ q✉❡ é ✐❣✉❛❧ ❛♦ ❧✉❝r♦ ♦❜t✐❞♦ ❡♠ ❝❛❞❛ ❜❛rr❛
✈❡♥❞✐❞❛✳
✸✸✳ ❆ r❡❝❡✐t❛ R ✭❡♠ ♠✐❧❤õ❡s ❞❡ r❡❛✐s✮ ❞❡ ✉♠❛ ❞❡t❡r♠✐♥❛❞❛ ❡♠♣r❡s❛ ❞❡ 1.989 ❛ 1.993
❛❞♠✐t❡ ♦ ♠♦❞❡❧♦ R(t) = −5, 1t3 + 25, 6t2 − 29, 3t + 45, 2✱ ♦♥❞❡ t = 0 r❡♣r❡s❡♥t❛ ♦
t❡♠♣♦ ❡♠ 1.989✳ ❛✮ ❆❝❤❛r ❛ ✐♥❝❧✐♥❛çã♦ ❞♦ ❣rá✜❝♦ ❡♠ 1.990 ❡ ❡♠ 1.989✳ ❜✮ ◗✉❛✐s
sã♦ ❛s ✉♥✐❞❛❞❡s ❞❡ ✐♥❝❧✐♥❛çã♦ ❞♦ ❣rá✜❝♦❄
✷✽✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺✳✻
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❆♣r♦①✐♠❛çã♦ ❧♦❝❛❧ ❞❡ ✉♠❛ ❢✉♥çã♦
❙❡❥❛ f ✉♠❛ ❢✉♥çã♦ ❞❡r✐✈á✈❡❧ ♥♦ ♣♦♥t♦ x = a ❡ ❝♦♥s✐❞❡r❡♠♦s ❛ ❢✉♥çã♦ ❛✜♠ ❞❡✜♥✐❞❛
♣♦r✿ Tm (x) = f (a) + m(x − a) ♦♥❞❡ m é ♥ú♠❡r♦ r❡❛❧✳
❚♦❞❛ ❢✉♥çã♦ ❛✜♠ Tm (x) ♥✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ x =
a✱ é ✉♠❛ ❛♣r♦①✐♠❛çã♦ ♣❛r❛ ❛ ❢✉♥çã♦ f (x)✱ ♥♦ s❡♥t✐❞♦
q✉❡ ♦ ❡rr♦ ❝♦♠❡t✐❞♦ ♥❡ss❛ ❛♣r♦①✐♠❛çã♦ t❡♥❞❡ ❛ ③❡r♦
q✉❛♥❞♦ (a + ∆x) → a ♦✉ ∆x → 0 ✭❋✐❣✉r❛ ✭✺✳✺✮✮✳
❉❡ ❢❛t♦✱ s❡ ❡①♣r❡ss❛♠♦s ❡st❡ ❡rr♦ ❡♠ t❡r♠♦s ❞❡ ∆x ❡
❢❛③❡♥❞♦ E(∆x) ❝♦♠♦✿
E(∆x) = f (a + ∆x) − Tm (a + ∆x)
❈♦♠♦ f é ❞❡r✐✈á✈❡❧ ❡♠ x = a✱ ❡♥tã♦ f é ❝♦♥tí♥✉❛
❡♠ x = a ♦ q✉❡ ✐♠♣❧✐❝❛ q✉❡✿
❋✐❣✉r❛ ✺✳✺✿
lim [f (a + ∆x) − Tm (a + ∆x)] = lim E(∆x) = 0
∆x→0
∆x→0
✐st♦ s✐❣♥✐✜❝❛ q✉❡ ♣❛r❛ ✈❛❧♦r❡s ♣❡q✉❡♥♦s ❞❡ ∆x t❡♠♦s f (a + ∆x) ❜❛st❛♥t❡ ♣ró①✐♠♦ ❞❡
Tm (a + ∆x)
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✺✳
❙❡
f
é ❞❡r✐✈á✈❡❧ ❡♠
x=a
❡
E(∆x) = f (a + ∆x) − Tm (a + ∆x)
❡♥tã♦
E(∆x)
=0
∆x→0
∆x
lim
s❡✱ ❡ s♦♠❡♥t❡ s❡
m = f ′ (x)✳
❉❡♠♦♥str❛çã♦✳
(⇒) P♦r ❤✐♣ót❡s❡
E(∆x)
=0 ❡
∆x→0
∆x
lim
Tm (a + ∆x) = f (a) + m(∆x)✱ ❡♥tã♦
f (a + ∆x) − f (a) − m(∆x)
f (a + ∆x) − f (a)
= lim
− lim ·m = f ′ (a) − m
∆x→0
∆x→0
∆x→0
∆x
∆x
lim
P♦r t❛♥t♦ m = f ′ (a)✳
(⇐) ❘❡❝✐♣r♦❝❛♠❡♥t❡✱ ♣♦r ❤✐♣ót❡s❡ m = f ′ (a)✱ ❞❛ ❞❡✜♥✐çã♦ ❞❡ ❞❡r✐✈❛❞❛ ♥✉♠ ♣♦♥t♦✱
t❡♠♦s q✉❡ ♦ ❧✐♠✐t❡ ✿
f (a + ∆x) − f (a) − f ′ (a)∆x
f (a + ∆x) − f (a)
− f ′ (a) = lim
=
∆x→0
∆x→0
∆x
∆x
0 = lim
✷✽✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
f (a + ∆x) − f (a) − m(∆x)
E(∆x)
= lim
=0
∆x→0
∆x→0
∆x
∆x
lim
❖❜s❡r✈❛çã♦ ✺✳✺✳
❉❡st❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✶✺✮✱ ♦❜s❡r✈❛♠♦s q✉❡ ❡①✐st❡ ✉♠❛ ú♥✐❝❛ ❢✉♥çã♦ ❛✜♠ q✉❡ ❛♣r♦①✐♠❛
E(∆x)
= 0✳
∆x→0
∆x
❛ f (x) ❝♦♠ ❛ ❝♦♥❞✐çã♦ lim
❊st❛ ❛♣r♦①✐♠❛çã♦ é ❡①❛t❛♠❡♥t❡ ❛ r❡t❛ t❛♥❣❡♥t❡ à ❝✉r✈❛ f (x) ♥♦ ♣♦♥t♦ x = a✳ ■st♦
s✐❣♥✐✜❝❛ q✉❡ q✉❛❧q✉❡r ❢✉♥çã♦ ❞❡r✐✈á✈❡❧ ♥♦ ♣♦♥t♦ x = a✱ ♣♦❞❡ s❡r ❛♣r♦①✐♠❛❞❛ ❧♦❝❛❧♠❡♥t❡
♣♦r ✉♠ ♣♦❧✐♥ô♠✐♦ ❞❡ ❣r❛✉ ✉♠✳
❊①❡♠♣❧♦ ✺✳✹✾✳
◆✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞♦ ♣♦♥t♦ x = 3✱ ❞❡t❡r♠✐♥❡ ♦ ♣♦❧✐♥ô♠✐♦ q✉❡ ❛♣r♦①✐♠❛ ❧♦❝❛❧♠❡♥t❡ à
√
❢✉♥çã♦ g(x) = x2 − 1✳
❙♦❧✉çã♦✳
√
x
3
✱
❡♥tã♦
g ′ (3) = √ ✱ ❛ss✐♠ ♦
x2 − 1
8
√
3
♣♦❧✐♥ô♠✐♦ q✉❡ ❛♣r♦①✐♠❛ é P (x) = g(3) + g ′ (3)(x − 3) ✐st♦ é P (x) = 8 + √ (x − 3)✳
8
❖❜s❡r✈❡ q✉❡ P (3, 01) = 2, 8391 ❡ g(3, 01) = 2, 8390 ♦ ❡rr♦ E(0, 01) = 0, 0001 é ♠í♥✐♠♦✳
P❛r❛ ❛ ❢✉♥çã♦ g(x) =
✺✳✻✳✶
x2 − 1 t❡♠♦s g ′ (x) = √
❋✉♥çã♦ ❞✐❢❡r❡♥❝✐á✈❡❧ ❡ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ ✉♠❛ ❢✉♥çã♦
❉❡✜♥✐çã♦ ✺✳✶✵✳
❙❡❥❛ f : A −→ R ✉♠❛ ❢✉♥çã♦ ❡ a ∈ A ✉♠ ♣♦♥t♦ ❞❡ ❛❝✉♠✉❧❛çã♦ ❞❡ A✳ ❙❡ ❞✐③ q✉❡
f é ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦ x = a✱ s❡✿
f (a + ∆x) = f (a) + m · ∆x + ∆x · ε(∆x)
✭✺✳✻✮
♦♥❞❡ ε(∆x) → 0 s❡ ∆x → 0 ❡ ε(0) = 0✳
❆ ❡①♣r❡ssã♦ m · ∆x ❞❛ ✐❣✉❛❧❞❛❞❡ ✭✺✳✻✮ ❞❡♥♦♠✐♥❛✲s❡ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ f ♥♦ ♣♦♥t♦ x = a✱
❝♦rr❡s♣♦♥❞❡♥t❡ ❛♦ ✐♥❝r❡♠❡♥t♦ ∆x ❡ ❞❡♥♦t❛✲s❡ d(a, ∆x) ♦✉ s✐♠♣❧❡s♠❡♥t❡ df (a)✳ ❊♠ ❣❡r❛❧
❛ df (x) ❝❤❛♠❛✲s❡ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ f (x)✳
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✻✳
❙❡ f é ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦ x = a✱ ❛ ❝♦♥st❛♥t❡ m q✉❡ ❛♣❛r❡❝❡ ♥❛ ❉❡✜♥✐çã♦ ✭✺✳✽✮ é
ú♥✐❝❛✳
❉❡♠♦♥str❛çã♦✳
✷✽✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❙✉♣♦♥❤❛♠♦s q✉❡ ❡①✐st❛♠
m 6= m1
❡
ε1 (∆x)
t❛✐s q✉❡✿
f (a + ∆x) = f (a) + m1 · ∆x + ∆x · ε1 (∆x)
lim ε1 (∆x) =✵✳
❈♦♠
∆x→0
R
✭✺✳✼✮
❙✉❜str❛✐♥❞♦ ✭✺✳✻✮ ❞❡ ✭✺✳✼✮ ♦❜té♠✲s❡ ✿
0 = (m − m1 )∆x + [ε(∆x) − ε1 (∆x)]∆x
∆x 6= 0, m − m1 = ε(∆x) − ε1 (∆x)✱ ♥♦ ❧✐♠✐t❡ ❛ ❛♠❜♦s
∆x → 0 ♦❜t❡♠♦s m = m1 ✱ ✐st♦ s✐❣♥✐✜❝❛ q✉❡ ❛ ❝♦♥st❛♥t❡ é ú♥✐❝❛✳
P❛r❛
♦s ♠❡♠❜r♦s q✉❛♥❞♦
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✼✳
❆ ❢✉♥çã♦
f (x)
é ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦
x=a
s❡✱ ❡ s♦♠❡♥t❡ s❡
f
é ❞❡r✐✈á✈❡❧ ♥♦ ♣♦♥t♦
x = a✳
❉❡♠♦♥str❛çã♦✳
⇒✮
✭
P♦r ❤✐♣ót❡s❡✱
f (x)
é ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦
x = a✱
❡♥tã♦
f (a + ∆x) = f (a) + m(∆x) + ∆x · ε(∆x)
m é ❝♦♥st❛♥t❡ ❡ lim ε(∆x) ❂ ✵✱ ❞✐✈✐❞✐♥❞♦ ♣♦r ∆x 6= 0 ❡ ❝❛❧❝✉❧❛♥❞♦ ♦ ❧✐♠✐t❡ q✉❛♥❞♦
∆x→0
∆x → 0 ♦❜té♠✲s❡✿
❝♦♠♦
f (a + ∆x) − f (a)
= lim [m − ε(∆x)] = m
∆x→0
∆x→0
∆x
lim
m = f ′ (a)❀ ✐st♦ é f
✭⇐✮ ❘❡❝✐♣r♦❝❛♠❡♥t❡✱
❡♥tã♦
é ❞❡r✐✈á✈❡❧ ❡♠
x = a✳
é ❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✼✮✳
❊①❡♠♣❧♦ ✺✳✺✵✳
❙❡❥❛
f (x) = x
❢✉♥çã♦ ✐❞❡♥t✐❞❛❞❡✱ ❝❛❧❝✉❧❛r ♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❡
f (x)✳
❙♦❧✉çã♦✳
df (x) = f ′ (x) · ∆x
❝♦♠♦
f ′ (x) = 1
❡
f (x) = x✱
■st♦ s✐❣♥✐✜❝❛ q✉❡ ♦ ✏✐♥❝r❡♠❡♥t♦ ❞❛ ✈❛r✐á✈❡❧
❝✐❛❧
dx = ∆x✳
✐♥❞❡♣❡♥❞❡♥t❡ x(∆x) é ✐❣✉❛❧
♦❜t❡♠♦s
❛ s❡✉ ❞✐❢❡r❡♥✲
dx✑✳
❊①❡♠♣❧♦ ✺✳✺✶✳
❙❡❥❛
f (x) =
❢✭①✮❄
1 3
x✱
4
❝❛❧❝✉❧❛r ♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❡
f
♥♦ ♣♦♥t♦
x = 2❀
◗✉❛❧ é ♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❡
❙♦❧✉çã♦✳
3
d(2, ∆x) = f ′ (2) · ∆x✱ s❡♥❞♦ f ′ (x) = x2 ✱
4
x = 2✱ é d(2, ∆x) = f ′ (2) · ∆x = 3∆x✳
❚❡♠♦s
❞❡
f
❡♠
✷✽✼
❧♦❣♦
f ′ (2) = 3❀
❛ss✐♠ ♦ ❞✐❢❡r❡♥❝✐❛❧
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
3
2
P♦r ♦✉tr♦ ❧❛❞♦✱ ♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ f (x) é df (x) = f ′ (x) · ∆x = x · ∆x✳
❖❜s❡r✈❛çã♦ ✺✳✻✳
❈♦♥s✐❞❡r❛♥❞♦ ♦s r❡s✉❧t❛❞♦s ❛♥t❡r✐♦r❡s✱ s❡
df (a) = f ′ (a)·dx
❛✮
❜✮
y = f (x)
t❡♠♦s✿
dy = df (x) = f ′ (x)·dx
❝✮
dy
= f ′ (x)✳
dx
✺✳✻✳✷ Pr♦♣r✐❡❞❛❞❡s ❞♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❡ ✉♠❛ ❢✉♥çã♦
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✽✳
❙❡❥❛♠
u = f (x)
❡
v = g(x)
❢✉♥çõ❡s ❞✐❢❡r❡♥❝✐á✈❡✐s ❡
c
✉♠❛ ❝♦♥st❛♥t❡✱ ❡♥tã♦✿
a)
d(c) = 0.
b)
d(cu) = cd(u)
c)
d(u + v) = d(u) + d(v)
u v · d(u) − u · d(v)
d
=
v
v2
d)
d(u.v) = u.d(v) + v.d(u)
e)
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✺✳✺✷✳
❙❡❥❛
f (x) =
√
x2 + 5 ✱
❞❡t❡r♠✐♥❡
df ✳
❙♦❧✉çã♦✳
√
x · dx
.
x2 + 5
❉♦ ❢❛t♦ df (x) = f ′ (x) · dx t❡♠♦s df (x) = ( x2 + 5)′ · dx = √
❊①❡♠♣❧♦ ✺✳✺✸✳
f (x) = x2 + 3✱ ❞❡t❡r♠✐♥❡ ∆f ❡ df q✉❛♥❞♦ x = 2
E(∆x) q✉❛♥❞♦ ✉t✐❧✐③❛♠♦s df ♣❛r❛ ❛♣r♦①✐♠❛r ∆f ❄
❉❛❞♦
❡rr♦
❡
∆x = dx = 0, 5✳
◗✉❛❧ é ♦
❙♦❧✉çã♦✳
P❛r❛ a = 2 ❡ ∆x = 0, 5 t❡♠♦s✿
∆f = f (a + ∆x) − f (a) = f (2, 5) − f (2) = 2, 25
df (2, 5) = f ′ (2)dx = 2(2) · (0, 5) = 2
▲♦❣♦✱ E(∆x) = ∆f − df = 2, 25 − 2 = 0, 25✳
✺✳✻✳✸ ❙✐❣♥✐✜❝❛❞♦ ❣❡♦♠étr✐❝♦ ❞♦ ❞✐❢❡r❡♥❝✐❛❧
❘❡❡s❝r❡✈❡♥❞♦ ❛ ❞❡✜♥✐çã♦ ❞❡ ❢✉♥çã♦ ❞✐❢❡r❡♥❝✐á✈❡❧ ♦❜t❡♠♦s✿
f (a + ∆x) = f (a) + f ′ (a) · ∆x + ∆x · ε(∆x)
✷✽✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
♦♥❞❡✿
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
f (a + ∆x) − f (a)
, s❡✱ ∆x 6= 0
ε(∆x) =
∆x
0,
s❡✱ ∆x = 0
■st♦ s✐❣♥✐✜❝❛ q✉❡ s❡ f é ❞✐❢❡r❡♥❝✐á✈❡❧ ❡♠ x =
a✱ ❡ q✉❡ f é ❧♦❝❛❧♠❡♥t❡ ❛♣r♦①✐♠❛❞❛ ♣♦r s✉❛ r❡t❛
t❛♥❣❡♥t❡✿
Tm (x) = f (a) + f ′ (a)(x − a)
❙❡❥❛♠ P (a, f (a)) ❡ Q(a + ∆x, f (a + ∆x)) ♦s
♣♦♥t♦s s♦❜r❡ ♦ ❣rá✜❝♦ ❞❡ f ✭❋✐❣✉r❛ ✭✺✳✻✮✮✳ ❆ r❡t❛
♣❛r❛❧❡❧❛ ❛♦ ❡✐①♦ y q✉❡ ♣❛ss❛ ♣♦r Q ✐♥t❡r❝❡♣t❛ à
r❡t❛ t❛♥❣❡♥t❡ Tm (x) ♥♦ ♣♦♥t♦ S ❡ à r❡t❛ ♣❛r❛❧❡❧❛
❛♦ ❡✐①♦ x q✉❡ ♣❛ss❛ ♣♦r P ❛ ✐♥t❡r❝❡♣t❛ ♥♦ ♣♦♥t♦ R✳
❋✐❣✉r❛ ✺✳✻✿
RS
❚❡♠♦s tan α =
✱ ♣♦ré♠ P R = ∆x = dx ❡ tan α = f ′ (a) ♦♥❞❡✱ RS = f ′ (a)dx =
PR
d(f, ∆x)✳ ❆ss✐♠ ♦❜té♠✲s❡ q✉❡ ∆x → 0 ❡ ∆y ≈ dy ✳
P♦rt❛♥t♦✱ f (a + ∆x) ≈ f (a) + f ′ (a)dx✳
❖❜s❡r✈❛çã♦ ✺✳✼✳
❙❡
y = f (x)✱
∆y = f (a + ∆x) ≈ f (a) ❡ ∆y ≈ dy ❞❡❞✉③✐♠♦s q✉❡ dy
✈❛r✐❛çã♦ q✉❡ s♦❢r❡ ❛ ❢✉♥çã♦ f q✉❛♥❞♦ x ✈❛r✐❛ ❞❡ a ❛té a + ∆x✳
s❡♥❞♦
❛♣r♦①✐♠❛❞❛♠❡♥t❡ ❛
é
❊①❡♠♣❧♦ ✺✳✺✹✳
❊st✐♠❛✲s❡ ❡♠
12cm
♦ r❛✐♦ ❞❡ ✉♠❛ ❡s❢❡r❛✱ ❝♦♠ ✉♠ ❡rr♦ ♠á①✐♠♦ ❞❡
0, 006cm✳
❊st✐♠❡
♦ ❡rr♦ ♠á①✐♠♦ ♥♦ ❝á❧❝✉❧♦ ❞♦ ✈♦❧✉♠❡ ❞❛ ❡s❢❡r❛✳
❙♦❧✉çã♦✳
4
❙❡❥❛ r ♦ r❛✐♦ ❞❛ ❡s❢❡r❛✱ s❡✉ ✈♦❧✉♠❡ é ❞❛❞♦ ♣♦r V (r) = πr3 ❀ ❞❡♥♦t❛♥❞♦ dr ♦ ❞✐❢❡r❡♥❝✐❛❧
3
❞♦ r❛✐♦❀ t❡♠♦s dV = V ′ (r)dr✱ ✐st♦ é dV = 4πr2 dr✱ ❢❛③❡♥❞♦ r = 12, dr = ±0, 06✱ ❛ss✐♠✱
dV = 4π(12)2 (±0, 006) = ±10, 857cm3 ✳
❖ ❡rr♦ ♠á①✐♠♦ ♥❛ ♠❡❞✐❞❛ ❞♦ ✈♦❧✉♠❡✱ ❞❡✈✐❞♦ ❛♦ ❡rr♦ ♥❛ ♠❡❞✐❞❛ ❞♦ r❛✐♦ é 10, 857cm3 ✳
❊①❡♠♣❧♦ ✺✳✺✺✳
❆♣r♦①✐♠❛r ♠❡❞✐❛♥t❡ ❞✐❢❡r❡♥❝✐❛✐s ❛ r❛✐③ q✉✐♥t❛ ❞❡
3127✳
❙♦❧✉çã♦✳
√
√
❙❡❥❛ f (x) = 5 x ❡ a = 3125✱ t❡♠♦s f (a) = 5 3125 = 5✳ ❙❡ a + ∆x = 3127✱ ❡♥tã♦
∆x = 2 = dx✳
❈♦♠♦ f (a + ∆x) ≈ f (a) + f ′ (a)dx ❡♥tã♦✱ f (3127) ≈ f (3125) + f ′ (3125).(2)✳ ■st♦ é
√
5
3127 ≈
√
5
1
) = 5 + 0, 0032 = 5, 0032
3125 + 2( √
5
5 31254
✷✽✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦rt❛♥t♦
√
5
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
3.127 ≈ 5, 0032✳
❉❡✜♥✐çã♦ ✺✳✶✶✳
❙❡ ❡①✐st❡ ❡rr♦ ♥❛ ♠❡❞✐❞❛ ❞❡ ✉♠ ❡①♣❡r✐♠❡♥t♦ q✉❡ ❞❡s❝r❡✈❡ ✉♠❛ ❢✉♥çã♦ y = f (x)✱
❞❡✜♥❡✲s❡✿
dy
❡rr♦ ♥❛ ♠❡❞✐❞❛
=
❊rr♦ r❡❧❛t✐✈♦ =
✈❛❧♦r ♠é❞✐♦
f (a)
❖ ❡rr♦ ♣❡r❝❡♥t✉❛❧ é ♦ ❡rr♦ r❡❧❛t✐✈♦ ♠✉❧t✐♣❧✐❝❛❞♦ ♣♦r 100❀ ✐st♦ é
dy
· 100%✳
f (a)
P♦r ❡①❡♠♣❧♦✱ s❡ ❛ ♠❡❞✐❞❛ ❞❡ ✉♠ ❝♦♠♣r✐♠❡♥t♦ ❛❝✉s❛ 25cm✳ ❈♦♠ ✉♠ ♣♦ssí✈❡❧ ❡rr♦ ❞❡
0, 1cm✱ ❡♥tã♦ ♦ ❡rr♦ r❡❧❛t✐✈♦ é
0, 1
= 0, 004✳
25
❖ s✐❣♥✐✜❝❛❞♦ ❞❡st❡ ♥ú♠❡r♦ é q✉❡ ♦ ❡rr♦✱ é ❡♠ ♠é❞✐❛ ❞❡ 0, 004cm ♣♦r ❝❡♥tí♠❡tr♦✳
❊①❡♠♣❧♦ ✺✳✺✻✳
❆ ❛❧t✉r❛ ❞♦ ♣❛r❛❧❡❧❡♣í♣❡❞♦ ❞❡ ❜❛s❡ q✉❛❞r❛❞❛ é 15cm✳ ❙❡ ♦ ❧❛❞♦ ❞❛ ❜❛s❡ ♠✉❞❛ ❞❡ 10
♣❛r❛ 10.02cm✱ ✉s❛♥❞♦ ❞✐❢❡r❡♥❝✐❛✐s ❝❛❧❝✉❧❛r ❛ ♠✉❞❛♥ç❛ ❛♣r♦①✐♠❛❞❛ ❞❡ s✉❡ ✈♦❧✉♠❡✳
❙♦❧✉çã♦✳
❖ ✈♦❧✉♠❡ ❞♦ ♣❛r❛❧❡❧❡♣í♣❡❞♦ é V = x2 h✱ ♦♥❞❡ ❛ ❛❧t✉r❛ h = 15 é ❝♦♥st❛♥t❡ ❡ x ❧❛❞♦ ❞❛
❜❛s❡ q✉❛❞r❛❞❛ é ✈❛r✐á✈❡❧❀ ❡♥tã♦✱ V = 15x2 ❡ dV = 30x · dx✳
P❛r❛ ♥♦ss♦ ❝❛s♦ x = 10 ❡ dx = ±0, 02❀ ❧♦❣♦ dV = ±6cm3 ✳ ❖ ✈♦❧✉♠❡ s♦❢r❡ ❛♣r♦①✐♠❛✲
❞❛♠❡♥t❡ ✉♠ ❛✉♠❡♥t♦ ❞❡ 6cm3 ✳
❖ ❡rr♦ r❡❧❛t✐✈♦ é
✺✳✼
dV
dV
30x · dx
= 0, 004 ❡ ♦ ❡rr♦ ♣❡r❝❡♥t✉❛❧ é
=
· 100% = 0, 4%✳
2
V
15x
V
❚❡♦r❡♠❛ s♦❜r❡ ❢✉♥çõ❡s ❞❡r✐✈á✈❡✐s
❙❡❥❛ f : R −→ R ❢✉♥çã♦ r❡❛❧ ❝♦♠ ❞♦♠í♥✐♦ D(f )✱ ❡ a ∈ D(f )✳
❉❡✜♥✐çã♦ ✺✳✶✷✳
❉✐③❡♠♦s q✉❡ f ❛♣r❡s❡♥t❛ ✉♠ ♠á①✐♠♦ ❛❜s♦❧✉t♦ ❡♠ x = a✱ s❡ f (x) ≤ f (a) ∀ x ∈
D(f )✳
❖ ✈❛❧♦r f (a) é ❝❤❛♠❛❞♦ ✲ ♠á①✐♠♦ ❛❜s♦❧✉t♦ ❞❡ f ✳
❉❡✜♥✐çã♦ ✺✳✶✸✳
❉✐③❡♠♦s q✉❡ f ❛♣r❡s❡♥t❛ ✉♠ ♠í♥✐♠♦ ❛❜s♦❧✉t♦ ❡♠ x = a✱ s❡ f (a) ≤ f (x) ∀ x ∈
D(f )✳
❖ ✈❛❧♦r f (a) é ❝❤❛♠❛❞♦ ✲ ♠í♥✐♠♦ ❛❜s♦❧✉t♦ ❞❡ f ✳
✷✾✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✺✳✶✹✳
❉✐③❡♠♦s q✉❡
f
❛♣r❡s❡♥t❛ ✉♠ ✲ ♠á①✐♠♦ r❡❧❛t✐✈♦ ✲ ♦✉ ✲ ♠á①✐♠♦ ❧♦❝❛❧ ✲ ❡♠
x = a✱
δ > 0 t❛❧ q✉❡ f (x) ≤ f (a) ∀ x ∈ B(a, δ) = (a − δ, a + δ) ⊆ D(f )✳
♥ú♠❡r♦ f (a) é ❝❤❛♠❛❞♦ ✲ ♠á①✐♠♦ r❡❧❛t✐✈♦ ✲ ♦✉ ✲ ♠á①✐♠♦ ❧♦❝❛❧ ❞❡ f
s❡
❡①✐st❡
❖
✭❋✐❣✉r❛
✭✺✳✼✮✮✳
❉❡✜♥✐çã♦ ✺✳✶✺✳
❉✐③❡♠♦s q✉❡
f ❛♣r❡s❡♥t❛ ✉♠ ♠í♥✐♠♦ r❡❧❛t✐✈♦ ♦✉ ♠í♥✐♠♦ ❧♦❝❛❧ ❡♠ x = a✱ s❡ ❡①✐st❡
δ > 0 t❛❧ q✉❡ f (a) ≤ f (x) ∀ x ∈ B(a, δ) = (a − δ, a + δ) ⊆ D(f )✳
❖ ♥ú♠❡r♦ f (a) é ❝❤❛♠❛❞♦ ✲ ♠í♥✐♠♦ r❡❧❛t✐✈♦ ✲ ♦✉ ✲ ♠í♥✐♠♦ ❧♦❝❛❧ ❞❡ f ✳ ✭❋✐❣✉r❛
✭✺✳✽✮✮
❋✐❣✉r❛ ✺✳✼✿
❋✐❣✉r❛ ✺✳✽✿
❊①❡♠♣❧♦ ✺✳✺✼✳
❙❡❥❛
❙♦❧✉çã♦✳
f (x) =
√
16 − x2 ✱
❞❡t❡r♠✐♥❡ s❡✉s ✈❛❧♦r❡s ❞❡ ♠á①✐♠♦ ❡ ♠í♥✐♠♦ ❛❜s♦❧✉t♦s✳
❖ ❉♦♠í♥✐♦ ❞❡ f (x) é D(f ) = [−4, 4] ❡ s❡✉ ❣rá✜❝♦ é ✉♠❛ s❡♠✐❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❡ r❛✐♦ 4✳
❊①✐st❡ ♠á①✐♠♦ ❛❜s♦❧✉t♦ ❡♠ x = 0; f (0) = 4 é ♦ ♠á①✐♠♦ ❛❜s♦❧✉t♦✱ ❡ ♦ ♠í♥✐♠♦ ❛❜s♦❧✉t♦
❡♠ x = −4 ♦✉ x = 4; f (4) = 0 é ♦ ♠í♥✐♠♦ ❛❜s♦❧✉t♦✳
❖❜s❡r✈❛çã♦ ✺✳✽✳
• ❙❡ f (c) é ♦ ✈❛❧♦r ❞❡ ♠í♥✐♠♦ ♦✉ ♠á①✐♠♦✱ r❡❝❡❜❡ ♦ ♥♦♠❡ ❞❡ ❡①tr❡♠♦ ❞❡ f ♦✉ ✈❛❧♦r
❡①tr❡♠♦ ❞❡ f ✱ ❛ss✐♠ ♣♦❞❡r❡♠♦s ❢❛❧❛r ❞❡ ❡①tr❡♠♦s ❛❜s♦❧✉t♦s ♦✉ ❡①tr❡♠♦s r❡❧❛t✐✈♦s✳
❖ ♣♦♥t♦ x = c é ❝❤❛♠❛❞♦ ❞❡ ♣♦♥t♦ ❞❡ ❡①tr❡♠♦✳
• ❙❡ f (c) é ✉♠ ❡①tr❡♠♦ r❡❧❛t✐✈♦✱ ❡♥tã♦ x = c é ✉♠ ♣♦♥t♦ ❞♦ ✐♥t❡r✐♦r ❞♦ D(f ) ✐st♦ é
❡①✐st❡ δ > 0 t❛❧ q✉❡ B(c, δ) ⊆ D(f )✳ ❊st❛ ❝♦♥❞✐çã♦ ✈❡r✐✜❝❛✲s❡ ♥❡❝❡ss❛r✐❛♠❡♥t❡ s❡
✷✾✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
f (c) é ✉♠ ❡①tr❡♠♦ ❛❜s♦❧✉t♦✱ ❥á q✉❡ ♦ ❡①tr❡♠♦ ❛❜s♦❧✉t♦ ♣♦❞❡ ♦❝♦rr❡r ♥✉♠ ♣♦♥t♦ q✉❡
♥ã♦ é ♣♦♥t♦ ✐♥t❡r✐♦r ❞♦ ❞♦♠í♥✐♦✳
❊①❡♠♣❧♦ ✺✳✺✽✳
❙❡❥❛ ❛ ❢✉♥çã♦ f (x) =
| 3x |
s❡✉ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✺✳✾✮✳
2 + x2
❖❜s❡r✈❡ q✉❡ f (−1) = f (1) = 1 é ♠á①✐♠♦ ❧♦❝❛❧ ❡ ❛❜s♦❧✉t♦✱ f (0) = 0 é ♦ ♠í♥✐♠♦ ❧♦❝❛❧
❡ ❛❜s♦❧✉t♦✳
❈♦♥s✐❞❡r❛♥❞♦ ❛ ❞❡✜♥✐çã♦ ❞❡ ❡①tr❡♠♦✱ s❡ t❡♠♦s ❛ ❢✉♥çã♦ ❝♦♥st❛♥t❡ f (x) = k ♣❛r❛ t♦❞♦
x ∈ R✱ ❡♥tã♦ x é ✉♠ ♣♦♥t♦ ❞❡ ❡①tr❡♠♦ ❛❜s♦❧✉t♦ ❡ r❡❧❛t✐✈♦✱ k é s❡✉ ♠á①✐♠♦ ❛❜s♦❧✉t♦✱
♠á①✐♠♦ r❡❧❛t✐✈♦✱ ♠í♥✐♠♦ ❛❜s♦❧✉t♦ ❡ ♠í♥✐♠♦ r❡❧❛t✐✈♦✳
❋✐❣✉r❛ ✺✳✾✿
❋✐❣✉r❛ ✺✳✶✵✿
❊①❡♠♣❧♦ ✺✳✺✾✳
❙❡❥❛
x2
−
,
2
−x,
f (x) =
1,
2
x − 3,
2
2
s❡✱
−2≤x<0
s❡✱ 0 ≤ x < 1
s❡✱ x = 1
s❡✱ 1 < x < 3
❖❜s❡r✈❛♥❞♦ ♦ ❣rá✜❝♦ ❞❡st❛ ❢✉♥çã♦ ✭❋✐❣✉r❛ ✭✺✳✶✵✮✮✱ t❡♠♦s✿
•
f (−2) = −2 é ♦ ♠í♥✐♠♦ ❛❜s♦❧✉t♦❀ ♥ã♦ t❡♠ ♠á①✐♠♦ ❛❜s♦❧✉t♦✳
•
f (0) = 0 ❡ f (1) = 2 sã♦ ♠á①✐♠♦s r❡❧❛t✐✈♦s✳
Pr♦♣r✐❡❞❛❞❡ ✺✳✶✾✳
❙❡❥❛ f : R −→ R ❢✉♥çã♦ r❡❛❧ t❛❧ q✉❡✿
❛✮
f (c) é ✉♠ ❡①tr❡♠♦ r❡❧❛t✐✈♦ ❞❡ f ✳
✷✾✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❜✮
f
❊♥tã♦
t❡♠ ❞❡r✐✈❛❞❛ ❡♠
x = c✳
′
f (c) = 0✳
❉❡♠♦♥str❛çã♦✳
P♦❞❡♠♦s s✉♣♦r f (c) s❡❥❛ ♠á①✐♠♦ ❧♦❝❛❧✳ ◆❡st❡ ❝❛s♦ ❡①✐st❡ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ B(c, δ) ⊆
D(f )✱ t❛❧ q✉❡ f (x) ≤ f (c), ∀ x ∈ B(c, δ)✳ ❊♥tã♦✿
❙❡
x < c ❡ x ∈ B(c, δ)
⇒
f (x) ≤ f (c) ❡
❙❡
c < x ❡ x ∈ B(c, δ)
⇒
f (x) ≤ f (c) ❡
f (x) − f (c)
≥0
x−c
f (x) − f (c)
≤0
x−c
✭✺✳✽✮
✭✺✳✾✮
f (x) − f (c)
≥0
x→c
x−c
f (x) − f (c)
≤0
❉❡ ✭✺✳✾✮ t❡♠♦s f ′ (c+ ) = lim+
x→c
x−c
❉♦ ❢❛t♦ f (x) t❡r ❞❡r✐✈❛❞❛ ❡♠ x = c✱ ❡st❡s ❧✐♠✐t❡s sã♦ ✐❣✉❛✐s✱ ❡♥tã♦ f ′ (c− ) = 0 = f ′ (c+ )❀
✐st♦ é f ′ (c) = 0✳
❉❡ ✭✺✳✽✮ t❡♠♦s
f ′ (c− ) = lim−
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦ ♠♦str❛✲s❡ q✉❛♥❞♦ f (c) s❡❥❛ ♠í♥✐♠♦ ❧♦❝❛❧✳
❖❜s❡r✈❛çã♦ ✺✳✾✳
❛✮
❆
✭✺✳✶✾✮ ❛✜r♠❛ q✉❡✱ s❡ f (c) é ✉♠ ❡①tr❡♠♦ r❡❧❛t✐✈♦ ❞❡ f ✱ ❡ s❡ f t❡♠
❞❡r✐✈❛❞❛ ❡♠ x = c✱ ♥❡❝❡ss❛r✐❛♠❡♥t❡ f ′ (c) = 0❀ ✐st♦ s✐❣♥✐✜❝❛ q✉❡ ❛ r❡t❛ t❛♥❣❡♥t❡ à
❝✉r✈❛ y = f (x) é ❤♦r✐③♦♥t❛❧ ♥♦ ♣♦♥t♦ P (c, f (c))✳
❜✮
❖ ❢❛t♦ f ′ (c) = 0 ♥ã♦ ✐♠♣❧✐❝❛ q✉❡ x = c s❡❥❛ ♥❡❝❡ss❛r✐❛♠❡♥t❡ ✉♠ ♣♦♥t♦ ❞❡ ❡①tr❡♠♦✳
Pr♦♣r✐❡❞❛❞❡
❊①❡♠♣❧♦ ✺✳✻✵✳
❙❡❥❛
f (x) = (x − 2)3
◆ã♦ ♦❜st❛♥t❡✱
x=2
∀ ∈ R❀
❡♥tã♦
f ′ (x) = 3(x − 2)2
❡
f ′ (2) = 0✳
♥ã♦ é ♣♦♥t♦ ❞❡ ❡①tr❡♠♦ r❡❧❛t✐✈♦ ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛
✭✺✳✶✶✮✳
❋✐❣✉r❛ ✺✳✶✶✿
✷✾✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✺✳✶✻✳ P♦♥t♦ ❝rít✐❝♦✳
❙❡❥❛ f : R −→ R ❢✉♥çã♦ r❡❛❧ ❞❡ ❞♦♠í♥✐♦ D(f ) ❡ a ∈ D(f )❀ ♦ ♣♦♥t♦ x = a é
❝❤❛♠❛❞♦ ♣♦♥t♦ ❝rít✐❝♦ ♦✉ ♣♦♥t♦ s✐♥❣✉❧❛r ❞❡ f s❡❀ f ′ (a) = 0 ♦✉✱ s❡ ♥ã♦ ❡①✐st❡ f ′ (a)✳
❖❜s❡r✈❛çã♦ ✺✳✶✵✳
❉❛ ❖❜s❡r✈❛çã♦ ✭✺✳✾✮✱ ✉♠❛ ❢✉♥çã♦ f ♣♦❞❡ t❡r ❡①tr❡♠♦s r❡❧❛t✐✈♦s ♥♦s ♣♦♥t♦s ❝rít✐❝♦s❀ ❡✱
♣❛r❛ ❝❛❧❝✉❧❛r ❡st❡s ♣♦♥t♦s é s✉✜❝✐❡♥t❡ r❡s♦❧✈❡r ❛ ❡q✉❛çã♦ f ′ (x) = 0✱ ♦✉ ❛ q✉❡ r❡s✉❧t❛ ❞❡
❝♦♥s✐❞❡r❛r q✉❡ f ′ (x) ♥ã♦ ❡①✐st❛✳
❊①❡♠♣❧♦ ✺✳✻✶✳
❉❡t❡r♠✐♥❡ ♦s ♣♦♥t♦s ❝rít✐❝♦s ♣❛r❛ ❝❛❞❛ ✉♠❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
❝✮
x 5
+
5 x
√
√
3
h(x) = 9 x5 + 12 3 x
❡✮
g(x) = senx
❛✮
f (x) =
❜✮
g(x) =
3|x|
1 + x2
❞✮
f (x) =
1
(2x3 + 3x2 − 36x + 6)
12
❙♦❧✉çã♦✳ ❛✮
x2 − 25
1
5
x 5
= 0✱
+ ✱ ❡♥tã♦ f ′ (x) = − 2 ✱ q✉❛♥❞♦ f ′ (x) = 0 t❡♠♦s
5 x
5 x
5x2
❧♦❣♦ sã♦ ♣♦♥t♦s ❝rít✐❝♦s✿ x = 5 ❡ x = −5✳
◗✉❛♥❞♦ x = 0 ♦ ♥ú♠❡r♦ f ′ (0) ♥ã♦ ❡①✐st❡✱ ♣♦ré♠ x = 0 ♥ã♦ é ♣♦♥t♦ ❝rít✐❝♦ ♣♦r ♥ã♦
♣❡rt❡♥❝❡r ❛♦ ❞♦♠í♥✐♦ ❞❡ f ✳
❚❡♠♦s
f (x) =
❙♦❧✉çã♦✳ ❜✮
3|x|
g(x) =
1 + x2
q✉❛♥❞♦ ♥ã♦ ❡①✐st❛
❡♥tã♦
g ′ (x)
2
3x
1
−
x
g ′ (x) =
| x | (1 + x2 )2
P❛r❛ ❛ ❢✉♥çã♦
g ′ (x) = 0
⇒
x = ±1
❡✱
t❡♠♦s
❙ã♦ ♣♦♥t♦s ❝rít✐❝♦s ♣❛r❛ ❛
❙♦❧✉çã♦✳ ❝✮
x = 0✳
❢✉♥çã♦ g(x)✱
q✉❛♥❞♦
√
√
3
h(x) = 9 x5 + 12 3 x
♦s ♥ú♠❡r♦s
x = 1, x = −1
❡
x = 0✳
t❡♠♦s
√
√
3
3
h′ (x) = 15 x2 + 4 x−2
✐st♦ é
√
3
x4 + 4
15
′
√
✳
h (x) =
3
x2
h′ (0) ♥ã♦
x = 0✳
❖❜s❡r✈❡ q✉❡
♣♦♥t♦ ❝rít✐❝♦ é
❡①✐st❡✱ ❡ ♥ã♦ ❡①✐st❡ ♥ú♠❡r♦ r❡❛❧ t❛❧ q✉❡
h′ (x) = 0✱
❧♦❣♦ ♦ ú♥✐❝♦
❙♦❧✉çã♦✳ ❞✮
✷✾✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
f (x) =
1
(2x3 + 3x2 − 36x + 6) ❡♥tã♦
12
1
1
f ′ (x) = (x2 + x − 6) = (x − 2)(x + 3) = 0
2
2
✐♠♣❧✐❝❛ q✉❡ ♦s ú♥✐❝♦s ♣♦♥t♦s ❝rít✐❝♦s sã♦ x = −3 ❡ x = 2✳
❙♦❧✉çã♦✳ ❡✮
g(x) = senx t❡♠♦s g ′ (x) = cos x❀ q✉❛♥❞♦ g ′ (x) = 0 t❡♠♦s x =
k ∈ Z✳
❙ã♦ ♣♦♥t♦s ❝rít✐❝♦s ❞❡ g(x) ♦s ♥ú♠❡r♦s x =
(2k + 1)π
♣❛r❛ t♦❞♦
2
(2k + 1)π
♣❛r❛ t♦❞♦ k ∈ Z✳
2
❚❡♦r❡♠❛ ✺✳✶✳ ❞❡ ❘♦❧❧❡✳ ✭1652 − 1719✮✳
❙❡❥❛
❛✮
f
f : [a, b] −→ R
❝♦♥tí♥✉❛ ❡♠
✉♠❛ ❢✉♥çã♦ q✉❡ ❝✉♠♣r❡✿
[a, b]✳
❜✮
f
❝✮
f (a) = f (b) = 0✳
t❡♠ ❞❡r✐✈❛❞❛ ❡♠
❊♥tã♦ ❡①✐st❡
c ∈ (a, b)
(a, b)✳
t❛❧ q✉❡
f ′ (c) = 0✳
❉❡♠♦♥str❛çã♦✳
❉❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❢✉♥çã♦ ❡♠ [a, b]✱ s❡❣✉❡ q✉❡ ❛ ❢✉♥çã♦ t❡♠ ♣❡❧♦ ♠❡♥♦s ✉♠ ♠í♥✐♠♦
❡ ✉♠ ♠á①✐♠♦ ❛❜s♦❧✉t♦ ❡♠ [a, b]❀ ✐st♦ é ❡①✐st❡♠ c1 ❡ c2 ❡♠ [a, b] t❛✐s q✉❡
f (c1 ) = m = min .f (x)
x∈[a, b]
❡
f (c2 ) = M = max .f (x)
x∈[a, b]
❙❡ c1 ∈ (a, b)✱ ♣❡❧❛ ❤✐♣ót❡s❡ ❜✮ ❡ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✶✾✮ t❡♠♦s f ′ (c1 ) = 0 ❡ ❡st❛
♣r♦♣r✐❡❞❛❞❡ ❡st❛rá ♠♦str❛❞❛ s❡♥❞♦ c = c1 ❀ ❞❡ ♠♦❞♦ ❛♥á❧♦❣♦ s❡ c2 ∈ (a, b)✳
❘❡st❛ ♠♦str❛r ♦ ❝❛s♦ q✉❡ c1 ❡ c2 s❡❥❛♠ ♦s ❡①tr❡♠♦s ❞♦ ✐♥t❡r✈❛❧♦ [a, b]✳
❙✉♣♦♥❤❛♠♦s q✉❡ c1 = a ❡ c2 = b ✭♦✉ c1 = b ❡ c2 = a✮✱ ❛ ❤✐♣ót❡s❡ ❝✮ ✐♥❞✐❝❛
q✉❡ f (a) = f (b) = 0✱ ✐st♦ s✐❣♥✐✜❝❛ q✉❡ m = M = 0 ❡ f (x) = 0 ∀ x ∈ [a, b]❀ ❧♦❣♦
f ′ (x) = 0 ∀ x ∈ [a, b] ❡✱ ❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ✈❡r❞❛❞❡✐r❛✳
❖❜s❡r✈❛çã♦ ✺✳✶✶✳
❆ ❚❡♦r❡♠❛
✺✳✼✳✶
✭✺✳✶✮
s❡❣✉❡ s❡♥❞♦ ✈á❧✐❞❛ s❡ ❛ ❤✐♣ót❡s❡ ❝✮ é s✉❜st✐t✉í❞❛ ♣♦r
f (a) = f (b)✳
■♥t❡r♣r❡t❛çã♦ ❣❡♦♠étr✐❝❛ ❞♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡
❖ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡ t❡♠ s✐❣♥✐✜❝❛❞♦ ❣❡♦♠étr✐❝♦ ✐♠❡❞✐❛t♦✳
❆s ❤✐♣ót❡s❡s ❞✐③❡♠ q✉❡ ♦ ❣rá✜❝♦ ❞❡ f é ❝♦♥tí♥✉♦ ♥♦ ✐♥t❡r✈❛❧♦ [a, b] ❡ t❡♠ r❡t❛s t❛♥❣❡♥t❡
❡♠ t♦❞♦ ♦s ♣♦♥t♦s ❝♦♠ ❛❜s❝✐ss❛s ❡♠ (a, b) ❡✱ s❡ A(a, f (a)) ❡ B(b, f (b)) sã♦ ♦s ♣♦♥t♦s
✷✾✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❝♦♠✱ f (a) = f (b)✱ ❡♥tã♦ ❡①✐st❡ ♣❡❧♦ ♠❡♥♦s ✉♠ ♣♦♥t♦ P (c, f (c)) ❝♦♠ P ❞✐❢❡r❡♥t❡ ❞❡ A ❡
B ♥♦ q✉❛❧ ❛ r❡t❛ t❛♥❣❡♥t❡ é ♣❛r❛❧❡❧❛ ❛♦ ❡✐①♦✲x ❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✺✳✶✷✮✳
❋✐❣✉r❛ ✺✳✶✷✿
❊①❡♠♣❧♦ ✺✳✻✷✳
x2 − 9x
❉❛❞❛ ❛ ❢✉♥çã♦ f (x) =
✈❡r✐✜❝❛r s❡ ❝✉♠♣r❡ ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✳
x−3
❙♦❧✉çã♦✳
❖❜s❡r✈❡ q✉❡ f (0) = f (9) = 0✱ ♣♦ré♠ ❛ ❢✉♥çã♦ f ♥ã♦ é ❝♦♥tí♥✉❛ ❡♠ x = 3✳
▲♦❣♦✱ ♥ã♦ ♣♦❞❡♠♦s ❛♣❧✐❝❛r ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✱ ✐st♦ ♥ã♦ s✐❣♥✐✜❝❛ q✉❡ ♥ã♦ ❡①✐st❛ ✉♠
✈❛❧♦r ❞❡♥tr♦ ❞♦ ✐♥t❡r✈❛❧♦ ♣❛r❛ ♦ q✉❛❧ s✉❛ ❞❡r✐✈❛❞❛ s❡❥❛ ✐❣✉❛❧ ❛ ③❡r♦✳
❊①❡♠♣❧♦ ✺✳✻✸✳
❉❛❞❛ ❛ ❢✉♥çã♦ f (x) =
[0, 3]✳
❙♦❧✉çã♦✳
✐✮
✐✐✮
✐✐✐✮
√
3
√
x4 −3 3 x✱ ✈❡r✐✜❝❛r s❡ ❝✉♠♣r❡ ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡ ♥♦ ✐♥t❡r✈❛❧♦
f é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ [0, 3]✳
f ′ (x) =
4√
1
3
x− √
❀ ✐st♦ é✱ f t❡♠ ❞❡r✐✈❛❞❛ ♥♦ ✐♥t❡r✈❛❧♦ (0, 3)✳
3
3
x2
f (0) = f (3) = 0✳
❊♥tã♦✱ ♣❡❧♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✱ ❡①✐st❡ c ∈ (0, 3) t❛❧ q✉❡ f ′ (c) = 0✱ ✐st♦ é f ′ (c) =
1
3
4√
3
c− √
= 0 ♦♥❞❡ c = ✳
3 2
3
4
c
❊①❡♠♣❧♦ ✺✳✻✹✳
❖ ❝✉st♦ C(x) ❞❡ ♣❡❞✐❞♦ ❞❡ ✉♠❛ ♠❡r❝❛❞♦r✐❛ é ❞❛❞❛ ♣❡❧❛ ❢✉♥çã♦✿
C(x) =
10(x2 + x + 3)
x(x + 3)
♦♥❞❡ C(x) é ♠❡❞✐❞♦ ❡♠ ♠✐❧❤❛r❡s ❞❡ r❡❛✐s ❡ x é ♦ t❛♠❛♥❤♦ ❞♦ ♣❡❞✐❞♦ ♠❡❞✐❞♦ ❡♠ ❝❡♥t❡♥❛s✳
✷✾✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✭❛✮
❱❡r✐✜q✉❡ q✉❡ C(3) = C(6)✳
✭❜✮
❙❡❣✉♥❞♦ ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✱ ❛ t❛①❛ ✈❛r✐❛çã♦ ❞❡ ❝✉st♦ ❞❡✈❡ s❡r ③❡r♦ ♣❛r❛ ❛❧❣✉♠ ♣❡❞✐❞♦
♥♦ ✐♥t❡r✈❛❧♦ [3, 6]✳ ❉❡t❡r♠✐♥❡ ♦ t❛♠❛♥❤♦ ❞❡ss❡ ♣❡❞✐❞♦✳
❙♦❧✉çã♦✳
❛✮
❖❜s❡r✈❡ q✉❡ C(3) =
10(32 + 3 + 3)
150
25
10(62 + 6 + 3)
450
=
=
❡ C(6) =
=
=
3(3 + 3)
18
3
6(6 + 3)
54
25
✱ ❧♦❣♦ C(3) = C(6)✳
3
❜✮
❆ ❢✉♥çã♦ ❝✉st♦ C(x) é ❝♦♥tí♥✉❛ ❡♠ t♦❞♦ s❡✉ ❞♦♠í♥✐♦ ✭ x > 0✮✱ ❡♠ ♣❛rt✐❝✉❧❛r ♥♦
✐♥t❡r✈❛❧♦ [3, 6]✱ s✉❛ ❞❡r✐✈❛❞❛ é
2x2 − 6x − 9
C (x) = 10
x2 (x + 3)2
′
❡①✐st❡ ♥♦ ✐♥t❡r✈❛❧♦ (3, 6)❀ ❧♦❣♦ ❡①✐st❡ c ∈ (3, 6) t❛❧ q✉❡ C ′ (c) = 0✳
2c2 − 6c − 9
=0
■st♦ é 10
c2 (c + 3)2
2c2 − 6c − 9 = 0
⇒
√
⇒
c=
6±
√
4
108
✳
6 + 10, 4
= 4, 1 ❛♣r♦①✐♠❛❞❛♠❡♥t❡✳
4
4
◗✉❛♥❞♦ ♦ ♣❡❞✐❞♦ ❢♦r ❛♣r♦①✐♠❛❞❛♠❡♥t❡ ♠❛✐♦r q✉❡ 4, 1 ❝❡♥t❡♥❛s ✭410 ✉♥✐❞❛❞❡s✮✱ ❛ t❛①❛
❈♦♠♦ c ∈ (3, 6)
⇒
c=
6+
108
=
❞❡ ✈❛r✐❛çã♦ ❞❡ ❝✉st♦ ❞❡✈❡ s❡r ③❡r♦✳
❉♦ ❱❛❧♦r ▼é❞✐♦ ✲ ❚✳❱✳▼✳
❙❡❥❛ f : [a, b] −→ R ✉♠❛ ❢✉♥çã♦ q✉❡ ❝✉♠♣r❡✿
❚❡♦r❡♠❛ ✺✳✷✳
❛✮
f ❝♦♥tí♥✉❛ ❡♠ [a, b]✳
❜✮
f t❡♠ ❞❡r✐✈❛❞❛ ❡♠ (a, b)✳
❊♥tã♦ ❡①✐st❡ c ∈ (a, b) t❛❧ q✉❡ f ′ (c) =
❉❡♠♦♥str❛çã♦✳
f (b) − f (a)
✳
b−a
❙❡❥❛ m ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦s ♣♦♥t♦s A(a, f (a)) ❡ B(b, f (b)) ❡
f (b) − f (a)
✱ ❡ g(x) = f (a)+m·(x−a)✳
b−a
❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦ ❛✉①✐❧✐❛r F (x) = f (x) − g(x)✱ ✐st♦ é F (x) = f (x) − f (a) − m(x −
a) ∀ x ∈ [a, b]✳
❖❜s❡r✈❡ q✉❡ F (x) ❝✉♠♣r❡ ❛s ❝♦♥❞✐çõ❡s ❞♦ ❚❡♦r❡♠❛ ❞❡ ❘♦❧❧❡ ♥♦ ✐♥t❡r✈❛❧♦ [a, b]✱ ♣♦✐s
F é ❝♦♥tí♥✉❛ ❡♠ [a, b]✱ é ❞❡r✐✈á✈❡❧ ❡♠ (a, b) ❡ F (a) = F (b) = 0✳
f (b) − f (a)
✳
❊♥tã♦ ❡①✐st❡ c ∈ (a, b) t❛❧ q✉❡ F ′ (c) = 0✱ ✐st♦ é F ′ (c) = f ′ (c) = m =
b−a
g(x) ❛ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦s ♣♦♥t♦s A ❡ B ✱ ❡♥tã♦ m =
❊st❡ ❚❡♦r❡♠❛ ❞♦ ❱❛❧♦r ▼é❞✐♦ t❛♠❜é♠ é ❝♦♥❤❡❝✐❞♦ ❝♦♠♦ ❚❡♦r❡♠❛ ❞❡ ♦✉ ❞❡ ▲❛❣r❛♥❣❡✳
✷✾✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✺✳✼✳✷
■♥t❡r♣r❡t❛çã♦ ❣❡♦♠étr✐❝❛ ❞♦ ❚❡♦r❡♠❛ ❞♦ ❱❛❧♦r ▼é❞✐♦✳
❖ ❣rá✜❝♦ ❞❡ f (x) ♥♦ ✐♥t❡r✈❛❧♦ [a, b] t❡♠ ❛ ♣r♦✲
♣r✐❡❞❛❞❡ ❞❡ s❡r ❝♦♥tí♥✉♦ ❡♠ [a, b] ❡ ♣♦ss✉✐ r❡t❛s t❛♥✲
❣❡♥t❡s ❡♠ t♦❞♦s s❡✉s ♣♦♥t♦s ❞❡ ❛❜s❝✐ss❛s ❡♠ (a, b)
❡♥tã♦ ♦ ❚✳❱✳▼✳ ❛✜r♠❛ q✉❡ ❡①✐st❡ ♣❡❧♦ ♠❡♥♦s ✉♠
♣♦♥t♦ P (c, f (c)) ❝♦♠ P ❞✐❢❡r❡♥t❡ ❞❡ A(a, f (a))
❡ B(b, f (b)) ♥❛ q✉❛❧ ❛ r❡t❛ t❛♥❣❡♥t❡ é ♣❛r❛❧❡❧❛ à
❝♦r❞❛ ✭❋✐❣✉r❛ ✭✺✳✶✸✮✮✳
Pr♦♣r✐❡❞❛❞❡ ✺✳✷✵✳
❙❡❥❛
f : [a, b] −→ R
❛✮
f
❝♦♥tí♥✉❛ ❡♠
❜✮
f
t❡♠ ❞❡r✐✈❛❞❛ ❡♠
❊♥tã♦
f
❋✐❣✉r❛ ✺✳✶✸✿
✉♠❛ ❢✉♥çã♦ q✉❡ ❝✉♠♣r❡✿
[a, b]✳
(a, b)
é ❝♦♥st❛♥t❡ ❡♠
❡
[a, b]✱
f ′ (x) = 0
✐st♦ é
∀ x ∈ (a, b)✳
f (x) = k
❉❡♠♦♥str❛çã♦✳
∀ x ∈ [a, b]✳
❙❡❥❛ x ∈ (a, b) ✉♠ ❡❧❡♠❡♥t♦ ❛r❜✐trár✐♦ ❡ k ∈ R ✉♠❛ ❝♦♥st❛♥t❡✳
❆s ❝♦♥❞✐çõ❡s ❞♦ ❚✳❱✳▼✳ sã♦ ✈❡r✐✜❝❛❞❛s ♥♦ ✐♥t❡r✈❛❧♦ [a, x] ⊆ [a, b]✱ ❧♦❣♦ ❡①✐st❡ c ∈
(a, x) t❛❧ q✉❡ f (x) − f (a) = f ′ (c)(x − a)✳
❉❛ ❤✐♣ót❡s❡ ❜✮ s❡❣✉❡ f ′ (c) = 0✱ ❧♦❣♦ f (x) − f (a) = 0 ✐st♦ é f (x) = f (a) = k ✱ ♣♦✐s x é
❛r❜✐trár✐♦ ❡♠ (a, b) ❛ss✐♠ f (x) = k ∀ x ∈ [a, b)✳ ❉❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❡ f ❡♠✱ [a, b] s❡❣✉❡
q✉❡ f (x) = k ∀ x ∈ [a, b]✳
Pr♦♣r✐❡❞❛❞❡ ✺✳✷✶✳
f t❡♠ ❞❡r✐✈❛❞❛ ❡♠ (a, b) ❡ f ′ (x) = 0
t♦❞♦ x ∈ (a, b) ♦♥❞❡ k é ❝♦♥st❛♥t❡✳
❙❡ ✉♠❛ ❢✉♥çã♦
f (x) = k
♣❛r❛
♣❛r❛ t♦❞♦
x ∈ (a, b)✱
❡♥tã♦
❆ ❞❡♠♦♥str❛çã♦ ❞❡st❛ ♣r♦♣r✐❡❞❛❞❡ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❖❜s❡r✈❛çã♦ ✺✳✶✷✳
❙❡ ♦ ✐♥t❡r✈❛❧♦ ♥ã♦ é ❛❜❡rt♦✱ ❛ Pr♦♣r✐❡❞❛❞❡
f (x) = [|x|] = n,
∀ x ∈ (R − Z)✳
❡①❡♠♣❧♦✱ ♣❛r❛ ❛ ❢✉♥çã♦
′
f (x) = 0
✭✺✳✷✶✮
♥❡♠ s❡♠♣r❡ é ✈❡r❞❛❞❡✐r❛✳
∀ x ∈ [n, n + 1),
∀ n ∈ Z✱
P♦r
s✉❛ ❞❡r✐✈❛❞❛
❊st❡ ❡①❡♠♣❧♦ ♠♦str❛ q✉❡✱ s❡ ❛ ❞❡r✐✈❛❞❛ é ③❡r♦ ♥✉♠ ❞❡t❡r♠✐♥❛❞♦ ❝♦♥❥✉♥t♦✱ ❡♥tã♦ ❛
❢✉♥çã♦ ♥ã♦ ♥❡❝❡ss❛r✐❛♠❡♥t❡ é ❝♦♥st❛♥t❡ ❡♠ t❛❧ ❝♦♥❥✉♥t♦✳
Pr♦♣r✐❡❞❛❞❡ ✺✳✷✷✳
❙❡❥❛♠
❛✮
f
❡
f
g
❡
g : [a, b] −→ R
❝♦♥tí♥✉❛s ❡♠
❢✉♥çõ❡s q✉❡ s❛t✐s❢❛③❡♠✿
[a, b]✳
✷✾✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❜✮
f ❡ g ❞❡r✐✈á✈❡✐s ❡♠ (a, b) ❡ f ′ (x) = g ′ (x)
∀ x ∈ (a, b)✳
❊♥tã♦ f (x) = g(x) + k ∀ x ∈ [a, b] ♦♥❞❡ k é ✉♠❛ ❝♦♥st❛♥t❡✳
❉❡♠♦♥str❛çã♦✳
❈♦♥s✐❞❡r❡ ❛ ❢✉♥çã♦ h(x) = f (x) − g(x), ∀ x ∈
[a, b] ❡♥tã♦ h é ❝♦♥tí♥✉❛ ❡♠ [a, b] ❡ t❡♠ ❞❡r✐✈❛❞❛ ❡♠
(a, b) ❡ h′ (x) = f ′ (x) − g ′ (x) = 0 ∀ x ∈ (a, b) ❡ ♣❡❧❛
Pr♦♣r✐❡❞❛❞❡ ✭✺✳✷✶✮ h(x) = k ∀ x ∈ [a, b] ♦♥❞❡ k é
❝♦♥st❛♥t❡✳
P♦rt❛♥t♦ f (x) = g(x) + k ∀ x ∈ [a, b]✳
❖❜s❡r✈❛çã♦ ✺✳✶✸✳
❆ Pr♦♣r✐❡❞❛❞❡ ✭✺✳✷✷✮ ✐♥❞✐❝❛ q✉❡ s❡ f ❡ g sã♦ ❢✉♥✲
çõ❡s ❞❡r✐✈á✈❡✐s ♥♦ ✐♥t❡r✈❛❧♦ ❛❜❡rt♦ I ⊆ R ❡ f ′ (x) =
g ′ (x) ❡♠ I ✱ ❡♥tã♦ s❡✉s ❣rá✜❝♦s sã♦ ❝✉r✈❛s ♣❛r❛❧❡❧❛s
❝♦♠♦ ♠♦str❛ ❛ ❋✐❣✉r❛ ✭✺✳✶✹✮✳
❋✐❣✉r❛ ✺✳✶✹✿
❊①❡♠♣❧♦ ✺✳✻✺✳
❙❡❥❛ f (x) = x3 − x2 ,
❙♦❧✉çã♦✳
x ∈ [−1, 3]✱ ❞❡t❡r♠✐♥❛r ♦ ✈❛❧♦r q✉❡ ❝✉♠♣r❡ ♦ ❚✳❱✳▼✳
❆ ❢✉♥çã♦ f (x) é ✉♠ ♣♦❧✐♥ô♠✐♦✱ ❧♦❣♦ ❡❧❛ é ❝♦♥tí♥✉❛ ❡♠ [−1, 3] ❡ ❝♦♠ ❞❡r✐✈❛❞❛ ❡♠
(−1, 3) ❡ f ′ (x) = 3x2 − 2x✳
❊♠ ✈✐rt✉❞❡ ❞♦ ❚✳❱✳▼✳ ❡①✐st❡ c ∈ (−1, 3) t❛❧ q✉❡ f ′ (c) = 3c2 − 2c ♦♥❞❡ 3c2 − 2c =
5
⇒
5
c = −1 ❡ c = ✳
3
5
3
P♦rt❛♥t♦✱ ♦ ✈❛❧♦r q✉❡ ❝✉♠♣r❡ ♦ ❚✳❱✳▼✳ é c = ✳
❊①❡♠♣❧♦ ✺✳✻✻✳
❱❡r✐✜❝❛r s❡ ♦
❚✳❱✳▼✳
♣♦❞❡♠♦s ❛♣❧✐❝❛r à ❢✉♥çã♦ f (x) ♥♦ ✐♥t❡r✈❛❧♦ [0, 2] ♦♥❞❡✿
f (x) =
(
6 − 3x2 s❡✱ x ≤ 1
3x−2
s❡✱ x > 1
❙♦❧✉çã♦✳
◆♦ ✐♥t❡r✈❛❧♦ [0, 1] ❛ ❢✉♥çã♦ é ♣♦❧✐♥ô♠✐❝❛✱ ❡ ♥♦ ✐♥t❡r✈❛❧♦ (1, 2] ❛ ❢✉♥çã♦ ❡stá ❜❡♠
❞❡✜♥✐❞❛ ❛ss✐♠✱ ♣❛r❛ ❞❡t❡r♠✐♥❛r ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❡ f (x) ♥♦ ✐♥t❡r✈❛❧♦ [0, 2] é ✐♠♣♦rt❛♥t❡
❞❡t❡r♠✐♥❛r ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❡♠ x = 1✳ ❖❜s❡r✈❡ q✉❡ f (1+ ) = f (1− ) = 3 ❡ lim f (x) = 3✱
x→1
❧♦❣♦ f é ❝♦♥tí♥✉❛ ❡♠ x = 1✱ ❝♦♥s❡q✉❡♥t❡♠❡♥t❡ ❡♠ [0, 2]✳
✷✾✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
P♦r ♦✉tr♦ ❧❛❞♦✱
f ′ (x) =
(
R
−6x
s❡✱ x ≤ 1
−6x−3 s❡✱ x > 1
❡ f ′ (1+ ) = f ′ (1− ) = −6✱ ❡♥tã♦ f é ❞❡r✐✈á✈❡❧ ❡♠ (0, 2)✳
f (2) − f (0)
=
2−0
21
− ✳ ❖❜s❡r✈❡ q✉❡ f ′ (1+ ) = f ′ (1− ) = f ′ (1) = −6 ❡♥tã♦ c < 1 ♦✉ c > 1✱ ♠❛✐s❀ s❡
8
7
21
′
⇒ c=
∈ (0, 2)✳
f (x) = −6x ♣❛r❛ x < 1 ❡♥tã♦ f ′ (c) = −6c = −
8
16
21
⇒ c=
P♦r ♦✉tr♦ ❧❛❞♦✱ s❡ f ′ (x) = −6x−3 ♣❛r❛ x > 1✱ ❡♥tã♦ f ′ (c) = −6c−3 = −
8
r
3 16
∈ (0, 2)✳
7
r
7
16
P♦rt❛♥t♦✱ ♦s ✈❛❧♦r❡s q✉❡ ✈❡r✐✜❝❛♠ ♦ ❚✳❱✳▼✳ sã♦
❡ 3 ✳
16
7
❈♦♠♦ f ❝✉♠♣r❡ ❛s ❝♦♥❞✐çõ❡s ❞♦ ❚✳❱✳▼✳ ✱ ❡①✐st❡ c ∈ [0, 2] t❛❧ q✉❡ f ′ (c) =
❊①❡♠♣❧♦ ✺✳✻✼✳
1
♠♦str❡ q✉❡ ♥ã♦ ❡①✐st❡ ♥❡♥❤✉♠ ♥ú♠❡r♦ r❡❛❧ c ♥♦ ✐♥t❡r✈❛❧♦
x−4
g(6) − g(2)
(2, 6) t❛❧ q✉❡ g ′ (c) =
✳ ❉❡t❡r♠✐♥❡ s❡ ✐ss♦ ❝♦♥tr❛❞✐③ ♦ ❚✳❱✳▼✳ ❥✉st✐✜q✉❡ s✉❛
4
❉❛❞❛ ❛ ❢✉♥çã♦ g(x) =
r❡s♣♦st❛✳
❙♦❧✉çã♦✳
❖
❚✳❱✳▼✳
❞✐③ q✉❡✱ s❡ g é ❝♦♥tí♥✉❛ ❡♠ [2, 6] ❡ ❞✐❢❡r❡♥❝✐á✈❡❧ ❡♠ (2, 6) ❡♥tã♦ ❡①✐st❡
g(6) − g(2)
✳
c ∈ (2, 6) t❛❧ q✉❡ g ′ (c) =
4
❖❜s❡r✈❡ q✉❡ g(x) ♥ã♦ é ❞❡r✐✈á✈❡❧ ❡♠ (2, 6) ❡♠ ♣❛rt✐❝✉❧❛r ❡♠ x = 4 t❡♠♦s g ′ (x) =
1
−
♥ã♦ ❡①✐st❡✳
(x − 4)2
P♦r ♦✉tr♦ ❧❛❞♦✱ g ♥ã♦ é ❝♦♥tí♥✉❛ ❡♠ [2, 6]✱ ❡♠ ♣❛rt✐❝✉❧❛r ❡♠ x = 4✳
P♦rt❛♥t♦ ♥ã♦ s❡ ❝♦♥tr❛❞✐③ ♦ ❚✳❱✳▼✳
❙✉♣♦♥❞♦ q✉❡ ❡①✐st❛ c ∈ (2, 6) t❛❧ q✉❡
g ′ (c) = −
g(6) − g(2)
1
=
2
(c − 4)
4
⇒
−
1
1
=
2
(c − 4)
4
■st♦ ú❧t✐♠♦ é ✉♠ ❛❜s✉r❞♦✳
✸✵✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✺✲✸
✶✳ P❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s✱ ❞❡t❡r♠✐♥❡ s❡ ❝✉♠♣r❡ ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡ ♣❛r❛ ❛s ❢✉♥çõ❡s
❞❛❞❛s ♥♦ ✐♥t❡r✈❛❧♦ ✐♥❞✐❝❛❞♦✱ s❡ ❢♦r ❛ss✐♠✱ ❞❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s q✉❡ ♦ ❝✉♠♣r❡♠✳
1. f (x) = x2 − 4x
√
5
3. f (x) = 1 − x4
5. f (x) = x2 + 4x
❡♠
❡♠
❡♠
[0, 4]
[−1, 1]
[−4, 0]
2. f (x) = x2 − 4x + 3
4. f (x) = x4 − 5x2 + 4
❡♠
❡♠
6. f (x) = 4x3 + x2 − 4x − 1
[1, 3]
[−2, 2]
❡♠
1
[− , 1]
4
✷✳ P♦❞❡✲s❡ ❛♣❧✐❝❛r ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡ ♣❛r❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s ❄
x2 − 4x
x−2
x+1
3. f (x) =
❡♠
[2, 4]
x−1
π 5π
]
5. f (x) = Ln(senx) ❡♠ [ ,
6 6
7. g(x) = x3 + 4x2 − 7x − 11 ❡♠ [−1, 2]
√
9. g(x) = 3 x2 − 3x + 2 ❡♠ [1, 2]
1. f (x) =
1
5 2
3
x − 2 x − 6x + 2 ,
f (x) =
| x2 − 4 |,
4
x − x3 − 3x + 6,
✶✶✳
2.
4.
f (x) = x2 − 3x
3x2 − 2x + 4
8. f (x) =
x−2
senx
10. g(x) = 4
❡♠
[0, π]
6.
s❡✱
x ≤ −1
s❡✱
| x |< 1
x≥1
s❡✱
x2 − 4x
x+2
2
f (x) = x + 2x − 5
f (x) =
❡♠
[−2, 2]✳
a0 xn +a1 xn−1 +a2 xn−2 +· · ·+an−1 x = 0
n−1
t❡♠ ✉♠❛ r❛✐③ ♣♦s✐t✐✈❛ x = x0 ✱ ❡♥tã♦ ❛ ❡q✉❛çã♦ na0 x
+ (n − 1)a1 xn−2 + (n −
2)a2 xn−3 + · · · + an−1 = 0 t❛♠❜é♠ t❡♠ ✉♠❛ r❛✐③ ♣♦s✐t✐✈❛✱ s❡♥❞♦ ❡st❛ ♠❡♥♦r q✉❡ x0 ✳
✸✳ ▼♦str❡ ❛ s❡❣✉✐♥t❡ ♣r♦♣r✐❡❞❛❞❡✿ ❙❡ ❛ ❡q✉❛çã♦
2 − x2
t❡♠ ✈❛❧♦r❡s ✐❣✉❛✐s ♥♦s ❡①tr❡♠♦s ❞♦ ✐♥t❡r✈❛❧♦ [−1, 1]✳ ▼♦str❡
f (x) =
4
x
′
❞❡r✐✈❛❞❛ f (x) ♥ã♦ s❡ r❡❞✉③ ❛ ③❡r♦ ❡♠ [−1, 1] ❡ ❡①♣❧✐❝❛r ♣♦r q✉❡ ♥ã♦ ❝✉♠♣r❡
✹✳ ❆ ❢✉♥çã♦
q✉❡ ❛
♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✳
g(x) =| x − 2 | t❡♠ ✈❛❧♦r❡s ✐❣✉❛✐s ♥♦s ❡①tr❡♠♦s ❞♦ ✐♥t❡r✈❛❧♦ [2 − a, 2 + a]
a > 0✳ ▼♦str❡ q✉❡ ❛ g ′ (x) ♥ã♦ s❡ r❡❞✉③ ❛ ③❡r♦ ❡♠ [2 − a, 2 + a] ❡ ❡①♣❧✐❝❛r ♣♦r
✺✳ ❆ ❢✉♥çã♦
♣❛r❛
q✉❡ ♥ã♦ ❝✉♠♣r❡ ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✳
f (x) = 1 + xm (x − 1)n ♦♥❞❡ m ❡ n sã♦ ✐♥t❡✐r♦s ♣♦s✐t✐✈♦s✳ ❙❡♠ ❝❛❧❝✉❧❛r
′
♠♦str❡ q✉❡ ❛ ❡q✉❛çã♦ f (x) = 0 t❡♠ ♣❡❧♦ ♠❡♥♦s ✉♠❛ r❛✐③ ♥♦ ✐♥t❡r✈❛❧♦
✻✳ ❙❡❥❛ ❛ ❢✉♥çã♦
❛ ❞❡r✐✈❛❞❛✱
(0, 1)✳
✸✵✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✼✳ ▼♦str❡ q✉❡ ❛ ❡q✉❛çã♦ x3 − 3x + c = 0 ♥ã♦ ♣♦❞❡ t❡r r❛í③❡s ❞✐❢❡r❡♥t❡s ♥♦ ✐♥t❡r✈❛❧♦
(0, 1)✳
✽✳ P❛r❛ ♦ s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s ❞❡t❡r♠✐♥❛r s❡ ♦
❝❛s♦ ❛✜r♠❛t✐✈♦ ✈❡r✐✜❝❛r✳
❚✳❱✳▼✳
1. f (x) = x2 + 2x ❡♠ [−2, 0]
3. f (x) = 2x3 − x2
5. f (x) =| 9 − 4x2 |
2. f (x) =
❡♠ [−2, 2]
✶✷✳
✶✸✳
✶✹✳
✶✺✳
✶✻✳
f (x) = xn
f (x) =
f (x) =
(
f (x) =
√
x2 + 9 ❡♠ [0, 4]
4. f (x) =| 4 − x2 |
3 3
2 2
❡♠ [−2, 2]
6. f (x) = Lnx ❡♠ [1, e]
❡♠ [− , ]
x3
❡♠ [−9, −4]
7. f (x) = 4
x −4
x2
❡♠ [−1, 2]
9. f (x) =
4+ | x |
✶✶✳
é ❛♣❧✐❝á✈❡❧ ♥♦ ✐♥t❡r✈❛❧♦ ❞❛❞♦❀
x+1
❡♠ [2, 4]
x−1
| x |3
❡♠ [−2, 2]
10. f (x) =
1 + x6
8. f (x) =
❡♠ [0, a] n > 0 a > 0
4
,
s❡✱ x ≤ −1
x2
8 − 4x2 , s❡✱
x > −1
❡♠ [−2, 0]
3 − x2
, s❡✱ x < 1
2
1
,
s❡✱ x ≥ 1
x
❡♠ [0, 2]
2x + 3 s❡✱ x < 3
15 − 2x s❡✱ x ≥ 3
❡♠ [−1, 5]
2
s❡✱ x < 2
| x −√9 |
❡♠ [−4, 12]
f (x) =
s❡✱ 2 ≤ x < 11
5+2 x−2
2
11 + (x − 11) , s❡✱ x > 11
x2 + 4 s❡✱ − 2 ≤ x < 0
4 − x3 s❡✱ 0 ≤ x < 1
f (x) =
❡♠ [−2, 2]
6
, s❡✱ 1 ≤ x ≤ 2
x2 + 1
✾✳ ❉❡t❡r♠✐♥❡ ♦s ♣♦♥t♦s ❝rít✐❝♦s ❞❛s ❢✉♥çõ❡s ❞♦ ❡①❡r❝í❝✐♦ ❛♥t❡r✐♦r✳
✶✵✳ ❙❡♠ ❝❛❧❝✉❧❛r ❛ ❞❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ f (x) = (x − 1)(x − 2)(x − 3)(x − 4)✱ ❡st❛❜❡❧❡❝❡r
q✉❛♥t❛s r❛í③❡s t❡♠ ❛ ❡q✉❛çã♦ f ′ (x) = 0 ❡ ✐♥❞✐❝❛r ❡♠ q✉❡ ✐♥t❡r✈❛❧♦s s❡ ❡♥❝♦♥tr❛♠✳
✶✶✳ ▼♦str❡ q✉❡ ❛ q✉❡ ❛ ❡q✉❛çã♦ f (x) = xn + px + q ♥ã♦ ♣♦❞❡ t❡r ♠❛✐s ❞❡ ❞♦✐s r❛í③❡s
r❡❛✐s q✉❛♥❞♦ n é ♣❛r❀ ❡ ♠❛✐s ❞❡ três r❛í③❡s q✉❛♥❞♦ n é í♠♣❛r✳
✶✷✳ P❛r❛ ❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✱ ❞❡t❡r♠✐♥❡ ♦ ♣♦❧✐♥ô♠✐♦ T (x) ❞❡ ❣r❛✉ um q✉❡ ❛♣r♦①✐♠❡
❧♦❝❛❧♠❡♥t❡ ❛ f (x) ♥♦ ♣♦♥t♦ ✐♥❞✐❝❛❞♦ ❡ ♦❜t❡r ✈❛❧♦r❡s q✉❡ s❡ ✐♥❞✐❝❛♠✿
✸✵✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
√
√
15 + x2 + 3 x ❡♠ x = 64, f (67), T (67)✳
x
f (x) = 2
❡♠ x = 2,
f (1.68), T (1.68)✳
x +1
f (x) = x2 + 4x + 5 ❡♠ x = 5,
f (5.8), T (5.8)✳
f (x) =
✶✳
✷✳
✸✳
✶✸✳ P❛r❛ ❛s ❢✉♥çõ❡s s❡❣✉✐♥t❡s✳
∆f, df,
❆❝❤❛r
E(x) = ∆f − df
❡
♣❛r❛ ♦s ✈❛❧♦r❡s
✐♥❞✐❝❛❞♦s✿
✶✳
f (x) = x2 + 5x,
✷✳
f (x) = x3 + 5x2 − 3x + 2, x = 2, ∆x = 0.01✳
x
x = 0, ∆x = 0.1✳
f (x) =
x+1
1
x = 5, ∆x = 0.01✳
f (x) = √
x−1
x2
x = 1, ∆x = 0.3✳
f (x) = 3
x +1
✸✳
✹✳
✺✳
x = −1,
∆x = 0.02✳
✶✹✳ P❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s ❛❝❤❛r ♦ ❞✐❢❡r❡♥❝✐❛❧ ❞❛ ❢✉♥çã♦✿
√
2. f (x) = x2 + 2 x − 1
r
t+1
4. f (t) =
t−1
4 · sgn(x − 1)
√
6. f (x) =
x2 − 1
1. f (x) = 3x3 + 5x2 + 2
2ax
3. f (x) =
(x + 1)3
3kx
5. f (x) = √
x+1
✶✺✳ ❯s❛♥❞♦ ❞✐❢❡r❡♥❝✐❛✐s ❞❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ✐♥❞✐❝❛❞♦✳
4
2
f (x) = x + 2x − 3,
f (−2.97)✳
r
x+1
f (0.1)✳
f (x) = 3
x−1
f (x) = x3 + 5x2 − x + 1,
f (0.003)✳
✶✳
✸✳
✺✳
✶✻✳ ❖ ❞✐â♠❡tr♦ ❞❡ ✉♠❛ ❡s❢❡r❛ é
✷✳
✹✳
√
5 + 3x
f (x) =
x+1
√
4x + 1
f (x) = 2
x +1
f (2.024)✳
f (1.91)✳
9cm ❛♦ ♠é❞✐♦ ✐♥tr♦❞✉③✲s❡ ✉♠ ♣♦ssí✈❡❧ ❡rr♦ ❞❡ ±0.05cm✳
◗✉❛❧ é ♦ ❡rr♦ ♣❡r❝❡♥t✉❛❧ ♣♦ssí✈❡❧ ♥♦ ❝á❧❝✉❧♦ ❞♦ ✈♦❧✉♠❡❄
✶✼✳ ❈❛❧❝✉❧❛r ♦ ✈❛❧♦r ❛♣r♦①✐♠❛❞♦ ♣❛r❛ ❛s s❡❣✉✐♥t❡s ❡①♣r❡ssõ❡s✿
1.
√
37, 5
4.
√
82 +
√
4
82
√
3
9, 12
√
1
5. 3 63 + √
3
2 63
2.
p
1
3
(8, 01)4 + (8, 01)2 − √
3
8, 01
√
5
1020
6.
3.
a > b ♠❡❞✐❛♥t❡ ♦ ❚❡♦r❡♠❛ ❞♦ ❱❛❧♦r ▼é❞✐♦✱ ♠♦str❡ ✈❛❧✐❞❛❞❡ ❞❛s ❞❡s✐❣✉❛❧❞❛❞❡s✿
nbn−1 (a − b) < an − bn < nan−1 (a − b) s❡ n > 1❀ ❡ ❛s ❞❡s✐❣✉❛❧❞❛❞❡s ♦♣♦st❛s s❡
n < 1✳
✶✽✳ P❛r❛
✸✵✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✶✾✳ ❯s❛♥❞♦ ❞✐❢❡r❡♥❝✐❛✐s ❞❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ❞❡ x ♣❛r❛ ♦s q✉❛✐s✿
✶✳
√
x+1−
√
x < 0, 01✳
✷✳
√
4
x+1−
√
4
x < 0, 002✳
✷✵✳ ❯♠ ♣♦♥t♦ ♠♦✈✐♠❡♥t❛✲s❡ ♥❛ ♠❡t❛❞❡ s✉♣❡r✐♦r ❞❛ ❝✉r✈❛ y 2 = x + 1✱ ❞❡ ♠♦❞♦ q✉❡
dx √
dy
= 2x + 1✳ ❉❡t❡r♠✐♥❡
q✉❛♥❞♦ x = 4✳
dt
dt
✷✶✳ ▼❡❞✐❛♥t❡ ♦ ❚❡♦r❡♠❛ ❞♦ ❱❛❧♦r ▼é❞✐♦✱ ♠♦str❡ ❛s ❞❡s✐❣✉❛❧❞❛❞❡s✿
hai a − b
a−b
≤ Ln
≤
a
b
b
a−b
✷✳
≤ tan a − tan b ≤
cos2 b
2
3+x
s❡
4
✷✷✳ ❙❡❥❛ f (x) =
1
s❡
x
✶✳
✶✳
✷✳
s❡♥❞♦ 0 < b ≤ a✳
a−b
cos2 a
π
2
s❡♥❞♦ 0 < b ≤ a < ✳
x≤1
x≥1
❉❡s❡♥❤❛r ♦ ❣rá✜❝♦ ❞❡ y = f (x) ♣❛r❛ x ∈ [0, 2]✳
❱❡r✐✜❝❛r s❡ s❛t✐s❢❛③ ❛s ❝♦♥❞✐çõ❡s ❞♦ ❚❡♦r❡♠❛ ❞♦ ❱❛❧♦r ▼é❞✐♦✳ ❙❡ s❛t✐s❢❛③ ❛s
❝♦♥❞✐çõ❡s ❞♦ ❚❱▼✱ ❞❡t❡r♠✐♥❛r ❡ss❡s ✈❛❧♦r❡s✳
✷✸✳ ❙❡❥❛ f : R −→ R ✉♠❛ ❢✉♥çã♦✳ ❙❡ ❞✐③ q✉❡ x = c é ✉♠ ♣♦♥t♦ ✜①♦ ❞❡ f ✱ s❡ f (c) = c✳
✶✳
❉❡t❡r♠✐♥❡ ♦s ♣♦♥t♦s ✜①♦s ❞❡ f (x) = x3 − 8x✳
✷✳
❱❡r✐✜❝❛r s❡ f (x) = x2 + x + 1 t❡♠ ♣♦♥t♦s ✜①♦s✳
✸✳
❙✉♣♦♥❤❛ y = f (x) ∀ x ∈ R t❡♥❤❛ ❞❡r✐✈❛❞❛ f ′ (x) 6= 1 ∀ x ∈ R✳
▼♦str❡ q✉❡ f ❛❞♠✐t❡ ♥♦ ♠á①✐♠♦ ✉♠ ♣♦♥t♦ ✜①♦✳
✷✹✳ ▼♦str❡ q✉❡ s❡ ✉♠❛ ❢✉♥çã♦ é ❞✐❢❡r❡♥❝✐á✈❡❧ ❡♠ R ❡ f ′ (x) < 1 ∀ x ∈ R✱ ❡♥tã♦ f t❡♠
♥♦ ♠á①✐♠♦ ✉♠ ♣♦♥t♦ ✜①♦✳
✷✺✳ ❆s ✈❛r✐á✈❡✐s x, y, z sã♦ t♦❞❛s ❢✉♥çõ❡s ❞❡ t ❡ ❝✉♠♣r❡♠ ❛ r❡❧❛çã♦✿ x3 − 2xy + y 2 +
2xz + 2xz 2 + 3 = 0✳
❆❝❤❛r
dx
dy
dz
q✉❛♥❞♦ x = 1, y = 2 s❡
=3 ❡
= 4 ♣❛r❛ t♦❞♦ t✳
dt
dt
dt
✷✻✳ ❊st✐♠❛✲s❡ ❡♠ ✉♠ ♠❡tr♦ ♦ ❧❛❞♦ ❞❡ ✉♠ q✉❛❞r❛❞♦✱ ❝♦♠ ✉♠ ❡rr♦ ♠á①✐♠♦ ❞❡ 0, 005cm✳
❯s❛♥❞♦ ❞✐❢❡r❡♥❝✐❛✐s ❡st✐♠❡ ♦ ❡rr♦ ♠á①✐♠♦ ♥♦ ❝á❧❝✉❧♦ ❞❛ ár❡❛✳ ◗✉❛✐s sã♦ ♦ ❡rr♦
r❡❧❛t✐✈♦ ❡ ♣❡r❝❡♥t✉❛❧ ❛♣r♦①✐♠❛❞♦❄
✷✼✳ ❆ ár❡❛ ❧❛t❡r❛❧ ❞❡ ✉♠ ❝♦♥❡ r❡t♦ ❝✐r❝✉❧❛r ❡ ❛❧t✉r❛ h ❡ r❛✐♦ ❞❛ ❜❛s❡ r é ❞❛❞❛ ♣♦r
√
AL = πr r2 + h2 ✳ P❛r❛ ❞❡t❡r♠✐♥❛❞♦ ❝♦♥❡✱ r = 6cm ❡ ❛ ♠❡❞✐❞❛ ❞❛ ❛❧t✉r❛ h ❛❝✉s❛
8cm ❝♦♠ ✉♠ ❡rr♦ ♠á①✐♠♦ ❞❡ 0, 01cm❀ ❞❡t❡r♠✐♥❡ ♦ ❡rr♦ ♠á①✐♠♦ ♥❛ ♠❡❞✐❞❛ ❞❛ ár❡❛
❧❛t❡r❛❧✳ ◗✉❛❧ ♦ ❡rr♦ ♣❡r❝❡♥t✉❛❧ ❛♣r♦①✐♠❛❞♦❄
✸✵✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
▼✐s❝❡❧â♥❡❛ ✺✲✶
2
x + (a − 3)x − 3a
,
✶✳ ❆ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r f (x) =
x−3
1
s❡ x 6= 3
s❡ x = 3
t♦❞❛ ❛ r❡t❛ r❡❛❧✳
✶✳
◗✉❛❧ ♦ ✈❛❧♦r ❞❡ a❄
✷✳
é ❞❡r✐✈á✈❡❧ ❡♠
◗✉❛❧ ♦ ✈❛❧♦r ❞❡ f ′ (3)❄
f (x) − f (2)
= 0✳ ◗✉❛✐s ❞❛s s❡❣✉✐♥t❡s
x→2
x−2
✷✳ ❙✉♣♦♥❤❛ q✉❡ f é ✉♠❛ ❢✉♥çã♦ ♣❛r❛ ♦ q✉❛❧ lim
♣r♦♣♦s✐çõ❡s sã♦ ✈❡r❞❛❞❡✐r❛s✱ q✉❛✐s ♣♦❞❡♠ s❡r ✈❡r❞❛❞❡✐r❛s ❡ q✉❛✐s ♥❡❝❡ss❛r✐❛♠❡♥t❡
sã♦ ❢❛❧s❛s❄
✶✳
f ′ (2) = 2
✹✳
f ❡s ❝♦♥tí♥✉❛ ❡♥ x = 0
✷✳
✸✳
f (2) = 0
✺✳
lim f (x) = f (2)
x→2
f ❡s ❝♦♥tí♥✉❛ ❡♠ x = 2✳
✸✳ ❙✉♣♦♥❤❛ q✉❡ f ❡ g s❡❥❛♠ ❢✉♥çõ❡s ❞✐❢❡r❡♥❝✐á✈❡✐s ♣❛r❛ ❛s q✉❛✐s ✈❡r✐✜❝❛♠✲s❡ ❛s s❡❣✉✐♥✲
t❡s ❝♦♥❞✐çõ❡s✿ ❛✮ f (0) = 0 ❡ g(0) = 1
❜✮ f ′ (x) = g(x) ❡ g ′ (x) = −f (x)✳
✶✳
❙❡❥❛ h(x) = f 2 (x) + g 2 (x)✳ ❈❛❧❝✉❧❛r h′ (x) ❡ ✉t✐❧✐③❛r ❡st❡ r❡s✉❧t❛❞♦ ♣❛r❛ ♠♦str❛r
q✉❡ f 2 (x) + g 2 (x) = 1 ♣❛r❛ t♦❞♦ x✳
✷✳
❙✉♣♦♥❤❛ q✉❡ F ❡ G sã♦ ♦✉tr♦ ♣❛r ❞❡ ❢✉♥çõ❡s q✉❡ ❝✉♠♣r❡♠ ❛s ❝♦♥❞✐çõ❡s ❛✮ ❡
❜✮ ❡ s❡❥❛ k(x) = [F (x) − f (x)]2 + [G(x) − g(x)]2 ✳ ❈❛❧❝✉❧❛r k ′ (x) ❡ ✉t✐❧✐③❛r ❡st❡
r❡s✉❧t❛❞♦ ♣❛r❛ ❞❡❞✉③✐r q✉❛❧ é ❛ r❡❧❛çã♦ ❡♥tr❡ f (x) ❡ F (x) ❡ ❡♥tr❡ g(x) ❡ G(x)✿
✸✳
▼♦str❡ ✉♠ ♣❛r ❞❡ ❢✉♥çõ❡s q✉❡ ❝✉♠♣r❡♠ ❛s ❝♦♥❞✐çõ❡s ❛✮ ❡ ❜✮✳ P♦❞❡♠ ❡①✐st✐r
♦✉tr❛s✳ ❏✉st✐✜❝❛r s✉❛ r❡s♣♦st❛✳
✹✳ ❉❡t❡r♠✐♥❡ t♦❞❛s ❛s ❢✉♥çõ❡s f ❞❛ ❢♦r♠❛ f (x) = ax3 + bx2 + cx + d ❝♦♠ a 6= 0 q✉❡
✈❡r✐✜❝❛♠ f ′ (−1) = f ′ (1) = 0✳ ❆❧❣✉♠❛ ❞❛s ❢✉♥çõ❡s ❞❡t❡r♠✐♥❛❞❛s ❛♥t❡r✐♦r♠❡♥t❡
✈❡r✐✜❝❛ f (0) = f (1)❄ ❏✉st✐✜❝❛r s✉❛ r❡s♣♦st❛✳
✺✳ ❙❡❥❛ f : R → R ❢✉♥çã♦ ❞❡r✐✈á✈❡❧❀ ❡ s❡❥❛♠ a ❡ b ❞✉❛s r❛í③❡s ❞❛ ❞❡r✐✈❛❞❛ f ′ (x)
❞❡ ♠♦❞♦ q✉❡ ❡♥tr❡ ❡❧❛s ♥ã♦ ❡①✐st❛ ♦✉tr❛ r❛✐③ ❞❡ f ′ (x)✳ ❉❡t❡r♠✐♥❡ s❡ ♣♦❞❡ ♦❝♦rr❡r
❛❧❣✉♠❛ ❞❛s s❡❣✉✐♥t❡s ♣♦ss✐❜✐❧✐❞❛❞❡s✿
✶✳
❊♥tr❡ a ❡ b ♥ã♦ ❡①✐st❡ ♥❡♥❤✉♠❛ r❛✐③ ❞❡ f (x)✳
✷✳
❊♥tr❡ a ❡ b ❡①✐st❡ só ✉♠❛ r❛✐③ ❞❡ f (x)✳
✸✳
❊♥tr❡ a ❡ b ❡①✐st❡♠ ❞♦✐s ♦✉ ♠❛✐s r❛í③❡s ❞❡ f (x)✳
✸✵✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✻✳ ▼♦str❡ q✉❡ ❛ ❡q✉❛çã♦ x + xsenx − x2 = 0 t❡♠ ❡①❛t❛♠❡♥t❡ ❞✉❛s r❛í③❡s r❡❛✐s✳
✼✳ ❯s❛r q✉❡ y = et cos t,
E=
dy
= et cos t − et sent,
dt
dy
d2 y
−
2
+ 2t ✳ ▲♦❣♦ s✐♠♣❧✐✜❝❛r✳
dt2
dt
d2 y
= −2et sent ♣❛r❛ s✉❜st✐t✉✐r ❡♠✿
dt2
✽✳ ❉❡t❡r♠✐♥❡✿
✶✳
✸✳
✺✳
d3 y
dx3
d2 y
dx2
s❡♥❞♦ y = sen(3x)
✷✳
f ′′′ (0) s❡♥❞♦ f (x) = senx cos x
s❡♥❞♦ y = Ln(x2 − 3x)
✹✳
f ′′ (x) s❡♥❞♦ f (x) = ex+x
2
❚♦❞❛s ❛s ❞❡r✐✈❛❞❛s ❞❛ ❢✉♥çã♦ f ❞❡✜♥✐❞❛ ♣♦r f (x) = 8x4 + 5x3 − x2 + 7
✻✳
d3 y
dx3
s❡♥❞♦ y = 2senx + 3 cos x − x3
✾✳ ❙✉♣♦♥❞♦ q✉❡ ❛s ❢✉♥çõ❡s ❛❜❛✐①♦ ❞❡✜♥❡♠ ✐♠♣❧✐❝✐t❛♠❡♥t❡ y ❝♦♠♦ ✉♠❛ ❢✉♥çã♦ ❞❡ x✱
❞❡t❡r♠✐♥❡ ❛ ♣r✐♠❡✐r❛ ❞❡r✐✈❛❞❛ y ′
✶✳
✸✳
✺✳
x4 + 2y 3 − 4xy = 0
x2 y 2 + 8x = y − 1
y 2 + cos(2xy) = y
✹✳
(x + y)2 − (x − y)2 = x3 − y 3
x2 y + sen2y = π
✻✳
y 2 + x2 = xy
✷✳
✶✵✳ ❯♠❛ ❢r❡♥t❡ ❢r✐❛ ❛♣r♦①✐♠❛✲s❡ ❞❛ ❯❋❚✳ ❆ t❡♠♣❡r❛t✉r❛ é z ❣r❛✉s t ❤♦r❛s ❛ ♠❡✐❛ ♥♦✐t❡
❡ z = 0, 1(400 − 40t + t2 ) 0 ≤ t ≤ 12✳ ✭❛✮ ❆❝❤❡ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ♠é❞✐❛ ❞❡ z ❡♠
r❡❧❛çã♦ ❛ t ❡♥tr❡ 5 ❡ 6 ❤♦r❛s ❞❛ ♠❛♥❤ã❀ ✭❜✮ ❆❝❤❡ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞❡ z ❡♠ r❡❧❛çã♦
❛ t às 5 ❤♦r❛s ❞❛ ♠❛♥❤❛✳
✶✶✳ ❙❡ A cm2 é ❛ ár❡❛ ❞❡ ✉♠ q✉❛❞r❛❞♦ ❡ s cm é ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❡ s❡✉ ❧❛❞♦✱ ❛❝❤❡ ❛ t❛①❛
❞❡ ✈❛r✐❛çã♦ ♠é❞✐❛ ❞❡ A ❡♠ r❡❧❛çã♦ ❛ s q✉❛♥❞♦ s ♠✉❞❛ ❞❡✿ ✭❛✮ 4, 00 ❛ 4, 60❀ ✭❜✮
4, 00 ❛ 4, 30 ❀ ✭❝✮ 4, 00 ❛ 4, 10 ❀ ✭❞✮ ◗✉❛❧ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ✐♥st❛♥tâ♥❡❛ ❞❡ A ❡♠
r❡❧❛çã♦ ❛ s q✉❛♥❞♦ s = 4, 00❄
✶✷✳ ❯♠ t❛♥q✉❡ ❞❡ á❣✉❛ t❡♠ ❛ ❢♦r♠❛ ❞❡ ✉♠ ❝♦♥❡ ❝✐r❝✉❧❛r r❡t♦ ✐♥✈❡rt✐❞♦✱ ❞❡ ❛❧t✉r❛ 12
♣és ❡ r❛✐♦ ❞❛ ❜❛s❡ 6 ♣és✳ ❇♦♠❜❡✐❛✲s❡ á❣✉❛ ❛ r❛③ã♦ ❞❡ 10gal ♣♦r ♠✐♥✉t♦✳ ❉❡t❡r♠✐♥❛r
❛♣r♦①✐♠❛❞❛♠❡♥t❡ ❛ r❛③ã♦ ❝♦♠ ❛ q✉❛❧ ♦ ♥í✈❡❧ ❞❡ á❣✉❛ s♦❜❡ ❛♦ t❛♥q✉❡ q✉❛♥❞♦ ❛
♣r♦❢✉♥❞✐❞❛❞❡ é 3 ♣és ✭1 gal ≈ 0.1337♣és 3 ✮✳
✶✸✳ ❯♠❛ ❡♠♣r❡s❛ ✐♥tr♦❞✉③ ✉♠ ♥♦✈♦ ♣r♦❞✉t♦ ♥♦ ♠❡r❝❛❞♦ ❝✉❥❛s ✈❡♥❞❛s sã♦ ❞❛❞❛s ♣♦r✿
200(2t + 1)
♦♥❞❡ S(t) é ❛ q✉❛♥t✐❞❛❞❡ ✈❡♥❞✐❞❛ ❞✉r❛♥t❡ ♦s t ♣r✐♠❡✐r♦s ♠❡s❡s✳
t+2
✭❛✮ ❊♥❝♦♥tr❡ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ♠é❞✐❛ ❞❡ S(t) ❛♦ ❧♦♥❣♦ ❞♦ ♣r✐♠❡✐r♦ ❛♥♦✳ ✭❜✮ ❊♠
q✉❡ ♠ês S ′ (t) é ✐❣✉❛❧ à t❛①❛ ❞❡ ✈❛r✐❛çã♦ ♠é❞✐❛ ❞✉r❛♥t❡ ♦ ♣r✐♠❡✐r♦ ❛♥♦❄
S(t) =
✶✹✳ ❆♦ ❡sq✉❡♥t❛r ✉♠ ❞✐s❝♦ ❞❡ ♠❡t❛❧✱ s❡✉ ❞✐â♠❡tr♦ ✈❛r✐❛ ❛ r❛③ã♦ ❞❡ 0.01cm/min✳ ◗✉❛♥❞♦
♦ ❞✐â♠❡tr♦ ❡st❛ ❝♦♠ 5 ♠❡tr♦s✱ ❝♦♠ q✉❡ r❛③ã♦ ❡st❛ ✈❛r✐❛♥❞♦ ❛ ár❡❛ ❞❡ ✉♠❛ ❞❡ s✉❛s
❢❛❝❡s❄
✸✵✻
09/02/2021
❈❛♣ít✉❧♦ ✻
❆P▲■❈❆➬Õ❊❙ ❉❆❙ ❉❊❘■❱❆❉❆❙
●♦tt❢r✐❡❞ ❲✐❧❤❡❧♠ ▲❡✐❜♥✐t③
♥❛s❝❡✉ ♥♦
❡♠ ▲❡✐♣③✐❣ ✭❆❧❡♠❛♥❤❛✮✱ ❡ ❢❛❧❡❝❡✉ ❡♠
❊♠
1661✱
q✉❛♥❞♦ t✐♥❤❛
15
14
1 ❞❡ ❥✉❧❤♦ ❞❡ 1646✱
1716✳
❞❡ ♥♦✈❡♠❜r♦ ❞❡
❛♥♦s✱ ✐♥❣r❡ss♦✉ ♥❛ ❯♥✐✈❡rs✐❞❛❞❡
❞❡ ▲❡✐♣③✐❣ ❡✱ ❛♦s ❞❡③❡ss❡t❡✱ ❡♠
1663✱
❥á ❤❛✈✐❛ ❛❞q✉✐r✐❞♦ ♦ s❡✉
❞✐♣❧♦♠❛ ❞❡ ❜❛❝❤❛r❡❧✳ ❊st✉❞♦✉ ❚❡♦❧♦❣✐❛✱ ❉✐r❡✐t♦✱ ❋✐❧♦s♦✜❛ ❡ ▼❛✲
t❡♠át✐❝❛✱ ♥❛ ❯♥✐✈❡rs✐❞❛❞❡✳
P❛r❛ ♠✉✐t♦s ❤✐st♦r✐❛❞♦r❡s✱ ▲❡✐❜♥✐t③ é t✐❞♦ ❝♦♠♦ ♦ ú❧t✐♠♦
❡r✉❞✐t♦ q✉❡ ♣♦ss✉í❛ ❝♦♥❤❡❝✐♠❡♥t♦ ✉♥✐✈❡rs❛❧✳
❋♦✐ ✉♠ ❞♦s ♣r✐✲
♠❡✐r♦s✱ ❞❡♣♦✐s ❞❡ P❛s❝❛❧✱ ❛ ✐♥✈❡♥t❛r ✉♠❛ ♠áq✉✐♥❛ ❞❡ ❝❛❧❝✉❧❛r✳
●✳ ▲❡✐❜♥✐t③
■♠❛❣✐♥♦✉ ♠áq✉✐♥❛s ❞❡ ✈❛♣♦r✱ ❡st✉❞♦✉ ✜❧♦s♦✜❛ ❝❤✐♥❡s❛ ❡ t❡♥t♦✉
♣r♦♠♦✈❡r ❛ ✉♥✐❞❛❞❡ ❞❛ ❆❧❡♠❛♥❤❛✳
❆♦s
20
❛♥♦s ❞❡ ✐❞❛❞❡✱ ❥á ❡st❛✈❛ ♣r❡♣❛r❛❞♦ ♣❛r❛ r❡❝❡❜❡r ♦
tít✉❧♦ ❞❡ ❞♦✉t♦r ❡♠ ❞✐r❡✐t♦✳ ❊st❡ ❧❤❡ ❢♦✐ r❡❝✉s❛❞♦ ♣♦r s❡r ❡❧❡ ♠✉✐t♦ ❥♦✈❡♠✳ ❉❡✐①♦✉ ❡♥tã♦ ▲❡✐♣③✐❣
❡ ❢♦✐ r❡❝❡❜❡r ♦ s❡✉ tít✉❧♦ ❞❡ ❞♦✉t♦r ♥❛ ❯♥✐✈❡rs✐❞❛❞❡ ❞❡ ❆❧t❞♦r❢✱ ❡♠ ◆✉r❡♠❜❡r❣✳
❆ ♣❛rt✐r ❞❛í✱ ▲❡✐❜♥✐t③ ❡♥tr♦✉ ♣❛r❛ ❛ ✈✐❞❛ ❞✐♣❧♦♠át✐❝❛ ♥❛ ❝♦rt❡ ❞❡ ❍❛♥ô✈❡r✱ ❛♦ s❡r✈✐ç♦ ❞♦s
❞✉q✉❡s✱ ✉♠ ❞♦s q✉❛✐s s❡ t♦r♥♦✉ r❡✐ ❞❡ ■♥❣❧❛t❡rr❛✱ s♦❜ ♦ ♥♦♠❡ ❞❡ ❏♦r❣❡
I✳
❈♦♠♦ r❡♣r❡s❡♥t❛♥t❡
❣♦✈❡r♥❛♠❡♥t❛❧ ✐♥✢✉❡♥t❡✱ ❡❧❡ t❡✈❡ ❛ ♦♣♦rt✉♥✐❞❛❞❡ ❞❡ ✈✐❛❥❛r ♠✉✐t♦ ❞✉r❛♥t❡ t♦❞❛ ❛ s✉❛ ✈✐❞❛✳ ❊♠
1672✱
❢♦✐ ♣❛r❛ P❛r✐s ♦♥❞❡ ❝♦♥❤❡❝❡✉ ❍✉②❣❡♥s✱ q✉❡♠ ❧❤❡ s✉❣❡r✐✉ ❛ ❧❡✐t✉r❛ ❞♦s tr❛t❛❞♦s ❞❡
1658✱
❞❡
❇❧❛✐s❡ P❛s❝❛❧✱ s❡ q✉✐s❡ss❡ t♦r♥❛r✲s❡ ✉♠ ♠❛t❡♠át✐❝♦✳
❊♠
1673✱
✈✐s✐t♦✉ ▲♦♥❞r❡s✱ ♦♥❞❡ ❛❞q✉✐r✐✉ ✉♠❛ ❝ó♣✐❛ ❞♦ ✏▲❡❝t✐♦♥❡s ●❡♦♠❡tr✐❝❛❡✑✱ ❞❡ ■s❛❛❝
❇❛rr♦✇✱ ❡ t♦r♥♦✉✲s❡ ♠❡♠❜r♦ ❞❛ ❘♦②❛❧ ❙♦❝✐❡t②✳ ❋♦✐ ❞❡✈✐❞♦ ❛ ❡ss❛ ✈✐s✐t❛ ❛ ▲♦♥❞r❡s✱ ♦♥❞❡ ❛♣❛✲
r❡❝❡r❛♠ r✉♠♦r❡s q✉❡ ▲❡✐❜♥✐t③ t❛❧✈❡③ t✐✈❡ss❡ ✈✐st♦ ♦ tr❛❜❛❧❤♦ ❞❡ ◆❡✇t♦♥✱ q✉❡ ♣♦r s✉❛ ✈❡③ ♦ t❡r✐❛
✐♥✢✉❡♥❝✐❛❞♦ ♥❛ ❞❡s❝♦❜❡rt❛ ❞♦ ❈á❧❝✉❧♦✱ ❝♦❧♦❝❛♥❞♦ ❡♠ ❞ú✈✐❞❛ ❛ ❧❡❣✐t✐♠✐❞❛❞❡ ❞❡ s✉❛s ❞❡s❝♦❜❡rt❛s
r❡❧❛❝✐♦♥❛❞❛s ❛♦ ❛ss✉♥t♦✳
❆ ♣r♦❝✉r❛ ❞❡ ✉♠ ♠ét♦❞♦ ✉♥✐✈❡rs❛❧✱ ❛tr❛✈és ❞♦ q✉❛❧ ♣✉❞❡ss❡ ♦❜t❡r ❝♦♥❤❡❝✐♠❡♥t♦s✱ ❢❛③❡r ✐♥✲
✈❡♥çõ❡s ❡ ❝♦♠♣r❡❡♥❞❡r ❛ ✉♥✐❞❛❞❡ ❡ss❡♥❝✐❛❧ ❞♦ ✉♥✐✈❡rs♦✱ ❢♦✐ ♦ ♣r✐♥❝✐♣❛❧ ♦❜❥❡t✐✈♦ ❞❛ s✉❛ ✈✐❞❛✳ ❆
✏❙❝✐❡♥t✐❛ ●❡♥❡r❛❧✐s✑ q✉❡ q✉❡r✐❛ ❝♦♥str✉✐r t✐♥❤❛ ♠✉✐t♦s ❛s♣❡❝t♦s✱ ❡ ✈ár✐♦s ❞❡❧❡s ❧❡✈❛r❛♠ ▲❡✐❜♥✐t③
❛ ❞❡s❝♦❜❡rt❛s ♥❛ ♠❛t❡♠át✐❝❛✳ ❆ ♣r♦❝✉r❛ ❞❡ ✉♠❛ ✏❝❤❛r❛❝t❡r✐st✐❝❛ ❣❡♥❡r❛❧✑ ❧❡✈♦✉✲♦ ❛ ♣❡r♠✉t❛çõ❡s✱
❝♦♠❜✐♥❛çõ❡s ❡ à ❧ó❣✐❝❛ s✐♠❜ó❧✐❝❛❀ ❛ ♣r♦❝✉r❛ ❞❡ ✉♠❛ ✏❧í♥❣✉❛ ✉♥✐✈❡rs❛❧✐s✑✱ ♥❛ q✉❛❧ t♦❞♦s ♦s ❡rr♦s
❞❡ r❛❝✐♦❝í♥✐♦ ♣✉❞❡ss❡♠ ❛♣❛r❡❝❡r ❝♦♠♦ ❡rr♦s ❝♦♠♣✉t❛❝✐♦♥❛✐s✱ ♦ ❧❡✈♦✉ ♥ã♦ só à ❧ó❣✐❝❛ s✐♠❜ó❧✐❝❛✱
♠❛s t❛♠❜é♠ ❛ ♠✉✐t❛s ✐♥♦✈❛çõ❡s ♥❛ ♥♦t❛çã♦ ♠❛t❡♠át✐❝❛✳ ▲❡✐❜♥✐t③ ❢♦✐ ✉♠ ❞♦s ♠❛✐♦r❡s ✐♥✈❡♥t♦r❡s
❞❡ sí♠❜♦❧♦s ♠❛t❡♠át✐❝♦s✳
✸✵✼
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✻✳✶
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❱❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛✳ ❆❝❡❧❡r❛çã♦ ✐♥st❛♥tâ♥❡❛✳
❯♠❛ ❞❛s ✉t✐❧✐❞❛❞❡s ❞❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ é ❛ ❞❡s❝r✐çã♦ ❞❡ ♠♦✈✐♠❡♥t♦ ❞❡ ✉♠ ♦❜❥❡t♦
❛♦ ❧♦♥❣♦ ❞❡ ✉♠❛ r❡t❛❀ t❛❧ ♠♦✈✐♠❡♥t♦ é ❝❤❛♠❛❞♦ ♠♦✈✐♠❡♥t♦ r❡t✐❧í♥❡♦✳ ❙❡ ✉t✐❧✐③❛♠♦s ✉♠
s✐st❡♠❛ ❞❡ ❝♦♦r❞❡♥❛❞❛s ❝❛rt❡s✐❛♥❛s✱ ❝♦♥✈❡♥❝✐♦♥❛❧♠❡♥t❡ s❡ ♦ ♦❜❥❡t♦ s❡ ♠♦✈✐♠❡♥t❛ ♣❛r❛
❛ ❞✐r❡✐t❛ ✭♦✉ ♣❛r❛ ❝✐♠❛✮✱ s✉❛ ❞✐r❡çã♦ é ♣♦s✐t✐✈❛ ❛♦ ♣❛ss♦ q✉❡✱ s❡ ♦ ♠♦✈✐♠❡♥t♦ é ♣❛r❛ ❛
❡sq✉❡r❞❛ ✭♦✉ ♣❛r❛ ❜❛✐①♦✮✱ s✉❛ ❞✐r❡çã♦ é ♥❡❣❛t✐✈❛✳
◗✉❛♥❞♦ ✉♠❛ ❢✉♥çã♦
S(t)
❞♦ t❡♠♣♦✱ ❡❧❛ é ❝❤❛♠❛❞❛
❞á ❛ ♣♦s✐çã♦ ✭r❡❧❛t✐✈❛ à ♦r✐❣❡♠✮ ❞❡ ✉♠ ♦❜❥❡t♦ ❝♦♠♦ ❢✉♥çã♦
❢✉♥çã♦ ♣♦s✐çã♦✳
❙❡✱ ❞✉r❛♥t❡ ✉♠ ♣❡rí♦❞♦
∆t
❞❡ t❡♠♣♦✱ ♦ ♦❜❥❡t♦
∆S(t) = S(t + ∆t) − S(t) ✐st♦ é ❛ ✈❛r✐❛çã♦ ❞❛ ❞✐stâ♥❝✐❛✱ ❡♥tã♦ ❛ t❛①❛ ❞❡
∆S(t)
❀ ❡st❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ♠é❞✐❛ é ❝❤❛♠❛❞❛ ❞❡ ✈❡❧♦❝✐❞❛❞❡ ♠é❞✐❛✳
♠é❞✐❛ é✿
∆t
s❡ ❞❡s❧♦❝❛✿
✈❛r✐❛çã♦
❉❡✜♥✐çã♦ ✻✳✶✳
❙❡
S(t)
❞á ❛ ♣♦s✐çã♦ ♥♦ ✐♥st❛♥t❡
t
❞❡ ✉♠ ♦❜❥❡t♦ s❡ ♠♦✈❡♥❞♦ ❡♠ ❧✐♥❤❛ r❡t❛✱ ❡♥tã♦
❛ ✈❡❧♦❝✐❞❛❞❡ ♠é❞✐❛ ❞♦ ♦❜❥❡t♦ ♥♦ ✐♥t❡r✈❛❧♦ ❞❡ t❡♠♣♦
❱❡❧♦❝✐❞❛❞❡ ♠é❞✐❛
=
[t, t + ∆t]
é ❞❛❞♦ ♣♦r✿
S(t + ∆t) − S(t)
∆S(t)
=
∆t
∆t
❊①❡♠♣❧♦ ✻✳✶✳
40m✱ s✉❛ ❛❧t✉r❛ h ♥♦ ✐♥st❛♥t❡ t é ❞❛❞❛ é ❞❛❞❛ ♣❡❧❛
❢✉♥çã♦ S(t) = −4, 9t + 40✱ ♦♥❞❡ S(t) é ♠❡❞✐❞♦ ❡♠ ♠❡tr♦s ❡ t ❡♠ s❡❣✉♥❞♦s✳ ❉❡t❡r♠✐♥❡
❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ♠é❞✐❛ ♥♦s ✐♥t❡r✈❛❧♦s✿ ❛✮ [1, 1.1]; ❜✮ [1, 1.5]; ❝✮ [1, 2]✳
❯♠ ♦❜❥❡t♦ ❝❛✐ ❞❡ ✉♠❛ ❛❧t✉r❛ ❞❡
2
❙♦❧✉çã♦✳
h = S(t)✳ ❯s❛♥❞♦ ❛ ❡q✉❛çã♦ S(t)
t = 1, t = 1.4 ❡ t = 2 s❡❣✉♥❞♦s ♥❛ t❛❜❡❧❛✿
❚❡♠♦s ❛ ❛❧t✉r❛
✐♥st❛♥t❡s✿
❛✮
P❛r❛ ♦ ✐♥t❡r✈❛❧♦
♣♦❞❡♠♦s ❝❛❧❝✉❧❛r ❛s ❛❧t✉r❛s ♥♦s
t
1
1, 1
1, 5
2
S(t)
35, 1
34, 1
29
20, 4
[1, 1.1]
♦ ♦❜❥❡t♦ ❝❛✐ ❞❡ ✉♠❛ ❛❧t✉r❛ ❞❡
35, 1m
♣❛r❛
34, 1m
❡ ❛ t❛①❛ ❞❡
✈❛r✐❛çã♦ ♠é❞✐❛ é✿
S(t + ∆t) − S(t)
34, 1 − 35, 1
∆S(t)
=
=
= −10 m/s
∆t
∆t
1, 1 − 1
❜✮
P❛r❛ ♦ ✐♥t❡r✈❛❧♦
[1, 1.5]
♦ ♦❜❥❡t♦ ❝❛✐ ❞❡ ✉♠❛ ❛❧t✉r❛ ❞❡
35, 1m
♣❛r❛
29m
❡ ❛ t❛①❛ ❞❡
✈❛r✐❛çã♦ ♠é❞✐❛ é✿
∆S(t)
S(t + δt) − S(t)
29 − 35, 1
=
=
= −12, 2 m/s
∆t
∆t
1, 5 − 1
✸✵✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❝✮
P❛r❛ ♦ ✐♥t❡r✈❛❧♦
[1, 2]
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
♦ ♦❜❥❡t♦ ❝❛✐ ❞❡ ✉♠❛ ❛❧t✉r❛ ❞❡
35, 1m
♣❛r❛
20, 4m
❡ ❛ t❛①❛ ❞❡
✈❛r✐❛çã♦ ♠é❞✐❛ é✿
S(t + δt) − S(t)
20, 4 − 35, 1
∆S(t)
=
=
= −14, 7 m/s
∆t
∆t
2−1
❖❜s❡r✈❡✱ ❛ ✈❡❧♦❝✐❞❛❞❡ ♠é❞✐❛ ♥❡st❡ ❡①❡♠♣❧♦ é ♥❡❣❛t✐✈❛✱ ❧♦❣♦ ♦ ♦❜❥❡t♦ s❡ ♠♦✈✐♠❡♥t❛
♣❛r❛ ❛❜❛✐①♦✳
✻✳✶✳✶
❱❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛
❉❡✜♥✐çã♦ ✻✳✷✳
❙❡
S(t)
❱❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛✳
❞❡t❡r♠✐♥❛ ❛ ♣♦s✐çã♦ ♥♦ ✐♥st❛♥t❡
❡♥tã♦ ❛ ✈❡❧♦❝✐❞❛❞❡ ❞♦ ♦❜❥❡t♦ ♥♦
t ❞❡ ✉♠ ♦❜❥❡t♦
✐♥st❛♥t❡ t é ❞❛❞❛ ♣♦r✿
s❡ ♠♦✈❡♥❞♦ ❡♠ ❧✐♥❤❛ r❡t❛✱
S(t + ∆t) − S(t)
∆t→0
∆t
V ′ (t) = lim
✭✻✳✶✮
❊①❡♠♣❧♦ ✻✳✷✳
❉❡t❡r♠✐♥❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛ q✉❛♥❞♦
❢✉♥çã♦ ❞❡ ♣♦s✐çã♦ é ❞❛❞❛ ♣♦r
♠❡tr♦s✳
t = 2✱
❞❡ ✉♠ ♦❜❥❡t♦ ❡♠ q✉❡❞❛ ❧✐✈r❡ ❝✉❥❛
S(t) = 200 − 32t2
♦♥❞❡
V ′ (t) = −64t❀
V ′ (2) = −(64)(2) = −128m/s✳
t
é ❞❛❞♦ ❡♠ s❡❣✉♥❞♦s ❡
S(t)
❡♠
❙♦❧✉çã♦✳
P❡❧❛ ❡①♣r❡ssã♦ ✭✻✳✶✮ t❡♠♦s
❊①❡♠♣❧♦ ✻✳✸✳
❧♦❣♦
❯♠❛ ♣❛rtí❝✉❧❛ s❡ ♠♦✈✐♠❡♥t❛ ❡♠ ❧✐♥❤❛ r❡t❛ ❤♦r✐③♦♥t❛❧ ✭♣♦s✐t✐✈❛ ♣❛r❛ ❛ ❞✐r❡✐t❛✮ s❡❣✉♥❞♦
❛ r❡❧❛çã♦
s = t3 − 3t2 − 9t + 5✳
❊♠ q✉❡ ✐♥t❡r✈❛❧♦s ❞❡ t❡♠♣♦ ❛ ♣❛rtí❝✉❧❛ ♠♦✈✐♠❡♥t❛✲s❡
♣❛r❛ ❛ ❞✐r❡✐t❛❀ ❡ ❡♠ q✉❛✐s ♣❛r❛ ❛ ❡sq✉❡r❞❛❄
❙♦❧✉çã♦✳
❆ ♣❛rtí❝✉❧❛ ♠♦✈✐♠❡♥t❛✲s❡ ♣❛r❛ ❛ ❞✐r❡✐t❛ q✉❛♥❞♦ ❛ ✈❡❧♦❝✐❞❛❞❡ é ♣♦s✐t✐✈❛❀ ❡ ♣❛r❛ ❛
❡sq✉❡r❞❛ q✉❛♥❞♦ ❛ ✈❡❧♦❝✐❞❛❞❡ é ♥❡❣❛t✐✈❛✳
❆ ✈❡❧♦❝✐❞❛❞❡ é ❞❛❞❛ ♣❡❧❛ ❢✉♥çã♦
t❛❜❡❧❛ ♣❛r❛ ❛ ❢✉♥çã♦
v(t)✿
t
v(t)
❙❡
t < −1✱
−2
+
s′ (t) = v(t) = 3t2 − 6t − 9✳
−1
0
❈♦♥str✉í♠♦s ❛ s❡❣✉✐♥t❡
1
3
4
−
0
+
❛ ✈❡❧♦❝✐❞❛❞❡ é ♣♦s✐t✐✈❛ ❡ ♦ ♠♦✈✐♠❡♥t♦ é ♣❛r❛ ❛ ❞✐r❡✐t❛❀ s❡
✈❡❧♦❝✐❞❛❞❡ é ♥❡❣❛t✐✈❛ ❡ ♦ ♠♦✈✐♠❡♥t♦ é ♣❛r❛ ❛ ❡sq✉❡r❞❛❀ s❡
t > 3✱
−1 < t < 3✱
❛
❛ ✈❡❧♦❝✐❞❛❞❡ é ♣♦s✐t✐✈❛
❡ ♦ ♠♦✈✐♠❡♥t♦ é ♣❛r❛ ❛ ❞✐r❡✐t❛✳
✸✵✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❖ ♠♦✈✐♠❡♥t♦ ♣❛r❛ ❛ ❞✐r❡✐t❛ ❡ ♦ ♠♦✈✐♠❡♥t♦ ♣❛r❛ ❛ ❡sq✉❡r❞❛✱ ❡♥tã♦ s❡♣❛r❛❞♦s ♣♦r
✐♥st❛♥t❡s ❞❡ ✈❡❧♦❝✐❞❛❞❡ ♥✉❧❛✳
❊①❡♠♣❧♦ ✻✳✹✳
20m ❞❡ ❛❧t✉r❛ ❡
3
✉♠❛ ❜❛s❡ ❝♦♠ 10m ❞❡ r❛✐♦✳ ❆ á❣✉❛ ✏✢✉✐✑ ♥♦ t❛♥q✉❡ ❛ ✉♠❛ t❛①❛ ❞❡ 5m /s✳ ❈♦♠ q✉❡
✈❡❧♦❝✐❞❛❞❡ ♦ ♥í✈❡❧ ❞❛ á❣✉❛ ❡st❛rá s❡ ❡❧❡✈❛♥❞♦ q✉❛♥❞♦ s✉❛ ♣r♦❢✉♥❞✐❞❛❞❡ ❢♦r ❞❡ 8m❄✳
❯♠ t❛♥q✉❡ t❡♠ ❛ ❢♦r♠❛ ❞❡ ✉♠ ❝♦♥❡ ✐♥✈❡rt✐❞♦ ✭❋✐❣✉r❛ ✭✻✳✶✮✮ ❝♦♠
❙♦❧✉çã♦✳
❙❡❥❛♠
h
❛ ♣r♦❢✉♥❞✐❞❛❞❡✱
r
♦ r❛✐♦ ❞❛ ❜❛s❡ ❞♦ ❝♦♥❡
V ♦ ✈♦❧✉♠❡ ❞❛ á❣✉❛ ♥♦ ✐♥st❛♥t❡ t❀ q✉❡r❡♠♦s ❛❝❤❛r
dh
dV
s❛❜❡♥❞♦ q✉❡
é 5m3 /s✳
dt
dt
1 2
πr h ♦♥❞❡
❖ ✈♦❧✉♠❡ ❞❛ á❣✉❛ é ❞❛❞♦ ♣♦r V =
3
t♦❞❛s ❛s ♠❡❞✐❞❛s ❞❡♣❡♥❞❡♠ ❞♦ t❡♠♣♦ t❀ ♣♦r s❡♠❡✲
r
10
10
❧❤❛♥ç❛ ❞❡ tr✐â♥❣✉❧♦s
=
♦✉ r =
h✱ ❧♦❣♦✿
h
20
20
1 1 2
1
V = π h h =
πh3 ❡✱ ✉t✐❧✐③❛♥❞♦ ❞✐❢❡r❡♥❝✐❛✐s
3 2
12
1
dV = πh2 dh✳
4
❉✐✈✐❞✐♥❞♦ ❡st❛ ú❧t✐♠❛ ✐❣✉❛❧❞❛❞❡ ♣♦r dt✱ ♦❜té♠✲s❡
dV
1
dh
= πh2
❡♥tã♦ q✉❛♥❞♦ h = 8m s❡❣✉❡ 5 m3 /s =
dt
4
dt
dh
20
5
1
π (8m)2
⇒
=
m/s =
m/s =
4
dt
64π
16π
0, 0995 m/s✳
❡
❋✐❣✉r❛ ✻✳✶✿
P♦rt❛♥t♦✱ s♦❜❡ ♦ ♥í✈❡❧ ❞❛ á❣✉❛ ♥♦ ✐♥st❛♥t❡ ❡♠ q✉❡ ❛ ♣r♦❢✉♥❞✐❞❛❞❡ ❞❛ á❣✉❛ é ❞❡
❝♦♠ ✉♠❛ ✈❡❧♦❝✐❞❛❞❡ ❞❡
✻✳✶✳✷
8m
0, 0995m/s
❆❝❡❧❡r❛çã♦ ✐♥st❛♥tâ♥❡❛
❆ ❛❝❡❧❡r❛çã♦ é ✉♠❛ ♠❡❞✐❞❛ ❞❛ ✈❛r✐❛çã♦ ❞❛ ✈❡❧♦❝✐❞❛❞❡✳ ◗✉❛♥❞♦ ✉♠❛ ♣❛rtí❝✉❧❛ t❡♠
♠♦✈✐♠❡♥t♦ r❡t✐❧í♥❡♦ ❝♦♠ ✈❡❧♦❝✐❞❛❞❡ ❝♦♥st❛♥t❡✱ ❛ ❛❝❡❧❡r❛çã♦ é ♥✉❧❛ ✭③❡r♦✮✳ P♦r ❡①❡♠♣❧♦✱ ❡♠
✉♠❛ ❝♦♠♣❡t✐çã♦ ❞❛ ❋ór♠✉❧❛ ✶✱ ♦s ✈❡í❝✉❧♦s ♣❛ss❛♠ ♣❡❧♦ ♣♦♥t♦ ❞❡ ♣❛rt✐❞❛ ❝♦♠ ✈❡❧♦❝✐❞❛❞❡
✉♥✐❢♦r♠❡✱ ❞✐❣❛♠♦s
❞❡
300 km/h✱
200km/h✳
❖✐t♦ s❡❣✉♥❞♦s ❛♣ós ✉♠ ❞❡ ❡❧❡s ❡stá ❝♦rr❡♥❞♦ ❝♦♠ ✈❡❧♦❝✐❞❛❞❡
❛ ❛❝❡❧❡r❛çã♦ ♠é❞✐❛ ❞❡ss❡ ❛✉t♦ é✿
300 − 200
= 12, 5 (km/h)/seg
8
❆s ✉♥✐❞❛❞❡s ♣❛r❡❝❡♠ ❜❛st❛♥t❡ ❡str❛♥❤❛s ❞❡s❞❡ q✉❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ❡stá ❡①♣r❡ss❛ ❡♠
km/h ❡ ♦ t❡♠♣♦ ❡♠ segundos✱
tr❛♥s❢♦r♠❛♥❞♦
✸✶✵
km/h ♣❛r❛ m/seg ✱
t❡♠♦s q✉❡ ❛ ❛❝❡❧❡r❛çã♦
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
♠é❞✐❛
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❞❡ss❡ ❛✉t♦ é✿
300 − 200
= 12, 5 (km/h)/s = 12, 5 (1000m/3600seg)/seg = 3, 472 m/seg 2
8
❉❡✜♥✐çã♦ ✻✳✸✳
❙❡
S(t)
❆❝❡❧❡r❛çã♦ ✐♥st❛♥tâ♥❡❛✳
❞á ❛ ♣♦s✐çã♦ ♥♦ ✐♥st❛♥t❡
t
❞❡ ✉♠ ♦❜❥❡t♦ s❡ ♠♦✈❡♥❞♦ ❡♠ ❧✐♥❤❛ r❡t❛✱ ❡♥tã♦
❛ ❛❝❡❧❡r❛çã♦ ✐♥st❛♥tâ♥❡❛ ♦✉ s✐♠♣❧❡s♠❡♥t❡ ❛ ❛❝❡❧❡r❛çã♦
t
é ❞❛❞❛ ♣♦r✿
′
a(t) = v (t)✱
♦♥❞❡
v(t)
a(t)
❞♦ ♦❜❥❡t♦ ♥♦ ✐♥st❛♥t❡
é ❛ ✈❡❧♦❝✐❞❛❞❡ ♥♦ ✐♥st❛♥t❡
t✳
❊①❡♠♣❧♦ ✻✳✺✳
80km/h
❡ ♦
❈♦♠ q✉❡ ✈❡❧♦❝✐❞❛❞❡ ❛✉♠❡♥t❛ ❛ ❞✐stâ♥❝✐❛ ❡♥tr❡ ❛♠❜♦s
3hs
❉♦✐s ❝❛rr♦s ♣❛rt❡♠ ❛♦ ♠❡s♠♦ t❡♠♣♦ ❞❡ ✉♠ ♣♦♥t♦
♦✉tr♦ ♣❛r❛ ♦ ♥♦rt❡ ❛
45km/h✳
A✱
✉♠ ♣❛r❛ ♦ ♦❡st❡ ❛
❞❡♣♦✐s ❞❛ s❛í❞❛❄
❙♦❧✉çã♦✳
80t
✻
❙✉♣♦♥❤❛ t❡♥❤❛♠ ♣❡r❝♦rr✐❞♦ t ❤♦r❛s✱ s❡❣✉♥❞♦ ❛ ❋✐✲
❣✉r❛ ✭✻✳✷✮ ❡ ❛♣❧✐❝❛♥❞♦ ♦ t❡♦r❡♠❛ ❞❡ P✐tá❣♦r❛s✱ t❡♠♦s
p
❛ ❞✐stâ♥❝✐❛ ❡♥tr❡ ❡❧❡s✿ d(t) = (80t)2 + (45t)2 =
√
5t 337✳ ❆ ✈❡❧♦❝✐❞❛❞❡ ❝♦♠ q✉❡ ❛✉♠❡♥t❛ ❛ ❞✐stâ♥❝✐❛
√
❡♥tr❡ ❡❧❡s é d′ (t) = 5 337km/h = 91, 78km/h✳
✓
✓
✓
✛45t
✓
✓
✓d(t)
✓
✓
❋✐❣✉r❛ ✻✳✷✿
❊①❡♠♣❧♦ ✻✳✻✳
❉❡t❡r♠✐♥❡ ❛ ❛❝❡❧❡r❛çã♦ ❞❡ ✉♠ ♦❜❥❡t♦ ❡♠ q✉❡❞❛ ❧✐✲
✈r❡ ❝✉❥❛ ❢✉♥çã♦ ♣♦s✐çã♦ é✿
❙♦❧✉çã♦✳
S(t) = −4, 9t2 + 40✳
P❡❧❛ ❞❡✜♥✐çã♦ ❞❡ ✈❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛✱ s❛❜❡♠♦s q✉❡ v(t) = −9, 8t❀ ♣♦rt❛♥t♦ ❛ ❛❝❡✲
❧❡r❛çã♦ é a(t) = −9, 8m/s2 ✳
❊st❛ ❛❝❡❧❡r❛çã♦ ❞❡♥♦t❛❞❛ ♣♦r g é ❞❡✈✐❞❛ à ❣r❛✈✐❞❛❞❡❀ s❡✉ ✈❛❧♦r ❡①❛t♦ ❞❡♣❡♥❞❡ ❞♦ ❧✉❣❛r
❞❛ ♣♦s✐çã♦ ❞♦ ❡①♣❡r✐♠❡♥t♦✳ ❊♠ ❣❡r❛❧ ❛ ♣♦s✐çã♦ ❞❡ ✉♠ ♦❜❥❡t♦ ❡♠ q✉❡❞❛ ❧✐✈r❡ ✭❞❡s♣r❡③❛♥❞♦
❛ r❡s✐stê♥❝✐❛ ❞♦ ❛r✮ s♦❜ ❛ ✐♥✢✉ê♥❝✐❛ ❞❛ ❣r❛✈✐❞❛❞❡ é S(t) = gt2 +v0 t+s0 ✱ ♦♥❞❡ g é ❛ ❣r❛✈✐❞❛❞❡
❞❛ t❡rr❛✱ v0 é ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥✐❝✐❛❧ ❡ s0 é ❛ ❛❧t✉r❛ ✐♥✐❝✐❛❧✳
❊①❡♠♣❧♦ ✻✳✼✳
r ❡♠ % ❞❡ ✉♠ ❛❧✉♥♦ ♥❡st❡ ❡①❛♠❡ ❞❡ ❞✉❛s ❤♦r❛s s❡❥❛
r(t) = 300t(2−t)✳ P❡❞❡✲s❡✿ ❛✮ ❊♠ q✉❡ ♠♦♠❡♥t♦ ❛✉♠❡♥t❛ ♦ ❞✐♠✐♥✉❡
❙✉♣♦♥❤❛♠♦s q✉❡ ♦ r❡♥❞✐♠❡♥t♦
❞❛❞❛ ♣❡❧❛ ❢✉♥çã♦
♦ r❡♥❞✐♠❡♥t♦❄
❜✮ ❊♠ q✉❡ ♠♦♠❡♥t♦ ♦ r❡♥❞✐♠❡♥t♦ é ♥✉❧♦❄ ❝✮ ❊♠ q✉❡ ✐♥st❛♥t❡ s❡ ♦❜tê♠
♦ ♠❛✐♦r r❡♥❞✐♠❡♥t♦❄ ◗✉❛❧ é ❛q✉❡❧❡❄
❙♦❧✉çã♦✳
✸✶✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❛✮
❚❡♠♦s t ∈ [0, 2]✱ ❛ ❞❡r✐✈❛❞❛ r′ (t) = 300(2 − 2t) q✉❛♥❞♦ t = 1 t❡♠♦s r(1) = 300 ❡
r′ (t) < 0 ❡♠ [1, 2]✳
❖ r❡♥❞✐♠❡♥t♦ ❛✉♠❡♥t❛ ♥❛ ♣r✐♠❡✐r❛ ❤♦r❛ ❞❛ ♣r♦✈❛✱ ❡ ❞✐♠✐♥✉❡ ♥❛ s❡❣✉♥❞❛ ❤♦r❛ ❞❛
♣r♦✈❛✳
❜✮
❖ r❡♥❞✐♠❡♥t♦ é ♥✉❧♦ ❡①❛t❛♠❡♥t❡ ♥♦ ✐♥í❝✐♦ ❡ ♥♦ ✜♥❛❧ ❞❛ ♣r♦✈❛✳
❝✮
❖ ♠❛✐♦r r❡♥❞✐♠❡♥t♦ s❡ ♦❜tê♠ ❡①❛t❛♠❡♥t❡ ✉♠❛ ❤♦r❛ ❛♣ós ✐♥✐❝✐❛❞♦ ❛ ♣r♦✈❛✳ ❖ ♠❛✐♦r
r❡♥❞✐♠❡♥t♦ é 300✳
❊①❡♠♣❧♦ ✻✳✽✳
❯♠❛ ♣❛rtí❝✉❧❛ ♠♦✈✐♠❡♥t❛✲s❡ ❡♠ ❧✐♥❤❛ r❡t❛ s❡❣✉♥❞♦ ❛ r❡❧❛çã♦✿
132✱
s é ❛ ❞✐stâ♥❝✐❛✱ ❡♠ ♠❡tr♦s ❡ t é ♦ t❡♠♣♦
t = 2 ❄ ❊ q✉❛❧ é ❛ ❛❝❡❧❡r❛çã♦ q✉❛♥❞♦ t = 3 ❄
♦♥❞❡
q✉❛♥❞♦
S = 3t3 − 16t2 + 108t +
❡♠ s❡❣✉♥❞♦s✳
◗✉❛❧ é ❛ ✈❡❧♦❝✐❞❛❞❡
❙♦❧✉çã♦✳
❙❡❥❛ v(t) ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛✱ ❡♥tã♦ v(t) = 9t2 − 32t + 108❀ q✉❛♥❞♦ t = 2 ♦❜t❡♠♦s
v(2) = 80 ✐st♦ s✐❣♥✐✜❝❛ q✉❡✱ ❛ ✈❡❧♦❝✐❞❛❞❡ q✉❛♥❞♦ t = 2 é 80 m/seg ✳
❆ ❛❝❡❧❡r❛çã♦ é ❞❛❞❛ ♣❡❧❛ r❡❧❛çã♦ a(t) = 18t − 32✱ q✉❛♥❞♦ t = 3 t❡♠♦s q✉❡ a(3) = 22✱
s✐❣♥✐✜❝❛ q✉❡ ❛ ❛❝❡❧❡r❛çã♦ ♥♦ ✐♥st❛♥t❡ t = 3 é 22 m/seg 2 ✳
✸✶✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡r❝í❝✐♦s ✻✲✶
✶✳ ❆ ❛❧t✉r❛ ❞❡ ✉♠❛ ❜♦❧❛ t s❡❣✉♥❞♦s ❞❡♣♦✐s ❞❡ s❡✉ ❧❛♥ç❛♠❡♥t♦ ✈❡rt✐❝❛❧ é ❞❛❞❛ ♣❡❧❛
❢✉♥çã♦✿ h(t) = −16t2 + 48t + 32✳ ✭❛✮ ❱❡r✐✜q✉❡ q✉❡ h(1) = h(2)✳ ✭❜✮ ❙❡❣✉♥❞♦ ♦
t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✱ ❞❡t❡r♠✐♥❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛ ♥♦ ✐♥t❡r✈❛❧♦ [1, 2]✳
10(x2 + x + 2)
✷✳ ❖ ❝✉st♦ C(x) ❞❡ ♣❡❞✐❞♦ ❞❡ ✉♠❛ ♠❡r❝❛❞♦r✐❛ é ❞❛❞❛ ♣♦r ✿ C(x) =
x2 + 2x
♦♥❞❡ C é ♠❡❞✐❞♦ ❡♠ ♠✐❧❤❛r❡s ❞❡ r❡❛✐s ❡ x é ♦ t❛♠❛♥❤♦ ❞♦ ♣❡❞✐❞♦ ♠❡❞✐❞♦ ❡♠
❝❡♥t❡♥❛s✳ ✭❛✮ ❱❡r✐✜q✉❡ q✉❡ C(4) = C(6)✳ ✭❜✮ ❙❡❣✉♥❞♦ ♦ t❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✱ ❛ t❛①❛
❞❡ ✈❛r✐❛çã♦ ❞❡ ❝✉st♦ ❞❡✈❡ s❡r ③❡r♦ ♣❛r❛ ❛❧❣✉♠ ♣❡❞✐❞♦ ♥♦ ✐♥t❡r✈❛❧♦ [4, 6]✳ ❉❡t❡r♠✐♥❡
♦ t❛♠❛♥❤♦ ❞❡ss❡ ♣❡❞✐❞♦✳
2
x +x+1
s❡✱ x < 1
x+a
3
✸✳ ❙❡❥❛ ❛ ❢✉♥çã♦ r❡❛❧✿ f (x) = x3 + bx2 − 5x + 3
s❡✱
1≤x≤
2
3
x+2
s❡✱ x >
x2 − 9
2
3
✶✳ ❙✉♣♦♥❤❛ f s❡❥❛ ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ✐♥t❡r✈❛❧♦ (−∞, )❀ ❞❡t❡r♠✐♥❡ a ❡ b✳
2
✷✳ ❆❝❤❛r ❛ n✲és✐♠❛ ❞❡r✐✈❛❞❛ ❞❛ ❢✉♥çã♦ f ❡♠ x = 2✳
✹✳ ❯♠ ❛✈✐ã♦ ❛ ✉♠❛ ❛❧t✉r❛ ❞❡ 3000m ❡stá ✈♦❛♥❞♦ ❤♦r✐③♦♥t❛❧♠❡♥t❡ ❛ 500km/h✱ ❡ ♣❛ss❛
❞✐r❡t❛♠❡♥t❡ s♦❜r❡ ✉♠ ♦❜s❡r✈❛❞♦r✳ ❉❡t❡r♠✐♥❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ❝♦♠ q✉❡ s❡ ❛♣r♦①✐♠❛ ❞♦
♦❜s❡r✈❛❞♦r ♥♦ ✐♥st❛♥t❡ ❡♠ q✉❡ ❡stá ❛ 5.000m ❞♦ ❞❡❧❡✳
✺✳ ❯♠ t❛♥q✉❡ t❡♠ ❛ ❢♦r♠❛ ❞❡ ✉♠ ❝♦♥❡ ❝♦♠ ♦ ✈ért✐❝❡ ♣❛r❛ ❛❜❛✐①♦ ❡ ♠❡❞❡ 12 m ❞❡
❛❧t✉r❛ ❡ 12 m ❞❡ ❞✐â♠❡tr♦✳ ❇♦♠❜❡✐❛✲s❡ á❣✉❛ à r❛③ã♦ ❞❡ 4 m3 /min✳ ❈❛❧❝✉❧❛r ❛ r❛③ã♦
❝♦♠ q✉❡ ♦ ♥í✈❡❧ ❞❡ á❣✉❛ s♦❜❡✿ ❛✮ ◗✉❛♥❞♦ ❛ á❣✉❛ t❡♠ 2 m ❞❡ ♣r♦❢✉♥❞✐❞❛❞❡✳ ❜✮
◗✉❛♥❞♦ ❛ á❣✉❛ t❡♠ 8 m ❞❡ ♣r♦❢✉♥❞✐❞❛❞❡✳
hxi
✻✳ ❊s❝r❡✈❡r ❛s ❡q✉❛çõ❡s ❞❛ r❡t❛ t❛♥❣❡♥t❡ ❡ ♥♦r♠❛❧ à ❝❛t❡♥ár✐❛ y = cosh
✱ ♥♦ ♣♦♥t♦
2
x = 2Ln2✳
✼✳ ◆✉♠ ✐♥st❛♥t❡ ❞❛❞♦✱ ♦s ❝❛t❡t♦s ❞❡ ✉♠ tr✐â♥❣✉❧♦ r❡t♦ sã♦ 8cm ❡ 6cm✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✳
❖ ♣r✐♠❡✐r♦ ❝❛t❡t♦ ❞❡❝r❡s❝❡ à r❛③ã♦ ❞❡ 1cm ♣♦r ♠✐♥✉t♦✱ ❡ ♦ s❡❣✉♥❞♦ ❝r❡s❝❡ à r❛③ã♦
❞❡ 2cm ♣♦r ♠✐♥✉t♦✳ ❈♦♠ q✉❡ ✈❡❧♦❝✐❞❛❞❡ ❝r❡s❝❡ ❛ ár❡❛ ❞❡♣♦✐s ❞❡ ❞♦✐s ♠✐♥✉t♦s❄
✽✳ ❯♠❛ ❜♦❧❛ ❡♥❝❤❡✲s❡ ❞❡ ❛r ❛ r❛③ã♦ ❞❡ 15cm3 /sg ✳ ❈♦♠ q✉❡ ✈❡❧♦❝✐❞❛❞❡ ❡st❛ ❝r❡s❝❡♥❞♦
♦ ❞✐â♠❡tr♦ ❞❡♣♦✐s ❞❡ 5 s❡❣✉♥❞♦s❄ ❙✉♣♦r q✉❡ ♦ ❞✐â♠❡tr♦ é ③❡r♦ ♥♦ ✐♥st❛♥t❡ ③❡r♦✳
✸✶✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✾✳ ❯♠ ❝♦r♣♦ ❡♠ q✉❡❞❛ ❧✐✈r❡ ♣❡r❝♦rr❡ ✉♠❛ ❞✐stâ♥❝✐❛ D q✉❡ ✈❛r✐❛ ❝♦♠ ♦ t❡♠♣♦ s❡❣✉♥❞♦
❛ ❡q✉❛çã♦✿ D(t) = 4, 9t2 ✭❞✐stâ♥❝✐❛ ❡♠ ♠❡tr♦s ❡ t ❡♠ s❡❣✉♥❞♦s✮✳ ❛✮ ❈❛❧❝✉❧❛r ❛ t❛①❛
❞❡ ✈❛r✐❛çã♦ ❞❡ d ✭❞✐stâ♥❝✐❛✮ ❡♠ r❡❧❛çã♦ ❛ t ❡♥tr❡ t1 ❡ t2 ♥♦s s❡❣✉✐♥t❡s ✐♥t❡r✈❛❧♦s✿
(1s, 1.5s), (1s, 1.3s)✳ ❜✮ ❈❛❧❝✉❧❛r ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛ ♥♦ ✐♥st❛♥t❡ t = 1S ✳
✶✵✳ ❯♠❛ ❡s❝❛❞❛ ❝♦♠ 6m ❞❡ ❝♦♠♣r✐♠❡♥t♦ ❡stá ❛♣♦✐❛❞❛ ❡♠ ✉♠❛ ♣❛r❡❞❡ ✈❡rt✐❝❛❧✳ ❙❡ ❛
❜❛s❡ ❞❛ ❡s❝❛❞❛ ❝♦♠❡ç❛ ❛ s❡ ❞❡s❧✐③❛r ❤♦r✐③♦♥t❛❧♠❡♥t❡✱ à r❛③ã♦ ❞❡ 0, 6m/s✱ ❝♦♠ q✉❡
✈❡❧♦❝✐❞❛❞❡ ♦ t♦♣♦ ❞❛ ❡s❝❛❞❛ ❞❡s❝❡ ❛ ♣❛r❡❞❡✱ q✉❛♥❞♦ ❡stá ❛ 4m ❞♦ s♦❧♦❄
✶✶✳ ❯♠ ♣♦♥t♦ s❡ ♠♦✈❡ ❛♦ ❧♦♥❣♦ ❞❡ ✉♠❛ ❝✉r✈❛ y =
√
1 + x2 ❞❡ ♠♦❞♦ q✉❡
dy
q✉❛♥❞♦ x = 3✳
dt
dx
= 4✳ ❆❝❤❛r
dt
✶✷✳ ❆ ❛❧t✉r❛ ❞❡ ✉♠ ♦❜❥❡t♦ t s❡❣✉♥❞♦s ❛♣ós ❞❡ s❡r ❧❛r❣❛❞♦ ❛ 150m ❞♦ s♦❧♦ é ❞❛❞❛ ♣❡❧❛
❢✉♥çã♦✿ f (t) = 150 − 4, 9t✳ ✭❛✮ ❊♥❝♦♥tr❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ♠é❞✐❛ ❞♦ ♦❜❥❡t♦ ❞✉r❛♥t❡ ♦s
três ♣r✐♠❡✐r♦s s❡❣✉♥❞♦s✳ ✭❜✮ ▼❡❞✐❛♥t❡ ♦ ❚✳❱✳▼✳ ✈❡r✐✜❝❛r q✉❡ ❡♠ ❛❧❣✉♠ ✐♥st❛♥t❡
❞✉r❛♥t❡ ♦s três ♣r✐♠❡✐r♦s s❡❣✉♥❞♦s ❞❡ q✉❡❞❛✱ ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛ é ✐❣✉❛❧ à
✈❡❧♦❝✐❞❛❞❡ ♠é❞✐❛✳ ❊♥❝♦♥tr❡ ❡ss❡ ✐♥st❛♥t❡✳
✶✸✳ ❯♠❛ ❜♦❧❛ ❞❡ ❜✐❧❤❛r é ❛t✐♥❣✐❞❛ ❡ ♠♦✈❡✲s❡ ❡♠ ❧✐♥❤❛ r❡t❛✳ ❙❡ Scm é ❛ ❞✐stâ♥❝✐❛ ❞❛
❜♦❧❛ ❞❡ s✉❛ ♣♦s✐çã♦ ✐♥✐❝✐❛❧ ❡♠ t s❡❣✉♥❞♦s✱ ♦♥❞❡ S = 100t2 + 100t✳ ❙❡ vcm/s é ❛
✈❡❧♦❝✐❞❛❞❡ ❞❛ ❜♦❧❛ ✱ ❡♥tã♦ v é ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞❡ S ❝♦♠ r❡❧❛çã♦ ❛ t✳ ❙❡ ❛ ❜♦❧❛
❜❛t❡ ♥❛ t❛❜❡❧❛ ❛ 39cm ❞❛ ♣♦s✐çã♦ ✐♥✐❝✐❛❧ ✱❝♦♠ q✉❡ ✈❡❧♦❝✐❞❛❞❡ ❡❧❛ ❜❛t❡ ♥❛ t❛❜❡❧❛❄
✶✹✳ ❯♠ ❢♦❣✉❡t❡ é ❧❛♥ç❛❞♦ ✈❡rt✐❝❛❧♠❡♥t❡ ♣❛r❛ ❝✐♠❛✱ ❡ ❡stá S ♠❡tr♦s ❛❝✐♠❛ ❞♦ s♦❧♦✱ t
s❡❣✉♥❞♦s ❛♣ós ♦ ❧❛♥ç❛♠❡♥t♦✱ ♦♥❞❡ S = 560t − 16t2 é ❛ ❞✐r❡çã♦ ♣♦s✐t✐✈❛ ♣❛r❛ ❝✐♠❛✳
❙❡ v m/s é ❛ ✈❡❧♦❝✐❞❛❞❡ ❞♦ ❢♦❣✉❡t❡✱ ❡♥tã♦ v é ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞❡ S ❡♠ r❡❧❛çã♦
❛ t ✳ ✭❛✮ ❆❝❤❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ❞♦ ❢♦❣✉❡t❡ 2seg ✳ ❛♣ós ♦ ❧❛♥ç❛♠❡♥t♦❀ ✭❜✮ ❙❡ ❛ ❛❧t✉r❛
♠á①✐♠❛ é ❛t✐♥❣✐❞❛ q✉❛♥❞♦ ❛ ✈❡❧♦❝✐❞❛❞❡ é ③❡r♦✱ ❛❝❤❡ q✉❛♥t♦ t❡♠♣♦ ❞❡♠♦r❛ ♣❛r❛ ♦
❢♦❣✉❡t❡ ❛t✐♥❣✐r s✉❛ ❛❧t✉r❛ ♠á①✐♠❛✳
✶✺✳ ❯♠ ❝❛rr♦ t❡♠ q✉❡ s❡ tr❛s❧❛❞❛r ❞♦ ♣♦♥t♦ A ❛té ♦ ♣♦♥t♦ B ✭✈❡r ❋✐❣✉r❛ ✮✳ ❖ ♣♦♥t♦
B s❡ ❡♥❝♦♥tr❛ ❛ 36❦♠ ❞❡ ✉♠❛ ❡str❛❞❛ r❡t❛✳ ❙♦❜r❡ ❛ ❡str❛❞❛ ♦ ❝❛rr♦ ♣❡r❝♦rr❡ ❛
✉♠❛ ✈❡❧♦❝✐❞❛❞❡ ❝♦♥st❛♥t❡ ❞❡ 100❦♠✴❤✱ ❡♥t❛♥t♦ q✉❡ ♥♦ t❡rr❡♥♦ s✉❛ ✈❡❧♦❝✐❞❛❞❡ é ❞❡
80❦♠✴❤✳ ◗✉❛❧ é ♦ ♣❡r❝♦rr✐❞♦ q✉❡ ♦ ❝♦♥❞✉t♦r ❞❡✈❡ s❡❣✉✐r ♣❛r❛ q✉❡ ♦ t❡♠♣♦ ❡♠ ✐r ❞❡
A ❛té B s❡❥❛ ♦ ♠í♥✐♠♦❄ ◗✉❛❧ ♦ t❡♠♣♦ q✉❡ ❞❡♠♦r❛ ♣❛r❛ ♣❡r❝♦rr❡r ❞❡ A ❛té B ❄
❇
❆✛
100 ❦♠
✲
✳✳
✳✳
✳✳ 36 ❦♠
✳✳
✳✳
✳✳
❊str❛❞❛
✸✶✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
✻✳✷ ❊st✉❞♦ ❞♦ ❣rá✜❝♦ ❞❡ ❢✉♥çõ❡s
❊st✉❞❛r❡♠♦s ❛♣❧✐❝❛çõ❡s s♦❜r❡ ♣r♦♣r✐❡❞❛❞❡s ❞❡ ❞❡r✐✈❛çã♦✱ ♦❜t❡♥❞♦ ♥♦✈❛s ♣r♦♣r✐❡❞❛✲
❞❡s q✉❡ ♥♦s ♣❡r♠✐t✐r❛♠ ❡st✉❞❛r ❛ ✈❛r✐❛çã♦ ❞❡ ✉♠❛ ❢✉♥çã♦ ❞❡t❡r♠✐♥❛♥❞♦ ✐♥t❡r✈❛❧♦s ❞❡
❝r❡s❝✐♠❡♥t♦ ♦✉ ❞❡❝r❡s❝✐♠❡♥t♦✱ ♣♦♥t♦s ❞❡ ❡①tr❡♠♦✱ ✐♥t❡r✈❛❧♦s ❞❡ ❝♦♥❝❛✈✐❞❛❞❡ ❡ ♣♦♥t♦s ❞❡
✐♥✢❡①ã♦✳
✻✳✷✳✶
❋✉♥çã♦ ❝r❡s❝❡♥t❡✳ ❋✉♥çã♦ ❞❡❝r❡s❝❡♥t❡
❉❡✜♥✐çã♦ ✻✳✹✳
❙❡❥❛
f : R −→ R
✉♠❛ ❢✉♥çã♦✱ ❡
❛✮ ❉✐③❡♠♦s q✉❡ f (x) é
I ⊆ D(f )✳
I q✉❛♥❞♦✱
❝r❡s❝❡♥t❡ ❡♠
t❡♠♦s f (x1 ) ≤ f (x2 ✮✳
∀ x1 , x2 ∈ I ❝♦♠ x1 < x2
❜✮ ❉✐③❡♠♦s q✉❡ f (x) é ❞❡❝r❡s❝❡♥t❡ ❡♠ I q✉❛♥❞♦✱
∀ x1 , x2 ∈ I ❝♦♠ x1 < x2
t❡♠♦s f (x1 ) ≥ f (x2 ✮✳
❝✮ ❉✐③❡♠♦s q✉❡ f (x) é ❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡ ❡♠ I q✉❛♥❞♦✱
x1 < x2 t❡♠♦s f (x1 ) < f (x2 ✮✳
❞✮ ❉✐③❡♠♦s q✉❡ f (x) é ❡str✐t❛♠❡♥t❡
❞❡❝r❡s❝❡♥t❡ ❡♠
∀ x1 , x2 ∈ I ❝♦♠
I q✉❛♥❞♦✱
❝♦♠ x1 < x2 t❡♠♦s f (x1 ) > f (x2 ✮✳
∀ x 1 , x2 ∈ I
Pr♦♣r✐❡❞❛❞❡ ✻✳✶✳
❙✉♣♦♥❤❛
t❡♠♦s✿
f : [a, b] −→ R
s❡❥❛ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❡♠
[a, b]
❝♦♠ ❞❡r✐✈❛❞❛ ❡♠
(a, b)✱
✐✮ ❙❡ f ′ (x) > 0, ∀ x ∈ (a, b)❀ ❡♥tã♦ f é ❝r❡s❝❡♥t❡ ❡♠ [a, b]✳
✐✐✮ ❙❡ f ′ (x) < 0, ∀ x ∈ (a, b)❀ ❡♥tã♦ f é ❞❡❝r❡s❝❡♥t❡ ❡♠ [a, b]✳
❉❡♠♦♥str❛çã♦✳
✭✐✮
❙❡❥❛♠ x1 , x2 ∈ [a, b] ❝♦♠ x1 < x2 ✳ ❆s ❝♦♥❞✐çõ❡s ✭❛✮ ❡ ✭❜✮ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✶✮ sã♦
✈❡r✐✜❝❛❞❛s ♥♦ s✉❜✐♥t❡r✈❛❧♦ [x1 , x2 ] ❞❡ [a, b]❀ ❧♦❣♦✱ ♣❡❧♦ ❚✳❱✳▼✳ ❊①✐st❡ c ∈ (x1 , x2 ) t❛❧
q✉❡ f (x2 ) − f (x1 ) = (x2 − x1 ) · f ′ (c)✳
❈♦♠♦ c ∈ (x1 , x2 )✱ ❡♥tã♦ c ∈ (a, b)❀ ❧♦❣♦✱ ♣❡❧❛ ❤✐♣ót❡s❡ f ′ (c) > 0✱ ❡ ❝♦♠♦ x2 − x1 > 0
s❡❣✉❡✱ f (x2 ) − f (x1 ) = (x2 − x1 ) · f ′ (c) > 0✳
▲♦❣♦✱ ∀ x1 , x2 ∈ [a, b] ❝♦♠ x1 < x2 t❡♠♦s f (x1 ) < f (x2 ) ❡ f é ❝r❡s❝❡♥t❡ ❡♠ [a, b]✳
❉❡♠♦♥str❛çã♦✳
✭✐✐✮
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
✸✶✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈♦♥❞✐çã♦ s✉✜❝✐❡♥t❡ ❞❡ ❡①tr❡♠♦ ❝♦♠ ❛ ❞❡r✐✈❛❞❛ 1a ✳
❙❡❥❛ y = f (x) ✉♠❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♥✉♠❛ ✈✐③✐♥❤❛♥ç❛ B(c, δ) ❞♦ ♣♦♥t♦ x = c✱ ❝♦♥tí♥✉❛
❡♠ B(c, δ) ❡ ❝♦♠ ❞❡r✐✈❛❞❛ ❡♠ B(c, δ)✱ ❡①❝❡t♦ ♣♦ss✐✈❡❧♠❡♥t❡ ❡♠ x = c ❡♥tã♦✿
❛✮ ❙❡ f ′ (x) > 0, ∀ x ∈ (c − δ, c) ❡ f ′ (x) < 0, ∀ x ∈ (c, c + δ)✱ ❡♥tã♦ f (c) é ♣♦♥t♦ ❞❡
♠á①✐♠♦ ❧♦❝❛❧ ❞❡ f ✳
❜✮ ❙❡ f ′ (x) < 0, ∀ x ∈ (c − δ, c) ❡ f ′ (x) > 0, ∀ x ∈ (c, c + δ)✱ ❡♥tã♦ f (c) é ♣♦♥t♦ ❞❡
♠í♥✐♠♦ ❧♦❝❛❧ ❞❡ f ✳
Pr♦♣r✐❡❞❛❞❡ ✻✳✷✳
❉❡♠♦♥str❛çã♦✳ ✭❛✮
❉❛s ❤✐♣ót❡s❡s ❡ ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✶✮✱ s❡❣✉❡ q✉❡ f é ❝r❡s❝❡♥t❡ ❡♠ (c−δ, c) ❡ ❞❡❝r❡s❝❡♥t❡
❡♠ (c, c + δ)❀ ❧♦❣♦ f (x) ≤ f (c) ∀ x ∈ B(c, δ) ❡ ❞❡❞✉③✲s❡ ❞❛ ❉❡✜♥✐çã♦ ✭✻✳✹✮ q✉❡ f (c) é ✉♠
♠á①✐♠♦ ❧♦❝❛❧ ❞❡ f ✳
❉❡♠♦♥str❛çã♦✳✭❜✮
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❈r✐tér✐♦ ❞❛ ❞❡r✐✈❛❞❛ 1a ✳
❆ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✷✮ ♣❡r♠✐t❡ ❡st❛❜❡❧❡❝❡r ♦ s❡❣✉✐♥t❡ ❝r✐tér✐♦ ♣❛r❛ ❞❡t❡r♠✐♥❛r ♦s ♠á①✐✲
♠♦s ♦✉ ♠í♥✐♠♦s r❡❧❛t✐✈♦s ❞❡ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛✳
❖❜s❡r✈❛çã♦ ✻✳✶✳
1o ❉❡t❡r♠✐♥❛r ♦s ♣♦♥t♦s ❝rít✐❝♦s ❞❡ f ✳
2o ❙❡ c é ✉♠ ♣♦♥t♦ ❝rít✐❝♦✱ ❞❡✈❡✲s❡ ❞❡t❡r♠✐♥❛r ♦ s✐♥❛❧ ❞❡ f ′ (x)✱ ♣r✐♠❡✐r♦ ♣❛r❛ ✈❛❧♦r❡s
♣ró①✐♠♦s à ❡sq✉❡r❞❛ ❞❡ c ❡ ❧♦❣♦ ♣❛r❛ ✈❛❧♦r❡s à ❞✐r❡✐t❛ ❞❡ c✳
3o ❙❡ ♦ s✐♥❛❧ ♠✉❞❛ ❞❡ + ♣❛r❛ − ✱ ❡♥tã♦ f (c) é ♠á①✐♠♦ r❡❧❛t✐✈♦❀ ❡ s❡ ♦ s✐♥❛❧ ♠✉❞❛ ❞❡
− ♣❛r❛ + ❀ ❡♥tã♦ f (c) é ♣♦♥t♦ ❞❡ ♠í♥✐♠♦ r❡❧❛t✐✈♦✳
4o ❙❡ ♥ã♦ ❡①✐st❡ ♠✉❞❛♥ç❛ ❞❡ s✐♥❛❧✱ ❡♥tã♦ ♥ã♦ ❡①✐st❡ ♥❡♠ ♠á①✐♠♦ ♥❡♠ ♠í♥✐♠♦ r❡❧❛t✐✈♦
❡♠ x = c✳
❈♦♥❞✐çã♦ s✉✜❝✐❡♥t❡ ❞❡ ❡①tr❡♠♦ ❝♦♠ ❛ ❞❡r✐✈❛❞❛ 2a
❙❡❥❛ y = f (x) ✉♠❛ ❢✉♥çã♦ ❝♦♠ ❞❡r✐✈❛❞❛ ❞❡ s❡❣✉♥❞❛ ♦r❞❡♠ ❝♦♥tí♥✉❛ ❡♠ ✉♠❛ ✈✐③✐✲
♥❤❛♥ç❛ B(c, δ) ❞❡ x = c✱ ❞❡ ♠♦❞♦ q✉❡ f ′ (c) = 0 ❡ f ′ (c) 6= 0 ❡♥tã♦✿
Pr♦♣r✐❡❞❛❞❡ ✻✳✸✳
✐✮
✐✐✮
❙❡ f ′′ (c) > 0✱ ❡♥tã♦ f (c) é ♣♦♥t♦ ❞❡ ♠í♥✐♠♦ ❧♦❝❛❧ ❞❡ f ✳
❙❡ f ′′ (c) < 0✱ ❡♥tã♦ f (c) é ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❧♦❝❛❧ ❞❡ f ✳
❉❡♠♦♥str❛çã♦✳
✭❛✮
f ′ (c + h)
f ′ (c + h) − f ′ (c)
= lim
✱ ♣♦✐s
h→0
h→0
h
h
❉❛ ❞❡✜♥✐çã♦ ❞❡ ❞❡r✐✈❛❞❛ s❡❣✉❡✱ f ′′ (c) = lim
f ′ (c) = 0✳
✸✶✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
f ′ (c + h)
P♦r ❤✐♣ót❡s❡ f ′′ (x) é ❝♦♥tí♥✉❛ ❡♠ x = c ❡ f ′′ (c) > 0✱ ❡♥tã♦ lim
> 0✱ ❧♦❣♦
h→0
h
′
t❡♠♦s ♣❛r❛ h > 0✱ ✭s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✮ f (x) > 0, ∀ x ∈ (c, c + δ)✳
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✱ ♣❛r❛ h < 0 ✭s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦✮ t❡♠♦s f ′ (c + h) < 0 ♦ q✉❡
✐♠♣❧✐❝❛ f ′ (x) < 0, ∀ x ∈ (c − δ, c)❀ ❛♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✷✮ ♣❛r❛ ❛ ❢✉♥çã♦ f ′ (x)
r❡s✉❧t❛ q✉❡ f (c) é ✉♠ ♠í♥✐♠♦ ❧♦❝❛❧ ❞❡ f ✳
❉❡♠♦♥str❛çã♦✳
✭❜✮
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❖❜s❡r✈❛çã♦ ✻✳✷✳
❆ Pr♦♣r✐❡❞❛❞❡
❈r✐tér✐♦ ❞❛ ❞❡r✐✈❛❞❛
✭✻✳✸✮
2a ✳
♣❡r♠✐t❡ ❡st❛❜❡❧❡❝❡r ♦ s❡❣✉✐♥t❡ ❝r✐tér✐♦ ♣❛r❛ ❞❡t❡r♠✐♥❛r ♦s ♠á①✐✲
♠♦s ♦✉ ♠í♥✐♠♦s r❡❧❛t✐✈♦s ❞❡ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛✳
❉❡t❡r♠✐♥❛r ♦s ♣♦♥t♦s ❝rít✐❝♦s ❞❡ f ✳
❉❡t❡r♠✐♥❛r ❛ ❞❡r✐✈❛❞❛ s❡❣✉♥❞❛ ❞❡ f ✳
P❛r❛ ❝❛❞❛ ♣♦♥t♦ x = c ❝rít✐❝♦ ❞❡t❡r♠✐♥❛r f ′′ (c)✳
❙❡ f ′′ (c) é ♣♦s✐t✐✈♦✱ ❡♥tã♦ f (c) é ♣♦♥t♦ ❞❡ ♠í♥✐♠♦
r❡❧❛t✐✈♦✳
5o ❙❡ f ′′ (c) é ♥❡❣❛t✐✈♦✱ ❡♥tã♦ f (c) é ♣♦♥t♦ ❞❡ ♠á①✐♠♦
r❡❧❛t✐✈♦✳
6o ❙❡ f ′′ (c) é ③❡r♦ ♦✉ ♥ã♦ ❡①✐st❡✱ ♦ ❝r✐tér✐♦ é ✐♥❝♦♥s✐s✲
t❡♥t❡✳
1o
2o
3o
4o
❋✐❣✉r❛ ✻✳✸✿
❊①❡♠♣❧♦ ✻✳✾✳
❉❡t❡r♠✐♥❡ ♦s ✐♥t❡r✈❛❧♦s ❞❡ ❝r❡s❝✐♠❡♥t♦ ❡ ♦s ❡①tr❡♠♦s
r❡❧❛t✐✈♦s ❞❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
f (x) = x3 − 3x2 ✳
❚❡♠♦s f ′ (x) = 3x(x − 2)❀ q✉❛♥❞♦ f ′ (x) = 0 r❡s✉❧t❛ x = 0 ❡ x = 2 ❛ss✐♠✱ 0 ❡ 2 sã♦
♣♦♥t♦s ❝rít✐❝♦s✳ ❆♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✶✮ ❝♦♥str✉❛♠♦s ❛ t❛❜❡❧❛✳
■♥t❡r✈❛❧♦s
❙✐♥❛❧ ❞❡ f ′ (x)
❈♦♠♣♦rt❛♠❡♥t♦
(−∞, 0)
+
❝r❡s❝❡♥t❡
(0, 2)
−
❞❡❝r❡s❝❡♥t❡
(2, +∞)
+
❝r❡s❝❡♥t❡
❊①tr❡♠♦s
f (0) = 0 ♠á①✳ r❡❧❛t✳
f (2) = −4 ♠í♥✳ r❡❧❛t✳
❖ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ é ♠♦str❛❞❛ ♥❛ ❋✐❣✉r❛ ✭✻✳✸✮✳
❊①❡♠♣❧♦ ✻✳✶✵✳
❉❡t❡r♠✐♥❡ ♦s ✐♥t❡r✈❛❧♦s ❞❡ ❝r❡s❝✐♠❡♥t♦ ❡ ♦s ❡①tr❡♠♦s r❡❧❛t✐✈♦s ❞❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
✸✶✼
g(x) =
6 x
+ ✳
x 6
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
(x − 6)(x + 6)
❚❡♠♦s ♦ D(g) = R = {0}, g ′ (x) =
q✉❛♥❞♦ g ′ (x) = 0 ♦❜té♠♦s ♦s ♣♦♥t♦s
6x2
❝rít✐❝♦s x = 6 ❡ x = −6❀ ♦ ♣♦♥t♦ x = 0 ♥ã♦ é ♣♦♥t♦ ❝rít✐❝♦ ♣♦r ♥ã♦ ♣❡rt❡♥❝❡r ❛♦ ❞♦♠í✲
♥✐♦ D(g)❀ ♣♦ré♠ ❞❡✈❡♠♦s ❝♦♥s✐❞❡r❛r✲❧✵ ♣♦r s❡r ♣♦♥t♦ ❞❡ ❞❡s❝♦♥t✐♥✉✐❞❛❞❡✳ ❈♦♥s✐❞❡r❡✲s❡ ❛
s❡❣✉✐♥t❡ t❛❜❡❧❛✿
■♥t❡r✈❛❧♦s
❙✐♥❛❧ ❞❡ f ′ (x)
❈♦♠♣♦rt❛♠❡♥t♦
(−∞, −6)
+
❝r❡s❝❡♥t❡
(−6, 0)
−
❞❡❝r❡s❝❡♥t❡
(0, 6)
−
(6, +∞)
+
❊①❡♠♣❧♦ ✻✳✶✶✳
❙❡❥❛ ❛ ❢✉♥çã♦
❙♦❧✉çã♦✳
f (x) =
p
3
x2 (x + 3)✱
❞❡❝r❡s❝❡♥t❡
❝r❡s❝❡♥t❡
❊①tr❡♠♦s
f (−6) = −2 ♠á①✳ r❡❧❛t✳
f (6) = 2 ♠í♥✳ r❡❧❛t✳
❞❡t❡r♠✐♥❡ ♦s ♣♦♥t♦s ❞❡ ❡①tr❡♠♦s r❡❧❛t✐✈♦s✳
❖ ❞♦♠í♥✐♦ D(f ) = R✱ ❡ f ′ (x) = p
3
x+2
x(x + 3)2
✱ q✉❛♥❞♦ f ′ (x) = 0 t❡♠♦s ♦s ♣♦♥t♦s
❝rít✐❝♦s sã♦✿ 0, −2 ❡ −3✳
❖❜s❡r✈❡✱ ❡♠ x = −3 ❡ x = 0 ❛ ❞❡r✐✈❛❞❛ ♥ã♦ ❡①✐st❡ ✭é ✐♥✜♥✐t❛✮✳ ❆♣❧✐❝❛♥❞♦ ❛ Pr♦♣r✐❡❞❛❞❡
✭✻✳✷✮✱ ♣❛r❛ ♦ ❝á❧❝✉❧♦ ❞♦s ✐♥t❡r✈❛❧♦s ❞❡ ❝r❡s❝✐♠❡♥t♦ ♦✉ ❞❡❝r❡s❝✐♠❡♥t♦✱ s❡❣✉♥❞♦ ❛ s❡❣✉✐♥t❡
t❛❜❡❧❛✱ t❡♠♦s✿
■♥t❡r✈❛❧♦s
❙✐♥❛❧ ❞❡ f ′ (x)
❈♦♠♣♦rt❛♠❡♥t♦
(−∞, −3)
+
❝r❡s❝❡♥t❡
(−3, −2)
+
❞❡❝r❡s❝❡♥t❡
(−2, 0)
−
❝r❡s❝❡♥t❡
(0, +∞)
+
❝r❡s❝❡♥t❡
❊①tr❡♠♦s
f (−2) =
√
3
4 ♠á①✳ r❡❧❛t✳
f (0) = 0 ♠í♥✳ r❡❧❛t✳
❊①❡♠♣❧♦ ✻✳✶✷✳
❯♠❛ ❡♠♣r❡s❛ ❛♣✉r♦✉ q✉❡ s✉❛ r❡❝❡✐t❛ t♦t❛❧ ✭❡♠ r❡❛✐s✮ ❝♦♠ ❛ ✈❡♥❞❛ ❞❡ ✉♠ ♣r♦❞✉t♦ ❛❞✲
♠✐t❡ ❝♦♠♦ ♠♦❞❡❧♦
R = −x3 +450x2 +52.500x✱ ♦♥❞❡ x é ♦ ♥ú♠❡r♦ ❞❡ ✉♥✐❞❛❞❡s ♣r♦❞✉③✐❞❛s✳
◗✉❛❧ ♦ ♥í✈❡❧ ❞❡ ♣r♦❞✉çã♦ q✉❡ ❣❡r❛ ❛ r❡❝❡✐t❛ ♠á①✐♠❛❄
❙♦❧✉çã♦✳
❚❡♠♦s R = −x3 + 450x2 + 52.500x✱ ❧♦❣♦ R′ = −3x2 + 900x + 52500❀ r❡s♦❧✈❡♥❞♦
R′ (x) = −3x2 + 900x + 52500 = 0 ⇒ −3(x2 − 300x − 17500) = 0 ⇒ −3(x −
350)(x + 50) = 0 ⇒ x = 350 ♦✉ x = −50✳
❖❜s❡r✈❡✱ R′′ (x) = −6x + 900 ⇒ R′′ (350) < 0✱ ❛ss✐♠ q✉❛♥❞♦ x = 350 ♦ ♥í✈❡❧ ❞❡
♣r♦❞✉çã♦ ❣❡r❛ ❛ r❡❝❡✐t❛ ♠á①✐♠❛✳
✸✶✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✻✳✶✸✳
❉❡t❡r♠✐♥❡ ♦s ✐♥t❡r✈❛❧♦s ❞❡ ❝r❡s❝✐♠❡♥t♦ ❡ ♦s ❡①tr❡♠♦s r❡❧❛t✐✈♦s ❞❛ ❢✉♥çã♦
3
f (x) =
2
x − 3x − 9x + 2✳
❙♦❧✉çã♦✳
f ′ (x) = 3x2 − 6x − 9 = 3(x − 3)(x + 1)✱ ❡♠ ✈✐rt✉❞❡
f ′ (x) = 0 ✐♠♣❧✐❝❛ x = 3 ❡ x = −1✱ ❡ s❡❣✉♥❞♦ ❛ s❡❣✉✐♥t❡ t❛❜❡❧❛✿
❖❜s❡r✈❡✱
■♥t❡r✈❛❧♦s
❙✐♥❛❧ ❞❡
f ′ (x)
❈♦♠♣♦rt❛♠❡♥t♦
(−∞, −1)
+
❝r❡s❝❡♥t❡
(−1, 3)
−
❞❡❝r❡s❝❡♥t❡
(3, +∞)
+
❝r❡s❝❡♥t❡
❞❛
✭✻✳✷✮
Pr♦♣r✐❡❞❛❞❡
❊①tr❡♠♦s
f (−1) = 7
♠á①✳ r❡❧❛t✳
f (3) = −25
♠í♥✳ r❡❧❛t✳
❊①❡♠♣❧♦ ✻✳✶✹✳
❙❡❥❛ ❛ ❢✉♥çã♦
f (x) =
❙♦❧✉çã♦✳
❚❡♠♦s
x2
(x − 2)2
❞❡t❡r♠✐♥❡ ♦s ❡①tr❡♠♦s r❡❧❛t✐✈♦s✳
D(f ) = R − {2}, f ′ (x) =
■♥t❡r✈❛❧♦s
❙✐♥❛❧ ❞❡
−4x
(x − 2)2
f ′ (x)
♦ ú♥✐❝♦ ♣♦♥t♦ ❝rít✐❝♦ é
❈♦♠♣♦rt❛♠❡♥t♦
(−∞, 0)
−
❞❡❝r❡s❝❡♥t❡
(0, 2)
+
❞❡❝r❡s❝❡♥t❡
(2, +∞)
−
❝r❡s❝❡♥t❡
❆ r❡t❛
♠♦str❛ ❛
x=2
x = 2✳
▲♦❣♦✿
❊①tr❡♠♦s
f (0) = 0
♠í♥✳ r❡❧❛t✳
é ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧ ❞❛ ❝✉r✈❛ ❝♦♠♦
✭✻✳✹✮✳
❋✐❣✉r❛
❊①❡♠♣❧♦ ✻✳✶✺✳
❙❡❥❛
a > 0✱
♠♦str❡ q✉❡ ♦ ♠á①✐♠♦ ❛❜s♦❧✉t♦ ❞❛
❢✉♥çã♦✿
f (x) =
1
1
−
1+ | x | 1+ | x − a |
é
2+a
1+a
❙♦❧✉çã♦✳
❋✐❣✉r❛ ✻✳✹✿
▲❡♠❜r❡✱ s❡
g ′ (x) =
g(x) =| x |✱
x
❀
|x|
❡♥tã♦✿
❧♦❣♦ t❡♠♦s
f ′ (x) =
(x − a)
x
1
1
·
·
−
✱
2
2
(1+ | x − a |) | x − a | (1+ | x |) | x |
✸✶✾
♦ q✉❡
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✐♠♣❧✐❝❛ q✉❡ ❛ ❞❡r✐✈❛❞❛ ♥ã♦ ❡①✐st❡ ❡♠ x = 0 ❡ ❡♠ x = a✳
1
(x − a)
x
1
a
·
·
=
♦♥❞❡ x = ❀
2
2
(1+ | x − a |) | x − a |
(1+ | x |) | x |
2
a
❡ a
❛ss✐♠ ♦s ♣♦♥t♦s ❝rít✐❝♦s sã♦ 0,
2
◗✉❛♥❞♦ f ′ (x) = 0 ❡♥tã♦
■♥t❡r✈❛❧♦s
❙✐♥❛❧ ❞❡ f ′ (x)
❈♦♠♣♦rt❛♠❡♥t♦
(−∞, 0)
a
(0, )
2
a
( , a)
2
(a, +∞)
+
❝r❡s❝❡♥t❡
−
❞❡❝r❡s❝❡♥t❡
+
❝r❡s❝❡♥t❡
−
❞❡❝r❡s❝❡♥t❡
❊①tr❡♠♦s
♠á①✳ ❧♦❝❛❧ ❡♠ f (0)
a
2
♠á①✳ ❧♦❝❛❧ ❡♠ f (a)
♠í♥✳ ❧♦❝❛❧ ❡♠ f ( )
2+a
a
4
2+a
1
=
; f( ) =
❡ f (a) =
✱ ❝♦♥s✐❞❡r❛♥❞♦ q✉❡
1+a
1+a
2
2+a
1+a
a
f é ❝♦♥tí♥✉❛ ❡ ❞♦ ❢❛t♦ f ( ) < f (0) = f (a) ❝♦♥❝❧✉í♠♦s q✉❡ ♦ ♠á①✐♠♦ ❛❜s♦❧✉t♦ ❞❡ f (x) é
2
2+a
f (a) =
✳
1+a
❚❡♠♦s f (0) = 1 +
❊①❡♠♣❧♦ ✻✳✶✻✳
❉❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s ❞❡ a, b ❡ c ❞❡ ♠♦❞♦ q✉❡ ❛ ❢✉♥çã♦ f (x) = ax4 + bx2 + c t❡♥❤❛
1
❡①tr❡♠♦ r❡❧❛t✐✈♦ ❡♠ x = ✱ ❡ q✉❡ ❛ ❡q✉❛çã♦ ❞❛ t❛♥❣❡♥t❡ ♥♦ ♣♦♥t♦ ❞❡ ❛❜s❝✐ss❛ x = −1
2
s❡❥❛ 2x − y + 4 = 0✳
❙♦❧✉çã♦✳
❆ ❞❡r✐✈❛❞❛ f ′ (x) = 4ax3 + 2bx ❝♦♠♦ x =
1
1
1
é ♣♦♥t♦ ❝rít✐❝♦ t❡♠♦s f ′ ( ) = 4a( )3 +
2
2
2
a
1
2b( ) = 0 ❛ss✐♠ + b = 0✳
2
2
P♦r ♦✉tr♦ ❧❛❞♦✱ m = 2 é ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ t❛♥❣❡♥t❡ q✉❛♥❞♦ x = −1✱ ❡♥tã♦
f ′ (−1) = −4a − 2b = 2✳
◆❛ r❡t❛ t❛♥❣❡♥t❡✱ q✉❛♥❞♦ x = −1t❡♠♦s y = 2 ❡ ♥❛ ❢✉♥çã♦✱ f (−1) = a + b + c = 2✳
a
❘❡s♦❧✈❡♥❞♦ ❛s três ✐❣✉❛❧❞❛❞❡s✿
+ b = 0, −4a − 2b = 2 ❡ a + b + c = 2 s❡❣✉❡
2
1
7
2
❡ c= ✳
a=− , b=
3
3
3
1
7
2
P♦rt❛♥t♦✱ f (x) = − x4 + x2 + ✳
3
3
3
❖❜s❡r✈❛çã♦ ✻✳✸✳
❈r✐tér✐♦ ♣❛r❛ ♦s ❡①tr❡♠♦s ❛❜s♦❧✉t♦s ❞❡ ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ♥✉♠ ✐♥✲
t❡r✈❛❧♦ ❢❡❝❤❛❞♦✳
❙❡ f é ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ [a, b]✱ ♣❡❧♦ ❚❡♦r❡♠❛ ❞❡ ❲❡✐❡rstr❛ss✱ f ❛♣r❡✲
s❡♥t❛ ❡①tr❡♠♦s ❛❜s♦❧✉t♦s✳ P❛r❛ ♦ ❝á❧❝✉❧♦ ❞❡ s❡✉s ❡①tr❡♠♦s✱ ❝♦♥s✐❞❡r❛♥❞♦ q✉❡ ❡st❡s ♣♦❞❡♠
❡st❛r ♥♦s ❡①tr❡♠♦s ❞♦ ✐♥t❡r✈❛❧♦✱ é s✉✜❝✐❡♥t❡ ❛❞✐❝✐♦♥❛r ♦s ♣♦♥t♦s a ❡ b ❛♦s ♣♦♥t♦s ❝rít✐❝♦s
❞❡ f ✱ ❧♦❣♦ ❝♦♠♣❛r❛r ♦s ✈❛❧♦r❡s q✉❡ f ❛ss✉♠❡ ❡♠ ❝❛❞❛ ✉♠ ❞❡st❡s ♣♦♥t♦s ❝rít✐❝♦s✱ ♦ ♠❛✐♦r
é ♦ ♠á①✐♠♦ ❛❜s♦❧✉t♦ ❡ ♦ ♠❡♥♦r ♦ ♠í♥✐♠♦ ❛❜s♦❧✉t♦✳
✸✷✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✻✳✶✼✳
❉❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s ♠á①✐♠♦s ❡ ♠í♥✐♠♦s ❛❜s♦❧✉t♦s ❞❛ ❢✉♥çã♦
10
❡♠
[0, 4]✳
f (x) = x3 + 3x2 − 24x −
❙♦❧✉çã♦✳
❖❜s❡r✈❡✱ f (x) é ❝♦♥tí♥✉❛ ♥♦ ✐♥t❡r✈❛❧♦ [0, 4]✱ ❡ f ′ (x) = 3(x − 2)(x + 4)❀ ❧♦❣♦ s❡✉s ♣♦♥t♦s
❝rít✐❝♦s sã♦ 2 ❡ −4✳ P♦r ♦✉tr♦ ❧❛❞♦✱ f (2) = −38 ❡ −4 ∈
/ [0, 4]✳
P♦rt❛♥t♦✱ ♠❡❞✐❛♥t❡ ♦ ❣rá✜❝♦ t❡♠♦s q✉❡ f (2) = −38 é ♣♦♥t♦ ❞❡ ♠í♥✐♠♦ ❛❜s♦❧✉t♦ ♥♦
✐♥t❡r✈❛❧♦ [0, 4]✳
❊①❡♠♣❧♦ ✻✳✶✽✳
❙❡
g(x) = −
❙♦❧✉çã♦✳
4|x|
✱
1 + x2
❞❡t❡r♠✐♥❡ ♦s ✈❛❧♦r❡s ♠á①✐♠♦s ❡ ♠í♥✐♠♦s ❛❜s♦❧✉t♦s
❚❡♠♦s g(x) ❝♦♥tí♥✉❛ ❡♠ [−4, 2] ❡ g ′ (x) =
−4, −1, 0, 1 ❡ 2✳
4 | x | (x2 − 1)
♦s ♣♦♥t♦s ❝rít✐❝♦s sã♦
| x | (1 + x2 )2
8
16
P♦r ♦✉tr♦ ❧❛❞♦✱ g(−4) = − , g(−1) = −2, g(0) = 0, g(1) = −2 ❡ g(2) = − ✳
17
5
P♦rt❛♥t♦✱ ♦ ✈❛❧♦r ♠á①✐♠♦ ❛❜s♦❧✉t♦ é 0 = g(0)✱ ❡ ♦ ✈❛❧♦r ♠í♥✐♠♦ ❛❜s♦❧✉t♦ é −2 =
g(−1) = g(1)✳
❊①❡♠♣❧♦ ✻✳✶✾✳
❉❡t❡r♠✐♥❡ ♦ ✈❛❧♦r ♠á①✐♠♦ ❞❛ ❢✉♥çã♦
y = senx sen2x✳
❙♦❧✉çã♦✳
❉❡s❞❡ q✉❡ sen2x = 2senx cos x✱ t❡♠♦s y = senx sen2x = 2 cos x sen2 x = 2 cos x(1 −
cos2 x)✳ ❈♦♥s✐❞❡r❡ z = cos x✱ ❧♦❣♦ −1 ≤ z ≤ 1✳ ❆ ❢✉♥çã♦ g(z) = z − z 3 = z(1 − z 2 )
❛ss✉♠❡ ✈❛❧♦r❡s ♥❡❣❛t✐✈♦s ♥♦ ✐♥t❡r✈❛❧♦ −1 ≤ z < 0✱ é ✐❣✉❛❧ ❛ ③❡r♦ s❡ z = 0✱ ❡ ❛ss✉♠❡
✈❛❧♦r❡s ♣♦s✐t✐✈♦s ♥♦ ✐♥t❡r✈❛❧♦ 0 < z ≤ 1✳
1
◗✉❛♥❞♦ g(z) = z(z − z 2 ) ❡♥tã♦ g ′ (z) = 1 − 3z 2 ✱ ❢❛③❡♥❞♦ g ′ (z) = 0 s❡❣✉❡ z = ± √ sã♦
3
1
♣♦♥t♦s ❝rít✐❝♦s❀ g(z) t❡♠ ✈❛❧♦r ♠á①✐♠♦ r❡❧❛t✐✈♦ ❡♠ z = √ ✳
3
▲♦❣♦ ❛ ❢✉♥çã♦ y = senxsen2x ❛❧❝❛♥ç❛ s❡✉ ✈❛❧♦r ♠á①✐♠♦ ♥♦s ♣♦♥t♦s ♥♦s q✉❛✐s z =
4
1
cos x = √ ❡st❡ ✈❛❧♦r ❛❝♦♥t❡❝❡ q✉❛♥❞♦ x = √ ≈ 0, 777✳
3
3 3
❊①❡♠♣❧♦ ✻✳✷✵✳
♥♦
s
β
a
β−1
β
✱
▼♦str❡ q✉❡ ❛ ❢✉♥çã♦ f (x) = x −ax ❛❧❝❛♥ç❛ s❡✉ ✈❛❧♦r ♠í♥✐♠♦ ✐❣✉❛❧ ❛ (1−β)
β
s
a
β−1
♣♦♥t♦ x =
✱ s❡♠♣r❡ q✉❡ a > 0, β > 1, x > 0✳
β
❙♦❧✉çã♦✳
✸✷✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❢✉♥çã♦ f (x) = xβ − ax s❡❣✉❡ f ′ (x) = βxβ−1 − a✱ q✉❛♥❞♦ f ′ (x) = 0✱ ❡♥tã♦ x =
s❉❛
a
β−1
✳ P♦r ♦✉tr♦ ❧❛❞♦✱ ❛ ❞❡r✐✈❛❞❛ s❡❣✉♥❞❛ ❞❡ f (x) é f ′′ (x) = β(β − 1)xβ−2 > 0 ♣❡❧❛
β
❤✐♣ót❡s❡ ❞❡ β ✳
❖ ❝r✐tér✐♦
❛✜r♠❛r q✉❡ f (x) ❛t✐♥❣❡ s❡✉ ✈❛❧♦r ♠í♥✐♠♦ ✐❣✉❛❧
s❞❛ ❞❡r✐✈❛❞❛ s❡❣✉♥❞❛ ♣❡r♠✐t❡
s
❛ (1 − β)
β
a
✱ ♥♦ ♣♦♥t♦ x =
β
β−1
β−1
a
✳
β
Pr♦♣r✐❡❞❛❞❡ ✻✳✹✳ ❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍♦❧❞❡r✳
❙❡
1 1
+ = 1,
p q
p > 1,
x>0
❡
y > 0✱
t❡♠♦s
xy ≤
xp y q
+ ✳
p
q
❉❡♠♦♥str❛çã♦✳
P❡❧♦
✭✻✳✷✵✮✱ s❡ β > 1, a > 0 ❡ x > 0✱ ♣❛r❛ ❛ ❢✉♥çã♦ f (x) = xβ − ax t❡♠♦s
❊①❡♠♣❧♦
q✉❡ f (x) ≥ f
rh i
β−1
a
β
✱ ✐st♦ é
s
β
a
β−1
β
x − ax > (1 − β)
β
✭✻✳✷✮
❈♦♥s✐❞❡r❛♥❞♦
♥❡st❛ ❞❡s✐❣✉❛❧❞❛❞❡ β = p ❡ a = py ✱ ❡♥❝♦♥tr❛♠♦s ❡♠ ✭✻✳✷✮ xp − (py)x >
r
(1 − p) p−1
h ip
py
p
√
= (1 − p) p−1 y p ✳
1
1
1
p−1
1
+ = 1 r❡s✉❧t❛ = 1 − =
p
q
q
p
p
p q
xp xq
p
x − pyx ≥ − y ❞❡ ♦♥❞❡ xy ≤
+ ✳
q
p
q
❈♦♠♦
⇒
q =
p
p
, p − 1 = ✱ ❡♥tã♦
p−1
q
❊①❡♠♣❧♦ ✻✳✷✶✳
❙❡❥❛
a > 0✱
❛t✐♥❣❡ q✉❛♥❞♦
❙♦❧✉çã♦✳
♠♦str❡ q✉❡ ♦ ✈❛❧♦r ♠á①✐♠♦ ❞❛ ❢✉♥çã♦
x=
2+a
✳
1+a
f (x) =
1
1
+
1+ | x |
1+ | x − a |
1
1
+
, s❡✱ x < 0
x 1+a−x
1−
1
1
❚❡♠♦s f (x) =
+
, s❡✱ 0 < x < a
1+x 1+a−x
1
1 +
, s❡✱ a < x
1+x 1−a+x
❞❡ ♦♥❞❡
1
1
+
, s❡✱ x < 0
− x)2 (1 + a − x)2
(1 −1
1
+
, s❡✱ 0 < x < a
f ′ (x) =
2
(1 + x)
(1 + a − x)2
−1
1
−
, s❡✱ a < x
2
(1 + x)
(1 − a + x)2
✸✷✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❖❜s❡r✈❡✱ f (x) ❝r❡s❝❡ ♥♦ ✐♥t❡r✈❛❧♦ (−∞, 0) ❡ ❞❡❝r❡s❝❡ ♥♦ ✐♥t❡r✈❛❧♦ [a, +∞)✱ ❧♦❣♦ ♦
♠á①✐♠♦ ❞❡ f (x) ❛❝♦♥t❡❝❡ ♥♦ ✐♥t❡r✈❛❧♦ [0, a]✳
a
◗✉❛♥❞♦ f ′ (x) = 0✱ ♣❛r❛ x ∈ (0, a) ❡♥tã♦ (1 + x)2 − (1 − x + a)2 = 0 ⇒
x= ✳
4
2+a
2+a
a
<
= f (0) = f (a)✱ ♦ ♠á①✐♠♦ é
✳
❈♦♠♦ f ( ) =
2
2+a
1+a
1+a
2
❊①❡♠♣❧♦ ✻✳✷✷✳
❯♠ ❝♦♠❡r❝✐❛♥t❡ ✈❡♥❞❡ 2.000 ✉♥✐❞❛❞❡s ♣♦r ♠ês ❛♦ ♣r❡ç♦ ❞❡ R$10, 00 ❝❛❞❛✳ ❊❧❡ ♣♦❞❡
✈❡♥❞❡r ♠❛✐s 250 ✉♥✐❞❛❞❡s ♣♦r ♠ês ♣❛r❛ ❝❛❞❛ R$0, 25 ❞❛ r❡❞✉çã♦ ♥♦ ♣r❡ç♦✳ ◗✉❛❧ ♦ ♣r❡ç♦
✉♥✐tár✐♦ q✉❡ ♠❛①✐♠✐③❛rá ❛ r❡❝❡✐t❛❄
❙♦❧✉çã♦✳
❙❡❥❛ q ♦ ♥ú♠❡r♦ ❞❡ ✉♥✐❞❛❞❡s ✈❡♥❞✐❞❛s ❡♠ ✉♠ ♠ês✱ ❝♦♥s✐❞❡r❡♠♦s p ♦ ♣r❡ç♦ ✉♥✐tár✐♦✱
❡ R ❛ r❡❝❡✐t❛ ♠❡♥s❛❧✱ s✉♣♦♥❞♦ ❡♠ ❝♦♥❞✐çõ❡s ❞❡ ❧✐✈r❡ ❝♦♥❝♦rrê♥❝✐❛✱ ❛ r❡❝❡✐t❛ é ❞❛❞❛ ♣♦r
R = qp❀ q✉❛♥❞♦ p ♣r❡ç♦ p = 10 t❡♠♦s q = 2.000 ❡✱ q✉❛♥❞♦ p = 10, 00 − 0, 25 = 9, 75
t❡♠♦s q✉❡ q = 2.250✳
❈♦♠ ❡st❛ ✐♥❢♦r♠❛çã♦ ♣♦❞❡♠♦s ♦❜t❡r ♦ ❝♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r ❞❛ r❡t❛ q✉❡ ♣❛ss❛ ♣❡❧♦s
♣♦♥t♦s (10, 2.000) ❡ (9, 75; 2250) ♦♥❞❡
m=
10 − 9, 75
p − 10
=
q − 2.000
2.000 − 2.250
❧♦❣♦ p = −0, 001q +12❀ ❝♦♥s✐❞❡r❛♥❞♦ ❡st❛ ú❧t✐♠❛ ✐❣✉❛❧❞❛❞❡ ♥❛ ❡q✉❛çã♦ ❞❛ r❡❝❡✐t❛ ♦❜t❡♠♦s
R = q(−0, 001 × q + 12) ⇒ R′ = 12 − 0, 002q ⇒ q = 6.000 ♦❜s❡r✈❡✱ R′′ =
−0, 002 < 0✳
◗✉❛♥❞♦ q = 6.000 ♦ ♥í✈❡❧ ❞❡ ♣r♦❞✉çã♦ ♣r♦♣♦r❝✐♦♥❛ r❡❝❡✐t❛ ♠á①✐♠❛❀ ♥❡st❡ ❝❛s♦ p =
12 − 0, 001(6.000) = 6 r❡❛✐s✳
✻✳✷✳✷
❆ssí♥t♦t❛s
❊♠ ♠❛t❡♠át✐❝❛✱ ✉♠❛ ❛ssí♥t♦t❛ ❞❡ ✉♠❛ ❝✉r✈❛ C é ✉♠ ♣♦♥t♦ ♦✉ ✉♠❛ ❝✉r✈❛ ❞❡ ♦♥❞❡
♦s ♣♦♥t♦s ❞❡ C s❡ ❛♣r♦①✐♠❛♠ à ♠❡❞✐❞❛ q✉❡ s❡ ♣❡r❝♦rr❡ C ✳ ◗✉❛♥❞♦ C é ♦ ❣rá✜❝♦ ❞❡ ✉♠❛
❢✉♥çã♦✱ ❡♠ ❣❡r❛❧ ♦ t❡r♠♦ ❛ssí♥t♦t❛ r❡❢❡r❡✲s❡ ❛ ✉♠❛ r❡t❛✳
❈♦♥s✐❞❡r❡♠♦s ✉♠❛ ❝✉r✈❛ q✉❛❧q✉❡r C ❞❡t❡r♠✐♥❛❞❛ ♣❡❧♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ y = f (x)✱ ❡
✉♠ ♣♦♥t♦ A q✉❡ s❡ ♠♦✈✐♠❡♥t❛ ❛♦ ❧♦♥❣♦ ❞❡ss❛ ❝✉r✈❛✳
❉❡✜♥✐çã♦ ✻✳✺✳
❉✐③❡♠♦s q✉❡ ♦ ♣♦♥t♦ A ∈ R2 t❡♥❞❡ ✭❝♦♥✈❡r❣❡✮ ❛♦ ✐♥✜♥✐t♦ s❡✱ ❛ ❞✐stâ♥❝✐❛ ❡♥tr❡ ♦
♣♦♥t♦ A ❡ ❛ ♦r✐❣❡♠ ❞❡ ❝♦♦r❞❡♥❛❞❛s (0, 0) t❡♥❞❡ ❛♦ ✐♥✜♥✐t♦ ✭❛ ❞✐stâ♥❝✐❛ ❝r❡s❝❡
✐♥❞❡✜♥✐❞❛♠❡♥t❡✮
✸✷✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❉❡✜♥✐çã♦ ✻✳✻✳
❙❡❥❛ A ✉♠ ♣♦♥t♦ q✉❡ s❡ ♠♦✈✐♠❡♥t❛ ❛♦ ❧♦♥❣♦ ❞❡ ✉♠❛ ❝✉r✈❛ y = f (x) ❡ d ❛ ❞✐stâ♥❝✐❛
❡♥tr❡ A ❡ ✉♠❛ r❡t❛ L✳ ❙❡ ❛❝♦♥t❡❝❡ q✉❡ ♦ ♣♦♥t♦ A t❡♥❞❡ ❛♦ ✐♥✜♥✐t♦ ❡✱ ❛ ❞✐stâ♥❝✐❛
d t❡♥❞❡ ❛ ③❡r♦✱ ❞✐③❡♠♦s q✉❡ ❛ r❡t❛ L é ✉♠❛ ❞❡ ❛ssí♥t♦t❛ ❞❛ ❝✉r✈❛ y = f (x)❀ ✐st♦ é
lim d(A, L) = 0✳ ✭❋✐❣✉r❛ ✭✻✳✺✮✮
A→+∞
❋✐❣✉r❛ ✻✳✺✿
Pr♦♣r✐❡❞❛❞❡ ✻✳✺✳
❆ r❡t❛ x = a é ✉♠❛ ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧ ❞❛ ❝✉r✈❛ y = f (x) s❡ ❝✉♠♣r❡ ✉♠ ❞♦s s❡❣✉✐♥t❡s
❡♥✉♥❝✐❛❞♦s✿
1o
2o
3o
lim .f (x) = ±∞
x→a
lim .f (x) = +∞ ✭❋✐❣✉r❛ ✭✻✳✻✮✮
x→a+
lim .f (x) = −∞ ✭❋✐❣✉r❛ ✭✻✳✼✮✮
x→a−
❆ ❞❡♠♦♥str❛çã♦ ♦❜tê♠✲s❡ ❝♦♠ ❢❛❝✐❧✐❞❛❞❡ ❞❛ ❞❡✜♥✐çã♦ ❞❡ ❛ssí♥t♦t❛✳
lim .f (x) = −∞
lim .f (x) = +∞
x→a+
x→a−
❋✐❣✉r❛ ✻✳✻✿
❋✐❣✉r❛ ✻✳✼✿
✸✷✹
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
Pr♦♣r✐❡❞❛❞❡ ✻✳✻✳
❆ r❡t❛
y=k
é ✉♠❛ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧ ❞❛ ❝✉r✈❛
y = f (x) s❡ ❝✉♠♣r❡ ✉♠ ❞♦s s❡❣✉✐♥t❡s
❡♥✉♥❝✐❛❞♦s✿
1o
2o
3o
lim .f (x) = k
x→∞
lim .f (x) = k ✭❋✐❣✉r❛ ✭✻✳✽✮✮
x→−∞
lim .f (x) = k ✭❋✐❣✉r❛ ✭✻✳✾✮✮
x→+∞
❆ ❞❡♠♦♥str❛çã♦ é ó❜✈✐❛✳
lim .f (x) = k
lim .f (x) = k
x→−∞
x→+∞
❋✐❣✉r❛ ✻✳✽✿
❋✐❣✉r❛ ✻✳✾✿
Pr♦♣r✐❡❞❛❞❡ ✻✳✼✳
❆ r❡t❛
y = mx + b,
m 6= 0
é ✉♠❛ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ ❞❛ ❝✉r✈❛
y = f (x)
s❡ ❡ s♦♠❡♥t❡
s❡ ❝✉♠♣r❡ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❝♦♥❞✐çõ❡s✿
1
o
2o
f (x)
=m
lim
x→+∞
x
f (x)
lim
=m
x→−∞
x
❉❡♠♦♥str❛çã♦✳
❡
❡
lim [f (x) − mx] = b
x→+∞
lim [f (x) − mx] = b
x→−∞
✭❋✐❣✉r❛ ✭✻✳✶✵✮✮
✭❋✐❣✉r❛ ✭✻✳✶✶✮✮
✐✮
❙✉♣♦♥❤❛♠♦s q✉❡ ❛ ❝✉r✈❛ y = f (x) t❡♥❤❛ ✉♠❛ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ ❞❡ ❡q✉❛çã♦ y = mx+b✳
❙❡❥❛ A(x, f (x)) ♦ ♣♦♥t♦ q✉❡ s❡ ♠♦✈✐♠❡♥t❛ ❛♦ ❧♦♥❣♦ ❞❛ ❝✉r✈❛ y = f (x) ❀ ❡ C(x, mx + b)
♦ ♣♦♥t♦ ❞❛ ❛ssí♥t♦t❛ ❞❡ ❛❜s❝✐ss❛ x✳
❉❛ ❞❡✜♥✐çã♦ ❞❡ ❛ssí♥t♦t❛ t❡♠♦s q✉❡
lim AB = 0❀ ♣♦ré♠
x→+∞
AB = AC · cos α
❡
AC =| f (x) − (mx + b) |
♦♥❞❡ cos α é ✉♠❛ ❝♦♥st❛♥t❡ ❞✐❢❡r❡♥t❡ ❞❡ ③❡r♦✳
✸✷✺
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❋✐❣✉r❛ ✻✳✶✵✿
❋✐❣✉r❛ ✻✳✶✶✿
⇒
lim AB = 0
▲♦❣♦✱
x→+∞
P♦rt❛♥t♦✱ t❡♠♦s
lim AB = 0
x→+∞
lim [f (x) − mx] = b✳
lim [f (x) − (mx + b)] = 0 é
♦✉tr♦ ❧❛❞♦✱ ❞❡t❡r♠✐♥❡♠♦s m
x→+∞
P♦r
ó❜✈✐♦ q✉❡ ❛ r❡t❛
❡
lim [f (x) − (mx + b)] = 0
❡♥tã♦ ❞❡✈❡ ❛❝♦♥t❡❝❡r
lim
x→+∞
lim
x→+∞
❛ss✐♠✱
lim
x→+∞
❙❡♥❞♦
lim [f (x) − mx] = b✳
♦✉tr♦ ❧❛❞♦✱ s❡ m ❡ b sã♦
♦❜t❡♠♦s
P♦r
f (x)
= m✳
x
lim
❞❡
é ✉♠❛ ❛ssí♥t♦t❛✳
lim
x→+∞
f (x) (mx + b)
·x=0
−
x
x
♣♦✐s
x → +∞
❞❡ ♦♥❞❡✱
b
f (x)
− m − lim
=0
x→+∞
x
x
m ❝♦♥❤❡❝✐❞♦ ❡ ❝♦♥s✐❞❡r❛♥❞♦ lim [f (x) − (mx + b)] = 0
x→+∞
x→+∞
x→+∞
❡♥tã♦
⇒
f (x) (mx + b)
=0
−
x
x
y = mx + b
b✳
x→+∞
lim [f (x) − (mx + b)] = 0✳
x→+∞
x→+∞
❘❡❝í♣r♦❝❛♠❡♥t❡ ✭⇐✮
❙❡
⇒
♥ú♠❡r♦s q✉❡ ❝✉♠♣r❡♠ ❛s ❝♦♥❞✐çõ❡s
f (x)
=m
x
lim [f (x) − (mx + b)] = 0
x→+∞
❡
lim [f (x) − mx] = b
x→+∞
♦ q✉❡ ✐♠♣❧✐❝❛ q✉❡ ❛ r❡t❛
y = mx + b
é ✉♠❛ ❛ssí♥t♦t❛
y = f (x)✳
❖❜s❡r✈❛çã♦ ✻✳✹✳
❘❡s♣❡✐t♦ à Pr♦♣r✐❡❞❛❞❡
✭✻✳✼✮
é ♥❡❝❡ssár✐♦ ♦ s❡❣✉✐♥t❡✿
✐✮ ❙❡ ❛♦ ❝❛❧❝✉❧❛r ♦s ✈❛❧♦r❡s m ❡ b ✭q✉❛♥❞♦ x → +∞✮ ✉♠ ❞♦s ❧✐♠✐t❡s ♥ã♦ ❡①✐st❡✱ ❛
❝✉r✈❛ ♥ã♦ ❛♣r❡s❡♥t❛ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ à ❞✐r❡✐t❛✳ ❘❡s✉❧t❛❞♦ s✐♠✐❧❛r ♦❜tê♠✲s❡ q✉❛♥❞♦
x → −∞✳
✸✷✻
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✐✐✮
❙❡ m = 0 ❡ b é ✐♥✜♥✐t♦✱ ❛ ❛ssí♥t♦t❛ é ❤♦r✐③♦♥t❛❧✳
❊①❡♠♣❧♦ ✻✳✷✸✳
❉❡t❡r♠✐♥❡ ❛s ❛ssí♥t♦t❛s ❞❛ ❝✉r✈❛ ❞❡t❡r♠✐♥❛❞❛ ♣❡❧❛s ❡q✉❛çõ❡s✿
❛✮
f (x) =
❙♦❧✉çã♦✳❛✮
x2 + 4 √
+ 3x
x−2
❜✮
g(x) =
5x2 − 8x + 3
x+5
❖ ❞♦♠í♥✐♦ D(f ) = R − {2}✳
x2 + 4 √
3
❖ ❝á❧❝✉❧♦ ❞♦ ❧✐♠✐t❡ lim
+ x = ±∞✱ ❧♦❣♦ x = 2 é ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧✳
x→2 x − 2
2
x +4 √
3
❖❜s❡r✈❡✱ lim
+ x = ±∞✱ ❧♦❣♦ ♥ã♦ t❡♠ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧✳
x→+∞ x − 2
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞❡ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ ✿
2
√
3
x
x +4
f (x)
= lim
+
=1=m
lim
x→+∞ x(x − 2)
x→+∞ x
x
2
x +4 √
3
lim [f (x) − mx] = lim
+ x − x = +∞✱ ❧♦❣♦ ♥ã♦ ❡①✐st❡ ❛ssí♥t♦t❛ ♦❜❧í✲
x→+∞
x→+∞ x − 2
q✉❛✳
❉❡ ♠♦❞♦ ❛♥á❧♦❣♦✱ ♥ã♦ ❡①✐st❡ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ q✉❛♥❞♦ x → −∞✳
❙♦❧✉çã♦✳❜✮
❖ ❞♦♠í♥✐♦ D(g) = R − {−5}✳
P♦ssí✈❡❧ ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧✱ x = −5❀ ♦ ❝á❧❝✉❧♦ ❞♦ ❧✐♠✐t❡ lim
x→−5
x = −5 é ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧✳
5x2 − 8x + 3
= ±∞✱ ❧♦❣♦
x+5
5x2 − 8x + 3
= ±∞✱ ❧♦❣♦ ♥ã♦ t❡♠ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧✳
x→±∞
x+5
g(x)
5x2 − 8x + 3
P♦r ♦✉tr♦ ❧❛❞♦✱ lim
= lim
= 5 ❛❧é♠ ❞✐ss♦✱
x→+∞ x
x→+∞
x(x + 5)
❖❜s❡r✈❡✱ lim
lim [g(x) − 5x] = lim
x→+∞
x→+∞
5x2 − 8x + 3
− 5x = −33
x+5
❆ss✐♠ y = 5x − 33 é ❛ssí♥t♦t❛ ♦❜❧íq✉❛✳
g(x)
5x2 − 8x + 3
= lim
= 5 t❛♠❜é♠
x→−∞ x
x→−∞
x(x + 5)
P❛r❛ ♦ ❝❛s♦ x → −∞✱ t❡♠♦s lim
lim [g(x) − 5x = lim
x→−∞
x→−∞
5x2 − 8x + 3
− 5x = −33
x+5
P♦rt❛♥t♦✱ y = 5x − 33 é ❛ ú♥✐❝❛ ❛ssí♥t♦t❛ ♦❜❧íq✉❛✳
❊①❡♠♣❧♦ ✻✳✷✹✳
✸✷✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡t❡r♠✐♥❡ ❛s ❛ssí♥t♦t❛s ❞❛ ❝✉r✈❛ y =
❙♦❧✉çã♦✳
2x2 − 7x + 1
✱ ❡ tr❛ç❛r ♦s r❡s♣❡❝t✐✈♦s ❣rá✜❝♦s✳
x−2
❖ ❞♦♠í♥✐♦ D(f ) = R − {2}✳
■♥t❡rs❡❝çõ❡s ❝♦♠ ♦s ❡✐①♦s✳
❛✮
❈♦♠ ♦ ❡✐①♦✲y ✿
❜✮
❈♦♠ ♦ ❡✐①♦✲x✿
❡ C(
7−
√
41
4
1
1
❀ é ♦ ♣♦♥t♦ A(0, − )
2
2
√
√
7 ± 41
7 + 41
y = 0 ❡♥tã♦ x =
❀ sã♦ ♦s ♣♦♥t♦s ❞❡ ❝♦♦r❞❡♥❛❞❛s B(
, 0)
4
4
x = 0 ❡♥tã♦ f (0) = −
, 0)
❈á❧❝✉❧♦ ❞❡ ❛ssí♥t♦t❛s ✿
❛✮ ❱❡rt✐❝❛✐s✿
−5
2x2 − 7x + 1
lim+
= + = +∞
x→2
x−2
0
−5
2x2 − 7x + 1
= − = −∞
lim
x→2−
x−2
0
▲♦❣♦ x = 2 é ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧✳
❜✮
❍♦r✐③♦♥t❛✐s✿
❚❡♠♦s
lim .f (x) = ±∞✳
x→±∞
▲♦❣♦ ♥ã♦ t❡♠ ❛ssí♥t♦t❛s ❤♦r✐③♦♥t❛✐s✳
❝✮ ❖❜❧íq✉❛s✿
f (x)
2x2 − 7x + 1
❋✐❣✉r❛ ✻✳✶✷✿
= lim
= 2✳
x→±∞ x
x→±∞
x(x − 2)
2x2 − 7x + 1
b = lim [f (x) − mx] = lim [
− 2x] =
x→±∞
x→±∞
x−2
−3x + 1
= −3
lim
x→±∞ x − 2
P♦r t❛♥t♦ ❛ r❡t❛ y = 2x − 3 é ✉♠❛ ❛ssí♥t♦t❛ à ❞✐r❡✐t❛ ❡ ❡sq✉❡r❞❛ ❞❛ ❝✉r✈❛ y = f (x)✳
lim
❖ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✻✳✶✷✮✳
❊①❡♠♣❧♦ ✻✳✷✺✳
❉❡t❡r♠✐♥❡ ❛s ❛ssí♥t♦t❛s ❞❛ ❝✉r✈❛ ❞❛❞❛ ♣❡❧❛ ❡q✉❛çã♦ g(x) =
▼♦str❡ s❡✉ r❡s♣❡❝t✐✈♦ ❣rá✜❝♦✳
❙♦❧✉çã♦✳
√
3
x3 − 3x2 − 9x + 27✳
❖ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ é D(g) = R✳
❖❜s❡r✈❡✱ ♥ã♦ t❡♠♦s ❛ssí♥t♦t❛s ✈❡rt✐❝❛✐s❀ ♣♦✐s ♥ã♦ ❡①✐st❡ ♥ú♠❡r♦ a t❛❧ q✉❡ ♦ ❧✐♠✐t❡
lim .g(x) = ±∞ ✐st♦ é ♥ã♦ ❡①✐st❡ ✈❛❧♦r r❡❛❧ q✉❡ ❢❛③ ③❡r♦ ♦ ❞❡♥♦♠✐♥❛❞♦r✳
x→a
◆ã♦ t❡♠♦s ❛ssí♥t♦t❛s ❤♦r✐③♦♥t❛✐s❀ ♥ã♦ ❡①✐st❡ ♥ú♠❡r♦ c t❛❧ q✉❡ ♦ ❧✐♠✐t❡ lim .g(x) = c✳
x→±∞
✸✷✽
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❈á❧❝✉❧♦ ❞❡ ❛ssí♥t♦t❛s ♦❜❧íq✉❛s✿
√
3
g(x)
x3 − 3x2 − 9x + 27
= lim .
=1
m = lim .
x→±∞
x→±∞
x
x
√
3
b = lim [ x3 − 3x2 − 9x + 27 − 1 · x] =
x→±∞
lim
x→±∞
−3x2 − 9x + 27
√
√
= −1
( 3 x3 − 3x2 − 9x + 27)2 + x( 3 x3 − 3x2 − 9x + 27) + x2
❆ r❡t❛ y = x − 1 é ❛ssí♥t♦t❛ ❞✐r❡✐t❛ ❡ ❡sq✉❡r❞❛✳
❈á❧❝✉❧♦ ❞❡ ❡①tr❡♠♦s r❡❧❛t✐✈♦s✿
(x + 1)(x + 3)
g ′ (x) = p
❡♥tã♦ x = −1, x = 3 ❡ x = −3 sã♦ ♣♦♥t♦s ❝rít✐❝♦s✳
( 3 (x − 3)2 (x + 3))2
❖❜s❡r✈❡✱ ♣❛r❛ h ♣♦s✐t✐✈♦ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦ t❡♠♦s g ′ (−1+h) < 0 ❡ g ′ (−1−h) >
√
0✱ ❧♦❣♦ t❡♠♦s ♠á①✐♠♦ r❡❧❛t✐✈♦ ♥♦ ♣♦♥t♦ A(−1, 3 32)❀ ♣♦r ♦✉tr♦ ❧❛❞♦✱ g ′ (3 − h) < 0 ❡
g ′ (3 + h) > 0✱ ❧♦❣♦ ❡♠ B(3, 0) t❡♠♦s ♠í♥✐♠♦ r❡❧❛t✐✈♦✳
❖ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✻✳✶✸✮✳
❊①❡♠♣❧♦ ✻✳✷✻✳
❚r❛ç❛r ♦ ❣rá✜❝♦ ❞❛ ❢✉♥çã♦ f (x) =
❙♦❧✉çã♦✳
√
4
x4 − 5x3 − 4x2 + 20x ♠♦str❛♥❞♦ ❛s ❛ssí♥t♦t❛s✳
❖ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ é✱ D(f ) = { x ∈ R /. x4 − 5x3 − 4x2 + 20x ≥ 0 }✱ ✐st♦ é
D(f ) = (−∞, −2] ∪ [0, 2] ∪ [5, +∞)✳
■♥t❡rs❡❝çõ❡s ❝♦♠ ❡✐①♦s ❞❡ ❝♦♦r❞❡♥❛❞❛s sã♦ ♦s ♣♦♥t♦s (−2, 0), (0, 0), (2, 0) ❡ (5, 0)✳
◆ã♦ tê♠ ❛ssí♥t♦t❛s ✈❡rt✐❝❛✐s ♥❡♠ ❤♦r✐③♦♥t❛✐s✳
❋✐❣✉r❛ ✻✳✶✸✿
❋✐❣✉r❛ ✻✳✶✹✿
❈á❧❝✉❧♦ ❞❡ ❛ssí♥t♦t❛s ♦❜❧íq✉❛s✿
f (x)
m = lim
= lim
x→+∞ x
x→+∞
√
4
x4 − 5x3 − 4x2 + 20x
=1
x
✸✷✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
√
5
4
b = lim [f (x) − 1 · x = lim [ x4 − 5x3 − 4x2 + 20x − x] = −
x→+∞
x→+∞
4
5
❆ r❡t❛ y = x − é ❛ssí♥t♦t❛ ♦❜❧íq✉❛ à ❞✐r❡✐t❛✳
4
#
"r
20
4
|x| 4
f (x)
5
= lim
P♦r ♦✉tr♦ ❧❛❞♦✿ m = lim
1 − − 2 + 3 = −1✳
x→−∞ x
x→−∞ x
x x
x
√
5
4
b = lim [f (x) − 1 · x] = lim [ x4 − 5x3 − 4x2 + 20x − (−1)x] =
x→−∞
x→−∞
4
5
❆ r❡t❛ y = −x + é ❛ssí♥t♦t❛ ♦❜❧íq✉❛ à ❡sq✉❡r❞❛✳
4
❖ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✻✳✶✹✮✳
❊①❡♠♣❧♦ ✻✳✷✼✳
❈♦♥str✉✐r ♦ ❣rá✜❝♦ ❞❛ ❝✉r✈❛ y = g(x)✱ ♠♦str❛♥❞♦ s✉❛s ❛ssí♥t♦t❛s✳
❙♦❧✉çã♦✳
r
x+3
,
s❡✱ x > 0
x
3
x −x
g(x) =
, s❡✱ − 3 < x ≤ 0
(x√+ 1)(x + 4)
− 1 + x2 ,
s❡✱ x ≤ −3
❖ ❞♦♠í♥✐♦ ❞❛ ❢✉♥çã♦ D(g) = R − {−1}✳
❈á❧❝✉❧♦ ❞❡ ❛ssí♥t♦t❛s ❤♦r✐③♦♥t❛✐s✿
lim .g(x) = lim
x→+∞
x→+∞
r
x+3
=1
x
❡
√
lim .g(x) = lim (− 1 + x2 ) = −∞
x→−∞
x→−∞
❆ ú♥✐❝❛ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧ é y = 1✳
❈á❧❝✉❧♦ ❞❡ ❛ssí♥t♦t❛s ✈❡rt✐❝❛✐s✿
❆s ♣♦ssí✈❡✐s ❛ssí♥t♦t❛s ✈❡rt✐❝❛✐s sã♦ ♦s ✈❛❧♦r❡s ❞❡ x ♣❛r❛ ♦s q✉❛✐s ♦ ❞❡♥♦♠✐♥❛❞♦r é ③❡r♦
❡ ❡st❡s ✈❛❧♦r❡s sã♦✿ x = 0, x = −1, ❡ x = 4✳ ❖s ❧✐♠✐t❡s
lim+
x→0
r
x+3
= +∞;
x
2
x3 − x
=
x→−1 (x + 1)(x + 4)
3
lim
❡♠ x = −4 ♥ã♦ t❡♠ s❡♥t✐❞♦ ❝❛❧❝✉❧❛r ♣❡❧♦ ❢❛t♦ ❡st❛r ❞❡✜♥✐❞❛ g(x) ♥♦ ✐♥t❡r✈❛❧♦ r❡❛❧ (−3, 0]✳
▲♦❣♦ ❛ ú♥✐❝❛ ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧ é x = 0✳
❆ssí♥t♦t❛s ♦❜❧íq✉❛s✿
◆ã♦ ❡①✐st❡ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ à ❞✐r❡✐t❛✱ ♣♦✐s ❥á ❡①✐st❡ ✉♠❛ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧✳
√
− 1 + x2
g(x)
= lim
= lim
m = lim
x→−∞
x→−∞
x→−∞ x
x
✸✸✵
−|x|
q
x
1
x2
+1
=1
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
√
b = lim [g(x) − mx] = lim [− 1 + x2 − x] = lim √
x→−∞
x→−∞
x→−∞
❆ ú♥✐❝❛ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ é y = x✳
❖ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✻✳✶✺✮
−1
=0
1 + x2 − x
❋✐❣✉r❛ ✻✳✶✺✿
❖❜s❡r✈❛çã♦ ✻✳✺✳
❙❡ ❛ ❡q✉❛çã♦ ❞❡ ✉♠❛ ❝✉r✈❛ ❡s❝r❡✈❡✲s❡ ♥❛ ❢♦r♠❛ x = g(y)✱ ♣❛r❛ ♦❜t❡r ❛ssí♥t♦t❛s ✉t✐❧✐③❛✲
♠♦s ♦s r❡s✉❧t❛❞♦s ❞❛s Pr♦♣r✐❡❞❛❞❡s ✭✻✳✺✮ ✲ ✭✻✳✼✮ ♠♦❞✐✜❝❛♥❞♦ ❛s ✈❛r✐á✈❡✐s ❝♦rr❡s♣♦♥❞❡♥t❡s✳
❉❡st❡ ♠♦❞♦✿
✐✮
❙❡ lim .g(y) = k ♦✉ s❡ lim .g(y) = k ❡♥tã♦ ❛ r❡t❛ x = k é ✉♠❛ ❛ssí♥t♦t❛ ✈❡rt✐❝❛❧✳
✐✐✮
y→+∞
y→−∞
❙❡ ❡①✐st❡ a ∈ R t❛❧ q✉❡ lim .g(y) = ±∞, lim+ .g(y) = ±∞ ♦✉ lim− .g(y) = ±∞✱ ❡♥tã♦
y→a
y→a
y→a
❛ r❡t❛ y = a é ✉♠❛ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧✳
✐✐✐✮
❆ r❡t❛ x = ky + b é ✉♠❛ ❛ssí♥t♦t❛ ♦❜❧íq✉❛ s❡✿
lim .
g(y)
=k ❡
y
y→+∞
lim .
g(y)
=k ❡
y
y→−∞
y→+∞
y→−∞
lim [g(y) − ky] = b
♦✉
lim [g(y) − ky] = b
❊①❡♠♣❧♦ ✻✳✷✽✳
❚r❛ç❛r ♦ ❣rá✜❝♦ ❞❛ ❝✉r✈❛ y 3 − y 2 x + y 2 + x = 0✱ ♠♦str❛♥❞♦ s✉❛s ❛ssí♥t♦t❛s✳
❙♦❧✉çã♦✳
y 2 (y + 1)
(y + 1)(y − 1)
❆ ✈❛r✐á✈❡❧ y ✭✐♠❛❣❡♠ ❞❛ ❢✉♥çã♦ y = f −1 (x) ♣❡rt❡♥❝❡ ❛♦ ❝♦♥❥✉♥t♦ ❞❡ ♥ú♠❡r♦s r❡❛✐s
R − { −1, 1 }✳
❉❛ ❡q✉❛çã♦ ❛ ❝✉r✈❛ t❡♠♦s✱ x = f (y) =
✸✸✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❆ssí♥t♦t❛s ✈❡rt✐❝❛✐s✿
❖❜s❡r✈❡ ♦ ❧✐♠✐t❡✱ lim .f (y) = −∞❀ ❧♦❣♦ ♥ã♦ ❡①✐st❡ ❛ssí♥t♦t❛s ✈❡rt✐❝❛✐s✳
y→−∞
❆ssí♥t♦t❛s ❤♦r✐③♦♥t❛✐s✿
❙ã♦ ♣♦ssí✈❡✐s ❛ssí♥t♦t❛s ❤♦r✐③♦♥t❛✐s y = −1 ❡ y = 1✳
1
y 2 (y + 1)
=−
y→−1 (y + 1)(y − 1)
2
lim
y 2 (y + 1)
lim
= +∞
y→1+ (y + 1)(y − 1)
❡
❡♥tã♦ ❛ ú♥✐❝❛ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧ é y = 1✳
y 2 (y + 1)
lim
= −∞
y→1− (y + 1)(y − 1)
❋✐❣✉r❛ ✻✳✶✻✿
❆ssí♥t♦t❛s ♦❜❧íq✉❛s✿
y 2 (y + 1)
g(y)
= lim
=1
y→±∞ y(y + 1)(y − 1)
y→±∞ y
k = lim
y 2 (y + 1)
− y] = 1
y→±∞ (y + 1)(y − 1)
b = lim [g(y) − ky] = lim
y→±∞
❧♦❣♦ ❛ ú♥✐❝❛ ❛ssí♥t♦t❛ é x = y + 1✳
❖ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✻✳✶✻✮
❊①❡♠♣❧♦ ✻✳✷✾✳
❉❡t❡r♠✐♥❡ ❛s ❝♦♥st❛♥t❡s
L = lim
x→+∞
m
❡
n
q✉❡ ❝✉♠♣r❡♠ ❛ ❝♦♥❞✐çã♦✿
√
15x3 + 7x + 4 √ 2
3
3
2
− x + 4x − 8x + 12x + 1 + 2mx − 3n = 0
3x2 + 4
❙♦❧✉çã♦✳
❚❡♠♦s
L = lim
x→+∞
√
15x3 + 7x + 4 √ 2
3
3
2
− x + 4x − 8x + 12x + 1 + 2mx − 3n = 0
3x2 + 4
✸✸✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❡♥tã♦
L = lim
x→+∞
15x3 + 7x + 4
+ (2m − 3)x − 3n −
3x2 + 4
− lim
x→+∞
L = lim
x→+∞
h√
i
√
3
( x2 + 4x − x) + ( 8x3 + 12x2 + 1 − 2x) = 0
x3 (6m + 6) − 9nx2 + x(8m − 5) + (4 − 12n)
−
3x2 + 4
#
"
4x
12x2 + 1
=0
− lim √
+ √
x→+∞
x2 + 4x + x ( 3 8x3 . . .)2 + (2x)() + (2x)2
◗✉❛♥❞♦ m = −1✱ ❧♦❣♦ ❝❛❧❝✉❧❛♥❞♦ ♦ ❧✐♠✐t❡ ❞❛ s❡❣✉♥❞❛ ♣❛r❝❡❧❛
L = lim
x→+∞
−9nx2 − 13x + (4 − 12n)
4 12
−
=0
+
3x2 + 4
2 12
◗✉❛♥❞♦ n = −1✱ ❧♦❣♦ ❛♦ ❝❛❧❝✉❧❛r ♦ ❧✐♠✐t❡ ❞❛ ♣r✐♠❡✐r❛ ♣❛r❝❡❧❛
L = lim
x→+∞
9x2 − 13x + 16
−3=3−3=0
3x2 + 4
P♦rt❛♥t♦✱ ♦s ♥ú♠❡r♦s sã♦✿ m = −1 ❡ n = −1✳
❊①❡♠♣❧♦ ✻✳✸✵✳
❉❡t❡r♠✐♥❡ ♦ ❣rá✜❝♦ ❞❛ ❝✉r✈❛ y 3 x2 − y 2 + y + 2 = 0✱ ♠♦str❛♥❞♦ s✉❛s ❛ssí♥t♦t❛s✳
❙♦❧✉çã♦✳
s
2
y
−
y
−
2
y2 − y − 2
❖❜s❡r✈❡✱ x2 =
✱
❞❡
♦♥❞❡
x
=
±
✳
y3
y3
❆♦ s✉❜st✐t✉✐r x ♣♦r −x ♥❛ ❡q✉❛çã♦ ♦r✐❣✐♥❛❧✱ s
❛ ♠❡s♠❛ ♥ã♦ ✈❛r✐❛✱ ❧♦❣♦ é s✐♠étr✐❝❛
y2 − y − 2
r❡s♣❡✐t♦ ❞♦ ❡✐①♦✲y ❀ ❡♥tã♦ é s✉✜❝✐❡♥t❡ ❛♥❛❧✐s❛r x =
✳
y3
2y 3 x
❉❡r✐✈❛♥❞♦ ✐♠♣❧í❝✐t❛♠❡♥t❡✱ 3y 2 x2 y ′ + 2y 3 x − 2yy ′ + y ′ = 0✱ ❧♦❣♦ y ′ =
1 + 2y − 3y 2 x2
❡♥tã♦ x = 0 é ✉♠ ♣♦♥t♦✳
◗✉❛♥❞♦ x = 0, y = 2 ♦✉ y = −1❀ ❡♠ (0, 2) t❡♠♦s ♠á①✐♠♦ r❡❧❛t✐✈♦ ❡✱ ❡♠ (0, −1)
t❡♠♦s ♠í♥✐♠♦ r❡❧❛t✐✈♦✳s
❈♦♥s✐❞❡r❛♥❞♦ x =
S
y2
✐♥t❡r✈❛❧♦ [−1, 0) [2, +∞)✳
❖ ❧✐♠✐t❡ lim
y→0
s
−y−2
=
y3
s
(y − 2)(y + 1)
❡♥tã♦ ❛ ✐♠❛❣❡♠ y ♣❡rt❡♥❝❡ ❛♦
y3
y2 − y − 2
= +∞❀ ❧♦❣♦ y = 0 é ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧✳
y3
✸✸✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦r ♦✉tr♦ ❧❛❞♦✱ lim
y→+∞
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
s
R
y2 − y − 2
= 0 ❡♥tã♦ x = 0 é ❛ ú♥✐❝❛ ❛ssí♥t♦t❛ ❤♦r✐③♦♥t❛❧✳
y3
◆ã♦ t❡♠ ❛ssí♥t♦t❛s ♦❜❧íq✉❛s✱ s❡✉ ❣rá✜❝♦ ♠♦str❛✲s❡ ♥❛ ❋✐❣✉r❛ ✭✻✳✶✼✮✳
❋✐❣✉r❛ ✻✳✶✼✿
❖❜s❡r✈❛çã♦ ✻✳✻✳
P❛r❛ ♦ ❣rá✜❝♦ ❞❡ ❝✉r✈❛s ♣♦❞❡♠♦s ✉t✐❧✐③❛r r❡❝✉rs♦s ❛❞✐❝✐♦♥❛✐s ❞❡ ♣♦♥t♦s ❝rít✐❝♦s ❡✱ ♦✉
❝r✐tér✐♦s ❞❛ ❞❡r✐✈❛❞❛✳
✸✸✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✻✲✷
✶✳ ❉❡t❡r♠✐♥❛r ♦s ✐♥t❡r✈❛❧♦s ❞❡ ❝r❡s❝✐♠❡♥t♦✱ ♦s ❡①tr❡♠♦s r❡❧❛t✐✈♦s ❡ ❡s❜♦ç❛r ♦ ❣rá✜❝♦
❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✳
f (x) = x3 + 2x2 − 4x + 2
√
√
3
3
f (x) = 5 x2 − x5
x
5. f (x) = 2
x +1
x2 + 2
7. g(x) = 2
x − 4x
9. g(x) = 3x5 − 125x3 + 2160x
p
p
11. h(x) = 3 (x + 2)2 − 3 (x − 2)2
x2 + 2x − 33
13. f (x) =
x−4
1 − x + x2
15. f (x) =
1 + x + x2
1.
3.
2.
4.
6.
8.
10.
12.
14.
16.
f (x) = x4 − 14x2 − 24x + 1
f (x) =| x2 − 9 |
x+1
f (x) = 2
x +x+1
x2 − 5x + 6
f (x) = 2
x − 4x√− 5
3
g(x) = (x − 1) x2
3
g(x) = x3 +
x
x2 + x + 1
f (x) =
1 − x + x2
1 − x + x2
f (x) =
1 + x − x2
✷✳ ❙✉♣♦♥❤❛♠♦s ai > 0, i = 1, 2, . . . n✱ ♣❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s ❞❡t❡r♠✐♥❡ ♦s
♣♦♥t♦s ❞❡ ♠á①✐♠♦ ♦✉ ♠í♥✐♠♦✱ ❝❛s♦ ❡①✐st✐r✳
✶✳
f (x) = (a1 − x)2 + (a2 − x)2 ♣❛r❛ a 6= b✳
✷✳
✸✳
✹✳
f (x) = (a1 − x)2 + (a2 − x)2 + (a3 − x)2 + · · · + (an − x)2
f (x) = (a1 − 2x2 )2 + (a2 − 2x2 )2 + (a3 − 2x2 )2 + · · · + (an − 2x2 )2 ✳
f (x) = (a1 − x)m + (a2 − x)m + (a3 − x)m + · · · + (an − x)m ✳
✸✳ ❉❡t❡r♠✐♥❡ ♦s ✐♥t❡r✈❛❧♦s ❞❡✱ ❝r❡s❝✐♠❡♥t♦ ❡ ❞❡❝r❡s❝✐♠❡♥t♦ ♣❛r❛ ❛s ❢✉♥çõ❡s✿
✶✳
y = x(1 +
√
x)
✷✳
y = x − 2senx✱ s❡ 0 ≤ x ≤ 2π
✹✳ ❆♥❛❧✐s❛r ♦s ❡①tr❡♠♦s ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
✶✳
y = (x − 5)ex
✷✳
✸✳
y = (x − 1)4
✹✳
✺✳ ❉❡t❡r♠✐♥❛r ♦s ✈❛❧♦r❡s a, b ❡ c s❡✿
✶✳
√
y = x 1 − x2
p
y = 1 − 3 (x − 2)4
f (x) = 2x3 + ax2 + b t❡♠ ❡①tr❡♠♦ r❡❧❛t✐✈♦ ❡♠ (−1, 2)✳
g(x) = ax2 + bx + c t❡♠ ❡①tr❡♠♦ r❡❧❛t✐✈♦ ❡♠ (1, 7) ❡ ♦ ❣rá✜❝♦ ♣❛ss❛ ♣❡❧♦
♣♦♥t♦ (2, −2)✳
✷✳
✸✸✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✻✳ P❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✱ ❞❡t❡r♠✐♥❡ ♦ ♠á①✐♠♦ ♦✉ ♠í♥✐♠♦ ❛❜s♦❧✉t♦ ♥♦s
✐♥t❡r✈❛❧♦s ✐♥❞✐❝❛❞♦s✳
1
1
1 1
✷✳
f (x) = ❡♠ [− , 1]
✶✳
f (x) = 3x4 − 8x3 + 6x2 ❡♠ [− , ]
✸✳
2 2
1
❡♠ [−0, 5]
f (x) = 5
x +x+1
✹✳
2
2
x+1
1
f (x) = 2
❡♠ [−1, ]
x +1
2
✼✳ ❉❡t❡r♠✐♥❡ ♦ r❛✐♦ ❞❛ ❜❛s❡ ❡ ❛ ❛❧t✉r❛ h ❞❡ ✉♠ ❝✐❧✐♥❞r♦ r❡t♦ ❝♦♠ ✈♦❧✉♠❡ ❝♦♥st❛♥t❡ V ✱
❞❡ ♠♦❞♦ q✉❡ s✉❛ ár❡❛ t♦t❛❧ s❡❥❛ ♠í♥✐♠❛✳
✽✳ ❉❡t❡r♠✐♥❡ ❡①tr❡♠♦s r❡❧❛t✐✈♦s ♣❛r❛ ❝❛❞❛ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
0
s❡✱ x é ✐rr❛❝✐♦♥❛❧
f (x) =
1
p
s❡✱ x =
é ❢r❛çã♦ ✐rr❡❞✉tí✈❡❧,
q
q
1, s❡✱ x = 1 ♣❛r❛ ❛❧❣✉♠ n ∈ N
f (x) =
n
0,
♥♦s ❞❡♠❛✐s ❝❛s♦s
✶✳
✷✳
p, q ∈ Z+
✾✳ ❆❝❤❛r ♦s ❧❛❞♦s ❞♦ r❡tâ♥❣✉❧♦✱ ❞❡ ♠❛✐♦r ár❡❛ ♣♦ssí✈❡❧✱ ✐♥s❝r✐t♦ ♥❛ ❡❧✐♣s❡✿
a2 y 2 = a2 b2 ✳
b2 x 2 +
✶✵✳ ❙❡❥❛♠ ♦s ♣♦♥t♦s A(1, 4) ❡ B(3, 0) ❞❛ ❡❧✐♣s❡ 2x2 + y 2 = 18✳ ❆❝❤❛r ✉♠ t❡r❝❡✐r♦ ♣♦♥t♦
C ♥❛ ❡❧✐♣s❡ t❛❧ q✉❡✱ ❛ ár❡❛ ❞♦ tr✐â♥❣✉❧♦ ABC s❡❥❛ ❛ ♠❛✐♦r ♣♦ssí✈❡❧✳
✶✶✳ ❊♥tr❡ ♦s r❡tâ♥❣✉❧♦s ❞❡ ♣❡rí♠❡tr♦ 10✱ q✉❛❧ ❞❡❧❡s é ❛q✉❡❧❡ q✉❡ t❡♠ ♠❛✐♦r ár❡❛❄
✶✷✳ P❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s✱ tr❛ç❛r ♦ ❣rá✜❝♦ ❞❛ ❝✉r✈❛ ❝♦rr❡s♣♦♥❞❡♥t❡ ✐♥❞✐❝❛♥❞♦ s✉❛s
❛ssí♥t♦t❛s✳
1.
f (x) =
√
1 + x2 + 2x
x−5
− 7x + 10
x2 + 9
5. f (x) =
(x − 3)2
√
7. f (x) = x + x2 − x
r
x4 − 5x2 + 4
9. f (x) =
x2 + 2x − 24
x2 + 2x + 1
11 f (x) =
r x
2
4 21 + 4x − x
13. f (x) =
r x2 + 7x − 8
9x2 − 6x − 8
15. f (x) =
r 16x2 + 4x − 6
16x2 + 4x − 6
17. f (x) =
9x2 − 6x − 8
3.
f (x) =
x2
19. y 3 − 6x2 + x3 = 0
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
✸✸✻
1 − x2
x2 − 4
r
7x2 − x3 + x − 7
6
f (x) =
x3 − 9x2 − 9x + 81
√
f (x) = 3 x3 − 5x2 − 25x + 125
√
f (x) = 4 x4 − x3 − 9x2 + 9x
√
3x3 + 3x + 1
2
f (x) = 4 + x + 2
x +x−6
√
5 + 4x4 − 6x5
4
f (x) = 36x + 5 + 3
x − 6x2 − 4x + 24
5
4
√
x − 5x + 1
3
f (x) = 4
−
x3 + 1
2
x − 11x − 80
√
x2 − x3 + 1
f (x) = 4 + x2 +
x2 + 1
r
6
4
2
4 x − 9x − x + 9
f (x) =
+x
r x2 − 25
6
4
2
4 x − 9x − x + 9
f (x) = x −
x2 − 25
f (x) =
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✷✶✳
✷✷✳
✷✸✳
✷✹✳
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
x2
√
,
s❡✱ | x |< 1
1 − x2
f (x) =
3x + 3x, s❡✱ | x |≥ 1
2x + 1
5x − 17
,
s❡✱ x ≤ −3
x+
x+3
| 10x − 1 | +50x2 − 19
f (x) =
, s❡✱ − 3 < x < 1
(x − 2)(x2 + 4x + 3)
√
4
8x − 8x6 − 5x2 ,
s❡✱ x ≥ 1
2
2+
, s❡✱ x ≤ −3
x
r
3 2x + 2
f (x) =
, s❡✱ − 3 < x < 1
x
−
1
(x − 1)3
,
s❡✱ x ≥ 1
(x + 1)2
r
2+x
x·
, s❡✱ | x |< 2
2−x
f (x) =
2x2
2
,
s❡✱ | x |≥ 2
x +x
✶✸✳ ❈♦♥str✉✐r ♦ ❣rá✜❝♦ ❞❛s s❡❣✉✐♥t❡s ❝✉r✈❛s✱ ♠♦str❛♥❞♦ s✉❛s ❛ssí♥t♦t❛s✳
1. y 3 = (x − a)2 (x − c),
a > 0, c > 0
3. x3 − 2y 2 − y 3 = 0
5. 4x3 = (a + 3x)(x2 + y 2 ),
2. y 2 (x − 2a) = x3 − a3
4. xy 2 + yx2 = a3 ,
a>0
7. x2 (x − y)2 = y 4 − 1
a>0
6. x2 (x − y)2 = a2 (x2 + y 2 )
✶✹✳ P❛r❛ ❝❛❞❛ ❡①❡r❝í❝✐♦✱ ❞❡t❡r♠✐♥❡ ❛s ❝♦♥st❛♥t❡s m ❡ n q✉❡ ❝✉♠♣r❡♠ ❛ ❝♦♥❞✐çã♦✿
✶✳
✷✳
✸✳
✹✳
✺✳
✻✳
"
#
√
x2 − 3 3 x2 + 1 + 3
lim
− mx − n = 0
x→+∞
x−3
#
"
√
x2 + 3 3 x3 + 1 + 5
− mx − n = 0
lim
x→+∞
x+3
"
#
√
√
5x3 − 4 x8 + 1 − 3 x6 + 1 + 1
lim
− mx − n = 0
x→+∞
x2 − 4
#
"
√
√
5x3 + 4 x8 + 1 + 3 x6 + 1 + 5
− mx − n = 0
lim
x→+∞
x2 + 4
"
#
√
√
6x4 + 4 4 x12 + 1 − x3 − 3 x9 + 1 + 7
lim
− 3mx − 2n = 0
x→+∞
x3 − 8
#
"
√
√
6x4 + 5 4 x12 + 1 − 7x3 − 3 x9 + 1 − 9
− 2mx − 3n = 0
lim
x→+∞
x3 − 8
✸✸✼
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✼✳
lim
x→+∞
"
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
20x3 + 15x2 + 6 √ 2
− 4x + 5x +
3x2 + 4
r
3
R
#
8x5 + 3x + 1
+ 4mx + 17n = 0
x2 + 1
✶✺✳ P❛r❛ ❝❛❞❛ ✉♠ ❞♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s✱ ❝❛❧❝✉❧❛r ❛ssí♥t♦t❛s✱ ♣♦♥t♦s ❞❡ ♠á①✐♠♦ ♦✉
♠í♥✐♠♦s ❡ ❞❡s❡♥❤❛r ❛ r❡❣✐ã♦
✶✳
✷✳
✸✳
✹✳
✺✳
✻✳
✼✳
✽✳
✾✳
✶✵✳
✶✶✳
✶✷✳
✶✸✳
✶✹✳
✶✺✳
✶✻✳
✶✼✳
✶✽✳
✶✾✳
✷✵✳
✷✶✳
✷✷✳
A✿
π
π
x=− , x= , y =0}
2
2
2
2
A = { (x, y) ∈ R /. y = x + 2x − 3, x = −2, x = 0, y = 0 }
A = { (x, y) ∈ R2 /. y = cos x,
A = { (x, y) ∈ R2 /. y = 9 − x2 , y = x2 + 1 }
x2 − x
, y = 0, x = −1, x = 2 }
A = { (x, y) ∈ R2 /. y =
1 + x2
A = { (x, y) ∈ R2 /. y = 3x − x2 , y = x2 − x }
2
A = { (x, y) ∈ R2 /. y = tan x, x = 0, y = cos x }
3
A = { (x, y) ∈ R2 /. y = x3 + x, x = 0, y = 2, y = 0 }
3x
A = { (x, y) ∈ R2 /. y = arctan x, y = arccos , y = 0 }
2
2
A = { (x, y) ∈ R /. y = arcsenx, y = arccos x, x = 1 }
A = { (x, y) ∈ R2 /. y = x3 − 3x2 + 2x + 2,
A = { (x, y) ∈ R2 /. y = 4 − Ln(x + 1),
A = { (x, y) ∈ R2 /. y 2 − x = 0,
y = 2x2 − 4x + 2 }
y = Ln(x + 1), x = 0 }
y − x3 = 0, x + y − 2 = 0 }
A = { (x, y) ∈ R2 /. y(x2 + 4) = 4(2 − x), y = 0, x = 0 }
A = { (x, y) ∈ R2 /. y = x3 + x − 4,
A = { (x, y) ∈ R2 /. y = ex ,
y = x, y = 8 − x }
y = e−x , x = 1 }
A = { (x, y) ∈ R2 /. y = 2x + 2,
x = y 2 + 1, x = 0, y = 0, x = 2 }
A = { (x, y) ∈ R2 /. y =| x − 2 |, y + x2 = 0, x = 1, x = 3 }
√
A = { (x, y) ∈ R2 /. y = x2 − 3, y =| x − 1 |, y = 0 }
A = { (x, y) ∈ R2 /. y =| senx |
x2 − 4
A = { (x, y) ∈ R2 /. y = 2
,
x − 16
A = { (x, y) ∈ R2 /. y = arcsenx,
A = { (x, y) ∈ R2 /. y = tan2 x,
♣❛r❛
x ∈ [0, 2π],
y = −x, x = 2π }
x = −3, x = 3, y = 0 }
y = arccos x, x = 0 }
π
y = 0, x = , x = 0 }
3
✶✻✳ ❈❛❧❝✉❧❡ ❛s ❞✐♠❡♥sõ❡s ❞♦ r❡tâ♥❣✉❧♦ ❞❡ ♣❡rí♠❡tr♦ ♠á①✐♠♦ q✉❡ ♣♦❞❡ s❡r ✐♥s❝rt♦ ❡♠
✉♠❛ s❡♠✐❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❡ r❛✐♦
r✳
✶✼✳ ❆❝✉♠✉❧❛✲s❡ ❛r❡✐❛ ❡♠ ❢♦r♠❛ ❝ô♥✐❝❛ ❛ r❛③ã♦ ❞❡
10dm3 /min✳
❙❡ ❛ ❛❧t✉r❛ ❞♦ ❝♦♥❡ é
s❡♠♣r❡ ✐❣✉❛❧ ❛ ❞♦✐s ✈❡③❡s ♦ r❛✐♦ ❞❡ s✉❛ ❜❛s❡✱ ❛ q✉❡ r❛③ã♦ ❝r❡s❝❡ ❛ ❛❧t✉r❛ ❞♦ ❝♦♥❡
q✉❛♥❞♦ ❡st❛ é ✐❣✉❛❧ ❛
8dm❄
✸✸✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✻✳✸
❋♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s
❚r❛t❛r❡♠♦s ❞❛s r❡❣r❛s ❞❡ ▲✬❍♦s♣✐t❛❧ q✉❡ ♣❡r♠✐t❡♠ ❝❛❧❝✉❧❛r ❧✐♠✐t❡s ❞❛ ❢♦r♠❛✿
∞
,
∞
0
,
0
❚❡♦r❡♠❛ ✻✳✶✳
0 · ∞,
00 ,
∞∞ ,
1∞
❞❡ ❈❛✉❝❤②✳
❙❡❥❛♠ ❛s ❢✉♥çõ❡s r❡❛✐s
f (x)
❡
❛✮
❙❡❥❛♠ ❝♦♥tí♥✉❛s ♥♦ ✐♥t❡r✈❛❧♦
❜✮
❙❡❥❛♠ ❞❡r✐✈á✈❡✐s ❡♠
❝✮ g ′ (x) 6= 0
∞ − ∞,
g(x)✱
t❛✐s q✉❡✿
[a, b]✳
(a, b)✳
∀ x ∈ (a, b)
❡♥tã♦✱ ❡①✐st❡ ♣❡❧♦ ♠❡♥♦s ✉♠ ♣♦♥t♦
c ∈ (a, b)
t❛❧ q✉❡✿
f (b) − f (a)
f ′ (c)
= ′ ✳
g(b) − g(a)
g (c)
❉❡♠♦♥str❛çã♦✳
❖❜s❡r✈❡✱
g(a) 6= g(b)
❘♦❧❧❡ ❀ ✐st♦ ✐♠♣❧✐❝❛r✐❛ q✉❡ ❡①✐st❡
❙❡❥❛
k=
f (b) − f (a)
✱
g(b) − g(a)
g(a) = g(b) ❝✉♠♣r✐r✐❛ ❛s ❝♦♥❞✐çõ❡s ❞♦ ❚❡♦r❡♠❛
c ∈ (a, b) t❛❧ q✉❡ g ′ (c) = 0 ❝♦♥trár✐♦ à ❤✐♣ót❡s❡✳
♣❛r❛ ♦ ❝❛s♦
❞❡
❡♥tã♦
f (b) − f (a) = k(g(b) − g(a))
✭✻✳✸✮
F (x) = f (x)−f (a)−k(g(x)−g(a)) ♣❛r❛ t♦❞♦ x ∈ [a, b]❀
❡♥tã♦ F é ❝♦♥tí♥✉❛ ❡♠ [a, b], F é ❞❡r✐✈á✈❡❧ ❡♠ (a, b) ❡ F (b) = F (a) = 0❀ ❧♦❣♦ F ❝✉♠♣r❡♠
′
❛s ❝♦♥❞✐çõ❡s ❞♦ ❚❡♦r❡♠❛ ❞❡ ❘♦❧❧❡✱ ♣♦rt❛♥t♦ ❡①✐st❡ c ∈ (a, b) t❛❧ q✉❡ F (c) = 0✳
❈♦♥s✐❞❡r❡✲s❡ ❛ ❢✉♥çã♦ ❛✉①✐❧✐❛r
F ′ (x) = f ′ (x) − kg ′ (x)✱ ❡♥tã♦ F ′ (c) = f ′ (c) − kg ′ (c) = 0
f ′ (c)
(a, b), k = ′ ✳
g (c)
f ′ (c)
f (b) − f (a)
= ′ ✳
P♦rt❛♥t♦✱ ❡♠ ✭✻✳✸✮t❡♠♦s
g(b) − g(a)
g (c)
❙❡♥❞♦
Pr♦♣r✐❡❞❛❞❡ ✻✳✽✳
❙❡ ❛s ❢✉♥çõ❡s
lim+
x→a
g ′ (c) 6= 0 ∀ c ∈
Pr✐♠❡✐r❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧✳
f, g : R −→ R
❝✉♠♣r❡♠✿
a) ❈♦♥tí♥✉❛s ♥♦ ✐♥t❡r✈❛❧♦ [a, a + h], h > 0
c) g ′ (x) 6= 0 ∀ x ∈ (a, a + h)
f ′ (x)
f ′ (x)
e) lim+ ′
= L ♦✉ lim+ ′
= ±∞
x→a g (x)
x→a g (x)
❡♥tã♦
❡ ❝♦♠♦
f ′ (x)
f (x)
= lim+ ′
=L
g(x) x→a g (x)
♦✉
✸✸✾
b) ❞❡r✐✈á✈❡✐s ❡♠ (a, a + h)
d) f (a) = g(a) = 0
±∞✳
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❉❡♠♦♥str❛çã♦✳
❖❜s❡r✈❡ q✉❡ g ′ (x) 6= 0 ∀ x ∈ (a, a + h)✳ ❆♣❧✐❝❛♥❞♦ ♦ ❚✳❱✳▼✳ à ❢✉♥çã♦ g ♥♦ ✐♥t❡r✈❛❧♦
[a, a + h] t❡♠♦s q✉❡ ❡①✐st❡ ♦♥❞❡ c ∈ (a, x) t❛❧ q✉❡ g(x) − g(a) = (x − a)g ′ (c)❀ ❛s ❤✐♣ót❡s❡s
❝✮ ❡ ❞✮ ✐♠♣❧✐❝❛♠ g(x) = (x − a)g ′ (c) 6= 0✳
f (x)
❡ ❝♦♠♦ ♣♦r ❤✐♣ót❡s❡ f (a) = g(a) = 0✱
g(x)
f (x) − f (a)
f ′ (x)
f (x)
=
= ′
♣❛r❛ a < d < x✳
♦ t❡♦r❡♠❛ ❞❡ ❈❛✉❝❤② ♣❡r♠✐t❡ ❡s❝r❡✈❡r
g(x)
g(x) − g(a)
g (x)
❖❜s❡r✈❛♥❞♦✱ q✉❛♥❞♦ x → a+ ✱ ❡♥tã♦ d → a+ ✱ ❞❛ ❤✐♣ót❡s❡ ❡✮ s❡❣✉❡✿
P❛r❛ x ∈ (a, a + h) ❝♦♥s✐❞❡r❡ ♦ q✉♦❝✐❡♥t❡
lim+
x→a
f (x)
f (x) − f (a)
f ′ (x)
f ′ (x)
= lim+
= lim+ ′
= lim+ ′
= L ♦✉
d→a g (x)
x→a g (x)
g(x) x→a g(x) − g(a)
±∞
❖❜s❡r✈❛çã♦ ✻✳✼✳
❙❡ ❛s ❝♦♥❞✐çõ❡s ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✽✮ sã♦ ✈❡r✐✜❝❛❞❛s ♥✉♠ ✐♥t❡r✈❛❧♦ [a − h, a] ♦✉
[a − h, a + h]✱ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✽✮ é ✈❡r❞❛❞❡✐r❛ q✉❛♥❞♦ x → a− ♦✉ x → a
Pr♦♣r✐❡❞❛❞❡ ✻✳✾✳
❙❡ ❛s ❝♦♥❞✐çõ❡s
❛✮✱
❜✮
❡
❝✮
❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✽✮ sã♦ ✈❡r✐✜❝❛❞❛s ♥✉♠ ✐♥t❡r✈❛❧♦
1
1
[ , +∞) ♦✉ (−∞, − ] ❡ lim .f (x) = lim .g(x) = 0 ♦✉ lim .f (x) = lim .g(x) = 0 ✱
x→+∞
x→+∞
x→−∞
x→−∞
h
h
❡♥tã♦
f ′ (x)
f (x)
= lim ′
x→+∞ g (x)
x→+∞ g(x)
lim
♦✉
f (x)
f ′ (x)
= lim ′
x→−∞ g(x)
x→−∞ g (x)
lim
s❡♠♣r❡ q✉❡ ♦ ❧✐♠✐t❡ ❞♦ s❡❣✉♥❞♦ ♠❡♠❜r♦ ❡①✐st❛✳
❉❡♠♦♥str❛çã♦✳
1
1
1
❙❡ x → +∞✱ ❝♦♥s✐❞❡r❛♥❞♦ x = ❛s ❞✉❛s ❢✉♥çõ❡s f ( ) ❡ g( ) tê♠ ❧✐♠✐t❡ ③❡r♦ q✉❛♥❞♦
t
t
t
t → 0+ ✳
1
1
❉❡✜♥✐♥❞♦ f ( ) = g( ) = 0 ♣❛r❛ t = 0✱ ♦❜tê♠✲s❡ ❞✉❛s ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ♥♦ ✐♥t❡r✈❛❧♦
t
t
[0, h] q✉❡ ✈❡r✐✜❝❛♠ ❛s ❝♦♥❞✐çõ❡s ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✽✮✳
❆♣❧✐❝❛♥❞♦ ❡st❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✽✮✿
− t12 · f ′ ( 1t )
f ( 1t )
[f ( 1t )]′
f ′ ( 1t )
f ′ (x)
f (x)
= lim+ 1 ′ 1 = lim+ ′ 1 = lim ′
= lim+ 1 = lim+
lim
1
x→+∞ g (x)
x→+∞ g(x)
t→0 − 2 · g ( )
t→0 g( )
t→0 [g( )]′
t→0 g ( )
t
t
t
t
t
❉❡ ♠♦❞♦ s✐♠✐❧❛r ♠♦str❛✲s❡ q✉❛♥❞♦ t → −∞✳
Pr♦♣r✐❡❞❛❞❡ ✻✳✶✵✳
❙❡ f ′ (a) = g ′ (a) = 0 ❡ f ′ ❡ g ′ ❝✉♠♣r❡♠ ❛s ❝♦♥❞✐çõ❡s ❞❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✽✮✱ ❡♥tã♦✿
lim+
x→a
f (x)
f ′ (x)
f ′′ (x)
= lim+ ′
= lim+ ′′
g(x) x→a g (x) x→a g (x)
❉❡♠♦♥str❛çã♦✳
✸✹✵
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ ❞❡♠♦♥str❛çã♦ é ❡①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❖❜s❡r✈❛çã♦ ✻✳✽✳
❙❡ ♥ã♦ ❡①✐st❡ ♦ ❧✐♠✐t❡ ❞❡
f (x)
g(x)
❡①✐st❡ ♦ ❧✐♠✐t❡ ❞❡
f ′ (x)
g ′ (x)
q✉❛♥❞♦
x → a✱
❡♥tã♦ ♥ã♦ ♣♦❞❡♠♦s ❝♦♥❝❧✉✐r q✉❡ ♥ã♦
❝♦♠♦ ♠♦str❛ ♦ s❡❣✉✐♥t❡ ❡①❡♠♣❧♦✳
❊①❡♠♣❧♦ ✻✳✸✶✳
❙❡❥❛♠ ❛s ❢✉♥çõ❡s
g(x) = senx
❈❛❧❝✉❧❛♥❞♦ ♦ ❧✐♠✐t❡✿
P♦r ♦✉tr♦ ❧❛❞♦✱
2xsen( x1 ) − cos( x1 )
f ′ (x)
=
lim
x→0
x→0 g ′ (x)
cos x
f, g : R −→ R
x→a
s❡✱
x=0
✳
♥ã♦ ❡①✐st❡✳
❝✉♠♣r❡♠✿
h>0
b)
d)
e) f (a) = g(a) = 0
lim+
x 6= 0
❙❡❣✉♥❞❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧✳
a) ❈♦♥tí♥✉❛s ♥♦ ✐♥t❡r✈❛❧♦ (a, a + h],
c) g ′ (x) 6= 0 ∀ x ∈ (a, a + h)
❡♥tã♦
s❡✱
x2 · sen( x1 )
x
1
f (x)
= lim
= lim
· x · sen
= 0✳
lim
x→0
x→0 senx
x→0 g(x)
senx
x
lim
Pr♦♣r✐❡❞❛❞❡ ✻✳✶✶✳
❙❡ ❛s ❢✉♥çõ❡s
❡
x2 · sen( 1 )
f (x) =
x
0
f)
f ′ (x)
f (x)
= lim+ ′
=L
g(x) x→a g (x)
♦✉
❞❡r✐✈á✈❡✐s ❡♠ (a,
a + h)
lim+ .f (x) = lim+ .g(x) = ∞
x→a
x→a
f ′ (x)
lim+ ′
=L
x→a g (x)
♦✉
±∞
±∞
❉❡♠♦♥str❛çã♦✳
❊①❡r❝í❝✐♦ ♣❛r❛ ♦ ❧❡✐t♦r✳
❊①❡♠♣❧♦ ✻✳✸✷✳
❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1
❛✮
❙♦❧✉çã♦✳
x− 4
lim+
x→0 Lnx
❛✮
➱ ❞❛ ❢♦r♠❛
❙♦❧✉çã♦✳
❜✮
❜✮
➱ ❞❛ ❢♦r♠❛
∞
✱
∞
∞
✱
∞
❧♦❣♦
❧♦❣♦
lim
x→0 1
x
1
x
+ sen( x1 )
5
1
− 41 x− 4
1 −1
x− 4
= lim+ − x 4 = −∞✳
lim
= lim+
x→0+ Lnx
x→0
x→0
x−1
4
lim
x→0 1
x
ú❧t✐♠♦ ❧✐♠✐t❡ ♥ã♦ ❡①✐st❡✱ ♣♦ré♠
1
x
−x−2
1
= lim −2
= lim
1
1
x→0
x→0
x (1 + cos( x ))
1 + cos( x1 )
+ sen( x )
1
1
x
lim
= lim
= 1✳
x→0 1 + sen( 1 )
x→0 1 + xsen( 1 )
x
x
x
✸✹✶
❡st❡
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖❜s❡r✈❛çã♦ ✻✳✾✳
✐✮
❆♣❧✐❝❛♥❞♦ ♦ ❚✳❱✳▼✳ ♠♦str❛✲s❡ q✉❡✱ s❡ lim .f (x) = ∞ ❡ lim .g(x) = ∞✱ ❡♥tã♦
x→a
x→a
lim .f ′ (x) = ∞ ❡ lim .g ′ (x) = ∞✱ ✐st♦ s✐❣♥✐✜❝❛ q✉❡ ♥✉♠ ❝❡rt♦ s✉❜❝♦♥❥✉♥t♦ ❞❡
x→a
x→a
f ′ (x)
f ′ (x)
q✉❛♥❞♦
x
→
a
✳
◆ã♦
♦❜st❛♥t❡
♦
q✉♦❝✐❡♥t❡
♣♦❞❡
g ′ (x)
g ′ (x)
f (x)
♥ã♦ ♣❡r♠✐t❡ ✭❊①❡♠♣❧♦ ✭✻✳✸✷✮ ❛✮ ✮
♣❡r♠✐t✐r s✐♠♣❧✐✜❝❛çõ❡s q✉❡
g(x)
D(f ) é ✐♥❞❡t❡r♠✐♥❛❞♦
✐✐✮
✐✐✐✮
P❛r❛ ❛ ❢♦r♠❛
∞
0
✈❡r✐✜❝❛♠✲s❡ ❛s ♣r♦♣r✐❡❞❛❞❡s ❛♥á❧♦❣❛s ❛♦s ❞❛ ❢♦r♠❛ ✳
∞
0
f ′ (x)
∞
♥ã♦ t❡♠ ❧✐♠✐t❡ q✉❛♥❞♦ x → a✱ ♥ã♦
é ♥❡❝❡ssár✐♦ ❝♦♥s✐❞❡r❛r q✉❡✱ s❡ ′
∞
g (x)
f (x)
♣♦❞❡♠♦s ❝♦♥❝❧✉✐r q✉❡
♥ã♦ t❡♥❤❛ ❧✐♠✐t❡ ✭❊①❡♠♣❧♦ ✭✻✳✸✷✮ ❜✮ ✮
g(x)
◆❛ ❢♦r♠❛
❊①❡♠♣❧♦ ✻✳✸✸✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
ex−3 − e3−x
x→3 sen(x − 3)
lim
0
✱ ❝♦♠♦ ❛s ❝♦♥❞✐çõ❡s ❞❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧
0
1+1
ex−3 + e3−x
ex−3 − e3−x
= lim
=
= 2✳
✭Pr♦♣r✐❡❞❛❞❡ ✭✻✳✶✶✮✮ ❝✉♠♣r❡♠✱ ❡♥tã♦✿ lim
x→3 cos(x − 3)
x→3 sen(x − 3)
1
ex−3 − e3−x
= 2✳
P♦rt❛♥t♦✱ lim
x→3 sen(x − 3)
◗✉❛♥❞♦ x → 3✱ ♦ ❧✐♠✐t❡ t❡♥❞❡ ♣❛r❛
❊①❡♠♣❧♦ ✻✳✸✹✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
ex−2 + e2−x − 2
lim
✳
x→2 1 − cos(x − 2)
ex−2 + e2−x − 2
=
x→2 1 − cos(x − 2)
0
0
❖ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛ ✱ ❛♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧ t❡♠♦s✿ lim
ex−2 − e2−x
✳
x→2 sen(x − 2)
lim
❊st❡ ú❧t✐♠♦ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
ex−2 + e2−x
= 2✳
x→2 cos(x − 2)
0
✱ ❛♣❧✐❝❛♥❞♦ ♥♦✈❛♠❡♥t❡ ❛
0
Pr♦♣r✐❡❞❛❞❡
✭✻✳✽✮ t❡♠♦s✿
lim
ex−2 + e2−x − 2
= 2✳
x→2 1 − cos(x − 2)
P♦rt❛♥t♦✱ lim
❊①❡♠♣❧♦ ✻✳✸✺✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
1 − cos x − 21 x2
✳
lim
x→0
x4
✸✹✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❊st❡ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
0
✱
0
R
❛♣❧✐❝❛♥❞♦ três ✈❡③❡s ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧ t❡♠♦s✿
1 − cos x − 21 x2
1
senx − x
cos x − 1
lim
=
lim
=
lim
=
−
✳
x→0
x→0
x→0
x4
4x3
12x2
24
P♦rt❛♥t♦✱
1 − cos x − 12 x2
1
=−
lim
4
x→0
x
24
❊①❡♠♣❧♦ ✻✳✸✻✳
1
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
❙❡
x→0
e− x
lim
x→0 x
+
✱ ❡st❡ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
0
✱
0
1
❡♥tã♦
1
1
e− x
x−2 · e− x
e− x
lim+
= lim+
= lim+ 2
x→0
x→0
x→0
x
1
x
♦❜s❡r✈❡✱ s❡ ❝♦♥t✐♥✉❛♠♦s ❝♦♠ ♦ ♣r♦❝❡ss♦ ♥ã♦ ♣♦❞❡r❡♠♦s ❡✈✐t❛r ❛ ✐♥❞❡t❡r♠✐♥❛çã♦✳
1
1
e− x
x
P♦r ♦✉tr♦ ❧❛❞♦ ❡s❝r❡✈❡♥❞♦✱ lim
= lim+ 1 ❡st❡ ú❧t✐♠♦ ❧✐♠✐t❡ é ❞❛
x→0+ x
x→0 e x
1
1
e− x
−x−2
x
❆♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧✱ lim
=
lim
=
lim
1
1 = 0✳
x→0+ x
x→0+ e x
x→0+ −x−2 e x
1
e− x
1 −1
−
❙❡ x → 0 ✱t❡♠♦s lim
=
lim
· e x = (−∞)(+∞) = −∞✳
x→0− x
x→0− x
1
e− x
♥ã♦ ❡①✐st❡✳
P♦rt❛♥t♦ ♦ ❧✐♠✐t❡ lim
x→0 x
❢♦r♠❛
∞
✳
∞
❊①❡♠♣❧♦ ✻✳✸✼✳
1
❈❛❧❝✉❧❛r
lim
x→+∞
e − x2 − 1
1
x2
.
❙♦❧✉çã♦✳
➱ ❞❛ ❢♦r♠❛
0
✱
0
1
❡♥tã♦
lim
x→+∞
1
P♦rt❛♥t♦
lim
x→+∞
e − x2 − 1
1
x2
e − x2 − 1
1
x2
1
1
e − x2
e− x2 · 2x−3
=
lim
= −1✳
= lim
x→+∞ −1
x→+∞
−2x−3
= −1✳
❊①❡♠♣❧♦ ✻✳✸✽✳
❈❛❧❝✉❧❛r
lim+
x→0
Ln(senx)
✳
Ln(tan x)
❙♦❧✉çã♦✳
∞
Ln(senx)
cot x
✱ ❧♦❣♦
lim+
= lim+ sec2 x = lim+ cos2 x✳
x→0 Ln(tan x)
x→0
x→0
∞
tan x
Ln(senx)
= 1✳
lim+
x→0 Ln(tan x)
❖ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
P♦rt❛♥t♦
❊①❡♠♣❧♦ ✻✳✸✾✳
❈❛❧❝✉❧❛r
limπ
x→ 2
tan x
✳
tan(3x)
❙♦❧✉çã♦✳
✸✹✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
∞
✱ ❞❛s ✐❞❡♥t✐❞❛❞❡s tr✐❣♦♥♦♠étr✐❝❛s s❡❣✉❡✲s❡ ✿
∞
tan x
senx · cos 3x
=
= limπ
lim
x→ 2 sen3x · cos x
x→ π2 tan(3x)
h senx i
cos 3x
cos 3x
= limπ
· limπ
= (−1) limπ
✳
x→ 2 sen3x
x→ 2
x→ 2
cos x
cos x
❖ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
❆ ❛♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧ ❛ ♦ ú❧t✐♠♦ ❧✐♠✐t❡✿
cos 3x
−3sen3x
= limπ
= −3✳
lim
x→ 2
x→ π2
cos x
−senx
lim
P♦rt❛♥t♦
x→ π2
tan x
= (−1)(−3) = 3✳
tan(3x)
❊①❡♠♣❧♦ ✻✳✹✵✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
xn
,
x→+∞ ex
lim
n ∈ N✳
∞
n ∈ N ❡ ♦ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛ ✱ ❛♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧ s✉❝❡ss✐✈❛♠❡♥t❡
∞
n!
xn
n ✈❡③❡s✱t❡♠♦s ✿ lim x = lim x = 0✳
x→+∞ e
x→+∞ e
xn
P♦rt❛♥t♦✱
lim
= 0✳
x→+∞ ex
❈♦♠♦
❊①❡♠♣❧♦ ✻✳✹✶✳
❉❡t❡r♠✐♥❡ ♦ s❡❣✉✐♥t❡ ❧✐♠✐t❡ ✿
❙♦❧✉çã♦✳
❖ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
n − 1 < r < n✳
∞
✱
∞
xr
,
x→+∞ ex
❝♦♠♦
lim
r
r ∈ Q − N,
r > 0✳
é ✉♠ ♥ú♠❡r♦ r❡❛❧ ♣♦s✐t✐✈♦✱ ❡①✐st❡
❆♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧ s✉❝❡ss✐✈❛♠❡♥t❡
n
n ∈ N
t❛❧ q✉❡
✈❡③❡s t❡♠♦s✿
r(r − 1)(r − 2)(r − 3) · · · (r − (n − 1))xr−n
xr
=
lim
=0
x→+∞
x→+∞ ex
ex
lim
♣♦✐s✱
ex
(r − n) < 0✳
é ✐♥✜♥✐t♦ ❞❡ ✑ ♦r❞❡♠ ♠❛✐♦r q✉❡ q✉❛❧q✉❡r ♣♦tê♥❝✐❛
r
P♦rt❛♥t♦✱
lim
x → +∞
❞❡ x✑✳
❊st❡ r❡s✉❧t❛❞♦ ♠♦str❛ q✉❡✱ q✉❛♥❞♦
x→+∞
x
= 0✳
ex
♦ ❧✐♠✐t❡ ❞❛ ❡①♣♦♥❡♥❝✐❛❧
❊①❡♠♣❧♦ ✻✳✹✷✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
Lnx
,
x→+∞ xr
lim
r ∈ N,
r > 0✳
∞
✱ ❛♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧
∞
−1
x
1
Lnx
=
lim
=
lim
= 0✳
lim
x→+∞ r · xr−1
x→+∞ r · xr
x→+∞ xr
❖ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
✸✹✹
t❡♠♦s✿
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❖ r❡s✉❧t❛❞♦ ♠♦str❛ q✉❡✱ q✉❛♥❞♦
❞❡
x
r
✑✱ ♣❛r❛
r > 0✳
Lnx
é ✐♥✜♥✐t♦ ❞❡ ✏♦r❞❡♠ ✐♥❢❡r✐♦r
Lnx
= 0.
x→+∞ xr
❋♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s r❡❞✉tí✈❡✐s à ❢♦r♠❛
❆s r❡❣r❛s ❞❡ ▲✬❍♦s♣✐t❛❧ ❛♣❧✐❝❛♠✲s❡ à ❢♦r♠❛
0 · ∞,
❛ ❢✉♥çã♦
lim
P♦rt❛♥t♦✱
✻✳✸✳✶
x → +∞
∞ − ∞,
00 ,
∞0
❡
1∞ ❀
♣♦❞❡♠ s❡r
0
0
♦✉
∞
∞
∞
❀ ♣♦ré♠ ❛s ❢♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s✿
∞
0
∞
tr❛♥s❢♦r♠❛❞❛s ♣❛r❛ ❢♦r♠❛
♦✉
✳
0
∞
0
0
♦✉
✻✳✸✳✶✳✶ ❆ ❢♦r♠❛ ✐♥❞❡t❡r♠✐♥❛❞❛ 0 · ∞
lim .f (x) = 0 ❡ lim .g(x) = ∞ ✭♣♦❞❡ s❡r ±∞✮✱ t❡♠♦s✿ [lim .f (x)]·
x→a
x→a
[lim .g(x)] = lim .f (x)g(x) = 0 · ∞✳ ❊st❡ ❧✐♠✐t❡ ♣♦❞❡ s❡r ❝❛❧❝✉❧❛❞♦ ✉t✐❧✐③❛♥❞♦ ❛ r❡❣r❛ ❞❡
◗✉❛♥❞♦ ♣♦r ❡①❡♠♣❧♦
x→a
x→a
x→a
▲✬❍♦s♣✐t❛❧✱ s❡❣✉♥❞♦ ✉♠❛ ❞❛s s❡❣✉✐♥t❡s tr❛♥s❢♦r♠❛çõ❡s✿
1a
f ·g =
2a
f ·g =
f
0
✳
0
g
∞
✳
∞
1 ❡ r❡s✉❧t❛ ❞❛ ❢♦r♠❛
g
1 ❡ r❡s✉❧t❛ ❞❛ ❢♦r♠❛
f
❖❜s❡r✈❛çã♦ ✻✳✶✵✳
✐✮
◗✉❛♥❞♦ ✉♠ ❞♦s ❢❛t♦r❡s é ✉♠❛ ❢✉♥çã♦ tr❛♥s❝❡♥❞❡♥t❡ ❝♦♠ ❞❡r✐✈❛❞❛s ❛❧❣é❜r✐❝❛s✱ ❝♦♥✈é♠
❝♦♥s✐❞❡r❛r ❡st❡ ❢❛t♦r ❝♦♠♦ ♦ ♥✉♠❡r❛❞♦r ❛♥t❡s ❞❡ ✉t✐❧✐③❛r ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧✳
✐✐✮
◆ã♦ ❝♦♥❢✉♥❞✐r ❝♦♠ ❛ Pr♦♣r✐❡❞❛❞❡ ✭✻✳✶✶✮✲✭❞✮ ♦ ✈❛❧♦r ❞❡ ✉♠ ❞♦s ❧✐♠✐t❡s ♥ã♦ é ✉♠
♥ú♠❡r♦ r❡❛❧✳
❊①❡♠♣❧♦ ✻✳✹✸✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
lim [tan x · Ln(senx)]
x→0
0 · ∞✱ ❛♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ♣r❡❝❡❞❡♥t❡
Ln(senx)
∞
lim [tan x · Ln(senx)] = lim
é ❞❛ ❢♦r♠❛
✳
x→0
x→0
cot x
∞
❖❜s❡r✈❡ q✉❡ ♦ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
✭✻✳✶✵✮t❡♠♦s✿
▲♦❣♦✱
lim [tan x · Ln(senx)] = lim
x→0
P♦rt❛♥t♦✱
x→0
❡ ❞❛ ❖❜s❡r✈❛çã♦
Ln(senx)
cot x
= lim
= − lim (cos x)(senx) = 0✳
x→0
x→0
cot x
− csc2 x
lim [tan x · Ln(senx)] = 0✳
x→0
✸✹✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✻✳✸✳✶✳✷ ❆ ❢♦r♠❛ ✐♥❞❡t❡r♠✐♥❛❞❛
P♦r ❡①❡♠♣❧♦✱ s❡
R
∞−∞
lim .f (x) = ∞ ❡ lim .g(x) = ∞✱t❡♠♦s✿ lim .f (x)− lim .g(x) = ∞−∞✳
x→a
x→a
x→a
x→a
❊st❡ ❧✐♠✐t❡ ♣♦❞❡ s❡r ❝❛❧❝✉❧❛❞♦ ✉t✐❧✐③❛♥❞♦ ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧✱ s❡❣✉♥❞♦ ❛ tr❛♥s❢♦r♠❛✲
çã♦✿
1 1
f − g = f · g[ − ]✳
g f
❊①❡♠♣❧♦ ✻✳✹✹✳
❈❛❧❝✉❧❛r
❙♦❧✉çã♦✳
1
lim+ [ − csc x]✳
x→0 x
−(x − senx)
csc x 1
1
1
][
− 1 ] = lim+
=
lim+ [ − csc x] = lim+ [
x→0
x→0
x→0 x
x csc x
x · senx
x
cos x − 1
0
−senx
= lim+
= lim+
= =0
x→0 senx + x · cos x
x→0 cos x + cos x − x · senx
2
1
P♦rt❛♥t♦✱
lim [ − csc x] = 0✳
x→0+ x
❚❡♠♦s
✻✳✸✳✶✳✸ ❆s ❢♦r♠❛s ✐♥❞❡t❡r♠✐♥❛❞❛s
00 , ∞0
❡
1∞
0 · ∞✱ s❡ ❛♦
= eg(x)·Ln[f (x)] ✳
❚♦❞❛s ❡st❛s ❢♦r♠❛s sã♦ r❡❞✉tí✈❡✐s à ❢♦r♠❛
♣r♦♣r✐❡❞❛❞❡ ❞❡ ❧♦❣❛r✐t♠♦ q✉❡ ❞✐③✿
f (x)
g(x)
❝❛❧❝✉❧❛r ♦ ❧✐♠✐t❡ ✉t✐❧✐③❛♠♦s ❛
❊①❡♠♣❧♦ ✻✳✹✺✳
❈❛❧❝✉❧❛r
lim [x + senx]tan x ✳
x→0+
❙♦❧✉çã♦✳
❖❜s❡r✈❡✿
lim tan x·Ln(x+senx)
lim+ [x + senx]tan x = ex→0+
✭✻✳✹✮
x→0
1+cos x
P♦r ♦✉tr♦ ❧❛❞♦✱
Ln(x + senx)
= lim+ x+senx
=
lim+ tan x · Ln(x + senx) = lim+
x→0 − csc2 x
x→0
x→0
cot x
lim+ (1 + cos x) · lim+
x→0
x→0
sen2 x
2senx cos x
= (−2) lim+
= (−2)(0) = 0
x→0
x + senx
1 + cos x
lim tan x·Ln(x+senx)
◆❛ ❡①♣r❡ssã♦ ✭✻✳✹✮ t❡♠♦s
P♦rt❛♥t♦✱
lim+ [x + senx]tan x = ex→0+
x→0
tan x
lim [x + senx]
x→0+
= e 0 = 1✳
= 1✳
❊①❡♠♣❧♦ ✻✳✹✻✳
π
❈❛❧❝✉❧❛r
limπ [tan x] 2 −x ✳
x→ 2
❙♦❧✉çã♦✳
❚❡♠♦s✿
lim [tan x]
x→ π2
π
−x
2
=e
lim ( π2 −x)Ln[tan x]
x→ π
2
✸✹✻
✭✻✳✺✮
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
P♦r ♦✉tr♦ ❧❛❞♦✱
= limπ
x→ 2
limπ (
x→ 2
2
( π2 − x)2
−2( π2 − x)
0
= limπ
=
=0
= limπ
2
2
x→ 2 cos x − sen x
x→ 2 senx · cos x
−1
lim [tan x]
x→ π2
π
−x
2
lim [tan x]
x→ π2
R
Ln(tan x)
π
=
− x)Ln[tan x] = limπ
1
x→ 2
2
( π −x)
sec2 x
tan x
1
π
( 2 −x)2
❊♠ ✭✻✳✺✮ s❡❣✉❡✲s❡✱
P♦rt❛♥t♦✱
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
π
−x
2
=e
lim ( π2 −x)Ln(tan x)
x→ π
2
= e 0 = 1✳
= 1✳
❊①❡♠♣❧♦ ✻✳✹✼✳
1
lim [1 + x2 ] x·senx ✳
❈❛❧❝✉❧❛r
x→0
❙♦❧✉çã♦✳
❊st❡ ❧✐♠✐t❡ é ❞❛ ❢♦r♠❛
1
∞
2
=e
lim [1 + x ]
❡①♣♦❡♥t❡ ❞❡ e s❡❣✉❡✲s❡✿
✱ ❡ t❡♠♦s✿
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞♦ ❧✐♠✐t❡ ❞♦
1
x·senx
lim
x→0
Ln(1+x2 )
x·senx
x→0
✳
2x
Ln(1 + x2 )
1+x2
lim
= lim
=
x→0 x · senx
x→0 senx + x · cos x
1
2x
2
· lim
= (1) lim
=1
2
x→0 1 + x
x→0 senx + x · cos x
x→0 2 cos x − senx
lim
P♦rt❛♥t♦✱
1
lim [1 + x2 ] x·senx = e1 = e✳
x→0
❊①❡♠♣❧♦ ✻✳✹✽✳
❈❛❧❝✉❧❛r
lim xx ✳
x→0+
❙♦❧✉çã♦✳
❖ ❧✐♠✐t❡ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♥❛ ❢♦r♠❛✿
lim x·Lnx
lim+ xx = ex→0+
✭✻✳✻✮
x→0
❚❡♠♦s✿
lim+ x · Lnx = lim+
x→0
x→0
P♦rt❛♥t♦✱ ❡♠ ✭✻✳✻✮
Lnx
1
x
= lim+
x→0
1
x
− x12
= lim+ (−x) = 0✳
x→0
lim xx = e0 = 1✳
x→0+
❊①❡♠♣❧♦ ✻✳✹✾✳
▼♦str❡ q✉❡
❙♦❧✉çã♦✳
◗✉❛♥❞♦
x − senx
x→+∞ x + senx
lim
x → ∞✱
t❡♠♦s
❡①✐st❡✱ ♣♦ré♠ ♥ã♦ é ♥❡❝❡ssár✐♦ ❛♣❧✐❝❛r ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧✳
y=
1
→ 0✱
x
❧♦❣♦
x − senx
lim
= lim
x→+∞ x + senx
y→0
1
y
1
y
− sen y1
+ sen y1
✸✹✼
= lim
y→0
1 − ysen y1
1 + ysen y1
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
1
|≤ 1 ✭ é ❧✐♠✐t❛❞❛✮✱ ❡♥tã♦ lim y · sen y1 = 0✱
y→0
y
1
1 − ysen y
x − senx
= 1✳ P♦rt❛♥t♦ lim
= 1✳
❝♦♥s❡q✉❡♥t❡♠❡♥t❡ lim
1
x→+∞ x + senx
y→0 1 + ysen
y
❈♦♠♦ ❝✉♠♣r❡✲s❡ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ | sen
◆ã♦ ♣♦❞❡♠♦s ❛♣❧✐❝❛r ❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧ ♦❜s❡r✈❡✱ é ❞❛ ❢♦r♠❛
x − senx
∄
=
x→+∞ x + senx
∄
lim
❊①❡♠♣❧♦ ✻✳✺✵✳
❛✮
❉❛r ✉♠ ❡①❡♠♣❧♦ ❞❡ ✉♠❛ ❢✉♥çã♦ f (x) ♣❛r❛ ♦ q✉❛❧ ❡①✐st❡ lim .f (x)✱ ♣♦ré♠ ♥ã♦ ❡①✐st❡
x→∞
lim .f ′ (x)
x→∞
❜✮
▼♦str❡ q✉❡✱ s❡ ❡①✐st❡♠ lim .f (x) ❡ lim .f ′ (x)✱ ❡♥tã♦ lim .f ′ (x) = 0✳
❝✮
▼♦str❡ q✉❡ s❡ ❡①✐st❡ lim .f (x) ❡ ❡①✐st❡ lim .f ′′ (x) ❡ t❛♠❜é♠ lim .f ′′ (x) = 0✳
x→∞
x→∞
x→∞
❙♦❧✉çã♦✳
x→∞
x→∞
x→∞
❛✮
senx2
senx2
✳ ❖❜s❡r✈❡✱ lim .f (x) = lim
=0
x→∞
x→∞
x
x
senx2
2x2 cos x2 − senx2
2
=
2
cos
x
−
✳
♣♦ré♠❀ f ′ (x) =
x2
x2
senx2
◆♦ ❧✐♠✐t❡ lim .f ′ (x) = lim 2 cos x2 − 2 = ∄ − 1 = ?
x→∞
x→∞
x
➱ s✉✜❝✐❡♥t❡ ❝♦♥s✐❞❡r❛r ❛ ❢✉♥çã♦ f (x) =
❙♦❧✉çã♦✳
❜✮
❙✉♣♦♥❤❛♠♦s q✉❡ lim .f ′ (x) = L > 0✳ ❊♥tã♦ ❡①✐st❡ ❛❧❣✉♠ N t❛❧ q✉❡ | f ′ (x) − L |<
x→∞
L
L
2
♣❛r❛ x > N ✱ ✐st♦ ✐♠♣❧✐❝❛ q✉❡ f ′ (x) > ✳
2
P♦ré♠ s❡❣✉♥❞♦ ♦ t❡♦r❡♠❛ ❞♦ ✈❛❧♦r ♠é❞✐♦ ✐st♦ t❛♠❜é♠ ✐♠♣❧✐❝❛ q✉❡
f (x) > f (N ) +
x−N |L|
2
♣❛r❛ x > N
♦ q✉❡ s✐❣♥✐✜❝❛ q✉❡ lim .f (x) ♥ã♦ ❡①✐st❡✳ ❉❡ ♠♦❞♦ ❛♥á❧♦❣♦ ♠♦str❛✲s❡ q✉❡ ♥ã♦ ♣♦❞❡
x→∞
❛❝♦♥t❡❝❡r lim .f ′ (x) = L < 0✳
x→∞
P♦rt❛♥t♦ lim .f ′ (x) = 0
❙♦❧✉çã♦✳
❝✮
x→∞
❙❡❥❛ lim .f ′′ (x) = L > 0 ✱ ❡♥tã♦ ♦ ♠❡s♠♦ q✉❡ ♥❛ ♣❛rt❡ ❛✮ t❡rí❛♠♦s q✉❡ lim .f ′ (x) =
x→∞
x to∞
∞✳ ❆♣❧✐❝❛♥❞♦ ♥♦✈❛♠❡♥t❡ ♦ t❡♦r❡♠❛ ❞♦ ✈❛❧♦r ♠é❞✐♦ ♠♦str❛✲s❡ q✉❡ lim .f (x) = ∞✱ ✐st♦ é
x→∞
❝♦♥tr❛❞✐çã♦ ❝♦♠ ❛ ❤✐♣ót❡s❡✳ ❉❡ ♠♦❞♦ ❛♥á❧♦❣♦ ♥ã♦ ♣♦❞❡ ❛❝♦♥t❡❝❡r lim .f ′′ (x) = L < 0✳
x→∞
P♦rt❛♥t♦ lim .f ′′ (x) = 0✳
x→∞
❊♠ ❣❡r❛❧✱ s❡ ❡①✐st❡♠ lim .f (x) ❡ lim .f (k) (x)✱ ❡♥tã♦ lim .f ′ (x) = lim .f ′′ (x) =
′′′
lim .f (x) = · · · = lim .f
x→∞
x→∞
x→∞
(k)
(x) = 0
x→∞
k ∈ N✳
✸✹✽
x→∞
x→∞
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡r❝í❝✐♦s ✻✲✸
✶✳ ❈❛❧❝✉❧❛r ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1.
4.
7.
10.
13.
16.
19.
22.
25.
28.
31.
ex − 1
x→0 Ln(x + 1)
ex − 1
lim
x→0 x(x + 1)
s
tan x
x
lim
x→0+
x
lim
aLnx − x
x→1
Lnx
√
lim x sec x
lim
2.
5.
8.
11.
14.
x→0
lim senx x
17.
x→0
Lnx
lim √
x→+∞
x
tan x
lim+
x→0
x
√
1 + x2
lim
x→+∞
x
√
x2
x2 + a2
lim
x→∞
5
lim+ x 1+2Lnx
20.
23.
26.
29.
32.
x→0
x − tan x
x − senx
√
lim x ex + x
lim
3.
x→0
6.
x→0
1
x
lim
−
x→1 Lnx
x−1
1
]
x→0
x2
x · enx − x
lim
x→0 1 − cos(nx)
sen2 x − senx2
lim
x→0
x · cos x
lim+ [Lnx +
1
1
− 2]
2
x→0 sen x
x
√
2
lim x 1 + x
lim [
x→0
lim x · (Ln | x |)
2
x→0
1
x
−
]
x→1 x − 1
Lnx
1
1
lim [ − x
]
x→0 x
e −1
lim [
9.
12.
15.
18.
21.
24.
27.
30.
33.
x + sen(πx)
x − sen(πx)
ax − (a + 1)x
lim
x→0
x
lim
x→0
x − arcsenx
x→0
x
lim
ax − x · Lnx − cos x
x→0
sen2 x
1
lim [
− cot x]
x→0 x · cos x
π
limπ [
− x · tan x]
x→ 2 2 cos x
5
seny + senx 1+2Lnx
lim Ln
x→0
seny − senx
lim
lim+ (1 − ex )Ln(senx)
x→0
tan2 (x−1 )
lim
x→+∞ Ln2 (1 + 4x−1 )
x · sen(senx)
lim
x→0 1 − cos(senx)
2
x + 3x + 5 5
lim
−
x→0
senx
x
✷✳ ❱❡r✐✜❝❛r ❛ ✈❛❧✐❞❛❞❡ ❞❛s s❡❣✉✐♥t❡s ✐❣✉❛❧❞❛❞❡s✿
✶✳
✷✳
√
5
p
cos7 (x + 1)] 15 Ln17 (x + 2)
Ln2
p
=
lim
✳
√
√
5
x→−1 [5 x+1 ] · tan3 ( 3 x + 1) · arcsen 9 (x + 1)14
Ln5
p
p
√
√
15
(a − x)13 [cos 3 a − x − cos(sen3 3 a − x)]sen(2 3 (a − x)2 )
1
p
p
=
lim
3
3
x→a
6
[ea−x − 1] · sen3 (a − x)2 [1 − cos(sen4 (a − x)2 )]
[2
(x+1)4
][1 −
p
9
✸✳ ❖♥❞❡ s❡ ❡♥❝♦♥tr❛ ♦ ❡rr♦ ♥❛ ❛♣❧✐❝❛çã♦ ❞❛ r❡❣r❛ ❞❡ ▲✬❍♦s♣✐t❛❧❄
x3 + x − 2
=
x→1 x2 − 3x + 2
lim
3x2 + 1
=
x→1 2x − 3
lim
6
=3
x→1 2
lim
◆❛ ✈❡r❞❛❞❡ ♦ ❧✐♠✐t❡ é −4✳
✸✹✾
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✹✳ ❉❡t❡r♠✐♥❡ ♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
cos2 x − 1
x→0
x2
❛✮
❜✮
lim
✺✳ ❉❡t❡r♠✐♥❡ f ′ (0) s❡✿ f (x) =
g ′′ (0) = 17✳
x
x→1 tan x
lim
g(x)
s❡ x 6= 0,
x
f (0) = 0,
g(0) = g ′ (0) = 0 ❡
✻✳ ▼♦str❡ ❛s s❡❣✉✐♥t❡s r❡❣r❛s ❞❡ ▲✬❍♦s♣✐t❛❧✿
f (x)
f ′ (x)
=
L
✱
❡♥tã♦
lim
= L,
✶✳ ❙❡ lim .f (x) = lim .g(x) = 0 ❡ lim ′
x→a+ g(x)
x→a+
x→a+
x→a+ g (x)
✭❛♥á❧♦❣♦ ♣❛r❛ ❧✐♠✐t❡s á ❡sq✉❡r❞❛✮✳
f ′ (x)
f (x)
= 0✱ ❡♥tã♦ lim+
= 0✱
′
x→a
x→a
x→a g (x)
x→a g(x)
✭❛♥á❧♦❣♦ ♣❛r❛ −∞ ♦✉ s❡ x → a+ ♦✉ x → a− ✮
f ′ (x)
f (x)
✸✳ ❙❡ lim .f (x) = lim .g(x) = 0 ❡ lim ′
= L✱ ❡♥tã♦ lim
= L✳
x→∞
x→∞
x→∞ g (x)
x to∞ g(x)
f (x)
f ′ (x)
= ∞✱ ❡♥tã♦ lim
= ∞✳
✹✳ ❙❡ lim .f (x) = lim .g(x) = 0 ❡ lim ′
x→∞ g(x)
x→∞
x→∞
x→∞ g (x)
✷✳
❙❡ lim+ .f (x) = lim+ .g(x) = ∞ ❡ lim+
✼✳ ▼♦str❡ q✉❡ lim
x→0
▲✬❍♦s♣✐t❛❧✳
x2 · sen x1
= 0✱ ♣♦ré♠ ♥ã♦ ♣♦❞❡♠♦s ❝❛❧❝✉❧❛r ❛♣❧✐❝❛♥❞♦ ❛ r❡❣r❛ ❞❡
senx
✽✳ ❉❡t❡r♠✐♥❡ ♦s ❧✐♠✐t❡s ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
✶✳
✹✳
✼✳
✶✵✳
x
lim sen x
✷✳
lim (x + 1)Lnx
✺✳
x→0
x→0
lim
x→∞
lim
x→0
√
x
x + 2x
q
x2
tan x
x
✽✳
✶✶✳
2
✶✳
✸✳
x→0
✷✳
✹✳
✻✳
✾✳
lim (π − 2x)cos x
✶✷✳
x→ π2
✾✳ ❱❡r✐✜❝❛r ♦ ❝á❧❝✉❧♦ ❞♦s s❡❣✉✐♥t❡s ❧✐♠✐t❡s✿
1
lim x · cot πx =
x→0
π
√
x2
3
lim cos 2x = e−6
✸✳
lim x · Lnx
Ln(x − 1)
lim
x→1
cot πx
1
1
lim
−
x→1 x − 1
Lnx
x→0
1
2
2
lim 2 − cot x =
x→0 x
i 3
h
2−(ex +e−x ) cos x
=
lim
x4
x→0
1
1
− x
lim
x→0 x
e −1
i
h
Ln(x−a)
lim Ln(ex −ea )
x→a
p
q
−
lim
x→1 1 − xp
1 − xq
π − 2 arctan x
√
lim
x 3
x→∞
e −1
1
3
✶✵✳ ◗✉❛❧ ❞♦s tr✐â♥❣✉❧♦s r❡tâ♥❣✉❧♦s ❞❡ ♣❡rí♠❡tr♦ ❞❛❞♦ 2p✱ t❡♠ ♠❛✐♦r ár❡❛ ❄
✶✶✳ ❉❡ ✉♠❛ ❢♦❧❤❛ ❝✐r❝✉❧❛r✱ t❡♠♦s q✉❡ ❝♦rt❛r ✉♠ s❡t♦r ❝✐r❝✉❧❛r ❞❡ ♠♦❞♦ q✉❡ ♣♦ss❛♠♦s
❝♦♥str✉✐r ✉♠ ❢✉♥✐❧ ❞❡ ♠❛✐♦r ❝❛♣❛❝✐❞❛❞❡ ♣♦ssí✈❡❧✳ ❉❡t❡r♠✐♥❡ ♦ â♥❣✉❧♦ ❝❡♥tr❛❧ α ❞♦
s❡t♦r ❝✐r❝✉❧❛r✳
✶✷✳ ❖❜t❡r ✉♠ tr✐â♥❣✉❧♦ ✐sós❝❡❧❡s ❞❡ ár❡❛ ♠á①✐♠❛ ✐♥s❝r✐t♦ ♥✉♠ ❝ír❝✉❧♦ ❞❡ r❛✐♦ 12cm✳
✸✺✵
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
✻✳✹
❆♣❧✐❝❛çõ❡s ❞✐✈❡rs❛s
❆♣r❡s❡♥t❛✲s❡ ❛ s❡❣✉✐r ♣r♦❜❧❡♠❛s ❛♣❧✐❝❛❞♦s ❛ ❞✐✈❡rs♦s r❛♠♦s ❞❛s ❝✐ê♥❝✐❛s✱ t❛✐s ❝♦♠♦
♣r♦❜❧❡♠❛s ❞❡ ❢ís✐❝❛✱ q✉í♠✐❝❛✱ ❜✐♦❧♦❣✐❛✱ ❡t❝✳
❊①❡♠♣❧♦ ✻✳✺✶✳
❉❡t❡r♠✐♥❡ ❞♦✐s ♥ú♠❡r♦s ✐♥t❡✐r♦s ♣♦s✐t✐✈♦s ❞❡ ♠♦❞♦ q✉❡ s✉❛ s♦♠❛ s❡❥❛
60 ❡ s❡✉ ♣r♦❞✉t♦
♦ ♠❛✐♦r ♣♦ssí✈❡❧✳
❙♦❧✉çã♦✳
60 − x✱ ❡♥tã♦ ♦ ♣r♦❞✉t♦ P (x) = x(60 − x)✱ ❧♦❣♦ P ′ (x) = 60 − 2x
q✉❛♥❞♦ P ′ (x) = 0 s❡❣✉❡ q✉❡ x = 30 ✭é ♣♦♥t♦ ❝rít✐❝♦ ❞❡ P (x)✮❀ t❛♠❜é♠ P ′′ (x) = −2 ❡
P ′′ (30) = −2 < 0✳ P❡❧♦ ❝r✐tér✐♦ ❞❛ ❞❡r✐✈❛❞❛ s❡❣✉♥❞❛ ❞❡ P (x)✱ ❡♠ x = 30 t❡♠♦s ♠á①✐♠♦
♣❛r❛ P (x)✳
▲♦❣♦ ♦s ♥ú♠❡r♦s sã♦ 30 ❡ 30✳
❙❡❥❛♠ ♦s ♥ú♠❡r♦s
x
❡
❊①❡♠♣❧♦ ✻✳✺✷✳
❉❛❞❛ ✉♠❛ ❢♦❧❤❛ ❞❡ ♣❛♣❡❧ã♦ q✉❛❞r❛❞❛ ❞❡ ❧❛❞♦
a✱
❞❡s❡❥❛✲s❡ ❝♦♥str✉✐r ✉♠❛ ❝❛✐①❛ ❞❡ ❜❛s❡
q✉❛❞r❛❞❛ s❡♠ t❛♠♣❛ ❝♦rt❛♥❞♦ ❡♠ s✉❛s ❡sq✉✐♥❛s q✉❛❞r❛❞♦s ✐❣✉❛✐s ❡ ❞♦❜r❛♥❞♦ ❝♦♥✈❡♥✐❡♥✲
t❡♠❡♥t❡ ❛ ♣❛rt❡ r❡st❛♥t❡✳ ❉❡t❡r♠✐♥❛r ♦ ❧❛❞♦s ❞♦s q✉❛❞r❛❞♦s q✉❡ ❞❡✈❡♠ s❡r ❝♦rt❛❞♦s ❞❡
♠♦❞♦ q✉❡ ♦ ✈♦❧✉♠❡ ❞❛ ❝❛✐①❛ s❡❥❛ ♠á①✐♠♦ ♣♦ssí✈❡❧✳
❙♦❧✉çã♦✳
x ♦ ❧❛❞♦ ❞♦ q✉❛❞r❛❞♦ ❛ s❡r ❝♦rt❛❞♦ ❡♠ ❝❛❞❛ ❡sq✉✐♥❛✱ ♦ ✈♦❧✉♠❡ ❞❛ ❝❛✐①❛ é
a
V (x) = x(a − 2x)2 ♦♥❞❡ 0 < x < ✳ ❉❡r✐✈❛♥❞♦t❡♠♦s V ′ (x) = a2 − 8ax + 12x2 ✱ q✉❛♥❞♦
2
a
V ′ (x) = 0 t❡♠♦s q✉❡ ♦ ú♥✐❝♦ ♣♦♥t♦ ❝rít✐❝♦ q✉❡ ❝✉♠♣r❡ ❛ ❝♦♥❞✐çã♦ é ❀ ♣♦r ♦✉tr♦ ❧❛❞♦✱
6
′′ a
′′
V (x) = −8a + 24x ❡ V ( ) = −4a < 0✳
6
❙❡♥❞♦
P♦rt❛♥t♦✱ ♦ ✈♦❧✉♠❡ s❡rá ♠á①✐♠♦ q✉❛♥❞♦ ♦s ❝♦rt❡s ❞♦s q✉❛❞r❛❞♦s ♥❛s ❡sq✉✐♥❛s s❡❥❛♠
✐❣✉❛✐s à s❡①t❛ ♣❛rt❡ ❞♦ ❝♦♠♣r✐♠❡♥t♦ ❞♦ ❧❛❞♦
a✳
❊①❡♠♣❧♦ ✻✳✺✸✳
❉❡s❡❥❛✲s❡ ❝♦♥str✉✐r ✉♠ ❝✐❧✐♥❞r♦ ❝✐r❝✉❧❛r r❡t♦ ❝♦♠ t❛♠♣❛✱ ❝✉❥❛ ❜❛s❡ s❡❥❛ ✉♠❛ ❝✐r❝✉♥❢❡✲
rê♥❝✐❛✱ ❞❡ ♠♦❞♦ ❛ ❣❛st❛r ❛ ♠❡♥♦r q✉❛♥t✐❞❛❞❡ ❞❡ ♠❛t❡r✐❛❧✳ ◗✉❛❧ é ❛ r❡❧❛çã♦ ❡♥tr❡ ❛ ❛❧t✉r❛
❡ ♦ r❛✐♦ ❞❛ ❜❛s❡ ♣❛r❛ ✐st♦ ❛❝♦♥t❡❝❡r ❄
❙♦❧✉çã♦✳
❉❡ ✉♠ ♣♦♥t♦ ❞❡ ✈✐st❛ ♠❛t❡♠át✐❝♦✱ ♦ ♣r♦❜❧❡♠❛ ❛♣r❡s❡♥t❛ ❞♦✐s ❛s♣❡❝t♦s✳
❛✮ ❉❡ t♦❞♦s ♦s ❝✐❧✐♥❞r♦s q✉❡ ♣♦ss✉❡♠ ár❡❛ t♦t❛❧ ✐❣✉❛❧✱ t❡rá ♠❡♥♦r ❣❛st♦ ❞❡ ♠❛t❡r✐❛❧ ❛q✉❡❧❡
q✉❡ t❡♥❤❛ ♠❛✐♦r ✈♦❧✉♠❡✳
❜✮ ❉❡ t♦❞♦s ♦s ❝✐❧✐♥❞r♦s q✉❡ ♣♦ss✉❡♠ ♦ ♠❡s♠♦ ✈♦❧✉♠❡✱ t❡rá ♠❡♥♦r ❣❛st♦ ❞❡ ♠❛t❡r✐❛❧
❛q✉❡❧❡ q✉❡ s✉❛ ár❡❛ s❡❥❛ ♠í♥✐♠❛✳
✸✺✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈♦♥s✐❞❡r❡♠♦s ♦ ❝❛s♦ ❞❛ ♣❛rt❡ ❛✮✳
❙✉♣♦♥❤❛ ✉♠ ❝✐❧✐♥❞r♦ ❞❡ ❛❧t✉r❛ h ❡ r❛✐♦ ❞❛ ❜❛s❡ r ❀ ❡♥tã♦ s✉❛ ár❡❛ t♦t❛❧ é A
V = πr2 h✳
A − 2πr2
✱
✈❡♠✱ h =
2πr
= 2πr2 +2πrh
✭A é ❝♦♥st❛♥t❡✮ ❡ s❡✉ ✈♦❧✉♠❡
❉♦ ❞❛❞♦ ❞❛ ár❡❛ t♦t❛❧
s✉❜st✐t✉✐♥❞♦ ❡st❡ ✈❛❧♦r ❡♠
V t❡♠♦s
Ar
A
A − 2πr2
)=
− πr3 ⇒ V ′ (r) = − 3πr2
2πr
2
2
r
A
♦t✐♠✐③❛♥❞♦ ❡st❛ ❢✉♥çã♦ ❡♥❝♦♥tr❛✲s❡ r0 =
é ♣♦♥t♦ ❝rít✐❝♦✱ ❡ V ′′ (r0 ) = −6πr < 0✱
6π
❛ss✐♠ ♦ ✈♦❧✉♠❡ é ♠á①✐♠♦✳
r
A
⇒ A = 6πr2 ✱ s✉❜st✐t✉✐♥❞♦ ♥❛ ❛❧t✉r❛ h t❡♠♦s
❈♦♥s✐❞❡r❡ r = r0 =
6π
V (r) = πr2 (
h=
▲♦❣♦ ❛ r❡❧❛çã♦
h:r
é
2 : 1❀
A − 2πr2
6πr2 − 2πr2
=
= 2r
2πr
2πr
✐st♦ é✱ ❛ ❛❧t✉r❛ é ♦ ❞♦❜r♦ ❞♦ r❛✐♦ ❞❛ ❜❛s❡✳
❊①❡♠♣❧♦ ✻✳✺✹✳
❯♠ ❛r❛♠❡ ❞❡
80cm
❞❡ ❝♦♠♣r✐♠❡♥t♦ ❞❡✈❡ s❡r ❝♦rt❛❞♦ ❡♠ ❞♦✐s ♣❡❞❛ç♦s✳
❞❡❧❡s ❞❡✈❡✲s❡ ❝♦♥str✉✐r ✉♠❛ ❝✐r❝✉♥❢❡rê♥❝✐❛✱ ❡ ❝♦♠ ♦ ♦✉tr♦ ✉♠ q✉❛❞r❛❞♦✳
❈♦♠ ✉♠
◗✉❛✐s sã♦ ❛s
❞✐♠❡♥sõ❡s ❞♦s ❛r❛♠❡s ❞❡ ♠♦❞♦ q✉❡ ❛ s♦♠❛ ❞❛s ár❡❛s ❞♦ ❝ír❝✉❧♦ ❡ q✉❛❞r❛❞♦ s❡❥❛♠✿
♠í♥✐♠❛❀
❜✮
❛✮
♠á①✐♠❛✳
❙♦❧✉çã♦✳
❙✉♣✉♥❤❛ ❛ r❛✐♦ ❞❛ ❝✐r❝✉♥❢❡rê♥❝✐❛ s❡❥❛
r✱
m❀ ❡ s❡❥❛♠ ♦s ❝♦♠♣r✐✲
4m = 80 − x✳ ❆ s♦♠❛ ❞❛s ár❡❛s
❡ ♦ ❧❛❞♦ ❞♦ q✉❛❞r❛❞♦
xcm ❡ (80 − x)cm❀ ❡♥tã♦ 2πr = x ❡
h x i2 80 − x 2
2
2
✳
+
é✿ S = πr + m = π
2π
4
x
(80 − x)
1
1
4+π
′
−
=x
+
− 10 = x
− 10❀ ♦ ú♥✐❝♦ ♣♦♥t♦
▲♦❣♦✱ S (x) =
2π
8
8π
2π 8
8π
❝rít✐❝♦ ❛❝♦♥t❡❝❡ q✉❛♥❞♦ x = 10
≈ 35, 19✳
4+π
1
1
′′
❆ ❞❡r✐✈❛❞❛ s❡❣✉♥❞❛ ❞❡ S(x) é✿ S (x) =
> 0✳
+
2π 8
❈♦♠♦ ❛ ❢✉♥çã♦ S(x) s♦♠❡♥t❡ t❡♠ ♠í♥✐♠♦ r❡❧❛t✐✈♦ ❡♠ x ≈ 35, 19✱ ❛ ár❡❛ ♠í♥✐♠❛
2
2
35, 19
80 − 35, 19
é S(35, 19) = π
+
= 224, 13cm2 ✱ ♣❡❧♦ ❢❛t♦ ♥ã♦ ♣♦ss✉✐r ♠❛✐s
2π
4
♠❡♥t♦s ❞♦ ❛r❛♠❡
♣♦♥t♦s ❝rít✐❝♦s✱ ❛ ár❡❛ ♠á①✐♠❛ ❞❡✈❡ ♦❝♦rr❡r ❡♠ ✉♠ ❞♦s ♣♦♥t♦s ❞♦ ❡①tr❡♠♦✳ ◗✉❛♥❞♦ x
80, S(80) = π
80
2π
2
= 509.75cm2
=
t❡♠✲s❡ ár❡❛ ♠á①✐♠❛✳
✸✺✷
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡♠♣❧♦ ✻✳✺✺✳
●❡r❛❞♦r é ✉♠ ❛♣❛r❡❧❤♦ q✉❡ tr❛♥s❢♦r♠❛ q✉❛❧q✉❡r t✐♣♦ ❞❡ ❡♥❡r❣✐❛ ❡♠ ❡♥❡r❣✐❛ ❡❧étr✐❝❛✳
❙❡ ❛ ♣♦tê♥❝✐❛ P ✱ ❡♠ watts✱ q✉❡ ✉♠ ❝❡rt♦ ❣❡r❛❞♦r ❧❛♥ç❛ ♥✉♠ ❝✐r❝✉✐t♦ ❡❧étr✐❝♦✱ é ❞❛❞♦ ♣♦r✿
P (i) = 20.i − 51i2 ✱ ♦♥❞❡ i é ❛ ✐♥t❡♥s✐❞❛❞❡ ❞❛ ❝♦rr❡♥t❡ ❡❧étr✐❝❛ q✉❡ ❛tr❛✈❡ss❛ ♦ ❣❡r❛❞♦r✱ ❡♠
❛♠♣❡r❡s ✭amp✮✱ ♣❡❞❡✲s❡✿ ❛✮ P❛r❛ q✉❡ ✐♥t❡♥s✐❞❛❞❡ ❞❛ ❝♦rr❡♥t❡ ❡❧étr✐❝❛ ❡st❡ ❣❡r❛❞♦r ❧❛♥ç❛
♥♦ ❝✐r❝✉✐t♦ ♣♦tê♥❝✐❛ ♠á①✐♠❛❄ ❜✮ P❛r❛ q✉❡ ✐♥t❡♥s✐❞❛❞❡ ❞❛ ❝♦rr❡♥t❡ ❡❧étr✐❝❛✱ ❡st❡ ❣❡r❛❞♦r
❧❛♥ç❛ ♥♦ ❝✐r❝✉✐t♦ ✉♠❛ ♣♦tê♥❝✐❛ ♠❛✐♦r q✉❡ 15W ❄
❙♦❧✉çã♦✳
❆ ♣♦tê♥❝✐❛ é ♠á①✐♠❛ q✉❛♥❞♦ ❡①✐st❡ i✱ ❞❡ ♠♦❞♦ q✉❡ s❡❥❛ ❛ ❢✉♥çã♦ P (i) ♠á①✐♠❛✳
❉❡ P (i) = 20.i − 51i2 t❡♠♦s q✉❡ P ′ (i) = 20 − 102i ♦♥❞❡ i =
20
20
é ♦ ✈❛❧♦r ❝rít✐❝♦❀
102
= 0.196amp✳
♦❜s❡r✈❡ q✉❡ P ′′ (i) = −102 < 0✱ ❧♦❣♦ ❡♠ i =
102
P♦r ♦✉tr♦ ❧❛❞♦✱ ♣❡❞❡✲s❡ ♦ ✈❛❧♦r ❞❡ i q✉❛♥❞♦ P (i) = 15❀ ✐st♦ é 15 = 20.i − 51i2 ❧♦❣♦
51i2 − 20.i + 15 = 0
⇒
i=
20 ±
p
202 − 4(51)(15)
s❡♥❞♦ ♦ ✐♥t❡r✐♦r ❞❛ ♣❛rt❡ r❛❞✐❝❛❧
2(51)
♥❡❣❛t✐✈❛✱ ♥ã♦ ❡①✐st❡ i✳
P♦rt❛♥t♦ ❛ r❡s♣♦st❛ ♣❛r❛ ❛ ♣❛rt❡ ❛✮ é i = 0.196amp ❡ ♣❛r❛ ❛ ♣❛rt❡ ❜✮ ♥♦ ❡①✐st❡ s♦❧✉çã♦✳
❊①❡♠♣❧♦ ✻✳✺✻✳
❉♦✐s ♣♦st❡s ✈❡rt✐❝❛✐s ❞❡ 6 ❡ 8 ♠❡tr♦s ❡stã♦ ♣❧❛♥t❛❞♦s ♥✉♠ t❡rr❡♥♦ ♣❧❛♥♦✱ ❛ ✉♠❛
❞✐stâ♥❝✐❛ ❞❡ ✶✵♠ ❡♥tr❡ s✉❛s ❜❛s❡s✳ ❈❛❧❝✉❧❛r ❛♣r♦①✐♠❛❞❛♠❡♥t❡ ♦ ❝♦♠♣r✐♠❡♥t♦ ♠í♥✐♠♦ ❞❡
✉♠ ✜♦ q✉❡ ♣❛rt✐♥❞♦ ❞♦ t♦♣♦ ❞❡ ✉♠ ❞❡st❡s ♣♦st❡s✱ t♦q✉❡ ♦ s♦❧♦ ♥❛ r❡t❛ q✉❡ ✉♥❡ ❛s ❜❛s❡s ❡✱
❧♦❣♦ ♦ t♦♣♦ ❞♦ ♦✉tr♦ ♣♦st❡✳
❙♦❧✉çã♦✳
◆❛ s❡❣✉✐♥t❡ ❋✐❣✉r❛ ✭✻✳✶✽✮✱ s❡❥❛ AC =
10, AB = 6 ❡ CD = 8✱ ❡♥tã♦ ❛ ❤✐♣♦t❡♥✉s❛
p
√
BM = 36 + x2 ❡ M D = 64 + (10 − x)2 ✳
❆ ❢✉♥çã♦ ❝♦♠♣r✐♠❡♥t♦ ❞♦ ✜♦ q✉❡ ♠♦❞❡❧❛
♦ ♣r♦❜❧❡♠❛ é✿
√
x2
p
+ 64 + (10 − x)2
D
8m
C
✉
❅
❅
❅
❅
❅
❅
10 − x
✉B
❅
❅
M❅
6m
x
A
36 +
50 m
▲❡♠❜r❡ q✉❡ x ≥ 0❀ ❧♦❣♦ ♥♦ ❝á❧❝✉❧♦ ❞♦s
❋✐❣✉r❛ ✻✳✶✽✿
♣♦♥t♦s ❝rít✐❝♦s ❞❡ f (x) t❡♠♦s✿
10 − x
x
✱
− p
f ′ (x) = √
36 + x2
64 + (10 − x)2
30
q✉❛♥❞♦ f ′ (x) = 0✱ t❡♠♦s x =
é ♣♦♥t♦ ❝rít✐❝♦✳
7
64
30
36
+
> 0 ❡ f ′′ ( ) > 0✱
❆ ❞❡r✐✈❛❞❛ s❡❣✉♥❞❛ ❞❡ f (x) é✱ f ′′ (x) =
2
2
36 + x
64 + (10 − x)
7
s
2
30
30
30
❀ ❛ss✐♠ f ( ) = 36 +
+
❧♦❣♦ t❡♠♦s ❝♦♠♣r✐♠❡♥t♦ ♠í♥✐♠♦ q✉❛♥❞♦ x =
7
7
7
f (x) =
✸✺✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
s
30
64 + 10 −
7
2
= 17.20m✳
❊①❡♠♣❧♦ ✻✳✺✼✳
s(t) = 12t2 + 6t✳ ❛✮
❯♠ ❛✉t♦♠ó✈❡❧ ❞❡s❝❡ ✉♠ ♣❧❛♥♦ ✐♥❝❧✐♥❛❞♦ s❡❣✉♥❞♦ ❛ ❡q✉❛çã♦
❛ ✈❡❧♦❝✐❞❛❞❡
3
s❡❣✉♥❞♦s ❞❡♣♦✐s ❞❛ ♣❛rt✐❞❛❀
❜✮
❆❝❤❛r
❞❡t❡r♠✐♥❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥✐❝✐❛❧✳
❙♦❧✉çã♦✳
❖ ❛✉t♦♠ó✈❡❧ q✉❡ ❡st❛✈❛ ❡♠ r❡♣♦✉s♦✱ ❞❡s❝r❡✈❡ ✉♠ ♠♦✈✐♠❡♥t♦ ❡♠ r❡❧❛çã♦ ❛♦ t❡♠♣♦
s(t) = 12t2 + 6t❀
v(t) = s′ (t) = 24t + 6✳
♠❡❞✐❛♥t❡ ❛ ❡q✉❛çã♦
tr❛❥❡tór✐❛ é
s✉❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥st❛♥tâ♥❡❛ ❡♠ q✉❛❧q✉❡r ♣♦♥t♦ ❞❛
❛✮ v(3) = 24(3) + 6 = 78m/sg ✳
❜✮
❆ ✈❡❧♦❝✐❞❛❞❡ ✐♥✐❝✐❛❧ q✉❛♥❞♦
t = 0✱
❢♦✐
v(0) = 6m/sg ✳
❊①❡♠♣❧♦ ✻✳✺✽✳
t
1o
❞❡ ❥❛♥❡✐r♦ ❞❡ 1.994 s❡❥❛
4.000
✳ ✭❛✮ ❯s❡ ❛ ❞❡r✐✈❛❞❛ ♣❛r❛ ❡st✐♠❛r ❛ ♠✉❞❛♥ç❛ ❡s♣❡r❛❞❛ ♥❛ ♣♦♣✉❧❛çã♦
f (t) = 10.000−
t+1
o
o
❞❡ 1 ❞❡ ❥❛♥❡✐r♦ ❞❡ 1998 ❛ 1 ❞❡ ❥❛♥❡✐r♦ ❞❡ 1999❀ ✭❜✮ ❆❝❤❡ ❛ ♠✉❞❛♥ç❛ ❡①❛t❛ ❡s♣❡r❛❞❛ ♥❛
o
o
♣♦♣✉❧❛çã♦ 1 ❞❡ ❥❛♥❡✐r♦ ❞❡ 1998 ❛ 1 ❞❡ ❥❛♥❡✐r♦ ❞❡ 1999✳
❊s♣❡r❛✲s❡ q✉❡ ❛ ♣♦♣✉❧❛çã♦ ❞❡ ✉♠❛ ❝❡rt❛ ❝✐❞❛❞❡
❛♥♦s ❛♣ós
❙♦❧✉çã♦✳❛✮
❚❡♠♦s ♦
1
o
1o
t = 0 ❡ f (0) = 6.000
1.998 t❡♠♦s t = 4✳
❞❡ ❥❛♥❡✐r♦
❞❡ ❥❛♥❡✐r♦ ❞❡
❤❛❜✐t❛♥t❡s✳ ❈♦♠♦
t
é ❞❛❞♦ ❡♠ ❛♥♦s✱ ❡♠
P♦r ♦✉tr♦ ❧❛❞♦✱ ❡♠ ❣❡r❛❧
f ′ (t) ≈
❛ss✐♠
f (t + 1) − f (t)
(t + 1) − t
f ′ (4) = (10.000 −
❧♦❣♦
f ′ (4) ≈
f (4 + 1) − f (4)
= f (5) − f (4)
(4 + 1) − 4
4.000
4.000
) − (10.000 −
) = 200
5
4
❛ ♠✉❞❛♥ç❛ ❡s♣❡r❛❞❛ é ❞❡
200
❤❛❜✐t❛♥t❡s ❛ ♠❛✐s✳
❙♦❧✉çã♦✳
❜✮
▲❡♠❜r❡✱
f ′ (x) =
4.000
✱
(t + 1)2
❧♦❣♦ ❛ ♠✉❞❛♥ç❛ ❡s♣❡r❛❞❛ ❡①❛t❛ é
f ′ (4) =
4.000
= 160✳
(4 + 1)2
❊①❡♠♣❧♦ ✻✳✺✾✳
❯♠❛ ♣❡❞r❛ é ❧❛♥ç❛❞❛ ♣❛r❛ ❝✐♠❛ ✈❡rt✐❝❛❧♠❡♥t❡❀ s✉♣♦♥❤❛ ❛t✐♥❥❛ s✉❛ ❛❧t✉r❛
10t
❡♠ ♠❡tr♦s ❞❡♣♦✐s ❞❡
t
h(t) = −5t2 +
s❡❣✉♥❞♦s ❞♦ ❧❛♥ç❛♠❡♥t♦✳ ◗✉❡ ❛❧t✉r❛ ♠á①✐♠❛ ❛t✐♥❣✐rá ❛ ♣❡❞r❛❄
◗✉❛♥t♦s s❡❣✉♥❞♦s ❛♣ós t❡r s✐❞♦ ❧❛♥ç❛❞❛❄
❙♦❧✉çã♦✳
h(t) = −5t2 + 10t✱ ❡♥tã♦ h′ (t) =
h′′ (t) = −10 < 0 ❛ss✐♠ ❡♠ t = 1 t❡♠♦s ♠á①✐♠♦
➱ ✉♠ ♣r♦❜❧❡♠❛ ❞❡ ♠á①✐♠♦ r❡❧❛t✐✈♦✱ ♣♦r ❤✐♣ót❡s❡
−10t + 10
⇒
t=1
é ♣♦♥t♦ ❝rít✐❝♦❀
✸✺✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
r❡❧❛t✐✈♦ ✭t❛♠❜é♠ ❛❜s♦❧✉t♦✮ ♦♥❞❡ h(1) = −5(1)2 + 10(1) = 5 m ❡❧❛ ❛t✐♥❣❡ ♦ ♣♦♥t♦ ♠❛✐s
❛❧t♦ 1 s❡❣✉♥❞♦ ❛♣ós ❞❡ ❧❛♥ç❛❞❛ ♣❛r❛ ❛rr✐❜❛✳
❊①❡♠♣❧♦ ✻✳✻✵✳
❆❝❤❛r ♦s ✈❛❧♦r❡s ❞❡ x ❡ y ✱ ❛ ✜♠ ❞❡ q✉❡ ❛ ❡①♣r❡ssã♦ xn y m s❡❥❛ ♠á①✐♠❛✱ s❡♥❞♦ x+y = a✱
♦♥❞❡ a é ❝♦♥st❛♥t❡✳
❙♦❧✉çã♦✳
❚❡♠♦s y = a − x✱ ♣♦r ♦✉tr♦ ❧❛❞♦ ❞❛ ❡①♣r❡ssã♦ xn y m ♣♦❞❡♠♦s ♦❜t❡r ❛ ❢✉♥çã♦ f (x) =
xn (a − x)m ✳
an
❚❡♠♦s f ′ (x) = xn (a − x)m [na − x(n + m)]❀ sã♦ ♣♦♥t♦s ❝rít✐❝♦s x = a ❡ x =
✳
m+n
◗✉❛♥❞♦ x = a t❡♠♦s y = 0 ❡ x y ♥ã♦ é ✉♠❛ ❡①♣r❡ssã♦ ♠á①✐♠❛ ✭é ❝♦♥st❛♥t❡✮✳
n m
an
an
✱ ❡♥tã♦ f ′ (x1 ) < 0❀ ❡ s❡ x2 <
❡♥tã♦ f ′ (x2 ) > 0❀ ❛ss✐♠ f (x) t❡♠
m+n
m+n
an
♠á①✐♠♦ q✉❛♥❞♦ x =
✳
m+n
n(x + y)
❈♦♠♦ x + y = a ❡♥tã♦ x =
⇒ x.m = n.y ❧♦❣♦ ❛ ❡①♣r❡ssã♦ xn y m s❡rá
m+n
n
x
:
✳
♠á①✐♠❛ q✉❛♥❞♦ é ❝✉♠♣r❡ ❛ r❡❧❛çã♦ ✿
y
m
❙❡❥❛ x1 >
❊①❡♠♣❧♦ ✻✳✻✶✳
❉✉❛s ❧✐♥❤❛s ❢érr❡❛s s❡ ❝r✉③❛♠ ❡♠ â♥❣✉❧♦ r❡t♦✳ ❉✉❛s ❧♦❝♦♠♦t✐✈❛s✱ ❞❡ 20 m ❝❛❞❛ ✉♠❛✱
❡♠ ❣r❛♥❞❡ ✈❡❧♦❝✐❞❛❞❡✱ ❛♣r♦①✐♠❛♠✲s❡ ❞♦ ❝r✉③❛♠❡♥t♦✱ s❡ ❞❡s❧♦❝❛♥❞♦ ❡♠ ❝❛❞❛ ✉♠❛ ❞❡ss❛s
❧✐♥❤❛s ❢❡rr❡❛s✳ ❆ ♣r✐♠❡✐r❛ ❞❡❧❛s✱ s❡ ❡♥❝♦♥tr❛ ❡♠ ✉♠❛ ❡st❛çã♦ A ❛ 65 km ❞♦ ❝r✉③❛♠❡♥t♦❀
❛ ♦✉tr❛✱ s❡ ❡♥❝♦♥tr❛ ♥❛ ❡st❛çã♦ B ❛ 40 km✳ ❆ ♣r✐♠❡✐r❛ s❡ ❞❡s❧♦❝❛ ❛ ✉♠❛ ✈❡❧♦❝✐❞❛❞❡ ❞❡
600 m/min✱ ❡♥q✉❛♥t♦ ♦ ♦✉tr❛ ✈✐❛❥❛ ❛ 800 m/min✳ ◗✉❛♥t♦s ♠✐♥✉t♦s t❡rã♦ tr❛♥s❝♦rr✐❞♦s
❞❡s❞❡ ❛ ♣❛rt✐❞❛ ❛té ♦ ✐♥st❛♥t❡ ❡♠ q✉❡ ❛ ❞✐stâ♥❝✐❛ ❡♥tr❡ ❛s ❞✉❛s ❧♦❝♦♠♦t✐✈❛s s❡❥❛ ♠í♥✐♠❛❄
◗✉❛❧ é ❡ss❛ ❞✐stâ♥❝✐❛❄
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s t❡rã♦ tr❛♥s❝♦rr✐❞♦ x min ❛té
❝❤❡❣❛r ❛♦ ❝r✉③❛♠❡♥t♦✳ ❆ ❛ ✈❡❧♦❝✐❞❛❞❡ ❞❛ ♣r✐✲
♠❡✐r❛ é 600m/min = 0, 6km/min ❡✱ ❞❛ s❡✲
❣✉♥❞❛ 0, 8km/min✳
❙❡❣✉♥❞♦ ♦ ❣rá✜❝♦ ❞❛ ❋✐❣✉r❛ ✭✻✳✶✾✮ ❚❡♠♦s
AO = 65km ❡ OB = 40km❀ ❛♣ós tr❛♥s❝♦rr✐✲
❞♦s x min t❡♠♦s ❛s ❞✐stâ♥❝✐❛s✿
OC = (65 − 0.6x),
B
◗
◗
D ◗◗
◗ p(40
◗
− 0, 8x)2 + (65 − 0, 6x)2
◗
◗
◗
◗
◗
40 km 40 − 0, 8x
◗
◗
◗
65 − 0, 6x ◗◗
◗
◗
O
−16, 8km
✑
E ✑
✑
✑
✑
C
✑✑
A
❋✐❣✉r❛ ✻✳✶✾✿
OD = (40 − 0.8x)
❙❡❥❛ CD ❛ ❞✐stâ♥❝✐❛ q✉❡ s❡♣❛r❛ ❛s
❞✉❛s ❧♦❝♦♠♦t✐✈❛s✱ ❧♦❣♦✿ CD =
p
(65 − 0.6x)2 + (40 − 0.8x)2 ✳
✸✺✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
❆ ❢✉♥çã♦ q✉❡ ❞❡s❝r❡✈❡ ❛ ❞✐stâ♥❝✐❛
f (x) =
p
CD
R
é✿
(65 − 0, 6x)2 + (40 − 0, 8x)2
❈❛❧❝✉❧❡♠♦s ♦ ♠í♥✐♠♦ r❡❧❛t✐✈♦ ❞❛ ❢✉♥çã♦
f (x)✿
71 − x
0, 6(65 − 0, 6x) + 0, 8(40 − 0, 8x)
= −p
f ′ (x) = − p
(65 − 0, 6x)2 + (40 − 0, 8x)2
(65 − 0, 6x)2 + (40 − 0, 8x)2
q✉❛♥❞♦
x = 71
f ′ (x) = 0
t❡♠♦s
x = 71❀
x1 > 71, f ′ (x1 ) > 0
s❡
❡ s❡
x2 < 71, f ′ (x2 ) < 0✱
❧♦❣♦ ❡♠
t❡♠♦s ♠í♥✐♠♦ r❡❧❛t✐✈♦✳
40−0.8(71) = −16, 8 = OE,
❖❜s❡r✈❡ q✉❡✿
P♦rt❛♥t♦✱ t❡rã♦ tr❛♥s❝♦rr✐❞♦
71
65−0, 6(71) = 22, 4 = OC
❡
f (71) = 28✳
♠✐♥✉t♦s ❡ ❛ ❞✐stâ♥❝✐❛ ♠í♥✐♠❛ ❡♥tr❡ ❡❧❛s é ❞❡
28km✳
❊①❡♠♣❧♦ ✻✳✻✷✳
❊♥❝❤❡✲s❡ ✉♠ ❜❛❧ã♦ ❡s❢ér✐❝♦✱ ❞❡ t❛❧ ♠♦❞♦ q✉❡ s❡✉ ✈♦❧✉♠❡ ❡stá ❝r❡s❝❡♥❞♦ à r❛③ã♦ ❞❡
5 cm2 /min.✳
❊♠ q✉❡ r❛③ã♦ ♦ ❞✐â♠❡tr♦ ❝r❡s❝❡ q✉❛♥❞♦ ♦ ❞✐â♠❡tr♦ é
12 cm
❄
❙♦❧✉çã♦✳
❖ ✈♦❧✉♠❡ ❞❡ ✉♠❛ ❡s❢❡r❛ ❞❡ r❛✐♦
r
é
3
V (x) =
4πx
✳
3(8)
4πr3
V =
❀
3
❖ ❞✐❢❡r❡♥❝✐❛❧ ❞♦ ✈♦❧✉♠❡ ❡♠ r❡❧❛çã♦ ❛♦ ❞✐â♠❡tr♦
s❡♥❞♦ s❡✉ ❞✐â♠❡tr♦
x
é✱
d(V ) =
2
❞❛❞♦s✱
d(V ) =
5 cm
min.
❡
x = 12 cm✱
x = 2r✱
12πx2
dx❀
24
t❡♠♦s
s❡❣✉♥❞♦ ♦s
❧♦❣♦
5 cm2
12π(12 cm)2
=
dx
min.
24
P♦r t❛♥t♦ ♦ ❞✐â♠❡tr♦ ❝r❡s❝❡ ♥❛ r❛③ã♦ ❞❡
⇒
dx =
10 cm
144π min
10 cm
✳
144π min
❊①❡♠♣❧♦ ✻✳✻✸✳
◆✉♠ ❝✐r❝✉✐t♦ ❡❧étr✐❝♦✱ s❡
❛♠♣❡r❡s é ❛ ❝♦rr❡♥t❡✱ ❛ ❧❡✐
❝♦♥st❛♥t❡✱ ♠♦str❡ q✉❡
R
E volts
❞❡ Ohm
❞❡❝r❡s❝❡ ❛
R ohns é ❛ r❡s✐stê♥❝✐❛✱ I
❡st❛❜❡❧❡❝❡ q✉❡ I · R = E ✳ ❙✉♣♦♥❤❛ q✉❡ E s❡❥❛
✉♠❛ t❛①❛ ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ✐♥✈❡rs♦ ❞♦ q✉❛❞r❛❞♦ ❞❡ I ✳
é ❛ ❢♦rç❛ ❡❧❡tr♦♠♦tr✐③✱
❙♦❧✉çã♦✳
➱ ✐♠❡❞✐❛t♦✱ ♣❡❧♦s ❞❛❞♦s ❞♦ ♣r♦❜❧❡♠❛✱ t❡♠♦s q✉❡✱ s❡♥❞♦
❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞❡
P♦rt❛♥t♦✱
R
R
é ❞❛❞❛ ♣❡❧❛ ❡①♣r❡ssã♦
é ❞❡❝r❡s❝❡♥t❡ ✭dR
q✉❛❞r❛❞♦ ❞❛ ❝♦rr❡♥t❡
< 0✮❀
E
′
E
dI
dR =
I
❝♦♥st❛♥t❡✱ ❡♥tã♦
✐st♦ é✱
dR = −
R(I) =
E
dI ✳
I2
E
❀
I
❞❡❝r❡s❝❡ ❛ ✉♠❛ t❛①❛ ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ ✐♥✈❡rs♦ ❞♦
I✳
✸✺✻
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❊①❡♠♣❧♦ ✻✳✻✹✳
❉❡t❡r♠✐♥❡ ❛s ❞✐♠❡♥sõ❡s ❞♦ ❝✐❧✐♥❞r♦ ❝✐r❝✉❧❛r r❡t♦ ❞❡ ✈♦❧✉♠❡ ♠á①✐♠♦ q✉❡ ♣♦❞❡ s❡r
✐♥s❝r✐t♦ ❡♠ ✉♠❛ ❡s❢❡r❛ ❞❡ r❛✐♦
R = 12 m
❋✐❣✉r❛
✭✻✳✷✵✮
❙♦❧✉çã♦✳
❖❜s❡r✈❡ ❛
❙❡❥❛
r
❋✐❣✉r❛
1
R = 12 = AB = OB = AO✳
2
❡♥tã♦ AC = 2r ❡ ❛ ❛❧t✉r❛ ❞♦ ❝✐❧✐♥❞r♦
✭✻✳✷✵✮✱ s❛❜❡♠♦s
♦ r❛✐♦ ❞❛ ❜❛s❡ ❞♦ ❝✐❧✐♥❞r♦✱
BC =
q
√
2
2
AB − AC = 2 122 − r2
♦ ✈♦❧✉♠❡ ❞♦ ❝✐❧✐♥❞r♦ é ❞❛❞♦ ♣❡❧❛ ❢✉♥çã♦
❚❡♠♦s ❛ ❞❡r✐✈❛❞❛
V ′ (r) =
sã♦ ♣♦♥t♦s ❝rít✐❝♦s✳
é
√
V (r) = 2πr2 122 − r2
2πr(288 − 3r2 )
√
122 − r2
q✉❛♥❞♦
√
r=4 6
√
r=4 6 ❡
❙♦♠❡♥t❡ t❡♠♦s ✈♦❧✉♠❡ ♠á①✐♠♦ q✉❛♥❞♦
P♦rt❛♥t♦✱ ♦ r❛✐♦ ❞❛ ❜❛s❡ ❞♦ ❝✐❧✐♥❞r♦ é
√
V ′ (r) = 0 ❡♥tã♦ r = ±4 6
❡
❡
r=0
√
BC = 8 3✳
s✉❛ ❛❧t✉r❛
√
BC = 8 3✳
A
❙
❙
4 km
❋✐❣✉r❛ ✻✳✷✵✿
❙
❙ √
❙ 4 2 + x2
❙
❙
❙ (4 − x) km
x km
❙❙
O
C
B
❋✐❣✉r❛ ✻✳✷✶✿
❊①❡♠♣❧♦ ✻✳✻✺✳
A✱ ❛ 4 km ❞♦ ♣♦♥t♦ ♠❛✐s ♣❡rt♦ O ❞❡ ✉♠❛ ❝♦st❛ r❡t❛❀
♥♦ ♣♦♥t♦ B t❛♠❜é♠ ❞❛ ❝♦st❛ ❡ ❛ 4 km ❞❡ O ❡①✐st❡ ✉♠❛ t❡♥❞❛✳ ❙❡ ♦ ❣✉❛r❞❛ ❞♦ ❢❛r♦❧ ♣♦❞❡
r❡♠❛r ❛ 4 km/hora ❡ ❝❛♠✐♥❤❛r 5 km/hora✱ q✉❛❧ ♦ ❝❛♠✐♥❤♦ q✉❡ ❞❡✈❡ s❡❣✉✐r ♣❛r❛ ❝❤❡❣❛r
❯♠ ❢❛r♦❧ ❡♥❝♦♥tr❛✲s❡ ♥✉♠ ♣♦♥t♦
❞♦ ❢❛r♦❧ à t❡♥❞❛ ♥♦ ♠❡♥♦r t❡♠♣♦ ♣♦ssí✈❡❧ ❄
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s ❛❝♦♥t❡ç❛ ♦ ❞❡s❡♥❤♦ ❞❛
s✐t✉❛❞♦ ❡♥tr❡
❙❡❥❛
T
O
❡
B
❋✐❣✉r❛
✭✻✳✷✶✮✱ ✐st♦ é✱ ❞❡✈❡ r❡♠❛r ❛té ♦ ♣♦♥t♦
C
❧♦❣♦ ❝❛♠✐♥❤❛r ♦ r❡st♦ ❞♦ ❝❛♠✐♥❤♦✳
♦ t❡♠♣♦ ✉t✐❧✐③❛❞♦ ❞❡s❞❡ ♦ ♣♦♥t♦
A
❛té ❝❤❡❣❛r ❛♦ ♣♦♥t♦
B✳
❊♥tã♦✱ ❝♦♠♦ ♦ t❡♠♣♦ é ❛ r❡❧❛çã♦ ❞♦ ❡s♣❛ç♦ ❞✐✈✐❞✐❞♦ ❡♥tr❡ ✈❡❧♦❝✐❞❛❞❡✱ t❡♠♦s q✉❡ ♦
✸✺✼
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
| AC | | CB |
+
✳
4
5
√
❖❜s❡r✈❡✱ | AC |= 42 + x2 ❡ | CB |= 4 − x✱ ❧♦❣♦
t❡♠♣♦ T =
T (x) =
√
4 2 + x2 4 − x
+
4
5
⇒
0≤x≤4
1
x
− ✱ q✉❛♥❞♦ T ′ (x) = 0 ❡ ❝♦♥s✐❞❡r❛♥❞♦
2
5
4 16 + x
16
♦ ❞♦♠í♥✐♦ ❞❡ ❞❡✜♥✐çã♦ ❞❛ ❢✉♥çã♦✱ ♦❜t❡♠♦s ♦ ♣♦♥t♦ ❝rít✐❝♦ x = ± q✉❡ ♥ã♦ ♣❡rt❡♥❝❡ ❛♦
3
❞♦♠í♥✐♦✳ ❆ ❝♦♥❝❧✉sã♦ é q✉❡ ♥ã♦ ❡①✐st❡ ♠á①✐♠♦ ♦✉ ♠í♥✐♠♦ r❡❧❛t✐✈♦ q✉❛♥❞♦ 0 ≤ x ≤ 4✳
√
9
9
P♦r ♦✉tr♦ ❧❛❞♦✱ T (0) = ❡ T (4) = 2 < = T (0)✳
5
5
√
9
❈♦♠♦ T (4) = 2 < = T (0)✱ é ♠❛✐s rá♣✐❞♦ r❡♠❛r ❞✐r❡t❛♠❡♥t❡ ❛té B ❡ ♥ã♦ ❝❛♠✐♥❤❛r✳
5
❉❡r✐✈❛♥❞♦ T (x) ♦❜t❡♠♦s T ′ (x) = √
❊①❡♠♣❧♦ ✻✳✻✻✳
❆s ♠❛r❣❡♥s s✉♣❡r✐♦r ❡ ✐♥❢❡r✐♦r ❞❡ ✉♠❛ ♣á❣✐♥❛ sã♦ 3cm ❝❛❞❛ ✉♠❛ ❡ ❛s ♠❛r❣❡♥s ❧❛t❡r❛✐s
❞❡ 2, 5 cm ❝❛❞❛ ✉♠❛✳ ❙❡ ❛ ár❡❛ ❞♦ ♠❛t❡r✐❛❧ ✐♠♣r❡ss♦ ❞❡✈❡ s❡r ✜①❛ ❡ ✐❣✉❛❧ ❛ 623, 7 cm2 ✳
◗✉❛✐s sã♦ ❛s ❞✐♠❡♥sõ❡s ❞❛ ♣á❣✐♥❛ ❞❛ ár❡❛ ♠í♥✐♠❛❄✳
❙♦❧✉çã♦✳
❙✉♣♦♥❤❛♠♦s t❡♠♦s ❛ ♣á❣✐♥❛ ❝♦♠♦ ♥❛ ❋✐❣✉r❛
✭✻✳✷✷✮✳
❆ ár❡❛ ❞❛ ♠❡s♠❛ é
623, 7
+ 6 cm2
A(x) = (x + 5)
x
623
cm
x
(
623
+ 6) cm
x
P❛r❛ ♦ ❝á❧❝✉❧♦ ❞❡ ♣♦♥t♦s ❝rít✐❝♦s t❡♠♦s
A′ (x) = 6 −
x cm
3.118, 6
=0
x2
(x + 5) cm
❡♥tã♦ x = 22, 80 ✭❛♣r♦①✐♠❛❞❛♠❡♥t❡✮✳ ❙❡♥❞♦ ❛ ❞❡r✐✲
✈❛❞❛ s❡❣✉♥❞❛ ♣♦s✐t✐✈❛✱ ❡♠ x = 22.8 t❡♠♦s ♠í♥✐♠♦
r❡❧❛t✐✈♦✳
P♦rt❛♥t♦ ❛ ♣á❣✐♥❛ ❞❡✈❡ t❡r 27, 80 cm ♣♦r 33, 32 cm✳
❋✐❣✉r❛ ✻✳✷✷✿
❊①❡♠♣❧♦ ✻✳✻✼✳
❙✉♣♦♥❤❛ q✉❡ ✉♠❛ ♣❡ss♦❛ ♣♦s❛ ❛♣r❡♥❞❡r f (t) ♣❛❧❛✈r❛s s❡♠ s❡♥t✐❞♦ ❡♠ t ❤♦r❛s ❡ f (t) =
25 t2 ✱ ♦♥❞❡ 0 ≤ t ≤ 9✳ ❆❝❤❡ ❛ t❛①❛ ❞❡ ❛♣r❡♥❞✐③❛❞♦ ❞❛ ♣❡ss♦❛ ❛♣ós✿ ✭❛✮ 1 ❤♦r❛❀ ✭❜✮ 8
❤♦r❛s ✳
❙♦❧✉çã♦✳ ❛✮
√
5
✸✺✽
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❆ t❛①❛ ❞❡ ❛♣r❡♥❞✐③❛❞♦ ❞❡♣♦✐s ❞❛ ♣r✐♠❡✐r❛ ❤♦r❛ é
❙♦❧✉çã♦✳
❜✮
❆ t❛①❛ ❞❡ ❛♣r❡♥❞✐③❛❞♦ ❞❡♣♦✐s ❞❛s
2, 77
♣❛❧❛✈r❛s ❛♣ós ❞❡
8
❤♦r❛s✳
f (1) − f (0)
= f (1) = 25
9−8
8 ♣r✐♠❡✐r❛s ❤♦r❛s é
♣❛❧❛✈r❛s✳
√
√
f (9) − f (8)
5
5
= 25( 92 − 82 ) =
9−8
√
2 5 −3
t ✱ q✉❛♥❞♦ t = 8 t❡♠♦s f ′ (8) = 2, 87.
f (t) = 25
3
′
❆ t❛①❛ ❞❡ ❛♣r❡♥❞✐③❛❞♦ ❡①❛t♦ é
❊①❡♠♣❧♦ ✻✳✻✽✳
◗✉❛♥❞♦ t♦ss✐♠♦s ♦ r❛✐♦ ❞❡ ♥♦ss❛ tr❛q✉é✐❛ ❞✐♠✐♥✉✐✱ ❛❢❡t❛♥❞♦ ❛ ✈❡❧♦❝✐❞❛❞❡ ❞♦ ❛r q✉❡
♣❛ss❛ ♥❡ss❡ ór❣ã♦✳ ❙❡♥❞♦
r0
❡
r
r❡s♣❡❝t✐✈❛♠❡♥t❡ ♦ r❛✐♦ ❞❛ tr❛q✉é✐❛ ♥❛ s✐t✉❛çã♦ ♥♦r♠❛❧
❡ ♥♦ ♠♦♠❡♥t♦ ❞❛ t♦ss❡✱ ❛ r❡❧❛çã♦ ❡♥tr❡ ❛ ✈❡❧♦❝✐❞❛❞❡
❢♦r♠❛
2
V (r) = ar (r0 − r)✱
❈❛❧❝✉❧❡ ♦ r❛✐♦
r
♦♥❞❡
a
V
❡
r
é ❞❛❞❛ ♣♦r ✉♠❛ ❢✉♥çã♦ ❞❛
é ✉♠❛ ❝♦♥st❛♥t❡ ♣♦s✐t✐✈❛✳
q✉❡ ♣❡r♠✐t❡ ❛ ♠❛✐♦r ✈❡❧♦❝✐❞❛❞❡ ❞♦ ❛r✳
❙♦❧✉çã♦✳
❚❡r❡♠♦s q✉❡ ❝❛❧❝✉❧❛r ♦ ✈❛❧♦r ❞❡
r
q✉❡ ♠❛①✐♠✐③❛ ❛ ❢✉♥çã♦
V (r)❀
❝♦♠ ❡❢❡✐t♦
V ′ (r) =
2
2
3ar( r0 − r) ♦ ✈❛❧♦r ❝rít✐❝♦ ❛❝♦♥t❡❝❡ q✉❛♥❞♦ r = r0 ✳
3
3
2
2
❙❡❥❛ r1 > r0 ✱ ❡♥tã♦ V ′ (r1 ) < 0❀ ❡ s❡ x2 < r0 ❡♥tã♦ V ′ (r2 ) > 0❀ ❛ss✐♠ V (r)
3
3
2
2
♠á①✐♠♦ q✉❛♥❞♦ x = r0 ✳ ❖ r❛✐♦ r q✉❡ ♣❡r♠✐t❡ ❛ ♠❛✐♦r ✈❡❧♦❝✐❞❛❞❡ é r = r0 ✳
3
3
t❡♠
❊①❡♠♣❧♦ ✻✳✻✾✳
❆ s♦♠❛ ❞❡ três ♥ú♠❡r♦s ✐♥t❡✐r♦s ♣♦s✐t✐✈♦s é
♠❛✐s ♦ q✉á❞r✉♣❧♦ ❞♦ t❡r❝❡✐r♦ s♦♠❛♠
80✳
40✱
♦ ♣r✐♠❡✐r♦ ♠❛✐s ♦ tr✐♣❧♦ ❞♦ s❡❣✉♥❞♦
❉❡t❡r♠✐♥❡ ♦s ♥ú♠❡r♦s ❞❡ ♠♦❞♦ q✉❡ s❡✉ ♣r♦❞✉t♦
s❡❥❛ ♦ ♠❛✐♦r ♣♦ssí✈❡❧✳
❙♦❧✉çã♦✳
❙❡❥❛♠ ♦s ♥ú♠❡r♦s r❡❛✐s
a, b, c ✭♥❡ss❛ ♦r❞❡♠✮ ❡ s✉♣♦♥❤❛♠♦s q✉❡ a = 40 − (b + c)✱
[40 − (b + c)] + 3b + 4c = 80
⇒
❧♦❣♦
2b = 40 − 3c
♦ ♣r♦❞✉t♦ é
P = abc = [40 − (
40 − 3c
40 − 3c
1
+ c)](
)c = (40 + c)(40 − 3c)c
2
2
4
1
P ′ (c) = − (9c2 + 160c − 1600) ♦♥❞❡ c = 6, 22 é ♣♦♥t♦
4
❞❡ ♠á①✐♠♦ r❡❧❛t✐✈♦✳ ❖ ♥ú♠❡r♦ ♣r♦❝✉r❛❞♦ ♣ró①✐♠♦ ❞❡ 6, 22 é 6✳ P♦rt❛♥t♦ ♦s ♥ú♠❡r♦s q✉❡
❝✉♠♣r❡♠ ♦ ♣r♦❜❧❡♠❛ sã♦ 23, 11 ❡ 6✳
❉❡r✐✈❛♥❞♦ ❛ ❢✉♥çã♦
P
♦❜t❡♠♦s
❊①❡♠♣❧♦ ✻✳✼✵✳
✸✺✾
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
50cm3 ♣♦r
♠❡❞❡ 15cm❄
❯♠❛ ❜♦❧❛ ❡s❢ér✐❝❛ ❞❡ ♥❡✈❡ ❡stá s❡ ❞❡rr❡t❡♥❞♦ à r❛③ã♦ ❞❡
✈❡❧♦❝✐❞❛❞❡ ❡stá ❞✐♠✐♥✉✐♥❞♦ ♦ r❛✐♦ ❞❛ ❜♦❧❛ q✉❛♥❞♦ ❡st❡
R
♠✐♥✉t♦✳ ❈♦♠ q✉❛❧
❙♦❧✉çã♦✳
❈♦♠♦ ♦ r❛✐♦
t
✐♥st❛♥t❡
r
❡stá ❡♠ ❢✉♥çã♦ ❞♦ t❡♠♣♦✱ ❧♦❣♦
♠✐♥✉t♦s ❡stá ❞❛❞♦ ♣♦r
4
V (t) = π[r(t)]3
3
r = r(t)
❛ss✐♠
−50 = 4π[r(t)]2 · r′ (t)
◗✉❛♥❞♦
r(t) = 15cm
⇒
V (t)
❞❛ ❜♦❧❛ ♥♦
❝❡♥tí♠❡tr♦s ❝ú❜✐❝♦s✳
❆ r❛♣✐❞❡③ ❝♦♠ q✉❡ ❛ ❜♦❧❛ s❡ ❞❡rr❡t❡ é ❞❛❞♦ ♣♦r
4π[r(t)]2 · r′ (t)
❡ ♦ ✈♦❧✉♠❡
V ′ (t) = −50cm3 ✱
r′ (t) = −
t❛♠❜é♠
V ′ (t) =
50
4π[r(t)]2
s❡❣✉❡
r′ (t) = −
50
1
=−
cm/min
2
4π[15]
18π
❛ ❞❡r✐✈❛❞❛ é ♥❡❣❛t✐✈❛✱ ❡r❛ ❞❡ ❡s♣❡r❛r ♣❡❧♦ ❢❛t♦ ♦ r❛✐♦ ❡st❛r ❞✐♠✐♥✉✐♥❞♦✳
P♦rt❛♥t♦✱ q✉❛♥❞♦ ♦ r❛✐♦ ♠❡❞❡
15cm
❡st❛ ❞✐♠✐♥✉✐❞♦ à r❛③ã♦ ❞❡
1
cm/min✳
18π
❊①❡♠♣❧♦ ✻✳✼✶✳
◗✉❡r❡♠♦s ❢❛❜r✐❝❛r ✉♠❛ ❜♦✐❛ ❢♦r♠❛❞❛ ♣♦r ❞♦✐s ❝♦♥❡s r❡t♦s ❞❡ ❢❡rr♦ ✉♥✐❞♦s ♣❡❧❛s s✉❛s
❜❛s❡s✳ P❛r❛ s✉❛ ❝♦♥str✉çã♦ t❡♠♦s ♣❧❛❝❛s ❝✐r❝✉❧❛r❡s ❞❡
3m
❞❡ r❛✐♦✳ ❉❡t❡r♠✐♥❡ ❛s ❞✐♠❡♥✲
sõ❡s ❞❛ ❜♦✐❛ ♣❛r❛ q✉❡ s❡✉ ✈♦❧✉♠❡ s❡❥❛ ♠á①✐♠♦✳
❙♦❧✉çã♦✳
1
V = 2( )πx2 y ✳ ❉♦ tr✐â♥✲
3
t❡♠♦s x2 = 9 − y 2 ✱ ❛ss✐♠
❖ ✈♦❧✉♠❡ ❞❛ ❜♦✐❛ ést❛ ❞❛❞♦ ♣♦r
❣✉❧♦ ♠♦str❛❞♦ ♥❛ ❋✐❣✉r❛ ✭✻✳✷✸✮
2
1
V = 2( )πx2 y = ( )π(9 − y 2 )y
3
3
q✉❛♥❞♦
=0
s❡❣✉❡ q✉❡
y=
√
3
dV
2π
=
(9 − 3y 2 )
dy
3
⇒
❞❡ ♦♥❞❡
r=
√
6
❆ ❞❡r✐✈❛❞❛ s❡❣✉♥❞❛
2π
d2 V
=
(−6y)
2
dy
3
⇒
√
d2 V √
2π
(
(−6
3)
=
3) < 0
dy 2
3
P♦rt❛♥t♦✱ ♦ ✈♦❧✉♠❡ ❞❛ ❜♦✐❛ s❡rá ♠á①✐♠♦ q✉❛♥❞♦ ♦ r❛✐♦ ❞❛
❜❛s❡ ❞♦s ❝♦♥❡s s❡❥❛
r=
√
6
❡ s✉❛ ❛❧t✉r❛
y=
√
✸✻✵
❋✐❣✉r❛ ✻✳✷✸✿
3
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❊①❡r❝í❝✐♦s ✻✲✹
✶✳ ❯♠❛ ♣❡ss♦❛ ❛t✐r❛ ✈❡rt✐❝❛❧♠❡♥t❡ ♣❛r❛ ♦ ❝é✉ ✉♠❛ ❜♦❧❛ ❞♦ t♦♣♦ ❞❡ ✉♠ ❡❞✐❢í❝✐♦✳ ❉❡♣♦✐s
❞❡ 2 s❡❣✉♥❞♦s✱ ❛ ❜♦❧❛ ♣❛ss❛ ♣♦r ❡❧❡✱ ❝❤❡❣❛♥❞♦ ❛♦ s♦❧♦ 2 s❡❣✉♥❞♦s ❞❡♣♦✐s✳
✶✳
◗✉❛❧ ❡r❛ ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥✐❝✐❛❧ ❞❛ ❜♦❧❛ ❄
✷✳
❈♦♠ q✉❡ ✈❡❧♦❝✐❞❛❞❡ ❛ ❜♦❧❛ ♣❛ss♦✉ ♣❡❧❛ ♣❡ss♦❛✱ q✉❛♥❞♦ ❝❛í❛ ❡♠ ❞✐r❡çã♦ ❛♦ s♦❧♦ ❄
✸✳
❈♦♠ q✉❡ ✈❡❧♦❝✐❞❛❞❡ ❛ ❜♦❧❛ ❝❤❡❣❛rá ❛♦ s♦❧♦ ❄
✹✳
◗✉❛❧ é ❛ ❛❧t✉r❛ ❞♦ ❡❞✐❢í❝✐♦ ❄
✷✳ ❆s ❡q✉❛çõ❡s ❞♦ ♠♦✈✐♠❡♥t♦ ❞❡ ✉♠ ♣r♦❥❡t✐❧ ❡stã♦ ❞❛❞❛s ♣❡❧❛s ❡q✉❛çõ❡s x = t(v0 cos α)
❡ y = t(v0 senα) − 16t2 ✱ ♦♥❞❡ v0 é ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥✐❝✐❛❧✱ α é ♦ â♥❣✉❧♦ ❞❡ ❡❧❡✈❛çã♦ ❞♦
❝❛♥❤ã♦✱ t é ♦ t❡♠♣♦ ❡♠ s❡❣✉♥❞♦s✱ x ❡ y sã♦ ❛s ❝♦♦r❞❡♥❛❞❛s ❞♦ ♣r♦❥❡t✐❧✳ ❉❡t❡r♠✐♥❡
❛ ❛❧t✉r❛ ♠á①✐♠❛ q✉❡ ❛❧❝❛♥ç❛ ♦ ♣r♦❥❡t✐❧ ❡ ✈❡r✐✜q✉❡ q✉❡ ♦ ♠❛✐♦r ❛❧❝❛♥❝❡ s❡ ♦❜tê♠
π
q✉❛♥❞♦ α = ✳
4
✸✳ ❆ ❧❡✐ ❞❡ ❇♦②❧❡ ♣❛r❛ ❛ ❡①♣❛♥sã♦ ❞❡ ✉♠ ❣ás é P V = C ✱ ♦♥❞❡ P é ♦ ♥ú♠❡r♦ ❞❡ q✉✐❧♦s
♣♦r ✉♥✐❞❛❞❡ q✉❛❞r❛❞❛ ❞❡ ♣r❡ssã♦✱ V é ♦ ♥ú♠❡r♦ ❞❡ ✉♥✐❞❛❞❡s ❝ú❜✐❝❛s ♥♦ ✈♦❧✉♠❡ ❞♦
❣ás ❡ C é ✉♠❛ ❝♦♥st❛♥t❡ ✳ ❆❝❤❡ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ✐♥st❛♥tâ♥❡❛ ❞❡ V ❡♠ r❡❧❛çã♦ ❛
P q✉❛♥❞♦ P = 4 ❡ V = 8✳
✹✳ ❊st❛ s❡♥❞♦ ❞r❡♥❛❞♦ á❣✉❛ ❞❡ ✉♠❛ ♣✐s❝✐♥❛ ❞❡ ✈♦❧✉♠❡ V ✱ ♦ ✈♦❧✉♠❡ ❞❡ á❣✉❛ ❛♣ós t
♠✐♥✉t♦s ❞♦ ✐♥✐❝✐♦ ❞❛ ❞r❡♥❛❣❡♠ é V = 250(1.600 − 80t + t2 )✳ ❆❝❤❛r✿ ✭❛✮ ❆ t❛①❛
♠é❞✐❛ s❡❣✉♥❞♦ ❛ q✉❛❧ ❛ á❣✉❛ ❞❡✐①❛ ❛ ♣✐s❝✐♥❛ ❞✉r❛♥t❡ ♦s 5 ♣r✐♠❡✐r♦s ♠✐♥✉t♦s✳ ✭❜✮
❆ ✈❡❧♦❝✐❞❛❞❡ ❛ q✉❛❧ ❛ á❣✉❛ ❡stá ✢✉✐♥❞♦ ❞❛ ♣✐s❝✐♥❛ 5 ♠✐♥✉t♦s ❛♣ós ♦ ❝♦♠❡ç♦ ❞❛
❞r❡♥❛❣❡♠✳
✺✳ ❙✉♣♦♥❤❛ q✉❡ ✉♠ ❝✐❧✐♥❞r♦ ❝✐r❝✉❧❛r r❡t♦ t❡♥❤❛ ✉♠❛ ❛❧t✉r❛ ❝♦♥st❛♥t❡ ❞❡ 10 cm✳ ❙❡
V cm3 ❢♦✐ ♦ ✈♦❧✉♠❡ ❞♦ ❝✐❧✐♥❞r♦ ❡ r ♦ r❛✐♦ ❞❡ s✉❛ ❜❛s❡✱ ❛❝❤❡ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ♠é❞✐❛
❞❡ V ❡♠ r❡❧❛çã♦ ❛ r q✉❛♥❞♦ r ✈❛r✐❛ ❞❡✿ ✭❛✮ 5, 00 ❛ 5, 40❀ ✭❜✮ 5, 00 ❛ 5, 10❀ ✭❝✮
5, 00 ❛ 5, 01❀ ✭❞✮ ❛❝❤❡ ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ✐♥st❛♥tâ♥❡❛ ❞❡ V ❡♠ r❡❧❛çã♦ ❛ r q✉❛♥❞♦
r é 5, 00✳ ❙✉❣❡stã♦✿ ❆ ❢ór♠✉❧❛ ♣❛r❛ ❡♥❝♦♥tr❛r ♦ ✈♦❧✉♠❡ ❞❡ ✉♠ ❝✐❧✐♥❞r♦ ❝✐r❝✉❧❛r r❡t♦
é V = πr2 h✱ ♦♥❞❡ h cm é ❛❧t✉r❛ ❞♦ ❝✐❧✐♥❞r♦✳
✻✳ ❯♠ tr♦♥❝♦ ❞❡ ár✈♦r❡ ♠❡❞❡ 20 m✱ t❡♠ ❛ ❢♦r♠❛ ❞❡ ✉♠ ❝♦♥❡ tr✉♥❝❛❞♦✳ ❖s ❞✐â♠❡tr♦s
❞❡ s✉❛s ❜❛s❡s ♠❡❞❡♠ 2 m ❡ 1 m✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✳ ❉❡✈❡✲s❡ ❝♦rt❛r ✉♠❛ ✈✐❣❛ ❞❡ s❡çã♦
tr❛♥s✈❡rs❛❧ q✉❛❞r❛❞❛ ❝✉❥♦ ❡✐①♦ ❝♦✐♥❝✐❞❛ ❝♦♠ ❛ ❞♦ tr♦♥❝♦ ❡ ❝✉❥♦ ✈♦❧✉♠❡ s❡❥❛ ♦ ♠❛✐♦r
♣♦ssí✈❡❧✳ ◗✉❡ ❞✐♠❡♥sõ❡s ❞❡✈❡ t❡r ❛ ✈✐❣❛❄
✸✻✶
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
R1 ❡ R2 ❡stã♦ ✉♥✐❞❛s ❡♠ ♣❛r❛❧❡❧♦✱ ❛ r❡s✐stê♥❝✐❛
1
1
1
t♦t❛❧ R ❡stá ❞❛❞❛ ♣♦r
=
+ ✳ ❙❡ R1 ❡ R2 ❛✉♠❡♥t❛♠ ❛ r❛③ã♦ ❞❡ 0.01ohms/sg
R
R1 R2
❡ 0.02 ohms/sg ✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ ◗✉❛❧ é ❛ t❛①❛ ❞❡ ✈❛r✐❛çã♦ ❞❡ R ♥♦ ✐♥st❛♥t❡ ❡♠
q✉❡ R1 = 30 ohms ❡ R2 = 90 ohms ❄
✼✳ ◗✉❛♥❞♦ ❞✉❛s r❡s✐stê♥❝✐❛s ❡❧étr✐❝❛s
✽✳ ❯♠ ❢♦❣✉❡t❡ é ❧❛♥ç❛❞♦ ✈❡rt✐❝❛❧♠❡♥t❡ ❡ s✉❛ tr❛❥❡tór✐❛ t❡♠ ❡q✉❛çã♦ ❤♦rár✐❛
2
160t − 5t ✱ ♦
2 s ❞❡♣♦✐s ❞♦
s =
s❡♥t✐❞♦ ♣♦s✐t✐✈♦ ♣❛r❛ ♦ ❝é✉✳ ❉❡t❡r♠✐♥❡✿ ❛✮ ❆ ✈❡❧♦❝✐❞❛❞❡ ❞♦ ❢♦❣✉❡t❡
❧❛♥ç❛♠❡♥t♦✳ ❜✮ ❖ t❡♠♣♦ q✉❡ ❧❡✈❛ ♦ ❢♦❣✉❡t❡ ♣❛r❛ ❛❧❝❛♥ç❛r s✉❛ ❛❧t✉r❛
♠á①✐♠❛✳
✾✳ ❯♠❛ ♣❡❞r❛ é ❧❛♥ç❛❞❛ ❛ ✉♠❛ ❧❛❣♦❛ ❡ ♣r♦❞✉③ ✉♠❛ sér✐❡ ❞❡ ♦♥❞✉❧❛çõ❡s ❝♦♥❝ê♥tr✐❝❛s✳
❙❡ ♦ r❛✐♦
r
1.8 m/s✱ ❞❡t❡r♠✐♥❡ ❛
❛✮ ◗✉❛♥❞♦ r = 3 m✳ ❜✮ ◗✉❛♥❞♦
❞❛ ♦♥❞❛ ❡①t❡r✐♦r ❝r❡s❝❡ ✉♥✐❢♦r♠❡♠❡♥t❡ ❛ r❛③ã♦ ❞❡
t❛①❛ ❝♦♠ ❛ q✉❡ ❛ á❣✉❛ ♣❡rt✉r❜❛❞❛ ❡stá ❝r❡s❝❡♥❞♦
r = 6 m✳
✶✵✳ ❯♠❛ ♣❡❞r❛ s❡ ❞❡✐①❛ ❝❛✐r ✭❝♦♠ ✈❡❧♦❝✐❞❛❞❡ ✐♥✐❝✐❛❧ ③❡r♦✮ ❞♦ t♦♣♦ ❞❡ ✉♠ ❡❞✐❢í❝✐♦ ❞❡
144
♠❡tr♦s ❞❡ ❛❧t✉r❛✳ ❛✮ ❊♠ q✉❡ ♠♦♠❡♥t♦ ❛ ♣❡❞r❛ ❝❤❡❣❛rá ❛♦ s♦❧♦ ❄ ❜✮ ◗✉❛❧ s❡rá
❛ ✈❡❧♦❝✐❞❛❞❡ ❛♦ ❝❤❡❣❛r ❛♦ s♦❧♦ ❄✳ ❙✉❣❡stã♦✿ P❛r❛ ✉♠ ♦❜❥❡t♦ q✉❡ s❡ ❛t✐r❛ ♦✉ ❝❛✐
✈❡rt✐❝❛❧♠❡♥t❡✱ ❛ ❛❧t✉r❛ q✉❡ r❡❝♦rr❡ ❞❡♣♦✐s ❞❡
♦♥❞❡
V0
é ❛ ✈❡❧♦❝✐❞❛❞❡ ✐♥✐❝✐❛❧ ❞♦ ♦❜❥❡t♦ ❡
A0
t s❡❣✉♥❞♦s é✿ A(t) = −16t2 + V0 + A0 ✱
é ❛ ❛❧t✉r❛ ✐♥✐❝✐❛❧✳
✶✶✳ ❙✉♣♦♥❤❛♠♦s q✉❡ ✉♠ ❝✐❧✐♥❞r♦ ❝✐r❝✉❧❛r r❡t♦ ❡ ❢❡❝❤❛❞♦ t❡♥❤❛ ✉♠❛ ár❡❛ ❞❡
100 cm2 ✳
◗✉❡ ✈❛❧♦r❡s ❞❡✈❡♠ t❡r ♦ r❛✐♦ ❡ s✉❛ ❛❧t✉r❛ ♣❛r❛ q✉❡ s❡✉ ✈♦❧✉♠❡ s❡❥❛ ♠á①✐♠♦ ❄
✶✷✳ ▼♦str❡ q✉❡ ♦ ❝✐❧✐♥❞r♦ r❡t♦ ❞❡ ♠❛✐♦r ✈♦❧✉♠❡ q✉❡ ♣♦❞❡ s❡r ✐♥s❝r✐t♦ ❡♠ ✉♠ ❝♦♥❡✱ é
❞♦ ✈♦❧✉♠❡ ❞♦ ❝♦♥❡✳
✶✸✳ ❯♠ ❝♦♥❡ ❝✐r❝✉❧❛r r❡t♦ t❡♠ ✉♠ ✈♦❧✉♠❡ ❞❡
120 cm3
4
9
◗✉❛✐s sã♦ ❛s ❞✐♠❡♥sõ❡s q✉❡ ❞❡✈❡
t❡r ❡st❡ ❝♦♥❡ ♣❛r❛ q✉❡ s✉❛ ár❡❛ ❧❛t❡r❛❧ s❡❥❛ ♠í♥✐♠❛❄
✶✹✳ ◆✉♠ tr✐â♥❣✉❧♦ ✐sós❝❡❧❡s
❛ ❡ss❡ ❧❛❞♦ ♠❡❞❡
h✳
ABC
♦ ❧❛❞♦ ❞❡s✐❣✉❛❧
❉❡t❡r♠✐♥❡ ✉♠ ♣♦♥t♦
s♦♠❛ ❞❛s ❞✐stâ♥❝✐❛s ❞❡
P
P
AC
♠❡❞❡
2a ❡ ❛ ❛❧t✉r❛ ❝♦rr❡s♣♦♥❞❡♥t❡
s♦❜r❡ ❛ ❛❧t✉r❛ ♠❡♥❝✐♦♥❛❞❛ ♣❛r❛ q✉❡ ❛
❛té ♦s três ✈ért✐❝❡s s❡❛ ♠í♥✐♠❛✳
80cm ♣♦r 50cm✳ ❈♦rt❛♥❞♦ ❝♦♥✈❡♥✐❡♥t❡♠❡♥t❡
❧❛❞♦ x q✉❡r❡♠♦s ❝♦♥str✉✐r ✉♠❛ ❝❛✐①❛✳ ❈❛❧❝✉❧❡ x
✶✺✳ ❚❡♠♦s ✉♠❛ ❢♦❧❤❛ ❞❡ ♣❛♣❡❧ã♦ ♠❡❞✐♥❞♦
❡♠ ❝❛❞❛ ✈ért✐❝❡ ♥✉♠ q✉❛❞r❛❞♦ ❞❡
♣❛r❛ q✉❡ ❛ r❡❢❡r✐❞❛ ❝❛✐①❛ t❡♥❤❛ ✉♠ ✈♦❧✉♠❡ ♠á①✐♠♦✳
✶✻✳ ❚❡♠♦s ✉♠ ❛r❛♠❡ ❞❡
1m
❞❡ ❝♦♠♣r✐♠❡♥t♦ ❡ ❞❡s❡❥❛♠♦s ❞✐✈✐❞✐✲❧♦ ❡♠ ❞✉❛s ♣❛rt❡s
♣❛r❛ ❢♦r♠❛r ❝♦♠ ✉♠❛ ❞❡❧❛s ✉♠ ❝ír❝✉❧♦ ❡ ❝♦♠ ❛ ♦✉tr❛ ✉♠ q✉❛❞r❛❞♦✳ ❉❡t❡r♠✐♥❡ ♦
❝♦♠♣r✐♠❡♥t♦ q✉❡ t❡♠ ❞❡ ❝❛❞❛ ✉♠❛ ❞❛s ♣❡ç❛s ❞❡ ♠♦❞♦ q✉❡ ❛ s♦♠❛ ❞❛s ár❡❛s ❞♦
❝ír❝✉❧♦ ❡ q✉❛❞r❛❞♦ s❡❥❛ ♠í♥✐♠❛✳
✸✻✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
▼✐s❝❡❧â♥❡❛ ✻✲✶
x2 · sen 1 , s❡✱ x 6= 0
✶✳ ❊st✉❞❡♠♦s ❛ s❡❣✉✐♥t❡ ❢✉♥çã♦✿ f (x) =
✳
x
0,
s❡✱ x = 0
P❡❧♦ ❚✳❱✳▼ ♥♦ ✐♥t❡r✈❛❧♦ [0, x] t❡♠♦s✿ f (x)−f (0) = x·f ′ (c) q✉❛♥❞♦ ✭0 < c < x)✳
1
1
x
c
◗✉❛♥❞♦ x t❡♥❞❡ ♣❛r❛ ③❡r♦✱ c
1
q✉❡✿ lim cos = 0✳ ❊①♣❧✐❝❛r ❡st❡
c→0
c
1
c
■st♦ é✿ x2 sen = x(2c · sen − cos )✱ ❞❡ ♦♥❞❡ cos
1
1
1
= 2csen − x · sen ✳
c
c
x
t❛♠❜é♠ t❡♥❞❡ ♣❛r❛ ③❡r♦❀ ❞❡st❡ ♠♦❞♦ ❝♦♥❝❧✉í♠♦s
r❡s✉❧t❛❞♦ ♣❛r❛❞♦①❛❧✳
✷✳ P❛r❛ ✉♠❛ ❝♦♥st❛♥t❡ a > 0✱ ❞❡t❡r♠✐♥❡ ❛ ❞✐❢❡r❡♥ç❛ ❡♥tr❡ ♦ ✈❛❧♦r ♠á①✐♠♦ ❡ ♠í♥✐♠♦
1
r❡❧❛t✐✈♦ ❞❛ ❢✉♥çã♦ g(x) = (a − − x)(4 − 3x2 )✳
a
✸✳ ❙❡❥❛♠ f ❡ g ❢✉♥çõ❡s ❞✐❢❡r❡♥❝✐á✈❡✐s ❡♠ (a, b) t❛✐s q✉❡ f ′ (x) > g ′ (x) ∀ x ∈ (a, b)✳
❙❡ ❡①✐st❡ c ∈ (a, b) t❛❧ q✉❡ f (c) = g(c)✱ ♠♦str❡ q✉❡ f (x) < g(x) ∀ x ∈ (a, c) ❡
g(x) < f (x) ∀ x ∈ (c, b)✳
✹✳ ❙❡❥❛ f ❞❡r✐✈á✈❡❧ ❡♠ R ❡ g(x) =
❞❡ g ✱ ♠♦str❡ q✉❡✿
✶✳
✷✳
f (x)
,
x
x 6= 0✳ ❙❡ c é ✉♠ ♣♦♥t♦ ❞❡ ♠á①✐♠♦ ❧♦❝❛❧
c · f ′ (c) − f (c) = 0✳
❆ r❡t❛ t❛♥❣❡♥t❡ ❛♦ ❣rá✜❝♦ ❞❡ f ♥♦ ♣♦♥t♦ (c, f (c)) ♣❛ss❛ ♣❡❧❛ ♦r✐❣❡♠✳
✺✳ ❉❡t❡r♠✐♥❡ ♦s ✐♥t❡r✈❛❧♦s ❞❡ ❝r❡s❝✐♠❡♥t♦ ♦✉ ❞❡❝r❡s❝✐♠❡♥t♦ ❞❛s s❡❣✉✐♥t❡s ❢✉♥çõ❡s✿
1. y = 2 − 3x + x3
2. y = x.e−x
3. y =
p
(x2 − 1)3
√
4. y = (2 − x)(x + 1)2 5. y = x2 (1 − x x)
6. y = Ln(x2 + 1)
p
x
8. y = (2x − 1) 3 (x − 3)2 9. y = x − 2sen2 x
7. y =
Lnx
10. y = e1,5senx
✻✳ ❖ ✈❛❧♦r ❞❡ ✉♠ ❞✐❛♠❛♥t❡ é ♣r♦♣♦r❝✐♦♥❛❧ ❛♦ q✉❛❞r❛❞♦ ❞♦ s❡✉ ♣❡s♦✳ ❉✐✈✐❞❡ ✉♠ ❞✐❛✲
♠❛♥t❡ ❞❡ 2 ❣r❛♠❛s ❡♠ ❞✉❛s ♣❛rt❡s ❞❡ t❛❧ ♠♦❞♦ q✉❡ ❛ s♦♠❛ ❞♦s ✈❛❧♦r❡s ❞♦s ❞✐❛♠❛♥t❡s
♦❜t✐❞♦s s❡❥❛ ♠í♥✐♠❛✳
✼✳ ❉❡t❡r♠✐♥❡ ♦ ❝✐❧✐♥❞r♦ ❞❡ s✉♣❡r❢í❝✐❡ t♦t❛❧ S ✱ t❛❧ q✉❡ s❡✉ ✈♦❧✉♠❡ s❡❥❛ ♠á①✐♠♦✳
✸✻✸
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✽✳ P❛r❛ ♦s s❡❣✉✐♥t❡s ❡①❡r❝í❝✐♦s✱ tr❛ç❛r ♦ ❣rá✜❝♦ ❞❛ ❝✉r✈❛ ❝♦rr❡s♣♦♥❞❡♥t❡ ✐♥❞✐❝❛♥❞♦ s✉❛s
❛ssí♥t♦t❛s✳
✶✳
✷✳
✸✳
✹✳
√
x2 + x − x, s❡✱
2
f (x) =
x − 81 ,
s❡✱
x2 − 9x
x2
√
,
s❡✱
4 − x2
f (x) =
3x + 6x, s❡✱
2x + 1
r
8
5 x + 2x + 1
x3 + 8
x
+1
f (x) =
−
x+3
√
3
6x2 − x3
r
3 x + 3
s❡✱
x−3
3|x+3|
f (x) =
s❡✱
x
+
1
2
s❡✱
5+
x
| x |≥ 9
| x |< 9
| x |> 2
| x |≤ 2
s❡✱ x ≤ −1
s❡✱
−1<x≤1
s❡✱ x > 1
x ≤ −3
−3<x≤2
x>2
✾✳ ❯♠❛ ❡s❝❛❞❛ ❝♦♠ 6m ❞❡ ❝♦♠♣r✐♠❡♥t♦ ❡stá ❛♣♦✐❛❞❛ ❡♠ ✉♠❛ ♣❛r❡❞❡ ✈❡rt✐❝❛❧✳ ❙❡ ❛
❜❛s❡ ❞❛ ❡s❝❛❞❛ ❝♦♠❡ç❛ ❛ s❡ ❞❡s❧✐③❛r ❤♦r✐③♦♥t❛❧♠❡♥t❡✱ à r❛③ã♦ ❞❡ 0, 6m/s✱ ❝♦♠ q✉❡
✈❡❧♦❝✐❞❛❞❡ ♦ t♦♣♦ ❞❛ ❡s❝❛❞❛ ❞❡s❝❡ ❛ ♣❛r❡❞❡✱ q✉❛♥❞♦ ❡stá ❛ 4m ❞♦ s♦❧♦❄
✶✵✳ ❯♠ ❤♦♠❡♠ ❞❡ 1, 80m✱ ❝❛♠✐♥❤❛♥❞♦ à ✈❡❧♦❝✐❞❛❞❡ ❞❡ 1, 5m/s ✱ ❛❢❛st❛✲s❡ ❞❡ ✉♠❛
❧â♠♣❛❞❛ s✐t✉❛❞❛ ❛ 5m ❛❝✐♠❛ ❞♦ ❝❤ã♦✳ ❈❛❧❝✉❧❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ❝♦♠ q✉❡ s❡ ♠♦✈❡ ❛
s♦♠❜r❛ ❞♦ ❤♦♠❡♠ ❡ ❛ ✈❡❧♦❝✐❞❛❞❡ ❝♦♠ q✉❡ s❡ ♠♦✈❡ ❛ ❡①tr❡♠✐❞❛❞❡ ❞❡❧❛✳
✶✶✳ ❖ ❣ás ❞❡ ✉♠ ❜❛❧ã♦ ❡s❢ér✐❝♦ ❡s❝❛♣❛ à r❛③ã♦ ❞❡ 2dm3 /min✳ ❊♥❝♦♥tr❡ ❛ r❛③ã♦ ❝♦♠ q✉❡
❞✐♠✐♥✉✐ ❛ s✉♣❡r❢í❝✐❡ ❞♦ ❜❛❧ã♦ q✉❛♥❞♦ ♦ r❛✐♦ é ❞❡ 12dm✳
✶✷✳ ❯♠ ❜❛❧ã♦ ❡s❢ér✐❝♦ ❡stá s❡♥❞♦ ✐♥✢❛❞♦ ❡ s❡✉ r❛✐♦ é R ♥♦ ✜♠ ❞❡ t s❡❣✉♥❞♦s✳ ❊♥✲
❝♦♥tr❡ ♦ r❛✐♦ ♥♦ ✐♥st❛♥t❡ ❡♠ q✉❡ ❛s t❛①❛s ❞❡ ✈❛r✐❛çã♦ ❞❛ s✉♣❡r❢í❝✐❡ ❡ ❞♦ r❛✐♦ sã♦
♥✉♠ér✐❝❛♠❡♥t❡ ✐❣✉❛✐s✳
✶✸✳ ▼♦str❡ q✉❡ ❛ s✉❜t❛♥❣❡♥t❡ ❝♦rr❡s♣♦♥❞❡♥t❡ ❛ q✉❛❧q✉❡r ♣♦♥t♦ ❞❛ ♣❛rá❜♦❧❛ y = ax2 é
✐❣✉❛❧ à ♠❡t❛❞❡ ❞❛ ❛❜s❝✐ss❛ ❞♦ ♣♦♥t♦ ❞❡ t❛♥❣❡♥❝✐❛✳
✶✹✳ ❈❛❧❝✉❧❡ ❛s ❞✐♠❡♥sõ❡s ❞♦ tr❛♣é③✐♦ r❡❣✉❧❛r ❞❡ ♣❡rí♠❡tr♦ ♠á①✐♠♦ q✉❡ ♣♦❞❡✲s❡ ✐♥s❝r❡✈❡r
❡♠ ✉♠❛ s❡♠✐❝✐r❝✉♥❢❡rê♥❝✐❛ ❞❡ r❛✐♦ r s❡ ✉♠❛ ❜❛s❡ ❞♦ tr❛♣é③✐♦ ♦❝✉♣❛ t♦❞♦ ♦ ❞✐â♠❡tr♦
❞❡ ❧❛ s❡♠✐❝✐r❝✉♥❢❡rê♥❝✐❛✳
✸✻✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
R$5, 00 ❡ ❝❛❧❝✉❧❛ q✉❡✱
(20 − x) ✉♥✐❞❛❞❡s ♣♦r ❞✐❛✳
✶✺✳ ❯♠ ❝♦♠❡r❝✐❛♥t❡ ♣r♦❞✉③ ❝❡rt♦ ♣r♦❞✉t♦ ❛♦ ❝✉st♦ ✉♥✐tár✐♦ ❞❡
s❡ ✈❡♥❞ê✲❧♦s ❛
x
r❡❛✐s ❛ ✉♥✐❞❛❞❡✱ ♦s ❝❧✐❡♥t❡s ❝♦♠♣r❛rã♦
❆ q✉❡ ♣r❡ç♦ ♦ ❢❛❜r✐❝❛♥t❡ ❞❡✈❡ ✈❡♥❞❡r s❡✉ ♣r♦❞✉t♦ ♣❛r❛ q✉❡ s❡❥❛ ♠á①✐♠♦ ♦ ❧✉❝r♦
♦❜t✐❞♦ ❄
α é ❝❤❛♠❛❞♦ ✏r❛✐③ ❞✉♣❧❛✑ ❞❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ f ✱ s❡ f (x) = (x − α)2 g(x)
❛❧❣✉♠❛ ❢✉♥çã♦ ♣♦❧✐♥ô♠✐❝❛ g(x)
✶✻✳ ❖ ♥ú♠❡r♦
♣❛r❛
α
✶✳ ▼♦str❡ q✉❡
é r❛✐③ ❞✉♣❧❛ ❞❡
✷✳ ❊♠ q✉❛✐s ❝♦♥❞✐çõ❡s ❛ ❢✉♥çã♦
f
s❡✱ ❡ s♦♠❡♥t❡ s❡ t❛♠❜é♠ é r❛✐③ ❞❡
f (x) = ax2 + bx + c✱
❝♦♠
✶✼✳ ❖ ♥ú♠❡r♦ ❞❡ ❜❛❝tér✐❛s ❞❡ ❝❡rt♦ ❝✉❧t✐✈♦ ♥✉♠ ✐♥st❛♥t❡
1000(25 + tet/20 )
♣❛r❛
t❡♠ r❛✐③ ❞✉♣❧❛❄
é ❞❛❞♦ ♣❡❧❛ ❢ór♠✉❧❛
N =
0 ≤ t ≤ 100✳
✶✳ ❊♠ q✉❡ ✐♥st❛♥t❡ ❞❡ss❡ ✐♥t❡r✈❛❧♦✱
♥ú♠❡r♦ ♠í♥✐♠♦ ❞❡ ❜❛❝tér✐❛s❄
✷✳
t
a 6= 0
f ′✳
0 ≤ t ≤ 100✱
❡①✐st❡ ✉♠ ♥ú♠❡r♦ ♠á①✐♠♦ ❡ ✉♠
❊♠ q✉❡ ✐♥st❛♥t❡ é ♠❛✐s ❧❡♥t♦ ♦ ❝r❡s❝✐♠❡♥t♦ ♦✉ ❞❡❝r❡s❝✐♠❡♥t♦ ❞♦ ♥ú♠❡r♦ ❞❡
❜❛❝tér✐❛s❄
✶✽✳ ❆ ✈❡❧♦❝✐❞❛❞❡ ❞❡ ✉♠ ♠ó✈✐❧ q✉❡ ♣❛rt❡ ❞❛ ♦r✐✲
❣❡♠ ❡stá ❞❛❞❛ ❡♠
m/s
❡ ♣❡❧♦ ❣rá✜❝♦✿
✶✳ ❈❛❧❝✉❧❛r ❛ ❢✉♥çã♦ ✏❡s♣❛ç♦ ♣❡r❝♦rr✐❞♦✑✳
✷✳ ●r❛✜❝❛r
❛
❢✉♥çã♦
❡s♣❛ç♦
♣❡r❝♦rr✐❞♦✲
t❡♠♣♦✳
✸✳ Pr♦✈❡ q✉❡ ❛ ár❡❛ s♦❜ ❛ ❝✉r✈❛ q✉❡ ❞❛ ❛
✈❡❧♦❝✐❞❛❞❡ ❝♦✐♥❝✐❞❡ ❝♦♠ ♦ ❡s♣❛ç♦ t♦t❛❧
v
✻
2 ✳ ✳ ✳ ✳✳
✳❍
✳ ❍
✓✳✳
✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳✳ ✳ ✳ ✳❍
✳❍
✳✳
1 ✳✓
✳
✳
❍❍
✳
✓ ✳
0
1
2
3
4
5
t
✲
6
♣❡r❝♦rr✐❞♦✳
✶✾✳ ❉❡t❡r♠✐♥❛r ♠á①✐♠♦s ❡ ♠í♥✐♠♦s ❞❛ ❢✉♥çã♦
✷✵✳ ❙❡❥❛
❙❡
d
f (x) = 2senx + cos 2x✳
♦ ❝♦♠♣r✐♠❡♥t♦ ❞❛ ❞✐❛❣♦♥❛❧ ❞❡ ✉♠ r❡tâ♥❣✉❧♦ ❞❡ ❧❛❞♦s
x
❡
y
r❡s♣❡❝t✐✈❛♠❡♥t❡✳
x ❛✉♠❡♥t❛ ❝♦♠ ✉♠❛ r❛♣✐❞❡③ ❞❡ 0, 5m/s ❡ y ❞✐♠✐♥✉✐ ❝♦♠ ✉♠❛ r❛♣✐❞❡③ ❞❡ 0, 25m/s✳
✶✳ ◗✉❛❧ ❛ r❛③ã♦ ❡♠ q✉❡ ❡st❛ ♠✉❞❛♥❞♦ ♦ ❝♦♠♣r✐♠❡♥t♦ ❞❛ ❞✐❛❣♦♥❛❧ q✉❛♥❞♦
❡
x = 3m
y = 4m✳
✷✳ ❆ ❞✐❛❣♦♥❛❧ ❡stá ❛✉♠❡♥t❛♥❞♦ ♦✉ ❞✐♠✐♥✉í❞♦ ♥❡ss❡ ✐♥st❛♥t❡✳
500 ❝❡♥tí♠❡tr♦s ❝ú❜✐❝♦s✱ t❡♠ ✉♠ r❛✐♦ ❞❡ 2cm
q✉❡ ❞❡✈❡♠♦s ❛❝❡✐t❛r ❛♦ ♠❡❞✐r s✉❛ ❛❧t✉r❛ h ❞❛
✷✶✳ ❯♠ r❡❝✐♣✐❡♥t❡ ❝✐❧í♥❞r✐❝♦ ❞❡ ❝❛♣❛❝✐❞❛❞❡
❡ ❡stá ❝❤❡✐♦ ❞❡ á❣✉❛✳
◗✉❛❧ ♦ ❡rr♦
á❣✉❛ ❞♦ r❡❝✐♣✐❡♥t❡ ♣❛r❛ ❛ss❡❣✉r❛r q✉❡ t❡r❡♠♦s ♠❡✐♦ ❧✐tr♦ ❞❡ á❣✉❛ ❝♦♠ ✉♠ ❡rr♦ ❞❡
♠❡♥♦s
1%❄
✸✻✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
✷✷✳ ◆✉♠ tr✐â♥❣✉❧♦ ✐sós❝❡❧❡s ABC ♦ ❧❛❞♦ ❞❡s✐❣✉❛❧ AC ♠❡❞❡ 2a ❡ ❛ ❛❧t✉r❛ ❝♦rr❡s♣♦♥❞❡♥t❡
❛ ❡ss❡ ❧❛❞♦ ♠❡❞❡ h✳ ❉❡t❡r♠✐♥❡ ✉♠ ♣♦♥t♦ P s♦❜r❡ ❛ ❛❧t✉r❛ ♠❡♥❝✐♦♥❛❞❛ ♣❛r❛ q✉❡ ❛
s♦♠❛ ❞❛s ❞✐stâ♥❝✐❛s ❞❡ P ❛té ♦s três ✈ért✐❝❡s s❡❛ ♠í♥✐♠❛✳
✷✸✳ ❯♠ r❛✐♦ ❞❡ ❧✉③ ✭❢ót♦♥✮ ♣❛rt❡ ❞❡ ✉♠ ♣♦♥t♦ A ♣❛r❛ ✉♠ ♣♦♥t♦ B s♦❜r❡ ✉♠ ❡s♣❡❧❤♦
♣❧❛♥♦✱ s❡♥❞♦ r❡✢❡t✐❞♦ q✉❛♥❞♦ ♣❛ss❛ ♣❡❧♦ ♣♦♥t♦ P ✳ ❊st❛❜❡❧❡❝❡r ❝♦♥❞✐çõ❡s ♣❛r❛ q✉❡
♦ ❝❛♠✐♥❤♦ AP B s❡❥❛ ♦ ♠❛✐s ❝✉rt♦ ♣♦ssí✈❡❧✳
✷✹✳ ◗✉❛❧ ❞♦s tr✐â♥❣✉❧♦s r❡tâ♥❣✉❧♦s ❞❡ ♣❡rí♠❡tr♦ ❞❛❞♦ 2p✱ t❡♠ ♠❛✐♦r ár❡❛ ❄
✷✺✳ ❖ ❝✉st♦ ✈❛r✐á✈❡❧ ❞❛ ❢❛❜r✐❝❛çã♦ ❞❡ ✉♠ ❝♦♠♣♦♥❡♥t❡ ❡❧étr✐❝♦ é R$8, 05 ♣♦r ✉♥✐❞❛❞❡✱ ❡
♦ ❝✉st♦ ✜①♦ R$500, 00✳ ❊s❝r❡✈❛ ♦ ❝✉st♦ C ❝♦♠♦ ❢✉♥çã♦ ❞❡ x✱ ♦ ♥ú♠❡r♦ ❞❡ ✉♥✐❞❛❞❡s
♣r♦❞✉③✐❞❛s✳ ▼♦str❡ q✉❡ ❛ ❞❡r✐✈❛❞❛ ❞❡ss❛ ❢✉♥çã♦ ❝✉st♦ é ❝♦♥st❛♥t❡ ❡ ✐❣✉❛❧ ❛♦ ❝✉st♦
✈❛r✐á✈❡❧✳
✷✻✳ ❉❡ t♦❞♦s ♦s tr✐â♥❣✉❧♦s ✐sós❝❡❧❡s ❞❡ 12m ❞❡ ♣❡rí♠❡tr♦✱ q✉❛✐s ❞❡❧❡s t❡♠ ár❡❛ ♠á①✐♠❛❄
✷✼✳ Pr❡t❡♥❞❡✲s❡ ❢❛❜r✐❝❛r ✉♠❛ ❧❛t❛ ❝✐❧í♥❞r✐❝❛ ❞❡ ♠❡t❛❧ ❝♦♠ t❛♠♣❛ q✉❡ ❝♦♥t❡♥❤❛ ✉♠ ❧✐tr♦
❞❡ ❝❛♣❛❝✐❞❛❞❡ ♣❛r❛ ❝♦♥s❡r✈❛r ♠❛♥t❡✐❣❛✳ ◗✉❛✐s s❡rã♦ ❛s ❞✐♠❡♥sõ❡s ♣❛r❛ q✉❡ s❡ ✉t✐❧✐③❡
❛ ♠❡♥♦r q✉❛♥t✐❞❛❞❡ ❞❡ ♠❡t❛❧❄
✷✽✳ ❯♠ s❡t♦r ❝✐r❝✉❧❛r t❡♠ ♣❡rí♠❡tr♦ ❞❡ 10m✳ ❉❡t❡r♠✐♥❡ ♦ r❛✐♦ ❡ ❛♠♣❧✐t✉❞❡ ❞♦ s❡t♦r ❞❡
♠❛✐♦r ár❡❛ ❝♦♠ ❡ss❡ ♣❡rí♠❡tr♦✳
✷✾✳ ❯♠ tr✐â♥❣✉❧♦ ✐sós❝❡❧❡s ❞❡ ♣❡rí♠❡tr♦ 30cm✱ ❣✐r❛ ❡♥t♦r♥♦ ❞❡ s✉❛ ❛❧t✉r❛ ❡♥❣❡♥❞r❛♥❞♦
✉♠ ❝♦♥❡✳ ◗✉❛❧ ♦ ✈❛❧♦r ❛ ❞❛r ❛ ❜❛s❡ ♣❛r❛ q✉❡ ♦ ✈♦❧✉♠❡ s❡❥❛ ♠á①✐♠♦❄
✸✵✳ ❉❡❝♦♠♣♦r ♦ ♥ú♠❡r♦ 44 ❡♠ ❞♦✐s s♦♠❛♥❞♦ ❞❡ ♠♦❞♦ q✉❡ ❛ s❡①t❛ ♣❛rt❡ ❞♦ q✉❛❞r❛❞♦
❞♦ ♣r✐♠❡✐r♦ ♠❛✐s ❛ q✉✐♥t❛ ♣❛rt❡ ❞♦ q✉❛❞r❛❞♦ ❞♦ s❡❣✉♥❞♦ s❡❥❛ ♠í♥✐♠❛❄
✸✶✳ ❯♠❛ ❢♦❧❤❛ ❞❡ ♣❛♣❡❧ ❞❡✈❡ t❡r ❞❡ 18cm2 ❞❡ t❡①t♦ ✐♠♣r❡ss♦✱ ❛s ♠❛r❣❡♥s s✉♣❡r✐♦r ❡
✐♥❢❡r✐♦r ❞❡ 2cm ❞❡ ❛❧t✉r❛ ❡ ❛s ♠❛r❣❡♥s ❧❛t❡r❛✐s ❞❡ 1cm ❧❛r❣✉r❛✳ ❖❜t❡r r❛③♦❛✈❡❧♠❡♥t❡
❛s ❞✐♠❡♥sõ❡s q✉❡ ♠✐♥✐♠✐③❛♠ ❛ s✉♣❡r❢í❝✐❡ ❞♦ ♣❛♣❡❧✳
✳
✸✻✻
09/02/2021
❘❡❢❡rê♥❝✐❛s
❬✶❪ ❆❜❡❧❧❛♥❛s P✳
&
P❡r❡③ ❇❡❛t♦ ▼✳✲
❈✉rs♦ ❞❡ ▼❛t❡♠át✐❝❛s ❡♠ ❋♦r♠❛ ❞❡ Pr♦❜❧❡✲
♠❛s✳✲ ❙♦❝✐❡❞❛❞ ❆♥ó♥✐♠❛ ❊s♣❛ñ♦❧❛ ❞❡ ❚r❛❞✉❝t♦r❡s ② ❆✉t♦r❡s✳ ✶✾✻✵✳
❈á❧❝✉❧♦ ■ ✲ ❉✐❢❡r❡♥❝✐❛❧ ✲ ❈♦❧❡❝❝✐ó♥ ❍❛r♣❡r✳ ❊❞✐t♦r ❚♦rr❡❧❛r❛ ❊s✲
❬✷❪ ➪❧✈❛r♦ P✐♥③ó♥✳✲
♣❛ñ❛
1973✳
❬✸❪ ❇❡r♠❛♥ ●✳ ◆✳✲
▼♦s❝♦ú✳
Pr♦❜❧❡♠❛s ② ❊❥❡r❝í❝✐♦s ❞❡ ❆♥á❧✐s✐s ▼❛t❡♠át✐❝♦✲ ❊❞✐t♦r✐❛❧ ▼■❘
1977✳
Pr♦❜❧❡♠❛s ② ❊❥❡r❝í❝✐♦s ❞❡ ❆♥á❧✐s✐s ▼❛t❡♠át✐❝♦✳✲
❬✹❪ ❉❡♠✐♥♦✈✐❝❤ ❇✳✲
▼■❘ ▼♦s❝♦ú✳
❬✺❪ ▲❛♥❣ ❙❡r❣❡✳✲
1971✳
❈á❧❝✉❧♦ ■✳✲ ❋♦♥❞♦ ❊❞✉❛t✐✈♦ ■♥t❡r❛♠❡r✐❝❛♥♦ ❙✳ ❆✳ 1973✳
❬✻❪ ▲❡✐t❤♦❧❞ ▲♦✉✐s✳✲
❍❆❘❇❘❆
❬✼❪ ❖✬❈♦♥♥♦r
❊❞✐t♦r✐❛❧
▼❛t❡♠át✐❝❛ ❆♣❧✐❝❛❞❛ ➪ ❊❝♦♥♦♠✐❛ ❡ ❆❞♠✐♥✐str❛çã♦✳✲ ❊❞✐t♦r❛
1988✳
❏✳
❏✳
&
❘♦❜❡rts♦♥
❊✳
❋✳✲
❍✐stór✐❛ ❞♦ ❈á❧❝✉❧♦✳
❤tt♣✿✴✴✇✇✇✲
❤✐st♦r②✳♠❝s✳st✲❛♥❞r❡✇s✳❛❝✳✉❦✳
❬✽❪ ❑✉❞r✐á✈ts❡✈ ▲✳ ❉✳ ❛t ❡❧❧✳✲
▼■❘ ▼♦s❝♦ú✳
❬✾❪ ❘✐✈❛✉❞ ❏✳✲
Pr♦❜❧❡♠❛s ❞❡ ❆♥á❧✐s✐s ▼❛t❡♠át✐❝♦✳✲❱♦❧ ■ ✲ ❊❞✐t♦r✐❛❧
1984✳
❊①❡r❝✐❝❡s ❞✬❛♥❛❧②s❡✲ ▲✐✈r❛r✐❡ ✈✉✐❜❡rt P❛r✐s✳ ❚♦♠♦ ■ 1971✳
❬✶✵❪ ❙t❡✇❛rt✳ ❏❛♠❡s✱✲
❈á❧❝✉❧♦ ❞❡ ✉♥❛ ❱❛r✐❛❜❧❡✿ ❚r❛s❝❡♥❞❡♥t❡s t❡♠♣r❛♥❛s✳✲ ❙❡①t❛
❊❞✐çã♦ ✲ ❈❊◆●❆●❊ ▲❡❛r♥✐♥❣✳
❬✶✶❪ ❙♣✐✈❛❦ ▼✐❝❤❛❡❧✳✲
1989✳
❈❛❧❝✉❧✉s✿ ❈á❧❝✉❧♦ ■♥✜♥✐t❡s✐♠❛❧✳ ✲ ❊❞✐t♦r✐❛❧ ❘❡✈❡rt❡✳ 1983✳
❬✶✷❪ ❙✇♦❦♦✇s❦✐✳ ❊❛r❧ ❲✳✲
❈á❧❝✉❧♦ ❝♦♥ ●❡♦♠❡tr✐❛ ❆♥❛❧ít✐❝❛✳✲ ❙❡❣✉♥❞❛ ❊❞✐çã♦ ✲ ●r✉♣♦
❊❞✐t♦r✐❛❧ ■❜❡r♦❛♠ér✐❝❛✳
2008✳
❬✶✸❪ ❚✐❜✐r✐❝❛ ❉✳ ❆❧t❛♠✐r❛♥♦✳✲
❈✉rs♦ ❞❡ ❈á❧❝✉❧♦ ■♥✜♥✐t❡s✐♠❛❧✳✲ ❚♦♠♦ ■✱ P✉❜❧✐❝❛çã♦ ❞❛
❋✉♥❞❛çã♦ ●♦r❝✐❡①✳❖✉r♦ Pr❡t♦
1962✳
✸✻✼
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
✸✻✽
R
09/02/2021
❮♥❞✐❝❡
❞❡ ♥ú♠❡r♦s ♣♦s✐t✐✈♦s✱ ✶✼
❞❡ ♣❛rt✐❞❛✱ ✻✼
✐♥❞✉t✐✈♦✱ ✹✽
♥✉♠ér✐❝♦✱ ✹
s♦❧✉çã♦✱ ✷✾
❈♦♥s❡r✈❛çã♦ ❞♦ s✐♥❛❧✱ ✶✼✷✱ ✶✽✶
❈♦♥tí♥✉❛ ♣❡❧❛
❞✐r❡✐t❛✱ ✷✷✾
❡sq✉❡r❞❛✱ ✷✷✾
❈♦♥t✐♥✉✐❞❛❞❡
❡♠ ✐♥t❡r✈❛❧♦s✱ ✷✷✾
♥✉♠ ❝♦♥❥✉♥t♦✱ ✷✷✶
♥✉♠ ♣♦♥t♦✱ ✷✶✾
❈♦♥tr❛❞♦♠í♥✐♦✱ ✻✽✱ ✼✼
❈♦rr❡s♣♦♥❞ê♥❝✐❛
❜✐✉♥í✈✐❝❛✱ ✽✶
❈♦rt❡s✱ ✸
❈✉r✈❛ ♣❛r❛♠❡tr✐③❛❞❛✱ ✷✽✵
❈✉st♦
♠é❞✐♦✱ ✶✵✵
t♦t❛❧✱ ✶✵✵
❮♥✜♠♦✱ ✹✼
❆❝❡❧❡r❛çã♦ ✐♥st❛♥tâ♥❡❛✱ ✸✶✶
❆❞✐çã♦✱ ✻
❆❧❣♦r✐t♠♦ ❞❡ ❊✉❝❧✐❞❡s✱ ✶✵
❆ssí♥t♦t❛
❤♦r✐③♦♥t❛❧✱ ✸✷✺
♦❜❧íq✉❛✱ ✸✷✺
✈❡rt✐❝❛❧✱ ✸✶✾
❆①✐♦♠❛
❞❡ ❡①✐stê♥❝✐❛✱ ✶✼
❞♦ s✉♣r❡♠♦✱ ✺✱ ✹✼
❇❤❛s❦❛r❛✱ ✶✼✼
❈❛r❧ ❋✳ ●❛✉ss ✭1777 − 1855✮✱ ✸
❈❛t❡♥ár✐❛ ✱ ✸✶✸
❈❛✉❝❤②✱ ✸✱ ✻✸
❆✳ ▲✳✱ ✷✹✽
❈❤r✐st♦♣❤ ●✉❞❡r♠❛♥♥✱ ✷✶✼
❈✐❧✐♥❞r♦✱ ✶✶
❈♦❡✜❝✐❡♥t❡ ❛♥❣✉❧❛r✱ ✾✸✱ ✷✺✸
❈♦♠❜✐♥❛çã♦
❧✐♥❡❛r✱ ✶✷✼
❈♦♠♣♦s✐çã♦ ❞❡ ❢✉♥çõ❡s✱ ✶✵✽
❈♦♠♣r✐♠❡♥t♦ ❞❛
♥♦r♠❛❧✱ ✷✺✶
t❛♥❣❡♥t❡✱ ✷✺✶
❈♦♥❥✉♥t♦
✐♠❛❣❡♠✱ ✼✼
❞❡ ❝❤❡❣❛❞❛✱ ✻✼
❉❡❞❡❦✐♥❞ ❘✳✱ ✸
❉❡♠❛♥❞❛✱ ✶✵✵
❉❡♣❡♥❞ê♥❝✐❛ ❢✉♥❝✐♦♥❛❧✱ ✽✼
❉❡r✐✈❛❞❛
á ❡sq✉❡r❞❛✱ ✷✺✸
à ❞✐r❡✐t❛✱ ✷✺✹
❞❛ ❢✉♥çã♦ ✐♥✈❡rs❛✱ ✷✻✸
❞❡ ♦r❞❡♠ s✉♣❡r✐♦r✱ ✷✻✷
✸✻✾
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❛r❝♦ ❝♦t❛♥❣❡♥t❡✱ ✶✹✾
❛r❝♦ s❡❝❛♥t❡✱ ✶✺✵
❛r❝♦ s❡♥♦✱ ✶✹✽
❛r❝♦ t❛♥❣❡♥t❡✱ ✶✹✾
❇✐❥❡t✐✈❛✱ ✽✶
❜✐✉♥í✈♦❝❛✱ ✽✶
❝♦❧❝❤❡t❡✱ ✾✻
❝♦♥st❛♥t❡✱ ✾✶
❝♦♥tí♥✉❛✱ ✷✶✾
❝♦ss❡♥♦✱ ✶✹✸
❝♦t❛♥❣❡♥t❡✱ ✶✹✺
❝✉st♦ ♠é❞✐♦✱ ✶✵✶
❞❡ ❞❡♠❛♥❞❛✱ ✾✾
❞❡ ❧✉❝r♦ t♦t❛❧✱ ✶✵✵
❞❡ ♦❢❡rt❛✱ ✾✾
❞❡ r❡❝❡✐t❛ t♦t❛❧✱ ✶✵✵
❞❡r✐✈á✈❡❧✱ ✷✹✽
❞❡r✐✈❛❞❛✱ ✷✹✽
❞❡s❝♦♥tí♥✉❛✱ ✷✶✾
❞♦ ❝✉st♦ t♦t❛❧✱ ✶✵✵
❡str✐t❛♠❡♥t❡ ❝r❡s❝❡♥t❡✱ ✸✶✺
❡str✐t❛♠❡♥t❡ ❞❡❝r❡s❝❡♥t❡✱ ✸✶✺
❡①♣♦♥❡♥❝✐❛❧✱ ✶✸✸
❤♦♠♦❣rá✜❝❛✱ ✶✶✺✱ ✶✶✾
✐❞❡♥t✐❞❛❞❡✱ ✾✷✱ ✶✶✷
✐♠♣❛r✱ ✶✷✸
✐♠♣❧í❝✐t❛✱ ✶✷✶
✐♥❥❡t✐✈❛✱ ✽✵
✐♥❥❡t♦r❛✱ ✽✶
✐♥✈❡rs❛✱ ✶✶✶
❧✐♠✐t❛❞❛✱ ✶✷✺✱ ✷✸✹
❧✐♥❡❛r✱ ✾✷
❧♦❣❛rít♠✐❝❛✱ ✶✸✺
❧✉❝r♦✱ ✶✶✽
♠❛✐♦r ✐♥t❡✐r♦✱ ✾✺
♠❛♥t✐ss❛✱ ✶✷✷
♠♦♥♦tô♥✐❝❛✱ ✶✷✹
♥ã♦ ❝r❡s❝❡♥t❡✱ ✸✶✺
✐♠♣❧í❝✐t❛✱ ✷✻✻
❉❡s❝❛rt❡s✱ ✻✻
❉❡s❝♦♥t✐♥✉✐❞❛❞❡
❡ss❡♥❝✐❛❧✱ ✷✷✵
❡✈✐tá✈❡❧✱ ✷✷✵✱ ✷✷✽
r❡♠♦✈í✈❡❧✱ ✷✷✵
❉❡s✐❣✉❛❧❞❛❞❡✱ ✷✾
❞❡ ❍♦❧❞❡r✱ ✸✷✷
tr✐❛♥❣✉❧❛r✱ ✹✶
❉✐❢❡r❡♥❝✐❛❧ ❞❡
✉♠❛ ❢✉♥çã♦✱ ✷✽✻
❉✐✈✐s✐❜✐❧✐❞❛❞❡✱ ✺✹
❉✐✈✐s♦r ❝♦♠✉♠✱ ✾✱ ✺✺
❉♦♠í♥✐♦
❞❡ ✉♠❛ ❢✉♥çã♦✱ ✼✻
❞❡ ✉♠❛ r❡❧❛çã♦✱ ✻✽
❊q✉❛çã♦✱ ✶✾
❞❛ r❡t❛✱ ✾✸
❞❡ ❞❡♠❛♥❞❛✱ ✾✾
❞✐❢❡r❡♥❝✐❛❧✱ ✷✽✶
❊q✉❛çõ❡s ♣❛r❛♠étr✐❝❛s✱ ✷✽✵
❊q✉✐❧í❜r✐♦ ❞❡ ♠❡r❝❛❞♦✱ ✶✵✷
❊rr♦
♣❡r❝❡♥t✉❛❧✱ ✷✾✵
r❡❧❛t✐✈♦✱ ✷✾✵
❊✉❧❡r✱ ✹✾
❋ór♠✉❧❛
❞❡ ❇❤❛s❦❛r❛✱ ✶✾
❞❡ ▲❡✐❜♥✐t③✱ ✷✻✷
❋❡r♠❛t✱ ✹✾✱ ✻✻
❋♦r♠❛s
✐♥❞❡t❡r♠✐♥❛❞❛s✱ ✶✼✺
❋✉♥çã♦✱ ✼✺
❛✜♠✱ ✾✶
❛❧❣é❜r✐❝❛✱ ✶✷✷
❛r❝♦ ❝♦ss❡❝❛♥t❡✱ ✶✺✵
❛r❝♦ ❝♦ss❡♥♦✱ ✶✹✽
✸✼✵
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
♥ã♦ ❞❡❝r❡s❝❡♥t❡✱ ✸✶✺
♥ã♦ ❧✐♠✐t❛❞❛✱ ✶✷✺
♣❛r✱ ✶✷✸
♣❡r✐ó❞✐❝❛✱ ✶✷✶
♣♦❧✐♥ô♠✐❝❛✱ ✷✷✸
♣♦s✐çã♦✱ ✸✵✽
q✉❛❞rát✐❝❛✱ ✾✼
r❛❝✐♦♥❛❧✱ ✾✼
r❛✐③ q✉❛❞r❛❞❛✱ ✾✻
r❡❝❡✐t❛ ♠é❞✐❛✱ ✶✵✶
s❡❝❛♥t❡✱ ✶✹✻
s❡♥♦✱ ✶✹✸
s♦❜r❡❥❡t✐✈❛✱ ✽✶
s♦❜r❡❥❡t♦r❛✱ ✽✶
t❛♥❣❡♥t❡✱ ✶✹✹
✉♠✲❛✲✉♠✱ ✽✶
✉♥í✈♦❝❛✱ ✽✶
✈❛❧♦r ❛❜s♦❧✉t♦✱ ✾✻
❋✉♥çõ❡s
❡❧❡♠❡♥t❛r❡s✳✱ ✶✷✼
❤✐♣❡r❜ó❧✐❝❛s✱ ✶✺✷
✐❣✉❛✐s✱ ✶✵✼
♣♦❧✐♥♦♠✐❛✐s✱ ✸✸
tr❛♥s❝❡♥❞❡♥t❡s✱ ✶✸✸
R
❏♦❤♥ ❱❡♥♥✱ ✹
❏♦r❣❡ I ✱ ✸✵✼
▲ó❣✐❝❛ ♠❛t❡♠át✐❝❛✱ ✶
▲❛❣r❛♥❣❡
❏✳ ▲✳✱ ✷✹✽
▲❛♣❧❛❝❡✱ ✷✹✺
▲❡✐
❞❛s t❛♥❣❡♥t❡s✱ ✶✹✽
❞❡ ❇♦②❧❡✱ ✸✻✶
❞❡ ❖❤♠✱ ✸✺✻
❞♦s ❝♦ss❡♥♦s✱ ✶✹✼
❞♦s s❡♥♦s✱ ✶✹✼
❤♦rár✐❛✱ ✷✹✻
▲❡✐❜♥✐t③✱ ✷✹✼
●✳ ❲✳✱ ✷✹✽
▲❡♠❛
❞❡ ❊✉❝❧✐❞❡s✱ ✺✺
▲✐♠✐t❛çã♦
❣❧♦❜❛❧✱ ✷✸✸
▲✐♠✐t❡ ❞❛ ❢✉♥çã♦
❡①♣♦♥❡♥❝✐❛❧✱ ✷✵✹
❧♦❣❛rít♠✐❝❛✱ ✷✵✹
▲✐♠✐t❡ ❞❡ ✉♠❛ ❢✉♥çã♦✱ ✶✻✹
▲✐♠✐t❡s
❛♦ ✐♥✜♥✐t♦✱ ✶✽✺
✐♥✜♥✐t♦s✱ ✶✾✺
❧❛t❡r❛✐s✱ ✶✽✸
▲✐♠✐t❡s ❞❛s ❢✉♥çõ❡s
tr✐❣♦♥♦♠étr✐❝❛s✱ ✷✵✵
tr✐❣♦♥♦♠étr✐❝❛s ✐♥✈❡rs❛s✱ ✷✵✷
▲✉❝r♦ ♠é❞✐♦✱ ✶✶✽
●❛②✲▲✉ss❛❝✱ ✾✵
●♦❧❞❜❛❝❤✱ ✺✵
●♦tt❢r✐❡❞ ❲✐❧❤❡❧♠ ▲❡✐❜♥✐t③✱ ✸✵✼
●rá✜❝♦
❞❡ ✉♠❛ ❢✉♥çã♦✱ ✼✺
■♠❛❣❡♠
❞❡ ✉♠❛ ❢✉♥çã♦✱ ✼✻
❞❡ ✉♠❛ r❡❧❛çã♦✱ ✻✽
■♥❞✉çã♦ ♠❛t❡♠át✐❝❛✱ ✺✵
■♥❡q✉❛çã♦✱ ✷✾
■♥✜♠♦
❞❡ ✉♠❛ ❢✉♥çã♦✱ ✶✷✻
■♥t❡r✈❛❧♦s✱ ✸✵
▼á①✐♠♦✱ ✹✹✱ ✹✽
❛❜s♦❧✉t♦✱ ✷✾✵
❞❡ ✉♠❛ ❢✉♥çã♦✱ ✶✷✻
❞✐✈✐s♦r ❝♦♠✉♠✱ ✺✺
❧♦❝❛❧✱ ✷✾✶
r❡❧❛t✐✈♦✱ ✷✾✶
✸✼✶
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
▼é❞✐❛
❛r✐t♠ét✐❝❛✱ ✷✹✱ ✻✶
❣❡♦♠étr✐❝❛✱ ✷✺✱ ✻✶
▼í♥✐♠♦✱ ✹✹✱ ✹✽
❛❜s♦❧✉t♦✱ ✷✾✵
❞❡ ✉♠❛ ❢✉♥çã♦✱ ✶✷✻
❧♦❝❛❧✱ ✷✾✶
r❡❧❛t✐✈♦✱ ✷✾✶
▼í♥✐♠♦ ♠ú❧t✐♣❧♦ ❝♦♠✉♠✱ ✺✻
▼❡♥♦r q✉❡✱ ✺
R
Pr✐♠❡✐r❛ ❞❡r✐✈❛❞❛✱ ✷✹✽
Pr✐♥❝í♣✐♦
❞❛ ❜♦❛ ♦r❞❡♠✱ ✹✽
❞❡ ❆rq✉✐♠❡❞❡s✱ ✷✷
Pr♦❞✉t♦✱ ✻
Pr♦♣r✐❡❞❛❞❡s
❞♦s ❧✐♠✐t❡s✱ ✶✼✶
◗✉❛♥t✐❞❛❞❡
❞❛ ❞❡♠❛♥❞❛✱ ✶✵✵
❞❡ ❡q✉✐❧í❜r✐♦✱ ✶✵✷
◆ú♠❡r♦
❝♦♠♣♦st♦✱ ✾✱ ✶✵✱ ✺✻
✐rr❛❝✐♦♥❛❧✱ ✶✸
♣❛r✱ ✶✸
♣r✐♠♦✱ ✾✱ ✺✻
r❛❝✐♦♥❛❧✱ ✶✸
◆ú♠❡r♦s
♣r✐♠♦s✱ ✺✵
r❡❧❛t✐✈❛♠❡♥t❡ ♣r✐♠♦s✱ ✶✵
◆❡✇t♦♥✱ ✷✹✼
❘❛✐③ q✉❛❞r❛❞❛✱ ✶✾
❘❡❝❡✐t❛
♠é❞✐❛✱ ✶✵✵
t♦t❛❧✱ ✶✵✵
❘❡❣r❛
❞❛ ❝❛❞❡✐❛✱ ✷✻✺
❞❡ ▲✬❍♦s♣✐t❛❧✱ ✸✸✾
❘❡❣r❛s ❞❡
❞❡r✐✈❛çã♦✱ ✷✺✼
❘❡❧❛çã♦✱ ✻✼
❞❡ ♦r❞❡♠✱ ✶✼
♥✉❧❛✱ ✻✼
❘❡sí❞✉♦✱ ✶✵
❘❡s♦❧✈❡r ✉♠❛ ❡q✉❛çã♦✱ ✶✾
❘❡str✐çã♦ ♣r✐♥❝✐♣❛❧✱ ✶✹✽
❘❡t❛
❛♠♣❧✐❛❞❛✱ ✸✵
♥♦r♠❛❧✱ ✷✺✶
♥✉♠ér✐❝❛✱ ✺
t❛♥❣❡♥t❡✱ ✷✹✻✱ ✷✺✶
❖❢❡rt❛✱ ✶✵✵
❖♣❡r❛çõ❡s ❝♦♠ ❢✉♥çõ❡s✱ ✶✵✼
❖r❞❡♠ ♠❛✐♦r✱ ✸✹✹
P❛râ♠❡tr♦✱ ✹✵✱ ✶✶✷✱ ✷✹✼
P❛rt❡ ✐♥t❡✐r❛✱ ✷✶
P✐❡rr❡ ❋❡r♠❛t✱ ✷✹✻
P✐t❛❣ór✐❝♦s✱ ✻✻
P♦♥t♦
❝rít✐❝♦✱ ✸✷✱ ✷✾✹
❞❡ ❛❝✉♠✉❧❛çã♦✱ ✷✹✼✱ ✷✺✸✱ ✷✽✻
❞❡ ❡q✉✐❧í❜r✐♦✱ ✶✵✷
❞❡ ❡①tr❡♠♦✱ ✷✾✶
❞❡ ✐♥✢❡①ã♦✱ ✸✶✺
✜①♦✱ ✸✵✹
❧✐♠✐t❡✱ ✷✹✼
s✐♥❣✉❧❛r✱ ✷✾✹
P♦s✐t✐✈✐❞❛❞❡✱ ✶✼
❙❡çã♦ tr❛♥s✈❡rs❛❧✱ ✷✷✼
❙✐st❡♠❛ ♥✉♠ér✐❝♦✱ ✸
❙✉❜♥♦r♠❛❧✱ ✷✺✶
❙✉❜t❛♥❣❡♥t❡✱ ✷✺✶
❙✉❜tr❛çã♦✱ ✹
❙✉♣r❡♠♦✱ ✹✼
❞❡ ✉♠❛ ❢✉♥çã♦✱ ✶✷✻
✸✼✷
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❚r✐❝♦t♦♠✐❛✱ ✶✼
❚❛①❛
❞❡ ✈❛r✐❛çã♦✱ ✷✹✷✱ ✸✵✻
❯♥✐❝✐❞❛❞❡ ❞♦ ❧✐♠✐t❡✱ ✶✼✶
♠é❞✐❛✱ ✷✹✼
♣♦st❛❧✱ ✷✶✾
❱❛❧♦r ❛❜s♦❧✉t♦✱ ✹✶
❚❡♦r❡♠❛
❱❛❧♦r ❡①tr❡♠♦✱ ✷✾✶
❞❡ ❇♦❧③❛♥♦✱ ✷✸✶
❱❛r✐á✈❡❧
❞❡ ❈❛✉❝❤②✱ ✸✸✾
❞❡♣❡♥❞❡♥t❡✱ ✼✻
❞❡ P✐tá❣♦r❛s✱ ✷✸✱ ✽✼
✐♥❞❡♣❡♥❞❡♥t❡✱ ✼✻
❞❡ ❘♦❧❧❡✱ ✷✾✺✱ ✸✸✾
❱❡❧♦❝✐❞❛❞❡
❞❡ ❲❡✐❡rstr❛ss✱ ✷✸✹✱ ✸✷✵
✐♥st❛♥tâ♥❡❛✱ ✸✵✾
❞♦ ❝♦♥❢r♦♥t♦✱ ✶✼✷
♠é❞✐❛✱ ✸✵✽
❞♦ s❛♥❞✉í❝❤❡✱ ✶✼✷
❱✐③✐♥❤❛♥ç❛✱ ✶✻✷
❞♦ ✈❛❧♦r ✐♥t❡r♠é❞✐♦✱ ✷✸✺
❢✉♥❞❛♠❡♥t❛❧ ❞❛ ❛r✐t♠ét✐❝❛✱ ✺✻
❲❡✐❡rstr❛ss✱ ❑❛r❧ ❚❤❡♦❞♦r ❲✐❧❤❡❧♠ ✱ ✷✶✼
✸✼✸
09/02/2021
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠ R
❈❤r✐st✐❛♥ ❏♦s❡ ◗✉✐♥t❛♥❛ P✐♥❡❞♦ ♣♦ss✉✐ ❇❛❝❤❛r❡❧❛t♦
❡♠ ▼❛t❡♠át✐❝❛ P✉r❛✱ ♣❡❧❛ ✉♥✐✈❡rs✐❞❛❞❡ ❞❡❝❛♥❛ ❞❛ ❆♠ér✐❝❛
✲ ❯♥✐✈❡rs✐❞❛❞ ◆❛❝✐♦♥❛❧ ▼❛②♦r ❞❡ ❙❛♥ ▼❛r❝♦s ✲ ▲✐♠❛✴P❡r✉
✭1980✮✱ ♠❡str❛❞♦ ✭1990✮ ❡ ❞♦✉t♦r❛❞♦ ✭1997✮ ❡♠ ❈✐ê♥❝✐❛s
▼❛t❡♠át✐❝❛s✱ ♣❡❧❛ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞♦ ❘✐♦ ❞❡ ❏❛♥❡✐r♦✳
❈♦♠♦ ♣r♦❢❡ss♦r ❞❡ ♠❛t❡♠át✐❝❛✱ ❞❡s❞❡ 1977✱ ❛t✉♦✉ ♥❛s ✉♥✐✲
✈❡rs✐❞❛❞❡s✿ ✭✶✮ ◆❛❝✐♦♥❛❧ ▼❛②♦r ❞❡ ❙❛♥ ▼❛r❝♦s✱ ✭✷✮ ◆❛❝✐♦✲
♥❛❧ ❞❡ ■♥❣❡♥✐❡r✐❛✱ ✭✸✮ ❚é❝♥✐❝❛ ❞❡❧ ❈❛❧❧❛♦✱ ✭✹✮ ❉❡ ▲✐♠❛✱ ✭✺✮
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❙❛♥ ▼❛rt✐♥✱ ❡♠ ▲✐♠❛ ✲ P❡r✉✳ ◆♦ ❇r❛s✐❧✱ ❛t✉♦✉ ♥❛s ✉♥✐✈❡r✲
s✐❞❛❞❡s✿ ✭✶✮ ❯♥✐♦❡st❡ ✭❈❛s❝❛✈❡❧✮✱ ✭✷✮ ❚❡❝♥♦❧ó❣✐❝❛ ❋❡❞❡r❛❧
❞♦ P❛r❛♥á ✭P❛t♦ ❇r❛♥❝♦✮ ❡ ✭✸✮ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞♦ ❚♦❝❛♥t✐♥s ✲ ❯❋❚✳ ➱ ♣r♦❢❡ss♦r
❛ss♦❝✐❛❞♦ ❞❛ ❋✉♥❞❛çã♦ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞♦ ❚♦❝❛♥t✐♥s ❡ ❈♦♦r❞❡♥❛❞♦r ❞♦ ❈✉rs♦ ❞❛
▲✐❝❡♥❝✐❛t✉r❛ ❡♠ ▼❛t❡♠át✐❝❛ ❊❆❉✴❯❆❇✴❯❋❚✳ ❉❡s❞❡ 2005 ♣❡rt❡♥❝❡ ❛♦ ❇❛♥❝♦ ❞❡ ❛✈❛✲
❧✐❛❞♦r❡s ❞♦ ■♥st✐t✉t♦ ◆❛❝✐♦♥❛❧ ❞❡ ❊st✉❞♦s ❡ P❡sq✉✐s❛s ❊❞✉❝❛❝✐♦♥❛✐s ❆♥ís✐♦ ❚❡✐①❡✐r❛ ✲
■♥❡♣✳ ❚❡♠ ❡①♣❡r✐ê♥❝✐❛ ♥❛ ár❡❛ ❞❡ ❊❞✉❝❛çã♦✱ ❝♦♠ ê♥❢❛s❡ ❡♠ ❊❞✉❝❛çã♦ P❡r♠❛♥❡♥t❡✱ ❛t✉✲
❛♥❞♦ ♣r✐♥❝✐♣❛❧♠❡♥t❡ ♥♦s s❡❣✉✐♥t❡s t❡♠❛s✿ ❡❞✉❝❛çã♦ ♠❛t❡♠át✐❝❛✱ ♠❛t❡♠át✐❝❛✱ ❤✐stór✐❛
❞❛ ♠❛t❡♠át✐❝❛✱ ❡q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛✐s ❡ ❡❞✉❝❛çã♦✳ ➱ ♠❡♠❜r♦ ❞♦ ❈♦♥s❡❧❤♦ ❊❞✐t♦r✐❛❧ ❞❛
■❊❙ ❈❧❛r❡t✐❛♥♦✱ ❡♠ ❙ã♦ P❛✉❧♦✱ ❡ ❞❛ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞♦ ❚♦❝❛♥t✐♥s ✲ ❯❋❚ ✭♣❡rí♦❞♦
2012 − 2014✮✳ ❈❤r✐st✐❛♥ t❡♠ tr❛❜❛❧❤♦s ♣✉❜❧✐❝❛❞♦s ♥❛ ár❡❛ ❞❡ ❡q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛✐s ❡♠
❞❡r✐✈❛❞❛s ♣❛r❝✐❛✐s✱ ❤✐stór✐❛ ❞❛ ♠❛t❡♠át✐❝❛ ❡ ♦✉tr♦s❀ s✉❛s ❧✐♥❤❛s ❞❡ ♣❡sq✉✐s❛ sã♦✿ ❍✐stó✲
r✐❛ ❞❛ ▼❛t❡♠át✐❝❛✱ ❋✐❧♦s♦✜❛ ❞❛ ▼❛t❡♠át✐❝❛✱ ❊♣✐st❡♠♦❧♦❣✐❛ ❞❛ ▼❛t❡♠át✐❝❛ ❡ ❊q✉❛çõ❡s
❉✐❢❡r❡♥❝✐❛✐s ❡♠ ❉❡r✐✈❛❞❛s P❛r❝✐❛✐s✳
✸✼✹
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
❉❖ ▼❊❙▼❖ ❆❯❚❖❘
▲✐✈r♦s
Pá❣✐♥❛s
•
■♥tr♦❞✉çã♦ ❛s ❊str✉t✉r❛s ❆❧❣é❜r✐❝❛s✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 278
•
■♥tr♦❞✉çã♦ à ▲ó❣✐❝❛ ▼❛t❡♠át✐❝❛✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 197
•
❋✉♥❞❛♠❡♥t♦s ❞❛ ▼❛t❡♠át✐❝❛✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 273
•
❈á❧❝✉❧♦ ■♥t❡❣r❛❧ ❡ ❋✉♥çõ❡s ❞❡ ❱ár✐❛s ❱❛r✐á✈❡✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
•
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
•
❙ér✐❡s ❡ ❊q✉❛çõ❡s ❉✐❢❡r❡♥❝✐❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
•
❚❡♦r✐❛ ❞❛ ❉❡♠♦♥str❛çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
•
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 365
•
■♥tr♦❞✉çã♦ à ❆♥á❧✐s❡ ❘❡❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
390
R✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 390
490
74
246
◆♦t❛s ❞❡ ❆✉❧❛
01
❙✉♣❧❡♠❡♥t♦ ❞❡ ❈á❧❝✉❧♦ ■ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
522
04
❙✉♣❧❡♠❡♥t♦ ❞❡ ❈á❧❝✉❧♦ ■❱ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
676
05
■♥tr♦❞✉çã♦ à ❊♣✐st❡♠♦❧♦❣✐❛ ❞❛ ▼❛t❡♠át✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 200
06
❍✐stór✐❛ ❞❛ ▼❛t❡♠át✐❝❛✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
280
02
❙✉♣❧❡♠❡♥t♦ ❞❡ ❈á❧❝✉❧♦ ■■✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
398
03
❙✉♣❧❡♠❡♥t♦ ❞❡ ❈á❧❝✉❧♦ ■■■ ✭❡♠ ❡❞✐çã♦✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
07
❈♦♠♣❧❡♠❡♥t♦ ❞❛ ▼❛t❡♠át✐❝❛ ■✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 194
08
❈♦♠♣❧❡♠❡♥t♦ ❞❛ ▼❛t❡♠át✐❝❛ ■■✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 214
09
❙✉♣❧❡♠❡♥t♦ ❞❡ ❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
10
❖ ❈á❧❝✉❧♦ ❝♦♠ ♥ú♠❡r♦s ❝♦♠♣❧❡①♦s
11
❙✉♣❧❡♠❡♥t♦ ❞❡ ❆♥á❧✐s❡ ❘❡❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 160
12
❖ ❈á❧❝✉❧♦ ❝♦♠ ♥ú♠❡r♦s ❝♦♠♣❧❡①♦s
13
❈á❧❝✉❧♦ ❱❡t♦r✐❛❧ ❡ ❙ér✐❡s ◆✉♠ér✐❝❛s ✭❡♠ ❡❞✐çã♦✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 222
C
C
410
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 100
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 100
✸✼✺
09/02/2021
❈❤r✐st✐❛♥ ◗✳ P✐♥❡❞♦
❈á❧❝✉❧♦ ❉✐❢❡r❡♥❝✐❛❧ ❡♠
R
14
▼❛♥✉❛❧ ❞♦ ❊st✉❞❛♥t❡✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
15
❊str✉t✉r❛çã♦ ♣❛r❛ ♦ ❡♥s✐♥♦ ❞❛ ▼❛t❡♠át✐❝❛ ✲ Pró✲❈✐ê♥❝✐❛s ✲ ❱♦❧ ✶ ✲ ✶✾✾✾✳ ✳ ✳ ✳ ✳ ✳ 140
13
❊str✉t✉r❛çã♦ ♣❛r❛ ♦ ❡♥s✐♥♦ ❞❛ ▼❛t❡♠át✐❝❛ ✲ Pró✲❈✐ê♥❝✐❛s ✲ ❱♦❧ ✷ ✲ ✶✾✾✾✳ ✳ ✳ ✳ ✳ ✳ 236
16
❊str✉t✉r❛çã♦ ♣❛r❛ ♦ ❡♥s✐♥♦ ❞❛ ▼❛t❡♠át✐❝❛✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
180
17
❚ó♣✐❝♦s ❞❡ ❈á❧❝✉❧♦ ■✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
142
❙✉❣❡stõ❡s✿
50
❝❤r✐st✐❛♥❥q♣❅②❛❤♦♦✳❝♦♠✳❜r
✸✼✻
09/02/2021