Academia.eduAcademia.edu

Design of a Hydraulic Damper for Heavy Machinery

A hydraulic unit consisting of an accumulator as energy storage element and an orifice providing friction was designed to damp oscillations of a machine during operation. In the first step, a model for the gas spring was developed from the ideal gas laws for the dimensioning the elements. To model the gas process with a graphical simulation tool it is necessary to find a form of the gas law which can be integrated with a numerical solver, such as Tustin, Runge-Kutta, or other. For simulating the working condition, the model was refined using the van der Waals equations for real gas. A unified model representation was found to be applied for any arbitrary state change. Verifications were made with the help of special state changes, adiabatic and isothermal. After determining the dimensional parameters, which are the accumulator capacity and the orifice size, the operational and the limiting parameters were to be found. The working process of a damper includes the gas pre-charging to ...

ANALELE UNIVERSITĂłII “EFTIMIE MURGU” RE IłA ANUL XVIII, NR. 1, 2011, ISSN 1453 - 7397 ! ! # " $ % & ' ( ! $ " )' * * $ +, - * . * 0 & $ # / " 0 0 1 $ 1# 23 # " 3 " 4 4 ! 179 4 * . * 8 $ * # 0 $ 2 0 $ ! # & 4 5 & $ 6 . 4 4 # ' 7 0 180 $ , " 9 ' 66 '66 6 '6 κ 1 3 4 κ:/ ; 9 < 4 ' Gas volume and 9 . - &$ # # pN 1 3 1 3 = ! >% $ ! ! ! & ?;@ pV = mRT . ! 1/3 & ?A@) p = c1 T 123 pV = c2 153 " pV κ = c3 TV κ −1 = c4 κ 1−κ T p = c5 181 1;3 7 " ?B@ # 4 4 " " " $ & 4 66 '66 % 0 $ " " ! . % 6 & 5 V0 = p00V00 p0 1A3 C $ " # κ & . ; ) κ pV = p0V0 p = p0 1# V0κ Vκ 1B3 53 $ V0κ dF dpAc2 2 = = −κ Ac p0 κ +1 c= dx dV V 1D3 # 4 4 & B F = pAc = p0 Ac # V0κ 1E3 (V0 + xAc ) κ $ ! ! ! ?B@ 182 $" q = qN pv pN 1F3 q q= N pN pv = kv pv !  A x pv = sgn ( x )  c   kv  ! 2 1/63 0 $ ) 1 3 F = f ( x, x ) = f1 ( x ) + f 2 ( x ) = Fs + Fr " 1//3 ! ! & = ?D@ % & ! ' . ! . ! . > ! . % # ! ! # ;3 # + ! Q21 − W12 + Ei 21 = E2 − E1 ∆Q − ∆W + ∆Ei = ∆E 183 1 " 1/23 >2/ 4 / 2 ! $ G ∆ $H $ %/2 " ! / 2 ∆Q − p A ∆y + p vi ∆mi + ui ∆mi = ∆u m , 1/53 $ % " % " ∂u ∂T & /5 ∆u ∆T 1/;3 ∆Q − p A ∆y + ∆mi ( p vi + ui ) = m cv ∆T 1/A3 = cv ≈ V % $ hi = ui + p vi ! 1/B3 4 cp = ∂h ∂T 1/D3 P !:6 hi = c p Ti & ∆ "I 6 /A ! 1/E3 ?E@ Q − pA y + mi c p Ti = m0 cv T 1/F3 . T= ( 1 mi c p T − p A y + Q m cv ) 1263 ! & ! # & p= Ri T m V & /F $L A * !+ 7JK. 184 " / 12/3 2/ " ?F@ m3 Ti Ri*m/V p cp m1 T temperatur Ri Sum2 dv/dt int T' cv Sum3 Vol m dm/dt V0 v0 mass p0 Sum m0 T0 SIM2003-02 dQ/dt % ! # & 25 ; # A B 4 $ 4 ( ' 185 # ! D " p2 T0 dm/dt p Ti Vol V0 dv/dt p0 T 1 1 s ) ' ( & ! * ' ! pV = n RT % ! % 4 " " & 1223 & " ?/@ 4 & ?2@ ! !  n2 a  + p   (V − nb ) = n RT V2   186 1253 ! & 25  n2 a  p +   (V − nb ) − n RT = 0 V2   * !+ 7JK. $ 1# E + 187 12;3 $L 1# 3 E3 ! & . 26 0 T= ( 1 −p Ay+Q m cv ) 12A3 & # F & 2B $ $ % & ! % & # F ! , - & 4 # /6 ! # /6 2 , & ! " 4 188 B ! - ) . ! $ " ! < % 4 " & % 1 ?/@ & 3 # " % /D6 189 ?5@ & " * . ?/@ ! + % /FB6 2EF ?2@ C # 9 /FB5 225 ?5@ CH9 8 , 9 = ?;@ # ! ! ?A@ 7 ( $ ?B@ < 4 , # ( ! . ! " ! * 8 * ! , < # ' ! % /F5B . * 5", * 0 /FF; $ + % < , 4 * 9 M & ( . ! /FEE 8 < 7 , $ ' , M .* 8 2666 ?F@ 9 * M $ " " /5 ?E@ - /D/ * M " # 266A , / = # , ?D@ ! . . 266; , # * $ 9 . 266D ) • • • *. . .$ < + < 0 9 * N * = $ * " .$ + . $ N $* N 190 # 9 $ ("8 0 " " /E ". /