Academia.eduAcademia.edu

Time series

time series name: log: log type: opened on: Monday May 2 21:51:59 2016 Page 1 <unnamed> E:\THONG KE KINH TE TAI CHINH\time series.smcl smcl 2 May 2016, 21:44:26 . use "E:\THONG KE KINH TE TAI CHINH\wpi1 (1).dta", clear . regress D.ln_wpi Source SS df MS Model Residual 0 .02521709 0 122 . .000206697 Total .02521709 122 .000206697 D.ln_wpi Coef. _cons .0108215 Std. Err. .0012963 Number of obs F( 0, 122) Prob > F R-squared Adj R-squared Root MSE t 8.35 = = = = = = 123 0.00 . 0.0000 0.0000 .01438 P>|t| [95% Conf. Interval] 0.000 .0082553 .0133878 . . estat archlm, lags(1) LM test for autoregressive conditional heteroskedasticity (ARCH) lags(p) chi2 df 8.366 1 H0: no ARCH effects Prob > chi2 1 vs. 0.0038 H1: ARCH(p) disturbance . . arch D.ln_wpi, arch(1) garch(1) (setting optimization to BHHH) Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = (switching optimization to BFGS) Iteration 5: log likelihood = Iteration 6: log likelihood = Iteration 7: log likelihood = Iteration 8: log likelihood = Iteration 9: log likelihood = Iteration 10: log likelihood = 355.23458 365.64586 366.89268 369.65205 370.42566 372.41703 373.11099 373.1894 373.23277 373.23394 373.23397 ARCH family regression Sample: 1960q2 - 1990q4 Distribution: Gaussian 373.234 Log likelihood = D.ln_wpi Coef. Number of obs Wald chi2(.) Prob > chi2 OPG Std. Err. z = = = 123 . . P>|z| [95% Conf. Interval] ln_wpi _cons .0061167 .0010616 5.76 0.000 .0040361 .0081974 arch L1. .4364123 .2437428 1.79 0.073 -.0413147 .9141394 ARCH garch time series Monday May 2 21:51:59 2016 Page 2 L1. .4544606 .1866606 2.43 0.015 .0886127 .8203086 _cons .0000269 .0000122 2.20 0.028 2.97e-06 .0000508 . arch D.ln_wpi, ar(1) ma(1 4) arch(1) garch(1) (setting optimization to BHHH) 380.9997 Iteration 0: log likelihood = Iteration 1: log likelihood = 388.57823 Iteration 2: log likelihood = 391.34143 Iteration 3: log likelihood = 396.36991 Iteration 4: log likelihood = 398.01098 (switching optimization to BFGS) Iteration 5: log likelihood = 398.23668 BFGS stepping has contracted, resetting BFGS Hessian (0) Iteration 6: log likelihood = 399.21497 Iteration 7: log likelihood = 399.21537 (backed up) 399.2351 (backed up) Iteration 8: log likelihood = Iteration 9: log likelihood = 399.46556 (backed up) Iteration 10: log likelihood = 399.48392 (backed up) Iteration 11: log likelihood = 399.48957 (backed up) Iteration 12: log likelihood = 399.49341 (backed up) Iteration 13: log likelihood = 399.49609 Iteration 14: log likelihood = 399.51236 (switching optimization to BHHH) Iteration 15: log likelihood = 399.51441 Iteration 16: log likelihood = 399.51443 Iteration 17: log likelihood = 399.51443 ARCH family regression -- ARMA disturbances Sample: 1960q2 - 1990q4 Distribution: Gaussian Log likelihood = 399.5144 D.ln_wpi Coef. Number of obs Wald chi2(3) Prob > chi2 OPG Std. Err. z = = = 123 153.56 0.0000 P>|z| [95% Conf. Interval] ln_wpi _cons .0069541 .0039517 1.76 0.078 -.000791 .0146992 ar L1. .7922674 .1072225 7.39 0.000 .5821153 1.00242 ma L1. L4. -.341774 .2451724 .1499943 .1251131 -2.28 1.96 0.023 0.050 -.6357574 -.0000447 -.0477905 .4903896 arch L1. .2040449 .1244991 1.64 0.101 -.0399688 .4480586 garch L1. .6949687 .1892176 3.67 0.000 .3241091 1.065828 _cons .0000119 .0000104 1.14 0.253 -8.52e-06 .0000324 ARMA ARCH time series Monday May 2 21:51:59 2016 Page 3 . test [ARCH]L1.arch [ARCH]L1.garch [ARCH]L.arch = 0 [ARCH]L.garch = 0 ( 1) ( 2) chi2( 2) = Prob > chi2 = 84.92 0.0000 . arima wpi, arima(1,1,1) (setting optimization to BHHH) Iteration 0: log likelihood = -139.80133 Iteration 1: log likelihood = -135.6278 Iteration 2: log likelihood = -135.41838 Iteration 3: log likelihood = -135.36691 Iteration 4: log likelihood = -135.35892 (switching optimization to BFGS) Iteration 5: log likelihood = -135.35471 Iteration 6: log likelihood = -135.35135 Iteration 7: log likelihood = -135.35132 Iteration 8: log likelihood = -135.35131 ARIMA regression Sample: 1960q2 - 1990q4 Number of obs Wald chi2(2) Prob > chi2 Log likelihood = -135.3513 OPG Std. Err. D.wpi Coef. _cons .7498197 .3340968 ar L1. .8742288 ma L1. /sigma z = = = 123 310.64 0.0000 P>|z| [95% Conf. Interval] 2.24 0.025 .0950019 1.404637 .0545435 16.03 0.000 .7673256 .981132 -.4120458 .1000284 -4.12 0.000 -.6080979 -.2159938 .7250436 .0368065 19.70 0.000 .6529042 .7971829 wpi ARMA Note: The test of the variance against zero is one sided, and the two-sided confidence interval is . arima D.wpi, ar(1) ma(1) (setting optimization to BHHH) Iteration 0: log likelihood = -139.80133 Iteration 1: log likelihood = -135.6278 Iteration 2: log likelihood = -135.41838 Iteration 3: log likelihood = -135.36691 Iteration 4: log likelihood = -135.35892 (switching optimization to BFGS) Iteration 5: log likelihood = -135.35471 Iteration 6: log likelihood = -135.35135 Iteration 7: log likelihood = -135.35132 Iteration 8: log likelihood = -135.35131 ARIMA regression Sample: 1960q2 - 1990q4 Log likelihood = -135.3513 Number of obs Wald chi2(2) Prob > chi2 = = = 123 310.64 0.0000 time series Monday May 2 21:52:00 2016 Page 4 OPG Std. Err. D.wpi Coef. _cons .7498197 .3340968 ar L1. .8742288 ma L1. /sigma z P>|z| [95% Conf. Interval] 2.24 0.025 .0950019 1.404637 .0545435 16.03 0.000 .7673256 .981132 -.4120458 .1000284 -4.12 0.000 -.6080979 -.2159938 .7250436 .0368065 19.70 0.000 .6529042 .7971829 wpi ARMA Note: The test of the variance against zero is one sided, and the two-sided confidence interval is . dfuller ?ln_wpi, lags(4) variable ?ln_wpi not found r(111); . dfuller D.ln_wpi, lags(4) Augmented Dickey-Fuller test for unit root Test Statistic 1% Critical Value -2.670 -3.504 Z(t) Number of obs = 118 Interpolated Dickey-Fuller 5% Critical 10% Critical Value Value -2.889 -2.579 MacKinnon approximate p-value for Z(t) = 0.0794 . arima D.ln_wpi, ar(1) ma(1 4) (setting optimization to BHHH) Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = (switching optimization to BFGS) Iteration 5: log likelihood = Iteration 6: log likelihood = Iteration 7: log likelihood = Iteration 8: log likelihood = Iteration 9: log likelihood = Iteration 10: log likelihood = 382.67447 384.80754 384.84749 385.39213 385.40983 385.9021 385.95646 386.02979 386.03326 386.03354 386.03357 ARIMA regression Sample: 1960q2 - 1990q4 Log likelihood = D.ln_wpi Number of obs Wald chi2(3) Prob > chi2 386.0336 Coef. OPG Std. Err. z = = = 123 333.60 0.0000 P>|z| [95% Conf. Interval] ln_wpi _cons .0110493 .0048349 2.29 0.022 .0015731 .0205255 ar L1. .7806991 .0944946 8.26 0.000 .5954931 .965905 ARMA ma time series Monday May 2 21:52:00 2016 Page 5 L1. L4. -.3990039 .3090813 .1258753 .1200945 -3.17 2.57 0.002 0.010 -.6457149 .0737003 -.1522928 .5444622 /sigma .0104394 .0004702 22.20 0.000 .0095178 .0113609 Note: The test of the variance against zero is one sided, and the two-sided confidence interval is . log close name: log: log type: closed on: <unnamed> E:\THONG KE KINH TE TAI CHINH\time series.smcl smcl 2 May 2016, 21:48:38