Mineralogy and Petrology (1991) 44:39-55
Mineralogy
an(1
Petrology
© by Springer-Verlag 1991
Printed in Austria
Geochronology of the Spessart Crystalline
Complex, Mid-German Crystalline Rise*
S. Nasir 1'2, M. Okrusch 1, H. Kreuzer 3, H. Lenz~ 3, and A. H 6 h n d o r f 3
1Mineralogisches Institut der Universit~it W/irzburg, Wiirzburg, Federal Republic of
Germany
2 Institute of Earth and Environmental Sciences, University of Yarmuk, Irbid, Jordan
3 Bundesanstalt f/ir Geowissenschaften und Rohstoffe, Hannover, Federal Republic of
Germany
With 6 Figures
Received June 28, 1990;
accepted February 12, 1991
Summary
New Rb-Sr and K-Ar datings help to clarify the geologic history of the Spessart
Crystalline Complex, Mid-German Crystalline Rise. The oldest dates, refined by new
measurements, are recorded by whole-rock Rb-Sr analyses of the orthogneisses of the
Rotgneiss Complex. These confirm a late Ordovician to Silurian age which is interpreted
as the time of intrusion of the granitic precursors.
Hornblendes, muscovites, and biotites from different lithostratigraphic units and
rock types of the Spessart Crystalline Complex yielded K-Ar dates mainly in the range
324 to 318 Ma, an interval which conforms to the analytical precision. Two hornblendes
and one muscovite show slightly older dates up to 328 Ma. On the other hand, there is
a tail of younger hornblende dates towards 311 Ma, and two hornblendes gave dates as
low as 293 and 274 Ma for no immediately obvious reason.
The concordant dates around 324 Ma on the three different minerals may be
interpreted as marking the time of a rapid uplift and cooling at about the boundary
between Early and Late Carboniferous, presumably soon after culmination of the
Variscan deformation and amphibolite facies metamorphism.
Zusammenfassung
Geochronologie des Spessart-Kristallins, mitteldeutsche Kristallinschwelle
Neue Rb-Sr- und K-Ar-Datierungen liefern einen Beitrag zum Verst/indnis der geologischen Geschichte des Spessart-Kristallins. Die iilteste radiometrische Datierung, die
* Dedicated to Borwin Grauert on the occasion of his 60th birthday.
40
S. Nasir et al.: Geochronology of the Spessart Crystalline Complex
bislang im Spessart-Kristallin zur Verffigung steht, leitet sich aus Rb-Sr-Gesamtgesteinsanalysen yon Orthogneisen des Rotgneis-Komplexes ab. Die bereits von frtiheren
Bearbeitern gefundenen sp/it-ordovizischen bis silurischen Daten wurden durch neuere
Messungen best/itigt. Sie werden als Intrusionsalter des granitischen Ausgangsmaterials
der Rotgneise interpretiert.
Hornblenden, Muscovite und Biotite aus unterschiedlichen lithostratigraphischen
Einheiten und Gesteinstypen des Spessartkristallins erbrachten K-Ar-Daten vorwiegend
zwischen 324 und 318 Ma, d. h. einen Streubereich, der etwa der analytischen Genauigkeit entspricht. Zwei Hornblenden und ein Muscovit ergaben etwas/iltere Daten bis 328
Ma. Auf der anderen Seite beobachtet man eine Reihe von jiingereren Hornblendedaten
bis 311 Ma, und zwei Hornblenden von nur 293 und 274 Ma, die sich nicht ohne weiteres
erkl~ren lassen.
Die konkordanten Alterswerte um 320 Ma, die fiir die drei Mineralarten gewonnen
wurden, k6nnen als die Zeit einer raschen Hebung und Abkiihlung etwa an der Grenze
Unter-/Oberkarbon interpretiert werden, die vermutlich bald nach dem H6hepunkt der
variscischen Deformation und amphibolit-faziellen Metamorphose erfolgte.
Introduction
With the change from a fixistic to a mobilistic picture of the Variscan Orogen, the
Mid-German Crystalline Rise--initially recognized by Brandes (1919) and later on
defined by Scholtz (1930) and Brinkmann (1948)--has aroused renewed interest. This
important structural element is now regarded as a suture zone where the Saxothuringian crystalline basement is thrusted upon the imbricated "Northern Phyllite
Zone" and the anchimetamorphic Rhenohercynian (Weber and Behr, 1983; Giese et
al., 1983; Behr et al., 1984; Weber, 1984, Franke, 1989), see Fig. 1. The new geological
model received strong support by the fascinating results of deep-reflexion seismic
recording along the profile D E K O R P 2 south which exhibits a highly laminated
upper crust with faulted and southeast dipping reflectors just below the Spessart
Crystalline Complex ( D E K O R P Research Group, 1985; Heinrichs, 1986; Behr and
Heinrichs, 1987).
One of the questions crucial to the geodynamic interpretation of the MidGerman Crystalline Rise is its metamorphic history. In this paper we present results
of K-Ar dating on hornblendes, muscovites and biotites from various lithostratigraphic units of the Spessart Crystalline Complex which will give a minimum age
of metamorphism. Another important event in the geological history of the Spessart
is the intrusion of the granitic protolith of the Rotgneiss complex. The Rb-Sr
whole-rock dates published by Kreuzer et al. (1973) and Lippolt (1986) are discussed
in the light of new data.
Geological Setting
The Mid-German Crystalline Rise which extends in SW-NE direction from the Saar
area to the Lusatia area is documented in several uplifted blocks, i.e. the crystalline
complexes of Bergstrfisser Odenwald, B611stein Odenwald, Spessart, Ruhla and
Kyffh~iuser (Fig. 1). Major parts are hidden by a cover of Permian, Mesozoic and
Cenozoic sediments.
Comprehensive reviews of the Spessart Crystalline Complex are given by Matthes
and Okrusch (1977), Okrusch (1983) and Hirschmann and Okrusch (1988). The follow-
North
_ Sea
v
~>'~-~ q ~
~.~
oMagdeburg
HARZf~
,, 3 £~to.~.z."
BRABANT .<,e.%
MASSIF
~.~.e
<"'~~,'
(q.~
~
Bruxelles
3
~-
6
---"~
/
Strasbourg
8
~
~
/ i ~
÷
BLACK FOREST
9
voso
- -
0
__~ KYFFH~USER
o
~ 4
BerllnO
s
Fig. 1. Geological sketch map of the main tectonic units in the Central European Variscides
(modified after Franke, 1989). Blank--Sedimentary cover of Permian, Mesozoic and Cenozoic age.
1 Variscan granites (largely post-tectonic).
Rhenohercynian Realm
2 Devonian and Carboniferous sedimentary and volcanic rocks with Variscan metamorphism of very low grade.
3 Pre-Devonian sedimentary, volcanic and plutonic rocks with Caledonian metamorphism of low grade.
Northern Phyllite Zone
4 Pre-Devonian sedimentary and volcanic rocks with Variscan metamorphism of low
grade.
Mid-German Crystalline Rise
5 Precambrian to Silurian sedimentary, volcanic and plutonic rocks, with Variscan metamorphism of medium grade: Kyffhiuser, Ruhla, Rh6n (metamorphic xenoliths in Tertiary volcanites), Spessart, Odenwald (Brllstein: NE part, Bergstrisser: main part).
Saxothuringian Realm
6 Devonian and Carboniferous sedimentary and volcanic rocks with Variscan metamorphism of very low grade.
7 Precambrian to Silurian sedimentary, volcanic and plutonic rocks with Variscan metamorphism of low, medium and high grade.
Moldanubian Realm
8 Paleozoic rocks, undifferentiated, in part slightly metamorphosed.
9 Moldanubian s. str., mostly polymetamorphic gneisses and migmatites, with rare eclogitic relics, last Variscan overprint under low-P/high-T conditions, about 325 Ma ago.
10 1V[iinchbergcrystalline nappes, Erbendorf-Vohenstrauss Zone, Tepl~-Barrandian Zone;
mostly polymetamorphic micaschists, gneisses and metabasites, in part with eclogitic
relics, last metamorphic overprint under medium P/medium T conditions, about 380 Ma
ago.
42
S. Nasir et al.
3;o5
I
~
~ Permian, Buntsandstein, Quaternary
Basalt, phonolite
F ~ - ] Rhyolite (quartz porphyry)
[~
Leucogranodiorite, aplitic granite
Quartz diorite - granodiorite complex
Rotgneiss complex
Geiselbach formation
~
Micaschists, quartz - micaschists
Quartzites
I
'~bber
3515
a~za]
Mombris formation
Staurolite - garnet- plagioclase gneiss
Garnet-plagioclase gneiss
Elterhof formation, Alzenau formation
Striated paragneJss with intercalations
of amphibohte and marble
Schweinheim-Haibach formation
Schweinheim micaschist
[[~[[~ Haibacher biotite gneisses
Metabasite
Fig. 2. Geological sketch-map of the Spessart crystalline complex. After Biickin9 (1891),
Gabert (1957), Weinelt (1962), Okrusch and Weinelt (1965), Okruseh et al. (1967) and Streit
and Weinelt (1971). Except for the metabasites, individual geological units are listed according to their respective, inferred or constrained ages. Sample localities and the new K-Ar dates
are indicated; B biotite, H hornblende, M muscovite
ing, S W - N E striking units can be distinguished from N W to SE (Fig. 2):
1. The Alzenau formation: paragneisses, aplitic gneisses, amphibolites and subordinate marble.
2. The Geiselbach formation: micaschists and quartzites, with subordinate
intercalations of paragneiss, epidote gneiss and amphibolite.
Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise
43
Fig. 3. Geological sketch map of the central part of the Spessart crystalline complex showing
the sample localities for Rb-Sr whole-rock dating (circles with numbers) and the K-Ar dates
of Lippolt (1986)
3. The M6mbris formation: predominantly staurolite-bearing paragneisses with
minor intercalations of staurolite-free paragneiss, amphibolite, hornblende gneiss
and chlorite-amphibole fels.
4. The Rotgneiss complex: orthogneisses with intercalations of meta-aplite,
amphibolite, hornblende gneiss and chlorite-amphibole fels.
5. The Schweinheim-Haibach formation: intercalations of micaschists (Schweinheim member) and biotite gneisses (Haibach member).
6. The Elterhof formation: paragneisses with intercalations of marble, calcsilicate gneiss, graphite-bearing quartzite and amphibolite.
7. The quartz diorite-granodiorite complex with minor aplitic granites.
According to their respective tectonic positions, their lithologies and their inferred or constrained ages of deposition, the different units of the Spessart Crystalline Complex can be characterized as follows:
The Geiselbach and the M6mbris formations are assumed to represent a normal
stratigraphic succession of Early Paleozoic age (Matthes, 1954; Bederke, 1957;
Weinelt in Okrusch et al., 1967). Recently Reitz (1987) detected the first fossils in a
garnet-bearing micaschist in the central part of the Geiselbach formation. The well
preserved spores, derived from primitive land plants (Psilophytinae), point to a
Silurian age (probably Ludlow) of the sedimentary protolith. This exciting paleontological evidence means that the Geiselbach formation may reach up to the
Devonian/Silurian boundary while, judging from lithostratigraphic considerations,
part of the Geiselbach and the whole M6mbris formation are assumed to be of
Cambro-Ordovician age (Hirschmann and Okrusch, 1988). Both formations are
44
S. Nasir et al.
of relatively monotonous lithological character. According to geochemical investigations of Smoler (1987) the staurolite-bearing metapelites and staurolite-free
metagraywackes of the M6mbris formation were deposited in a continental-margin
environment.
Part of the intercalated amphibolites, especially in the northwestern belt between
H6rstein and Huckelheirn, at the transition from the M6mbris to the Geiselbach
formation, may represent a phase of volcanic activity during the Early Paleozoic
sedimentation. The metabasites of the southeastern belt Aschaffenburg-FeldkahlRottenberg are intercalated within the metapelites of the M6mbris formation, but
also within the orthogneisses of the Rotgneiss complex. Although the contact
relationships are poorly exposed, we assume that at least part of these metabasites
are derived from basaltic dikes which intruded the Rotgneiss granite (see below).
The Alzenau formation in the northwestern, and the Elterhof formation in the
southeastern part of the Spessart crystalline complex are very similar in their
variegated lithology, a fact already recognized by Th~rach (1893). Both formations
are now interpreted as remnants of one nappe (Heinrichs, 1986; Behr and Heinrichs,
1987). Based on lithostratigraphic correlations within the Variscan Orogen, this
variegated group may be of Late Proterozoic (Braitsch, 1957b) or Early Cambrian
age (Bederke, 1957; Braitsch, 1957b, Hirschmann and Okrusch, 1988).
Braitsch (1957b) showed that the metapelitic micaschists of the Schweinheim
member underly the variegated Elterhof formation in a normal stratigraphie succesion and, consequently, might have a Late Proterozoic age (see also Hirschmann and
Okrusch, 1988). The protolith of the intercalated biotite gneisses of the Haibach
member--igneous vs. sedimentary--is still open to discussion. Our unpublished
Rb-Sr whole-rock analyses of the Haibach gneiss did not yield an isochron.
The muscovite-biotite flaser-gneisses of the Rotgneiss complex are derived from
a relatively shallow intrusion of granitic to granodioritic composition and S-type
character (Matthes and Okrusch, 1965; Okrusch and Richter, 1986). Rb-Sr wholerock analyses were interpreted towards a Silurian intrusion age of 414 _ 18 Ma (2s)
(Lippolt, 1986, compatible with older, less precise data of Kreuzer et al., 1973) which
would conform to the initial age estimate of Bederke (1957).
The quartz diorite-granodiorite complex in the southern part of the Spessart
crystalline area does not exhibit a typical igneous texture, but reveals a crystalloblastic one as well as an indistinct foliation. Another crucial feature is the extremely
inhomogeneous appearance on the scale of an outcrop: lensoid rafts of amphibolite
and hornblende gneiss as well as acid veins and schlieren rich in K-feldspar are
numerous. Therefore, Okrusch (1963) discarded an igneous origin of the complex
(Braitsch, 1957a) and advocated a transformistic model. However, a recent petrofabric investigation speaks in favour of a magmatJc origin (O. Oncken, pers. comm.).
Granite-pegmatites are widespread in the central and southeastern part of the
Spessart Crystalline Complex, especially in the Haibach and in the Goldbach
gneisses. They are syn- to post-tectonic.
Metamorphism in the Spessart Crystalline Complex took place under P-T
conditions of the lower amphibolite facies. Mineral assemblages in the staurolitebearing paragneisses of the M6mbris formation testify to temperatures of about
600 °C at pressures of about 6 kb (Matthes and Okrusch, 1977; Okrusch, 1983, 1990).
The application of various mineral thermometers to the amphibolite intercalations
point to somewhat lower temperatures in the northwestern part of the M6mbris
formation and in the Geiselbach formation (Nasir, 1986).
Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise
45
Analytical Results
A short description of the investigated samples can be obtained from M. Okrusch on
request. Conventional chemical analyses and optical properties of dated hornblendes
are listed in Table 1; their designation according to the nomenclature of Leake (1978)
is shown in Fig. 4. Except for Table 3, Fig. 3, and the bars in Fig. 6, all error estimates
given refer to an interlaboratory analytical precision at a 95% confidence level. The
IUGS-recommended constants (Steiger and Jiiger, 1977) were used.
K-Ar Dating (Table 2)
In Fig. 5 the K-Ar dates of the analyzed hornblendes, muscovites, and biotites are
depicted synoptically. Most of them group within the narrow range of 324 to 318
Ma which conforms to the analytical uncertainty. Two hornblendes and one muscovite yielded slightly older dates of 326 to 328 Ma. On the other hand, there is a tail
of younger hornblende dates towards 311 Ma.
Two hornblendes from Mfinchhof (Sp83-W2) and nearby Sternberg (Sp83-W4)
gave distinctly younger dates of 293 and 274 Ma, respectively. These two amphiboles
as well as hornblende Sp83-W3 from Miichhof (which, too, gave a relatively young
date of 311 Ma) are distinguished by cloudy cores of opaque dust. Otherwise, these
three amphiboles have no special chemical composition (Table 1, Fig. 4), and do not
show any sign of secondary alteration. In comparison, five hornblendes of variable
composition from different rock types of the Rauenthal area revealed concordant
dates of 322 __+4 to 328 ___4 Ma (weighted mean 324 _ 2 Ma). A biotite concentrate
from one of these samples yielded the same date of 322 _ 4 Ma.
The K-Ar dates of Lippolt (1986, Table 6) fit well within the narrow range of the
majority of our dates (Fig. 5). This holds true not only for biotites from an orthogneiss of the Rotgneiss complex (sample S 419-B, Steinbach quarry: 322 _ 16 Ma)
and a quartz diorite (sample Sp76-B, Stengerts quarry: 321 __+20 Ma), but also for a
muscovite from the Grauenstein pegmatite (sample Peg2-76-M: 318 ___20 Ma) as
well as a muscovite and a biotite from the Wendelberg pegmatite (sample Pegl-76M: 317 + 20 Ma, sample Pegl-76-B: 322 _ 20 Ma).
Rb-Sr Whole-rock Dating
Kreuzer et al. (1973) analyzed six muscovite-biotite gneisses and one metaaplite from the Rotgneiss complex. The data points define a regression line in the
Nicolaysen (1961) diagram which was interpreted as an isochron yielding a date of
397 _ 22 Ma and an initial 87Sr/a6sr ratio (IR) of 0.712 _ 0.004. However, the
authors were aware of the fact that five of the data points clustered within a narrow
interval of 87Rb/86Sr around 10. Slope and precision of the regression line depend
critically on the data points of the two remaining samples, one highly recrystallized
orthogneiss (Sp63-1237) and the meta-aplite (Sp72-105) sampled from a dike 0.5 m
in width.
Lippolt (1986) published high-precision Rb-Sr analyses on five whole-rock samples of muscovite-biotite gneiss (open circles in Fig. 6), three of which were taken
from the same locality (S 423, S 424, S 425). The five data points, with a spread in the
87Rb/86Sr ratios of 3 to 55, defined a regression line corresponding to a date of
414 _ 18 Ma and an IR of 0.7068 + 0.0022. However, the mean square of weighted
deviates MSWD = 62 demonstrated that the basic requirements for an interpretation of the regression line as an isochron were violated.
46
S. Nasir et al.: Geochronology of the Spessart Crystalline Complex
Table 1. Chemical analyses of dated hornblendes
Sample
Wt.-~
SiO2
TiO2
AI20~
Fez0~
FeO
MnO
HgO
CaO
MazO
K20
F
H,O
Sum
Sp83M 13
Hc 4
A 3
Rh 3
Rh 1
Rh 4
Rh 5
44.70
0.65
12.20
4.43
9.46
0.22
12.68
10.96
1.58
0.31
0.02
1.93
99.14
44.50
0.60
13.25
3.91
11.59
0.29
10.62
10.90
1.56
0.42
0.09
1.87
99.60
46.20
0.55
11.75
3.65
9.80
0.24
13.43
10.15
1.40
0.62
0.06
1.76
99.61
49.40
0.46
8.40
1.52
9.98
0.21
15.32
ii.i0
0.95
0.19
0.02
2.15
99.70
44.60
0.60
11.65
3.62
12.88
0.20
11.01
10.90
1.25
0.96
0003
2.08
99.78
42.10
0.89
13.10
5.81
14.31
0.39
7.98
11.25
1.49
0.65
0.06
1.88
99.91
Ions per 24 (O + OH + F)
Si
6.561
6.548
6.527
AI(4)
1.439
1.452
1.473
6.709
1.291
7.070
0.930
6.578
1.422
Z
8.000
8.000
8.000
8.000
8.000
AI(6)
Ti
Fe'+
Hg
Fe z+
Hn
0.668
0.055
O.431
2.632
1.214
0.000
0.653
O.071
0.488
2.765
1.023
0.000
0.826
0.066
0.432
2.325
1.351
0.000
0.725
0.060
0.399
2.907
0.909
0.000
Y
5.000
5.000
5.000
Fe 2~
Kn
Ca
Na
0.049
0.032
1.756
0.163
0.136
0.026
1.718
0.120
0,072
0.036
1.715
0.177
X
45.10
0.50
12.20
3.93
10.37
0.26
12.12
11.25
1.42
0.38
0.03
2.12
99.68
2.000
2.000
2.000
Sp58ADX
W 2
W 3
W 4
F 6
44.80
1.22
13.25
4.O1
12.10
0.24
10.04
11.08
1.25
0.68
0.03
1.82
100.52
44.20
1.16
13.80
3.50
i0.00
0.20
11.54
10.85
1.63
0.34
0.03
2.O1
99.26
45.00
0.80
13.35
3.66
9.74
0.22
11.63
11.15
1.25
0~37
O.O2
1.98
99.17
44.50
1.15
13.80
2.66
11.34
0.20
11.49
10.45
1.38
0.45
0.O2
2.04
99.48
47.00
0.63
13.10
4.40
12.16
0.24
9.96
10.84
1.65
0.66
0.06
1.84
99.54
42.45
1.45
14.29
0.50
12.53
0.26
12.46
12.21
1.53
1.42
n.d.
2.08
100.23
42.55
1.81
10.75
3.79
12.O2
0.28
12.06
11.27
1.68
1.25
n~d.
1.98
99.38
6.316
1.684
6.539
1.461
6.444
1.556
6.556
1.444
6.482
1.518
6.506
1.494
6.252
1.748
6.363
1.637
8.000
8.000
8.000
8.000
8.000
8.000
8.000
8.000
8.000
0.492
0.050
0.164
3.272
1.022
0.000
0.613
0.067
0.402
2.437
1.481
0.000
0.645
0.i01
0.657
1.787
1.798
0.012
0.824
0.134
0.440
2.185
1.417
0.000
0.826
0.127
0.384
2.511
1.152
0.000
0.854
0.088
O.401
2.526
1.131
0.O00
0.864
0.126
0.292
2.497
1.221
0.O00
0.795
0.070
0.489
2.195
1.451
0.000
0.733
0.161
0.055
2.516
1.535
0.000
0.258
0.204
0.426
2.679
1.433
0.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
0.281
0.030
1.579
0.ii0
0.174
0.025
1.704
0.097
0.074
0.025
1.726
O.175
0.000
0.038
1.810
0.152
0.061
O.030
1.733
O.176
0.068
0.025
1.697
0.210
0.056
0.027
1.740
O.177
0.161
0.025
1.632
0.182
0.052
0.030
1.718
0.200
0.008
0.032
1.927
0.033
0.070
0.035
1.806
0.089
2.000
2.000
2.000
2.000
W 1
2.000
2.000
2.000
2.000
2.000
2.000
CAH
2.000
Na
K
0.238
0.071
0.327
0.058
0.267
0.079
0.284
0.115
0.167
0.035
0.183
0.181
0.270
0.125
O.178
O.127
0.251
0.063
0.176
0.069
0.208
0.084
0.272
0.125
0.404
0.267
0.398
0.238
A
0.309
0.383
0.346
0.399
0.202
0.364
0.395
0.305
0.314
0.245
0.292
0.397
0.671
0.636
F
OH
0.014
2.060
O.010
1.883
0.042
1.832
0;028
1.705
0.009
2.055
O.014
2.051
0.029
1.884
0.014
1.772
0.014
1.957
O.010
1.924
0.010
1.982
0.028
1.812
2.040
2.000
18 °
76 °
16 °
81 °
17 °
19 °
16°
74°
14 °
78 °
17 °
76°
180
78 °
16 °
0.024
0.022
0.021
0.021
0.023
0.024
0.021
590
18 °
1.659
1.680
0.021 c
680
15 °
1.660
1.682
0.022 c
Optical data
2V=
n~'/c
n,
n(
nv-n.
0.021
6
0.023
ccalculated
Analysts: Samples Sp 83-, Nasir (1986), samples Sp
58-, Okrusch
(1961).
For a perfect regression the deviations of the determining analytical points
should be in the range of the analytical uncertainties, i.e. the mean square of weighted
deviates (MSWD) should be close to unity. For a number of samples n > 6, Wendt
(1989) and Wendt and Carl (in press) estimate the standard deviation of the M S W D
as
s(MSWD) ~ __+
whereby f is the number of freedoms (f = n - 2 in the case of a linear regression
of n points). Hence, the M S W D of a five points' regression line should be in the
range of i ___2 x / ~ ~ 1 _ 2 for a statistically safe isochron.
(Na÷K)A <0.50~ Ti <0.50
i
trem.hb/
magnesiotsch.
hornblende hbl. tschermakite
act.
o
O~o
actinolite hbL
1.o
tremolite
0
0.5
ferro-
ferroact,
actinolite
hbl.
0'O.0
ferro- ferrotsch.
hbl. tschermakite
hornblende
I
7.5
6.5
7.0
6.0
.....Si
(Na+K) A >0.50; Ti <0.50
1.o
silicic
LL
ferro-
%
parg.
eden. hbl.
edenite
edenite
pargasite
hbl.
ferroan ferroanparg.
pargasite
ferro
hbl.
*0.5
silicic
ferro-edenite
ferroedenite
0.0
8.0
7.5
270
290
I
7.0
eden. ferro- ferrohbl. parg.
pargasite
hbl.
I
6.5
6.0
Si
510
Fig. 4. Nomenclature (Leake,
1978) of analyzed hornblendes
from the metabasite belts
Hrrstein--Huckelheim (open
triangles) and AschaffenburgFeldkahl-Rottenberg (open
circles) and from the quartz
diorite-granodiorite complex
(closed circles)
550(Mo)
METABASITE BELT
H¢4
HORSTEIN - HUCKELHEIM
F6
~
w~
~7-:-/7-/]
METABASITE BELT
r//l]
Rh3
Rhl
Rh4
Rh5
I///////I
ASCHAFFENBURO -
[ ~
FELDKAHL ROTTENBERG
w2
w3
~
~
A.3
f////I
1112
Peg2*
I-I
1166
"--'1111
1167
1330
~}1
MOMBRIS FORMATION
PEGMATITE
I
ROTGNEISS COMPLEX
I
s41g*
Pegl*
EAA
Sp76,
ADX
CAH
PEGMATITES, HAIBACH MEMBER
r///l
AMPHIBOLITE, ELTERHOF FORMATION
i
OUARTZDIORITE - GRANODIORITE
COMPLEX
r
~
270
K-Ar
II
dates
29O
± 2s:
510
~
550(M0)
hornblende
I
i muscovite
----
biotite
Fig. 5. K-Ar dates from the Spessart crystalline complex. The dates are arranged according
to the lithostratigraphic succession as in Table 2, i.e. from NW (top) to SE (base). The dates
for the mica samples of Lippolt (1986) are inserted and marked with an asterix. However,
the original dates are increased by 1.8% which is the interlaboratory bias from Heidelberg
to Hannover according to our analyses on the interlaboratory standard biotite HD-B1
(Lippolt and Hess, 1989, written commun.). The errors of these dates are given as twice the
standard deviation of these 5 dates. All error bars are given at a level 95% intralaboratory
confidence. The ruled background represents the interval 4- twice of the standard error of
the mean age of the 5 hornblendes from Rauenthal (samples Rh)
48
S. Nasir et al.
Table 2. K-Ar mineral data of crystalline rocks from the Spessart, Mid-German Crystalline Rise
Sample No.
Rock t y p e
Locality
Metabasite
Sp83-Hc4
hornblende
Sp83-MI3
hornblende
gneiss
gneiss
Metabasite
Sp83-F6
quartz-bearing
belt
Sp83-W4
quartz-bearing
amphibolite
quartz-epidote
amphibolite
Sp83-Rhl
hornblende
Sp83-Rh4
epidote-hornblende
Sp67-Rh
amphibolite
Sp83-WI
quartz-bearing
amphibolite
amphibolite
Sp83-W2
quartz-bearing
Sp83-W3
amphibolite
Sp83-A3
epidote-bearing
hbl
316 ± 6
north
hb]
320 ± 5
o f BrUcken
amphibolite
quartz-plagioclase
fels
hbl
Sp64-1330
biotite
gneiss,
muscovite-bearing
biotite
gneiss,
muscovite-bearing
muscovite-biotite
Sp58-EAA
chlorite-bearing
Sp58-ADX
quartz diorite
with feldspar blasts
amphibolite raft
in q u a r t z d i o r i t e
5p62-1167
Sp58-CAH
323 ± 8
hbl
324 ± 4
bi
322 ± 4
322 ~ 4
328 ± 4
MUnchbof
hbl
316 ± 4
MUnchhof
hbl
295 ± 5
MUnchhof
hbl
311 ± 5
Strietwald,
near A s c h a f f e n b u r g
hbl
311 * 4
Elterhof
Quartz
322 ± 4
hbl
-
0.12
2
0.24
2
0.326
5
0.293
±
6
0.457
±
5
0.114
±
3
0.725
±
7
6.44
±
8
0.660
±
7
0.711
±
7
0.443
±
5
0.253
±
4
0.243
±
4
0.283
±
4
4.36
4
3.38
3
6.26
5
1.565
14
10.00
8
88.3
8
9.03
7
9.94
6
5.94
5
3.146
23
3.21
3
3.732
21
0.48
3
0.29
2
0.49
5
0.!5
i
0.35
i
0.77
13
0.34
6
0.64
6
0.46
1
0.82
2
0.84
26
0.57
2
mus
321 ± 4
8.01
7
109.3
9
1.5
2
7.35
4
7.47
±
4
7.58
±
4
99.6
8
102.7
8
105.2
6
1.1
i
2.0
i
1.2
5
±
complex
bi
319 ± 3
±
bi
323 ± 3
mus
326 ± 2
hbl
320 ± 4
formation
Gniessen,
near Schweinheim
diorite
2.674
21
3.54
8
formation
Kufengrund,
near U n t e r a f f e r b a c h
Kufengrund,
near U n t e r a f f e r b a c b
SteinrUcken,
near G l a t t b a c h
amphibolite
0.199
4
0.260
±
4
±
±
275 ± 6
hbl
R o t e r Grund,
near Wenigh~sbach
gneiss
315 ± 5
Rauenthal
Rotgneiss
Sp62-1166
(wt.%)
Argon
rad.
atm.
(nl/g)STP
- Rottenberg
Rauenthal
Mdmbris
Sp62-1112
- Feldkah]
Rauenthal
gneiss
K
Huckelheim
S t e r n b e r g , between
hbl
F e l d k a h l and Wenighdsbach
hbl
Rosenberg,
near Rauenthal
hb]
Rauenthal
gneiss
Sp83-Rh5
-
Feldkahl
fels
biotite-hornblende
HSrstein
ZiegelhUtte
Aschaffenburg
amphibolite
Sp83-Rh3
belt
K-Ar
date
(Ma)
Mineral
granodiorite
Stengerts,
near Schweinheim
Ameisenbrunnen,
near Soden
0.739
8
I0.06
8
0.48
2
1.282
12
1.344
±
12
17.93
14
18.19
15
!.42
17
0.35
6
±
complex
hbl
328 ± 4
±
hb]
318 ± 4
C o n v e n t i o n a l K-Ar a n a l y s e s ( S e i d e l e t a l . , 1982).
Argon by t o t a l f u s i o n i s o t o p e d i l u t i o n
static
m a s s - s p e c t r o m e t r i c a l a n a l y s i s in n a n n o l i t e r per gram a t s t a n d a r d t e m p e r a t u r e and p r e s s u r e , c o r r e c t ed f o r a v e r a g e b l a n k a n a l y s e s .
K in d u p l i c a t e
by f l a m e p h o t o m e t r y w i t h Li as i n t e r n a l
standard.
E r r o r e s t i m a t e s r e f e r to the i n t r a l a b o r a t o r y
analytical
p r e c i s i o n at a 95 % c o n f i d e n c e l e v e l .
For
the K a n a l y s e s t h e y a r e a r b i t r a r i l y
e n h a n c e d by 0.002 wt,% to a c c o u n t f o r l o w l e v e l b i a s s e s .
The
IUGS-recommended c o n s t a n t s ( S t e i g e r and J ~ g e r , 1977) are used.
Our date f o r the s t a n d a r d g l a u c o n i t e GL-O i s i% l e s s than the average v a l u e o f the c o m p i l a t i o n o f Odin (1982).
Abbreviations:
bi = b i o t i t e ,
hbl = h o r n b l e n d e ,
mus = m u s c o v i t e .
Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise
49
For comparison of precise data on samples from a more limited interval of Rb/Sr
ratios, we decided to re-analyze six samples reported by Kreuzer et al. (1973), as
well as three additional ones described, but not analyzed by these authors. Moreover, the two samples of Lippolt (1986) with high Rb/Sr ratios (S 423, S 425) were also
re-analyzed.
Three samples re-analyzed for Rb and Sr reveal major discrepancies compared
with the former results: The samples Sp63-1237 and Sp72-105 which mainly define
the isochron of Kreuzer et al. (1973) revealed markedly higher 8~Sr/86Sr ratios, the
sample S 423 of Lippolt (1986) gave a 10~ lower 87Rb/86Sr ratio.
Taking into account all 11 samples, our new results (Table 3) define a regression
line conforming to an isochron date of 439 +_ 15 Ma, with an IR of 0,7038 _+ 0.0026
(Fig. 6). The scatter of the data points is significantly reduced. Yet the resulting
M S W D = 4.9 is still far too large to assume a statistically sound isochron. AccordTable 3. Rb-Sr whole-rock data of orthogneisses from the Rotgneiss Complex, Spessart
87Rb
865r
(ppm)
(ppm)
Sample No.
87Rb
86Sr
87Sr
86Sr
Charges of 600 mg
Sp63-1279
Sp61-1011
Sp62-i026
Sp63-1271
Sp64-1313
Sp62-i075
Sp63-1254
Sp72-I05
47.78
51.05
52.73
51.92
58.89
55.24
57.53
63.78
63.37
5.403
5.409
5.158
5.002
5.256
4.800
4.728
3.178
3.177
Sp63-1237
53.91
52.83
2.537
2.498
S 425
ditto
at BGR
Lippolt
63.59
63.76
1.162
1.143
S 423
ditto
at BGR
Lippolt
59.20
56.80
1.063
0.947
Charges of 100 mg,
mean v a l u e s
NBS 607
standard dev.
of
8.74
9.33
10.11
10.26
11.08
11.38
12.03
19.84
19.72
19.78
21.01
20.91
20.96
(9)
(9)
(10)
(i0)
(11)
(11)
(12)
(2.0)
(20)
(14)
(21)
(21)
(15)
0.75881
0.76283
0.76806
0.76919
0.77702
0.77395
0.77877
0.82802
0.82878
0.82840
0.83891
0.84034
0.83962
(23)
(23)
(23)
(23)
(23)
(23)
(23)
(25)
(25)
(38)
(25)
(25)
(72)
54.10
55.41
54.76
55.07
59.50
(54)
(19)
(66)
(55)
(30)
1.03641
1.03810
1.03726
1.04865
1.04760
1.04812
(31)
(4)
(85)
(31)
(34)
(83)
f o r c o n t r o l of c o n t a m i n a t i o n und cross contam i n a t i o n
10 d e t e r m i n a t i o n s
w i t h i n about 2 years.
148.16
49
6.046
24
24.21
13
1.20007
80
Rb and Sr d e t e r m i n e d by c o n v e n t i o n a l i s o t o p i c d i l u t i o n methods (Harre
e t a l . , 1968)., Sr on a MAT-261 mass s p e c t r o m e t e r using a double c o l l e c t o r , Rb on a VG=Micromass MM 30 spectometer.
R e p l i c a t e s on the NBS
607 standard and on samples lead to i n t r a l a b o r a t o r y standard d e v i a t i o n s
of I% and 0.03% f o r the 87Rb/86Sr and 87Sr/86Sr r a t i o s , r e s p e c t i v e l y .
In parentheses e r r o r s at 68% confidence o f i n t r a l a b o r a t o r y p r e c i s i o n .
IUGS-recommended c o n s t a n t s ( S t e i g e r and J~ger, 1977).
50
S. Nasir et al.
0
10
20
50
40
....
1.10
50
60
. . . . . . . . . . . . . . . .
X
=
1.4-2 x 1
0
-
~
~
f
1.00
c~
CO
03
b,CO
0.90
/~o
date = 439~ 15 Ma
../"
0.80
IR : 027048 ~ 0.0026
J
MSWD = 4.9
7°:: .....
0.70
0.75
i,,I,r,,' ......... '',rl,,''''
. . . . . . . . . ' . . . . . . . . . '',,r,11,
@419
rl
133
o 0.72
1237I
I425
"5
o.71
422 ¢
oO
p-,
CO.
0.70
t ......................................................
0
10
20
30
87Rb/86Sr
40
50
12,t
60
Fig. 6. Isochron plots of the
Rb-Sr analyses. Upper part:
Conventional Nicolaysen (1961)
diagram. The regression line is
defined by the 11 analyses of
Table 3 (crosses); the analyses
of Lippolt (1986) are given for
comparison (open circles).
Lower part: Extended-scale
presentation by subtracting the
gain of radiogenic Sr since 414
Ma, the date originally derived
by Lippolt (1986) from his five
anlyses represented by open
circles. Consequently, the 414
Ma regression line is horizontal
in this plot (dashed line). Error
bars in this plot represent 4-1
standard errors
ing to the criterion of Wen& (1989) and Wen& and Carl (in press), with nine
degrees of freedom one expected a M S W D in the range of 1 _+ 2x/2/(11 - 2), i.e.
M S W D ~ 1 _+ 0.9.
This means that
- the rocks are derived from different batches of granitic m a g m a which intruded
roughly at the same time and/or
the Sr isotopes were not homogenized in the granitic m a g m a and/or
- the rocks did not behave as closed systems to Rb and Sr during Variscan
metamorphism.
-
The first possibility seemed to be indicated by the wide range of Rb/Sr ratios
mentioned above which cluster in three different intervals. However, a significant
scatter is observed in all three groups: If we regress only the 7 samples of the group
with low Rb/Sr ratios, we end up with a similar date (439 +_ 40 Ma, IR 0.705 _+ 0.006)
and an M S W D of 5.6. The same holds true, if we include the two samples with
m e d i u m Rb/Sr ratios. Moreover, it should be noted that the wide spread in the
Rb/Sr ratios is mainly due to a variation in the Sr, rather than the Rb contents
Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise
51
(Table 3). This may suggest a postmagmatic, e.g. metamorphic Sr loss, according to
the third possibility. In the latter case, the date of 440 Ma would be a mininum
estimate of the intrusion age, as one often observes losses radiogenic Sr roughly
proportional to the Rb/Sr ratio, leading to "rotated isochrons" (e.g. Wendt et al.,
1970).
Discussion
The oldest radiometric records so far available in the Spessart Crystalline Complex
are the Rb-Sr whole-rock dates for the orthogneisses of the Rotgneiss complex.
Despite the uncertainties resulting from the wide scatter of the data points around
the regression line in the Nicolaysen diagram, an Ordovician to Silurian intrusion
age of the granitic protolith can be inferred.
According to their chemical characteristics the orthogneisses are derived from
S-type granitoids, although the IR of 0.705 is remarkably low. The trace element
characteristics are consistent with an emplacement into a post-collision geotectonic
environment (Okrusch and Richter, 1986) according to the systematics evaluated by
Pearce et al. (1984). This would conform to a phase of extensional tectonics at the
end of the Caledonian orogeny (Weber, 1984). In the simplified, H 2 0 saturated
granite system Qz-Or-Ab(-An) the data points plot close together in the vicinity of
the melting minimum at low water vapour pressures ( < 1 kbar) indicating that the
precursor granitoids intruded into a relatively shallow level, probably less than
4 km (Okrusch and Richter, 1986).
Judging from the paleontological evidence recorded by Reitz (1987), part of the
Geiselbach formation is of Silurian age whereas the underlying M6mbris formation
is regarded as Cambro-Ordovician as inferred from lithostratigraphic correlations
(Matthes, 1954; Bederke, 1957; Hirschmann and Okrusch, 1988). Hence sedimentation was still going on while the granite magma was being intruded in deeper
levels of the M6mbris-Geiselbach sediment pile. If we assume a normal stratigraphic
succession, the cover of the granitoids, consisting of the M/Smbris, and part of the
Geiselbach formation, amounts to roughly 3 km (Hirschmann and Okrusch, 1988).
Allowing for a reduction of the initial bed thickness by tectonic strain, this value
should be increased approximately by a factor of 2, but still compares well with the
shallow level of intrusion estimated on the basis of petrological criteria.
The volcanic protoliths of the metabasites in the belt of Aschaffenburg-FeldkahlRottenberg, presumbably intruded or ejected after the intrusion of granitoids, reveal
a calc-alkaline affinity (Hesselmann, 1982; Nasir, 1986; Nasir and Okrusch, in prep.)
This would testify to an island-arc geotectonic environment as a result of renewed
compressional tectonics at the beginning of the Variscan Orogeny (Weber, 1984).
During the Variscan orogenetic processes, the Proterozoic and Lower-Paleozoic
volcano-sedimentary sequence, the Silurian/Devonian granitoids, and the later
calc-alkaline volcanites were metamorphosed at temperatures of about 600 °C and
pressures of about 6 kbar (Okruseh, 1983, 1990) corresponding to a burial at a depth
of about 20 k m . The K-Ar dates presented in Table 2 and by Lippolt (1986, Table
6) are related to the geologic history which started at or after the peak of the Variscan
metamorphism and the syn- to posttectonic pegmatite emplacement. The dates
show no systematic differences, neither for the three minerals, nor for the rock types,
nor for the lithostratigraphic units. Considering this fact and maintaining the
52
S. Nasir et al.
conventional estimates for the closing temperatures of the K-Ar systems, i.e. about
500 °C for hornblende, about 350 °C for muscovite, and about 300 °C for biotite (e.g.
Hart, 1964, Gerlin9 et al., 1965; Purdy and Jiiger, 1976; Dodson, 1973), our dates
suggest a rapid uplift and cooling, from 500 to 300 °C, of the Spessart Crystalline
Complex. The age of uplift would be 327 +__2 Ma if we rely on the two hornblendes
and the single muscovite with the oldest dates, or 321 + 1 Ma using the 11 hornblendes, muscovites and biotites of the main group. The 5 mica dates of Lippolt
(1986) average to a similar date of 320 Ma. According to the Carboniferous timescale of Hess and Lippolt (1986, Fig. 4) the cooling took place at the Dinantian/
Namurian boundary or in the Namurian A. The two hornblendes and the single
muscovite with the oldest dates averaging at 327 _ 2 Ma may be relics of an earlier
stage in the metamorphic history.
The assumed closing temperatures of hornblende, muscovite, and biotite are
within the range of the greenschist facies. Therefore, one could assume that the age
of about 320 Ma refers to the retrogressive overprint under greenschist-facies
conditions which affected parts of the Spessart Crystalline Complex (Matthes, 1954).
However, the dated minerals are virtually unaffected by retrograde alteration.
Experience in polymetamorphic areas, (e.g. in the Tauern Window: Raith et al.,
1978 ) shows that hornblendes are not completely reset by a metamorphic overprint,
even under amphibolite facies conditions, unless the metamorphic assemblage has
been fully re-equilibrated, especially under the influence of deformation. We therefore assume that our dates are closely related to the culmination of the amphibolite
facies metamorphism which, as a consequence, would belong to the Sudetic phase
of the Variscan orogeny.
Nearly the same cooling age is indicated for the adjacent parts of the MidGerman Crystalline Rise, namely for the B611stein Odenwald in the south-west
(Lippolt, 1986) and for the hidden basement of the Rh6n Volcanic Complex in the
north-east (Schmidt et al., 1986). This age is also well established in the Saxothuringian of the Fichtelgebirge and the Moldanubian realm immediately to the south
(e.g. Kreuzer et al., 1989). In contrast, the northern Bergstr/isser Odenwald, further
to the south-west, yielded early Carboniferous hornblende dates around 342 Ma
(Kreuzer and Harre, 1975, recalculated; Hellmann et al, 1982: Rittmann, 1984). Moreover, critical assemblages and migmatite phenomena in the Bergstr/isser Odenwald
testify to metamorphic peak conditions differing from those in the Spessart crystalline complex, i.e. lower pressures of about 3 kbar and higher temperatures up
to 700 °C (e.g. Okrusch, 1990). These differences indicate a diverging metamorphic
history for different parts of the Mid-German Crystalline Rise.
Acknowledgements
Hans Joachim Lippolt (Heidelberg) kindly provided us with some of his samples for reanalysis; his altruistic cooperation is highly appreciated. We want to thank Onno Oncken
(Wiirzburg) and John Richards (Canberra) for critical reading of the manuscript and valuable
suggestions. S.N. is indebted to the Deutscher Akademischer Austauschdienst (Bonn) for
financial support and to the Bundesanstalt fiir Geowissenschaften und Rohstoffe (Hannover)
for use of their facilities. We thank Horst Klappert, Margot Metz, Lutz 7hieflwald and Detlef
Uebersohn (Hannover) for technical assistence with the K-Ar analyses and Klaus-Peter
Kelber (Wtirzburg) for part of the line drawings.
Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise
53
References
Bederke E (1957) Alter und Metamorphose des kristallinen Grundgebirges im Spessart. Abh
hess L-Amt Bodenforsch 18: 7-19, Wiesbaden
Behr H-J, Engel W, Franke W, Giese P, Weber K (1984) The Variscan Belt in Central Europe:
main structures, geodynamic implications, open questions. Tectonophysics 109:15-40
Heinriehs T (1987) Geological interpretation of DEKORP 2-S: A deep seismic reflection
profile across the Saxothuringian and possible implications for the Late Variscan structural evolution of Central Europe. Tectonophysics 142:173-202
Braitseh 0 (1957a) Beitrag zur Kenntnis der kristallinen Gesteine des sfidlichen Spessarts
und ihrer geologisch-tektonischen Geschichte. Abh hess L-Amt Bodenforsch 18: 21-72,
Wiesbaden
- - (1957b) Zur Petrographic und Tektonik des Biotitgneises im sfidlichen Vorspessart. Abh
hess L-Amt Bodenforsch 18: 73-99, Wiesbaden
Brandes T (1919) Die varistischen Zfige im geologischen Bau Mitteldeutschlands. N J Miner
Geol Palfiont BB 43:190-250
Brinkmann R (1948) Die mitteldeutsche Schwelle. Geol Rdsch 36:56-66
Brooks C, Hart S, Wen& I (1972) Realistic use of two-error regression treatments as applied
to Rubidium-Strontium data. Geophysics and Space 10:551-577
Biiekin 9 H (1892) Der nordwestliche Spessart. Abh K6nigl Preuss geolog Landesanstalt.
Neue Folge, Heft 12, 274 pp, Berlin
DEKORP RESEARCH GROUP (1985) First results and preliminary interpretation of
deep-reflection seismic recordings along Profile DEKORP 2-S. J Geophys 57:137-163
Dodson M (1973) Closure temperature in cooling geochronological and petrological systems.
Contrib Mineral Petrol 40:259-274
Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol
Soc Amer Spec Paper 230:67-89
Gabert G (1957) Zur Geologic und Tektonik des n6rdlichen kristallinen Vorspessarts.
Abh hess L-Amt Bodenforsch 18: 101-133, Wiesbaden
Gerlin9 EK, KoI'tsova TV, Petrov BV, Zul'fikerova Z K (1965) On the suitability of amphiboles for age determination by the K/Ar method. Geochemistry Intern 2:148-154
Giese P, Jfdicke H, Prodehl C, Weber K (1983) The crustal structure of the Hercynian
mountain system--A model for crustal thickening by stacking. In: Martin H, Eder F W
(eds) Intracontinental Fold Belts. Springer, Berlin Heidelberg New York Tokyo,
pp 405-426
Harre W, Lenz H, Miiller G, Wen&, I (1964) Untersuchungen zur Altersbestimmung
von Gesteinen nach der Rubidium/Strontium-Methode. Ber d Bundesanst Bodenforsch
Hannover, 139 pp
Hart SR (1964) The petrology and isotopic mineral-age relations of a contact zone in the
Front Range, Colorado. J Geol 72:493-523
Heinrichs T (1986) Structure and development of the Saxothuringian zone. Third EGT
Workshop, Bad Honnef, 14-16 April 1986, Proceedings, pp 135-140, Strasbourg
Hellmann KN, Lippolt H J, Todt W (1982) Interpretation der Kalium-Argon-Alter
eines Odenw/ilder Granodioritporphyrganges und seiner Nebengesteine. Aufschlul3 33:
155-164
Hess JC, Lippolt HJ (1986) 4°Ar/a9Ar ages of tonstein and tuff sanidines: New calibration
point for the improvement of the upper Carboniferous time scale. Chemical Geology
(Isotop Geosci Sect) 59:143-154
Hesselmann H (1982) Petrographische und geochemische Untersuchungen an Gesteinen aus
dem mittleren Vorspessart. Unpubl Dipl Arbeit, Miner-Petrogr Inst TU Braunschweig,
97 pp
Hirsehmann G, Okruseh M (1988) Spessart-Kristallin und Ruhlaer Kristallin als Bestandteile
der Mitteldeutschen Kristallinzone--ein Vergleich. N J Geol Pal/iont Abh 177:1-39
-
-
54
S. Nasir et al.
Klemm G (1895) Beitr~ige zur Kennthnis des krystallinen Grundgebirges im Spessart mit
besonderer Ber/icksichtigung der genetischen Verh/iltnisse. Abh Grossherzogl hess geol
L-Anst 177: 165-257, Darmstadt
Kreuzer H, Harre W (1975) K/Ar-Altersbestimmungen an Hornblenden und Biotiten des
Kristallinen Odenwaldes. In: Amstutz GC, Meisl S, Nickel E (Ed) Mineralien und
Gesteine im Odenwald. AufschluB, Sonderband 27 (Odenwald): 71-77
- - Lenz H, Harre W, Matthes S, Okrusch M, Richter P (1973) Zur Altersstellung der
Rotgneise im Spessart, Rb/Sr-Gesamt gesteinsdatierungen. Geol Jb A9:69-88
- - Seidel E, Schfissler U, Okrusch M, Lenz K-L, Raschka H (1989) K-Ar geochronology of
different tectonic units at the northwestern margin of the Bohemian Massif. Tectonophysics 157:149-178
Leake BE (1978) Nomenclature of amphiboles. Amer Mineral 63: 1023-1052.
Lippolt H J (1986) Nachweis altpal/iozoischer Prim/Jr-Alter (Rb-Sr) und karbonischer Abk/ihlungsalter (K-Ar) der Muskovit-Biotit-Gneise des Spessart und der Biotit-Gneise des
B611steiner Odenwald. Geol Rdsch 75:569-583
Matthes S (1954) Die Para-Gneise im mittleren kristallinen Vor-Spessart und ihre Metamorphose. Abh hess L-Amt Bodenforsch 8: 1-86, Wiesbaden
Okrusch M (1965) Petrographische Untersuchung der Rotgneise im Spessart. Geologie 14:
1148-1200, Berlin
- - (1977) The Spessart crystalline complex, North-West Bavaria: rock series, metamorphism and position within the Central German crystalline rise. In: La chaine varisque
d'Europe moyenne et occidentale. Coil Intern CNRS, Rennes, 243:375-390
Nasir S (1986) Die Metabasite im mittleren kristallinen Vorspessart: Petrographie--Geochemie--Phasenpetrologie. Dr rer nat thesis Univ W/irzburg, 191 pp
Okrusch M (submitted) Metabasites from the central Vor-Spessart, North-West Bavaria.
Part 1. Geochemistry. Submitted to N Jb Min Abh
Nicolaysen LO (1961) Graphic interpretation of discordant age measurements on metamorphic rocks. Anal New York Acad Sci 91:198-206
Odin GS (1982) Interlaboratory standards for dating purposes. In: Odin G S (ed) Numerical
dating in stratigraphy. Wiley, New York, pp 123-150
Okrusch M (1963) Bestandsaufnahme und Deutung dioritartiger Gesteine im s/idlichen
Vorspessart. Ein Beitrag zum Dioritproblem. Geologica Bavarica 51: 4-107, M/inchen
- - (1983) The Spessart Crystalline Complex, Northwest Bavaria.--DMG SFMC Joint
Meeting. Excursion E 4. Fortschr Mineral 61, Beiheft 2:135-169
(1990) Metamorphism in the Odenwald and Spessart crystalline mountains (Mid-German
Crystalline Rise). In: Franke W (ed) Mid-German Crystalline Rise & Rheinisches Schiefergebirge. IGCP 233, Terranes in the Circum-Atlantic Paleozoic Orogens, Conference
on Paleozoic Orogens in Central Europe, G6ttingen-Giessen 1990. Field Guide to
Pre-Conference Excursion, pp 81-91
- - Richter P (1967) Petrographische, geochemische und mineralogische Untersuchungen
zum Problem der Granitoide im mittleren Spessart-Kristallin. N J Min Abh 107:21-73
- - (1986) Orthogneisses of the Spessart crystalline complex, North-west Bavaria: Indicators of the geotectonic environment? Geol Rdsch 75:555-568
- - Streit R, Weinelt Wi (1967) Erl/iuterungen zur geologischen Karte von Bayern 1 : 25 000,
Blatt 5920, Alzenau i Ufr, 336 pp, Miinchen
Weinelt Wi (1965) Erl~iuterungen zur geologischen Karte von Bayern 1 : 25 000, Blatt
5921 Schrllkrippen, 327 pp, M/inchen
Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination for the tectonic
interpretation of granitic rocks. J Petrol 25:956-983
Purdy JW, Jgtger E (1976) K-Ar ages on rock-forming minerals from the Central Alps. Mem
Inst Geol Mineral Univ Padova, 30, 31 pp
-
-
-
-
-
-
-
-
-
-
-
-
Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise
55
Raith M, Raase P, Kreuzer H, Miiller P (1978) The age of the Alpidic metamorphism in the
Western Tauern Window, according to radiometric dating. In: Closs H, Roeder D,
Schmidt K (eds) Alps, Apennines, Hellenides. Inter-Union Comm Geodynamics, Sei Rep
38: 140-148. Schweizerbart, Stuttgart
Reitz E (1987) Palynologie in metamorph6n Serien: I Silurische Sporen aus einem granatfiJhrenden Glimmerschiefer des Vor-Spessart. N J Geol Pal Monatsh 1987:699-704
Rittmann KL (1984) Argon in Hornblende, Biotit und Muskovit bei der geologischen
Abkiihlung--4°Ar/39Ar-Untersuchungen. Dr rer nat thesis Univ Heidelberg, 278 pp
Schmidt F-P, Gebreyohannes Y, Sehliestedt M (1986) Das Grundgebirge der Rh6n. Z dtsch
geol Ges 137:287-300
Seholtz H (1930) Das varistische Bewegungsbild. Fortschr Geol Pal 8, 25: 235-316, Berlin
Smoler M (1987) Petrographische, geochemische und phasenpetrologische Untersuchungen
an Metasedimenten des NW Spessart/Bayern. Dr rer nat thesis Univ Wfirzburg, 256 pp
Steiger RH, Jiioer E (1977) Subcommission on geochronology. Convention and the use of
decay constants in geo- and cosmochronology. Earth Planet Sci Letters 36:359-362
Streit R, Weinelt Wi (1971) Edfiuterungen zur geologischen Karte von Bayern 1:25 000,
Blatt 6020 Aschaffenburg, 398 pp, Miinchen
Th~rach H (1893) Ober die Gliederung des Urgebirges im Spessart. Geognost Jahresh 5,
1892: 1-160, Cassel
Weber K (1984) Variscan events: Early Palaeozoic continental rift metamorphism and late
Palaeozoic crustal shortening. In: Hutton DH, Sanderson DJ (eds) Variscan tectonics
of the North Atlantic region. Geol Soc London Blackwell Scientific Publications,
pp 3-22
Behr HJ (1983) Geodynamic interpretation of the mid-European Variscides. In:
Martin H, Eder W (Eds) Intracontinental fold belts. Springer, New York, pp 427-472
Wendt I (1989) Comparative Rb-Sr and U-Pb geochronology of late- to post-tectonic
plutons in the Winning River belt, northwestern Ontario, Canada--Comments. Chemical Geology (Isotope Geosci Sect ) 79:95
- - Lenz H, Harre W, Sehoell M (1970) Total rock and mineral ages of granites from the
southern Schwarzwald, Germany. Eclogae geologicae Helv 63:365--370
Carl C (in press) The statistical distribution of the Mean Squared Weighted Deviation.
Isotope Geosciences
Weinel Wi (1962) Erl~uterungen zur Geologischen Karte von Bayern 1 : 25 000, Blatt 6021,
Haibach, 246 pp, Mfinchen
-
-
-
-
Authors' addresses: Dr. S. Nasir, Institute of Earth and Environmental Science, University
of Yarmuk, Irbid, Jordan, Prof. Dr. M. Okrusch, Mineralogisches Institut der Universtfit
Wiirzburg, Am Hubland, D-W-8700 W/irzburg, Federal Republic of Germany, Dr. H.
Kreuzer and Dr. A. H6hndorf, Bundesanstalt f/Jr Geowissenschaften und Rohstoffe, Postfach
510153, D-W-3000 Hannover 51, Federal Republic of Germany.