SOLUTION MANUAL
608070 _ISM_ThomasCalc_WeirHass_ttl.qxd:harsh_569709_ttl
9/3/09
3:11 PM
Page 1
INSTRUCTOR’S
SOLUTIONS MANUAL
SINGLE VARIABLE
Collin County Community College
WILLIAM ARDIS
THOMAS’ CALCULUS
TWELFTH EDITION
BASED ON THE ORIGINAL WORK BY
George B. Thomas, Jr.
Massachusetts Institute of Technology
AS
REVISED BY
Maurice D. Weir
Naval Postgraduate School
Joel Hass
University of California, Davis
608070 _ISM_ThomasCalc_WeirHass_ttl.qxd:harsh_569709_ttl
9/3/09
3:11 PM
Page 2
This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these
restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.
The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard
to these programs or the documentation contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.
Reproduced by Pearson Addison-Wesley from electronic files supplied by the author.
Copyright © 2010, 2005, 2001 Pearson Education, Inc.
Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America.
ISBN-13: 978-0-321-60807-9
ISBN-10: 0-321-60807-0
1 2 3 4 5 6 BB 12 11 10 09
PREFACE TO THE INSTRUCTOR
This Instructor's Solutions Manual contains the solutions to every exercise in the 12th Edition of THOMAS' CALCULUS
by Maurice Weir and Joel Hass, including the Computer Algebra System (CAS) exercises. The corresponding Student's
Solutions Manual omits the solutions to the even-numbered exercises as well as the solutions to the CAS exercises (because
the CAS command templates would give them all away).
In addition to including the solutions to all of the new exercises in this edition of Thomas, we have carefully revised or
rewritten every solution which appeared in previous solutions manuals to ensure that each solution
ì conforms exactly to the methods, procedures and steps presented in the text
ì is mathematically correct
ì includes all of the steps necessary so a typical calculus student can follow the logical argument and algebra
ì includes a graph or figure whenever called for by the exercise, or if needed to help with the explanation
ì is formatted in an appropriate style to aid in its understanding
Every CAS exercise is solved in both the MAPLE and MATHEMATICA computer algebra systems. A template showing
an example of the CAS commands needed to execute the solution is provided for each exercise type. Similar exercises within
the text grouping require a change only in the input function or other numerical input parameters associated with the problem
(such as the interval endpoints or the number of iterations).
For more information about other resources available with Thomas' Calculus, visit http://pearsonhighered.com.
TABLE OF CONTENTS
1 Functions 1
1.1
1.2
1.3
1.4
Functions and Their Graphs 1
Combining Functions; Shifting and Scaling Graphs 8
Trigonometric Functions 19
Graphing with Calculators and Computers 26
Practice Exercises 30
Additional and Advanced Exercises 38
2 Limits and Continuity 43
2.1
2.2
2.3
2.4
2.5
2.6
Rates of Change and Tangents to Curves 43
Limit of a Function and Limit Laws 46
The Precise Definition of a Limit 55
One-Sided Limits 63
Continuity 67
Limits Involving Infinity; Asymptotes of Graphs 73
Practice Exercises 82
Additional and Advanced Exercises 86
3 Differentiation 93
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
Tangents and the Derivative at a Point 93
The Derivative as a Function 99
Differentiation Rules 109
The Derivative as a Rate of Change 114
Derivatives of Trigonometric Functions 120
The Chain Rule 127
Implicit Differentiation 135
Related Rates 142
Linearizations and Differentials 146
Practice Exercises 151
Additional and Advanced Exercises 162
4 Applications of Derivatives 167
4.1
4.2
4.3
4.4
4.5
4.6
4.7
Extreme Values of Functions 167
The Mean Value Theorem 179
Monotonic Functions and the First Derivative Test 188
Concavity and Curve Sketching 196
Applied Optimization 216
Newton's Method 229
Antiderivatives 233
Practice Exercises 239
Additional and Advanced Exercises 251
5 Integration 257
5.1
5.2
5.3
5.4
5.5
5.6
Area and Estimating with Finite Sums 257
Sigma Notation and Limits of Finite Sums 262
The Definite Integral 268
The Fundamental Theorem of Calculus 282
Indefinite Integrals and the Substitution Rule 290
Substitution and Area Between Curves 296
Practice Exercises 310
Additional and Advanced Exercises 320
6 Applications of Definite Integrals 327
6.1
6.2
6.3
6.4
6.5
6.6
Volumes Using Cross-Sections 327
Volumes Using Cylindrical Shells 337
Arc Lengths 347
Areas of Surfaces of Revolution 353
Work and Fluid Forces 358
Moments and Centers of Mass 365
Practice Exercises 376
Additional and Advanced Exercises 384
7 Transcendental Functions 389
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
Inverse Functions and Their Derivatives 389
Natural Logarithms 396
Exponential Functions 403
Exponential Change and Separable Differential Equations 414
^
Indeterminate Forms and L'Hopital's
Rule 418
Inverse Trigonometric Functions 425
Hyperbolic Functions 436
Relative Rates of Growth 443
Practice Exercises 447
Additional and Advanced Exercises 458
8 Techniques of Integration 461
8.1
8.2
8.3
8.4
8.5
8.6
8.7
Integration by Parts 461
Trigonometric Integrals 471
Trigonometric Substitutions 478
Integration of Rational Functions by Partial Fractions 484
Integral Tables and Computer Algebra Systems 491
Numerical Integration 502
Improper Integrals 510
Practice Exercises 518
Additional and Advanced Exercises 528
9 First-Order Differential Equations 537
9.1
9.2
9.3
9.4
9.5
Solutions, Slope Fields and Euler's Method 537
First-Order Linear Equations 543
Applications 546
Graphical Solutions of Autonomous Equations 549
Systems of Equations and Phase Planes 557
Practice Exercises 562
Additional and Advanced Exercises 567
10 Infinite Sequences and Series 569
10.1 Sequences 569
10.2 Infinite Series 577
10.3 The Integral Test 583
10.4 Comparison Tests 590
10.5 The Ratio and Root Tests 597
10.6 Alternating Series, Absolute and Conditional Convergence 602
10.7 Power Series 608
10.8 Taylor and Maclaurin Series 617
10.9 Convergence of Taylor Series 621
10.10 The Binomial Series and Applications of Taylor Series 627
Practice Exercises 634
Additional and Advanced Exercises 642
TABLE OF CONTENTS
10 Infinite Sequences and Series 569
10.1 Sequences 569
10.2 Infinite Series 577
10.3 The Integral Test 583
10.4 Comparison Tests 590
10.5 The Ratio and Root Tests 597
10.6 Alternating Series, Absolute and Conditional Convergence 602
10.7 Power Series 608
10.8 Taylor and Maclaurin Series 617
10.9 Convergence of Taylor Series 621
10.10 The Binomial Series and Applications of Taylor Series 627
Practice Exercises 634
Additional and Advanced Exercises 642
11 Parametric Equations and Polar Coordinates 647
11.1
11.2
11.3
11.4
11.5
11.6
11.7
Parametrizations of Plane Curves 647
Calculus with Parametric Curves 654
Polar Coordinates 662
Graphing in Polar Coordinates 667
Areas and Lengths in Polar Coordinates 674
Conic Sections 679
Conics in Polar Coordinates 689
Practice Exercises 699
Additional and Advanced Exercises 709
12 Vectors and the Geometry of Space 715
12.1
12.2
12.3
12.4
12.5
12.6
Three-Dimensional Coordinate Systems 715
Vectors 718
The Dot Product 723
The Cross Product 728
Lines and Planes in Space 734
Cylinders and Quadric Surfaces 741
Practice Exercises 746
Additional Exercises 754
13 Vector-Valued Functions and Motion in Space 759
13.1
13.2
13.3
13.4
13.5
13.6
Curves in Space and Their Tangents 759
Integrals of Vector Functions; Projectile Motion 764
Arc Length in Space 770
Curvature and Normal Vectors of a Curve 773
Tangential and Normal Components of Acceleration 778
Velocity and Acceleration in Polar Coordinates 784
Practice Exercises 785
Additional Exercises 791
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
14 Partial Derivatives 795
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
Functions of Several Variables 795
Limits and Continuity in Higher Dimensions 804
Partial Derivatives 810
The Chain Rule 816
Directional Derivatives and Gradient Vectors 824
Tangent Planes and Differentials 829
Extreme Values and Saddle Points 836
Lagrange Multipliers 849
Taylor's Formula for Two Variables 857
Partial Derivatives with Constrained Variables 859
Practice Exercises 862
Additional Exercises 876
15 Multiple Integrals 881
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
Double and Iterated Integrals over Rectangles 881
Double Integrals over General Regions 882
Area by Double Integration 896
Double Integrals in Polar Form 900
Triple Integrals in Rectangular Coordinates 904
Moments and Centers of Mass 909
Triple Integrals in Cylindrical and Spherical Coordinates 914
Substitutions in Multiple Integrals 922
Practice Exercises 927
Additional Exercises 933
16 Integration in Vector Fields 939
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
Line Integrals 939
Vector Fields and Line Integrals; Work, Circulation, and Flux 944
Path Independence, Potential Functions, and Conservative Fields 952
Green's Theorem in the Plane 957
Surfaces and Area 963
Surface Integrals 972
Stokes's Theorem 980
The Divergence Theorem and a Unified Theory 984
Practice Exercises 989
Additional Exercises 997
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
CHAPTER 1 FUNCTIONS
1.1 FUNCTIONS AND THEIR GRAPHS
1. domain œ (_ß _); range œ [1ß _)
2. domain œ [0ß _); range œ (_ß 1]
3. domain œ Ò2ß _); y in range and y œ È5x 10
! Ê y can be any positive real number Ê range œ Ò!ß _).
4. domain œ (_ß 0Ó Ò3, _); y in range and y œ Èx2 3x
5. domain œ (_ß 3Ñ Ð3, _); y in range and y œ
Ê3 t!Ê
4
3t
4
3t,
! Ê y can be any positive real number Ê range œ Ò!ß _).
now if t 3 Ê 3 t ! Ê
4
3t
!, or if t 3
! Ê y can be any nonzero real number Ê range œ Ð_ß 0Ñ Ð!ß _).
6. domain œ (_ß %Ñ Ð4, 4Ñ Ð4, _); y in range and y œ
2
% t 4 Ê 16 Ÿ t 16 ! Ê
nonzero real number Ê range œ Ð_ß
#
"'
18 Ó
Ÿ
2
t2 16
2
t2 16 ,
2
t2 16
now if t % Ê t2 16 ! Ê
2
!, or if t % Ê t 16 ! Ê
2
t2 16
!, or if
! Ê y can be any
Ð!ß _).
7. (a) Not the graph of a function of x since it fails the vertical line test.
(b) Is the graph of a function of x since any vertical line intersects the graph at most once.
8. (a) Not the graph of a function of x since it fails the vertical line test.
(b) Not the graph of a function of x since it fails the vertical line test.
#
9. base œ x; (height)# ˆ #x ‰ œ x# Ê height œ
È3
#
x; area is a(x) œ
"
#
(base)(height) œ
"
#
(x) Š
È3
# x‹
œ
È3
4
x# ;
perimeter is p(x) œ x x x œ 3x.
10. s œ side length Ê s# s# œ d# Ê s œ
d
È2
; and area is a œ s# Ê a œ
"
#
d#
11. Let D œ diagonal length of a face of the cube and j œ the length of an edge. Then j# D# œ d# and
D# œ 2j# Ê 3j# œ d# Ê j œ
d
È3
. The surface area is 6j# œ
6d#
3
12. The coordinates of P are ˆxß Èx‰ so the slope of the line joining P to the origin is m œ
ˆx, Èx‰ œ ˆ m"# ,
#
œ 2d# and the volume is j$ œ Š d3 ‹
Èx
x
œ
"
Èx
$Î#
œ
(x 0). Thus,
"‰
m .
13. 2x 4y œ 5 Ê y œ "# x 54 ; L œ ÈÐx 0Ñ2 Ðy 0Ñ2 œ Éx2 Ð "# x 54 Ñ2 œ Éx2 4" x2 54 x
œ É 54 x2 54 x
25
16
œ É 20x
2
20x 25
16
œ
È20x2 20x 25
4
14. y œ Èx 3 Ê y2 3 œ x; L œ ÈÐx 4Ñ2 Ðy 0Ñ2 œ ÈÐy2 3 4Ñ2 y2 œ ÈÐy2 1Ñ2 y2
œ Èy4 2y2 1 y2 œ Èy4 y2 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
d$
3È 3
25
16
.
2
Chapter 1 Functions
15. The domain is a_ß _b.
16. The domain is a_ß _b.
17. The domain is a_ß _b.
18. The domain is Ð_ß !Ó.
19. The domain is a_ß !b a!ß _b.
20. The domain is a_ß !b a!ß _b.
21. The domain is a_ß 5b Ð5ß 3Ó Ò3, 5Ñ a5, _b 22. The range is Ò2, 3Ñ.
23. Neither graph passes the vertical line test
(a)
(b)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.1 Functions and Their Graphs
24. Neither graph passes the vertical line test
(a)
(b)
Ú xyœ" Þ
Ú yœ1x Þ
or
or
kx yk œ 1 Í Û
Í Û
ß
ß
Ü x y œ " à
Ü y œ " x à
25.
x
y
0
0
1
1
27. Faxb œ œ
2
0
26.
x
y
0
1
1
0
2
0
"
, x0
28. Gaxb œ œ x
x, 0 Ÿ x
4 x2 , x Ÿ 1
x2 2x, x 1
29. (a) Line through a!ß !b and a"ß "b: y œ x; Line through a"ß "b and a#ß !b: y œ x 2
x, 0 Ÿ x Ÿ 1
f(x) œ œ
x 2, 1 x Ÿ 2
Ú
Ý 2, ! Ÿ x "
Ý
!ß " Ÿ x #
(b) f(x) œ Û
Ý
Ý 2ß # Ÿ x $
Ü !ß $ Ÿ x Ÿ %
30. (a) Line through a!ß 2b and a#ß !b: y œ x 2
"
Line through a2ß "b and a&ß !b: m œ !&
# œ
x #, 0 x Ÿ #
f(x) œ œ "
$ x &$ , # x Ÿ &
f(x) œ œ
œ "$ , so y œ "$ ax 2b " œ "$ x
$ !
! Ð"Ñ œ
" $
%
#! œ #
(b) Line through a"ß !b and a!ß $b: m œ
Line through a!ß $b and a#ß "b: m œ
"
$
&
$
$, so y œ $x $
œ #, so y œ #x $
$x $, " x Ÿ !
#x $, ! x Ÿ #
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
3
4
Chapter 1 Functions
31. (a) Line through a"ß "b and a!ß !b: y œ x
Line through a!ß "b and a"ß "b: y œ "
Line through a"ß "b and a$ß !b: m œ !"
$" œ
Ú
x
" Ÿ x !
"
!xŸ"
f(x) œ Û
Ü "# x $#
"x$
"
#
(b) Line through a2ß 1b and a0ß 0b: y œ 12 x
Line through a0ß 2b and a1ß 0b: y œ 2x 2
Line through a1ß 1b and a3ß 1b: y œ 1
32. (a) Line through ˆ T# ß !‰ and aTß "b: m œ
faxb œ
(b)
"!
TaTÎ#b
œ "# , so y œ "# ax "b " œ "# x
Ú
1
2x
faxb œ Û 2x 2
Ü 1
$
#
2 Ÿ x Ÿ 0
0xŸ1
1xŸ3
œ T# , so y œ T# ˆx T# ‰ 0 œ T# x "
!, 0 Ÿ x Ÿ T#
#
T
T x ", # x Ÿ T
Ú
A,
Ý
Ý
Ý
Aß
faxb œ Û
Aß
Ý
Ý
Ý
Ü Aß
! Ÿ x T#
T
# Ÿx T
T Ÿ x $#T
$T
# Ÿ x Ÿ #T
33. (a) ÚxÛ œ 0 for x − [0ß 1)
(b) ÜxÝ œ 0 for x − (1ß 0]
34. ÚxÛ œ ÜxÝ only when x is an integer.
35. For any real number x, n Ÿ x Ÿ n ", where n is an integer. Now: n Ÿ x Ÿ n " Ê Ðn "Ñ Ÿ x Ÿ n. By
definition: ÜxÝ œ n and ÚxÛ œ n Ê ÚxÛ œ n. So ÜxÝ œ ÚxÛ for all x − d .
36. To find f(x) you delete the decimal or
fractional portion of x, leaving only
the integer part.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.1 Functions and Their Graphs
37. Symmetric about the origin
Dec: _ x _
Inc: nowhere
38. Symmetric about the y-axis
Dec: _ x !
Inc: ! x _
39. Symmetric about the origin
Dec: nowhere
Inc: _ x !
!x_
40. Symmetric about the y-axis
Dec: ! x _
Inc: _ x !
41. Symmetric about the y-axis
Dec: _ x Ÿ !
Inc: ! x _
42. No symmetry
Dec: _ x Ÿ !
Inc: nowhere
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
5
6
Chapter 1 Functions
43. Symmetric about the origin
Dec: nowhere
Inc: _ x _
44. No symmetry
Dec: ! Ÿ x _
Inc: nowhere
45. No symmetry
Dec: ! Ÿ x _
Inc: nowhere
46. Symmetric about the y-axis
Dec: _ x Ÿ !
Inc: ! x _
47. Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the
function is even.
48. faxb œ x& œ
"
x&
and faxb œ axb& œ
"
a x b&
œ ˆ x"& ‰ œ faxb. Thus the function is odd.
49. Since faxb œ x# " œ axb# " œ faxb. The function is even.
50. Since Òfaxb œ x# xÓ Á Òfaxb œ axb# xÓ and Òfaxb œ x# xÓ Á Òfaxb œ axb# xÓ the function is neither even nor
odd.
51. Since gaxb œ x$ x, gaxb œ x$ x œ ax$ xb œ gaxb. So the function is odd.
52. gaxb œ x% $x# " œ axb% $axb# " œ gaxbß thus the function is even.
53. gaxb œ
"
x# "
54. gaxb œ
x
x# " ;
55. hatb œ
"
t ";
œ
"
axb# "
œ gaxb. Thus the function is even.
gaxb œ x#x" œ gaxb. So the function is odd.
hatb œ
"
t " ;
h at b œ
"
" t.
Since hatb Á hatb and hatb Á hatb, the function is neither even nor odd.
56. Since l t$ | œ l atb$ |, hatb œ hatb and the function is even.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.1 Functions and Their Graphs
57. hatb œ 2t ", hatb œ 2t ". So hatb Á hatb. hatb œ 2t ", so hatb Á hatb. The function is neither even nor
odd.
58. hatb œ 2l t l " and hatb œ 2l t l " œ 2l t l ". So hatb œ hatb and the function is even.
59. s œ kt Ê 25 œ kÐ75Ñ Ê k œ
"
3
Ê s œ 3" t; 60 œ 3" t Ê t œ 180
60. K œ c v# Ê 12960 œ ca18b2 Ê c œ 40 Ê K œ 40v# ; K œ 40a10b# œ 4000 joules
61. r œ
62. P œ
k
s
Ê6œ
k
v
k
4
Ê k œ 24 Ê r œ
Ê 14.7 œ
k
1000
24
s ;
10 œ
24
s
Ê k œ 14700 Ê P œ
Êsœ
14700
v ;
12
5
23.4 œ
14700
v
Êvœ
24500
39
¸ 628.2 in3
63. v œ f(x) œ xÐ"% 2xÑÐ22 2xÑ œ %x$ 72x# $!)x; ! x 7Þ
64. (a) Let h œ height of the triangle. Since the triangle is isosceles, AB # AB # œ 2# Ê AB œ È2Þ So,
#
h# "# œ ŠÈ2‹ Ê h œ " Ê B is at a!ß "b Ê slope of AB œ " Ê The equation of AB is
y œ f(x) œ x "; x − Ò!ß "Ó.
(b) AÐxÑ œ 2x y œ 2xÐx "Ñ œ 2x# #x; x − Ò!ß "Ó.
65. (a) Graph h because it is an even function and rises less rapidly than does Graph g.
(b) Graph f because it is an odd function.
(c) Graph g because it is an even function and rises more rapidly than does Graph h.
66. (a) Graph f because it is linear.
(b) Graph g because it contains a!ß "b.
(c) Graph h because it is a nonlinear odd function.
x
#
67. (a) From the graph,
(b)
x
#
1
x 0:
x
#
x 0:
x
2
4
x
1
Ê
4
x
x
#
1
4
x
Ê x − (2ß 0) (%ß _)
1 4x 0
#
2x8
0 Ê x 2x
0 Ê
(x4)(x2)
#x
0
(x4)(x2)
#x
0
Ê x 4 since x is positive;
1
4
x
0 Ê
x# 2x8
2x
0 Ê
Ê x 2 since x is negative;
sign of (x 4)(x 2)
ïïïïïðïïïïïðïïïïî
2
%
Solution interval: (#ß 0) (%ß _)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
7
8
Chapter 1 Functions
3
2
x 1 x 1
3
2
x 1 x 1
68. (a) From the graph,
(b) Case x 1:
Ê x − (_ß 5) (1ß 1)
Ê
3(x1)
x 1
2
Ê 3x 3 2x 2 Ê x 5.
Thus, x − (_ß 5) solves the inequality.
Case 1 x 1:
3
x 1
2
x 1
3(x1)
x 1
Ê
2
Ê 3x 3 2x 2 Ê x 5 which is true
if x 1. Thus, x − (1ß 1) solves the
inequality.
3
Case 1 x: x1 x2 1 Ê 3x 3 2x 2 Ê x 5
which is never true if 1 x, so no solution here.
In conclusion, x − (_ß 5) (1ß 1).
69. A curve symmetric about the x-axis will not pass the vertical line test because the points ax, yb and ax, yb lie on the same
vertical line. The graph of the function y œ faxb œ ! is the x-axis, a horizontal line for which there is a single y-value, !,
for any x.
70. price œ 40 5x, quantity œ 300 25x Ê Raxb œ a40 5xba300 25xb
71. x2 x2 œ h2 Ê x œ
h
È2
œ
È2 h
2 ;
cost œ 5a2xb 10h Ê Cahb œ 10Š
È2 h
2 ‹
10h œ 5hŠÈ2 2‹
72. (a) Note that 2 mi = 10,560 ft, so there are È800# x# feet of river cable at $180 per foot and a10,560 xb feet of land
cable at $100 per foot. The cost is Caxb œ 180È800# x# 100a10,560 xb.
(b) Ca!b œ $"ß #!!ß !!!
Ca&!!b ¸ $"ß "(&ß )"#
Ca"!!!b ¸ $"ß ")'ß &"#
Ca"&!!b ¸ $"ß #"#ß !!!
Ca#!!!b ¸ $"ß #%$ß ($#
Ca#&!!b ¸ $"ß #()ß %(*
Ca$!!!b ¸ $"ß $"%ß )(!
Values beyond this are all larger. It would appear that the least expensive location is less than 2000 feet from the
point P.
1.2 COMBINING FUNCTIONS; SHIFTING AND SCALING GRAPHS
1. Df : _ x _, Dg : x
2. Df : x 1
Rf œ Rg : y
0 Ê x
0, Rf g : y
1 Ê Df
g
1, Dg : x 1
È2, Rfg : y
œ Dfg : x
0 Ê x
1. Rf : _ y _, Rg : y
1. Therefore Df
g
œ Dfg : x
0, Rf g : y
1, Rfg : y
1.
0
3. Df : _ x _, Dg : _ x _, DfÎg : _ x _, DgÎf : _ x _, Rf : y œ 2, Rg : y
RfÎg : 0 y Ÿ 2, RgÎf : "# Ÿ y _
4. Df : _ x _, Dg : x
0 , DfÎg : x
5. (a) 2
(d) (x 5)# 3 œ x# 10x 22
(g) x 10
0
0, DgÎf : x
0; Rf : y œ 1, Rg : y
(b) 22
(e) 5
(h) (x# 3)# 3 œ x% 6x# 6
1,
1, RfÎg : 0 y Ÿ 1, RgÎf : 1 Ÿ y _
(c) x# 2
(f) 2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs
6. (a) "3
(d)
(b) 2
"
x
(c)
(e) 0
(g) x 2
(h)
(f)
"
"
x 1 1
œ
x
x
"
#
1
x"
x#
œ
"
x 1
3
4
1œ
x
x1
7. af‰g‰hbaxb œ fagahaxbbb œ faga4 xbb œ fa3a4 xbb œ fa12 3xb œ a12 3xb 1 œ 13 3x
8. af‰g‰hbaxb œ fagahaxbbb œ fagax2 bb œ fa2ax2 b 1b œ fa2x2 1b œ 3a2x2 1b 4 œ 6x2 1
9. af‰g‰hbaxb œ fagahaxbbb œ fˆgˆ 1x ‰‰ œ fŠ 1 1 % ‹ œ fˆ 1 x 4x ‰ œ É 1 x 4x " œ É 15x4x"
x
2
10. af‰g‰hbaxb œ fagahaxbbb œ fŠgŠÈ2 x‹‹ œ f
ŠÈ2 x‹
2
ŠÈ2 x‹
œ fˆ $ x ‰ œ
1
2x
2 x
$ x 2
3 $2 xx
8 3x
7 2x
œ
11. (a) af‰gbaxb
(d) a j‰jbaxb
(b) a j‰gbaxb
(e) ag‰h‰f baxb
(c) ag‰gbaxb
(f) ah‰j‰f baxb
12. (a) af‰jbaxb
(d) af‰f baxb
(b) ag‰hbaxb
(e) a j‰g‰f baxb
(c) ah‰hbaxb
(f) ag‰f‰hbaxb
g(x)
f(x)
(f ‰ g)(x)
(a)
x7
Èx
Èx 7
(b)
x2
3x
3(x 2) œ 3x 6
(c)
x#
Èx 5
Èx# 5
(d)
x
x1
x
x1
"
x1
"
x
1
13.
(e)
(f)
"
x
gaxb"
g ax b
œ
x
x (x1)
œx
x
"
x
x
"
lx "l .
14. (a) af‰gbaxb œ lgaxbl œ
(b) af‰gbaxb œ
x
x 1
x
x 1 1
x
x"
œ
Ê"
"
g ax b
œ
x
x"
Ê"
x
x"
œ
"
g ax b
Ê
"
x"
œ
"
gaxb ß so
gaxb œ x ".
(c) Since af‰gbaxb œ Ègaxb œ lxl, gaxb œ x .
(d) Since af‰gbaxb œ fˆÈx‰ œ l x l, faxb œ x# . (Note that the domain of the composite is Ò!ß _Ñ.)
#
The completed table is shown. Note that the absolute value sign in part (d) is optional.
gaxb
faxb
af‰gbaxb
"
"
lxl
x"
lx "l
x"
x#
Èx
x"
x
Èx
#
x
15. (a) faga1bb œ fa1b œ 1
(d) gaga2bb œ ga0b œ 0
x
x"
lxl
lxl
(b) gafa0bb œ ga2b œ 2
(e) gafa2bb œ ga1b œ 1
(c) fafa1bb œ fa0b œ 2
(f) faga1bb œ fa1b œ 0
16. (a) faga0bb œ fa1b œ 2 a1b œ 3, where ga0b œ 0 1 œ 1
(b) gafa3bb œ ga1b œ a1b œ 1, where fa3b œ 2 3 œ 1
(c) gaga1bb œ ga1b œ 1 1 œ 0, where ga1b œ a1b œ 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
9
10
Chapter 1 Functions
(d) fafa2bb œ fa0b œ 2 0 œ 2, where fa2b œ 2 2 œ 0
(e) gafa0bb œ ga2b œ 2 1 œ 1, where fa0b œ 2 0 œ 2
(f) fˆgˆ "# ‰‰ œ fˆ #" ‰ œ 2 ˆ #" ‰ œ 5# , where gˆ "# ‰ œ "# 1 œ "#
17. (a) af‰gbaxb œ fagaxbb œ É 1x 1 œ É 1 x x
ag‰f baxb œ gafaxbb œ
1
Èx 1
(b) Domain af‰gb: Ð_, 1Ó Ð0, _Ñ, domain ag‰f b: Ð1, _Ñ
(c) Range af‰gb: Ð1, _Ñ, range ag‰f b: Ð0, _Ñ
18. (a) af‰gbaxb œ fagaxbb œ 1 2Èx x
ag‰f baxb œ gafaxbb œ 1 kxk
(b) Domain af‰gb: Ò0, _Ñ, domain ag‰f b: Ð_, _Ñ
(c) Range af‰gb: Ð0, _Ñ, range ag‰f b: Ð_, 1Ó
19. af‰gbaxb œ x Ê fagaxbb œ x Ê
g ax b
g ax b 2
œ x Ê gaxb œ agaxb 2bx œ x † gaxb 2x
Ê gaxb x † gaxb œ 2x Ê gaxb œ 1 2x
x œ
2x
x1
20. af‰gbaxb œ x 2 Ê fagaxbb œ x 2 Ê 2agaxbb3 4 œ x 2 Ê agaxbb3 œ
21. (a) y œ (x 7)#
(b) y œ (x 4)#
22. (a) y œ x# 3
(b) y œ x# 5
x6
2
3 x6
Ê gaxb œ É
2
23. (a) Position 4
(b) Position 1
(c) Position 2
(d) Position 3
24. (a) y œ (x 1)# 4
(b) y œ (x 2)# 3
(c) y œ (x 4)# 1
(d) y œ (x 2)#
25.
26.
27.
28.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
11
12
Chapter 1 Functions
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs
53.
54.
55. (a) domain: [0ß 2]; range: [#ß $]
(b) domain: [0ß 2]; range: [1ß 0]
(c) domain: [0ß 2]; range: [0ß 2]
(d) domain: [0ß 2]; range: [1ß 0]
(e) domain: [2ß 0]; range: [!ß 1]
(f) domain: [1ß 3]; range: [!ß "]
(g) domain: [2ß 0]; range: [!ß "]
(h) domain: [1ß 1]; range: [!ß "]
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
13
14
Chapter 1 Functions
56. (a) domain: [0ß 4]; range: [3ß 0]
(b) domain: [4ß 0]; range: [!ß $]
(c) domain: [4ß 0]; range: [!ß $]
(d) domain: [4ß 0]; range: ["ß %]
(e) domain: [#ß 4]; range: [3ß 0]
(f) domain: [2ß 2]; range: [3ß 0]
(g) domain: ["ß 5]; range: [3ß 0]
(h) domain: [0ß 4]; range: [0ß 3]
58. y œ a2xb# 1 œ %x# 1
57. y œ 3x# 3
59. y œ "# ˆ"
"‰
x#
œ
"
#
"
#x#
60. y œ 1
"
axÎ$b#
œ1
61. y œ È%x 1
62. y œ 3Èx 1
#
63. y œ É% ˆ x# ‰ œ "# È16 x#
64. y œ "$ È% x#
65. y œ " a3xb$ œ " 27x$
66. y œ " ˆ x# ‰ œ "
$
*
x#
x$
)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs
67. Let y œ È#x " œ faxb and let gaxb œ x"Î# ,
"Î#
"Î#
haxb œ ˆx " ‰ , iaxb œ È#ˆx " ‰ , and
#
#
"Î#
jaxb œ ’È#ˆx "# ‰ “ œ faBb. The graph of
haxb is the graph of gaxb shifted left
"
#
unit; the
graph of iaxb is the graph of haxb stretched
vertically by a factor of È#; and the graph of
jaxb œ faxb is the graph of iaxb reflected across
the x-axis.
68. Let y œ È"
x
#
œ faxbÞ Let gaxb œ axb"Î# ,
haxb œ ax #b"Î# , and iaxb œ
œ È"
x
#
"
È # a x
#b"Î#
œ faxbÞ The graph of gaxb is the
graph of y œ Èx reflected across the x-axis.
The graph of haxb is the graph of gaxb shifted
right two units. And the graph of iaxb is the
graph of haxb compressed vertically by a factor
of È#.
69. y œ faxb œ x$ . Shift faxb one unit right followed by a
shift two units up to get gaxb œ ax "b3 #.
70. y œ a" Bb$ # œ Òax "b$ a#bÓ œ faxb.
Let gaxb œ x$ , haxb œ ax "b$ , iaxb œ ax "b$ a#b,
and jaxb œ Òax "b$ a#bÓ. The graph of haxb is the
graph of gaxb shifted right one unit; the graph of iaxb is
the graph of haxb shifted down two units; and the graph
of faxb is the graph of iaxb reflected across the x-axis.
71. Compress the graph of faxb œ
of 2 to get gaxb œ
unit to get haxb œ
"
#x . Then
"
#x ".
"
x
horizontally by a factor
shift gaxb vertically down 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
15
16
Chapter 1 Functions
72. Let faxb œ
œ
"
#
ŠxÎÈ#‹
"
x#
and gaxb œ
"œ
#
x#
"œ
"
#
’Š"ÎÈ#‹B“
"
#
Š B# ‹
"
"Þ Since
È# ¸ "Þ%, we see that the graph of faxb stretched
horizontally by a factor of 1.4 and shifted up 1 unit
is the graph of gaxb.
$
73. Reflect the graph of y œ faxb œ È
x across the x-axis
$
to get gaxb œ Èx.
74. y œ faxb œ a#xb#Î$ œ Òa"ba#bxÓ#Î$
œ a"b#Î$ a#xb#Î$ œ a#xb#Î$ . So the graph
of faxb is the graph of gaxb œ x#Î$ compressed
horizontally by a factor of 2.
75.
76.
77. *x# #&y# œ ##& Ê
x#
&#
y#
$#
œ"
78. "'x# (y# œ ""# Ê
x#
#
È
Š (‹
y#
%#
œ"
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs
79. $x# ay #b# œ $ Ê
x#
"#
a y #b #
#
ŠÈ$‹
80. ax "b# #y# œ % Ê
œ"
Ê
83.
x#
"'
#
ŠÈ#‹
y#
*
y a#b‘#
#
ŠÈ$‹
#
#
82. 'ˆx $# ‰ *ˆy "# ‰ œ &%
81. $ax "b# #ay #b# œ '
ax " b #
x a"b‘#
##
#
œ"
Ê
’xˆ $# ‰“
$#
ˆy "# ‰#
#
ŠÈ'‹
œ"
œ " has its center at a!ß !b. Shiftinig 4 units
left and 3 units up gives the center at ah, kb œ a%ß $b.
#
x a4b‘#
ay 3#3b œ "
4#
a y $b #
œ ". Center, C, is a%ß
3#
So the equation is
Ê
ax % b #
4#
$b, and
major axis, AB, is the segment from a)ß $b to a!ß $b.
84. The ellipse
x#
%
y#
#&
œ " has center ah, kb œ a!ß !b.
Shifting the ellipse 3 units right and 2 units down
produces an ellipse with center at ah, kb œ a$ß #b
and an equation
ax 3 b#
%
y a#b‘#
#&
œ ". Center,
C, is a3ß #b, and AB, the segment from a$ß $b to
a$ß (b is the major axis.
85. (a) (fg)(x) œ f(x)g(x) œ f(x)(g(x)) œ (fg)(x), odd
(b) Š gf ‹ (x) œ
f(x)
g(x)
œ
f(x)
g(x)
œ Š gf ‹ (x), odd
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
y#
#
È
Š #‹
œ"
17
18
Chapter 1 Functions
(c) ˆ gf ‰ (x) œ
(d)
(e)
(f)
(g)
(h)
(i)
g(x)
f(x)
œ
g(x)
f(x)
œ ˆ gf ‰ (x), odd
f # (x) œ f(x)f(x) œ f(x)f(x) œ f # (x), even
g# (x) œ (g(x))# œ (g(x))# œ g# (x), even
(f ‰ g)(x) œ f(g(x)) œ f(g(x)) œ f(g(x)) œ (f ‰ g)(x), even
(g ‰ f)(x) œ g(f(x)) œ g(f(x)) œ (g ‰ f)(x), even
(f ‰ f)(x) œ f(f(x)) œ f(f(x)) œ (f ‰ f)(x), even
(g ‰ g)(x) œ g(g(x)) œ g(g(x)) œ g(g(x)) œ (g ‰ g)(x), odd
86. Yes, f(x) œ 0 is both even and odd since f(x) œ 0 œ f(x) and f(x) œ 0 œ f(x).
87. (a)
(b)
(c)
(d)
88.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions
1.3 TRIGONOMETRIC FUNCTIONS
1. (a) s œ r) œ (10) ˆ 451 ‰ œ 81 m
radians and
51
4
1 ‰
3. ) œ 80° Ê ) œ 80° ˆ 180°
œ
41
9
2. ) œ
s
r
œ
101
8
œ
51
4
1 ‰
(b) s œ r) œ (10)(110°) ˆ 180°
œ
1
)
231
0
1
#
s
r
œ
30
50
31
4
"
È2
È"
2
sin )
0
cos )
1
tan )
0
È3
0
und.
"
und.
"
È3
und.
0
1
und.
È 2
1
#
und.
È23
sec )
csc )
0
"
"
0
"
und.
7. cos x œ 45 , tan x œ 34
9. sin x œ
È8
3
, tan x œ È8
"
6.
È2
3#1
)
1'
sin )
"
cos )
!
"
#
tan )
und.
È 3
cot )
!
È"3
sec )
und.
#
csc )
"
È23
8. sin x œ
2
È5
10. sin x œ
12
13
13.
14.
period œ 1
13
È
#3
12. cos x œ
, cos x œ
"
È2
&1
'
"
#
È
#3
È"3
"
È"3
È 3
"
È 3
2
È3
È2
È23
#
È2
#
"#
È3
#
"
È5
, tan x œ 12
5
È3
#
, tan x œ
"
È3
period œ 41
16.
period œ 2
m
‰ ¸ 34°
œ 0.6 rad or 0.6 ˆ 180°
1
11. sin x œ È"5 , cos x œ È25
15.
551
9
Ê s œ (6) ˆ 491 ‰ œ 8.4 in. (since the diameter œ 12 in. Ê radius œ 6 in.)
È
#3
"#
cot )
œ
ˆ 180°
‰ œ 225°
1
4. d œ 1 meter Ê r œ 50 cm Ê ) œ
5.
1101
18
period œ 4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
1
%
"
È2
19
20
Chapter 1 Functions
17.
18.
period œ 6
period œ 1
19.
20.
period œ 21
period œ 21
21.
22.
period œ 21
period œ 21
23. period œ 1# , symmetric about the origin
24. period œ 1, symmetric about the origin
25. period œ 4, symmetric about the s-axis
26. period œ 41, symmetric about the origin
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions
27. (a) Cos x and sec x are positive for x in the interval
ˆ 12 , 12 ‰; and cos x and sec x are negative for x in the
intervals ˆ 321 , 12 ‰ and ˆ 12 , 321 ‰. Sec x is undefined
when cos x is 0. The range of sec x is
(_ß 1] ["ß _); the range of cos x is ["ß 1].
(b) Sin x and csc x are positive for x in the intervals
ˆ 321 , 1‰ and a!, 1b; and sin x and csc x are negative
for x in the intervals a1, !b and ˆ1, 321 ‰. Csc x is
undefined when sin x is 0. The range of csc x is
(_ß 1] [1ß _); the range of sin x is ["ß "].
28. Since cot x œ
"
tan x
, cot x is undefined when tan x œ 0
and is zero when tan x is undefined. As tan x approaches
zero through positive values, cot x approaches infinity.
Also, cot x approaches negative infinity as tan x
approaches zero through negative values.
29. D: _ x _; R: y œ 1, 0, 1
30. D: _ x _; R: y œ 1, 0, 1
31. cos ˆx 1# ‰ œ cos x cos ˆ 1# ‰ sin x sin ˆ 1# ‰ œ (cos x)(0) (sin x)(1) œ sin x
32. cos ˆx 1# ‰ œ cos x cos ˆ 1# ‰ sin x sin ˆ 1# ‰ œ (cos x)(0) (sin x)(1) œ sin x
33. sin ˆx 1# ‰ œ sin x cos ˆ 1# ‰ cos x sin ˆ 1# ‰ œ (sin x)(0) (cos x)(1) œ cos x
34. sin ˆx 1# ‰ œ sin x cos ˆ 1# ‰ cos x sin ˆ 1# ‰ œ (sin x)(0) (cos x)(1) œ cos x
35. cos (A B) œ cos (A (B)) œ cos A cos (B) sin A sin (B) œ cos A cos B sin A (sin B)
œ cos A cos B sin A sin B
36. sin (A B) œ sin (A (B)) œ sin A cos (B) cos A sin (B) œ sin A cos B cos A (sin B)
œ sin A cos B cos A sin B
37. If B œ A, A B œ 0 Ê cos (A B) œ cos 0 œ 1. Also cos (A B) œ cos (A A) œ cos A cos A sin A sin A
œ cos# A sin# A. Therefore, cos# A sin# A œ 1.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
21
22
Chapter 1 Functions
38. If B œ 21, then cos (A 21) œ cos A cos 21 sin A sin 21 œ (cos A)(1) (sin A)(0) œ cos A and
sin (A 21) œ sin A cos 21 cos A sin 21 œ (sin A)(1) (cos A)(0) œ sin A. The result agrees with the
fact that the cosine and sine functions have period 21.
39. cos (1 x) œ cos 1 cos B sin 1 sin x œ (1)(cos x) (0)(sin x) œ cos x
40. sin (21 x) œ sin 21 cos (x) cos (21) sin (x) œ (0)(cos (x)) (1)(sin (x)) œ sin x
41. sin ˆ 3#1 x‰ œ sin ˆ 3#1 ‰ cos (x) cos ˆ 3#1 ‰ sin (x) œ (1)(cos x) (0)(sin (x)) œ cos x
42. cos ˆ 3#1 x‰ œ cos ˆ 3#1 ‰ cos x sin ˆ 3#1 ‰ sin x œ (0)(cos x) (1)(sin x) œ sin x
œ sin ˆ 14 13 ‰ œ sin
44. cos
111
1#
45. cos
1
12
œ cos ˆ 13 14 ‰ œ cos
46. sin
51
1#
œ sin ˆ 231 14 ‰ œ sin ˆ 231 ‰ cos ˆ 14 ‰ cos ˆ 231 ‰ sin ˆ 14 ‰ œ Š
21 ‰
3
È2
1
8
œ
1 cos ˆ 281 ‰
#
œ
1
#
49. sin#
1
1#
œ
1 cos ˆ 211# ‰
#
œ
1
#
3
4
Ê sin ) œ „
52. sin2 ) œ cos2 ) Ê
sin2 )
cos2 )
1
4
œ cos
47. cos#
51. sin2 ) œ
cos
#
È3
#
È3
2
œ
1
3
cos
cos
21
3
1
4
sin
sin
1
4
cos ˆ 14 ‰ sin
1
3
1
3
È2
È3
# ‹Š # ‹
71
1#
œ cos ˆ 14
1
4
È2
ˆ"‰
# ‹ #
43. sin
œŠ
sin
1
3
21
3
œŠ
Š
È2
ˆ "‰
# ‹ #
sin ˆ 14 ‰ œ ˆ "# ‰ Š
Š
È2
# ‹
œ
È2
È3
# ‹Š # ‹
Š
È3
È2
# ‹Š # ‹
2 È2
4
48. cos#
51
1#
œ
1‰
1 cos ˆ 10
1#
#
œ
2 È3
4
50. sin#
31
8
œ
1 cos ˆ 681 ‰
#
Ê tan2 ) œ 1 Ê tan ) œ „ 1 Ê ) œ 14 ,
31 51 71
4 , 4 , 4
cos2 )
cos2 )
œ
È3
È2
# ‹ Š # ‹
œ
Ê ) œ 13 ,
È 6 È 2
4
È 2 È 6
4
1 È 3
2È 2
œ
ˆ "# ‰ Š
œ
œ
1 Š
È3 ‹
#
#
1 Š
#
È2 ‹
#
È2
# ‹
œ
œ
œ
1 È 3
2È 2
2 È3
4
2 È2
4
21 41 51
3 , 3 , 3
53. sin 2) cos ) œ 0 Ê 2sin ) cos ) cos ) œ 0 Ê cos )a2sin ) 1b œ 0 Ê cos ) œ 0 or 2sin ) 1 œ 0 Ê cos ) œ 0 or
sin ) œ "# Ê ) œ 12 , 321 , or ) œ 16 , 561 Ê ) œ 16 , 12 , 561 , 321
54. cos 2) cos ) œ 0 Ê 2cos2 ) 1 cos ) œ 0 Ê 2cos2 ) cos ) 1 œ 0 Ê acos ) 1ba2cos ) 1b œ 0
Ê cos ) 1 œ 0 or 2cos ) 1 œ 0 Ê cos ) œ 1 or cos ) œ "# Ê ) œ 1 or ) œ 13 , 531 Ê ) œ 13 , 1, 531
55. tan (A B) œ
sin (AB)
cos (AB)
œ
sin A cos Bcos A cos B
cos A cos Bsin A sin B
œ
sin A cos B
cos A sin B
cos A cos B cos A cos B
sin A sin B
cos A cos B
cos A cos B cos A cos B
œ
tan Atan B
1tan A tan B
56. tan (A B) œ
sin (AB)
cos (AB)
œ
sin A cos Bcos A cos B
cos A cos Bsin A sin B
œ
sin A cos B
cos A sin B
cos A cos B cos A cos B
sin A sin B
cos A cos B
cos A cos B cos A cos B
œ
tan Atan B
1tan A tan B
57. According to the figure in the text, we have the following: By the law of cosines, c# œ a# b# 2ab cos )
œ 1# 1# 2 cos (A B) œ 2 2 cos (A B). By distance formula, c# œ (cos A cos B)# (sin A sin B)#
œ cos# A 2 cos A cos B cos# B sin# A 2 sin A sin B sin# B œ 2 2(cos A cos B sin A sin B). Thus
c# œ 2 2 cos (A B) œ 2 2(cos A cos B sin A sin B) Ê cos (A B) œ cos A cos B sin A sin B.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions
58. (a) cosaA Bb œ cos A cos B sin A sin B
sin ) œ cosˆ 1# )‰ and cos ) œ sinˆ 1# )‰
Let ) œ A B
sinaA Bb œ cos’ 1# aA Bb“ œ cos’ˆ 1# A‰ B“ œ cos ˆ 1# A‰ cos B sin ˆ 1# A‰ sin B
œ sin A cos B cos A sin B
(b) cosaA Bb œ cos A cos B sin A sin B
cosaA aBbb œ cos A cos aBb sin A sin aBb
Ê cosaA Bb œ cos A cos aBb sin A sin aBb œ cos A cos B sin A asin Bb
œ cos A cos B sin A sin B
Because the cosine function is even and the sine functions is odd.
59. c# œ a# b# 2ab cos C œ 2# 3# 2(2)(3) cos (60°) œ 4 9 12 cos (60°) œ 13 12 ˆ "# ‰ œ 7.
Thus, c œ È7 ¸ 2.65.
60. c# œ a# b# 2ab cos C œ 2# 3# 2(2)(3) cos (40°) œ 13 12 cos (40°). Thus, c œ È13 12 cos 40° ¸ 1.951.
61. From the figures in the text, we see that sin B œ hc . If C is an acute angle, then sin C œ hb . On the other hand,
if C is obtuse (as in the figure on the right), then sin C œ sin (1 C) œ hb . Thus, in either case,
h œ b sin C œ c sin B Ê ah œ ab sin C œ ac sin B.
a # b # c #
2ab
By the law of cosines, cos C œ
and cos B œ
a # c # b #
.
2ac
Moreover, since the sum of the
interior angles of a triangle is 1, we have sin A œ sin (1 (B C)) œ sin (B C) œ sin B cos C cos B sin C
#
#
#
#
#
#
b c
c b ˆ h ‰
h ‰
œ ˆ hc ‰ ’ a 2ab
a2a# b# c# c# b# b œ
“ ’ a 2ac
“ b œ ˆ 2abc
ah
bc
Ê ah œ bc sin A.
Combining our results we have ah œ ab sin C, ah œ ac sin B, and ah œ bc sin A. Dividing by abc gives
h
sin A
sin C
sin B
bc œ ðóóóóóóóñóóóóóóóò
a œ c œ b .
law of sines
62. By the law of sines,
sin A
#
œ
sin B
3
œ
È3/2
c .
By Exercise 61 we know that c œ È7. Thus sin B œ
3È 3
2È 7
¶ 0.982.
63. From the figure at the right and the law of cosines,
b# œ a# 2# 2(2a) cos B
œ a# 4 4a ˆ "# ‰ œ a# 2a 4.
Applying the law of sines to the figure,
Ê
È2/2
a
œ
È3/2
b
sin A
a
œ
sin B
b
Ê b œ É 3# a. Thus, combining results,
a# 2a 4 œ b# œ
3
#
a# Ê 0 œ
"
#
a# 2a 4
Ê 0 œ a# 4a 8. From the quadratic formula and the fact that a 0, we have
aœ
4È4# 4(1)(8)
#
œ
4 È 3 4
#
¶ 1.464.
64. (a) The graphs of y œ sin x and y œ x nearly coincide when x is near the origin (when the calculator
is in radians mode).
(b) In degree mode, when x is near zero degrees the sine of x is much closer to zero than x itself. The
curves look like intersecting straight lines near the origin when the calculator is in degree mode.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
23
24
Chapter 1 Functions
65. A œ 2, B œ 21, C œ 1, D œ 1
66. A œ "# , B œ 2, C œ 1, D œ
"
#
67. A œ 12 , B œ 4, C œ 0, D œ
68. A œ
L
21 ,
"
1
B œ L, C œ 0, D œ 0
69-72. Example CAS commands:
Maple
f := x -> A*sin((2*Pi/B)*(x-C))+D1;
A:=3; C:=0; D1:=0;
f_list := [seq( f(x), B=[1,3,2*Pi,5*Pi] )];
plot( f_list, x=-4*Pi..4*Pi, scaling=constrained,
color=[red,blue,green,cyan], linestyle=[1,3,4,7],
legend=["B=1","B=3","B=2*Pi","B=3*Pi"],
title="#69 (Section 1.3)" );
Mathematica
Clear[a, b, c, d, f, x]
f[x_]:=a Sin[21/b (x c)] + d
Plot[f[x]/.{a Ä 3, b Ä 1, c Ä 0, d Ä 0}, {x, 41, 41 }]
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions
69. (a) The graph stretches horizontally.
(b) The period remains the same: period œ l B l. The graph has a horizontal shift of
"
#
period.
70. (a) The graph is shifted right C units.
(b) The graph is shifted left C units.
(c) A shift of „ one period will produce no apparent shift. l C l œ '
71. (a) The graph shifts upwards l D lunits for D !
(b) The graph shifts down l D lunits for D !Þ
72. (a) The graph stretches l A l units.
(b) For A !, the graph is inverted.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
25
26
Chapter 1 Functions
1.4 GRAPHING WITH CALCULATORS AND COMPUTERS
1-4.
The most appropriate viewing window displays the maxima, minima, intercepts, and end behavior of the graphs and
has little unused space.
1. d.
2. c.
3. d.
4. b.
5-30.
For any display there are many appropriate display widows. The graphs given as answers in Exercises 530
are not unique in appearance.
5. Ò2ß 5Ó by Ò15ß 40Ó
6. Ò4ß 4Ó by Ò4ß 4Ó
7. Ò2ß 6Ó by Ò250ß 50Ó
8. Ò1ß 5Ó by Ò5ß 30Ó
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.4 Graphing with Calculators and Computers
9. Ò4ß 4Ó by Ò5ß 5Ó
10. Ò2ß 2Ó by Ò2ß 8Ó
11. Ò2ß 6Ó by Ò5ß 4Ó
12. Ò4ß 4Ó by Ò8ß 8Ó
13. Ò1ß 6Ó by Ò1ß 4Ó
14. Ò1ß 6Ó by Ò1ß 5Ó
15. Ò3ß 3Ó by Ò0ß 10Ó
16. Ò1ß 2Ó by Ò0ß 1Ó
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
27
28
Chapter 1 Functions
17. Ò5ß 1Ó by Ò5ß 5Ó
18. Ò5ß 1Ó by Ò2ß 4Ó
19. Ò4ß 4Ó by Ò0ß 3Ó
20. Ò5ß 5Ó by Ò2ß 2Ó
21. Ò"!ß "!Ó by Ò'ß 'Ó
22. Ò&ß &Ó by Ò#ß #Ó
23. Ò'ß "!Ó by Ò'ß 'Ó
24. Ò$ß &Ó by Ò#ß "!Ó
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.4 Graphing with Calculators and Computers
25. Ò0Þ03ß 0Þ03Ó by Ò1Þ25ß 1Þ25Ó
26. Ò0Þ1ß 0Þ1Ó by Ò3ß 3Ó
27. Ò300ß 300Ó by Ò1Þ25ß 1Þ25Ó
28. Ò50ß 50Ó by Ò0Þ1ß 0Þ1Ó
29. Ò0Þ25ß 0Þ25Ó by Ò0Þ3ß 0Þ3Ó
30. Ò0Þ15ß 0Þ15Ó by Ò0Þ02ß 0Þ05Ó
31. x# #x œ % %y y# Ê y œ # „ Èx# #x ).
The lower half is produced by graphing
y œ # Èx# #x ).
32. y# "'x# œ " Ê y œ „ È" "'x# . The upper branch
is produced by graphing y œ È" "'x# .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
29
30
Chapter 1 Functions
33.
34.
35.
36.
37.
38Þ
39.
40.
CHAPTER 1 PRACTICE EXERCISES
1. The area is A œ 1 r# and the circumference is C œ #1 r. Thus, r œ
2. The surface area is S œ %1 r# Ê r œ ˆ %S1 ‰
surface area gives S œ %1 r# œ %1 ˆ $%V1 ‰
"Î#
#Î$
C
#1
#
Ê A œ 1ˆ #C1 ‰ œ
C#
%1 .
$ $V
. The volume is V œ %$ 1 r$ Ê r œ É
%1 . Substitution into the formula for
.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises
3. The coordinates of a point on the parabola are axß x# b. The angle of inclination ) joining this point to the origin satisfies
the equation tan ) œ
4. tan ) œ
rise
run
œ
h
&!!
x#
x
œ x. Thus the point has coordinates axß x# b œ atan )ß tan# )b.
Ê h œ &!! tan ) ft.
5.
6.
Symmetric about the origin.
Symmetric about the y-axis.
7.
8.
Neither
Symmetric about the y-axis.
9. yaxb œ axb# " œ x# " œ yaxb. Even.
10. yaxb œ axb& axb$ axb œ x& x$ x œ yaxb. Odd.
11. yaxb œ " cosaxb œ " cos x œ yaxb. Even.
12. yaxb œ secaxb tanaxb œ
13. yaxb œ
axb% "
axb$ #axb
œ
x% "
x$ #x
sinaxb
cos# axb
œ
sin x
cos# x
œ sec x tan x œ yaxb. Odd.
%
"
œ xx$ #
x œ yaxb. Odd.
14. yaxb œ axb sinaxb œ axb sin x œ ax sin xb œ yaxb. Odd.
15. yaxb œ x cosaxb œ x cos x. Neither even nor odd.
16. yaxb œ axbcosaxb œ x cos x œ yaxb. Odd.
17. Since f and g are odd Ê faxb œ faxb and gaxb œ gaxb.
(a) af † gbaxb œ faxbgaxb œ ÒfaxbÓÒgaxbÓ œ faxbgaxb œ af † gbaxb Ê f † g is even
(b) f 3 axb œ faxbfaxbfaxb œ ÒfaxbÓÒfaxbÓÒfaxbÓ œ faxb † faxb † faxb œ f 3 axb Ê f 3 is odd.
(c) fasinaxbb œ fasinaxbb œ fasinaxbb Ê fasinaxbb is odd.
(d) gasecaxbb œ gasecaxbb Ê gasecaxbb is even.
(e) lgaxbl œ lgaxbl œ lgaxbl Ê lgl is evenÞ
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
31
32
Chapter 1 Functions
18. Let faa xb œ faa xb and define gaxb œ fax ab. Then gaxb œ faaxb ab œ faa xb œ faa xb œ fax ab œ gaxb
Ê gaxb œ fax ab is even.
19. (a) The function is defined for all values of x, so the domain is a_ß _b.
(b) Since l x l attains all nonnegative values, the range is Ò#ß _Ñ.
20. (a) Since the square root requires " x !, the domain is Ð_ß "Ó.
(b) Since È" x attains all nonnegative values, the range is Ò#ß _Ñ.
21. (a) Since the square root requires "' x#
!, the domain is Ò%ß %Ó.
(b) For values of x in the domain, ! Ÿ "' x# Ÿ "', so ! Ÿ È"' x# Ÿ %. The range is Ò!ß %Ó.
22. (a) The function is defined for all values of x, so the domain is a_ß _b.
(b) Since $#x attains all positive values, the range is a"ß _b.
23. (a) The function is defined for all values of x, so the domain is a_ß _b.
(b) Since #ex attains all positive values, the range is a$ß _b.
24. (a) The function is equivalent to y œ tan #x, so we require #x Á
k1
#
for odd integers k. The domain is given by x Á
k1
%
for
odd integers k.
(b) Since the tangent function attains all values, the range is a_ß _b.
25. (a) The function is defined for all values of x, so the domain is a_ß _b.
(b) The sine function attains values from " to ", so # Ÿ #sina$x 1b Ÿ # and hence $ Ÿ #sina$x 1b " Ÿ ". The
range is Ò3ß 1Ó.
26. (a) The function is defined for all values of x, so the domain is a_ß _b.
&
(b) The function is equivalent to y œ È
x# , which attains all nonnegative values. The range is Ò!ß _Ñ.
27. (a) The logarithm requires x $ !, so the domain is a$ß _b.
(b) The logarithm attains all real values, so the range is a_ß _b.
28. (a) The function is defined for all values of x, so the domain is a_ß _b.
(b) The cube root attains all real values, so the range is a_ß _b.
29. (a)
(b)
(c)
(d)
Increasing because volume increases as radius increases
Neither, since the greatest integer function is composed of horizontal (constant) line segments
Decreasing because as the height increases, the atmospheric pressure decreases.
Increasing because the kinetic (motion) energy increases as the particles velocity increases.
30. (a) Increasing on Ò2, _Ñ
(c) Increasing on a_, _b
(b) Increasing on Ò1, _Ñ
(d) Increasing on Ò "# , _Ñ
31. (a) The function is defined for % Ÿ x Ÿ %, so the domain is Ò%ß %Ó.
(b) The function is equivalent to y œ Èl x l, % Ÿ x Ÿ %, which attains values from ! to # for x in the domain. The
range is Ò!ß #Ó.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises
33
32. (a) The function is defined for # Ÿ x Ÿ #, so the domain is Ò#ß #Ó.
(b) The range is Ò"ß "Ó.
33. First piece: Line through a!ß "b and a"ß !b. m œ
Second piece: Line through a"ß "b and a#ß !b. m
faxb œ œ
" x, ! Ÿ x "
# x, " Ÿ x Ÿ #
34. First piece: Line through a!ß !b and a2ß 5b. m œ
Second piece: Line through a2ß 5b and a4ß !b. m
faxb œ
10
5
2 x,
5x
2 ,
!"
"
"! œ " œ
"
"
œ !#
" œ "
" Ê y œ x " œ " x
œ " Ê y œ ax "b " œ x # œ # x
5!
5
5
2! œ 2 Ê y œ 2x
!5
5
œ 4 2 œ 2 œ 52 Ê
y œ 52 ax 2b 5 œ 52 x 10 œ 10
!Ÿx2
(Note: x œ 2 can be included on either piece.)
2ŸxŸ4
35. (a) af‰gba"b œ faga"bb œ fŠ È"" # ‹ œ fa"b œ
(b) ag‰f ba#b œ gafa#bb œ gˆ "2 ‰ œ
(c) af‰f baxb œ fafaxbb œ fˆ "x ‰ œ
"
É "# #
"
"Îx
œ
"
È#Þ&
"
"
œ"
or É &#
œ x, x Á !
(d) ag‰gbaxb œ gagaxbb œ gŠ Èx" # ‹ œ
"
"
É Èx # #
œ
% x#
È
É " #È x #
$
36. (a) af‰gba"b œ faga"bb œ fˆÈ
" "‰ œ fa!b œ # ! œ #
$
(b) ag‰f ba#b œ faga#bb œ ga# #b œ ga!b œ È
!"œ"
(c) af‰f baxb œ fafaxbb œ fa# xb œ # a# xb œ x
$
$
$
È
(d) ag‰gbaxb œ gagaxbb œ gˆÈ
x "‰ œ É
x""
#
37. (a) af‰gbaxb œ fagaxbb œ fˆÈx #‰ œ # ˆÈx #‰ œ x, x #.
ag‰f baxb œ fagaxbb œ ga# x# b œ Èa# x# b # œ È% x#
(b) Domain of f‰g: Ò#ß _ÑÞ
Domain of g‰f: Ò#ß #ÓÞ
(c) Range of f‰g: Ð_ß #ÓÞ
Range of g‰f: Ò!ß #ÓÞ
%
38. (a) af‰gbaxb œ fagaxbb œ fŠÈ" x‹ œ ÉÈ" x œ È
" x.
ag‰f baxb œ fagaxbb œ gˆÈx‰ œ É" Èx
(b) Domain of f‰g: Ð_ß "ÓÞ
Domain of g‰f: Ò!ß "ÓÞ
39.
y œ faxb
(c) Range of f‰g: Ò!ß _ÑÞ
Range of g‰f: Ò!ß "ÓÞ
y œ af‰f baxb
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
5x
2
34
Chapter 1 Functions
40.
41.
42.
The graph of f# (x) œ f" akxkb is the same as the
graph of f" (x) to the right of the y-axis. The
graph of f# (x) to the left of the y-axis is the
reflection of y œ f" (x), x 0 across the y-axis.
43.
It does not change the graph.
44.
Whenever g" (x) is positive, the graph of y œ g# (x)
œ kg" (x)k is the same as the graph of y œ g" (x).
When g" (x) is negative, the graph of y œ g# (x) is
the reflection of the graph of y œ g" (x) across the
x-axis.
Whenever g" (x) is positive, the graph of y œ g# (x) œ kg" (x)k
is the same as the graph of y œ g" (x). When g" (x) is
negative, the graph of y œ g# (x) is the reflection of the
graph of y œ g" (x) across the x-axis.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises
45.
46.
The graph of f# (x) œ f" akxkb is the same as the
graph of f" (x) to the right of the y-axis. The
graph of f# (x) to the left of the y-axis is the
reflection of y œ f" (x), x 0 across the y-axis.
Whenever g" (x) is positive, the graph of
y œ g# (x) œ kg" (x)k is the same as the graph of
y œ g" (x). When g" (x) is negative, the graph of
y œ g# (x) is the reflection of the graph of
y œ g" (x) across the x-axis.
47.
48.
The graph of f# (x) œ f" akxkb is the same as the
graph of f" (x) to the right of the y-axis. The
graph of f# (x) to the left of the y-axis is the
reflection of y œ f" (x), x 0 across the y-axis.
49. (a) y œ gax 3b
(c) y œ gaxb
(e) y œ 5 † gaxb
"
#
The graph of f# (x) œ f" akxkb is the same as the
graph of f" (x) to the right of the y-axis. The
graph of f# (x) to the left of the y-axis is the
reflection of y œ f" (x), x 0 across the y-axis.
(b) y œ gˆx 3# ‰ 2
(d) y œ gaxb
(f) y œ ga5xb
50. (a) Shift the graph of f right 5 units
(b) Horizontally compress the graph of f by a factor of 4
(c) Horizontally compress the graph of f by a factor of 3 and a then reflect the graph about the y-axis
(d) Horizontally compress the graph of f by a factor of 2 and then shift the graph left "# unit.
(e) Horizontally stretch the graph of f by a factor of 3 and then shift the graph down 4 units.
(f) Vertically stretch the graph of f by a factor of 3, then reflect the graph about the x-axis, and finally shift the
graph up "4 unit.
51. Reflection of the grpah of y œ Èx about the x-axis
followed by a horizontal compression by a factor of
1
2 then a shift left 2 units.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
35
36
Chapter 1 Functions
52. Reflect the graph of y œ x about the x-axis, followed
by a vertical compression of the graph by a factor
of 3, then shift the graph up 1 unit.
53. Vertical compression of the graph of y œ
1
x2
by a
factor of 2, then shift the graph up 1 unit.
54. Reflect the graph of y œ x1Î3 about the y-axis, then
compress the graph horizontally by a factor of 5.
55.
56.
period œ 1
57.
period œ 41
58.
period œ 2
period œ 4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises
59.
60.
period œ 21
period œ 21
1
3
61. (a) sin B œ sin
œ
b
c
œ
b
#
Ê b œ 2 sin
1
3
œ 2Š
È3
# ‹
œ È3. By the theorem of Pythagoras,
a# b# œ c# Ê a œ Èc# b# œ È4 3 œ 1.
1
3
(b) sin B œ sin
œ
b
c
œ
2
c
Ê cœ
2
sin 13
œ È23 œ
Š ‹
#
4
È3
#
. Thus, a œ Èc# b# œ ÊŠ È43 ‹ (2)# œ É 34 œ
62. (a) sin A œ
a
c
Ê a œ c sin A
(b) tan A œ
a
b
Ê a œ b tan A
63. (a) tan B œ
b
a
Ê aœ
(b) sin A œ
a
c
Ê cœ
64. (a) sin A œ
a
c
(c) sin A œ
a
c
b
tan B
œ
a
sin A
È c # b #
c
65. Let h œ height of vertical pole, and let b and c denote the
distances of points B and C from the base of the pole,
measured along the flatground, respectively. Then,
tan 50° œ hc , tan 35° œ hb , and b c œ 10.
Thus, h œ c tan 50° and h œ b tan 35° œ (c 10) tan 35°
Ê c tan 50° œ (c 10) tan 35°
Ê c (tan 50° tan 35°) œ 10 tan 35°
tan 35°
Ê c œ tan10
50°tan 35° Ê h œ c tan 50°
œ
10 tan 35° tan 50°
tan 50°tan 35°
¸ 16.98 m.
66. Let h œ height of balloon above ground. From the figure at
the right, tan 40° œ ha , tan 70° œ hb , and a b œ 2. Thus,
h œ b tan 70° Ê h œ (2 a) tan 70° and h œ a tan 40°
Ê (2 a) tan 70° œ a tan 40° Ê a(tan 40° tan 70°)
70°
œ 2 tan 70° Ê a œ tan 240°tantan
70° Ê h œ a tan 40°
œ
2 tan 70° tan 40°
tan 40°tan 70°
¸ 1.3 km.
67. (a)
(b) The period appears to be 41.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
2
È3
.
37
38
Chapter 1 Functions
(c) f(x 41) œ sin (x 41) cos ˆ x#41 ‰ œ sin (x 21) cos ˆ x# 21‰ œ sin x cos
since the period of sine and cosine is 21. Thus, f(x) has period 41.
x
#
68. (a)
(b) D œ (_ß 0) (!ß _); R œ [1ß 1]
(c) f is not periodic. For suppose f has period p. Then f ˆ #"1 kp‰ œ f ˆ #"1 ‰ œ sin 21 œ 0 for all
integers k. Choose k so large that
"
#1
kp
"
1
Ê 0
"
(1/21)kp
1. But then
f ˆ #"1 kp‰ œ sin Š (1/#1")kp ‹ 0 which is a contradiction. Thus f has no period, as claimed.
CHAPTER 1 ADDITIONAL AND ADVANCED EXERCISES
1. There are (infinitely) many such function pairs. For example, f(x) œ 3x and g(x) œ 4x satisfy
f(g(x)) œ f(4x) œ 3(4x) œ 12x œ 4(3x) œ g(3x) œ g(f(x)).
2. Yes, there are many such function pairs. For example, if g(x) œ (2x 3)$ and f(x) œ x"Î$ , then
(f ‰ g)(x) œ f(g(x)) œ f a(2x 3)$ b œ a(2x 3)$ b
"Î$
œ 2x 3.
3. If f is odd and defined at x, then f(x) œ f(x). Thus g(x) œ f(x) 2 œ f(x) 2 whereas
g(x) œ (f(x) 2) œ f(x) 2. Then g cannot be odd because g(x) œ g(x) Ê f(x) 2 œ f(x) 2
Ê 4 œ 0, which is a contradiction. Also, g(x) is not even unless f(x) œ 0 for all x. On the other hand, if f is
even, then g(x) œ f(x) 2 is also even: g(x) œ f(x) 2 œ f(x) 2 œ g(x).
4. If g is odd and g(0) is defined, then g(0) œ g(0) œ g(0). Therefore, 2g(0) œ 0 Ê g(0) œ 0.
5. For (xß y) in the 1st quadrant, kxk kyk œ 1 x
Í x y œ 1 x Í y œ 1. For (xß y) in the 2nd
quadrant, kxk kyk œ x 1 Í x y œ x 1
Í y œ 2x 1. In the 3rd quadrant, kxk kyk œ x 1
Í x y œ x 1 Í y œ 2x 1. In the 4th
quadrant, kxk kyk œ x 1 Í x (y) œ x 1
Í y œ 1. The graph is given at the right.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Additional and Advanced Exercises
6. We use reasoning similar to Exercise 5.
(1) 1st quadrant: y kyk œ x kxk
Í 2y œ 2x Í y œ x.
(2) 2nd quadrant: y kyk œ x kxk
Í 2y œ x (x) œ 0 Í y œ 0.
(3) 3rd quadrant: y kyk œ x kxk
Í y (y) œ x (x) Í 0 œ 0
Ê all points in the 3rd quadrant
satisfy the equation.
(4) 4th quadrant: y kyk œ x kxk
Í y (y) œ 2x Í 0 œ x. Combining
these results we have the graph given at the
right:
7. (a) sin# x cos# x œ 1 Ê sin# x œ 1 cos# x œ (1 cos x)(1 cos x) Ê (1 cos x) œ
Ê
1cos x
sin x
œ
sin# x
1cos x
sin x
1cos x
(b) Using the definition of the tangent function and the double angle formulas, we have
#
tan ˆ x# ‰ œ
sin# ˆ x# ‰
cos# ˆ #x ‰
œ
"
x ‹‹
cos Š2 Š #
#
"cos Š2 Š #x ‹‹
#
œ
1cos x
1cos x
.
8. The angles labeled # in the accompanying figure are
equal since both angles subtend arc CD. Similarly, the
two angles labeled ! are equal since they both subtend
arc AB. Thus, triangles AED and BEC are similar which
) b
implies ab c œ 2a cos
a c
Ê (a c)(a c) œ b(2a cos ) b)
Ê a# c# œ 2ab cos ) b#
Ê c# œ a# b# 2ab cos ).
9. As in the proof of the law of sines of Section 1.3, Exercise 61, ah œ bc sin A œ ab sin C œ ac sin B
Ê the area of ABC œ "# (base)(height) œ "# ah œ "# bc sin A œ "# ab sin C œ "# ac sin B.
10. As in Section 1.3, Exercise 61, (Area of ABC)# œ
œ
"
4
(base)# (height)# œ
"
4
a# h # œ
"
4
a# b# sin# C
a# b# a" cos# Cb . By the law of cosines, c# œ a# b# 2ab cos C Ê cos C œ
Thus, (area of ABC)# œ
œ
"
4
"
16
"
4
a# b# a" cos# Cb œ
#
Š4a# b# aa# b# c# b ‹ œ
"
16
"
4
a# b# Œ" Š a
#
b# c#
‹
#ab
#
œ
a# b#
4
a# b# c#
2ab
Š"
.
aa # b # c # b
4a# b#
#
‹
ca2ab aa# b# c# bb a2ab aa# b# c# bbd
"
ca(a b)# c# b ac# (a b)# bd œ 16
c((a b) c)((a b) c)(c (a b))(c (a b))d
a
b
c
a
b
c
a
b
c
a
b
c
œ ˆ # ‰ ˆ # ‰ ˆ # ‰ ˆ # ‰‘ œ s(s a)(s b)(s c), where s œ a#bc .
œ
"
16
Therefore, the area of ABC equals Ès(s a)(s b)(s c) .
11. If f is even and odd, then f(x) œ f(x) and f(x) œ f(x) Ê f(x) œ f(x) for all x in the domain of f.
Thus 2f(x) œ 0 Ê f(x) œ 0.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
39
40
Chapter 1 Functions
f(x) f((x))
œ f(x) #f(x) œ E(x) Ê E
#
even function. Define O(x) œ f(x) E(x) œ f(x) f(x) #f(x) œ f(x) #f(x) . Then
O(x) œ f(x) #f((x)) œ f(x)# f(x) œ Š f(x) #f(x) ‹ œ O(x) Ê O is an odd function
12. (a) As suggested, let E(x) œ
f(x) f(x)
#
Ê E(x) œ
is an
Ê f(x) œ E(x) O(x) is the sum of an even and an odd function.
(b) Part (a) shows that f(x) œ E(x) O(x) is the sum of an even and an odd function. If also
f(x) œ E" (x) O" (x), where E" is even and O" is odd, then f(x) f(x) œ 0 œ aE" (x) O" (x)b
(E(x) O(x)). Thus, E(x) E" (x) œ O" (x) O(x) for all x in the domain of f (which is the same as the
domain of E E" and O O" ). Now (E E" )(x) œ E(x) E" (x) œ E(x) E" (x) (since E and E" are
even) œ (E E" )(x) Ê E E" is even. Likewise, (O" O)(x) œ O" (x) O(x) œ O" (x) (O(x))
(since O and O" are odd) œ (O" (x) O(x)) œ (O" O)(x) Ê O" O is odd. Therefore, E E" and
O" O are both even and odd so they must be zero at each x in the domain of f by Exercise 11. That is,
E" œ E and O" œ O, so the decomposition of f found in part (a) is unique.
13. y œ ax# bx c œ a Šx# ba x
b#
4a# ‹
b#
4a
c œ a ˆx
b ‰#
2a
b#
4a
c
(a) If a 0 the graph is a parabola that opens upward. Increasing a causes a vertical stretching and a shift
of the vertex toward the y-axis and upward. If a 0 the graph is a parabola that opens downward.
Decreasing a causes a vertical stretching and a shift of the vertex toward the y-axis and downward.
(b) If a 0 the graph is a parabola that opens upward. If also b 0, then increasing b causes a shift of the
graph downward to the left; if b 0, then decreasing b causes a shift of the graph downward and to the
right.
If a 0 the graph is a parabola that opens downward. If b 0, increasing b shifts the graph upward
to the right. If b 0, decreasing b shifts the graph upward to the left.
(c) Changing c (for fixed a and b) by ?c shifts the graph upward ?c units if ?c 0, and downward ?c
units if ?c 0.
14. (a) If a 0, the graph rises to the right of the vertical line x œ b and falls to the left. If a 0, the graph
falls to the right of the line x œ b and rises to the left. If a œ 0, the graph reduces to the horizontal
line y œ c. As kak increases, the slope at any given point x œ x! increases in magnitude and the graph
becomes steeper. As kak decreases, the slope at x! decreases in magnitude and the graph rises or falls
more gradually.
(b) Increasing b shifts the graph to the left; decreasing b shifts it to the right.
(c) Increasing c shifts the graph upward; decreasing c shifts it downward.
15. Each of the triangles pictured has the same base
b œ v?t œ v(1 sec). Moreover, the height of each
triangle is the same value h. Thus "# (base)(height) œ
"
#
bh
œ A" œ A# œ A$ œ á . In conclusion, the object sweeps
out equal areas in each one second interval.
16. (a) Using the midpoint formula, the coordinates of P are ˆ a# 0 ß b# 0 ‰ œ ˆ #a ß b# ‰ . Thus the slope
of OP œ
?y
?x
œ
b/2
a/2
œ
b
a
.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Additional and Advanced Exercises
(b) The slope of AB œ
b 0
0 a
41
œ ba . The line segments AB and OP are perpendicular when the product
#
of their slopes is " œ ˆ ba ‰ ˆ ba ‰ œ ba# . Thus, b# œ a# Ê a œ b (since both are positive). Therefore, AB
is perpendicular to OP when a œ b.
17. From the figure we see that 0 Ÿ ) Ÿ
cos ) œ
and AB œ AD œ 1. From trigonometry we have the following: sin ) œ
sin )
cos ) .
œ CD, and tan ) œ
œ
We can see that:
w
"
area ˜AEB area sector DB area ˜ADC Ê # aAEbaEBb "# aADb2 ) "# aADbaCDb
AE
AB
œ AE, tan ) œ
1
2
CD
AD
EB
AE
Ê "# sin ) cos ) "# a"b2 ) "# a"batan )b Ê "# sin ) cos ) "# )
" sin )
# cos )
18. af‰gbaxb œ fagaxbb œ aacx db b œ acx ad b and ag‰f baxb œ gafaxbb œ caax bb d œ acx cb d
Thus af‰gbaxb œ ag‰f baxb Ê acx ad b œ acx bc d Ê ad b œ bc d. Note that fadb œ ad b and
gabb œ cb d, thus af‰gbaxb œ ag‰f baxb if fadb œ gabb.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
EB
AB
œ EB,
42
Chapter 1 Functions
NOTES:
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
CHAPTER 2 LIMITS AND CONTINUITY
2.1 RATES OF CHANGE AND TANGENTS TO CURVES
1. (a)
?f
?x
œ
f(3) f(2)
3#
2. (a)
?g
?x
œ
g(1) g(1)
1 (1)
3. (a)
?h
?t
œ
h ˆ 341 ‰ h ˆ 14 ‰
1
31
4 4
œ
?g
?t
œ
g(1) g(0)
10
(2 1) (2 1)
10
4. (a)
5.
?R
?)
œ
R(2) R(0)
20
6.
?P
?)
œ
P(2) P(1)
21
7. (a)
?y
?x
œ
?y
?x
œ
?y
?x
œ
?y
?x
œ
?y
?x
œ
?y
?x
œ
?y
?x
œ
œ
œ
28 9
1
œ
œ
œ
1 1
2
œ 19
(b)
?f
?x
œ
f(1) f(")
1 (1)
œ
20
#
œ1
œ0
(b)
?g
?x
œ
g(0)g(2)
0(2)
œ
04
#
œ 2
(b)
?h
?t
œ
h ˆ 1# ‰ h ˆ 16 ‰
11
#
6
œ
?g
?t
œ
g(1) g(1)
1 (1)
œ
1 1
1
#
È 8 1 È 1
#
œ 14
œ 12
3"
#
œ
(8 16 10)(" % &)
1
ˆa2 h b2 3 ‰ ˆ 2 2 3 ‰
h
œ
(b)
0 È3
1
3
œ
3 È 3
1
(2 1) (2 ")
#1
œ0
œ1
œ22œ0
4 4h h2 3 1
h
œ
4h h2
h
œ 4 h. As h Ä 0, 4 h Ä 4 Ê at Pa2, 1b the slope is 4.
(b) y 1 œ 4ax 2b Ê y 1 œ 4x 8 Ê y œ 4x 7
8. (a)
ˆ 5 a1 h b 2 ‰ ˆ 5 1 2 ‰
h
œ
5 1 2h h2 4
h
œ
2h h2
h
œ 2 h. As h Ä 0, 2 h Ä 2 Ê at Pa1, 4b the
slope is 2.
(b) y 4 œ a2bax 1b Ê y 4 œ 2x 2 Ê y œ 2x 6
9. (a)
ˆa2 h b2 2 a 2 h b 3 ‰ ˆ 2 2 2 a 2 b 3 ‰
h
œ
4 4h h2 4 2h 3 a3b
h
œ
2h h2
h
œ 2 h. As h Ä 0, 2 h Ä 2 Ê at
Pa2, 3b the slope is 2.
(b) y a3b œ 2ax 2b Ê y 3 œ 2x 4 Ê y œ 2x 7.
10. (a)
ˆa1 h b2 4 a 1 h b ‰ ˆ 1 2 4 a 1 b ‰
h
œ
1 2h h2 4 4h a3b
h
œ
h2 2h
h
œ h 2. As h Ä 0, h 2 Ä 2 Ê at
Pa1, 3b the slope is 2.
(b) y a3b œ a2bax 1b Ê y 3 œ 2x 2 Ê y œ 2x 1.
11. (a)
a2 h b 3 2 3
h
œ
8 12h 4h2 h3 8
h
œ
12h 4h2 h3
h
œ 12 4h h2 . As h Ä 0, 12 4h h2 Ä 12, Ê at
Pa2, 8b the slope is 12.
(b) y 8 œ 12ax 2b Ê y 8 œ 12x 24 Ê y œ 12x 16.
12. (a)
2 a1 h b3 ˆ 2 1 3 ‰
h
œ
2 1 3h 3h2 h3 1
h
œ
3h 3h2 h3
h
œ 3 3h h2 . As h Ä 0, 3 3h h2 Ä 3, Ê at
Pa1, 1b the slope is 3.
(b) y 1 œ a3bax 1b Ê y 1 œ 3x 3 Ê y œ 3x 4.
13. (a)
a1 hb3 12a1 hb ˆ13 12a"b‰
h
2
œ
1 3h 3h2 h3 12 12h a11b
h
œ
9h 3h2 h3
h
œ 9 3h h2 . As h Ä 0,
9 3h h Ä 9 Ê at Pa1, 11b the slope is 9.
(b) y a11b œ a9bax 1b Ê y 11 œ 9x 9 Ê y œ 9x 2.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
44
Chapter 2 Limits and Continuity
14. (a)
?y
?x
œ
a2 h b 3 3 a 2 h b 2 4 ˆ 2 3 3 a 2 b 2 4 ‰
h
2
8 12h 6h2 h3 12 12h 3h2 4 0
h
œ
œ
3h2 h3
h
œ 3h h2 . As h Ä 0,
3h h Ä 0 Ê at Pa2, 0b the slope is 0.
(b) y 0 œ 0ax 2b Ê y œ 0.
15. (a)
?p
?t
Slope of PQ œ
Q
650 225
20 10
650 375
20 14
650 475
20 16.5
650 550
20 18
Q" (10ß 225)
Q# (14ß 375)
Q$ (16.5ß 475)
Q% (18ß 550)
œ 42.5 m/sec
œ 45.83 m/sec
œ 50.00 m/sec
œ 50.00 m/sec
(b) At t œ 20, the sportscar was traveling approximately 50 m/sec or 180 km/h.
16. (a)
Slope of PQ œ
Q
Q" (5ß 20)
Q# (7ß 39)
Q$ (8.5ß 58)
Q% (9.5ß 72)
80 20
10 5
80 39
10 7
80 58
10 8.5
80 72
10 9.5
?p
?t
œ 12 m/sec
œ 13.7 m/sec
œ 14.7 m/sec
œ 16 m/sec
(b) Approximately 16 m/sec
17. (a)
(b)
?p
?t
œ
174 62
2004 2002
œ
112
#
œ 56 thousand dollars per year
(c) The average rate of change from 2001 to 2002 is ??pt œ
62 27
20022 2001 œ 35 thousand dollars per year.
111 62
The average rate of change from 2002 to 2003 is ??pt œ 2003
2002 œ 49 thousand dollars per year.
So, the rate at which profits were changing in 2002 is approximatley "# a35 49b œ 42 thousand dollars
18. (a) F(x) œ (x 2)/(x 2)
x
1.2
F(x)
4.0
?F
?x
?F
?x
?F
?x
œ
?g
?x
?g
?x
œ
œ
œ
1.1
3.4
1.01
3.04
1.001
3.004
1.0001
3.0004
1
3
4.0 (3)
œ 5.0;
1.2 1
3.04 (3)
œ 4.04;
1.01 1
3.!!!% (3)
œ 4.!!!%;
1.0001 1
?F
?x
?F
?x
œ
œ
3.4 (3)
œ 4.4;
1.1 1
3.004 (3)
œ 4.!!%;
1.001 1
È
g(2) g(1)
œ #21" ¸ 0.414213
21
È1 h"
g(1 h) g(1)
(1 h) 1 œ
h
?g
?x
œ
g(1.5) g(1)
1.5 1
(b) The rate of change of F(x) at x œ 1 is 4.
19. (a)
œ
œ
È1.5 "
0.5
¸ 0.449489
(b) g(x) œ Èx
1h
È1 h
ŠÈ1 h 1‹ /h
1.1
1.04880
1.01
1.004987
1.001
1.0004998
1.0001
1.0000499
1.00001
1.000005
1.000001
1.0000005
0.4880
0.4987
0.4998
0.499
0.5
0.5
(c) The rate of change of g(x) at x œ 1 is 0.5.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
per year.
Section 2.1 Rates of Change and Tangents to Curves
(d) The calculator gives lim
hÄ!
20. (a) i)
ii)
(b)
f(3) f(2)
32
œ
f(T) f(2)
T#
œ
""
3
#
1
" "
T #
T#
T
f(T)
af(T) f(2)b/aT 2b
"
œ
6
1
È1 h"
h
œ "# .
œ "6
#TT
T#
2
#T
œ
45
œ
2T
#T(T 2)
2.1
0.476190
0.2381
œ
2T
#T(2 T)
2.01
0.497512
0.2488
œ #"T , T Á 2
2.001
0.499750
0.2500
2.0001
0.4999750
0.2500
2.00001
0.499997
0.2500
2.000001
0.499999
0.2500
(c) The table indicates the rate of change is 0.25 at t œ 2.
" ‰
(d) lim ˆ #T
œ 4"
TÄ#
NOTE: Answers will vary in Exercises 21 and 22.
s
15 0
˜s
20 15
10
˜s
30 20
21. (a) Ò0, 1Ó: ˜
˜t œ 1 0 œ 15 mphà Ò1, 2.5Ó: ˜t œ 2.5 1 œ 3 mphà Ò2.5, 3.5Ó: ˜t œ 3.5 2.5 œ 10 mph
(b) At Pˆ "# , 7.5‰: Since the portion of the graph from t œ 0 to t œ 1 is nearly linear, the instantaneous rate of change
will be almost the same as the average rate of change, thus the instantaneous speed at t œ
"
#
is
15 7.5
1 0.5
œ 15 mi/hr.
At Pa2, 20b: Since the portion of the graph from t œ 2 to t œ 2.5 is nearly linear, the instantaneous rate of change will
20
be nearly the same as the average rate of change, thus v œ 20
2.5 2 œ 0 mi/hr. For values of t less than 2, we have
Slope of PQ œ
Q
?s
?t
15 20
1 2 œ 5 mi/hr
19 20
1.5 2 œ 2 mi/hr
19.9 20
1.9 2 œ 1 mi/hr
Q" (1ß 15)
Q# (1.5ß 19)
Q$ (1.9ß 19.9)
Thus, it appears that the instantaneous speed at t œ 2 is 0 mi/hr.
At Pa3, 22b:
s
Q
Slope of PQ œ ?
?t
35 22
43
30 22
3.5 3
23 22
3.1 3
Q" (4ß 35)
Q# (3.5ß 30)
Q$ (3.1ß 23)
Slope of PQ œ
Q
œ 13 mi/hr
Q" (2ß 20)
œ 16 mi/hr
Q# (2.5ß 20)
œ 10 mi/hr
Q$ (2.9ß 21.6)
20 22
2 3 œ 2 mi/hr
20 22
2.5 3 œ 4 mi/hr
21.6 22
2.9 3 œ 4 mi/hr
Thus, it appears that the instantaneous speed at t œ 3 is about 7 mi/hr.
(c) It appears that the curve is increasing the fastest at t œ 3.5. Thus for Pa3.5, 30b
s
Q
Slope of PQ œ ?
Q
Slope of PQ œ
?t
35 30
4 3.5 œ 10 mi/hr
34 30
3.75 3.5 œ 16 mi/hr
32 30
3.6 3.5 œ 20 mi/hr
Q" (4ß 35)
Q# (3.75ß 34)
Q$ (3.6ß 32)
˜A
˜t
œ
10 15
30
(b) At Pa1, 14b:
Q
Q" (2ß 12.2)
Q# (1.5ß 13.2)
Q$ (1.1ß 13.85)
¸ 1.67
gal
day à
Ò0, 5Ó:
Q# (3.25ß 25)
Q$ (3.4ß 28)
Slope of PQ œ
˜A
˜t
?A
?t
12.2 14
2 1 œ 1.8 gal/day
13.2 14
1.5 1 œ 1.6 gal/day
13.85 14
1.1 1 œ 1.5 gal/day
œ
3.9 15
50
¸ 2.2
gal
day à Ò7,
10Ó:
?s
?t
22 30
3 3.5 œ 16 mi/hr
25 30
3.25 3.5 œ 20 mi/hr
28 30
3.4 3.5 œ 20 mi/hr
Q" (3ß 22)
Thus, it appears that the instantaneous speed at t œ 3.5 is about 20 mi/hr.
22. (a) Ò0, 3Ó:
?s
?t
˜A
˜t
Q
Q" (0ß 15)
Q# (0.5ß 14.6)
Q$ (0.9ß 14.86)
œ
0 1.4
10 7
¸ 0.5
Slope of PQ œ
gal
day
?A
?t
15 14
0 1 œ 1 gal/day
14.6 14
0.5 1 œ 1.2 gal/day
14.86 14
0.9 1 œ 1.4 gal/day
Thus, it appears that the instantaneous rate of consumption at t œ 1 is about 1.45 gal/day.
At Pa4, 6b:
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
46
Chapter 2 Limits and Continuity
Q
Q" (5ß 3.9)
Q# (4.5ß 4.8)
Q$ (4.1ß 5.7)
Slope of PQ œ
3.9 6
54
4.8 6
4.5 4
5.7 6
4.1 4
?A
?t
Q
œ 2.1 gal/day
Q" (3ß 10)
œ 2.4 gal/day
Q# (3.5ß 7.8)
œ 3 gal/day
Q$ (3.9ß 6.3)
Slope of PQ œ
10 6
3 4 œ 4 gal/day
7.8 6
3.5 4 œ 3.6 gal/day
6.3 6
3.9 4 œ 3 gal/day
Thus, it appears that the instantaneous rate of consumption at t œ 1 is 3 gal/day.
At Pa8, 1b:
Q
Slope of PQ œ ??At
Q
Slope of PQ œ
Q" (9ß 0.5)
Q# (8.5ß 0.7)
Q$ (8.1ß 0.95)
0.5 1
9 8 œ 0.5 gal/day
0.7 1
8.5 8 œ 0.6 gal/day
0.95 1
8.1 8 œ 0.5 gal/day
Q" (7ß 1.4)
4.8 7.8
4.5 3.5 œ 3 gal/day
6 7.8
4 3.5 œ 3.6 gal/day
7.4 7.8
3.6 3.5 œ 4 gal/day
Q" (2.5ß 11.2)
Q# (7.5ß 1.3)
Q$ (7.9ß 1.04)
?A
?t
?A
?t
1.4 1
7 8 œ 0.6 gal/day
1.3 1
7.5 8 œ 0.6 gal/day
1.04 1
7.9 8 œ 0.6 gal/day
Thus, it appears that the instantaneous rate of consumption at t œ 1 is 0.55 gal/day.
(c) It appears that the curve (the consumption) is decreasing the fastest at t œ 3.5. Thus for Pa3.5, 7.8b
s
Q
Slope of PQ œ ??At
Q
Slope of PQ œ ?
?t
Q" (4.5ß 4.8)
Q# (4ß 6)
Q$ (3.6ß 7.4)
Q# (3ß 10)
Q$ (3.4ß 8.2)
Thus, it appears that the rate of consumption at t œ 3.5 is about 4 gal/day.
11.2 7.8
2.5 3.5 œ 3.4 gal/day
10 7.8
3 3.5 œ 4.4 gal/day
8.2 7.8
3.4 3.5 œ 4 gal/day
2.2 LIMIT OF A FUNCTION AND LIMIT LAWS
1. (a) Does not exist. As x approaches 1 from the right, g(x) approaches 0. As x approaches 1 from the left, g(x)
approaches 1. There is no single number L that all the values g(x) get arbitrarily close to as x Ä 1.
(b) 1
(c) 0
(d) 0.5
2. (a) 0
(b) 1
(c) Does not exist. As t approaches 0 from the left, f(t) approaches 1. As t approaches 0 from the right, f(t)
approaches 1. There is no single number L that f(t) gets arbitrarily close to as t Ä 0.
(d) 1
3. (a) True
(d) False
(g) True
(b) True
(e) False
(c) False
(f) True
4. (a) False
(d) True
(b) False
(e) True
(c) True
5.
x
lim
x Ä 0 kx k
x
kx k
does not exist because
x
kx k
œ
x
x
œ 1 if x 0 and
approaches 1. As x approaches 0 from the right,
x
kx k
x
kxk
œ
x
x
œ 1 if x 0. As x approaches 0 from the left,
approaches 1. There is no single number L that all the
function values get arbitrarily close to as x Ä 0.
6. As x approaches 1 from the left, the values of
"
x 1
become increasingly large and negative. As x approaches 1
from the right, the values become increasingly large and positive. There is no one number L that all the function
values get arbitrarily close to as x Ä 1, so lim x" 1 does not exist.
xÄ1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.2 Limit of a Function and Limit Laws
47
7. Nothing can be said about f(x) because the existence of a limit as x Ä x! does not depend on how the function
is defined at x! . In order for a limit to exist, f(x) must be arbitrarily close to a single real number L when
x is close enough to x! . That is, the existence of a limit depends on the values of f(x) for x near x! , not on the
definition of f(x) at x! itself.
8. Nothing can be said. In order for lim f(x) to exist, f(x) must close to a single value for x near 0 regardless of the
xÄ0
value f(0) itself.
9. No, the definition does not require that f be defined at x œ 1 in order for a limiting value to exist there. If f(1) is
defined, it can be any real number, so we can conclude nothing about f(1) from lim f(x) œ 5.
xÄ1
10. No, because the existence of a limit depends on the values of f(x) when x is near 1, not on f(1) itself. If
lim f(x) exists, its value may be some number other than f(1) œ 5. We can conclude nothing about lim f(x),
xÄ1
xÄ1
whether it exists or what its value is if it does exist, from knowing the value of f(1) alone.
11.
lim (2x 5) œ 2(7) 5 œ 14 5 œ 9
x Ä (
12. lim ax# 5x 2b œ (2)# 5(2) 2 œ 4 10 2 œ 4
xÄ#
13. lim 8(t 5)(t 7) œ 8(6 5)(6 7) œ 8
tÄ'
14.
lim ax$ 2x# 4x 8b œ (2)$ 2(2)# 4(2) 8 œ 8 8 8 8 œ 16
x Ä #
15. lim
x3
œ
x Ä # x6
17.
23
26
16. lim# 3s(2s 1) œ 3 ˆ 23 ‰ 2 ˆ 23 ‰ 1‘ œ 2 ˆ 43 1‰ œ
5
8
sÄ
$
lim 3(2x 1)# œ 3(2(1) 1)# œ 3(3)# œ 27
x Ä "
y2
18. lim
#
y Ä # y 5y 6
19.
œ
œ
22
(2)# 5(#) 6
œ
4
4 10 6
œ
4
#0
œ
"
5
%
lim (5 y)%Î$ œ [5 (3)]%Î$ œ (8)%Î$ œ ˆ(8)"Î$ ‰ œ 2% œ 16
y Ä $
20. lim (2z 8)"Î$ œ (2(0) 8)"Î$ œ (8)"Î$ œ 2
zÄ!
21. lim
3
22. lim
È5h 4 2
h
h Ä ! È3h 1 1
hÄ0
œ
5
È4 2
23. lim
œ
x5
#
x Ä & x 25
24.
œ
3
È3(0) 1 1
œ lim
hÄ0
œ
3
È1 1
È5h 4 2
h
†
œ
3
2
È5h 4 2
È5h 4 2
œ lim
a5h 4b 4
h Ä 0 hŠÈ5h 4 2‹
œ lim
5h
h Ä 0 hŠÈ5h 4 2‹
œ lim
5
4
x5
œ lim
x3
x Ä & (x 5)(x 5)
lim
#
x Ä $ x 4x 3
œ lim
œ lim
x3
1
x Ä & x5
x Ä $ (x 3)(x 1)
œ lim
œ
"
55
œ
"
10
1
œ
"
3 1
x Ä $ x 1
5
h Ä 0 È5h 4 2
œ "2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
2
3
48
25.
Chapter 2 Limits and Continuity
x# 3x "0
x5
lim
x Ä &
(x 5)(x 2)
x5
œ lim
x Ä &
(x 5)(x 2)
x2
26. lim
x# 7x "0
x#
œ lim
27. lim
t# t 2
t# 1
t Ä " (t 1)(t 1)
xÄ#
tÄ"
t# 3t 2
#
t Ä " t t 2
29.
lim
$
#
x Ä # x 2x
lim
2x 4
5y$ 8y#
1
x 1
x
x Ä 1 1
32. lim
xÄ0
33. lim
1
xc1
u% "
y# (5y 8)
œ lim
uÄ1
œ lim
4x x#
x Ä % 2 Èx
œ lim
36. lim
lim
x Ä "
œ
(v 2) av# 2v 4b
Èx 3
x Ä * ˆÈ x 3 ‰ ˆ È x 3 ‰
x1
x Ä 1 Èx 3 2
37. lim
œ
Èx# 12 4
x2
xÄ2
x Ä "
œ lim
xÄ2
(x 2)(x 2)
x2
x Ä 2 È x # 5 3
lim
x Ä 2
8
16
1 ‰
x1
œ lim
xÄ1
œ lim
uÄ1
au# "b (u 1)
u# u 1
"
œ lim
(x 2)(x 2)
444
(4)(8)
œ
x1
x2
œ 2
4
3
12
32
œ
3
8
xÄ%
œ lim ŠÈx 3 #‹ œ È4 2 œ 4
xÄ1
ax # 8 b *
œ lim
x Ä 1 (x 1) ŠÈx# 8 $‹
2
33
œ
(x 2) ŠÈx# 12 4‹
x Ä 2 Èx# 12 4
œ
2
1
œ lim x ˆ2 Èx‰ œ 4(2 2) œ 16
(x 1) ˆÈx 3 #‰
(x 3) 4
xÄ1
x Ä 1 È x # ) $
œ
œ
"
6
œ lim
(x 1) ŠÈx# 8 $‹
œ "3
ax# 12b 16
œ lim
x Ä 2 (x 2) ŠÈx# 12 4‹
œ
4
È16 4
ax 2b ŠÈx# 5 3‹
È x# 5 3
x2
x Ä 2
œ lim
"
È9 3
œ
x Ä * Èx 3
(1 1)(1 1)
111
œ
#
v Ä # (v 2) av 4b
x ˆ2 È x ‰ ˆ 2 È x ‰
2 Èx
xÄ%
œ lim
œ
v# 2v 4
œ lim
œ lim
œ lim
2
x Ä 1 ax 1bax 1b
x Ä 2 ŠÈx# 5 3‹ ŠÈx# 5 3‹
ax 2b ŠÈx# 5 3‹
œ #"
œ lim x1 œ 1
ŠÈx# 12 4‹ ŠÈx# 12 4‹
x Ä 2 (x 2) ŠÈx# 12 4‹
œ
œ
ŠÈx# 8 $‹ ŠÈx# 8 $‹
lim
(x 1)(x 1)
lim
x Ä 1 (x 1) ŠÈx# ) $‹
lim
5y 8
(x 1) ˆÈx 3 2‰
È
ˆ
x 3 #‰ ˆ È x 3 #‰
xÄ1
39. lim
40.
œ 21
œ lim
È x# 8 3
x1
œ lim
2
4
xÄ1
#
v Ä # (v 2)(v 2) av 4b
x(4 x)
x Ä % 2 Èx
œ
2
œ 13
1
œ lim Š ax 12x
bax 1b † x ‹ œ lim
au# "b (u 1)(u 1)
au# u 1b (u 1)
œ lim
Èx 3
x9
xÄ*
x
xÄ1
œ lim
35. lim
b 1b b ax c 1b
c 1bax b 1b
ax
3
#
1 2
1 2
#
y Ä ! 3y 16
xÄ1
œ
œ
#
x Ä # x
œ lim ˆ 1 x x †
ax
œ lim
t2
t Ä " t 2
œ lim
1cx
x
12
11
œ
œ lim
œ lim
x Ä 1 x1
%
v Ä # v 16
t2
2(x 2)
v$ 8
34. lim
xÄ#
œ lim
œ lim
$
u Ä 1 u 1
38.
t Ä " (t 2)(t 1)
#
#
y Ä ! y a3y 16b
x b1 1
x
œ lim (x 5) œ 2 5 œ 3
t Ä " t1
(t 2)(t 1)
œ lim
x Ä &
œ lim
#
x Ä # x (x 2)
%
#
y Ä 0 3y 16y
31. lim
(t 2)(t 1)
œ lim
28.
30. lim
xÄ#
œ lim (x 2) œ & # œ 7
œ
œ
œ lim
"
2
ax 2b ŠÈx# 5 3‹
x Ä 2
È9 3
4
ax # 5 b 9
œ 23
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.2 Limit of a Function and Limit Laws
41.
2 È x# 5
x3
x Ä 3
lim
œ
Š2 Èx# 5‹ Š2 Èx# 5‹
œ lim
(x 3) Š2 Èx# 5‹
x Ä 3
9 x#
lim
œ
x Ä 3 (x 3) Š2 Èx# 5‹
4x
x Ä 4 5 È x# 9
œ lim
x Ä 4 Š5 Èx# 9‹ Š5 Èx# 9‹
a4 xb Š5 Èx# 9‹
xÄ4
x Ä 3 (x 3) Š2 Èx# 5‹
a4 xb Š5 Èx# 9‹
œ lim
42. lim
16 x#
x Ä 3 (x 3) Š2 Èx# 5‹
(3 x)(3 x)
lim
œ lim
(4 x)(4 x)
xÄ4
œ lim
3x
x Ä 3 2 È x # 5
œ
6
2 È4
œ
3
2
a4 xb Š5 Èx# 9‹
25 ax# 9b
xÄ4
a4 xb Š5 Èx# 9‹
œ lim
4 ax # 5 b
œ lim
œ lim
xÄ4
5 È x# 9
4x
œ
5 È25
8
œ
5
4
2
43. lim a2sin x 1b œ 2sin 0 1 œ 0 1 œ 1
44. lim sin2 x œ Š lim sin x‹ œ asin 0b2 œ 02 œ 0
45. lim sec x œ
46. lim tan x œ
xÄ0
xÄ0
47. lim
xÄ0
1 x sin x
3cos x
1
lim
x Ä 0 cos x
œ
œ
1 0 sin 0
3cos 0
1
cos 0
œ
œ
1
1
xÄ0
œ1
100
3
œ
xÄ0
xÄ0
sin x
lim
x Ä 0 cos x
œ
sin 0
cos 0
œ
0
1
œ0
1
3
48. lim ax2 1ba2 cos xb œ a02 1ba2 cos 0b œ a1ba2 1b œ a1ba1b œ 1
xÄ0
49. x Ä
lim1Èx 4 cosax 1b œ x Ä
lim1Èx 4 † x Ä
lim1cosax 1b œ È1 4 † cos 0 œ È4 1 † 1 œ È4 1
50. lim È7 sec2 x œ É lim a7 sec2 xb œ É7 lim sec2 x œ È7 sec2 0 œ É7 a1b2 œ 2È2
xÄ0
xÄ0
xÄ0
51. (a) quotient rule
(c) sum and constant multiple rules
(b) difference and power rules
52. (a) quotient rule
(c) difference and constant multiple rules
(b) power and product rules
53. (a) xlim
f(x) g(x) œ ’xlim
f(x)“ ’ x lim
g(x)“ œ (5)(2) œ 10
Äc
Äc
Äc
(b) xlim
2f(x) g(x) œ 2 ’xlim
f(x)“ ’ xlim
g(x)“ œ 2(5)(2) œ 20
Äc
Äc
Äc
(c) xlim
[f(x) 3g(x)] œ xlim
f(x) 3 xlim
g(x) œ 5 3(2) œ 1
Äc
Äc
Äc
lim
f(x)
f(x)
5
5
xÄc
(d) xlim
œ lim f(x)
lim g(x) œ 5(2) œ 7
Ä c f(x) g(x)
x
54. (a)
(b)
(c)
(d)
55. (a)
(b)
Äc
x
Äc
lim [g(x) 3] œ lim g(x) lim 3 œ $ $ œ !
xÄ%
xÄ%
xÄ%
lim xf(x) œ lim x † lim f(x) œ (4)(0) œ 0
xÄ%
xÄ%
xÄ%
#
lim [g(x)] œ ’ lim g(x)“ œ [3]# œ 9
xÄ%
#
g(x)
x Ä % f(x) 1
lim
xÄ%
œ
Ä%
lim g(x)
x
lim f(x) lim 1
xÄ%
xÄ%
œ
3
01
œ3
lim [f(x) g(x)] œ lim f(x) lim g(x) œ 7 (3) œ 4
xÄb
xÄb
xÄb
lim f(x) † g(x) œ ’ lim f(x)“ ’ lim g(x)“ œ (7)(3) œ 21
xÄb
xÄb
xÄb
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
49
50
Chapter 2 Limits and Continuity
lim 4g(x) œ ’ lim 4“ ’ lim g(x)“ œ (4)(3) œ 12
(c)
xÄb
xÄb
xÄb
xÄb
xÄb
7
3
œ 37
lim [p(x) r(x) s(x)] œ lim p(x) lim r(x) lim s(x) œ 4 0 (3) œ 1
56. (a)
x Ä #
x Ä #
x Ä #
x Ä #
lim p(x) † r(x) † s(x) œ ’ lim p(x)“ ’ lim r(x)“ ’ lim s(x)“ œ (4)(0)(3) œ 0
(b)
x Ä #
x Ä #
x Ä #
x Ä #
lim [4p(x) 5r(x)]/s(x) œ ’4 lim p(x) 5 lim r(x)“ ‚ lim s(x) œ [4(4) 5(0)]/3 œ
(c)
x Ä #
57. lim
hÄ!
x Ä #
(1 h)# 1#
h
œ lim
hÄ!
(2 h)# (2)#
h
hÄ!
58. lim
59. lim
hÄ!
ˆ #" h ‰ ˆ "# ‰
h
hÄ!
È7 h È7
h
hÄ!
61. lim
1 2h h# 1
h
œ lim
hÄ!
44hh# 4
h
hÄ!
œ lim
[3(2 h) 4] [3(2) 4]
h
60. lim
œ
xÄb
lim f(x)/g(x) œ lim f(x)/ lim g(x) œ
(d)
œ lim
2
2 h "
œ lim
h(2 h)
h
œ lim
hÄ!
hÄ!
œ lim (h 4) œ 4
hÄ!
2 (2 h)
2h(# h)
hÄ!
h ŠÈ7 h È7‹
h
œ lim
œ "4
h Ä ! h(4 2h)
œ lim
(7 h) 7
h Ä ! h ŠÈ7 h È7‹
œ lim
h
h Ä ! h ŠÈ7hÈ7‹
œ lim
È3(0 h) 1 È3(0) 1
h
hÄ!
œ lim
3
h Ä ! È3h 1 1
œ
œ lim
ŠÈ3h 1 "‹ ŠÈ3h 1 "‹
h ŠÈ3h 1 "‹
hÄ!
(3h 1) "
œ lim
h Ä ! h ŠÈ3h 1 1 ‹
œ lim
3h
h Ä ! h ŠÈ3h 1 "‹
3
#
63. lim È5 2x# œ È5 2(0)# œ È5 and lim È5 x# œ È5 (0)# œ È5; by the sandwich theorem,
xÄ!
xÄ!
lim f(x) œ È5
xÄ!
64. lim a2 x# b œ 2 0 œ 2 and lim 2 cos x œ 2(1) œ 2; by the sandwich theorem, lim g(x) œ 2
xÄ!
65. (a)
xÄ!
lim Š1
xÄ!
x#
6‹
œ1
0
6
xÄ!
œ 1 and lim 1 œ 1; by the sandwich theorem, lim
(b) For x Á 0, y œ (x sin x)/(2 2 cos x)
lies between the other two graphs in the
figure, and the graphs converge as x Ä 0.
66. (a)
lim Š "#
xÄ!
lim
xÄ!
1cos x
x#
x#
24 ‹
œ lim
1
xÄ! #
lim
x#
x Ä ! #4
œ
"
#
x sin x
x Ä ! 22 cos x
xÄ!
0œ
"
#
and lim
"
xÄ! #
œ1
œ "# ; by the sandwich theorem,
œ "# .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
"
h Ä ! È 7 h È 7
"
#È 7
62. lim
"6
3
œ lim (2 h) œ 2
h(h 4)
h
ŠÈ7 h È7‹ ŠÈ7 h È7‹
hÄ!
x Ä #
œ3
œ lim
2h
hÄ!
œ lim
3h
hÄ! h
x Ä #
Section 2.2 Limit of a Function and Limit Laws
(b) For all x Á 0, the graph of f(x) œ (1 cos x)/x#
lies between the line y œ "# and the parabola
yœ
"
#
x# /24, and the graphs converge as x Ä 0.
67. (a) f(x) œ ax# *b/(x 3)
x
3.1
f(x)
6.1
2.9
5.9
x
f(x)
3.01
6.01
3.001
6.001
3.0001
6.0001
3.00001
6.00001
3.000001
6.000001
2.99
5.99
2.999
5.999
2.9999
5.9999
2.99999
5.99999
2.999999
5.999999
The estimate is lim f(x) œ 6.
x Ä $
(b)
(c) f(x) œ
x# 9
x3
œ
(x 3)(x 3)
x3
œ x 3 if x Á 3, and lim (x 3) œ 3 3 œ 6.
x Ä $
68. (a) g(x) œ ax# #b/ Šx È2‹
x
g(x)
1.4
2.81421
1.41
2.82421
1.414
2.82821
1.4142
2.828413
1.41421
2.828423
1.414213
2.828426
(b)
(c) g(x) œ
x# 2
x È2
œ
Šx È2‹ Šx È2‹
Šx È2‹
œ x È2 if x Á È2, and
69. (a) G(x) œ (x 6)/ ax# 4x 12b
x
5.9
5.99
G(x)
.126582 .1251564
x
G(x)
6.1
.123456
6.01
.124843
5.999
.1250156
6.001
.124984
lim
x Ä È#
5.9999
.1250015
6.0001
.124998
Šx È2‹ œ È2 È2 œ 2È2.
5.99999
.1250001
6.00001
.124999
5.999999
.1250000
6.000001
.124999
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
51
52
Chapter 2 Limits and Continuity
(b)
(c) G(x) œ
x6
ax# 4x 12b
œ
x6
(x 6)(x 2)
œ
"
x#
70. (a) h(x) œ ax# 2x 3b / ax# 4x 3b
x
2.9
2.99
h(x)
2.052631
2.005025
x
h(x)
3.1
1.952380
3.01
1.995024
"
if x Á 6, and lim
x Ä ' x 2
œ
"
' 2
œ "8 œ 0.125.
2.999
2.000500
2.9999
2.000050
2.99999
2.000005
2.999999
2.0000005
3.001
1.999500
3.0001
1.999950
3.00001
1.999995
3.000001
1.999999
(b)
(c) h(x) œ
x# 2x 3
x# 4x 3
œ
(x 3)(x 1)
(x 3)(x 1)
œ
x1
x1
71. (a) f(x) œ ax# 1b / akxk 1b
x
1.1
1.01
f(x)
2.1
2.01
.9
1.9
x
f(x)
.99
1.99
if x Á 3, and lim
x1
x Ä $ x1
œ
31
31
œ
4
#
œ 2.
1.001
2.001
1.0001
2.0001
1.00001
2.00001
1.000001
2.000001
.999
1.999
.9999
1.9999
.99999
1.99999
.999999
1.999999
(b)
(c) f(x) œ
x# "
kx k 1
(x 1)(x 1)
1
œ (x x1)(x
1)
(x 1)
œ x 1, x 0 and x Á 1
, and lim (1 x) œ 1 (1) œ 2.
x Ä 1
œ 1 x, x 0 and x Á 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.2 Limit of a Function and Limit Laws
72. (a) F(x) œ ax# 3x 2b / a2 kxkb
x
2.1
2.01
F(x)
1.1
1.01
1.9
.9
x
F(x)
1.99
.99
2.001
1.001
2.0001
1.0001
2.00001
1.00001
2.000001
1.000001
1.999
.999
1.9999
.9999
1.99999
.99999
1.999999
.999999
(b)
(c) F(x) œ
x# 3x 2
2 kx k
(x 2)(x 1)
œ (x 2)(x# x")
2x
73. (a) g()) œ (sin ))/)
)
.1
g())
.998334
,
x 0
, and lim (x 1) œ 2 1 œ 1.
x Ä #
œ x 1, x 0 and x Á 2
.01
.999983
.001
.999999
.0001
.999999
.00001
.999999
.000001
.999999
.1
.998334
.01
.999983
.001
.999999
.0001
.999999
.00001
.999999
.000001
.999999
74. (a) G(t) œ (1 cos t)/t#
t
.1
G(t)
.499583
.01
.499995
.001
.499999
.0001
.5
.00001
.5
.000001
.5
.1
.499583
.01
.499995
.001
.499999
.0001
.5
.00001
.5
.000001
.5
)
g())
lim g()) œ 1
)Ä!
(b)
t
G(t)
lim G(t) œ 0.5
tÄ!
(b)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
53
54
Chapter 2 Limits and Continuity
75. xlim
f(x) exists at those points c where xlim
x% œ xlim
x# . Thus, c% œ c# Ê c# a1 c# b œ 0 Ê c œ 0, 1, or 1.
Äc
Äc
Äc
Moreover, lim f(x) œ lim x# œ 0 and lim f(x) œ lim f(x) œ 1.
xÄ!
xÄ!
x Ä 1
xÄ1
76. Nothing can be concluded about the values of f, g, and h at x œ 2. Yes, f(2) could be 0. Since the conditions of the
sandwich theorem are satisfied, lim f(x) œ 5 Á 0.
xÄ#
lim f(x) lim 5
%
xÄ%
œ xÄlim
x lim 2 œ
f(x)5
x Ä % x 2
77. 1 œ lim
xÄ%
lim f(x) 5
xÄ%
%#
xÄ%
xÄ%
78. (a) 1 œ lim
f(x)
x#
lim f(x)
lim f(x)
œ xÄlim# x# œ xÄ %#
Ê
(b) 1 œ lim
f(x)
x#
œ ’ lim
x Ä #
x Ä #
xÄ
#
x Ä #
79. (a) 0 œ 3 † 0 œ ’ lim
xÄ#
Ê lim f(x) 5 œ 2(1) Ê lim f(x) œ 2 5 œ 7.
xÄ%
lim f(x) œ 4.
x Ä #
f(x)
lim x" “
x “ ’x Ä
#
œ ’ lim
x Ä #
f(x) ˆ " ‰
x “ #
Ê
lim
x Ä #
f(x)
x
œ 2.
f(x) 5
x # “ ’xlim
Ä#
5
(x 2)“ œ lim ’Š f(x)
x # ‹ (x 2)“ œ lim [f(x) 5] œ lim f(x) 5
f(x) 5
x # “ ’xlim
Ä#
(x 2)“ Ê lim f(x) œ 5 as in part (a).
xÄ#
Ê lim f(x) œ 5.
xÄ#
xÄ#
xÄ#
(b) 0 œ 4 † 0 œ ’ lim
xÄ#
80. (a) 0 œ 1 † 0 œ ’ lim
f(x)
# “ ’ lim
xÄ! x
xÄ!
(b) 0 œ 1 † 0 œ
81. (a)
lim x sin
xÄ!
(b) 1 Ÿ sin
82. (a)
"
x
’ lim f(x)
# “ ’ lim
xÄ! x
xÄ!
"
x
xÄ#
#
x“ œ ’ lim
f(x)
#
xÄ! x
x“ œ
lim ’ f(x)
x#
xÄ!
#
“ ’ lim x# “ œ lim ’ f(x)
x# † x “ œ lim f(x). That is, lim f(x) œ 0.
xÄ!
† x“ œ
xÄ!
lim f(x) .
xÄ! x
That is,
xÄ!
lim f(x)
xÄ! x
œ 0.
œ0
Ÿ 1 for x Á 0:
x 0 Ê x Ÿ x sin
"
x
Ÿ x Ê lim x sin
"
x
œ 0 by the sandwich theorem;
x 0 Ê x
"
x
x Ê lim x sin
"
x
œ 0 by the sandwich theorem.
x sin
xÄ!
xÄ!
lim x# cos ˆ x"$ ‰ œ 0
xÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
xÄ!
Section 2.3 The Precise Definition of a Limit
(b) 1 Ÿ cos ˆ x"$ ‰ Ÿ 1 for x Á 0 Ê x# Ÿ x# cos ˆ x"$ ‰ Ÿ x# Ê lim x# cos ˆ x"$ ‰ œ 0 by the sandwich
xÄ!
theorem since lim x# œ 0.
xÄ!
83-88. Example CAS commands:
Maple:
f := x -> (x^4 16)/(x 2);
x0 := 2;
plot( f(x), x œ x0-1..x0+1, color œ black,
title œ "Section 2.2, #83(a)" );
limit( f(x), x œ x0 );
In Exercise 85, note that the standard cube root, x^(1/3), is not defined for x<0 in many CASs. This can be
overcome in Maple by entering the function as f := x -> (surd(x+1, 3) 1)/x.
Mathematica: (assigned function and values for x0 and h may vary)
Clear[f, x]
f[x_]:=(x3 x2 5x 3)/(x 1)2
x0= 1; h = 0.1;
Plot[f[x],{x, x0 h, x0 h}]
Limit[f[x], x Ä x0]
2.3 THE PRECISE DEFINITION OF A LIMIT
1.
Step 1:
Step 2:
kx 5k $ Ê $ x 5 $ Ê $ 5 x $ 5
$ 5 œ 7 Ê $ œ 2, or $ 5 œ 1 Ê $ œ 4.
The value of $ which assures kx 5k $ Ê 1 x 7 is the smaller value, $ œ 2.
Step 1:
Step 2:
kx 2k $ Ê $ x 2 $ Ê $ # x $ 2
$ 2 œ 1 Ê $ œ 1, or $ 2 œ 7 Ê $ œ 5.
The value of $ which assures kx 2k $ Ê 1 x 7 is the smaller value, $ œ 1.
Step 1:
Step 2:
kx (3)k $ Ê $ x $ $ Ê $ 3 x $ 3
$ 3 œ 7# Ê $ œ "# , or $ $ œ "# Ê $ œ 5# .
2.
3.
The value of $ which assures kx (3)k $ Ê 7# x "# is the smaller value, $ œ "# .
4.
Step 1:
¸x ˆ 3# ‰¸ $ Ê $ x
3
#
$ Ê $
3
#
x$
3
#
Step 2:
œ 7# Ê $ œ #, or $ 3# œ "# Ê $ œ 1.
The value of $ which assures ¸x ˆ 3# ‰¸ $ Ê 7# x "# is the smaller value, $ œ ".
Step 1:
¸x "# ¸ $ Ê $ x
$
3
#
5.
"
#
$ Ê $
"
#
x$
"
#
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
55
56
Chapter 2 Limits and Continuity
Step 2:
"
or $ #" œ 47 Ê $ œ 14
.
"¸
4
¸
The value of $ which assures x # $ Ê 9 x
$
"
#
œ
4
9
Ê $œ
"
18 ,
4
7
is the smaller value, $ œ
"
18 .
6.
Step 1:
Step 2:
kx 3k $ Ê $ x 3 $ Ê $ 3 x $ 3
$ $ œ 2.7591 Ê $ œ 0.2409, or $ $ œ 3.2391 Ê $ œ 0.2391.
The value of $ which assures kx 3k $ Ê 2.7591 x 3.2391 is the smaller value, $ œ 0.2391.
7. Step 1:
Step 2:
kx 5k $ Ê $ x 5 $ Ê $ 5 x $ 5
From the graph, $ 5 œ 4.9 Ê $ œ 0.1, or $ 5 œ 5.1 Ê $ œ 0.1; thus $ œ 0.1 in either case.
8. Step 1:
Step 2:
kx (3)k $ Ê $ x 3 $ Ê $ 3 x $ 3
From the graph, $ 3 œ 3.1 Ê $ œ 0.1, or $ 3 œ 2.9 Ê $ œ 0.1; thus $ œ 0.1.
9. Step 1:
Step 2:
kx 1k $ Ê $ x 1 $ Ê $ 1 x $ 1
9
7
From the graph, $ 1 œ 16
Ê $ œ 16
, or $ 1 œ 25
16 Ê $ œ
10. Step 1:
Step 2:
kx 3k $ Ê $ x 3 $ Ê $ 3 x $ 3
From the graph, $ 3 œ 2.61 Ê $ œ 0.39, or $ 3 œ 3.41 Ê $ œ 0.41; thus $ œ 0.39.
11. Step 1:
kx 2k $ Ê $ x 2 $ Ê $ 2 x $ 2
From the graph, $ 2 œ È3 Ê $ œ 2 È3 ¸ 0.2679, or $ 2 œ È5 Ê $ œ È5 2 ¸ 0.2361;
thus $ œ È5 2.
Step 2:
12. Step 1:
Step 2:
9
16 ;
thus $ œ
kx (1)k $ Ê $ x 1 $ Ê $ 1 x $ 1
From the graph, $ 1 œ
thus $ œ
È5 2
# .
È5
#
Ê $œ
È5 2
#
¸ 0.1180, or $ 1 œ
13. Step 1:
Step 2:
kx (1)k $ Ê $ x 1 $ Ê $ 1 x $ 1
7
16
From the graph, $ 1 œ 16
9 Ê $ œ 9 ¸ 0.77, or $ 1 œ 25 Ê
14. Step 1:
¸x "# ¸ $ Ê $ x
Step 2:
7
16 .
From the graph, $
thus $ œ 0.00248.
"
#
œ
"
#
1
2.01
$ Ê $
Ê $œ
1
2
"
#
x$
"
#.01
"
#
¸ 0.00248, or $
"
#
œ
È3
#
9
25
Ê $œ
2 È3
#
œ 0.36; thus $ œ
1
1.99
Ê $œ
1
1.99
¸ 0.1340;
9
25
"
#
œ 0.36.
¸ 0.00251;
15. Step 1:
Step 2:
k(x 1) 5k 0.01 Ê kx 4k 0.01 Ê 0.01 x 4 0.01 Ê 3.99 x 4.01
kx 4k $ Ê $ x 4 $ Ê $ 4 x $ 4 Ê $ œ 0.01.
16. Step 1:
k(2x 2) (6)k 0.02 Ê k2x 4k 0.02 Ê 0.02 2x 4 0.02 Ê 4.02 2x 3.98
Ê 2.01 x 1.99
kx (2)k $ Ê $ x 2 $ Ê $ 2 x $ 2 Ê $ œ 0.01.
Step 2:
17. Step 1:
Step 2:
¹Èx 1 "¹ 0.1 Ê 0.1 Èx 1 " 0.1 Ê 0.9 Èx 1 1.1 Ê 0.81 x 1 1.21
Ê 0.19 x 0.21
kx 0k $ Ê $ x $ . Then, $ œ !Þ"* Ê $ œ !Þ"* or $ œ !Þ#"; thus, $ œ 0.19.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.3 The Precise Definition of a Limit
18. Step 1:
Step 2:
¸Èx "# ¸ 0.1 Ê 0.1 Èx "# 0.1 Ê 0.4 Èx 0.6 Ê 0.16 x 0.36
¸x "4 ¸ $ Ê $ x 4" $ Ê $ 4" x $ 4" .
Then, $
19. Step 1:
Step 2:
20. Step 1:
Step 2:
21. Step 1:
Step 2:
22. Step 1:
Step 2:
57
"
4
œ 0.16 Ê $ œ 0.09 or $
"
4
œ 0.36 Ê $ œ 0.11; thus $ œ 0.09.
¹È19 x $¹ " Ê " È19 x $ 1 Ê 2 È19 x % Ê 4 19 x 16
Ê % x 19 16 Ê 15 x 3 or 3 x 15
kx 10k $ Ê $ x 10 $ Ê $ 10 x $ 10.
Then $ 10 œ 3 Ê $ œ 7, or $ 10 œ 15 Ê $ œ 5; thus $ œ 5.
¹Èx 7 4¹ 1 Ê " Èx 7 % 1 Ê 3 Èx 7 5 Ê 9 x 7 25 Ê 16 x 32
kx 23k $ Ê $ x 23 $ Ê $ 23 x $ 23.
Then $ 23 œ 16 Ê $ œ 7, or $ 23 œ 32 Ê $ œ 9; thus $ œ 7.
¸ "x 4" ¸ 0.05 Ê 0.05
"
x
"
4
0.05 Ê 0.2
"
x
0.3 Ê
kx 4k $ Ê $ x 4 $ Ê $ 4 x $ 4.
2
2
Then $ % œ 10
3 or $ œ 3 , or $ 4 œ 5 or $ œ 1; thus $ œ 3 .
10
#
x
10
3
or
10
3
x 5.
kx# 3k !.1 Ê 0.1 x# 3 0.1 Ê 2.9 x# 3.1 Ê È2.9 x È3.1
¹x È3¹ $ Ê $ x È3 $ Ê $ È3 x $ È3.
Then $ È3 œ È2.9 Ê $ œ È3 È2.9 ¸ 0.0291, or $ È3 œ È3.1 Ê $ œ È3.1 È3 ¸ 0.0286;
thus $ œ 0.0286.
23. Step 1:
Step 2:
kx# 4k 0.5 Ê 0.5 x# 4 0.5 Ê 3.5 x# 4.5 Ê È3.5 kxk È4.5 Ê È4.5 x È3.5,
for x near 2.
kx (2)k $ Ê $ x 2 $ Ê $ # x $ 2.
Then $ # œ È4.5 Ê $ œ È4.5 # ¸ 0.1213, or $ # œ È3.5 Ê $ œ # È3.5 ¸ 0.1292;
thus $ œ È4.5 2 ¸ 0.12.
24. Step 1:
Step 2:
25. Step 1:
Step 2:
¸ "x (1)¸ 0.1 Ê 0.1
"
x
1 0.1 Ê 11
10
"
x
9
10
10
10
10
Ê 10
11 x 9 or 9 x 11 .
kx (1)k $ Ê $ x 1 $ Ê $ " x $ ".
"
10
"
Then $ " œ 10
9 Ê $ œ 9 , or $ " œ 11 Ê $ œ 11 ; thus $ œ
"
11 .
kax# 5b 11k " Ê kx# 16k 1 Ê " x# 16 1 Ê 15 x# 17 Ê È15 x È17.
kx 4k $ Ê $ x 4 $ Ê $ % x $ %.
Then $ % œ È15 Ê $ œ % È15 ¸ 0.1270, or $ % œ È17 Ê $ œ È17 % ¸ 0.1231;
thus $ œ È17 4 ¸ 0.12.
26. Step 1:
Step 2:
27. Step 1:
Step 2:
¸ 120
¸
x 5 " Ê "
120
x
&1 Ê 4
120
x
6 Ê
"
4
x
120
"
6
Ê 30 x 20 or 20 x 30.
kx 24k $ Ê $ x 24 $ Ê $ 24 x $ 24.
Then $ 24 œ 20 Ê $ œ 4, or $ 24 œ 30 Ê $ œ 6; thus Ê $ œ 4.
kmx 2mk 0.03 Ê 0.03 mx 2m 0.03 Ê 0.03 2m mx 0.03 2m Ê
0.03
2 0.03
m x2 m .
kx 2k $ Ê $ x 2 $ Ê $ 2 x $ 2.
0.03
0.03
Then $ 2 œ 2 0.03
m Ê $ œ m , or $ 2 œ # m Ê $ œ
0.03
m .
In either case, $ œ
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
0.03
m .
58
Chapter 2 Limits and Continuity
kmx 3mk c Ê c mx 3m c Ê c 3m mx c 3m Ê 3
28. Step 1:
kx 3k $ Ê $ x 3 $ Ê $ $ B $ $.
Then $ $ œ $ mc Ê $ œ mc , or $ $ œ $ mc Ê $ œ
Step 2:
¸(mx b) ˆ m# b‰¸ - Ê c mx m# c Ê c
¸x "# ¸ $ Ê $ x "# $ Ê $ "# x $ "# .
29. Step 1:
Step 2:
Then $
"
#
œ
"
#
c
m
Ê $œ
c
m,
or $
"
#
œ
"
#
c
m
c
m.
m
#
Ê $œ
c
m
x 3
In either case, $ œ
c
m.
c
m.
"
#
In either case, $ œ
c
m.
mx c
m
#
Ê
c
m
c
m
x
"
#
c
m.
k(mx b) (m b)k 0.05 Ê 0.05 mx m 0.05 Ê 0.05 m mx 0.05 m
0.05
Ê 1 0.05
m x" m .
30. Step 1:
kx 1k $ Ê $ x 1 $ Ê $ " x $ ".
0.05
0.05
Then $ " œ " 0.05
m Ê $ œ m , or $ " œ " m Ê $ œ
Step 2:
0.05
m .
In either case, $ œ
0.05
m .
31. lim (3 2x) œ 3 2(3) œ 3
xÄ3
ka3 2xb (3)k 0.02 Ê 0.02 6 2x 0.02 Ê 6.02 2x 5.98 Ê 3.01 x 2.99 or
2.99 x 3.01.
0 k x 3k $ Ê $ x 3 $ Ê $ $ x $ $ .
Then $ $ œ 2.99 Ê $ œ 0.01, or $ $ œ 3.01 Ê $ œ 0.01; thus $ œ 0.01.
Step 1:
Step 2:
32.
lim (3x #) œ (3)(1) 2 œ 1
x Ä 1
k(3x 2) 1k 0.03 Ê 0.03 3x 3 0.03 Ê 0.01 x 1 0.01 Ê 1.01 x 0.99.
kx (1)k $ Ê $ x 1 $ Ê $ " x $ 1.
Then $ " œ 1.01 Ê $ œ 0.01, or $ " œ 0.99 Ê $ œ 0.01; thus $ œ 0.01.
Step 1:
Step 2:
33. lim
x# 4
x Ä # x#
34.
35.
œ lim
xÄ#
#
(x 2)(x 2)
(x 2)
œ lim (x 2) œ # # œ 4, x Á 2
xÄ#
(x 2)(x 2)
(x 2)
Step 1:
¹Š xx 24 ‹
Step 2:
Ê 1.95 x 2.05, x Á 2.
kx 2k $ Ê $ x 2 $ Ê $ 2 x $ 2.
Then $ 2 œ 1.95 Ê $ œ 0.05, or $ 2 œ 2.05 Ê $ œ 0.05; thus $ œ 0.05.
lim
x Ä &
x# 6x 5
x5
4¹ 0.05 Ê 0.05
œ lim
x Ä &
(x 5)(x 1)
(x 5)
% 0.05 Ê 3.95 x 2 4.05, x Á 2
œ lim (x 1) œ 4, x Á 5.
x Ä &
(x 5)(x ")
(x 5)
Step 1:
#
¹Š x x 6x5 5 ‹
Step 2:
Ê 5.05 x 4.95, x Á 5.
kx (5)k $ Ê $ x 5 $ Ê $ & x $ &.
Then $ & œ 5.05 Ê $ œ 0.05, or $ & œ 4.95 Ê $ œ 0.05; thus $ œ 0.05.
(4)¹ 0.05 Ê 0.05
4 0.05 Ê 4.05 x 1 3.95, x Á 5
lim È1 5x œ È1 5(3) œ È16 œ 4
x Ä $
Step 1:
¹È1 5x 4¹ 0.5 Ê 0.5 È1 5x 4 0.5 Ê 3.5 È1 5x 4.5 Ê 12.25 1 5x 20.25
Step 2:
Ê 11.25 5x 19.25 Ê 3.85 x 2.25.
kx (3)k $ Ê $ x 3 $ Ê $ $ x $ $.
Then $ $ œ 3.85 Ê $ œ 0.85, or $ $ œ 2.25 Ê 0.75; thus $ œ 0.75.
36. lim
4
xÄ# x
Step 1:
œ
4
#
œ2
¸ 4x 2¸ 0.4 Ê 0.4
4
x
2 0.4 Ê 1.6
4
x
2.4 Ê
10
16
x
4
10
24
Ê
10
4
x
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
10
6
or
5
3
x 25 .
Section 2.3 The Precise Definition of a Limit
Step 2:
59
kx 2k $ Ê $ x 2 $ Ê $ # x $ #.
Then $ # œ 53 Ê $ œ "3 , or $ # œ #5 Ê $ œ "# ; thus $ œ 3" .
37. Step 1:
Step 2:
k(9 x) 5k % Ê % 4 x % Ê % 4 x % 4 Ê % % x 4 % Ê % % x 4 %.
kx 4k $ Ê $ x 4 $ Ê $ % x $ %.
Then $ 4 œ % 4 Ê $ œ %, or $ % œ % % Ê $ œ %. Thus choose $ œ %.
38. Step 1:
k(3x 7) 2k % Ê % 3x 9 % Ê 9 % 3x * % Ê 3
Step 2:
39. Step 1:
Step 2:
40. Step 1:
Step 2:
41. Step 1:
Step 2:
42. Step 1:
Step 2:
43. Step 1:
Step 2:
x 3 3% .
kx 3k $ Ê $ x 3 $ Ê $ 3 x $ 3.
Then $ 3 œ $ 3% Ê $ œ 3% , or $ 3 œ 3 3% Ê $ œ 3% . Thus choose $ œ 3% .
¹Èx 5 2¹ % Ê % Èx 5 2 % Ê 2 % Èx 5 2 % Ê (2 %)# x 5 (2 %)#
Ê (2 %)# & x (2 %)# 5.
kx 9k $ Ê $ x 9 $ Ê $ 9 x $ 9.
Then $ * œ %# %% * Ê $ œ %% %# , or $ * œ %# %% * Ê $ œ %% %# . Thus choose
the smaller distance, $ œ %% %# .
¹È4 x 2¹ % Ê % È4 x 2 % Ê 2 % È4 x 2 % Ê (2 %)# % x (2 %)#
Ê (2 %)# x 4 (2 %)# Ê (2 %)# % x (2 %)# %.
k x 0k $ Ê $ x $ .
Then $ œ (2 %)# 4 œ %# %% Ê $ œ %% %# , or $ œ (2 %)# 4 œ 4% %# . Thus choose
the smaller distance, $ œ 4% %# .
For x Á 1, kx# 1k % Ê % x# " % Ê " % x# " % Ê È1 % kxk È1 %
Ê È" % x È1 % near B œ ".
kx 1k $ Ê $ x 1 $ Ê $ " x $ ".
Then $ " œ È1 % Ê $ œ " È1 %, or $ 1 œ È" % Ê $ œ È" % 1. Choose
$ œ min š" È1 %ß È1 % "›, that is, the smaller of the two distances.
For x Á 2, kx# 4k % Ê % x# 4 % Ê 4 % x# 4 % Ê È4 % kxk È4 %
Ê È4 % x È4 % near B œ 2.
kx (2)k $ Ê $ x 2 $ Ê $ 2 x $ 2.
Then $ 2 œ È% % Ê $ œ È% % #, or $ # œ È% % Ê $ œ # È% %. Choose
$ œ min šÈ% % #ß # È% %› .
¸ "x 1¸ % Ê %
"
x
"% Ê "%
"
x
"% Ê
"
1%
%
"%,
"
1%.
x
kx 1k $ Ê $ x 1 $ Ê " $ x " $ .
Then " $ œ " " % Ê $ œ " " " % œ " % % , or " $ œ " " % Ê $ œ
Choose $ œ
44. Step 1:
%
3
"
"%
"œ
%
"%.
the smaller of the two distances.
¸ x"# "3 ¸ % Ê %
"
x#
"
3
% Ê
"
3
%
"
x#
"
3
% Ê
1 3%
3
"
x#
1 $%
3
3
È $.
Ê É 1 3 $% kxk É " 3 $% , or É " 3 $% x É "$
% for x near
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Ê
3
" $%
x#
3
" $%
60
Chapter 2 Limits and Continuity
Step 2:
¹x È3¹ $ Ê $ x È3 $ Ê È3 $ x È3 $ .
Then È3 $ œ É " 3 $% Ê $ œ È3 É " 3 $% , or È3 $ œ É " 3 $% Ê $ œ É " 3 $% È3.
Choose $ œ min šÈ3 É " 3 $% ß É " 3 $% È3›.
45. Step 1:
Step 2:
46. Step 1:
Step 2:
47. Step 1:
#
¹Š xx 3* ‹ (6)¹ % Ê % (x 3) 6 %, x Á 3 Ê % x 3 % Ê % $ x % $.
kx (3)k $ Ê $ x 3 $ Ê $ $ x $ 3.
Then $ $ œ % $ Ê $ œ %, or $ $ œ % $ Ê $ œ %. Choose $ œ %.
#
¹Š xx 11 ‹ 2¹ % Ê % (x 1) 2 %, x Á 1 Ê " % x " %.
kx 1k $ Ê $ x 1 $ Ê " $ x " $ .
Then " $ œ " % Ê $ œ %, or " $ œ " % Ê $ œ %. Choose $ œ %.
x 1: l(4 2x) 2l % Ê ! 2 2x % since x 1Þ Thus, 1
x
Step 2:
48. Step 1:
Step 2:
%
#
x !;
1. Thus, " Ÿ x 1 6% .
1: l(6x 4) 2l % Ê ! Ÿ 6x 6 % since x
kx 1k $ Ê $ x 1 $ Ê " $ x 1 $ .
Then 1 $ œ " #% Ê $ œ #% , or " $ œ 1 6% Ê $ œ 6% . Choose $ œ 6% .
x !: k2x 0k % Ê % 2x ! Ê #% x 0;
x 0: ¸ x# !¸ % Ê ! Ÿ x #%.
k x 0k $ Ê $ x $ .
Then $ œ #% Ê $ œ #% , or $ œ #% Ê $ œ #%. Choose $ œ #% .
49. By the figure, x Ÿ x sin
"
x
Ÿ x for all x 0 and x
x sin
then by the sandwich theorem, in either case, lim x sin
xÄ!
50. By the figure, x# Ÿ x# sin
"
x
"
x
"
x
x for x 0. Since lim (x) œ lim x œ 0,
xÄ!
œ 0.
xÄ!
Ÿ x# for all x except possibly at x œ 0. Since lim ax# b œ lim x# œ 0, then
by the sandwich theorem, lim x# sin
xÄ!
"
x
xÄ!
œ 0.
xÄ!
51. As x approaches the value 0, the values of g(x) approach k. Thus for every number % 0, there exists a $ !
such that ! kx 0k $ Ê kg(x) kk %.
52. Write x œ h c. Then ! lx cl $ Í $ x c $ , x Á c Í $ ah cb c $ , h c Á c
Í $ h $ , h Á ! Í ! lh !l $ .
Thus, limfaxb œ L Í for any % !, there exists $ ! such that lfaxb Ll % whenever ! lx cl $
x Äc
Í lfah cb Ll % whenever ! lh !l $ Í lim fah cb œ L.
hÄ!
53. Let f(x) œ x# . The function values do get closer to 1 as x approaches 0, but lim f(x) œ 0, not 1. The
function f(x) œ x# never gets arbitrarily close to 1 for x near 0.
xÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.3 The Precise Definition of a Limit
61
54. Let f(x) œ sin x, L œ "# , and x! œ 0. There exists a value of x (namely, x œ 16 ) for which ¸sin x "# ¸ % for any given
% 0. However, lim sin x œ 0, not "# . The wrong statement does not require x to be arbitrarily close to x! . As another\
xÄ!
example, let g(x) œ sin "x , L œ #" , and x! œ 0. We can choose infinitely many values of x near 0 such that sin
you can see from the accompanying figure. However, lim sin
xÄ!
"
x
"
x
œ
"
#
as
fails to exist. The wrong statement does not require all
values of x arbitrarily close to x! œ 0 to lie within % 0 of L œ "# . Again you can see from the figure that there are also
infinitely many values of x near 0 such that sin "x œ 0. If we choose %
¸sin "x #" ¸ % for all values of x sufficiently near x! œ 0.
#
55. kA *k Ÿ 0.01 Ê 0.01 Ÿ 1 ˆ x# ‰ 9 Ÿ 0.01 Ê 8.99 Ÿ
Ê
2É 8.99
1
ŸxŸ
2É 9.01
1
1 x#
4
"
4
we cannot satisfy the inequality
Ÿ 9.01 Ê
4
1
(8.99) Ÿ x# Ÿ
4
1
(9.01)
or 3.384 Ÿ x Ÿ 3.387. To be safe, the left endpoint was rounded up and the right
endpoint was rounded down.
56. V œ RI Ê
(120)(10)
51
V
R
ŸRŸ
œ I Ê ¸ VR 5¸ Ÿ 0.1 Ê 0.1 Ÿ
(120)(10)
49
120
R
5 Ÿ 0.1 Ê 4.9 Ÿ
120
R
Ÿ 5.1 Ê
10
49
R
1#0
10
51
Ê
Ê 23.53 Ÿ R Ÿ 24.48.
To be safe, the left endpoint was rounded up and the right endpoint was rounded down.
57. (a) $ x 1 0 Ê " $ x 1 Ê f(x) œ x. Then kf(x) 2k œ kx 2k œ 2 x 2 1 œ 1. That is,
kf(x) 2k 1 "# no matter how small $ is taken when " $ x 1 Ê lim f(x) Á 2.
xÄ1
(b) 0 x 1 $ Ê " x " $ Ê f(x) œ x 1. Then kf(x) 1k œ k(x 1) 1k œ kxk œ x 1. That is,
kf(x) 1k 1 no matter how small $ is taken when " x " $ Ê lim f(x) Á 1.
xÄ1
(c) $ x 1 ! Ê " $ x 1 Ê f(x) œ x. Then kf(x) 1.5k œ kx 1.5k œ 1.5 x 1.5 1 œ 0.5.
Also, ! x 1 $ Ê 1 x " $ Ê f(x) œ x 1. Then kf(x) 1.5k œ k(x 1) 1.5k œ kx 0.5k
œ x 0.5 " 0.5 œ 0.5. Thus, no matter how small $ is taken, there exists a value of x such that
$ x 1 $ but kf(x) 1.5k "# Ê lim f(x) Á 1.5.
xÄ1
58. (a) For 2 x 2 $ Ê h(x) œ 2 Ê kh(x) 4k œ 2. Thus for % 2, kh(x) 4k
matter how small we choose $ 0 Ê lim h(x) Á 4.
% whenever 2 x 2 $ no
(b) For 2 x 2 $ Ê h(x) œ 2 Ê kh(x) 3k œ 1. Thus for % 1, kh(x) 3k
matter how small we choose $ 0 Ê lim h(x) Á 3.
% whenever 2 x 2 $ no
xÄ#
xÄ#
(c) For 2 $ x 2 Ê h(x) œ x# so kh(x) 2k œ kx# 2k . No matter how small $ 0 is chosen, x# is close to 4
when x is near 2 and to the left on the real line Ê kx# 2k will be close to 2. Thus if % 1, kh(x) 2k %
whenever 2 $ x 2 no mater how small we choose $ 0 Ê lim h(x) Á 2.
xÄ#
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
62
Chapter 2 Limits and Continuity
59. (a) For 3 $ x 3 Ê f(x) 4.8 Ê kf(x) 4k 0.8. Thus for % 0.8, kf(x) 4k
3 $ x 3 no matter how small we choose $ 0 Ê lim f(x) Á 4.
xÄ$
% whenever
(b) For 3 x 3 $ Ê f(x) 3 Ê kf(x) 4.8k 1.8. Thus for % 1.8, kf(x) 4.8k
no matter how small we choose $ 0 Ê lim f(x) Á 4.8.
% whenever 3 x 3 $
(c) For 3 $ x 3 Ê f(x) 4.8 Ê kf(x) 3k 1.8. Again, for % 1.8, kf(x) 3k
no matter how small we choose $ 0 Ê lim f(x) Á 3.
% whenever $ $ x 3
xÄ$
xÄ$
60. (a) No matter how small we choose $ 0, for x near 1 satisfying " $ x " $ , the values of g(x) are
near 1 Ê kg(x) 2k is near 1. Then, for % œ "# we have kg(x) 2k "# for some x satisfying
" $ x " $ , or ! kx 1k $ Ê
lim g(x) Á 2.
x Ä 1
(b) Yes, lim g(x) œ 1 because from the graph we can find a $ ! such that kg(x) 1k % if ! kx (1)k $ .
x Ä 1
61-66. Example CAS commands (values of del may vary for a specified eps):
Maple:
f := x -> (x^4-81)/(x-3);x0 := 3;
plot( f(x), x=x0-1..x0+1, color=black,
# (a)
title="Section 2.3, #61(a)" );
L := limit( f(x), x=x0 );
# (b)
epsilon := 0.2;
# (c)
plot( [f(x),L-epsilon,L+epsilon], x=x0-0.01..x0+0.01,
color=black, linestyle=[1,3,3], title="Section 2.3, #61(c)" );
q := fsolve( abs( f(x)-L ) = epsilon, x=x0-1..x0+1 ); # (d)
delta := abs(x0-q);
plot( [f(x),L-epsilon,L+epsilon], x=x0-delta..x0+delta, color=black, title="Section 2.3, #61(d)" );
for eps in [0.1, 0.005, 0.001 ] do
# (e)
q := fsolve( abs( f(x)-L ) = eps, x=x0-1..x0+1 );
delta := abs(x0-q);
head := sprintf("Section 2.3, #61(e)\n epsilon = %5f, delta = %5f\n", eps, delta );
print(plot( [f(x),L-eps,L+eps], x=x0-delta..x0+delta,
color=black, linestyle=[1,3,3], title=head ));
end do:
Mathematica (assigned function and values for x0, eps and del may vary):
Clear[f, x]
y1: œ L eps; y2: œ L eps; x0 œ 1;
f[x_]: œ (3x2 (7x 1)Sqrt[x] 5)/(x 1)
Plot[f[x], {x, x0 0.2, x0 0.2}]
L: œ Limit[f[x], x Ä x0]
eps œ 0.1; del œ 0.2;
Plot[{f[x], y1, y2},{x, x0 del, x0 del}, PlotRange Ä {L 2eps, L 2eps}]
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.4 One-Sided Limits
2.4 ONE-SIDED LIMITS
1. (a) True
(e) True
(i) False
(b) True
(f) True
(j) False
(c) False
(g) False
(k) True
(d) True
(h) False
(l) False
2. (a) True
(e) True
(i) True
(b) False
(f) True
(j) False
(c) False
(g) True
(k) True
(d) True
(h) True
3. (a)
lim f(x) œ
x Ä #b
2
#
" œ #, lim c f(x) œ $ # œ "
xÄ#
(b) No, lim f(x) does not exist because lim b f(x) Á lim c f(x)
xÄ#
xÄ#
xÄ#
(c) lim c f(x) œ 4# 1 œ 3, lim b f(x) œ 4# " œ $
xÄ%
xÄ%
(d) Yes, lim f(x) œ 3 because 3 œ lim c f(x) œ lim b f(x)
xÄ%
xÄ%
xÄ%
4. (a)
lim f(x) œ
x Ä #b
2
#
œ 1, lim c f(x) œ $ # œ ", f(2) œ 2
xÄ#
(b) Yes, lim f(x) œ 1 because " œ lim b f(x) œ lim c f(x)
xÄ#
xÄ#
xÄ#
(c)
lim c f(x) œ 3 (1) œ 4, lim b f(x) œ 3 (1) œ 4
x Ä "
x Ä "
(d) Yes, lim f(x) œ 4 because 4 œ
x Ä "
lim
x Ä "c
f(x) œ
lim
x Ä "b
f(x)
5. (a) No, lim b f(x) does not exist since sin ˆ "x ‰ does not approach any single value as x approaches 0
xÄ!
(b) lim c f(x) œ lim c 0 œ 0
xÄ!
(c)
xÄ!
lim f(x) does not exist because lim b f(x) does not exist
xÄ!
xÄ!
6. (a) Yes, lim b g(x) œ 0 by the sandwich theorem since Èx Ÿ g(x) Ÿ Èx when x 0
xÄ!
(b) No, lim c g(x) does not exist since Èx is not defined for x 0
xÄ!
(c) No, lim g(x) does not exist since lim c g(x) does not exist
xÄ!
xÄ!
7. (aÑ
lim f(x) œ " œ lim b f(x)
xÄ1
(c) Yes, lim f(x) œ 1 since the right-hand and left-hand
(b)
x Ä 1c
xÄ1
limits exist and equal 1
8. (a)
(b)
lim f(x) œ 0 œ lim c f(x)
xÄ1
x Ä 1b
(c) Yes, lim f(x) œ 0 since the right-hand and left-hand
xÄ1
limits exist and equal 0
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
63
64
Chapter 2 Limits and Continuity
9. (a) domain: 0 Ÿ x Ÿ 2
range: 0 y Ÿ 1 and y œ 2
(b) xlim
f(x) exists for c belonging to
Äc
(0ß 1) ("ß #)
(c) x œ 2
(d) x œ 0
10. (a) domain: _ x _
range: " Ÿ y Ÿ 1
(b) xlim
f(x) exists for c belonging to
Äc
(_ß 1) ("ß ") ("ß _)
(c) none
(d) none
11.
x Ä !Þ&c
lim
13.
x Ä #b
14.
x Ä 1c
15.
h Ä !b
lim
2
0.5 2
È3
É 3/2
É xx
É
1 œ
0.5 1 œ
1/2 œ
lim
x Ä 1b
"
1
È0 œ !
É "1
É xx
# œ
# œ
5‰
ˆ x x 1 ‰ ˆ 2x
ˆ 2 ‰ 2(2) 5
ˆ1‰
x# x œ 2 1 Š (2)# (2) ‹ œ (2) 2 œ 1
lim
ˆ x " 1 ‰ ˆ x x 6 ‰ ˆ 3 7 x ‰ œ ˆ 1 " 1 ‰ ˆ 1 1 6 ‰ ˆ 3 7 1 ‰ œ ˆ "# ‰ ˆ 71 ‰ ˆ 27 ‰ œ 1
lim
Èh# 4h 5 È5
h
œ lim b
hÄ!
16.
12.
lim
h Ä !c
(b)
18. (a)
(b)
ah# 4h 5b 5
h ŠÈh# 4h 5 È5‹
È6 È5h# 11h 6
h
œ lim c
hÄ!
17. (a)
œ lim b Š
hÄ!
x Ä #c
lim
x Ä 1b
lim
x Ä 1c
œ lim c Š
hÄ!
6 a5h# 11h 6b
lim
lim
œ lim b
hÄ!
h ŠÈ6 È5h# 11h 6‹
x Ä #b
kx 2 k
x 2
(x 3)
œ
kx 2 k
x2
œ
lim
lim
x Ä #c
È2x (x 1)
kx 1 k
È2x (x 1)
kx 1 k
œ lim b
xÄ1
h(5h 11)
h ŠÈ6 È5h# 11h 6‹
(x 3)
x Ä #b
œ
œ
04
È5 È5
œ
2
È5
È5h# 11h 6
È6 È5h# 11h 6
È
‹ Š È66
‹
h
È5h# 11h 6
x Ä #b
lim
h(h 4)
h ŠÈh# 4h 5 È5‹
œ lim c
hÄ!
œ
(x 3)
Èh# 4h 5 È5
È # 4h 5 È5
‹ Š Èhh#
‹
h
4h 5 È5
(x2)
(x#)
(0 11)
È6 È6
11
œ 2È
6
akx 2k œ ax 2b for x 2b
(x 3) œ a(2) 3b œ 1
(x 3) ’ (x(x#2)
) “
lim
œ
x Ä #c
akx 2k œ (x 2) for x 2b
(x 3)(1) œ (2 3) œ 1
È2x (x 1)
(x 1)
akx 1k œ x 1 for x 1b
œ lim b È2x œ È2
xÄ1
œ lim c
xÄ1
È2x (x 1)
(x 1)
akx 1k œ (x 1) for x 1b
œ lim c È2x œ È2
xÄ1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.4 One-Sided Limits
19. (a)
) Ä $b
20. (a)
t Ä %b
Ú) Û
)
lim
œ1
3
3
lim at ÚtÛb œ 4 4 œ 0
21. lim
sin È2)
È 2)
22. lim
sin kt
t
23. lim
sin 3y
4y
)Ä!
tÄ!
yÄ!
24.
œ
tan 2x
x
xÄ!
25. lim
2t
27. lim
xÄ!
)Ä!
œ lim c ˆ "3 †
hÄ!
sin 2x ‰
ˆ cos
2x
x
xÄ!
œ lim
œ 2 lim
t
sin t
t Ä ! ˆ cos t ‰
x csc 2x
cos 5x
œ
3h ‰
sin 3h
x x cos x
2
3
lim at ÚtÛb œ 4 3 œ 1
" ‰
cos 5x
xÄ!
œ
"
3
Œ
œ
"
lim
)Ä!c
(where ) œ kt)
(where ) œ 3y)
3
4
"
3
œ
sin )
)
"
‹ Š lim
x Ä ! cos 2x
xÄ!
œ Š #" lim
†1œ
2 sin 2x
#x ‹
t
Ä!
"
3
(where ) œ 3h)
œ1†2œ2
t
"
‹ Š lim cos 5x ‹
x Ä ! sin 2x
xÄ!
6x# cos x
œ lim ˆ sin xxcos x
œk†1œk
tÄ!
x Ä ! sin x sin 2x
x Ä ! sin x cos x
t Ä %c
œ
œ 2 Š lim cos t‹ Œ lim" sin t œ 2 † " † " œ 2
t cos t
sin t
tÄ!
xÄ!
(b)
Ú) Û
)
lim
3
sin )
4 )lim
Ä! )
œ
œ Š lim
sin 2x
x Ä ! x cos 2x
œ 2 lim
xÄ!
)Ä!
"
"
sin 3h
3 h lim
Ä !c ˆ 3h ‰
œ
œ lim
œ lim ˆ sinx2x †
sin )
)
œ k lim
sin 3y
3
4 ylim
Ä ! 3y
28. lim 6x# (cot x)(csc 2x) œ lim
29. lim
k sin )
)
œ lim
3 sin 3y
"
4 ylim
3y
Ä!
œ
h
t Ä ! tan t
k sin kt
kt
tÄ!
) Ä $c
(where x œ È2))
œ1
sin x
x
xÄ!
œ lim
lim
h Ä !c sin 3h
26. lim
œ lim
(b)
2x
œ lim ˆ3 cos x †
x
sin x
xÄ!
x cos x ‰
sin x cos x
œ lim ˆ sinx x †
xÄ!
†
œ ˆ #" † 1‰ (1) œ
2x ‰
sin 2x
" ‰
cos x
"
#
œ3†"†1œ3
lim
x
x Ä ! sin x
œ lim Š sin" x ‹ † lim ˆ cos" x ‰ lim Š sin" x ‹ œ (1)(1) 1 œ 2
xÄ!
30. lim
xÄ!
xÄ!
x
x# x sin x
#x
1 cos )
) Ä ! sin 2)
31. lim
œ lim
)Ä!
)Ä!
34. lim
sin (sin h)
sin h
sin )
) Ä ! sin 2)
36. lim
sin 5x
x Ä ! sin 4x
œ
œ lim
)Ä!
œ lim
)Ä!
sin )
)
sin )
)
)Ä!
"# (1) œ 0
1 cos2 )
a2sin ) cos )ba1 cos )b
œ lim
)Ä!
sin2 )
a2sin ) cos )ba1 cos )b
œ lim
xÄ!
xa1 c cos xb
9x2
sin2 3x
9x2
œ lim
1 c cos x
9x
2
x Ä ! ˆ sin3x3x ‰
œ
" lim ˆ 1
9
x
Ä!
cos x ‰
x
2
lim ˆ sin3x3x ‰
xÄ!
œ
"
9 a0 b
12
œ0
œ 1 since ) œ sin h Ä 0 as h Ä 0
2) ‰
#)
5x
œ lim ˆ sin
sin 4x †
4x
5x
)Ä!
œ lim
"
#
œ 1 since ) œ 1 cos t Ä 0 as t Ä 0
sin )
œ lim ˆ sin
2) †
xÄ!
"# ˆ sinx x ‰‰ œ 0
œ0
0
a2ba2b
xa1 cos xb
sin2 3x
xÄ!
sin(1 cos t)
1cos t
x
a1 cos )ba1 cos )b
a2sin ) cos )ba1 cos )b
œ lim
33. lim
35. lim
"
#
xÄ!
œ lim
x x cos x
sin2 3x
xÄ!
hÄ!
œ lim ˆ #x
sin )
a2cos )ba1 cos )b
32. lim
tÄ!
xÄ!
œ
"
# )lim
Ä!
† 54 ‰ œ
ˆ sin) ) †
5
4 xlim
Ä!
2) ‰
sin 2)
ˆ sin5x5x †
œ
"
#
4x ‰
sin 4x
†1†1œ
œ
5
4
"
#
†1†1œ
5
4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
65
66
Chapter 2 Limits and Continuity
37. lim ) cos ) œ 0 † 1 œ 0
)Ä!
38. lim sin ) cot 2) œ lim sin )
)Ä!
)Ä!
tan 3x
39. lim
x Ä ! sin 8x
œ
3
8 xlim
Ä!
40. lim
yÄ!
œ
sin 3x
œ lim ˆ cos
3x †
xÄ!
" ‰
sin 8x
œ lim sin )
)Ä!
œ lim
xÄ!
3
8
†1†1†1œ
sin 3y sin 4y cos 5y
y cos 4y sin 5y
yÄ!
œ lim
) cot 4)
2
2
) Ä ! sin ) cot 2)
42. lim
)Ä!
sin )
cos )
3)
2
) cos
sin 3)
œ lim
)Ä!
2
lim 4) cos2 4) cos )
) Ä ! cos 2) sin 4)
œ lim
cos 4)
sin 4)
2 2)
2
sin ) cos
sin2 2)
"
sin 8x
cos 2)
) Ä ! 2 cos )
†
8x
3x
œ
1
2
† 83 ‰
3
8
yÄ!
sin ) sin 3)
2
) Ä ! ) cos ) cos 3)
)
œ lim
sin 4y
cos 5y
3†4†5y
œ lim Š siny3y ‹ Š cos
4y ‹ Š sin 5y ‹ Š 3†4†5y ‹
cos 5y ˆ 3†4 ‰
lim Š sin3y3y ‹ Š sin4y4y ‹ Š sin5y5y ‹ Š cos
4y ‹ 5
yÄ!
tan )
2
) Ä ! ) cot 3)
cos 2)
2sin ) cos )
sin 3x
œ lim ˆ cos
3x †
ˆ cos"3x ‰ ˆ sin3x3x ‰ ˆ sin8x8x ‰ œ
sin 3y cot 5y
y cot 4y
41. lim
œ
cos 2)
sin 2)
œ1†1†1†1†
œ
12
5
œ lim ˆ sin) ) ‰ˆ sin3)3) ‰ˆ cos ) 3cos 3) ‰ œ a1ba1bˆ 13†1 ‰ œ 3
)Ä!
) cos 4) sin2 2)
2
2
) Ä ! sin ) cos 2) sin 4)
œ lim
12
5
) cos 4) a2sin ) cos )b2
2
2
) Ä ! sin ) cos 2) sin 4)
œ lim
) cos 4) ˆ4sin2 ) cos2 )‰
2
2
) Ä ! sin ) cos 2) sin 4)
œ lim
4) cos )
4) cos )
œ lim ˆ sin4)4) ‰Š coscos
‹ œ lim Š sin14) ‹Š coscos
‹ œ ˆ 11 ‰Š 11†12 ‹ œ 1
2 2)
2 2)
2
)Ä!
2
)Ä!
2
4)
43. Yes. If lim b f(x) œ L œ lim c f(x), then xlim
f(x) œ L. If lim b f(x) Á lim c f(x), then xlim
f(x) does not exist.
Äa
Äa
xÄa
xÄa
xÄa
xÄa
44. Since xlim
f(x) œ L if and only if lim b f(x) œ L and lim c f(x) œ L, then xlim
f(x) can be found by calculating
Äc
Äc
xÄc
xÄc
lim b f(x).
xÄc
45. If f is an odd function of x, then f(x) œ f(x). Given lim b f(x) œ 3, then lim c f(x) œ $.
xÄ!
xÄ!
46. If f is an even function of x, then f(x) œ f(x). Given lim c f(x) œ 7 then
xÄ#
can be said about
lim
x Ä #c
lim
x Ä #b
f(x) œ 7. However, nothing
f(x) because we don't know lim b f(x).
xÄ#
47. I œ (5ß 5 $ ) Ê 5 x & $ . Also, Èx 5 % Ê x 5 %# Ê x & %# . Choose $ œ %#
Ê lim Èx 5 œ 0.
x Ä &b
48. I œ (% $ ß %) Ê % $ x 4. Also, È% x % Ê % x %# Ê x % %# . Choose $ œ %#
Ê lim È% x œ 0.
x Ä %c
49. As x Ä 0 the number x is always negative. Thus, ¹ kxxk (1)¹ % Ê ¸ xx 1¸ % Ê 0 % which is always
true independent of the value of x. Hence we can choose any $ 0 with $ x ! Ê
2
¸ x 2
¸
50. Since x Ä # we have x 2 and kx 2k œ x 2. Then, ¹ kxx
2 k " ¹ œ x 2 " % Ê 0 %
which is always true so long as x #. Hence we can choose any $ !, and thus # x # $
2
Ê ¹ kxx
2k "¹ % . Thus,
x 2
lim
x Ä #b kx2k
x
lim
x Ä ! c kx k
œ 1.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ 1.
Section 2.5 Continuity
51. (a)
(b)
lim
x Ä %!!b
67
ÚxÛ œ 400. Just observe that if 400 x 401, then ÚxÛ œ 400. Thus if we choose $ œ ", we have for any
number % ! that 400 x 400 $ Ê lÚxÛ 400l œ l400 400l œ ! %.
lim c ÚxÛ œ 399. Just observe that if 399 x 400 then ÚxÛ œ 399. Thus if we choose $ œ ", we have for any
x Ä %!!
number % ! that 400 $ x 400 Ê lÚxÛ 399l œ l399 399l œ ! %.
(c) Since lim b ÚxÛ Á lim c ÚxÛ we conclude that lim ÚxÛ does not exist.
x Ä %!!
x Ä %!!
52. (a)
x Ä %!!
lim f(x) œ lim b Èx œ È0 œ 0; ¸Èx 0¸ % Ê % Èx % Ê ! x %# for x positive. Choose $ œ %#
xÄ!
Ê lim b f(x) œ 0.
x Ä !b
xÄ!
(b)
lim f(x) œ lim c x# sin ˆ x" ‰ œ 0 by the sandwich theorem since x# Ÿ x# sin ˆ x" ‰ Ÿ x# for all x Á 0.
x Ä !c
xÄ!
Since kx# 0k œ kx# 0k œ x# % whenever kxk È%, we choose $ œ È% and obtain ¸x# sin ˆ "x ‰ 0¸ %
if $ x 0.
(c) The function f has limit 0 at x! œ 0 since both the right-hand and left-hand limits exist and equal 0.
2.5 CONTINUITY
1. No, discontinuous at x œ 2, not defined at x œ 2
2. No, discontinuous at x œ 3, " œ lim c g(x) Á g(3) œ 1.5
xÄ$
3. Continuous on [1ß 3]
4. No, discontinuous at x œ 1, 1.5 œ lim c k(x) Á lim b k(x) œ !
xÄ"
xÄ"
5. (a) Yes
(b) Yes,
(c) Yes
(d) Yes
6. (a) Yes, f(1) œ 1
lim
x Ä "b
f(x) œ 0
(b) Yes, lim f(x) œ 2
xÄ1
(c) No
(d) No
7. (a) No
(b) No
8. ["ß !) (!ß ") ("ß #) (#ß $)
9. f(2) œ 0, since lim c f(x) œ 2(2) 4 œ 0 œ lim b f(x)
xÄ#
xÄ#
10. f(1) should be changed to 2 œ lim f(x)
xÄ1
11. Nonremovable discontinuity at x œ 1 because lim f(x) fails to exist ( limc f(x) œ 1 and lim b f(x) œ 0).
xÄ"
xÄ1
xÄ"
Removable discontinuity at x œ 0 by assigning the number lim f(x) œ 0 to be the value of f(0) rather than f(0) œ 1.
xÄ!
12. Nonremovable discontinuity at x œ 1 because lim f(x) fails to exist ( lim c f(x) œ 2 and lim b f(x) œ 1).
xÄ"
xÄ1
xÄ"
Removable discontinuity at x œ 2 by assigning the number lim f(x) œ 1 to be the value of f(2) rather than f(2) œ 2.
xÄ#
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
68
Chapter 2 Limits and Continuity
13. Discontinuous only when x 2 œ 0 Ê x œ 2
14. Discontinuous only when (x 2)# œ 0 Ê x œ 2
15. Discontinuous only when x# %x $ œ ! Ê (x 3)(x 1) œ 0 Ê x œ 3 or x œ 1
16. Discontinuous only when x# 3x 10 œ 0 Ê (x 5)(x 2) œ 0 Ê x œ 5 or x œ 2
17. Continuous everywhere. ( kx 1k sin x defined for all x; limits exist and are equal to function values.)
18. Continuous everywhere. ( kxk " Á 0 for all x; limits exist and are equal to function values.)
19. Discontinuous only at x œ 0
20. Discontinuous at odd integer multiples of 1# , i.e., x = (2n ") 1# , n an integer, but continuous at all other x.
21. Discontinuous when 2x is an integer multiple of 1, i.e., 2x œ n1, n an integer Ê x œ
n1
# ,
n an integer, but
continuous at all other x.
22. Discontinuous when
1x
#
is an odd integer multiple of 1# , i.e.,
1x
#
œ (2n 1) 1# , n an integer Ê x œ 2n 1, n an
integer (i.e., x is an odd integer). Continuous everywhere else.
23. Discontinuous at odd integer multiples of 1# , i.e., x = (2n 1) 1# , n an integer, but continuous at all other x.
24. Continuous everywhere since x% 1
and are equal to the function values.
1 and " Ÿ sin x Ÿ 1 Ê 0 Ÿ sin# x Ÿ 1 Ê 1 sin# x
1; limits exist
25. Discontinuous when 2x 3 0 or x 3# Ê continuous on the interval 3# ß _‰ .
26. Discontinuous when 3x 1 0 or x
"
3
Ê continuous on the interval 3" ß _‰ .
27. Continuous everywhere: (2x 1)"Î$ is defined for all x; limits exist and are equal to function values.
28. Continuous everywhere: (2 x)"Î& is defined for all x; limits exist and are equal to function values.
29. Continuous everywhere since lim
xÄ3
30. Discontinuous at x œ 2 since
x2 x 6
x3
œ lim
xÄ3
ax 3bax 2b
x3
œ lim ax 2b œ 5 œ ga3b
xÄ3
lim faxb does not exist while fa2b œ 4.
x Ä 2
31. xlim
sin (x sin x) œ sin (1 sin 1) œ sin (1 0) œ sin 1 œ 0, and function continuous at x œ 1.
Ä1
32. lim sin ˆ 1# cos (tan t)‰ œ sin ˆ 1# cos (tan (0))‰ œ sin ˆ 1# cos (0)‰ œ sin ˆ 1# ‰ œ 1, and function continuous at t œ !.
tÄ!
33. lim sec ay sec# y tan# y 1b œ lim sec ay sec# y sec# yb œ lim sec a(y 1) sec# yb œ sec a(" ") sec# 1b
yÄ1
yÄ1
yÄ1
œ sec 0 œ 1, and function continuous at y œ ".
34. lim tan 14 cos ˆsin x"Î$ ‰‘ œ tan 14 cos (sin(0))‘ œ tan ˆ 14 cos (0)‰ œ tan ˆ 14 ‰ œ 1, and function continuous at x œ !.
xÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.5 Continuity
35. lim cos ’ È19 13 sec 2t “ œ cos ’ È19 13 sec 0 “ œ cos
tÄ!
1
È16
œ cos
1
4
œ
È2
# ,
and function continuous at t œ !.
36. lim1 Écsc# x 5È3 tan x œ Écsc# ˆ 16 ‰ 5È3 tan ˆ 16 ‰ œ Ê4 5È3 Š È"3 ‹ œ È9 œ 3, and function continuous at
xÄ
'
x œ 1' .
37. g(x) œ
x# 9
x3
(x 3)(x 3)
(x 3)
œ
38. h(t) œ
t# 3t 10
t#
39. f(s) œ
s$ "
s# 1
40. g(x) œ
œ
œ
œ x 3, x Á 3 Ê g(3) œ lim (x 3) œ 6
xÄ$
(t 5)(t 2)
t#
as# s 1b (s 1)
(s 1)(s 1)
x# 16
x# 3x 4
œ
œ t 5, t Á # Ê h(2) œ lim (t 5) œ 7
tÄ#
s# s "
s1 ,
œ
(x 4)(x 4)
(x 4)(x 1)
œ
x4
x1
s Á 1 Ê f(1) œ lim Š s
sÄ1
#
s1
s1 ‹
4‰
, x Á 4 Ê g(4) œ lim ˆ xx
1 œ
xÄ%
œ
3
#
8
5
41. As defined, lim c f(x) œ (3)# 1 œ 8 and lim b (2a)(3) œ 6a. For f(x) to be continuous we must have
xÄ$
xÄ$
6a œ 8 Ê a œ 43 .
42. As defined,
lim
x Ä #c
g(x) œ 2 and
4b œ 2 Ê b œ "# .
lim
x Ä #b
g(x) œ b(2)# œ 4b. For g(x) to be continuous we must have
43. As defined, lim c f(x) œ 12 and lim b f(x) œ a# a2b 2a œ 2a# 2a. For f(x) to be continuous we must have
xÄ#
xÄ#
12 œ 2a# 2a Ê a œ 3 or a œ 2.
44. As defined, lim c g(x) œ
b
b1
xÄ0
0b
b1
œ
b
b1
œ b Ê b œ 0 or b œ 2.
45. As defined,
lim
x Ä 1 c
f(x) œ 2 and
and lim b g(x) œ a0b2 b œ b. For g(x) to be continuous we must have
xÄ0
lim
x Ä 1 b
f(x) œ aa1b b œ a b, and
lim f(x) œ aa1b b œ a b and
x Ä 1c
lim f(x) œ 3. For f(x) to be continuous we must have 2 œ a b and a b œ 3 Ê a œ
x Ä 1b
5
#
and b œ "# .
46. As defined, lim c g(x) œ aa0b 2b œ 2b and lim b g(x) œ a0b2 3a b œ 3a b, and
xÄ0
xÄ0
lim g(x) œ a2b2 3a b œ 4 3a b and lim b g(x) œ 3a2b 5 œ 1. For g(x) to be continuous we must
xÄ0
x Ä 2c
have 2b œ 3a b and 4 3a b œ 1 Ê a œ 3# and b œ 3# .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
69
70
Chapter 2 Limits and Continuity
47. The function can be extended: f(0) ¸ 2.3.
48. The function cannot be extended to be continuous at
x œ 0. If f(0) ¸ 2.3, it will be continuous from the
right. Or if f(0) ¸ 2.3, it will be continuous from the
left.
49. The function cannot be extended to be continuous
at x œ 0. If f(0) œ 1, it will be continuous from
the right. Or if f(0) œ 1, it will be continuous
from the left.
50. The function can be extended: f(0) ¸ 7.39.
51. f(x) is continuous on [!ß "] and f(0) 0, f(1) 0
Ê by the Intermediate Value Theorem f(x) takes
on every value between f(0) and f(1) Ê the
equation f(x) œ 0 has at least one solution between
x œ 0 and x œ 1.
52. cos x œ x Ê (cos x) x œ 0. If x œ 1# , cos ˆ 1# ‰ ˆ 1# ‰ 0. If x œ 1# , cos ˆ 1# ‰
for some x between
1
#
and
1
#
1
#
0. Thus cos x x œ 0
according to the Intermediate Value Theorem, since the function cos x x is continuous.
53. Let f(x) œ x$ 15x 1, which is continuous on [4ß 4]. Then f(4) œ 3, f(1) œ 15, f(1) œ 13, and f(4) œ 5.
By the Intermediate Value Theorem, f(x) œ 0 for some x in each of the intervals % x 1, " x 1, and
" x 4. That is, x$ 15x 1 œ 0 has three solutions in [%ß 4]. Since a polynomial of degree 3 can have at most 3
solutions, these are the only solutions.
54. Without loss of generality, assume that a b. Then F(x) œ (x a)# (x b)# x is continuous for all values of
x, so it is continuous on the interval [aß b]. Moreover F(a) œ a and F(b) œ b. By the Intermediate Value
Theorem, since a a # b b, there is a number c between a and b such that F(x) œ a # b .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.5 Continuity
55. Answers may vary. Note that f is continuous for every value of x.
(a) f(0) œ 10, f(1) œ 1$ 8(1) 10 œ 3. Since $ 1 10, by the Intermediate Value Theorem, there exists a c
so that ! c 1 and f(c) œ 1.
(b) f(0) œ 10, f(4) œ (4)$ 8(4) 10 œ 22. Since 22 È3 10, by the Intermediate Value
Theorem, there exists a c so that 4 c 0 and f(c) œ È3.
(c) f(0) œ 10, f(1000) œ (1000)$ 8(1000) 10 œ 999,992,010. Since 10 5,000,000 999,992,010, by the
Intermediate Value Theorem, there exists a c so that ! c 1000 and f(c) œ 5,000,000.
56. All five statements ask for the same information because of the intermediate value property of continuous functions.
(a) A root of f(x) œ x$ 3x 1 is a point c where f(c) œ 0.
(b) The points where y œ x$ crosses y œ 3x 1 have the same y-coordinate, or y œ x$ œ 3x 1
Ê f(x) œ x$ 3x 1 œ 0.
(c) x$ 3x œ 1 Ê x$ 3x 1 œ 0. The solutions to the equation are the roots of f(x) œ x$ 3x 1.
(d) The points where y œ x$ 3x crosses y œ 1 have common y-coordinates, or y œ x$ 3x œ 1
Ê f(x) œ x$ 3x 1 œ !.
(e) The solutions of x$ 3x 1 œ 0 are those points where f(x) œ x$ 3x 1 has value 0.
57. Answers may vary. For example, f(x) œ
sin (x 2)
x2
is discontinuous at x œ 2 because it is not defined there.
However, the discontinuity can be removed because f has a limit (namely 1) as x Ä 2.
58. Answers may vary. For example, g(x) œ
"
x1
has a discontinuity at x œ 1 because lim g(x) does not exist.
x Ä "
Š lim c g(x) œ _ and lim b g(x) œ _.‹
x Ä "
x Ä "
59. (a) Suppose x! is rational Ê f(x! ) œ 1. Choose % œ "# . For any $ 0 there is an irrational number x (actually
infinitely many) in the interval (x! $ ß x! $ ) Ê f(x) œ 0. Then 0 kx x! k $ but kf(x) f(x! )k
œ 1 "# œ %, so x lim
f(x) fails to exist Ê f is discontinuous at x! rational.
Äx
!
On the other hand, x! irrational Ê f(x! ) œ 0 and there is a rational number x in (x! $ ß x! $ ) Ê f(x)
œ 1. Again x lim
f(x) fails to exist Ê f is discontinuous at x! irrational. That is, f is discontinuous at
Äx
!
every point.
(b) f is neither right-continuous nor left-continuous at any point x! because in every interval (x! $ ß x! ) or
(x! ß x! $ ) there exist both rational and irrational real numbers. Thus neither limits lim f(x) and
x Ä x!
lim f(x) exist by the same arguments used in part (a).
x Ä x
!
60. Yes. Both f(x) œ x and g(x) œ x
g ˆ "# ‰
œ0 Ê
f(x)
g(x)
"
#
are continuous on [!ß "]. However
is discontinuous at x œ
f(x)
g(x)
is undefined at x œ
"
#
since
"
#.
61. No. For instance, if f(x) œ 0, g(x) œ ÜxÝ, then h(x) œ 0 aÜxÝb œ 0 is continuous at x œ 0 and g(x) is not.
62. Let f(x) œ
œ
"
x1
"
(x 1) 1
œ
and g(x) œ x 1. Both functions are continuous at x œ 0. The composition f ‰ g œ f(g(x))
"
x
is discontinuous at x œ 0, since it is not defined there. Theorem 10 requires that f(x) be
continuous at g(0), which is not the case here since g(0) œ 1 and f is undefined at 1.
63. Yes, because of the Intermediate Value Theorem. If f(a) and f(b) did have different signs then f would have to
equal zero at some point between a and b since f is continuous on [aß b].
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
71
72
Chapter 2 Limits and Continuity
64. Let f(x) be the new position of point x and let d(x) œ f(x) x. The displacement function d is negative if x is
the left-hand point of the rubber band and positive if x is the right-hand point of the rubber band. By the
Intermediate Value Theorem, d(x) œ 0 for some point in between. That is, f(x) œ x for some point x, which is
then in its original position.
65. If f(0) œ 0 or f(1) œ 1, we are done (i.e., c œ 0 or c œ 1 in those cases). Then let f(0) œ a 0 and f(1) œ b 1
because 0 Ÿ f(x) Ÿ 1. Define g(x) œ f(x) x Ê g is continuous on [0ß 1]. Moreover, g(0) œ f(0) 0 œ a 0 and
g(1) œ f(1) 1 œ b 1 0 Ê by the Intermediate Value Theorem there is a number c in (!ß ") such that
g(c) œ 0 Ê f(c) c œ 0 or f(c) œ c.
66. Let % œ
kf(c)k
#
0. Since f is continuous at x œ c there is a $ 0 such that kx ck $ Ê kf(x) f(c)k %
Ê f(c) % f(x) f(c) %.
If f(c) 0, then % œ "# f(c) Ê
"
#
"
#
If f(c) 0, then % œ f(c) Ê
f(c) f(x)
3
#
3
#
f(c) f(x)
f(c) Ê f(x) 0 on the interval (c $ ß c $ ).
"
#
f(c) Ê f(x) 0 on the interval (c $ ß c $ ).
67. By Exercises 52 in Section 2.3, we have xlim
faxb œ L Í lim fac hb œ L.
Äc
hÄ0
Thus, faxb is continuous at x œ c Í xlim
faxb œ facb Í lim fac hb œ facb.
Äc
hÄ0
68. By Exercise 67, it suffices to show that lim sinac hb œ sin c and lim cosac hb œ cos c.
hÄ0
hÄ0
Now lim sinac hb œ lim asin cbacos hb acos cbasin hb‘ œ asin cbŠ lim cos h‹ acos cbŠ lim sin h‹
hÄ0
hÄ0
hÄ0
hÄ0
By Example 11 Section 2.2, lim cos h œ " and lim sin h œ !. So lim sinac hb œ sin c and thus faxb œ sin x is
hÄ0
continuous at x œ c. Similarly,
hÄ0
hÄ0
lim cosac hb œ lim acos cbacos hb asin cbasin hb‘ œ acos cbŠ lim cos h‹ asin cbŠ lim sin h‹ œ cos c.
hÄ0
hÄ0
Thus, gaxb œ cos x is continuous at x œ c.
hÄ0
69. x ¸ 1.8794, 1.5321, 0.3473
70. x ¸ 1.4516, 0.8547, 0.4030
71. x ¸ 1.7549
72. x ¸ 1.5596
73. x ¸ 3.5156
74. x ¸ 3.9058, 3.8392, 0.0667
75. x ¸ 0.7391
76. x ¸ 1.8955, 0, 1.8955
hÄ0
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs
2.6 LIMITS INVOLVING INFINITY; ASMYPTOTES OF GRAPHS
1. (a)
(c)
(e)
(g)
lim f(x) œ 0
(b)
xÄ2
lim
x Ä 3 c
f(x) œ 2
lim
x Ä 3 b
f(x) œ 2
(d) lim f(x) œ does not exist
xÄ3
lim b f(x) œ 1
(f)
lim f(x) œ does not exist
(h) x lim
f(x) œ 1
Ä_
xÄ0
xÄ0
lim f(x) œ _
x Ä 0c
(i) x Ä
lim
f(x) œ 0
_
2. (a)
(c)
lim f(x) œ 2
(b)
lim f(x) œ 1
(d) lim f(x) œ does not exist
xÄ4
x Ä 2c
xÄ2
lim f(x) œ _
x Ä 3 b
(g) lim f(x) œ _
(e)
x Ä 3
(i)
lim f(x) œ 3
x Ä 2b
lim f(x) œ _
(f)
x Ä 3 c
lim
(h)
x Ä 0b
(k) x lim
f(x) œ 0
Ä_
lim f(x) œ _
lim f(x) œ does not exist
(j)
x Ä 0c
xÄ0
(l) x Ä
lim
f(x) œ 1
_
Note: In these exercises we use the result
"
lim
mÎn
xÄ „_ x
Theorem 8 and the power rule in Theorem 1:
lim
xÄ „_
œ 0 whenever
ˆ xm"În ‰ œ
lim
(b) 3
4. (a) 1
(b) 1
5. (a)
"
#
(b)
"
#
6. (a)
"
8
(b)
"
8
7. (a) 53
(b)
10. 3") Ÿ
11.
lim
tÄ_
12. r Ä
lim_
0. This result follows immediately from
ˆ x" ‰mÎn œ Š
"
lim
‹
xÄ „_ x
mÎn
(b) 53
3
4
9. "x Ÿ
m
n
xÄ „_
3. (a) 3
8. (a)
f(x) œ _
sin 2x
x
Ÿ
"
x
cos )
3)
Ÿ
"
3)
2 t sin t
t cos t
Ê x lim
Ä_
Ê
13. (a) x lim
Ä_
2x 3
5x 7
lim
) Ä _
œ lim
2
t
tÄ_
r sin r
2r 7 5 sin r
sin 2x
x
œrÄ
lim_
œ x lim
Ä_
œ 0 by the Sandwich Theorem
cos )
3)
œ 0 by the Sandwich Theorem
1 ˆ sint t ‰
1 ˆ cost t ‰
œ
1 ˆ sinr r ‰
2 7r 5 ˆ sinr r ‰
2 3x
5 7x
3
4
œ
2
5
010
10
œ 1
œrÄ
lim_
10
200
œ
(b)
"
#
2
5
(same process as part (a))
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ 0mÎn œ 0.
73
74
Chapter 2 Limits and Continuity
2 Š x7$ ‹
$
2x 7
14. (a) x lim
œ x lim
Ä _ x$ x# x 7
Ä_
(b) 2 (same process as part (a))
"
x
x"#
15. (a) x lim
Ä_
x1
x# 3
œ x lim
Ä_
1 x3#
16. (a) x lim
Ä_
3x 7
x# 2
œ x lim
Ä_
1 x2#
17. (a) x lim
Ä_
7x$
x$ 3x# 6x
18. (a) x lim
Ä_
x$
20. (a) x lim
Ä_
9
#
2x%
x7#
œ x lim
Ä_
œ x lim
Ä_
10x& x% 31
x'
19. (a) x lim
Ä_
(b)
"
4x 1
3
x
œ2
œ0
(b) 0 (same process as part (a))
œ0
(b) 0 (same process as part (a))
œ(
7
1 3x x6#
"
x$
4
x"$
x#
1
œ x lim
Ä_
2
(b) 7 (same process as part (a))
œ!
x"# x31'
1
10
x
œ x lim
Ä_
9x% x
5x# x 6
1 "x x"# x7$
(b) 0 (same process as part (a))
œ0
(b) 0 (same process as part (a))
9 x"$
5
x#
x"$ x6%
œ
9
#
(same process as part (a))
2x$ 2x 3
3x$ 3x# 5x
21. (a) x lim
Ä_
2 x2# x3$
œ x lim
Ä_
œ 23
3 3x x5#
(b) 23 (same process as part (a))
x %
x% 7x$ 7x# 9
22. (a) x lim
Ä_
"
1 7x x7# x9%
œ x lim
Ä_
œ 1
(b) 1 (same process as part (a))
8
8
3
3
3
x2
x2
É 8x
23. x lim
œ Êx lim
œ É 82 00 œ È4 œ 2
2x2 x œ x lim
Ä_
Ä _ Ê 2 1x
Ä _ 2 1x
2
24. x Ä
lim
Šx x1‹
_ 8x2 3
2
1 Î3
œxÄ
lim
_Œ
5
1
" 1x x12
8
x
3
x2
1 Î3
œ Œx Ä
lim
_
5
1
" 1x x12
8
3
x2
5
x
1 Î3
œ ˆ " 8 0 0 0 ‰
1 Î3
œ ˆ "8 ‰
1 Î3
œ
x2
x2
‰ œ_
25. x Ä
lim
lim
œ Œx Ä
lim
œ ˆ 01_
Š 1x ‹ œ x Ä
0
_ x2 7x
_Œ 1 7x
_ 1 7x
3
1
5
1
5
5
x
x
x2
x2
É x 5x œ x lim
26. x lim
œ Êx lim
œ É 1 0 0 0 0 œ È0 œ 0
Ä _ x3 x 2
Ä _Ê 1 x12 x23
Ä _ 1 x12 x23
2
27. x lim
Ä_
2Èx xc"
3x 7
29. x Ä
lim
_
30. x lim
Ä_
œ x lim
Ä_
3 xÈ
5 x
È
3 xÈ
5 x
È
x "x %
x #x $
Š
œxÄ
lim
_
œ x lim
Ä_
2
‹ Š x"# ‹
x"Î#
3 7x
œ0
1 xÐ"Î&Ñ Ð"Î$Ñ
1 xÐ"Î&Ñ Ð"Î$Ñ
x x"#
1 x"
œxÄ
lim
_
28. x lim
Ä_
" ‹
1 Š #Î"&
x
" ‹
1 Š #Î"&
2 Èx
2 Èx
œ x lim
Ä_
2
‹"
x"Î#
2
Š "Î#
‹1
x
Š
œ 1
œ1
x
œ_
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
"
#
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs
2x&Î$ x"Î$ 7
x)Î& 3x Èx
31. x lim
Ä_
3 x 5x 3
È
2x x#Î$ 4
32. x Ä
lim
_
33. x lim
Ä_
È x2 1
x1
34. x Ä
lim
_
œ x lim
Ä_
œxÄ
lim
_
œ x lim
Ä_
È x2 1
x1
1
"
x#Î$
2
È x 2 1 ÎÈ x 2
a x 1 b ÎÈ x 2
œxÄ
lim
_
" 7
x"*Î"&
x)Î&
3
"
x$Î&
x""Î"!
2x"Î"&
5 3x
"
x"Î$
È
3
œ 5# È
x
4x
œ x lim
Ä_
È x 2 1 ÎÈ x 2
a x 1 bÎ È x 2
œ_
È a x 2 1 bÎx 2
ax 1bÎx
œ x lim
Ä_
È 1 1 Îx 2
a1 1 Îx b
È a x 2 1 bÎ x 2
È1 0
a1 0 b
œ
È 1 1 Îx 2
œxÄ
lim
œ x lim
œ
_ ax 1bÎaxb
Ä _ a 1 1 Î x b
œ1
È1 0
a1 0b
a x 3 bÎ x
a x 3 bÎ x
a1 3 Îx b
x3
35. x lim
œ x lim
œ x lim
œ x lim
œ
Ä _ È4x2 25
Ä _ È4x2 25ÎÈx2
Ä _ Èa4x2 25bÎx2
Ä _ È4 25Îx2
ˆ4 3x3 ‰ÎÈx6
4 3x
36. x Ä
lim
œxÄ
lim
œxÄ
lim
_ Èx6 9
_ Èx6 9ÎÈx6
_
3
"
œ_
37.
lim
x Ä !b 3x
39.
lim
x Ä #c x 2
41.
lim
x Ä )b x8
3
2x
4
43. lim
#
x Ä ( (x7)
œ _
œ _
œ_
lim
"Î$
x Ä !b 3x
46. (a)
lim
"Î&
x Ä !b x
4
47. lim
#Î&
xÄ! x
49.
51.
52.
lim
x Ä ˆ 1# ‰
œ lim
4
#
x Ä ! ax"Î& b
œ x lim
Ä_
ˆ 4 Îx 3 3‰
È 1 9 Îx 6
Š positive
positive ‹
40.
lim
x Ä $b x 3
Š negative
positive ‹
42.
lim
x Ä &c 2x10
positive
Š positive
‹
44. lim
œ_
"
3x
"
#
x Ä ! x (x1)
2
(b)
lim
"Î$
x Ä !c 3x
(b)
lim
"Î&
x Ä !c x
48. lim
"
#Î$
xÄ! x
tan x œ _
50.
œ3
œ_
positive
Š negative
‹
2
a0 3 b
È1 0
"
#
positive
Š negative
‹
lim
x Ä !c 2x
5
œ
œ
œ _
38.
œ_
2
ˆ4 3x3 ‰Îˆx3 ‰
Èax6 9bÎx6
positive
Š positive
‹
œ_
2
45. (a)
a1 0 b
È4 0
2
œ 1
œ_
Š negative
negative ‹
œ _
negative
Š positive
†positive ‹
œ _
œ _
œ lim
"
#
x Ä ! ax"Î$ b
œ_
lim sec x œ _
x Ä ˆ #1 ‰
lim (1 csc )) œ _
)Ä!
lim (2 cot )) œ _ and lim c (2 cot )) œ _, so the limit does not exist
)Ä!
) Ä !b
"
œ lim b
xÄ#
"
(x2)(x2)
œ_
Š positive"†positive ‹
"
œ lim c
xÄ#
"
(x2)(x2)
œ _
Š positive†"negative ‹
53. (a)
lim
#
x Ä # b x 4
(b)
lim
#
x Ä # c x 4
(c)
lim
#
x Ä #b x 4
(d)
lim
#
x Ä #c x 4
"
œ
lim
x Ä #b (x2)(x2)
"
œ _
Š positive†"negative ‹
"
œ
lim
x Ä #c (x2)(x2)
"
œ_
Š negative"†negative ‹
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
75
76
Chapter 2 Limits and Continuity
54. (a)
lim
#
x Ä "b x 1
(b)
lim
#
x Ä "c x 1
(c)
lim
#
x Ä "b x 1
(d)
lim
#
x Ä "c x 1
x
œ lim b
xÄ"
x
(x1)(x1)
œ_
positive
Š positive
†positive ‹
x
œ lim c
xÄ"
x
(x1)(x1)
œ _
positive
Š positive
†negative ‹
x
œ
lim
x Ä "b (x1)(x1)
x
œ_
negative
Š positive
†negative ‹
x
œ
lim
x Ä "c (x1)(x1)
x
œ _
negative
Š negative
†negative ‹
55. (a)
lim
x Ä !b #
x#
"
x
œ 0 lim b
xÄ!
"
x
œ _
"
Š negative
‹
(b)
lim
x Ä !c #
x#
"
x
œ 0 lim c
xÄ!
"
x
œ_
"
Š positive
‹
(c)
lim
#
x Ä $È2
(d)
lim
x Ä 1 #
56. (a)
x#
x#
lim
x Ä #b
"
x
"
x
œ
x# 1
2x 4
x# 1
2#Î$
#
œ
"
#
(d)
lim
x Ä !c 2x 4
œ
(b)
(c)
(d)
(e)
58. (a)
x# 3x 2
x$ 2x#
lim b
x# 3x 2
x$ 2x#
lim
xÄ#
#
x 3x 2
x$ 2x#
x 3x 2
x$ 2x#
lim
œ lim c
xÄ#
lim
x Ä #b
(c)
x Ä 0c
(d)
x Ä "b
(e)
lim
x Ä !b x(x #)
x# 1
2x 4
lim
x Ä #c
œ _
positive
Š negative
‹
œ0
(x 2)(x 1)
x# (x 2)
œ _
(x 2)(x 1)
x# (x 2)
œ lim b
xÄ#
(x 2)(x 1)
x# (x 2)
œ lim c
xÄ#
œ lim
œ lim
(x 2)(x 1)
x# (x 2)
œ _
xÄ!
lim
x# 3x 2
x$ 4x
lim
x# 3x 2
x$ 4x
x"
2†0
#4
(x 2)(x 1)
x# (x 2)
xÄ#
œ lim b
xÄ#
x# 3x 2
x$ 4x
(b)
œ
œ lim
x# 3x 2
x$ 4x
lim
x Ä #b
and
œ lim b
xÄ#
x 3x 2
x$ 2x#
#
xÄ!
œ lim b
xÄ!
#
lim
x Ä #c
(x 1)(x 1)
2x 4
(b)
"
4
lim b
xÄ#
3
#
Š positive
positive ‹
œ lim b
xÄ"
xÄ!
œ 2"Î$ 2"Î$ œ 0
œ_
lim
x Ä "b 2x 4
57. (a)
"
#"Î$
ˆ "1 ‰ œ
(c)
x# 1
œ
xÄ#
(x 2)(x ")
x(x #)(x 2)
(x 2)(x ")
œ lim c
xÄ!
œ lim b
xÄ"
(x 2)(x ")
x(x #)(x 2)
(x 2)(x ")
x(x #)(x 2)
œ
x1
x#
œ
"
4
,xÁ2
x1
x#
œ
"
4
,xÁ2
x1
x#
œ
"
4
,xÁ2
†negative
Š negative
positive†negative ‹
œ lim b
xÄ#
lim
x Ä #b x(x #)(x 2)
†negative
Š negative
positive†negative ‹
(x 1)
x(x #)
œ
(x 1)
lim
x Ä #b x(x #)
œ lim c
xÄ!
œ lim b
xÄ"
œ_
(x 1)
x(x #)
œ
negative
Š positive
†positive ‹
x"
negative
Š negative
†positive ‹
œ_
œ
"
8
œ_
(x 1)
x(x #)
œ _
lim
x Ä !c x(x #)
"
#(4)
0
(1)(3)
negative
Š negative
†positive ‹
negative
Š negative
†positive ‹
œ0
so the function has no limit as x Ä 0.
lim 2
59. (a)
t Ä !b
60. (a)
t Ä !b
61. (a)
x Ä !b
(c)
x Ä "b
3 ‘
t"Î$
œ _
"
lim t$Î&
7‘ œ _
lim
2
lim
lim
"
’ x#Î$
2
“
(x 1)#Î$
œ_
lim
"
’ x#Î$
2
“
(x 1)#Î$
œ_
(b)
t Ä !c
(b)
t Ä !c
lim
"
’ x#Î$
2
“
(x 1)#Î$
œ_
(b)
x Ä !c
lim
"
’ x#Î$
2
“
(x 1)#Î$
œ_
(d)
x Ä "c
"
t$Î&
3 ‘
t"Î$
œ_
7‘ œ _
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs
lim
"
’ x"Î$
1
“
(x 1)%Î$
œ_
(b)
x Ä !c
lim
"
’ x"Î$
1
“
(x 1)%Î$
œ _
(d)
x Ä "c
62. (a)
x Ä !b
(c)
x Ä "b
lim
"
’ x"Î$
1
“
(x 1)%Î$
œ _
lim
"
’ x"Î$
1
“
(x 1)%Î$
œ _
63. y œ
"
x1
64. y œ
"
x1
65. y œ
"
#x 4
66. y œ
3
x3
67. y œ
x3
x2
68. y œ
2x
x1
œ1
"
x#
69. Here is one possibility.
œ#
2
x1
70. Here is one possibility.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
77
78
Chapter 2 Limits and Continuity
71. Here is one possibility.
72. Here is one possibility.
73. Here is one possibility.
74. Here is one possibility.
75. Here is one possibility.
76. Here is one possibility.
77. Yes. If x lim
Ä_
f(x)
g(x)
œ 2 then the ratio of the polynomials' leading coefficients is 2, so x Ä
lim
_
f(x)
g(x)
œ 2 as well.
78. Yes, it can have a horizontal or oblique asymptote.
79. At most 1 horizontal asymptote: If x lim
Ä_
f(x)
lim
x Ä _ g(x)
f(x)
g(x)
œ L, then the ratio of the polynomials' leading coefficients is L, so
œ L as well.
Èx 9 Èx 4
80. x lim
Š Èx 9 Èx 4‹ œ x lim
’Èx 9 Èx 4“ † ’ Èx 9 Èx 4 “ œ x lim
Ä_
Ä_
Ä_
5
Èx
5
0
œ x lim
œ x lim
œ 11 œ 0
9
4
Ä _ Èx 9 Èx 4
Ä_
ax 9 b a x 4 b
Èx 9 Èx 4
É1 x É1 x
È 2
È 2
81. x lim
Š Èx2 25 Èx2 "‹ œ x lim
’Èx2 25 Èx2 "“ † ’ Èx2 25 Èx2 " “ œ x lim
Ä_
Ä_
Ä_
x 25 x "
œ x lim
Ä_
26
Èx2 25 Èx2 "
œ x lim
Ä_
26
x
É1 x252 É1 x12
œ
0
11
œ0
È 2
ˆx 3 ‰ ˆ x ‰
x
82. x Ä
lim
lim
lim
Š Èx2 3 x‹ œ x Ä
’Èx2 3 x“ † ’ Èxx2 33
“œxÄ
_
_
_ Èx2 3 x
x
3
È x2
3x
3
œxÄ
lim
œ
lim
œ
lim
œ 1 0 1 œ 0
2
È
3
x
_
x Ä _ É1 2 È
x Ä _ É1 32 1
x 3x
x
x
x2
2
2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
ˆx2 25‰ ˆx2 "‰
Èx2 25 Èx2 "
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs
È
ˆ4x2 ‰ ˆ4x2 3x 2‰
4x 3x 2
83. x Ä
lim
lim
lim
Š 2x È4x2 3x 2‹ œ x Ä
’2x È4x2 3x 2“ † ’ 2x
“œxÄ
_
_
_ 2x È4x2 3x 2
2x È4x2 3x 2
c3x b 2
c3x b 2
3 x2
Èx2
3x 2
cx
œxÄ
lim
œxÄ
lim
œxÄ
lim
œxÄ
lim
_ 2x È4x2 3x 2
_ È2x É4 3 22
_ 2x É4 3 22
_ 2 É4 3 22
x
x
x
cx
x
x
x
x2
œ 3202 œ 43
2
È 2
84. x lim
Š È9x2 x 3x‹ œ œ x lim
’È9x2 x 3x“ † ’ È9x2 x 3x “ œ x lim
Ä_
Ä_
Ä_
9x x 3x
œ x lim
Ä_
x
È9x2 x 3x
œ x lim
Ä_
xx
2
É 9x2
x
xx2 3x
x
1
É9 "x 3
œ x lim
Ä_
œ
1
33
ˆ9x2 x‰ ˆ9x2 ‰
È9x2 x 3x
œ "6
È 2
È 2
85. x lim
Š Èx2 3x Èx2 2x‹ œ x lim
’ Èx2 3x Èx2 2x“ † ’ Èx2 3x Èx2 2x “ œ x lim
Ä_
Ä_
Ä_
x 3x x 2x
5x
5
5
5
œ x lim
œ x lim
œ 11 œ #
È 2
3
2
Ä_ È 2
Ä_
x 3x
x 2x
É1 x É1 x
Èx# x Èx# x œ lim ’Èx# x Èx# x“ † ’ Èx# x Èx# x “ œ lim
86. x lim
È x# x È x# x
Ä_
xÄ_
xÄ_
2x
2
2
œ x lim
œ x lim
œ 11 œ 1
È #
"
"
Ä_ È #
Ä_
x x
ˆx2 3x‰ ˆx2 2x‰
Èx2 3x Èx2 2x
x x
ax # x b a x # x b
È x# x È x# x
É1 x É1 x
87. For any % 0, take N œ 1. Then for all x N we have that kf(x) kk œ kk kk œ 0 %.
88. For any % 0, take N œ 1. Then for all y N we have that kf(x) kk œ kk kk œ 0 %.
"
x#
89. For every real number B 0, we must find a $ 0 such that for all x, 0 kx 0k $ Ê
"
x#
Ê
B