CAPITULO 2
INSTRUMENTOS
TOPOGRÁFICOS
2.1. Instrumentos simples
2.1.1. Cintas métricas y accesorios
2.1.2. Escuadras
2.1.3. Clisímetro
2.1.4. Brújula
2.1.5. Miras Verticales
2.1.6. Miras Horizontales
2.1.7. Planímetro
2.2. Instrumentos principales
2.2.1. Teodolitos
2.2.2. Teodolitos Electrónicos
2.2.3. Estación total electrónica
2.2.4. Estaciones robóticas
2.2.5. Niveles
2.2.6. Distanciómetros electrónicos
2-1
2-1
2-6
2-7
2-7
2-9
2-10
2-11
2-12
2-12
2-17
2-17
2-18
2-19
2-24
Leonardo Casanova M.
Instrumentos Topográficos
CAPITULO 2
2.1 INSTRUMENTOS SIMPLES
2.1.1 CINTAS MÉTRICAS Y ACCESORIOS
Medir una longitud consiste en determinar, por comparación, el número de veces
que una unidad patrón es contenida en dicha longitud.
La unidad patrón utilizada en la mayoría de los países del mundo es el metro, definido
(después de la Conferencia Internacional de Pesos y Medidas celebrada en París en 1889) como
la longitud a 0ºC del prototipo internacional de platino e iridio que se conserva en Sèvres
(Francia).
Esta definición se mantuvo hasta la Conferencia General de Pesos y Medidas celebrada en
la misma ciudad en 1960, en donde se definió al metro como 1’650.763,73 veces la longitud de
onda en el vacío de radiación anaranjada del criptón 86.
En octubre 20 de 1983 el metro fue redefinido en función de la velocidad de la luz
(c=299'792.792 m/s) como la longitud del trayecto recorrido por la luz en el vacío durante un
intervalo de tiempo de 1/299’792.458 de segundo.
Una cinta métrica es la reproducción de un número determinado de veces (3,5,30,50,100)
de la unidad patrón.
En el proceso de medida, las cintas son sometidas a diferentes tensiones y temperaturas,
por lo que dependiendo del material con el que han sido construidas, su tamaño original variará.
Por esta razón, las cintas vienen calibradas de fábrica para que a una temperatura, tensión y
condiciones de apoyo dadas, su longitud sea igual a la longitud nominal.
Las cintas métricas empleadas en trabajos topográficos deben ser de acero, resistentes a
esfuerzos de tensión y a la corrosión. Comúnmente, las cintas métricas vienen en longitudes de
30, 50 y 100 m, con una sección transversal de 8 mm x 0,45 mm para trabajos fuertes en
condiciones severas o de 6 mm x 0,30 mm para trabajos en condiciones normales.
En cuanto a su graduación para la lectura, las cintas métricas se pueden clasificar en:
Cintas continuas, divididas en toda su longitud en metros, decímetros, centímetros y
milímetros como se muestra en la figura 2.1.a.
Para medir una distancia AB con cinta continua, se hace coincidir el cero con un extremo
“A” y se toma la lectura de la coincidencia de la graduación con el otro extremo “B” (11,224 m),
tal y como se muestra en la figura 2.2.a. Luego la distancia entre A y B es:
DAB = 11,224m
2-1
Leonardo Casanova M.
Instrumentos Topográficos
0
10
20
30
1 METRO
30
1 METRO
20
1 METRO
a. Cinta continua
0
10
20
b. Cinta por defecto
10
0
10
c. Cinta por exceso
Figura 2.1. Diferentes tipos de cintas
0
10
20
20
11
B
A
20
11
a
Detalle
Lectura en B
0
10
B
30
11
20
A
B
10
0
A
Detalle
Lectura en A
b
0
10
20
11
10
A
B
0
10
c
Detalle
Lectura en A
A
Figura 2.2. Mediciones con diferentes tipos de cintas
2-2
Leonardo Casanova M.
Instrumentos Topográficos
Cintas por defecto (substracción), divididas al milímetro solamente en el primero y
último decímetro, el resto de la longitud está dividido en metros y decímetros, tal y como se
muestra en la figura 2.1.b.
Para medir una distancia AB con una cinta por defecto, se hace coincidir el extremo
“B”con el decímetro entero superior mas próximo a la longitud a medir (11,300 m en la figura
2.2.b ), y se toma la lectura en el extremo “A” con el primer decímetro, el cual esta dividido en
centímetros y milímetros (0,076 m en la figura 2.2.b), luego, la distancia entre AB es:
DAB = 11,300 − 0,076 = 11,224m
Cintas por exceso, al igual que las cintas por defecto, están divididas en toda su longitud
en metros y decímetros, y sólo el último decímetro está dividido en centímetros y milímetros.
Este tipo de cintas posee un decímetro adicional graduado en centímetros y milímetros, colocado
anterior al cero de la misma y con graduación creciente en sentido contrario a las graduaciones de
la cinta tal y como se muestra en la figura 2.1.c.
Para medir una distancia AB con una cinta por exceso, se hace coincidir el extremo “B”
con el decímetro entero inferior mas próximo a la longitud a medir (11,200 m en la figura 2.2.c),
y se toma la lectura en el extremo “A” con el decímetro adicional, dividido en centímetros y
milímetros (0,024 m en la figura 2.2.c), luego, la distancia entre AB es:
D AB = 11,200 + 0,024 = 11,224m
Para poder hacer uso correcto y preciso de las cintas de acero en la determinación de las
distancias, es necesario que las medidas se realicen bajo ciertas condiciones ideales de
calibración, especificadas estas por los diferentes fabricantes.
Generalmente las condiciones ideales para medición con cintas de acero son las
siguientes:
Temperatura de 20ºC
Tensión aplicada a la cinta de 5 Kg. (10 lb)
Cinta apoyada en toda su extensión
Difícilmente estas condiciones se logran en la medición de distancias, por lo que se hace
necesario la utilización de diferentes accesorios, bien sea para hacer cumplir alguna de las
condiciones o para medir y estimar la variabilidad de la cinta al ser utilizadas en condiciones
diferentes a las ideales.
A continuación se describen algunos de los accesorios utilizados en la medición de
distancias con cintas métricas.
2-3
Leonardo Casanova M.
Instrumentos Topográficos
Plomada metálica. Instrumento con forma de cono, construido generalmente en bronce,
con un peso que varia entre 225 y 500 gr, que al dejarse colgar libremente de la cuerda sigue la
dirección de la vertical del lugar, por lo que con su auxilio podemos proyectar el punto de terreno
sobre la cinta métrica.
Cuerda
Proyección del
punto A sobre
la cinta.
Cinta métrica
Plomada metálica
Punto A
Figura 2.3. Plomada metálica
Termómetro. Como se mencionó
previamente, las cintas métricas vienen
calibradas por los fabricantes, para que a
una temperatura y tensión dada su longitud
sea igual a la longitud nominal. En el
proceso de medida de distancias, las cintas
son sometidas a condiciones diferentes de
tensión y temperatura, por lo que se hace
necesario medir la tensión y temperatura a
las cuales se hacen las mediciones para
poder
aplicar
las
correcciones
correspondientes.
Figura 2.4. Termómetro para cinta
El termómetro utilizado en la medición de distancias con cinta viene graduado en grados
centígrados, con lecturas que varian entre – 40 a + 50 ºC de grado en grado, colocado, para su
protección, en una estructura metálica de aproximadamente 14 cm de largo, la cual se ajusta a la
cinta mediante dos sujetadores. Figura 2.4.
2-4
Leonardo Casanova M.
Instrumentos Topográficos
Tensiómetro. Es un dispositivo que se coloca
en el extremo de la cinta para asegurar que la tensión
aplicada a la cinta sea igual a la tensión de
calibración, evitando de esta manera la corrección
por tensión y por catenaria de la distancia medida.
Figura 2.5. Tensiómetro
Jalones. Son tubos de madera o aluminio,
con un diámetro de 2.5 cm y una longitud que varia
de 2 a 3 m. Los jalones vienen pintados con franjas
alternas rojas y blancas de unos 30 cm y en su parte
final poseen una punta de acero.
Fichas
Jalon
Figura 2.6. Jalones y fichas
El jalón se usa como instrumento auxiliar en
la medida de distancias, localizando puntos y
trazando alineaciones.
Fichas. Son varillas de acero de 30 cm de
longitud, con un diámetro φ=1/4”, pintados en franjas
alternas rojas y blancas. Su parte superior termina en
forma de anillo y su parte inferior en forma de punta.
Generalmente vienen en juegos de once fichas juntas
en un anillo de acero.
Las fichas se usan en la medición de
distancias para marcar las posiciones finales de la
cinta y llevar el conteo del número de cintadas
enteras que se han efectuado.
Nivel de mano (nivel Locke). Es un pequeño nivel tórico, sujeto a un ocular de unos 12
cm de longitud, a través del cual se pueden observar simultáneamente el reflejo de la imagen de
la burbuja del nivel y la señal que se esté colimando.
El nivel de mano se utiliza para horizontalizar la cinta métrica y para medir desniveles.
Retículo de colimación
Linea de Refracción
de la burbuja
Nivel Torico
Ocular
Reflejo de la
burbuja
Linea de visual
Prisma
Figura 2.7 Nivel de mano Locke
2-5
Leonardo Casanova M.
Instrumentos Topográficos
Nivel Abney. El nivel Abney
consta de un nivel tórico de doble
curvatura [A] sujeto a un nonio [B], el
cual puede girar alrededor del centro de
un semi círculo graduado [C] fijo al
ocular. Al igual que el nivel Locke, la
imagen de la burbuja del nivel tórico se
refleja mediante un prisma sobre el
campo visual del ocular [D].
Con el nivel Abney se pueden
determinar desniveles, horizontalizar la
cinta, medir ángulos verticales y
pendientes, calcular alturas y lanzar
visuales con una pendiente dada.
Figura 2.8 . Nivel Abney
2.1.2 ESCUADRAS
Son instrumentos topográficos simples que se utilizan en levantamientos de poca
precisión para el trazado de alineaciones y perpendiculares.
a
b
c
Figura 2.9. Escuadras
Escuadra de agrimensor (figura 2.9.a), consta de un cilindro de bronce de unos 7 cm de
alto por 7 cm de diámetro, con ranuras a 90º y 45º para el trazado de alineamientos con ángulos
de 90º y 45º entre si. El cilindro se apoya sobre un bastón de madera que termina en forma de
punta.
Escuadra de prisma (figura 2.9.b), está constituida por un prisma triangular cuyo ángulo
de refracción es de 90º. Puede apoyarse sobre un bastón metálico o utilizarse con plomada.
2-6
Leonardo Casanova M.
Instrumentos Topográficos
Escuadra de doble prisma (figura 2.9.c), consta de dos prismas pentagonales ajustados
firmemente entre si para asegurar visuales perpendiculares. Se utiliza para el trazado de
perpendiculares a alineaciones definidas por dos puntos.
2.1.3 CLISIMETRO
Es un instrumento de mano con las mismas
funciones del nivel Abney descrito previamente. Consta
de un círculo vertical [A] con escala porcentual para
medir pendientes y escala angular para medir ángulos
verticales. El círculo está inmerso en un líquido
especial contenido en un recipiente herméticamente
sellado [B] y gira alrededor de un pivote [C]. Las
lecturas al círculo se realizan a través de un ocular de
lectura [D]. La colimación se verifica por coincidencia
de la señal con el retículo de colimación.
Figura 2.10 .Clisímetro
2.1.4 BRÚJULA
Generalmente un instrumento de mano que se utiliza fundamentalmente en la
determinación del norte magnético, direcciones y ángulos horizontales. Su aplicación es frecuente
en diversas ramas de la ingeniería. Se emplea en reconocimientos preliminares para el trazado de
carreteras, levantamientos topográficos, elaboración de mapas geológicos, etc.
Tornillo para
rotación del Círculo
[H] Vidrio Protector
[E]Contra peso
[D] Círculo
[A] Aguja Magnética
[C] Caja de la Brújula
[G] Nivel Esférico
[B] Pivote
[J] Arco Declinatorio
[F] Elevador de Aguja
Figura 2.11. Corte esquemático de una brújula
La figura 2.11 muestra el corte esquemático de una brújula. La brújula consiste de una aguja
magnética [A] que gira sobre un pivote agudo de acero duro [B] apoyado sobre un soporte
cónico ubicado en el centro de la aguja. La aguja magnética esta ubicada dentro de una caja [C],
la cual, para medir el rumbo, contiene un circulo graduado [D] generalmente dividido en
cuadrantes de 0o a 90o , marcando los cuatro puntos cardinales; teniendo en cuenta que debido al
movimiento aparente de la aguja los puntos Este y Oeste estén intercambiados (figura 2.12).
2-7
Leonardo Casanova M.
Instrumentos Topográficos
Algunas brújulas llamadas brújulas azimutales, tienen el circulo horizontal dividido en 360o .
Coincidiendo con la alineación norte – sur poseen un dispositivo de colimación ( figura 2.12 ).
Punto visado
Rumbo
ver
da
20
20
30
10
10
o
0
20
10
30
°W
58
0
10
40
50
20
50
Arco de declinación
E
90
80
70
40
60
50
70
60
s
30
20
10
0
10
Contrapeso
80
w
80
90
70
80
60
70
Nivel esférico
Norte verdadero
60
40
der
N
Colimador
Elevador de la aguja
50
20
30
40
Colimador
Figura 2.12. Brújula magnética
A objeto de contrarrestar los efectos de la inclinación magnética, la aguja posee un pequeño
contrapeso de bronce [E] y su ubicación depende de la latitud del lugar. En zonas localizadas al
norte del ecuador, el contrapeso estará ubicado en el lado sur de la aguja, y en zonas localizadas
al sur del ecuador el contrapeso estará ubicado en el lado norte de la aguja.
Para proteger el pivote sobre el cual gira la aguja, las brújulas poseen un dispositivo elevador [F]
que separa la aguja del pivote cuando las brújulas no están siendo utilizadas. En el interior se
ubica un pequeño nivel esférico de burbuja [G]. Un vidrio ubicado en la parte superior de la caja
[H] sirve para proteger la aguja, el círculo y el nivel esférico. Para hacer coincidir el eje de
rotación de la aguja con la vertical del vértice donde se esta efectuando la medida, algunas
brújulas se utilizan con plomada [I] y otras se apoyan sobre un bastón de madera.
A fin de corregir la declinación magnética del lugar, algunas brújulas poseen un arco de
declinación [J] graduado en grados, cuyo cero coincide con la alineación norte, de manera que
conociendo la declinación del lugar, mediante un dispositivo especial, se puede hacer girar el
circulo horizontal hasta hacer coincidir la lectura con el valor de la declinación del lugar; de esta
manera, el rumbo medido con la brújula es el rumbo real.
Es importante mencionar, debido a su popularidad, el Teodolito – Brújula Wild T0 (figura 2-20)
por ser un instrumento muy utilizado tanto en la determinación de acimutes magnéticos como en
la medición de ángulos en levantamientos de puntos de relleno por taquimetría.
En el capítulo correspondiente a mediciones angulares, se explicará la determinación de rumbos y
acimutes mediante el uso de la brújula.
2-8
Leonardo Casanova M.
Instrumentos Topográficos
2.1.5 MIRAS VERTICALES
Son reglas graduadas en metros y decímetros, generalmente fabricadas de madera, metal o fibra
de vidrio. Usualmente, para trabajos normales, vienen graduadas con precisión de 1 cm y
apreciación de 1 mm. Comúnmente, se fabrican con longitud de 4 m divididas en 4 tramos
plegables para facilidad de transporte y almacenamiento.
Existen también miras telescópicas de aluminio que facilitan el almacenamiento de las mismas.
A fin de evitar los errores instrumentales que se generan en los puntos de unión de las miras
plegables y los errores por dilatación del material, se fabrican miras continuas de una sola pieza,
con graduaciones sobre una cinta de material constituido por una aleación de acero y níquel,
denominado INVAR por su bajo coeficiente de variación longitudinal, sujeta la cinta a un resorte
de tensión que compensa las deformaciones por variación de la temperatura. Estas miras
continuas se apoyan sobre un soporte metálico para evitar el deterioro por corrosión producido
por el contacto con el terreno y evitar, también, el asentamiento de la mira en las operaciones de
nivelación.
La figura 2.13 muestra diferentes tipos de miras.
Nivel esférico
a. Mira directa
Articulación para el pliegue
b. Mira invertida
c. Mira vertical de INVAR
Figura 2.13. Diferentes tipos de miras verticales
2-9
Leonardo Casanova M.
Instrumentos Topográficos
Las miras verticales se usan en el proceso de nivelación y en la determinación indirecta de
distancias. Las miras deben ser verticalizadas con el auxilio de un nivel esférico generalmente
sujeto en la parte posterior de la mira.
2.1.6 Miras horizontales
La mira horizontal de INVAR es un instrumento de precisión empleado en la medición de
distancias horizontales.
La mira esta construida de una aleación de acero y níquel con un coeficiente termal de variación
de longitud muy bajo, prácticamente invariable, característica que da origen al nombre de MIRAS
DE INVAR.
La mira horizontal de INVAR, mostrada en la figura 2.14, posee dos brazos con marcos o señales
separados entre si 2 m [A], una base con 3 tornillos nivelantes [B] y un nivel esférico [C] para
horizontalizarla. Cerca del centro de la mira se ubica un colimador [D] con una marca triangular
[E] que sirve para centrar la mira, asegurando que la visual del teodolito sea perpendicular a la
mira. A un lado del colimador se puede observar el comprobador [F], el cual, al ser visualizado
desde el teodolito, permite comprobar la orientación de la mira. La mira debe ser centrada en el
punto sobre un trípode [G].
Para poder medir una distancia horizontal con mira de INVAR, es necesario medir el ángulo
horizontal con un teodolito con precisión de por lo menos de 1”.
D
F
E
G
A
B
C
Figura 2.14. Mira horizontal de INVAR
La aparición de los distanciometros electrónicos, mas rápidos y precisos en la medición de
distancias, ha ido desplazando el uso de las miras INVAR.
Más adelante, en el capítulo correspondiente a medición de distancias, se explicara el proceso de
medición de distancias con miras de INVAR.
2-10
Leonardo Casanova M.
Instrumentos Topográficos
2.1.7 PLANÍMETRO
Es un instrumento manual utilizado en la determinación del área de figuras planas con forma
irregular.
D
K
C
I
H
A
E
B
F
G
J
Figura 2.15. Planímetro polar mecánico
El planímetro polar, que se muestra en la figura 2.15, consta de un brazo trazador con graduación
en cm y mm [A] en cuyo extremo va colocado el punto trazador dentro de una lupa [B] que
aumenta la imagen del perímetro que se esta recorriendo; un brazo polar [C] sujeto en un extremo
al anclaje [D] y en su otro extremo un pivote [E]; un vernier [F] para tomar las lecturas del brazo
trazador; un disco graduado [G] para contar el numero de revoluciones enteras del tambor
graduado [H] y un vernier [I] para determinar con mayor precisión una revolución parcial; un
dispositivo [J] para colocar en cero las lecturas del tambor y del disco; un calibrador [K] para
determinar la constante de proporcionalidad.
El área de una figura cualquiera se determina con el planímetro fijando el anclaje en un punto
externo a la figura y recorriendo en sentido horario con el punto trazador su perímetro.
Finalmente, se toman las lecturas del número de revoluciones y se multiplica por las constante de
proporcionalidad, la cual depende de la longitud del brazo trazador y de la escala de la figura. La
constante de proporcionalidad es suministrada por el fabricante del instrumento o puede ser
determinada directamente por comparación.
Una descripción del fundamento teórico del planímetro polar se puede consultar en Kissan1.
En la figura 2.16 se muestra un planímetro polar electrónico con pantalla digital donde se puede
leer directamente el área de la figura en diferentes unidades.
1
Kissan P. (1967). Topografía para Ingenieros. New York: McGraw-Hill. pp. 216-224.
2-11
Leonardo Casanova M.
Instrumentos Topográficos
Figura 2.16. Planímetro polar digital
2.2 INSTRUMENTOS PRINCIPALES
2.2.1 TEODOLITOS
El teodolito es un instrumento utilizado en la mayoría de las operaciones que se realizan en los
trabajos topográficos.
Directa o indirectamente, con el teodolito se pueden medir ángulos horizontales, ángulos
verticales, distancias y desniveles.
280
80
5
LECTURA=72°22'
290
70
0
Figura 2.17. Teodolito Sokkia con lectura directa de nonio
2-12
Leonardo Casanova M.
Instrumentos Topográficos
Los teodolitos difieren entre si en cuanto a los sistemas y métodos de lectura. Existen teodolitos
con sistemas de lectura sobre vernier y nonios de visual directa (figura 2.17), microscopios
lectores de escala (figura 2.18), micrómetros ópticos (figuras 2.19 y 2.20), sistemas de lectura de
coincidencia (2.21).
360°
95
0
102
60 50
0
94
10 20 30 40 50 60
103
0
40 30 20 10
10 20 30 40 50 60
257
256
V: 95°4'
H:
103° 2'40"
256°57'20"
Figura 2.18. Teodolito Sokkia con microscopio lector de escala
V
92
9
59'36"
327
Hz
Lectura del círculo Hz: 327°59'36
Figura 2.19. Teodolito Wild con micrómetro óptico
2-13
Leonardo Casanova M.
Instrumentos Topográficos
Figura 2.20. Teodolito Brújula Wild T0 con micrómetro óptico
Figura 2.21. Teodolito Kern DK-2 con sistema de lectura de coincidencia
2-14
Leonardo Casanova M.
Instrumentos Topográficos
En cuanto a los métodos de lectura, los teodolitos se clasifican en repetidores y reiteradores,
según podamos ó no prefijar lectura sobre el circulo horizontal en cero y sumar ángulos
repetidamente con el mismo aparato, o medir independientemente N veces un ángulo sobre
diferentes sectores del circulo, tomando como valor final el promedio de las medidas.
En el capitulo 4, correspondiente a medición de ángulos, se describen en detalle los métodos,
procedimientos y sistemas de lecturas utilizados en la medida de ángulos.
Aunque como se ha mencionado previamente, los teodolitos difieren en forma, sistemas de
lectura y precisión, básicamente sus componentes son iguales, por lo que en el presente capítulo
se describen las partes básicas de un teodolito.
La figura 2.22 muestra los tres ejes de un teodolito;
Eje vertical “V-V” o eje de rotación de la alidada
Eje horizontal “H-H” o eje de rotación del círculo vertical
Eje de colimación “C-C”
Pv
C
im
ol
ec
ed
Ej
V
n
ió
ac
Eje de rotación
de la Alidada
Círculo Vertica
H
n
ció cal
o
r ta verti
e
d
lo
Eje círcu
del
Pv
H
C
Círculo horizontal
0'
0°0
V
Centro del círculo
horizontal.
Figura 2.22. Ejes de un teodolito
La figura 2.23 muestra el corte esquemático de un teodolito.
La base del teodolito [A] se apoya directamente sobre el trípode mediante los tornillos nivelantes
[B]. Sobre la base, para horizontalizar la misma, va colocado un nivel esférico de burbuja [C].
2-15
Leonardo Casanova M.
Instrumentos Topográficos
V
V
Eje de Rotación
de la Alidada
Eje de Rotación
de la Alidada
[M] Circulo Vertical
[N] Anteojo
[M] Circulo Vertical
[Q] Nivel tórico de C.V.
[O] Tornillo de fijación
Eje de Rotación
del Círculo Vertical
H
H
C
C
Eje de Colimacion
[O] Tornillo de fijación
[L] Nivel Tórico
[P] Tornillo de coincidencia
[P] Tornillo de coincidencia
[J] Alidada
[J] Alidada
[G] Tornillo de corrimiento
del circulo horizontal
[K] Indice de lectura
[G] Tornillo de corrimiento
del circulo horizontal
[D]Circulo horizontal
[I] Tornillo de coincidencia
[I] Tornillo de coincidencia
[H] Tornillo de fijación
[H] Tornillo de fijación
[F] Tornillo de coincidencia
[E] Tornillo de presión
[C] Nivel esférico
[A] Base
[B]Tornillo nivelante
Base del
Tripode
V
a. Teodolito repetidor
Base del
Tripode
V
b. Teodolito reiterador
Figura 2.23. Representación esquemática de un teodolito
En los teodolitos repetidores, el circulo horizontal [D] puede girar alrededor del eje vertical. Para
la fijación del círculo a la base se dispone del tornillo de presión [E], y para pequeños
movimientos de colimación se utiliza el tornillo de coincidencia [F].
En los teodolitos reiteradores, el círculo horizontal está fijo a la base y pude ser deslizado ó
rotado mediante un tornillo de corrimiento [G].
Para la fijación del círculo a la alidada y para los pequeños movimientos de colimación, existen
los tornillos de fijación [H] y coincidencia [I]. La alidada [J] gira alrededor del eje vertical de
rotación. Sobre la alidada van los índices de lectura [K] y el nivel tórico [L] del círculo
horizontal.
Sobre los montantes de la alidada se apoyan el círculo vertical [M] y el anteojo [N]. El anteojo se
fija a la alidada mediante el tornillo de fijación [O], y los pequeños movimientos de colimación
se realizan con el tornillo de coincidencia [P].
2-16
Leonardo Casanova M.
Instrumentos Topográficos
2.2.2 TEODOLITOS ELECTRÓNICOS
El desarrollo de la electrónica y la aparición de los microchips han hecho posible la
construcción de teodolitos electrónicos con sistemas digitales de lectura de ángulos sobre pantalla
de cristal liquido, facilitando la lectura y la toma de datos mediante el uso en libretas electrónicas
de campo o de tarjetas magnéticas; eliminando los errores de lectura y anotación y agilizando el
trabajo de campo. La figura 2.24 muestra el teodolito electrónico DT4 de SOKKIA.
Figura 2.24. Teodolito electrónico DT4 de Sokkia
2.2.3 ESTACIÓN TOTAL ELECTRÓNICA
La incorporación de microprocesadores y distanciometros electrónicos en los teodolitos
electrónicos, ha dado paso a la construcción de las Estaciones Totales.
Con una estación total electrónica se pueden medir distancias verticales y horizontales, ángulos
verticales y horizontales; e internamente, con el micro procesador programado, calcular las
coordenadas topográficas (norte, este, elevación) de los puntos visados. Estos instrumentos
poseen también tarjetas magnéticas para almacenar datos, los cuales pueden ser cargados en el
computador y utilizados con el programa de aplicación seleccionado. La figura 2.25 muestra la
2-17
Leonardo Casanova M.
Instrumentos Topográficos
estación total Wild T-1000 con pantalla de cristal liquido, tarjeta de memoria magnética para la
toma de datos y programas de aplicación incorporados para cálculo y replanteo.
Una de las características importantes tanto los teodolitos electrónicos como las estaciones
totales, es que pueden medir ángulos horizontales en ambos sentidos y ángulos verticales con el
cero en el horizonte o en el zenit.
Figura 2.25. Estación total Wild T-1000
2.2.4 ESTACIONES ROBÓTICAS
A principios de los años noventa, Geotronics AB introdujo en el mercado el Geodimeter
System 4000, primer modelo de estación total robótica.
El sistema consiste en una estación total con servo motor de rastreo y una unidad de control
remoto de posicionamiento que controla la estación total y funciona como emisor y recolector de
datos. Tanto la estación como la unidad de control remoto se conectan por medio de ondas de
radio, por lo que es posible trabajar en la oscuridad.
Una vez puesta en estación, la estación total es orientada colimando un punto de referencia
conocido y por medio de un botón se transfiere el control de la estación a la unidad de control
2-18
Leonardo Casanova M.
Instrumentos Topográficos
remoto de posicionamiento. A partir de este momento, el operador se puede desplazar dentro del
área de trabajo con la unidad de control remoto recolectando los datos. Las estaciones robóticas
vienen con programas de aplicación incorporados, que junto con las características mencionadas
previamente, permiten, tanto en los trabajos de levantamiento como en los de replanteo, la
operación del sistema por una sola persona
2.2.5 NIVELES
El nivel tubular o nivel tórico, es un trozo de tubo de vidrio de sección circular, generado
al hacer rotar un círculo alrededor de un centro O, tal y como se muestra en la figura 2.26. La
superficie es sellada en sus extremos y su interior se llena parcialmente con un líquido muy
volátil (como éter sulfúrico, alcohol etc.) que al mezclarse con el aire del espacio restante forma
una burbuja de vapores cuyo centro coincidirá siempre con la parte mas alta del nivel.
Burbuja centrada
Divisiones @ 2 mm
Superficie tórica
Eje del nivel
S"
[B]
[C]
R
Circulo
[A]
O
Figura 2.26. Nivel tórico
La parte superior de un nivel tórico viene dividida generalmente en intervalos de 2 mm de
amplitud.
La sensibilidad S de un nivel se define como el ángulo central, en segundos, que subtiende el arco
correspondiente a una división. La ecuación 2.1 , derivada de la definición anterior, se utiliza para
el cálculo de la sensibilidad.
S" =
2mm
* ρ"
R mm
(2.1)
En donde,
ρ”
S” Sensibilidad en seg
Valor del radian en seg (206.265”)
Rmm Radio del nivel en mm
2-19
Leonardo Casanova M.
Instrumentos Topográficos
El nivel va protegido por una caja metálica [A] y se fija a la base del instrumento mediante una
articulación [B] y un tornillo de corrección [C]. El eje o tangente central del nivel se localiza en
el punto medio de tangencia, cuando la burbuja esta centrada.
Generalmente, los niveles utilizados en los instrumentos topográficos tienen sensibilidad de 10”,
20”, 30”, 40” y 75”, de acuerdo a la precisión requerida.
En la tabla 2.1 se muestran los valores de sensibilidad y radio comúnmente utilizados en las
operaciones de topografía.
En la tabla 2.1 se puede observar que la sensibilidad de un nivel es directamente proporcional al
radio de la cara externa del tubo.
Los niveles son utilizados en todas las operaciones topográficas, bien sea como instrumentos
auxiliares, accesorios independientes o colocados en la base de los instrumentos como los
teodolitos.
TABLA 2.1
Sensibilidades y Radios de los niveles tóricos
Utilizados en diferentes operaciones de topografía
OPERACIÓN
S”
R (m)
Nivelaciones de precisión
10”
41.25
20”
20.63
Nivelaciones normales
30”
13.75
40”
10.31
Nivelación de bases de teodolitos (esféricos)
75”
5.50
Nivel de ingeniero
En las operaciones de nivelación, donde es necesario el calculo de las diferencias
verticales o desniveles entre puntos, al nivel tórico se le anexa un telescopio, una base con
tornillos nivelantes y un trípode.
Los niveles difieren entre si en apariencia, de acuerdo a la precisión requerida y a los fabricantes
del instrumento. En la figura 2.27 se representan los componentes básicos de un nivel.
Tornillo de enfoque
Eje de colimación
Telescopio
Proyección de la burbuja
Ocular de la burbuja
Nivel tubular
Tornillos nivelantes
Círculo horizontal
Figura 2.27. Nivel de ingeniero
2-20
Leonardo Casanova M.
Instrumentos Topográficos
Figura 2.28. Nivel Wild N2 con nivel tórico de doble curvatura
En la figura 2.28 se muestra el nivel Wild N2 con nivel tórico de doble curvatura. La figura 2.29 a.
muestra el nivel de alta precisión PL1 de Sokkia, empleado en nivelaciones de primer orden. Este
tipo de nivel posee un prisma de placas plano paralelas y un micrómetro óptico que permiten, con
el empleo de una mira INVAR, aumentar la precisión de las lecturas a la mira a 1/ 10 de mm. Un
ejemplo de lectura con nivel de placas plano paralelas y micrómetro óptico se muestra en la
figura 2.29 b
Tornillo
basculante
Lectura de mira
= 148,000 cm.
Lectura del micrómetro = 0,653 cm.
Lectura definitiva
= 148,653 cm.
Micrómetro
(a)
(b)
Figura 2.29. Nivel de precisión PL1 de Sokkia de placas plano paralelas con micrómetro óptico
2-21
Leonardo Casanova M.
Instrumentos Topográficos
En todas la operaciones de nivelación es necesario, antes de efectuar las lecturas a la mira,
chequear la horizontalidad del eje de colimación.
En algunos niveles, este proceso se realiza ópticamente proyectando la burbuja del nivel tórico
sobre el lente de colimación, como se muestra en la figura 2.30, de manera de hacer la
verificación al momento de tomar la lectura. En caso de que no se verifique la coincidencia de la
burbuja, se usa un tornillo basculante que permite, mediante pequeños movimientos, corregir una
eventual inclinación del eje de colimación.
22
23
24
25
26
27
81
82
83
84
85
86
87
a. Proyección de la burbuja
Burbuja no
coincidente
Burbuja
coincidente
b.- Coincidencia de la burbuja
Figura 2.30. Comprobación óptica de la coincidencia de la burbuja
1.
2.
3.
4.
5.
6.
7.
8.
9.
Cintas de suspensión
Línea de puntería
Prisma
Soporte
Péndulo con prisma
Muelle elástico
Botón de control de
funcionamiento
Amortiguador
Tubo de amortiguación
Figura 2.31. Compensador óptico mecánico Wild NA-2
2-22
Leonardo Casanova M.
Instrumentos Topográficos
Algunos niveles automáticos mas sofisticados, poseen un compensador óptico mecánico a fin de
garantizar la puesta en horizontal del eje de colimación.
Existen también niveles automáticos con compensador de amortiguación magnética. En la figura
2.32 se muestra el nivel automático C40 de Sokkisha y el esquema de funcionamiento del
compensador de amortiguación magnética.
PENDULO
IMAN
DIRECCION DEL
MOVIMIENTO
CONDUCTOR
b. Compensador de amortiguación magnética
a. Nivel C40
Figura 2.32. Nivel C40 Sokkisha
El imán del compensador produce un campo magnético cuando el conductor colocado en el
campo magnético, se mueve como consecuencia de una falta de horizontalidad del nivel, y se
genera una inducción electromagnética que produce una corriente giratoria en el conductor
creando una fuerza que compensa el movimiento del conductor.
Recientemente se han introducido en el mercado, niveles electrónicos con los cuales el proceso
de nivelación en el campo puede ser realizado por una sola persona. Estos niveles constan
básicamente de un emisor de rayos láser con un barrido de 360º y un receptor o detector de rayos,
tal y como se muestra en la figura 2.33.
2-23
Leonardo Casanova M.
Instrumentos Topográficos
a. Emisor de rayos láser
b. Detector de rayos
Figura 2.33. Nivel electrónico LP3A Sokkisha
2.2.6 DISTANCIOMETROS ELECTRONICOS
Aunque parezca un proceso sencillo, la medición distancias con cintas métricas es una operación
no solo complicada sino larga, tediosa y costosa.
Como se mencionó previamente, las cintas se fabrican con longitudes de hasta 100 m, siendo las
de 50 m las de mayor uso en los trabajos de topografía.
Cuando las longitudes a medir exceden la longitud de la cinta métrica utilizada, se hace necesario
dividir la longitud total en tramos menores o iguales a la longitud de la cinta, incrementando la
probabilidad de cometer errores de procedimiento tales como errores de alineación, de lectura, de
transcripción, etc.
Diferentes métodos y equipos se han implementado a lo largo de los años para mediciones de
distancias rápidas y precisas.
A finales de la década del 40, se desarrollo en Suecia el GEODÍMETRO, primer instrumento de
medición electrónico de distancias capaz de medir distancias de hasta 40 Km mediante la
transición de ondas luminosas, con longitudes de onda conocida modulados con energía
electromagnética.
2-24
Leonardo Casanova M.
Instrumentos Topográficos
Unos diez años más tarde, en sur Africa, se desarrollo el TELUROMETRO, capaz de medir
distancias de hasta 80 Kms mediante la emisión de micro ondas.
Recientemente, con la introducción de los microprocesadores se han desarrollado nuevos
instrumentos, mas pequeños y livianos, capaces de medir rápidamente distancias de hasta 4 Km
con precisión de ± [ 1mm + 1 parte por millón ( ppm)] en donde ± 1 mm corresponde al error
instrumental el cual es independiente de la distancia media.
Los distanciómetros electrónicos se pueden clasificar en
Generadores de micro ondas (ondas de radio).
Generadores de ondas luminosas (rayos láser e infrarrojos).
Los distanciómetros de micro ondas requieren transmisores y receptores de onda en ambos
extremos de la distancia a medir mientras que los instrumentos basados en la emisión de ondas
luminosas requieren un emisor en un extremo y un prisma reflector en el extremo contrario.
Figura 2.34. Distanciómetros electrónicos de Sokkisha
En el capítulo 3-7, correspondiente a la medición de distancias con distanciómetros
electrónicos, estudiaremos más en detalle los fundamentos y tipos de distanciómetros utilizados
actualmente en la medición de distancias.
2-25