Academia.eduAcademia.edu

ECONOMETRIC MODELS OF MONETARY POLICY EFFECTIVENESS IN UKRAINE

2019, Financial and credit activity: problems of theory and practice, Vol 3, No 30 (2019)

https://doi.org/10.18371/fcaptp.v3i30.179546

The main task for the Central Bank is ensuring the stability of the national currency. For this purpose, it tends to use traditional monetary regulation instruments. There are interest rates regulation, currencies intervention, administrative restriction, money supply adjustment and so on. A significant number of these traditional tools are effective. However, it is very difficult to assess the effectiveness of the regulators influence. Therefore, the purpose of the work is to define the theoretical substantiation of the basic monetary regulation instruments effectiveness and estimate its influence on the economy growth indicators in Ukraine. This article is based on the theoretical principles and methods of macroeconomic analysis; the system approach methods to define the main monetary regulation instruments of finance system and economy. The study presents a regression models with paired and multiple variables. For these models R-Studio instruments are the main tools of quality estimation and results interpretation. The article shows the results of statistical analysis of national currency rate and consumer price index which is based on open data of Ukraine economy trends for the period from 2007 till 2019. Traditionally econometric methods are used to find out long run relationships between basic economy indicators (agriculture and industry outputs, average salary, stock index growth etc.) and both monetary information and regulation instruments. Authors develop the regressive models of influence of Central Bank regulation instruments of monetary and economic stability. The paper presents conclusions regarding trends and problems in the implementation of Ukraine's monetary policy, it's influences on the currency stability and economic growth trends. Implementation of the proposed measures will increase monetary policy effectiveness and define the directions of the further research in forecasting inflationary and course-forming factors of the development of the national economy and financial system of Ukraine. 226

УДК 336.711:330.43(477) Baranovskyi O. I. Doctor of Economics, Professor, Vice-rector of the Scientific Work of SHEI «Banking University», Ukraine; e-mail: bai@ubs.gov.ua; ORCID ID: 0000-0002-5505-5098 Kuzheliev M. O. Doctor of Economics, Professor, Director of Educational and Research Institute of Finance and Banking, University of State Fiscal Service of Ukraine, Ukraine; e-mail: m-kristo@ukr.net; ORCID ID: 0000-0002-7895-7879 Zherlitsyn D. M. Doctor of Economics, Professor of Economic Cybernetics Department, National University of Life and Environmental Sciences of Ukraine, Ukraine; e-mail: dzherlitsyn@gmail.com; ORCID ID: 0000-0002-2331-8690 Sokyrko O. S. Ph. D. in Economics, Associate Professor of the Department of Finance named after L. L. Tarangul, University of State Fiscal Service of Ukraine, Ukraine; e-mail: osokirko@gmail.com; ORCID ID: 0000-0002-3185-0863 Nechyporenko A. V. Ph. D. in Economics, Associate Professor of the Department of Finance named after L. L. Tarangul, University of State Fiscal Service of Ukraine, Ukraine; e-mail: an.0412@ukr.net; ORCID ID: 0000-0003-2494-1465 ECONOMETRIC MODELS OF MONETARY POLICY EFFECTIVENESS IN UKRAINE Abstract. The main task for the Central Bank is ensuring the stability of the national currency. For this purpose, it tends to use traditional monetary regulation instruments. There are interest rates regulation, currencies intervention, administrative restriction, money supply adjustment and so on. A significant number of these traditional tools are effective. However, it is very difficult to assess the effectiveness of the regulators influence. Therefore, the purpose of the work is to define the theoretical substantiation of the basic monetary regulation instruments effectiveness and estimate its influence on the economy growth indicators in Ukraine. This article is based on the theoretical principles and methods of macroeconomic analysis; the system approach methods to define the main monetary regulation instruments of finance system and economy. The study presents a regression models with paired and multiple variables. For these models R-Studio instruments are the main tools of quality estimation and results interpretation. The article shows the results of statistical analysis of national currency rate and consumer price index which is based on open data of Ukraine economy trends for the period from 2007 till 2019. Traditionally econometric methods are used to find out long run relationships between basic economy indicators (agriculture and industry outputs, average salary, stock index growth etc.) and both monetary information and regulation instruments. Authors develop the regressive models of influence of Central Bank regulation instruments of monetary and economic stability. The paper presents conclusions regarding trends and problems in the implementation of Ukraine’s monetary policy, it’s influences on the currency stability and economic growth trends. Implementation of the proposed measures will increase monetary policy effectiveness and define the directions of the further research in forecasting inflationary and course-forming factors of the development of the national economy and financial system of Ukraine. 226 The key focus of further research is to define an adequate indicator that determines the real level of inflation, which must evaluate a whole range of factors reducing the real value of money. Keywords: monetary policy, regulation instrument, econometric model, multiple regression, economic indicator. JEL Classification C5, E5 Formulas: 1; fig.: 2; tabl.: 4; bibl.: 16. Барановський О. І. доктор економічних наук, професор, проректор з наукової роботи ДВНЗ «Університет банківської справи», Україна; e-mail: bai@ubs.gov.ua; ORCID ID: 0000-0002-5505-5098 Кужелєв М. О. доктор економічних наук, професор, директор Навчально-наукового інституту фінансів, банківської справи, Університет державної фіскальної служби України, Україна; e-mail: m-kristo@ukr.net; ORCID ID: 0000-0002-7895-7879 Жерліцин Д. М. доктор економічних наук, професор кафедри економічної кібернетики Національного університету біоресурсів і природокористування України, Україна; e-mail: dzherlitsyn@gmail.com; ORCID ID: 0000-0002-2331-8690 Сокирко О. С. кандидат економічних наук, доцент кафедри фінансів імені Л. Л. Тарангул, Університет державної фіскальної служби України, Україна; e-mail: osokirko@gmail.com; ORCID ID: 0000-0002-3185-0863 Нечипоренко А. В. кандидат економічних наук, доцент кафедри фінансів імені Л. Л. Тарангул, Університет державної фіскальної служби України, Україна; e-mail: an.0412@ukr.net; ORCID ID: 0000-0003-2494-1465 ЕКОНОМЕТРИЧНІ МОДЕЛІ ЕФЕКТИВНОСТІ МОНЕТАРНОЇ ПОЛІТИКИ В УКРАЇНІ Анотація. Головним завданням центрального банку є забезпечення стабільності національної валюти. Для цього він прагне використовувати традиційні інструменти монетарного регулювання, а саме: регулювання процентних ставок, інтервенції валют, адміністративні обмеження, регулювання грошової маси тощо. Значна кількість цих традиційних інструментів є ефективними. Однак дуже важко оцінити ефективність впливу цих регуляторів. Тому метою роботи є теоретичне обґрунтування ефективності основних інструментів монетарного регулювання та оцінка їхнього впливу на показники економічного зростання в Україні. Ця стаття базується на теоретичних засадах та методах макроекономічного аналізу; методах системного підходу для визначення основних інструментів монетарного регулювання фінансової системи та економіки. У роботі представлені регресійні моделі з парними та множинними змінними. Інструменти R-Studio є основними для оцінки якості та інтерпретації результатів для цих моделей. Наведено результати статистичного аналізу індексів курсу національної валюти та споживчих цін, які базуються на відкритих даних щодо тенденцій розвитку економіки України за період з 2007 року до 2019-го. Традиційні економетричні методи використовуються для виявлення довготривалих взаємозв’язків між основними 227 економічними показниками (випуски у сільському господарстві та промисловості, середня заробітна плата, зростання фондових індексів тощо), монетарною інформацією та інструментами регулювання. Складено регресивну модель впливу інструментів регулювання ЦБ на монетарну та економічну стабільність. Наведено висновки щодо тенденцій та проблем реалізації грошовокредитної політики України, її вплив на стабільність валюти та тенденції економічного зростання. Реалізація запропонованих заходів підвищить ефективність грошово-кредитної політики та визначить напрями подальших досліджень у прогнозуванні інфляційних та курсоутворювальних факторів розвитку національної економіки та фінансової системи України. Основним напрямом подальших досліджень є визначення адекватного показника, що визначає реальний рівень інфляції, який повинен оцінювати цілий ряд факторів, що знижують реальну вартість грошей. Ключові слова: монетарна політика, інструменти регулювання, економетрична модель, множинна регресія, економічний індикатор. Формули: 1; рис.: 2; табл.: 4; бібл.: 16. Барановский А. И. доктор экономических наук, профессор, проректор с научной работы ГВУЗ «Университет банковского дела», Украина; e-mail: bai@ubs.gov.ua; ORCID ID: 0000-0002-5505-5098 Кужелев М. А. доктор экономических наук, профессор, директор Учебно-научного института финансов, банковского дела, Университет государственной фискальной службы Украины, Украина; e-mail: m-kristo@ukr.net; ORCID ID: 0000-0002-7895-7879 Жерлицын Д. М. доктор экономических наук, профессор кафедры экономической кибернетики Национального университета естественных наук и экологии Украины, Украина; e-mail: dzherlitsyn@gmail.com; ORCID ID: 0000-0002-2331-8690 Сокирко Е. С. кандидат экономических наук, доцент кафедры финансов имени Л. Л. Тарангул, Университет государственной фискальной службы Украины, Украина; e-mail: osokirko@gmail.com; ORCID ID: 0000-0002-3185-0863 Нечипоренко А. В. кандидат экономических наук, доцент кафедры финансов имени Л. Л. Тарангул, Университет государственной фискальной службы Украины, Украина; e-mail: an.0412@ukr.net; ORCID ID: 0000-0003-2494-1465 ЭКОНОМЕТРИЧЕСКИЕ МОДЕЛИ ЭФФЕКТИВНОСТИ МОНЕТАРНОЙ ПОЛИТИКИ В УКРАИНЕ Аннотация. Главной задачей центрального банка является обеспечение стабильности национальной валюты. С этой целью он стремится использовать традиционные инструменты монетарного регулирования, а именно: регулирование процентных ставок, интервенции валют, административные ограничения, регулирования денежной массы и др. Значительное 228 количество этих традиционных инструментов являются эффективными. Однако очень трудно оценить эффективность влияния этих регуляторов. Поэтому целью работы является теоретическое обоснование эффективности основных инструментов монетарного регулирования и оценка их влияния на показатели экономического роста в Украине. Эта статья базируется на теоретических основах и методах макроэкономического анализа; методах системного подхода для определения основных инструментов монетарного регулирования финансовой системы и экономики. В работе представлены регрессионные модели с парными и множественными переменными. Инструменты R-Studio являются основными для оценки качества и интерпретации результатов этих моделей. В статье приведены результаты статистического анализа индексов курса национальной валюты и потребительских цен, основанные на открытых данных о тенденциях развития экономики Украины за период с 2007 по 2019 годы. Традиционные эконометрические методы используются для выявления долговременных взаимосвязей между основными экономическими показателями (выпуски в сельском хозяйстве и промышленности, средняя заработная плата, рост фондовых индексов и т.д.), монетарной информацией и инструментами регулирования. Составлено регрессивная модель влияния инструментов регулирования ЦБ на монетарную и экономическую стабильность. Приведены выводы о тенденциях и проблемах реализации денежно-кредитной политики Украины, ее влияние на стабильность валюты и тенденции экономического роста. Реализация предложенных мер повысит эффективность денежно-кредитной политики и определит направления дальнейших исследований в прогнозировании инфляционных и курсообразующих факторов развития национальной экономики и финансовой системы Украины. Основным направлением дальнейших исследований является определение адекватного показателя, определяющего реальный уровень инфляции, который должен оценивать целый ряд факторов, снижающих реальную стоимость денег. Ключевые слова: монетарная политика, инструменты регулирования, эконометрическая модель, множественная регрессия, экономический индикатор. Формулы: 1; рис.: 2; табл.: 4; библ.: 16. Introduction. After 2008 the World financial system has been changed dramatically. The traditional instruments of macroeconomic and monetary regulation do not work correct. These significant changes inherent for the whole country. Ukraine monetary system is not an exception. The Ukrainian financial system is under negative influence of international and external uncertainty factors. For example, in 2009 the World GDP decried for 5,19%, but Ukrainian GDP deceased for 34,87% in USD equivalent. In 2014 and 2015 Ukrainian GDP declined for 27,17% and 32,81% in USD equivalent [16]. This dramatical falls had generated significant changes in monetary system, for example, the decrease in average rate for currency pair USD/UAH was 51,34% in 2008, 91,05% in 2014 and 48,43% in 2015 [14]. Therefore, the National Bank of Ukraine, as the main monetary regulation state institute, has to use all available instruments for stabilizing Ukrainian financial system and ensuring the stability of the national currency rate. Thus, the problem of evaluating the regulation instruments influence and monetary policy effectiveness is nowadays actual task for economic researches and practical activities of Central Banks all over the world. Literature review and the problem statement. There are many researches, who concentrate their attention on fundamental financial, monetary and econometric problems. For example, Doojav G.O., Batmunkh U. [1], Heinlein R., Krolzig H.M. [5], Jawadi F. [6] and Yelnikonva Y. [11] and some others [3; 7] have delaminated the key factors and methods to define problems and use regulation instruments of monetary policies. There are indicators as: householders’ income, price index; inflation; oil price; commodity price; unemployment rate; 229 export and import; short-term interest rate; long-term interest rate; nominal exchange rate; real exchange rate; stock exchange prices and so on. All of their studies are based on traditional inflation trends determination, but specifics of the Ukrainian economy dynamics require new studies to confirm the effectiveness of traditional monetary and financial instruments. The other directions for evaluation the changes in effectiveness of macroeconomic trends and prediction the results of using monetary instruments are concentrating on econometric and time series modeling. Studies [2; 4; 8; 9; 10; 12] show regression, multi-classification, regression and time-series models for analysis and predict basic macroeconomics indicators, stock markets and currency rate dynamics. But that models have not practical adaptation for different economic condition. For example, monetary dynamics may vary for developing and advanced economies, for stable and unstable period so on. Therefore, the purpose of the work is to define the theoretical substantiation of the basic monetary regulation instruments effectiveness and estimate its influence on economy growth indicators in Ukraine. Research results. The logic of previous studies defines three type of variables that are used for further research. There are 1) input monetary regulation instruments — x, 2) basic monetary indicators — y, and 3) output macroeconomic indicators — z. The list of these input and output variables for monetary policy effectiveness estimation is given in Table 1. Table 1 Input and output variables for monetary policy effectiveness estimation Variable Description Basic monetary indicators– y y1 Consumer price index or CPI, % to previous month y2 Industrial producer price index or PPI, % to previous month y3 Currency pair USD/UAH rate, growth index % to previous month y1b Consumer price index or CPI, % to basic month (2001-01) y2b Industrial producer price index or PPI, % to basic month (2003-01) y3b Currency pair USD/UAH rate, UAH Input monetary regulation instruments — x x1 NBU discount rate, % x2 Weighted average interest rate on all instruments, % x3 Monetary base, bln UAH x4 Government securities in circulation by principal debt, bln UAH x5 Total NBU Assets, bln UAH x6 Intervention of the National Bank of Ukraine: Sale USD, bln USD x7 Intervention of the National Bank of Ukraine: Purchase USD, bln USD Output macroeconomic indicators — z z1 Agriculture Sector Outputs, bln UAH z2 Industry Sector Outputs, bln UAH z3 Average monthly wages (nominal), UAH z4 Real wage, % to previous month z5 Monthly PFTS z6 Unemployment rate, % z7 Direct investment balance, bln USD z8 Exports of Goods, bln USD z9 Import of Goods, bln USD Source: datasets for the variables were retrieved from [13; 14; 15] We use the basic monetary indicators in two dimensions. There is monthly growth to the previous month and growth to the basic month. The study does not use GDP and direct monetary restriction indicator, as relevant information provided by the State Statistics Service of Ukraine and other official sources of information are not enough. For the past 28 years Ukrainian economy has shown many periods of significant fluctuation — Fig. 1. 230 1,6 1,5 y1 y2 y3 % of growth 1,4 1,3 1,2 1,1 1 2019-02 2018-08 2018-02 2017-08 2017-02 2016-08 2016-02 2015-08 2015-02 2014-08 2014-02 2013-08 2013-02 2012-08 2012-02 2011-08 2011-02 2010-08 2010-02 2009-08 2009-02 2008-08 2008-02 2007-08 2007-02 0,9 Year-Month Fig. 1. Dynamics of the basic monetary indices (Ukraine, years 2007—2019), % of growth As it is shown in Fig 1, the dynamics of base monetary indicators for period Jan 2007 to May 2019 has two period of instability. After global financial crisis (2008—2009), the Ukrainian economy has changed for the first time in this period. The second major change in monetary regulation took place in 2014—2015. The data of this crisis period have been removed from the statistical analysis, because they do not meet the criteria for matching and reconciling datasets. Table 2 shows Pearson Correlation Coefficients for appropriated periods. They have been calculated on datasets for Period I (from Jan 2009 to Dec 2013) and Period I (from Jul 2015 to May 2019). Regarding the results (Table 2) that were achieved, there is a major correlation between cumulative monetary indicators and regulation instruments. NBU discount rate (x1), weighted average interest rate on all instruments (x2) and total NBU assets (x5) had more significant influence on inflation rates (y1b and y2b) and currency pair USD/UAH rate (y3b) before 2014. The monetary base (x3) and government securities (x4) have become more significant for monetary regulation of inflation rates after 2015. The intervention of the National Bank of Ukraine has made a major effect on currency pair USD/UAH rate within Period II. Additionally, the correlation results have shown that pairs x1 and x2, x3 and x4 has significant correlation. So, they had the same effect and were dropped out from analysis. The next investigation based on methods of linear multiple regression modeling. It includes evaluating the parameters as follow [7; 12]: 𝑦 = 𝑎0 + ∑𝑛𝑖=1(𝑎𝑖 ⋅ 𝑥𝑖 ) + 𝜀, where 𝑦 — dependent variable; 𝑎0 — intercept coefficient, which determines the effect of unregistered factors; 𝑎𝑖 — coefficients, which are determined by factors i (𝑖 = 1. . 𝑛); 𝜀, — evaluation of normal error level. 231 (1) Table 2 Correlation matrix between the basic monetary indicators and the input monetary regulation instruments Variables x1 x2 x3 x4 x5 y1 0,41648 0,40289 -0,48513 -0,49930 -0,35689 y2 0,25128 0,19883 -0,34402 -0,29562 -0,07858 y3 -0,03327 -0,01834 0,01809 0,02464 0,05723 y3b -0,18614 -0,16502 0,27589 0,32645 -0,10264 y1b -0,94075 -0,86991 0,83145 0,90062 0,81145 x1 x2 x3 x4 x5 x6 x7 -0,26594 -0,29164 0,02607 0,09058 0,34907 -0,06044 0,18280 -0,14382 -0,10451 -0,20369 -0,16157 0,14034 0,03051 -0,11494 0,15141 0,18648 -0,23383 -0,23720 -0,04969 0,57464 -0,70604 -0,67556 -0,67444 0,73910 0,80674 0,61166 0,27617 0,09682 -0,44437 -0,47062 0,96921 0,95383 0,29249 0,13418 0,20319 Period I y2b -0,93106 -0,86521 0,86921 0,92416 0,75975 Period II -0,49312 -0,50750 0,97124 0,96176 0,29611 0,16756 0,17547 For further research, the method of least squares is used, which is known as a standard approach to regression analysis and R-Studio tools to approximate the key factors influence. Table 3 summarizes the linear dependencies and accuracy results for key variables. It can be seen that multiple regression method shows high level of the model and coefficients’ performances, especially for Model 1 and 2. So, these models can be used for the further analysis. Table 3 Assessment of linear multiple regression models for the basic monetary indicators for Ukrainian economy (period: from 2015-07 to 2019-05) Variables y1b y2b y3b y3 Estimate (p-value) Estimate (p-value) Estimate (p-value) Estimate (p-value) Intercept -1,63544 (<<0,01) -8,14635 (<<0,01) 1,85553 (0,39300) 1,0180 (<<0,01) a1 (x2) -0,06023 (<<0,01) - a2 (x3) 0,02078 (<<0,01) 0,05075 (0,001) 0,03001 (<<0,01) - A5 (x5) - A6 (x6) - A7 (x7) - Adj. R2 - - - 0,954 0,01196 (<<0,01) - - - 0,7542 0,0793 (0,00226) -0,0898 (<<0,01) 0,5822 0,938 As it is shown in Table 3, the main instrument of monetary regulation in Ukraine in Period II was the level of monetary base. This instrument shows strong relationship between all monetary indicators. If monetary base increases on 1 bln UAH, the cumulative growth indices will be change on 2% for CPI, on 5% for PPI and on 3% for currency rate USD/UAH. Another important tool, the weighted average interest rate on all NBU instruments, demonstrates major effect only to the cumulative PPI index in Period II. The Interventions of the National Bank of Ukraine show the traditional effect on the growth of the national currency rate. But the level of this effect is not so high and adjusted R2 is only 58,22%. Selling or buying 1 bln USD per month causes a change in growth index of the national currency exchange rate by 8—9%. The study results showed that monetary instruments in Period II were the useful tools of general monetary regulation and made predictive effect for ensuring the stability of the national currency. On other hand, it is important to evaluate the impact of monetary policy outcomes on the basic economic indicators — Table 4. 232 Table 4 Correlation matrix between the basic monetary indicators and the output macroeconomic indicators Variables z1 z2 z3 z4 z5 z6 z7 z8 z9 y1 -0,37432 -0,34451 -0,46825 -0,17756 0,38072 0,32859 -0,01687 -0,35967 -0,39286 y2 -0,52319 -0,30445 -0,47168 -0,07624 0,47829 0,33525 -0,28408 -0,30992 -0,34749 y3 0,05520 0,18191 0,20138 -0,16313 -0,19659 -0,04564 0,01409 0,25260 0,24689 y3b 0,24624 0,45574 0,83051 0,02010 -0,85346 0,00636 -0,14286 0,39927 0,50785 y1b 0,19538 0,87295 0,78019 0,11579 -0,44800 0,20453 0,15278 0,84107 0,82522 z1 z2 z3 z4 z5 z6 z7 z8 z9 -0,25693 0,12533 -0,04780 -0,14006 -0,30000 -0,03809 -0,08514 0,10896 -0,02751 0,10635 0,10901 -0,04896 0,04586 -0,17615 -0,03626 -0,07636 0,04173 0,00534 0,16239 -0,14103 -0,17652 -0,10397 -0,01113 0,22768 0,13389 -0,21326 -0,08619 -0,23384 0,73949 0,68094 -0,01800 0,17322 -0,36521 -0,05980 0,39326 0,52182 0,00483 0,90284 0,97864 0,01816 0,66505 -0,68198 -0,22985 0,72131 0,81193 Period I y2b 0,30285 0,83421 0,85869 0,12722 -0,58360 -0,01148 0,06238 0,82975 0,83777 Period II 0,05177 0,91048 0,96993 0,02484 0,66864 -0,71244 -0,26437 0,74032 0,82880 Cumulative PPI, % to base period The result of correlation analysis (Table 4) showed that the basic monetary policy results had a slight effect on main economic indicators. But, there is a strong relationship between cumulative inflation indices and following indicators for Period I: industry sector outputs (z2), average nominal monthly wages (z3), monthly PFTS (z5) — negative effect, exports (z8) and import (z9) of goods; for Period II: industry sector outputs (z2), average nominal monthly wages (z3), monthly PFTS (z5), unemployment rate (z6) — negative effect, exports (z8) and import (z9) of goods. An important relationship between inflation and unemployment was discovered in Period II. The classic Phillips curve is an economic concept, which shows stable and inverse relationship between inflation and unemployment. As it is shown in Table 4, this concept is partially confirmed for the Ukrainian economy. The graph of the model is shown in Fig. 2. 3 y2b 2,5 2 1,5 1 0,5 0 0,8 1,3 1,8 Unemployment rate (z6), % Fig. 2. Phillips curve approximation based on Ukrainian economy data from Jul 2015 to May 2019 233 2,3 Thus, the results of the monetary policy for the period I and II had a certain effect on the economy of Ukraine, but not a significant one. This proves that monetary indicators are relatively independent from stationary economic development trends. Conclusion. Multiple regression models, which are based on data of monetary regulation in Ukraine for the last years, showed the significant relation between the monetary factors and economy growth. The main instruments of monetary regulation have predictably influence on inflation and the exchange rate during periods of stable functioning of the country’s economy. The study proves that different inflation indicators have variant relationship with same regulation instrumentals and economic situations. Therefore, the key focus of further research is to define an adequate indicator that determines the real level of inflation, which must evaluate a whole range of factors reducing the real value of money. Література 1. Doojav G. O. Monetary and macroprudential policy in a commodity exporting economy: A structural model analysis / G. O. Doojav, U. Batmunkh // Central Bank Review. — 2018. — September. — T. 18. — № 3. — P. 107—128. 2. Fernandez-Arias D. Financial Soundness Prediction Using a Multi-classification Model: Evidence from Current Financial Crisis in OECD Banks / D. Fernandez-Arias, M. Lopez-Martin, T. Montero-Romero, F. Martinez-Estudillo, F. FernandezNavarro // Computational Economics. — 2018. — June. — T. 52. — № 1. — P. 275—297. 3. Feuerriegel S. News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions / S. Feuerriegel, J. Gordon // European Journal of Operational Research. — 2019. — January. — T. 272. — № 1. — P. 162—175. 4. Gali J. Macroeconomic modeling for monetary policy evaluation / J. Gali, M. Gertler // Journal of Economic Perspectives. — 2007. — T. 21. — № 4. — P. 25—45. 5. Heinlein R. Monetary policy and exchange rates: a balanced two-country cointegrated var model approach / R. Heinlein, H. M. Krolzig // Macroeconomic Dynamics. — 2019. — July. — T. 23. — № 5. — P. 1838—1874. 6. Jawadi F. Introduction to Advanced Statistical Analyses for Computational Economics and Finance / F. Jawadi // Computational Economics. — 2019. — June. — T. 54. — № 1. — P. 1—3. 7. Kuzheliev M. O. Bioresources Price Trend and GDP Growth Adjustment [Electronic resource] / M. O. Kuzheliev, D. M. Zherlitsyn, A. V. Nechyporenko // International Journal of Advanced Biotechnology and Research (IJABR). — 2019. — Vol. 10. — Special Is. 1. — P. 379—383. — Available at : https://bipublication.com/files/ijabr2019sp154Mykhailo.pdf. 8. Kuzheliev M. Weighted Coefficient Model for Bank Investment Portfolio Optimization / M. Kuzheliev, I. Britchenko, M. Zhytar // Business and non-profit organizations facing increased competition and growing customers’ demands / Ed. by A. Nalepka, A. Ujwary-Gil. — Nowy Sącz : Wyższa Szkoła Biznesu — National-Louis University in Nowy Sącz and Fundacja Upowszechniająca Wiedzę i Naukę «Cognitione». — 2015. — Vol. 14. — P. 149—162. 9. Pavlova T. S. Logic of the influence of non-monetary information signals of the usa on the excess return of Ukrainian stock market / T. S. Pavlova, E. P. Zarutska, O. V. Levkovich, V. Khmarskyi // Financial and Credit Activity-Problems of Theory and Practice. — 2019. — T. 1. — № 28. — P. 179—185. 10. Martin C. Modelling monetary policy: Inflation targeting in practice / C. Martin, C. Milas // Economica. — 2004. — May. — T. 71. — № 282. — P. 209—221. 11. Yelnikova Y. Relationship derivatives financial markets, money and stock markets as a subsystem of financial market / Y. Yelnikova // Baltic Journal of Economic Studies. — 2016. — T. 2. — № 1. — P. 3945. 12. Salmeron R. Variance Inflation Factor and Condition Number in multiple linear regression / R. Salmeron, C. B. Garcia, J. Garcia // Journal of Statistical Computation and Simulation. — 2018. — T. 88. — № 12. — P. 2365—2384. 13. Statistical Information [Electronic recourse] / State Statistics Service of Ukraine. — Available at : ukrstat.gov.ua. 14. Statistics [Electronic recourse] / National Bank of Ukraine. — Available at : bank.gov.ua/control/en/publish/article?art_id=67604. 15. Yahoo! Finance [Electronic recourse]. — Available at : finance.yahoo.com. 16. World bank [Electronic recourse]. — Available at : data.worldbank.org. Стаття рекомендована до друку 03.09.2019 © Барановський О. І., Кужелєв М. О., Жерліцин Д. М., Сокирко О. С., Нечипоренко А. В. References 1. Doojav, G. O., & Batmunkh, U. (2018). Monetary and macroprudential policy in a commodity exporting economy: A structural model analysis. Central Bank Review, 18 (3), 107—128. https://doi.org/10.1016/j.cbrev.2018.06.001. 2. Fernandez-Arias, D., Lopez-Martin, M., Montero-Romero, T., Martinez-Estudillo, F., & Fernandez-Navarro, F. (2018). Financial Soundness Prediction Using a Multi-classification Model: Evidence from Current Financial Crisis in OECD Banks. Computational Economics, 52 (1), 275—297. https://doi.org/10.1007/s10614-017-9676-6. 3. Feuerriegel, S., & Gordon, J. (2019). News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions. European Journal of Operational Research, 272 (1), 162—175. https://doi.org/10.1016/j.ejor.2018.05.068-y. 4. Gali, J., & Gertler, M. (2007). Macroeconomic modeling for monetary policy evaluation. Journal of Economic Perspectives, 21 (4), 25—45. 5. Heinlein, R., & Krolzig, H. M. (2019). Monetary policy and exchange rates: a balanced two-country cointegrated VAR model approach. Macroeconomic Dynamics, 23 (5), 1838—1874. https://doi.org/10.1017/s1365100517000475. 6. Jawadi, F. (2019). Introduction to Advanced Statistical Analyses for Computational Economics and Finance. Computational Economics, 54 (1), 1—3. https://doi.org/10.1007/s10614-018-9804. 234 7. Kuzheliev, M. O., Zherlitsyn, D. M., & Nechyporenko, A. V. (2019) Bioresources Price Trend and GDP Growth Adjustment. International Journal of Advanced Biotechnology and Research (IJABR), 10, 1, 379—383. Retrieved from https://bipublication.com/files/ijabr2019sp154Mykhailo.pdf. 8. Kuzheliev, M., Britchenko, I., & Zhytar, M. (2015). Weighted Coefficient Model for Bank Investment Portfolio Optimization. Business and non-profit organizations facing increased competition and growing customers’ demands. Nowy Sącz: Wyższa Szkoła Biznesu — National-Louis University in Nowy Sącz and Fundacja Upowszechniająca Wiedzę i Naukę «Cognitione», 14, 149—162. 9. Pavlova, T. S., Zarutska, E. P., Levkovich, O. V., & Khmarskyi, V. (2019). Logic of the influence of non-monetary information signals of the USA on the excess return of Ukrainian stock market. Financial and Credit Activity-Problems of Theory and Practice, 1 (28), 179—185. https://doi.org/10.18371/fcaptp.v1i28.161772. 10. Martin, C., & Milas, C. (2004). Modelling monetary policy: Inflation targeting in practice. Economica, 71 (282), 209— 221. https://doi.org/10.1111/j.0013-0427.2004.00366.x. 11. Yelnikova, Y. (2016). Relationship derivatives financial markets, money and stock markets as a subsystem of financial market. Baltic Journal of Economic Studies, 2 (1), 39—45. https://doi.org/10.30525/2256-0742/2016-2-1-39-45. 12. Salmeron, R., Garcia, C. B., & Garcia, J. (2018). Variance Inflation Factor and Condition Number in multiple linear regression. Journal of Statistical Computation and Simulation, 88 (12), 2365—2384. https://doi.org/10.1080/00949655.2018.1463376. 13. Statistical Information. (2019, May 30). State Statistics Service of Ukraine. ukrstat.gov.ua. Retrieved from ukrstat.gov.ua. 14. Statistics. (2019, May 30). National Bank of Ukraine. bank.gov.ua. Retrieved from https://bank.gov.ua/control/en/publish/article?art_id=67604 15. Yahoo! Finance. (2019, May 30). finance.yahoo.com. Retrieved from finance.yahoo.com. 16. World Bank. (2019, May 30). data.worldbank.org. Retrieved from https://data.worldbank.org The article is recommended for printing 03.09.2019 235 © Baranovskyi O. I., Kuzheliev M. O., Zherlitsyn D. M., Sokyrko O. S., Nechyporenko A. V.