Academia.eduAcademia.edu

Quantum Computation and Quantum Information by Nielsen and Chuang

Quantum Computation and Quantum Information by Nielsen and Chuang

This page intentionally left blank Quantum Computation and Quantum Information 10th Anniversary Edition One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th Anniversary Edition includes a new Introduction and Afterword from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography, and quantum error-correction. Quantum mechanics and computer science are introduced, before moving on to describe what a quantum computer is, how it can be used to solve problems faster than “classical” computers, and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering. MICHAEL NIELSEN was educated at the University of Queensland, and as a Fulbright Scholar at the University of New Mexico. He worked at Los Alamos National Laboratory, as the Richard Chace Tolman Fellow at Caltech, was Foundation Professor of Quantum Information Science and a Federation Fellow at the University of Queensland, and a Senior Faculty Member at the Perimeter Institute for Theoretical Physics. He left Perimeter Institute to write a book about open science and now lives in Toronto. ISAAC CHUANG is a Professor at the Massachusetts Institute of Technology, jointly appointed in Electrical Engineering & Computer Science, and in Physics. He leads the quanta research group at the Center for Ultracold Atoms, in the MIT Research Laboratory of Electronics, which seeks to understand and create information technology and intelligence from the fundamental building blocks of physical systems, atoms, and molecules. In praise of the book 10 years after publication Ten years after its initial publication, “Mike and Ike” (as it’s affectionately called) remains the quantum computing textbook to which all others are compared. No other book in the field matches its scope: from experimental implementation to complexity classes, from the philosophical justifications for the Church-Turing Thesis to the nitty-gritty of bra/ket manipulation. A dog-eared copy sits on my desk; the section on trace distance and fidelity alone has been worth many times the price of the book to me. Scott Aaronson, Massachusetts Institute of Technology Quantum information processing has become a huge interdisciplinary field at the intersection of both, theoretical and experimental quantum physics, computer science, mathematics, quantum engineering and, more recently, even quantum metrology. The book by Michael Nielsen and Isaac Chuang was seminal in many ways: it paved the way for a broader, yet deep understanding of the underlying science, it introduced a common language now widely used by a growing community and it became the standard book in the field for a whole decade. In spite of the fast progress in the field, even after 10 years the book provides the basic introduction into the field for students and scholars alike and the 10th anniversary edition will remain a bestseller for a long time to come. The foundations of quantum computation and quantum information processing are excellently laid out in this book and it also provides an overview over some experimental techniques that have become the testing ground for quantum information processing during the last decade. In view of the rapid progress of the field the book will continue to be extremely valuable for all entering this highly interdisciplinary research area and it will always provide the reference for those who grew up with it. This is an excellent book, well written, highly commendable, and in fact imperative for everybody in the field. Rainer Blatt, Universtität Innsbruck My well-perused copy of Nielsen and Chuang is, as always, close at hand as I write this. It appears that the material that Mike and Ike chose to cover, which was a lot, has turned out to be a large portion of what will become the eternal verities of this still-young field. When another researcher asks me to give her a clear explanation of some important point of quantum information science, I breathe a sigh of relief when I recall that it is in this book – my job is easy, I just send her there. David DiVincenzo, IBM T. J. Watson Research Center If there is anything you want to know, or remind yourself, about quantum information science, then look no further than this comprehensive compendium by Ike and Mike. Whether you are an expert, a student or a casual reader, tap into this treasure chest of useful and well presented information. Artur Ekert, Mathematical Institute, University of Oxford Nearly every child who has read Harry Potter believes that if you just say the right thing or do the right thing, you can coerce matter to do something fantastic. But what adult would believe it? Until quantum computation and quantum information came along in the early 1990s, nearly none. The quantum computer is the Philosopher’s Stone of our century, and Nielsen and Chuang is our basic book of incantations. Ten years have passed since its publication, and it is as basic to the field as it ever was. Matter will do wonderful things if asked to, but we must first understand its language. No book written since (there was no before) does the job of teaching the language of quantum theory’s possibilities like Nielsen and Chuang’s. Chris Fuchs, Perimeter Institute for Theoretical Physics Nielsen and Chuang is the bible of the quantum information field. It appeared 10 years ago, yet even though the field has changed enormously in these 10 years - the book still covers most of the important concepts of the field. Lov Grover, Bell Labs Quantum Computation and Quantum Information, commonly referred to as “Mike and Ike,” continues to be a most valuable resource for background information on quantum information processing. As a mathematically-impaired experimentalist, I particularly appreciate the fact that armed with a modest background in quantum mechanics, it is possible to pick up at any point in the book and readily grasp the basic ideas being discussed. To me, it is still “the” book on the subject. David Wineland, National Institute of Standards and Technology, Boulder, Colorado Endorsements for the original publication Chuang and Nielsen have produced the first comprehensive study of quantum computation. To develop a robust understanding of this subject one must integrate many ideas whose origins are variously within physics, computer science, or mathematics. Until this text, putting together the essential material, much less mastering it, has been a challenge. Our Universe has intrinsic capabilities and limitations on the processing of information. What these are will ultimately determine the course of technology and shape our efforts to find a fundamental physical theory. This book is an excellent way for any scientist or graduate student – in any of the related fields – to enter the discussion. Michael Freedman, Fields Medalist, Microsoft Nielsen and Chuang’s new text is remarkably thorough and up-to-date, covering many aspects of this rapidly evolving field from a physics perspective, complementing the computer science perspective of Gruska’s 1999 text. The authors have succeeded in producing a self-contained book accessible to anyone with a good undergraduate grounding in math, computer science or physical sciences. An independent student could spend an enjoyable year reading this book and emerge ready to tackle the current literature and do serious research. To streamline the exposition, footnotes have been gathered into short but lively History and Further Reading sections at the end of each chapter. Charles H Bennett, IBM This is an excellent book. The field is already too big to cover completely in one book, but Nielsen and Chuang have made a good selection of topics, and explain the topics they have chosen very well. Peter Shor, Massachusetts Institute of Technology Quantum Computation and Quantum Information 10th Anniversary Edition Michael A. Nielsen & Isaac L. Chuang CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9781107002173  C M. Nielsen and I. Chuang 2010 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2000 Reprinted 2002, 2003, 2004, 2007, 2009 10th Anniversary edition published 2010 Printed in the United Kingdom at the University Press, Cambridge A catalog record for this publication is available from the British Library ISBN 978-1-107-00217-3 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. To our parents, and our teachers Contents Introduction to the Tenth Anniversary Edition page xvii Afterword to the Tenth Anniversary Edition xix Preface xxi Acknowledgements Nomenclature and notation Part I Fundamental concepts 1 Introduction and overview 1.1 Global perspectives 1.1.1 History of quantum computation and quantum information 1.1.2 Future directions 1.2 Quantum bits 1.2.1 Multiple qubits 1.3 Quantum computation 1.3.1 Single qubit gates 1.3.2 Multiple qubit gates 1.3.3 Measurements in bases other than the computational basis 1.3.4 Quantum circuits 1.3.5 Qubit copying circuit? 1.3.6 Example: Bell states 1.3.7 Example: quantum teleportation 1.4 Quantum algorithms 1.4.1 Classical computations on a quantum computer 1.4.2 Quantum parallelism 1.4.3 Deutsch’s algorithm 1.4.4 The Deutsch–Jozsa algorithm 1.4.5 Quantum algorithms summarized 1.5 Experimental quantum information processing 1.5.1 The Stern–Gerlach experiment 1.5.2 Prospects for practical quantum information processing 1.6 Quantum information 1.6.1 Quantum information theory: example problems 1.6.2 Quantum information in a wider context xxvii xxix 1 1 1 2 12 13 16 17 17 20 22 22 24 25 26 28 29 30 32 34 36 42 43 46 50 52 58 x Contents 2 Introduction to quantum mechanics 2.1 Linear algebra 2.1.1 Bases and linear independence 2.1.2 Linear operators and matrices 2.1.3 The Pauli matrices 2.1.4 Inner products 2.1.5 Eigenvectors and eigenvalues 2.1.6 Adjoints and Hermitian operators 2.1.7 Tensor products 2.1.8 Operator functions 2.1.9 The commutator and anti-commutator 2.1.10 The polar and singular value decompositions 2.2 The postulates of quantum mechanics 2.2.1 State space 2.2.2 Evolution 2.2.3 Quantum measurement 2.2.4 Distinguishing quantum states 2.2.5 Projective measurements 2.2.6 POVM measurements 2.2.7 Phase 2.2.8 Composite systems 2.2.9 Quantum mechanics: a global view 2.3 Application: superdense coding 2.4 The density operator 2.4.1 Ensembles of quantum states 2.4.2 General properties of the density operator 2.4.3 The reduced density operator 2.5 The Schmidt decomposition and purifications 2.6 EPR and the Bell inequality 60 61 62 63 65 65 68 69 71 75 76 78 80 80 81 84 86 87 90 93 93 96 97 98 99 101 105 109 111 3 Introduction to computer science 3.1 Models for computation 3.1.1 Turing machines 3.1.2 Circuits 3.2 The analysis of computational problems 3.2.1 How to quantify computational resources 3.2.2 Computational complexity 3.2.3 Decision problems and the complexity classes P and NP 3.2.4 A plethora of complexity classes 3.2.5 Energy and computation 3.3 Perspectives on computer science 120 122 122 129 135 136 138 141 150 153 161 Part II Quantum computation 171 4 Quantum circuits 4.1 Quantum algorithms 4.2 Single qubit operations 171 172 174 Contents 4.3 Controlled operations 4.4 Measurement 4.5 Universal quantum gates 4.5.1 Two-level unitary gates are universal 4.5.2 Single qubit and CNOT gates are universal 4.5.3 A discrete set of universal operations 4.5.4 Approximating arbitrary unitary gates is generically hard 4.5.5 Quantum computational complexity 4.6 Summary of the quantum circuit model of computation 4.7 Simulation of quantum systems 4.7.1 Simulation in action 4.7.2 The quantum simulation algorithm 4.7.3 An illustrative example 4.7.4 Perspectives on quantum simulation xi 177 185 188 189 191 194 198 200 202 204 204 206 209 211 5 The quantum Fourier transform and its applications 5.1 The quantum Fourier transform 5.2 Phase estimation 5.2.1 Performance and requirements 5.3 Applications: order-finding and factoring 5.3.1 Application: order-finding 5.3.2 Application: factoring 5.4 General applications of the quantum Fourier transform 5.4.1 Period-finding 5.4.2 Discrete logarithms 5.4.3 The hidden subgroup problem 5.4.4 Other quantum algorithms? 216 217 221 223 226 226 232 6 Quantum search algorithms 6.1 The quantum search algorithm 6.1.1 The oracle 6.1.2 The procedure 6.1.3 Geometric visualization 6.1.4 Performance 6.2 Quantum search as a quantum simulation 6.3 Quantum counting 6.4 Speeding up the solution of NP-complete problems 6.5 Quantum search of an unstructured database 6.6 Optimality of the search algorithm 6.7 Black box algorithm limits 248 248 248 250 252 253 255 261 263 265 269 271 7 Quantum computers: physical realization 7.1 Guiding principles 7.2 Conditions for quantum computation 7.2.1 Representation of quantum information 7.2.2 Performance of unitary transformations 277 277 279 279 281 234 236 238 240 242 xii Contents 7.3 7.4 7.5 7.6 7.7 7.8 7.2.3 Preparation of fiducial initial states 7.2.4 Measurement of output result Harmonic oscillator quantum computer 7.3.1 Physical apparatus 7.3.2 The Hamiltonian 7.3.3 Quantum computation 7.3.4 Drawbacks Optical photon quantum computer 7.4.1 Physical apparatus 7.4.2 Quantum computation 7.4.3 Drawbacks Optical cavity quantum electrodynamics 7.5.1 Physical apparatus 7.5.2 The Hamiltonian 7.5.3 Single-photon single-atom absorption and refraction 7.5.4 Quantum computation Ion traps 7.6.1 Physical apparatus 7.6.2 The Hamiltonian 7.6.3 Quantum computation 7.6.4 Experiment Nuclear magnetic resonance 7.7.1 Physical apparatus 7.7.2 The Hamiltonian 7.7.3 Quantum computation 7.7.4 Experiment Other implementation schemes Part III Quantum information 8 Quantum noise and quantum operations 8.1 Classical noise and Markov processes 8.2 Quantum operations 8.2.1 Overview 8.2.2 Environments and quantum operations 8.2.3 Operator-sum representation 8.2.4 Axiomatic approach to quantum operations 8.3 Examples of quantum noise and quantum operations 8.3.1 Trace and partial trace 8.3.2 Geometric picture of single qubit quantum operations 8.3.3 Bit flip and phase flip channels 8.3.4 Depolarizing channel 8.3.5 Amplitude damping 8.3.6 Phase damping 281 282 283 283 284 286 286 287 287 290 296 297 298 300 303 306 309 309 317 319 321 324 325 326 331 336 343 353 353 354 356 356 357 360 366 373 374 374 376 378 380 383 Contents 8.4 Applications of quantum operations 8.4.1 Master equations 8.4.2 Quantum process tomography 8.5 Limitations of the quantum operations formalism 9 Distance measures for quantum information 9.1 Distance measures for classical information 9.2 How close are two quantum states? 9.2.1 Trace distance 9.2.2 Fidelity 9.2.3 Relationships between distance measures 9.3 How well does a quantum channel preserve information? xiii 386 386 389 394 399 399 403 403 409 415 416 10 Quantum error-correction 10.1 Introduction 10.1.1 The three qubit bit flip code 10.1.2 Three qubit phase flip code 10.2 The Shor code 10.3 Theory of quantum error-correction 10.3.1 Discretization of the errors 10.3.2 Independent error models 10.3.3 Degenerate codes 10.3.4 The quantum Hamming bound 10.4 Constructing quantum codes 10.4.1 Classical linear codes 10.4.2 Calderbank–Shor–Steane codes 10.5 Stabilizer codes 10.5.1 The stabilizer formalism 10.5.2 Unitary gates and the stabilizer formalism 10.5.3 Measurement in the stabilizer formalism 10.5.4 The Gottesman–Knill theorem 10.5.5 Stabilizer code constructions 10.5.6 Examples 10.5.7 Standard form for a stabilizer code 10.5.8 Quantum circuits for encoding, decoding, and correction 10.6 Fault-tolerant quantum computation 10.6.1 Fault-tolerance: the big picture 10.6.2 Fault-tolerant quantum logic 10.6.3 Fault-tolerant measurement 10.6.4 Elements of resilient quantum computation 425 426 427 430 432 435 438 441 444 444 445 445 450 453 454 459 463 464 464 467 470 11 Entropy and information 11.1 Shannon entropy 11.2 Basic properties of entropy 11.2.1 The binary entropy 11.2.2 The relative entropy 500 500 502 502 504 472 474 475 482 489 493 xiv Contents 11.2.3 Conditional entropy and mutual information 11.2.4 The data processing inequality 11.3 Von Neumann entropy 11.3.1 Quantum relative entropy 11.3.2 Basic properties of entropy 11.3.3 Measurements and entropy 11.3.4 Subadditivity 11.3.5 Concavity of the entropy 11.3.6 The entropy of a mixture of quantum states 11.4 Strong subadditivity 11.4.1 Proof of strong subadditivity 11.4.2 Strong subadditivity: elementary applications 505 509 510 511 513 514 515 516 518 519 519 522 12 Quantum information theory 12.1 Distinguishing quantum states and the accessible information 12.1.1 The Holevo bound 12.1.2 Example applications of the Holevo bound 12.2 Data compression 12.2.1 Shannon’s noiseless channel coding theorem 12.2.2 Schumacher’s quantum noiseless channel coding theorem 12.3 Classical information over noisy quantum channels 12.3.1 Communication over noisy classical channels 12.3.2 Communication over noisy quantum channels 12.4 Quantum information over noisy quantum channels 12.4.1 Entropy exchange and the quantum Fano inequality 12.4.2 The quantum data processing inequality 12.4.3 Quantum Singleton bound 12.4.4 Quantum error-correction, refrigeration and Maxwell’s demon 12.5 Entanglement as a physical resource 12.5.1 Transforming bi-partite pure state entanglement 12.5.2 Entanglement distillation and dilution 12.5.3 Entanglement distillation and quantum error-correction 12.6 Quantum cryptography 12.6.1 Private key cryptography 12.6.2 Privacy amplification and information reconciliation 12.6.3 Quantum key distribution 12.6.4 Privacy and coherent information 12.6.5 The security of quantum key distribution 528 529 531 534 536 537 542 546 548 554 561 561 564 568 569 571 573 578 580 582 582 584 586 592 593 Appendices 608 Appendix 1: Notes on basic probability theory Appendix 2: Group theory A2.1 Basic definitions A2.1.1 Generators A2.1.2 Cyclic groups A2.1.3 Cosets 608 610 610 611 611 612 Contents A2.2 Representations A2.2.1 Equivalence and reducibility A2.2.2 Orthogonality A2.2.3 The regular representation A2.3 Fourier transforms Appendix 3: The Solovay--Kitaev theorem xv 612 612 613 614 615 617 Appendix 4: Number theory A4.1 Fundamentals A4.2 Modular arithmetic and Euclid’s algorithm A4.3 Reduction of factoring to order-finding A4.4 Continued fractions 625 625 626 633 635 Appendix 5: Public key cryptography and the RSA cryptosystem 640 Appendix 6: Proof of Lieb’s theorem 645 Bibliography 649 Index 665 Introduction to the Tenth Anniversary Edition Quantum mechanics has the curious distinction of being simultaneously the most successful and the most mysterious of our scientific theories. It was developed in fits and starts over a remarkable period from 1900 to the 1920s, maturing into its current form in the late 1920s. In the decades following the 1920s, physicists had great success applying quantum mechanics to understand the fundamental particles and forces of nature, culminating in the development of the standard model of particle physics. Over the same period, physicists had equally great success in applying quantum mechanics to understand an astonishing range of phenomena in our world, from polymers to semiconductors, from superfluids to superconductors. But, while these developments profoundly advanced our understanding of the natural world, they did only a little to improve our understanding of quantum mechanics. This began to change in the 1970s and 1980s, when a few pioneers were inspired to ask whether some of the fundamental questions of computer science and information theory could be applied to the study of quantum systems. Instead of looking at quantum systems purely as phenomena to be explained as they are found in nature, they looked at them as systems that can be designed. This seems a small change in perspective, but the implications are profound. No longer is the quantum world taken merely as presented, but instead it can be created. The result was a new perspective that inspired both a resurgence of interest in the fundamentals of quantum mechanics, and also many new questions combining physics, computer science, and information theory. These include questions such as: what are the fundamental physical limitations on the space and time required to construct a quantum state? How much time and space are required for a given dynamical operation? What makes quantum systems difficult to understand and simulate by conventional classical means? Writing this book in the late 1990s, we were fortunate to be writing at a time when these and other fundamental questions had just crystallized out. Ten years later it is clear such questions offer a sustained force encouraging a broad research program at the foundations of physics and computer science. Quantum information science is here to stay. Although the theoretical foundations of the field remain similar to what we discussed 10 years ago, detailed knowledge in many areas has greatly progressed. Originally, this book served as a comprehensive overview of the field, bringing readers near to the forefront of research. Today, the book provides a basic foundation for understanding the field, appropriate either for someone who desires a broad perspective on quantum information science, or an entryway for further investigation of the latest research literature. Of course, xviii Introduction to the Tenth Anniversary Edition many fundamental challenges remain, and meeting those challenges promises to stimulate exciting and unexpected links among many disparate parts of physics, computer science, and information theory. We look forward to the decades ahead! – Michael A. Nielsen and Isaac L. Chuang, March, 2010. Afterword to the Tenth Anniversary Edition An enormous amount has happened in quantum information science in the 10 years since the first edition of this book, and in this afterword we cannot summarize even a tiny fraction of that work. But a few especially striking developments merit comment, and may perhaps whet your appetite for more. Perhaps the most impressive progress has been in the area of experimental implementation. While we are still many years from building large-scale quantum computers, much progress has been made. Superconducting circuits have been used to implement simple two-qubit quantum algorithms, and three-qubit systems are nearly within reach. Qubits based on nuclear spins and single photons have been used, respectively, to demonstrate proof-of-principle for simple forms of quantum error correction and quantum simulation. But the most impressive progress of all has been made with trapped ion systems, which have been used to implement many two- and three-qubit algorithms and algorithmic building blocks, including the quantum search algorithm and the quantum Fourier transform. Trapped ions have also been used to demonstrate basic quantum communication primitives, including quantum error correction and quantum teleportation. A second area of progress has been in understanding what physical resources are required to quantum compute. Perhaps the most intriguing breakthrough here has been the discovery that quantum computation can be done via measurement alone. For many years, the conventional wisdom was that coherent superposition-preserving unitary dynamics was an essential part of the power of quantum computers. This conventional wisdom was blown away by the realization that quantum computation can be done without any unitary dynamics at all. Instead, in some new models of quantum computation, quantum measurements alone can be used to do arbitrary quantum computations. The only coherent resource in these models is quantum memory, i.e., the ability to store quantum information. An especially interesting example of these models is the one-way quantum computer, or cluster-state computer. To quantum compute in the cluster-state model requires only that the experimenter have possession of a fixed universal state known as the cluster state. With a cluster state in hand, quantum computation can be implemented simply by doing a sequence of single-qubit measurements, with the particular computation done being determined by which qubits are measured, when they are measured, and how they are measured. This is remarkable: you’re given a fixed quantum state, and then quantum compute by “looking” at the individual qubits in appropriate ways. A third area of progress has been in classically simulating quantum systems. Feynman’s pioneering 1982 paper on quantum computing was motivated in part by the observation that quantum systems often seem hard to simulate on conventional classical computers. Of course, at the time there was only a limited understanding of how difficult it is to simulate different quantum systems on ordinary classical computers. But in the 1990s and, especially, in the 2000s, we have learned much about which quantum systems are easy xx Afterword to the Tenth Anniversary Edition to simulate, and which are hard. Ingenious algorithms have been developed to classically simulate many quantum systems that were formerly thought to be hard to simulate, in particular, many quantum systems in one spatial dimension, and certain two-dimensional quantum systems. These classical algorithms have been made possible by the development of insightful classical descriptions that capture in a compact way much or all of the essential physics of the system in question. At the same time, we have learned that some systems that formerly seemed simple are surprisingly complex. For example, it has long been known that quantum systems based on a certain type of optical component – what are called linear optical systems – are easily simulated classically. So it was surprising when it was discovered that adding two seemingly innocuous components – single-photon sources and photodetectors – gave linear optics the full power of quantum computation. These and similar investigations have deepened our understanding of which quantum systems are easy to simulate, which quantum systems are hard to simulate, and why. A fourth area of progress has been a greatly deepened understanding of quantum communication channels. A beautiful and complete theory has been developed of how entangled quantum states can assist classical communication over quantum channels. A plethora of different quantum protocols for communication have been organized into a comprehensive family (headed by “mother” and “father” protocols), unifying much of our understanding of the different types of communication possible with quantum information. A sign of the progress is the disproof of one of the key unsolved conjectures reported in this book (p. 554), namely, that the communication capacity of a quantum channel with product states is equal to the unconstrained capacity (i.e., the capacity with any entangled state allowed as input). But, despite the progress, much remains beyond our understanding. Only very recently, for example, it was discovered, to considerable surprise, that two quantum channels, each with zero quantum capacity, can have a positive quantum capacity when used together; the analogous result, with classical capacities over classical channels, is known to be impossible. One of the main motivations for work in quantum information science is the prospect of fast quantum algorithms to solve important computational problems. Here, the progress over the past decade has been mixed. Despite great ingenuity and effort, the chief algorithmic insights stand as they were 10 years ago. There has been considerable technical progress, but we do not yet understand what exactly it is that makes quantum computers powerful, or on what class of problems they can be expected to outperform classical computers. What is exciting, though, is that ideas from quantum computation have been used to prove a variety of theorems about classical computation. These have included, for example, results about the difficulty of finding certain hidden vectors in a discrete lattice of points. The striking feature is that these proofs, utilizing ideas of quantum computation, are sometimes considerably simpler and more elegant than prior, classical proofs. Thus, an awareness has grown that quantum computation may be a more natural model of computation than the classical model, and perhaps fundamental results may be more easily revealed through the ideas of quantum computation. Preface This book provides an introduction to the main ideas and techniques of the field of quantum computation and quantum information. The rapid rate of progress in this field and its cross-disciplinary nature have made it difficult for newcomers to obtain a broad overview of the most important techniques and results of the field. Our purpose in this book is therefore twofold. First, we introduce the background material in computer science, mathematics and physics necessary to understand quantum computation and quantum information. This is done at a level comprehensible to readers with a background at least the equal of a beginning graduate student in one or more of these three disciplines; the most important requirements are a certain level of mathematical maturity, and the desire to learn about quantum computation and quantum information. The second purpose of the book is to develop in detail the central results of quantum computation and quantum information. With thorough study the reader should develop a working understanding of the fundamental tools and results of this exciting field, either as part of their general education, or as a prelude to independent research in quantum computation and quantum information. Structure of the book The basic structure of the book is depicted in Figure 1. The book is divided into three parts. The general strategy is to proceed from the concrete to the more abstract whenever possible. Thus we study quantum computation before quantum information; specific quantum error-correcting codes before the more general results of quantum information theory; and throughout the book try to introduce examples before developing general theory. Part I provides a broad overview of the main ideas and results of the field of quantum computation and quantum information, and develops the background material in computer science, mathematics and physics necessary to understand quantum computation and quantum information in depth. Chapter 1 is an introductory chapter which outlines the historical development and fundamental concepts of the field, highlighting some important open problems along the way. The material has been structured so as to be accessible even without a background in computer science or physics. The background material needed for a more detailed understanding is developed in Chapters 2 and 3, which treat in depth the fundamental notions of quantum mechanics and computer science, respectively. You may elect to concentrate more or less heavily on different chapters of Part I, depending upon your background, returning later as necessary to fill any gaps in your knowledge of the fundamentals of quantum mechanics and computer science. Part II describes quantum computation in detail. Chapter 4 describes the fundamen- xxii Preface 2=HJ 1 Fundamental Concepts Introduction and Overview Quantum Mechanics  Computer Science 2=HJ 111 2=HJ 11 Quantum Information Quantum Computation Quantum Circuits Quantum Fourier Transform Noise and Quantum Operations " # Quantum Search Physical Realizations ! % $ Distance Measures & Quantum Error-Correction  Entropy Quantum Information Theory '   Figure 1. Structure of the book. tal elements needed to perform quantum computation, and presents many elementary operations which may be used to develop more sophisticated applications of quantum computation. Chapters 5 and 6 describe the quantum Fourier transform and the quantum search algorithm, the two fundamental quantum algorithms presently known. Chapter 5 also explains how the quantum Fourier transform may be used to solve the factoring and discrete logarithm problems, and the importance of these results to cryptography. Chapter 7 describes general design principles and criteria for good physical implementations of quantum computers, using as examples several realizations which have been successfully demonstrated in the laboratory. Part III is about quantum information: what it is, how information is represented and communicated using quantum states, and how to describe and deal with the corruption of quantum and classical information. Chapter 8 describes the properties of quantum noise which are needed to understand real-world quantum information processing, and the quantum operations formalism, a powerful mathematical tool for understanding quantum noise. Chapter 9 describes distance measures for quantum information which allow us to make quantitatively precise what it means to say that two items of quantum information are similar. Chapter 10 explains quantum error-correcting codes, which may be used to protect quantum computations against the effect of noise. An important result in this chapter is the threshold theorem, which shows that for realistic noise models, noise is in principle not a serious impediment to quantum computation. Chapter 11 introduces the fundamental information-theoretic concept of entropy, explaining many properties of entropy in both classical and quantum information theory. Finally, Chapter 12 discusses the information carrying properties of quantum states and quantum communication chan- Preface xxiii nels, detailing many of the strange and interesting properties such systems can have for the transmission of information both classical and quantum, and for the transmission of secret information. A large number of exercises and problems appear throughout the book. Exercises are intended to solidify understanding of basic material and appear within the main body of the text. With few exceptions these should be easily solved with a few minutes work. Problems appear at the end of each chapter, and are intended to introduce you to new and interesting material for which there was not enough space in the main text. Often the problems are in multiple parts, intended to develop a particular line of thought in some depth. A few of the problems were unsolved as the book went to press. When this is the case it is noted in the statement of the problem. Each chapter concludes with a summary of the main results of the chapter, and with a ‘History and further reading’ section that charts the development of the main ideas in the chapter, giving citations and references for the whole chapter, as well as providing recommendations for further reading. The front matter of the book contains a detailed Table of Contents, which we encourage you to browse. There is also a guide to nomenclature and notation to assist you as you read. The end matter of the book contains six appendices, a bibliography, and an index. Appendix 1 reviews some basic definitions, notations, and results in elementary probability theory. This material is assumed to be familiar to readers, and is included for ease of reference. Similarly, Apendix 2 reviews some elementary concepts from group theory, and is included mainly for convenience. Appendix 3 contains a proof of the Solovay– Kitaev theorem, an important result for quantum computation, which shows that a finite set of quantum gates can be used to quickly approximate an arbitrary quantum gate. Appendix 4 reviews the elementary material on number theory needed to understand the quantum algorithms for factoring and discrete logarithm, and the RSA cryptosystem, which is itself reviewed in Appendix 5. Appendix 6 contains a proof of Lieb’s theorem, one of the most important results in quantum computation and quantum information, and a precursor to important entropy inequalities such as the celebrated strong subadditivity inequality. The proofs of the Solovay–Kitaev theorem and Lieb’s theorem are lengthy enough that we felt they justified a treatment apart from the main text. The bibliography contains a listing of all reference materials cited in the text of the book. Our apologies to any researcher whose work we have inadvertently omitted from citation. The field of quantum computation and quantum information has grown so rapidly in recent years that we have not been able to cover all topics in as much depth as we would have liked. Three topics deserve special mention. The first is the subject of entanglement measures. As we explain in the book, entanglement is a key element in effects such as quantum teleportation, fast quantum algorithms, and quantum error-correction. It is, in short, a resource of great utility in quantum computation and quantum information. There is a thriving research community currently fleshing out the notion of entanglement as a new type of physical resource, finding principles which govern its manipulation and utilization. We felt that these investigations, while enormously promising, are not yet complete enough to warrant the more extensive coverage we have given to other subjects in this book, and we restrict ourselves to a brief taste in Chapter 12. Similarly, the subject of distributed quantum computation (sometimes known as quantum communication complexity) is an enormously promising subject under such active development that we x xiv Preface have not given it a treatment for fear of being obsolete before publication of the book. The implementation of quantum information processing machines has also developed into a fascinating and rich area, and we limit ourselves to but a single chapter on this subject. Clearly, much more can be said about physical implementations, but this would begin to involve many more areas of physics, chemistry, and engineering, which we do not have room for here. How to use this book This book may be used in a wide variety of ways. It can be used as the basis for a variety of courses, from short lecture courses on a specific topic in quantum computation and quantum information, through to full-year classes covering the entire field. It can be used for independent study by people who would like to learn just a little about quantum computation and quantum information, or by people who would like to be brought up to the research frontier. It is also intended to act as a reference work for current researchers in the field. We hope that it will be found especially valuable as an introduction for researchers new to the field. Note to the independent reader The book is designed to be accessible to the independent reader. A large number of exercises are peppered throughout the text, which can be used as self-tests for understanding of the material in the main text. The Table of Contents and end of chapter summaries should enable you to quickly determine which chapters you wish to study in most depth. The dependency diagram, Figure 1, will help you determine in what order material in the book may be covered. Note to the teacher This book covers a diverse range of topics, and can therefore be used as the basis for a wide variety of courses. A one-semester course on quantum computation could be based upon a selection of material from Chapters 1 through 3, depending on the background of the class, followed by Chapter 4 on quantum circuits, Chapters 5 and 6 on quantum algorithms, and a selection from Chapter 7 on physical implementations, and Chapters 8 through 10 to understand quantum error-correction, with an especial focus on Chapter 10. A one-semester course on quantum information could be based upon a selection of material from Chapters 1 through 3, depending on the background of the class. Following that, Chapters 8 through 10 on quantum error-correction, followed by Chapters 11 and 12 on quantum entropy and quantum information theory, respectively. A full year class could cover all material in the book, with time for additional readings selected from the ‘History and further reading’ section of several chapters. Quantum computation and quantum information also lend themselves ideally to independent research projects for students. Aside from classes on quantum computation and quantum information, there is another way we hope the book will be used, which is as the text for an introductory class in quantum mechanics for physics students. Conventional introductions to quantum mechanics rely heavily on the mathematical machinery of partial differential equations. We believe this often obscures the fundamental ideas. Quantum computation and quantum informa- Preface xxv tion offers an excellent conceptual laboratory for understanding the basic concepts and unique aspects of quantum mechanics, without the use of heavy mathematical machinery. Such a class would focus on the introduction to quantum mechanics in Chapter 2, basic material on quantum circuits in Chapter 4, a selection of material on quantum algorithms from Chapters 5 and 6, Chapter 7 on physical implementations of quantum computation, and then almost any selection of material from Part III of the book, depending upon taste. Note to the student We have written the book to be as self-contained as possible. The main exception is that occasionally we have omitted arguments that one really needs to work through oneself to believe; these are usually given as exercises. Let us suggest that you should at least attempt all the exercises as you work through the book. With few exceptions the exercises can be worked out in a few minutes. If you are having a lot of difficulty with many of the exercises it may be a sign that you need to go back and pick up one or more key concepts. Further reading As already noted, each chapter concludes with a ‘History and further reading’ section. There are also a few broad-ranging references that might be of interest to readers. Preskill’s[Pre98b] superb lecture notes approach quantum computation and quantum information from a somewhat different point of view than this book. Good overview articles on specific subjects include (in order of their appearance in this book): Aharonov’s review of quantum computation[Aha99b], Kitaev’s review of algorithms and error-correction[Kit97b], Mosca’s thesis on quantum algorithms[Mos99], Fuchs’ thesis[Fuc96] on distinguishability and distance measures in quantum information, Gottesman’s thesis on quantum errorcorrection[Got97], Preskill’s review of quantum error-correction[Pre97], Nielsen’s thesis on quantum information theory[Nie98], and the reviews of quantum information theory by Bennett and Shor[BS98] and by Bennett and DiVincenzo[BD00]. Other useful references include Gruska’s book[Gru99], and the collection of review articles edited by Lo, Spiller, and Popescu[LSP98]. Errors Any lengthy document contains errors and omissions, and this book is surely no exception to the rule. If you find any errors or have other comments to make about the book, please email them to: qci@squint.org. As errata are found, we will add them to a list maintained at the book web site: http://www.squint.org/qci/. Acknowledgements A few people have decisively influenced how we think about quantum computation and quantum information. For many enjoyable discussions which have helped us shape and refine our views, MAN thanks Carl Caves, Chris Fuchs, Gerard Milburn, John Preskill and Ben Schumacher, and ILC thanks Tom Cover, Umesh Vazirani, Yoshi Yamamoto, and Bernie Yurke. An enormous number of people have helped in the construction of this book, both directly and indirectly. A partial list includes Dorit Aharonov, Andris Ambainis, Nabil Amer, Howard Barnum, Dave Beckman, Harry Buhrman, the Caltech Quantum Optics Foosballers, Andrew Childs, Fred Chong, Richard Cleve, John Conway, John Cortese, Michael DeShazo, Ronald de Wolf, David DiVincenzo, Steven van Enk, Henry Everitt, Ron Fagin, Mike Freedman, Michael Gagen, Neil Gershenfeld, Daniel Gottesman, Jim Harris, Alexander Holevo, Andrew Huibers, Julia Kempe, Alesha Kitaev, Manny Knill, Shing Kong, Raymond Laflamme, Andrew Landahl, Ron Legere, Debbie Leung, Daniel Lidar, Elliott Lieb, Theresa Lynn, Hideo Mabuchi, Yu Manin, Mike Mosca, Alex Pines, Sridhar Rajagopalan, Bill Risk, Beth Ruskai, Sara Schneider, Robert Schrader, Peter Shor, Sheri Stoll, Volker Strassen, Armin Uhlmann, Lieven Vandersypen, Anne Verhulst, Debby Wallach, Mike Westmoreland, Dave Wineland, Howard Wiseman, John Yard, Xinlan Zhou, and Wojtek Zurek. Thanks to the folks at Cambridge University Press for their help turning this book from an idea into reality. Our especial thanks go to our thoughtful and enthusiastic editor Simon Capelin, who shepherded this project along for more than three years, and to Margaret Patterson, for her timely and thorough copy-editing of the manuscript. Parts of this book were completed while MAN was a Tolman Prize Fellow at the California Institute of Technology, a member of the T-6 Theoretical Astrophysics Group at the Los Alamos National Laboratory, and a member of the University of New Mexico Center for Advanced Studies, and while ILC was a Research Staff Member at the IBM Almaden Research Center, a consulting Assistant Professor of Electrical Engineering at Stanford University, a visiting researcher at the University of California Berkeley Department of Computer Science, a member of the Los Alamos National Laboratory T-6 Theoretical Astrophysics Group, and a visiting researcher at the University of California Santa Barbara Institute for Theoretical Physics. We also appreciate the warmth and hospitality of the Aspen Center for Physics, where the final page proofs of this book were finished. MAN and ILC gratefully acknowledge support from DARPA under the NMRQC research initiative and the QUIC Institute administered by the Army Research Office. We also thank the National Science Foundation, the National Security Agency, the Office of Naval Research, and IBM for their generous support. Nomenclature and notation There are several items of nomenclature and notation which have two or more meanings in common use in the field of quantum computation and quantum information. To prevent confusion from arising, this section collects many of the more frequently used of these items, together with the conventions that will be adhered to in this book. Linear algebra and quantum mechanics All vector spaces are assumed to be finite dimensional, unless otherwise noted. In many instances this restriction is unnecessary, or can be removed with some additional technical work, but making the restriction globally makes the presentation more easily comprehensible, and doesn’t detract much from many of the intended applications of the results. A positive operator A is one for which ψ|A|ψ ≥ 0 for all |ψ. A positive definite operator A is one for which ψ|A|ψ > 0 for all |ψ = 0. The support of an operator is defined to be the vector space orthogonal to its kernel. For a Hermitian operator, this means the vector space spanned by eigenvectors of the operator with non-zero eigenvalues. The notation U (and often but not always V ) will generically be used to denote a unitary operator or matrix. H is usually used to denote a quantum logic gate, the Hadamard gate, and sometimes to denote the Hamiltonian for a quantum system, with the meaning clear from context. Vectors will sometimes be written in column format, as for example,  1 2  , (0.1) and sometimes for readability in the format (1, 2). The latter should be understood as shorthand for a column vector. For two-level quantum systems used as qubits, we shall usually identify the state |0 with the vector (1, 0), and similarly |1 with (0, 1). We also define the Pauli sigma matrices in the conventional way – see ‘Frequently used quantum gates and circuit symbols’, below. Most significantly, the convention for the Pauli sigma z matrix is that σz |0 = |0 and σz |1 = −|1, which is reverse of what some physicists (but usually not computer scientists or mathematicians) intuitively expect. The origin of this dissonance is that the +1 eigenstate of σz is often identified by physicists with a so-called ‘excited state’, and it seems natural to many to identify this with |1, rather than with |0 as is done in this book. Our choice is made in order to be consistent with the usual indexing of matrix elements in linear algebra, which makes it natural to identify the first column of σz with the action of σz on |0, and the second column with the action on |1. This choice is also in use throughout the quantum computation and quantum information community. In addition to the conventional notations σx , σy and σz for the Pauli sigma matrices, it will also be convenient to use the notations σ1 , σ2 , σ3 for these xxx Nomenclature and notation three matrices, and to define σ0 as the 2×2 identity matrix. Most often, however, we use the notations I, X, Y and Z for σ0 , σ1 , σ2 and σ3 , respectively. Information theory and probability As befits good information theorists, logarithms are always taken to base two, unless otherwise noted. We use log(x) to denote logarithms to base 2, and ln(x) on those rare occasions when we wish to take a natural logarithm. The term probability distribution  is used to refer to a finite set of real numbers, px , such that px ≥ 0 and x px = 1. The relative entropy of a positive operator A with respect to a positive operator B is defined by S(A||B) ≡ tr(A log A) − tr(A log B). Miscellanea ⊕ denotes modulo two addition. Throughout this book ‘z’ is pronounced ‘zed’. Frequently used quantum gates and circuit symbols Certain schematic symbols are often used to denote unitary transforms which are useful in the design of quantum circuits. For the reader’s convenience, many of these are gathered together below. The rows and columns of the unitary transforms are labeled from left to right and top to bottom as 00 . . . 0, 00 . . . 1 to 11 . . . 1 with the bottom-most wire being the least significant bit. Note that eiπ/4 is the square root of i, so that the π/8 gate is the square root of the phase gate, which itself is the square root of the Pauli-Z gate.   1 1 1 √ Hadamard 2 1 −1  0 1 Pauli-X 1 0   0 −i Pauli-Y i 0   1 0 Pauli-Z 0 −1   1 0 Phase 0 i   1 0 π/8 0 eiπ/4 xxxi Nomenclature and notation ⎡ controlled- swap controlled-Z • = Z controlled-phase Toffoli • • ⊕ Fredkin (controlled-swap) • × × measurement ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✙ ✤✤ ✤✤✤ ✙✙ ✤✤ ✤ ✙✙ ❴✤ ❴ ❴ ❴ ❴ ✙ ❴ ❴ ❴ ✤ ⎡ 1 ⎢0 ⎣0 0 ⎡ 1 ⎢0 ⎣0 0 ⎡ 1 ⎢0 ⎣0 0 ⎡ 1 ⎢0 ⎣0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 ⎢0 ⎢0 ⎢ ⎢0 ⎢ ⎢0 ⎢ ⎢0 ⎣ 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 ⎢0 ⎢0 ⎢ ⎢0 ⎢ ⎢0 ⎢ ⎢0 ⎣ 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 ⎡ ⎤ 0 0⎥ 1 0 ⎤ 0 0⎥ 0 1 ⎤ 0 0 ⎥ 0  −1 ⎤ 0 0⎥ 0 i 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 ⎤ 0 0⎥ 0⎥ ⎥ 0⎥ ⎥ 0⎥ ⎥ 0⎥  1 0 ⎤ 0 0⎥ 0⎥ ⎥ 0⎥ ⎥ 0⎥ ⎥ 0⎥  0 1 Projection onto |0 and |1 qubit wire carrying a single qubit (time goes left to right) classical bit wire carrying a single classical bit n qubits wire carrying n qubits I Fundamental concepts 1 Introduction and overview Science offers the boldest metaphysics of the age. It is a thoroughly human construct, driven by the faith that if we dream, press to discover, explain, and dream again, thereby plunging repeatedly into new terrain, the world will somehow come clearer and we will grasp the true strangeness of the universe. And the strangeness will all prove to be connected, and make sense. – Edward O. Wilson Information is physical. – Rolf Landauer What are the fundamental concepts of quantum computation and quantum information? How did these concepts develop? To what uses may they be put? How will they be presented in this book? The purpose of this introductory chapter is to answer these questions by developing in broad brushstrokes a picture of the field of quantum computation and quantum information. The intent is to communicate a basic understanding of the central concepts of the field, perspective on how they have been developed, and to help you decide how to approach the rest of the book. Our story begins in Section 1.1 with an account of the historical context in which quantum computation and quantum information has developed. Each remaining section in the chapter gives a brief introduction to one or more fundamental concepts from the field: quantum bits (Section 1.2), quantum computers, quantum gates and quantum circuits (Section 1.3), quantum algorithms (Section 1.4), experimental quantum information processing (Section 1.5), and quantum information and communication (Section 1.6). Along the way, illustrative and easily accessible developments such as quantum teleportation and some simple quantum algorithms are given, using the basic mathematics taught in this chapter. The presentation is self-contained, and designed to be accessible even without a background in computer science or physics. As we move along, we give pointers to more in-depth discussions in later chapters, where references and suggestions for further reading may also be found. If as you read you’re finding the going rough, skip on to a spot where you feel more comfortable. At points we haven’t been able to avoid using a little technical lingo which won’t be completely explained until later in the book. Simply accept it for now, and come back later when you understand all the terminology in more detail. The emphasis in this first chapter is on the big picture, with the details to be filled in later. 1.1 Global perspectives Quantum computation and quantum information is the study of the information processing tasks that can be accomplished using quantum mechanical systems. Sounds pretty 2 Introduction and overview simple and obvious, doesn’t it? Like many simple but profound ideas it was a long time before anybody thought of doing information processing using quantum mechanical systems. To see why this is the case, we must go back in time and look in turn at each of the fields which have contributed fundamental ideas to quantum computation and quantum information – quantum mechanics, computer science, information theory, and cryptography. As we take our short historical tour of these fields, think of yourself first as a physicist, then as a computer scientist, then as an information theorist, and finally as a cryptographer, in order to get some feel for the disparate perspectives which have come together in quantum computation and quantum information. 1.1.1 History of quantum computation and quantum information Our story begins at the turn of the twentieth century when an unheralded revolution was underway in science. A series of crises had arisen in physics. The problem was that the theories of physics at that time (now dubbed classical physics) were predicting absurdities such as the existence of an ‘ultraviolet catastrophe’ involving infinite energies, or electrons spiraling inexorably into the atomic nucleus. At first such problems were resolved with the addition of ad hoc hypotheses to classical physics, but as a better understanding of atoms and radiation was gained these attempted explanations became more and more convoluted. The crisis came to a head in the early 1920s after a quarter century of turmoil, and resulted in the creation of the modern theory of quantum mechanics. Quantum mechanics has been an indispensable part of science ever since, and has been applied with enormous success to everything under and inside the Sun, including the structure of the atom, nuclear fusion in stars, superconductors, the structure of DNA, and the elementary particles of Nature. What is quantum mechanics? Quantum mechanics is a mathematical framework or set of rules for the construction of physical theories. For example, there is a physical theory known as quantum electrodynamics which describes with fantastic accuracy the interaction of atoms and light. Quantum electrodynamics is built up within the framework of quantum mechanics, but it contains specific rules not determined by quantum mechanics. The relationship of quantum mechanics to specific physical theories like quantum electrodynamics is rather like the relationship of a computer’s operating system to specific applications software – the operating system sets certain basic parameters and modes of operation, but leaves open how specific tasks are accomplished by the applications. The rules of quantum mechanics are simple but even experts find them counterintuitive, and the earliest antecedents of quantum computation and quantum information may be found in the long-standing desire of physicists to better understand quantum mechanics. The best known critic of quantum mechanics, Albert Einstein, went to his grave unreconciled with the theory he helped invent. Generations of physicists since have wrestled with quantum mechanics in an effort to make its predictions more palatable. One of the goals of quantum computation and quantum information is to develop tools which sharpen our intuition about quantum mechanics, and make its predictions more transparent to human minds. For example, in the early 1980s, interest arose in whether it might be possible to use quantum effects to signal faster than light – a big no-no according to Einstein’s theory of relativity. The resolution of this problem turns out to hinge on whether it is possible to clone an unknown quantum state, that is, construct a copy of a quantum state. If cloning were possible, then it would be possible to signal faster than light using quantum effects. Global perspectives 3 However, cloning – so easy to accomplish with classical information (consider the words in front of you, and where they came from!) – turns out not to be possible in general in quantum mechanics. This no-cloning theorem, discovered in the early 1980s, is one of the earliest results of quantum computation and quantum information. Many refinements of the no-cloning theorem have since been developed, and we now have conceptual tools which allow us to understand how well a (necessarily imperfect) quantum cloning device might work. These tools, in turn, have been applied to understand other aspects of quantum mechanics. A related historical strand contributing to the development of quantum computation and quantum information is the interest, dating to the 1970s, of obtaining complete control over single quantum systems. Applications of quantum mechanics prior to the 1970s typically involved a gross level of control over a bulk sample containing an enormous number of quantum mechanical systems, none of them directly accessible. For example, superconductivity has a superb quantum mechanical explanation. However, because a superconductor involves a huge (compared to the atomic scale) sample of conducting metal, we can only probe a few aspects of its quantum mechanical nature, with the individual quantum systems constituting the superconductor remaining inaccessible. Systems such as particle accelerators do allow limited access to individual quantum systems, but again provide little control over the constituent systems. Since the 1970s many techniques for controlling single quantum systems have been developed. For example, methods have been developed for trapping a single atom in an ‘atom trap’, isolating it from the rest of the world and allowing us to probe many different aspects of its behavior with incredible precision. The scanning tunneling microscope has been used to move single atoms around, creating designer arrays of atoms at will. Electronic devices whose operation involves the transfer of only single electrons have been demonstrated. Why all this effort to attain complete control over single quantum systems? Setting aside the many technological reasons and concentrating on pure science, the principal answer is that researchers have done this on a hunch. Often the most profound insights in science come when we develop a method for probing a new regime of Nature. For example, the invention of radio astronomy in the 1930s and 1940s led to a spectacular sequence of discoveries, including the galactic core of the Milky Way galaxy, pulsars, and quasars. Low temperature physics has achieved its amazing successes by finding ways to lower the temperatures of different systems. In a similar way, by obtaining complete control over single quantum systems, we are exploring untouched regimes of Nature in the hope of discovering new and unexpected phenomena. We are just now taking our first steps along these lines, and already a few interesting surprises have been discovered in this regime. What else shall we discover as we obtain more complete control over single quantum systems, and extend it to more complex systems? Quantum computation and quantum information fit naturally into this program. They provide a useful series of challenges at varied levels of difficulty for people devising methods to better manipulate single quantum systems, and stimulate the development of new experimental techniques and provide guidance as to the most interesting directions in which to take experiment. Conversely, the ability to control single quantum systems is essential if we are to harness the power of quantum mechanics for applications to quantum computation and quantum information. Despite this intense interest, efforts to build quantum information processing systems 4 Introduction and overview have resulted in modest success to date. Small quantum computers, capable of doing dozens of operations on a few quantum bits (or qubits) represent the state of the art in quantum computation. Experimental prototypes for doing quantum cryptography – a way of communicating in secret across long distances – have been demonstrated, and are even at the level where they may be useful for some real-world applications. However, it remains a great challenge to physicists and engineers of the future to develop techniques for making large-scale quantum information processing a reality. Let us turn our attention from quantum mechanics to another of the great intellectual triumphs of the twentieth century, computer science. The origins of computer science are lost in the depths of history. For example, cuneiform tablets indicate that by the time of Hammurabi (circa 1750 B.C.) the Babylonians had developed some fairly sophisticated algorithmic ideas, and it is likely that many of those ideas date to even earlier times. The modern incarnation of computer science was announced by the great mathematician Alan Turing in a remarkable 1936 paper. Turing developed in detail an abstract notion of what we would now call a programmable computer, a model for computation now known as the Turing machine, in his honor. Turing showed that there is a Universal Turing Machine that can be used to simulate any other Turing machine. Furthermore, he claimed that the Universal Turing Machine completely captures what it means to perform a task by algorithmic means. That is, if an algorithm can be performed on any piece of hardware (say, a modern personal computer), then there is an equivalent algorithm for a Universal Turing Machine which performs exactly the same task as the algorithm running on the personal computer. This assertion, known as the Church–Turing thesis in honor of Turing and another pioneer of computer science, Alonzo Church, asserts the equivalence between the physical concept of what class of algorithms can be performed on some physical device with the rigorous mathematical concept of a Universal Turing Machine. The broad acceptance of this thesis laid the foundation for the development of a rich theory of computer science. Not long after Turing’s paper, the first computers constructed from electronic components were developed. John von Neumann developed a simple theoretical model for how to put together in a practical fashion all the components necessary for a computer to be fully as capable as a Universal Turing Machine. Hardware development truly took off, though, in 1947, when John Bardeen, Walter Brattain, and Will Shockley developed the transistor. Computer hardware has grown in power at an amazing pace ever since, so much so that the growth was codified by Gordon Moore in 1965 in what has come to be known as Moore’s law, which states that computer power will double for constant cost roughly once every two years. Amazingly enough, Moore’s law has approximately held true in the decades since the 1960s. Nevertheless, most observers expect that this dream run will end some time during the first two decades of the twenty-first century. Conventional approaches to the fabrication of computer technology are beginning to run up against fundamental difficulties of size. Quantum effects are beginning to interfere in the functioning of electronic devices as they are made smaller and smaller. One possible solution to the problem posed by the eventual failure of Moore’s law is to move to a different computing paradigm. One such paradigm is provided by the theory of quantum computation, which is based on the idea of using quantum mechanics to perform computations, instead of classical physics. It turns out that while an ordinary computer can be used to simulate a quantum computer, it appears to be impossible to Global perspectives 5 perform the simulation in an efficient fashion. Thus quantum computers offer an essential speed advantage over classical computers. This speed advantage is so significant that many researchers believe that no conceivable amount of progress in classical computation would be able to overcome the gap between the power of a classical computer and the power of a quantum computer. What do we mean by ‘efficient’ versus ‘inefficient’ simulations of a quantum computer? Many of the key notions needed to answer this question were actually invented before the notion of a quantum computer had even arisen. In particular, the idea of efficient and inefficient algorithms was made mathematically precise by the field of computational complexity. Roughly speaking, an efficient algorithm is one which runs in time polynomial in the size of the problem solved. In contrast, an inefficient algorithm requires superpolynomial (typically exponential) time. What was noticed in the late 1960s and early 1970s was that it seemed as though the Turing machine model of computation was at least as powerful as any other model of computation, in the sense that a problem which could be solved efficiently in some model of computation could also be solved efficiently in the Turing machine model, by using the Turing machine to simulate the other model of computation. This observation was codified into a strengthened version of the Church– Turing thesis: Any algorithmic process can be simulated efficiently using a Turing machine. The key strengthening in the strong Church–Turing thesis is the word efficiently. If the strong Church–Turing thesis is correct, then it implies that no matter what type of machine we use to perform our algorithms, that machine can be simulated efficiently using a standard Turing machine. This is an important strengthening, as it implies that for the purposes of analyzing whether a given computational task can be accomplished efficiently, we may restrict ourselves to the analysis of the Turing machine model of computation. One class of challenges to the strong Church–Turing thesis comes from the field of analog computation. In the years since Turing, many different teams of researchers have noticed that certain types of analog computers can efficiently solve problems believed to have no efficient solution on a Turing machine. At first glance these analog computers appear to violate the strong form of the Church–Turing thesis. Unfortunately for analog computation, it turns out that when realistic assumptions about the presence of noise in analog computers are made, their power disappears in all known instances; they cannot efficiently solve problems which are not efficiently solvable on a Turing machine. This lesson – that the effects of realistic noise must be taken into account in evaluating the efficiency of a computational model – was one of the great early challenges of quantum computation and quantum information, a challenge successfully met by the development of a theory of quantum error-correcting codes and fault-tolerant quantum computation. Thus, unlike analog computation, quantum computation can in principle tolerate a finite amount of noise and still retain its computational advantages. The first major challenge to the strong Church–Turing thesis arose in the mid 1970s, when Robert Solovay and Volker Strassen showed that it is possible to test whether an integer is prime or composite using a randomized algorithm. That is, the Solovay–Strassen test for primality used randomness as an essential part of the algorithm. The algorithm did not determine whether a given integer was prime or composite with certainty. Instead, the algorithm could determine that a number was probably prime or else composite with 6 Introduction and overview certainty. By repeating the Solovay–Strassen test a few times it is possible to determine with near certainty whether a number is prime or composite. The Solovay-Strassen test was of especial significance at the time it was proposed as no deterministic test for primality was then known, nor is one known at the time of this writing. Thus, it seemed as though computers with access to a random number generator would be able to efficiently perform computational tasks with no efficient solution on a conventional deterministic Turing machine. This discovery inspired a search for other randomized algorithms which has paid off handsomely, with the field blossoming into a thriving area of research. Randomized algorithms pose a challenge to the strong Church–Turing thesis, suggesting that there are efficiently soluble problems which, nevertheless, cannot be efficiently solved on a deterministic Turing machine. This challenge appears to be easily resolved by a simple modification of the strong Church–Turing thesis: Any algorithmic process can be simulated efficiently using a probabilistic Turing machine. This ad hoc modification of the strong Church–Turing thesis should leave you feeling rather queasy. Might it not turn out at some later date that yet another model of computation allows one to efficiently solve problems that are not efficiently soluble within Turing’s model of computation? Is there any way we can find a single model of computation which is guaranteed to be able to efficiently simulate any other model of computation? Motivated by this question, in 1985 David Deutsch asked whether the laws of physics could be use to derive an even stronger version of the Church–Turing thesis. Instead of adopting ad hoc hypotheses, Deutsch looked to physical theory to provide a foundation for the Church–Turing thesis that would be as secure as the status of that physical theory. In particular, Deutsch attempted to define a computational device that would be capable of efficiently simulating an arbitrary physical system. Because the laws of physics are ultimately quantum mechanical, Deutsch was naturally led to consider computing devices based upon the principles of quantum mechanics. These devices, quantum analogues of the machines defined forty-nine years earlier by Turing, led ultimately to the modern conception of a quantum computer used in this book. At the time of writing it is not clear whether Deutsch’s notion of a Universal Quantum Computer is sufficient to efficiently simulate an arbitrary physical system. Proving or refuting this conjecture is one of the great open problems of the field of quantum computation and quantum information. It is possible, for example, that some effect of quantum field theory or an even more esoteric effect based in string theory, quantum gravity or some other physical theory may take us beyond Deutsch’s Universal Quantum Computer, giving us a still more powerful model for computation. At this stage, we simply don’t know. What Deutsch’s model of a quantum computer did enable was a challenge to the strong form of the Church–Turing thesis. Deutsch asked whether it is possible for a quantum computer to efficiently solve computational problems which have no efficient solution on a classical computer, even a probabilistic Turing machine. He then constructed a simple example suggesting that, indeed, quantum computers might have computational powers exceeding those of classical computers. This remarkable first step taken by Deutsch was improved in the subsequent decade by many people, culminating in Peter Shor’s 1994 demonstration that two enormously important problems – the problem of finding the prime factors of an integer, and the so- Global perspectives 7 called ‘discrete logarithm’ problem – could be solved efficiently on a quantum computer. This attracted widespread interest because these two problems were and still are widely believed to have no efficient solution on a classical computer. Shor’s results are a powerful indication that quantum computers are more powerful than Turing machines, even probabilistic Turing machines. Further evidence for the power of quantum computers came in 1995 when Lov Grover showed that another important problem – the problem of conducting a search through some unstructured search space – could also be sped up on a quantum computer. While Grover’s algorithm did not provide as spectacular a speedup as Shor’s algorithms, the widespread applicability of search-based methodologies has excited considerable interest in Grover’s algorithm. At about the same time as Shor’s and Grover’s algorithms were discovered, many people were developing an idea Richard Feynman had suggested in 1982. Feynman had pointed out that there seemed to be essential difficulties in simulating quantum mechanical systems on classical computers, and suggested that building computers based on the principles of quantum mechanics would allow us to avoid those difficulties. In the 1990s several teams of researchers began fleshing this idea out, showing that it is indeed possible to use quantum computers to efficiently simulate systems that have no known efficient simulation on a classical computer. It is likely that one of the major applications of quantum computers in the future will be performing simulations of quantum mechanical systems too difficult to simulate on a classical computer, a problem with profound scientific and technological implications. What other problems can quantum computers solve more quickly than classical computers? The short answer is that we don’t know. Coming up with good quantum algorithms seems to be hard. A pessimist might think that’s because there’s nothing quantum computers are good for other than the applications already discovered! We take a different view. Algorithm design for quantum computers is hard because designers face two difficult problems not faced in the construction of algorithms for classical computers. First, our human intuition is rooted in the classical world. If we use that intuition as an aid to the construction of algorithms, then the algorithmic ideas we come up with will be classical ideas. To design good quantum algorithms one must ‘turn off’ one’s classical intuition for at least part of the design process, using truly quantum effects to achieve the desired algorithmic end. Second, to be truly interesting it is not enough to design an algorithm that is merely quantum mechanical. The algorithm must be better than any existing classical algorithm! Thus, it is possible that one may find an algorithm which makes use of truly quantum aspects of quantum mechanics, that is nevertheless not of widespread interest because classical algorithms with comparable performance characteristics exist. The combination of these two problems makes the construction of new quantum algorithms a challenging problem for the future. Even more broadly, we can ask if there are any generalizations we can make about the power of quantum computers versus classical computers. What is it that makes quantum computers more powerful than classical computers – assuming that this is indeed the case? What class of problems can be solved efficiently on a quantum computer, and how does that class compare to the class of problems that can be solved efficiently on a classical computer? One of the most exciting things about quantum computation and quantum information is how little is known about the answers to these questions! It is a great challenge for the future to understand these questions better. Having come up to the frontier of quantum computation, let’s switch to the history 8 Introduction and overview of another strand of thought contributing to quantum computation and quantum information: information theory. At the same time computer science was exploding in the 1940s, another revolution was taking place in our understanding of communication. In 1948 Claude Shannon published a remarkable pair of papers laying the foundations for the modern theory of information and communication. Perhaps the key step taken by Shannon was to mathematically define the concept of information. In many mathematical sciences there is considerable flexibility in the choice of fundamental definitions. Try thinking naively for a few minutes about the following question: how would you go about mathematically defining the notion of an information source? Several different answers to this problem have found widespread use; however, the definition Shannon came up with seems to be far and away the most fruitful in terms of increased understanding, leading to a plethora of deep results and a theory with a rich structure which seems to accurately reflect many (though not all) real-world communications problems. Shannon was interested in two key questions related to the communication of information over a communications channel. First, what resources are required to send information over a communications channel? For example, telephone companies need to know how much information they can reliably transmit over a given telephone cable. Second, can information be transmitted in such a way that it is protected against noise in the communications channel? Shannon answered these two questions by proving the two fundamental theorems of information theory. The first, Shannon’s noiseless channel coding theorem, quantifies the physical resources required to store the output from an information source. Shannon’s second fundamental theorem, the noisy channel coding theorem, quantifies how much information it is possible to reliably transmit through a noisy communications channel. To achieve reliable transmission in the presence of noise, Shannon showed that error-correcting codes could be used to protect the information being sent. Shannon’s noisy channel coding theorem gives an upper limit on the protection afforded by errorcorrecting codes. Unfortunately, Shannon’s theorem does not explicitly give a practically useful set of error-correcting codes to achieve that limit. From the time of Shannon’s papers until today, researchers have constructed more and better classes of error-correcting codes in their attempts to come closer to the limit set by Shannon’s theorem. A sophisticated theory of error-correcting codes now exists offering the user a plethora of choices in their quest to design a good error-correcting code. Such codes are used in a multitude of places including, for example, compact disc players, computer modems, and satellite communications systems. Quantum information theory has followed with similar developments. In 1995, Ben Schumacher provided an analogue to Shannon’s noiseless coding theorem, and in the process defined the ‘quantum bit’ or ‘qubit’ as a tangible physical resource. However, no analogue to Shannon’s noisy channel coding theorem is yet known for quantum information. Nevertheless, in analogy to their classical counterparts, a theory of quantum error-correction has been developed which, as already mentioned, allows quantum computers to compute effectively in the presence of noise, and also allows communication over noisy quantum channels to take place reliably. Indeed, classical ideas of error-correction have proved to be enormously important in developing and understanding quantum error-correcting codes. In 1996, two groups working independently, Robert Calderbank and Peter Shor, and Andrew Steane, discov- Global perspectives 9 ered an important class of quantum codes now known as CSS codes after their initials. This work has since been subsumed by the stabilizer codes, independently discovered by Robert Calderbank, Eric Rains, Peter Shor and Neil Sloane, and by Daniel Gottesman. By building upon the basic ideas of classical linear coding theory, these discoveries greatly facilitated a rapid understanding of quantum error-correcting codes and their application to quantum computation and quantum information. The theory of quantum error-correcting codes was developed to protect quantum states against noise. What about transmitting ordinary classical information using a quantum channel? How efficiently can this be done? A few surprises have been discovered in this arena. In 1992 Charles Bennett and Stephen Wiesner explained how to transmit two classical bits of information, while only transmitting one quantum bit from sender to receiver, a result dubbed superdense coding. Even more interesting are the results in distributed quantum computation. Imagine you have two computers networked, trying to solve a particular problem. How much communication is required to solve the problem? Recently it has been shown that quantum computers can require exponentially less communication to solve certain problems than would be required if the networked computers were classical! Unfortunately, as yet these problems are not especially important in a practical setting, and suffer from some undesirable technical restrictions. A major challenge for the future of quantum computation and quantum information is to find problems of real-world importance for which distributed quantum computation offers a substantial advantage over distributed classical computation. Let’s return to information theory proper. The study of information theory begins with the properties of a single communications channel. In applications we often do not deal with a single communications channel, but rather with networks of many channels. The subject of networked information theory deals with the information carrying properties of such networks of communications channels, and has been developed into a rich and intricate subject. By contrast, the study of networked quantum information theory is very much in its infancy. Even for very basic questions we know little about the information carrying abilities of networks of quantum channels. Several rather striking preliminary results have been found in the past few years; however, no unifying theory of networked information theory exists for quantum channels. One example of networked quantum information theory should suffice to convince you of the value such a general theory would have. Imagine that we are attempting to send quantum information from Alice to Bob through a noisy quantum channel. If that channel has zero capacity for quantum information, then it is impossible to reliably send any information from Alice to Bob. Imagine instead that we consider two copies of the channel, operating in synchrony. Intuitively it is clear (and can be rigorously justified) that such a channel also has zero capacity to send quantum information. However, if we instead reverse the direction of one of the channels, as illustrated in Figure 1.1, it turns out that sometimes we can obtain a non-zero capacity for the transmission of information from Alice to Bob! Counter-intuitive properties like this illustrate the strange nature of quantum information. Better understanding the information carrying properties of networks of quantum channels is a major open problem of quantum computation and quantum information. Let’s switch fields one last time, moving to the venerable old art and science of cryptography. Broadly speaking, cryptography is the problem of doing communication or 10 Introduction and overview Figure 1.1. Classically, if we have two very noisy channels of zero capacity running side by side, then the combined channel has zero capacity to send information. Not surprisingly, if we reverse the direction of one of the channels, we still have zero capacity to send information. Quantum mechanically, reversing one of the zero capacity channels can actually allow us to send information! computation involving two or more parties who may not trust one another. The best known cryptographic problem is the transmission of secret messages. Suppose two parties wish to communicate in secret. For example, you may wish to give your credit card number to a merchant in exchange for goods, hopefully without any malevolent third party intercepting your credit card number. The way this is done is to use a cryptographic protocol. We’ll describe in detail how cryptographic protocols work later in the book, but for now it will suffice to make a few simple distinctions. The most important distinction is between private key cryptosystems and public key cryptosystems. The way a private key cryptosystem works is that two parties, ‘Alice’ and ‘Bob’, wish to communicate by sharing a private key, which only they know. The exact form of the key doesn’t matter at this point – think of a string of zeroes and ones. The point is that this key is used by Alice to encrypt the information she wishes to send to Bob. After Alice encrypts she sends the encrypted information to Bob, who must now recover the original information. Exactly how Alice encrypts the message depends upon the private key, so that to recover the original message Bob needs to know the private key, in order to undo the transformation Alice applied. Unfortunately, private key cryptosystems have some severe problems in many contexts. The most basic problem is how to distribute the keys? In many ways, the key distribution problem is just as difficult as the original problem of communicating in private – a malevolent third party may be eavesdropping on the key distribution, and then use the intercepted key to decrypt some of the message transmission. One of the earliest discoveries in quantum computation and quantum information was that quantum mechanics can be used to do key distribution in such a way that Alice and Bob’s security can not be compromised. This procedure is known as quantum cryptography or quantum key distribution. The basic idea is to exploit the quantum mechanical principle that observation in general disturbs the system being observed. Thus, if there is an eavesdropper listening in as Alice and Bob attempt to transmit their key, the presence of the eavesdropper will be visible as a disturbance of the communications channel Alice and Bob are using to establish the key. Alice and Bob can then throw out the key bits established while the eavesdropper was listening in, and start over. The first quantum cryptographic ideas were proposed by Stephen Wiesner in the late 1960s, but unfortu- Global perspectives 11 nately were not accepted for publication! In 1984 Charles Bennett and Gilles Brassard, building on Wiesner’s earlier work, proposed a protocol using quantum mechanics to distribute keys between Alice and Bob, without any possibility of a compromise. Since then numerous quantum cryptographic protocols have been proposed, and experimental prototypes developed. At the time of this writing, the experimental prototypes are nearing the stage where they may be useful in limited-scale real-world applications. The second major type of cryptosystem is the public key cryptosystem. Public key cryptosystems don’t rely on Alice and Bob sharing a secret key in advance. Instead, Bob simply publishes a ‘public key’, which is made available to the general public. Alice can make use of this public key to encrypt a message which she sends to Bob. What is interesting is that a third party cannot use Bob’s public key to decrypt the message! Strictly speaking, we shouldn’t say cannot. Rather, the encryption transformation is chosen in a very clever and non-trivial way so that it is extremely difficult (though not impossible) to invert, given only knowledge of the public key. To make inversion easy, Bob has a secret key matched to his public key, which together enable him to easily perform the decryption. This secret key is not known to anybody other than Bob, who can therefore be confident that only he can read the contents of Alice’s transmission, to the extent that it is unlikely that anybody else has the computational power to invert the encryption, given only the public key. Public key cryptosystems solve the key distribution problem by making it unnecessary for Alice and Bob to share a private key before communicating. Rather remarkably, public key cryptography did not achieve widespread use until the mid-1970s, when it was proposed independently by Whitfield Diffie and Martin Hellman, and by Ralph Merkle, revolutionizing the field of cryptography. A little later, Ronald Rivest, Adi Shamir, and Leonard Adleman developed the RSA cryptosystem, which at the time of writing is the most widely deployed public key cryptosystem, believed to offer a fine balance of security and practical usability. In 1997 it was disclosed that these ideas – public key cryptography, the Diffie–Hellman and RSA cryptosystems – were actually invented in the late 1960s and early 1970s by researchers working at the British intelligence agency GCHQ. The key to the security of public key cryptosystems is that it should be difficult to invert the encryption stage if only the public key is available. For example, it turns out that inverting the encryption stage of RSA is a problem closely related to factoring. Much of the presumed security of RSA comes from the belief that factoring is a problem hard to solve on a classical computer. However, Shor’s fast algorithm for factoring on a quantum computer could be used to break RSA! Similarly, there are other public key cryptosystems which can be broken if a fast algorithm for solving the discrete logarithm problem – like Shor’s quantum algorithm for discrete logarithm – were known. This practical application of quantum computers to the breaking of cryptographic codes has excited much of the interest in quantum computation and quantum information. We have been looking at the historical antecedents for quantum computation and quantum information. Of course, as the field has grown and matured, it has sprouted its own subfields of research, whose antecedents lie mainly within quantum computation and quantum information. Perhaps the most striking of these is the study of quantum entanglement. Entanglement is a uniquely quantum mechanical resource that plays a key role in many of the most interesting applications of quantum computation and quantum information; entanglement is iron to the classical world’s bronze age. In recent years there has been a 12 Introduction and overview tremendous effort trying to better understand the properties of entanglement considered as a fundamental resource of Nature, of comparable importance to energy, information, entropy, or any other fundamental resource. Although there is as yet no complete theory of entanglement, some progress has been made in understanding this strange property of quantum mechanics. It is hoped by many researchers that further study of the properties of entanglement will yield insights that facilitate the development of new applications in quantum computation and quantum information. 1.1.2 Future directions We’ve looked at some of the history and present status of quantum computation and quantum information. What of the future? What can quantum computation and quantum information offer to science, to technology, and to humanity? What benefits does quantum computation and quantum information confer upon its parent fields of computer science, information theory, and physics? What are the key open problems of quantum computation and quantum information? We will make a few very brief remarks about these overarching questions before moving onto more detailed investigations. Quantum computation and quantum information has taught us to think physically about computation, and we have discovered that this approach yields many new and exciting capabilities for information processing and communication. Computer scientists and information theorists have been gifted with a new and rich paradigm for exploration. Indeed, in the broadest terms we have learned that any physical theory, not just quantum mechanics, may be used as the basis for a theory of information processing and communication. The fruits of these explorations may one day result in information processing devices with capabilities far beyond today’s computing and communications systems, with concomitant benefits and drawbacks for society as a whole. Quantum computation and quantum information certainly offer challenges aplenty to physicists, but it is perhaps a little subtle what quantum computation and quantum information offers to physics in the long term. We believe that just as we have learned to think physically about computation, we can also learn to think computationally about physics. Whereas physics has traditionally been a discipline focused on understanding ‘elementary’ objects and simple systems, many interesting aspects of Nature arise only when things become larger and more complicated. Chemistry and engineering deal with such complexity to some extent, but most often in a rather ad hoc fashion. One of the messages of quantum computation and information is that new tools are available for traversing the gulf between the small and the relatively complex: computation and algorithms provide systematic means for constructing and understanding such systems. Applying ideas from these fields is already beginning to yield new insights into physics. It is our hope that this perspective will blossom in years to come into a fruitful way of understanding all aspects of physics. We’ve briefly examined some of the key motivations and ideas underlying quantum computation and quantum information. Over the remaining sections of this chapter we give a more technical but still accessible introduction to these motivations and ideas, with the hope of giving you a bird’s-eye view of the field as it is presently poised. Quantum bits 13 1.2 Quantum bits The bit is the fundamental concept of classical computation and classical information. Quantum computation and quantum information are built upon an analogous concept, the quantum bit, or qubit for short. In this section we introduce the properties of single and multiple qubits, comparing and contrasting their properties to those of classical bits. What is a qubit? We’re going to describe qubits as mathematical objects with certain specific properties. ‘But hang on’, you say, ‘I thought qubits were physical objects.’ It’s true that qubits, like bits, are realized as actual physical systems, and in Section 1.5 and Chapter 7 we describe in detail how this connection between the abstract mathematical point of view and real systems is made. However, for the most part we treat qubits as abstract mathematical objects. The beauty of treating qubits as abstract entities is that it gives us the freedom to construct a general theory of quantum computation and quantum information which does not depend upon a specific system for its realization. What then is a qubit? Just as a classical bit has a state – either 0 or 1 – a qubit also has a state. Two possible states for a qubit are the states |0 and |1, which as you might guess correspond to the states 0 and 1 for a classical bit. Notation like ‘| ’ is called the Dirac notation, and we’ll be seeing it often, as it’s the standard notation for states in quantum mechanics. The difference between bits and qubits is that a qubit can be in a state other than |0 or |1. It is also possible to form linear combinations of states, often called superpositions: |ψ = α |0 + β |1. (1.1) The numbers α and β are complex numbers, although for many purposes not much is lost by thinking of them as real numbers. Put another way, the state of a qubit is a vector in a two-dimensional complex vector space. The special states |0 and |1 are known as computational basis states, and form an orthonormal basis for this vector space. We can examine a bit to determine whether it is in the state 0 or 1. For example, computers do this all the time when they retrieve the contents of their memory. Rather remarkably, we cannot examine a qubit to determine its quantum state, that is, the values of α and β. Instead, quantum mechanics tells us that we can only acquire much more restricted information about the quantum state. When we measure a qubit we get either the result 0, with probability |α|2 , or the result 1, with probability |β|2 . Naturally, |α|2 + |β|2 = 1, since the probabilities must sum to one. Geometrically, we can interpret this as the condition that the qubit’s state be normalized to length 1. Thus, in general a qubit’s state is a unit vector in a two-dimensional complex vector space. This dichotomy between the unobservable state of a qubit and the observations we can make lies at the heart of quantum computation and quantum information. In most of our abstract models of the world, there is a direct correspondence between elements of the abstraction and the real world, just as an architect’s plans for a building are in correspondence with the final building. The lack of this direct correspondence in quantum mechanics makes it difficult to intuit the behavior of quantum systems; however, there is an indirect correspondence, for qubit states can be manipulated and transformed in ways which lead to measurement outcomes which depend distinctly on the different properties of the state. Thus, these quantum states have real, experimentally verifiable consequences, which we shall see are essential to the power of quantum computation and quantum information. 14 Introduction and overview The ability of a qubit to be in a superposition state runs counter to our ‘common sense’ understanding of the physical world around us. A classical bit is like a coin: either heads or tails up. For imperfect coins, there may be intermediate states like having it balanced on an edge, but those can be disregarded in the ideal case. By contrast, a qubit can exist in a continuum of states between |0 and |1 – until it is observed. Let us emphasize again that when a qubit is measured, it only ever gives ‘0’ or ‘1’ as the measurement result – probabilistically. For example, a qubit can be in the state 1 1 √ |0 + √ |1 , 2 2 (1.2) √ which, when measured, gives the result 0 fifty percent (|1/ 2|2 ) of the time, and the result 1 fifty percent of the time. We will return often to this state, which is sometimes denoted |+. Despite this strangeness, qubits are decidedly real, their existence and behavior extensively validated by experiments (discussed in Section 1.5 and Chapter 7), and many different physical systems can be used to realize qubits. To get a concrete feel for how a qubit can be realized it may be helpful to list some of the ways this realization may occur: as the two different polarizations of a photon; as the alignment of a nuclear spin in a uniform magnetic field; as two states of an electron orbiting a single atom such as shown in Figure 1.2. In the atom model, the electron can exist in either the so-called ‘ground’ or ‘excited’ states, which we’ll call |0 and |1, respectively. By shining light on the atom, with appropriate energy and for an appropriate length of time, it is possible to move the electron from the |0 state to the |1 state and vice versa. But more interestingly, by reducing the time we shine the light, an electron initially in the state |0 can be moved ‘halfway’ between |0 and |1, into the |+ state. Figure 1.2. Qubit represented by two electronic levels in an atom. Naturally, a great deal of attention has been given to the ‘meaning’ or ‘interpretation’ that might be attached to superposition states, and of the inherently probabilistic nature of observations on quantum systems. However, by and large, we shall not concern ourselves with such discussions in this book. Instead, our intent will be to develop mathematical and conceptual pictures which are predictive. One picture useful in thinking about qubits is the following geometric representation. Quantum bits Because |α|2 + |β|2 = 1, we may rewrite Equation (1.1) as   θ θ iγ iϕ |ψ = e cos |0 + e sin |1 , 2 2 15 (1.3) where θ, ϕ and γ are real numbers. In Chapter 2 we will see that we can ignore the factor of eiγ out the front, because it has no observable effects, and for that reason we can effectively write θ θ (1.4) |ψ = cos |0 + eiϕ sin |1. 2 2 The numbers θ and ϕ define a point on the unit three-dimensional sphere, as shown in Figure 1.3. This sphere is often called the Bloch sphere; it provides a useful means of visualizing the state of a single qubit, and often serves as an excellent testbed for ideas about quantum computation and quantum information. Many of the operations on single qubits which we describe later in this chapter are neatly described within the Bloch sphere picture. However, it must be kept in mind that this intuition is limited because there is no simple generalization of the Bloch sphere known for multiple qubits. |ñ z θ |ψ y x ϕ |ñ Figure 1.3. Bloch sphere representation of a qubit. How much information is represented by a qubit? Paradoxically, there are an infinite number of points on the unit sphere, so that in principle one could store an entire text of Shakespeare in the infinite binary expansion of θ. However, this conclusion turns out to be misleading, because of the behavior of a qubit when observed. Recall that measurement of a qubit will give only either 0 or 1. Furthermore, measurement changes the state of a qubit, collapsing it from its superposition of |0 and |1 to the specific state consistent with the measurement result. For example, if measurement of |+ gives 0, then the post-measurement state of the qubit will be |0. Why does this type of collapse occur? Nobody knows. As discussed in Chapter 2, this behavior is simply one of the fundamental postulates of quantum mechanics. What is relevant for our purposes is that from a single measurement one obtains only a single bit of information about the state of the qubit, thus resolving the apparent paradox. It turns out that only if infinitely many 16 Introduction and overview identically prepared qubits were measured would one be able to determine α and β for a qubit in the state given in Equation (1.1). But an even more interesting question to ask might be: how much information is represented by a qubit if we do not measure it? This is a trick question, because how can one quantify information if it cannot be measured? Nevertheless, there is something conceptually important here, because when Nature evolves a closed quantum system of qubits, not performing any ‘measurements’, she apparently does keep track of all the continuous variables describing the state, like α and β. In a sense, in the state of a qubit, Nature conceals a great deal of ‘hidden information’. And even more interestingly, we will see shortly that the potential amount of this extra ‘information’ grows exponentially with the number of qubits. Understanding this hidden quantum information is a question that we grapple with for much of this book, and which lies at the heart of what makes quantum mechanics a powerful tool for information processing. 1.2.1 Multiple qubits Hilbert space is a big place. – Carlton Caves Suppose we have two qubits. If these were two classical bits, then there would be four possible states, 00, 01, 10, and 11. Correspondingly, a two qubit system has four computational basis states denoted |00, |01, |10, |11. A pair of qubits can also exist in superpositions of these four states, so the quantum state of two qubits involves associating a complex coefficient – sometimes called an amplitude – with each computational basis state, such that the state vector describing the two qubits is |ψ = α00 |00 + α01 |01 + α10 |10 + α11 |11. (1.5) Similar to the case for a single qubit, the measurement result x (= 00, 01, 10 or 11) occurs with probability |αx |2 , with the state of the qubits after the measurement being |x. The condition that probabilities sum to one is therefore expressed by the normalization  condition that x∈{0,1}2 |αx |2 = 1, where the notation ‘{0, 1}2 ’ means ‘the set of strings of length two with each letter being either zero or one’. For a two qubit system, we could measure just a subset of the qubits, say the first qubit, and you can probably guess how this works: measuring the first qubit alone gives 0 with probability |α00 |2 + |α01 |2 , leaving the post-measurement state α00 |00 + α01 |01 . |ψ ′  =  |α00 |2 + |α01 |2 (1.6)  Note how the post-measurement state is re-normalized by the factor |α00 |2 + |α01 |2 so that it still satisfies the normalization condition, just as we expect for a legitimate quantum state. An important two qubit state is the Bell state or EPR pair, |00 + |11 √ . 2 (1.7) This innocuous-looking state is responsible for many surprises in quantum computation Quantum computation 17 and quantum information. It is the key ingredient in quantum teleportation and superdense coding, which we’ll come to in Section 1.3.7 and Section 2.3, respectively, and the prototype for many other interesting quantum states. The Bell state has the property that upon measuring the first qubit, one obtains two possible results: 0 with probability 1/2, leaving the post-measurement state |ϕ′  = |00, and 1 with probability 1/2, leaving |ϕ′  = |11. As a result, a measurement of the second qubit always gives the same result as the measurement of the first qubit. That is, the measurement outcomes are correlated. Indeed, it turns out that other types of measurements can be performed on the Bell state, by first applying some operations to the first or second qubit, and that interesting correlations still exist between the result of a measurement on the first and second qubit. These correlations have been the subject of intense interest ever since a famous paper by Einstein, Podolsky and Rosen, in which they first pointed out the strange properties of states like the Bell state. EPR’s insights were taken up and greatly improved by John Bell, who proved an amazing result: the measurement correlations in the Bell state are stronger than could ever exist between classical systems. These results, described in detail in Section 2.6, were the first intimation that quantum mechanics allows information processing beyond what is possible in the classical world. More generally, we may consider a system of n qubits. The computational basis states of this system are of the form |x1 x2 . . . xn , and so a quantum state of such a system is specified by 2n amplitudes. For n = 500 this number is larger than the estimated number of atoms in the Universe! Trying to store all these complex numbers would not be possible on any conceivable classical computer. Hilbert space is indeed a big place. In principle, however, Nature manipulates such enormous quantities of data, even for systems containing only a few hundred atoms. It is as if Nature were keeping 2500 hidden pieces of scratch paper on the side, on which she performs her calculations as the system evolves. This enormous potential computational power is something we would very much like to take advantage of. But how can we think of quantum mechanics as computation? 1.3 Quantum computation Changes occurring to a quantum state can be described using the language of quantum computation. Analogous to the way a classical computer is built from an electrical circuit containing wires and logic gates, a quantum computer is built from a quantum circuit containing wires and elementary quantum gates to carry around and manipulate the quantum information. In this section we describe some simple quantum gates, and present several example circuits illustrating their application, including a circuit which teleports qubits! 1.3.1 Single qubit gates Classical computer circuits consist of wires and logic gates. The wires are used to carry information around the circuit, while the logic gates perform manipulations of the information, converting it from one form to another. Consider, for example, classical single bit gate, whose operation logic gates. The only non-trivial member of this class is the is defined by its truth table, in which 0 → 1 and 1 → 0, that is, the 0 and 1 states are interchanged. gate for qubits be defined? Imagine that we had Can an analogous quantum some process which took the state |0 to the state |1, and vice versa. Such a process 18 Introduction and overview would obviously be a good candidate for a quantum analogue to the gate. However, specifying the action of the gate on the states |0 and |1 does not tell us what happens to superpositions of the states |0 and |1, without further knowledge about the properties gate acts linearly, that is, it takes the state of quantum gates. In fact, the quantum α|0 + β|1 (1.8) to the corresponding state in which the role of |0 and |1 have been interchanged, α|1 + β|0. (1.9) gate acts linearly and not in some nonlinear fashion is a very Why the quantum interesting question, and the answer is not at all obvious. It turns out that this linear behavior is a general property of quantum mechanics, and very well motivated empirically; moreover, nonlinear behavior can lead to apparent paradoxes such as time travel, fasterthan-light communication, and violations of the second laws of thermodynamics. We’ll explore this point in more depth in later chapters, but for now we’ll just take it as given. gate in matrix form, There is a convenient way of representing the quantum which follows directly from the linearity of quantum gates. Suppose we define a matrix X to represent the quantum gate as follows:   0 1 X≡ . (1.10) 1 0 (The notation X for the quantum is used for historical reasons.) If the quantum state α|0 + β|1 is written in a vector notation as   α , (1.11) β with the top entry corresponding to the amplitude for |0 and the bottom entry the gate is amplitude for |1, then the corresponding output from the quantum     β α . (1.12) = X α β Notice that the action of the gate is to take the state |0 and replace it by the state corresponding to the first column of the matrix X. Similarly, the state |1 is replaced by the state corresponding to the second column of the matrix X. So quantum gates on a single qubit can be described by two by two matrices. Are there any constraints on what matrices may be used as quantum gates? It turns out that there are. Recall that the normalization condition requires |α|2 + |β|2 = 1 for a quantum state α|0 + β|1. This must also be true of the quantum state |ψ ′  = α′ |0 + β ′ |1 after the gate has acted. It turns out that the appropriate condition on the matrix representing the gate is that the matrix U describing the single qubit gate be unitary, that is U † U = I, where U † is the adjoint of U (obtained by transposing and then complex conjugating gate it is easy to U ), and I is the two by two identity matrix. For example, for the † verify that X X = I. Amazingly, this unitarity constraint is the only constraint on quantum gates. Any unitary matrix specifies a valid quantum gate! The interesting implication is that in contrast to the classical case, where only one non-trivial single bit gate exists – the 19 Quantum computation |ñ z z y x z y x y x  + |ñ √ Figure 1.4. Visualization of the Hadamard gate on the Bloch sphere, acting on the input state (|0 + |1)/ 2. gate – there are many non-trivial single qubit gates. Two important ones which we shall use later are the Z gate:   1 0 , (1.13) Z≡ 0 −1 which leaves |0 unchanged, and flips the sign of |1 to give −|1, and the Hadamard gate,   1 1 1 . (1.14) H≡√ 2 1 −1 This gate is sometimes√described as being like a ‘square-root of ’ gate, in that it turns a |0 into (|0 + |1)/ √ 2 (first column of H), ‘halfway’ between |0 and |1, and turns |1 into (|0 − |1)/ 2 (second column of H), which is also ‘halfway’ between |0 and gate, as simple algebra shows that H 2 = I, and |1. Note, however, that H 2 is not a thus applying H twice to a state does nothing to it. The Hadamard gate is one of the most useful quantum gates, and it is worth trying to visualize its operation by considering the Bloch sphere picture. In this picture, it turns out that single qubit gates correspond to rotations and reflections of the sphere. The Hadamard operation is just a rotation of the sphere about the ŷ axis by 90◦ , followed by a rotation about the x̂ axis by 180◦ , as illustrated in Figure 1.4. Some important single qubit gates are shown in Figure 1.5, and contrasted with the classical case. N N Figure 1.5. Single bit (left) and qubit (right) logic gates. There are infinitely many two by two unitary matrices, and thus infinitely many single 20 Introduction and overview qubit gates. However, it turns out that the properties of the complete set can be understood from the properties of a much smaller set. For example, as explained in Box 1.1, an arbitrary single qubit unitary gate can be decomposed as a product of rotations   cos γ2 − sin γ2 , (1.15) cos γ2 sin γ2 and a gate which we’ll later understand as being a rotation about the ẑ axis,   −iβ/2 e 0 , 0 eiβ/2 (1.16) together with a (global) phase shift – a constant multiplier of the form eiα . These gates can be broken down further – we don’t need to be able to do these gates for arbitrary α, β and γ, but can build arbitrarily good approximations to such gates using only certain special fixed values of α, β and γ. In this way it is possible to build up an arbitrary single qubit gate using a finite set of quantum gates. More generally, an arbitrary quantum computation on any number of qubits can be generated by a finite set of gates that is said to be universal for quantum computation. To obtain such a universal set we first need to introduce some quantum gates involving multiple qubits. Box 1.1: Decomposing single qubit operations In Section 4.2 starting on page 174 we prove that an arbitrary 2×2 unitary matrix may be decomposed as   −iβ/2    −iδ/2 cos γ2 − sin γ2 e 0 e 0 , (1.17) , U = eiα sin γ2 cos γ2 0 eiβ/2 0 eiδ/2 where α, β, γ, and δ are real-valued. Notice that the second matrix is just an ordinary rotation. It turns out that the first and last matrices can also be understood as rotations in a different plane. This decomposition can be used to give an exact prescription for performing an arbitrary single qubit quantum logic gate. 1.3.2 Multiple qubit gates Now let us generalize from one to multiple qubits. Figure 1.6 shows five notable multiple , , (exclusive- ), and gates. An important bit classical gates, the theoretical result is that any function on bits can be computed from the composition of gates alone, which is thus known as a universal gate. By contrast, the alone or is not universal. One way of seeing this is to note that applying even together with gate does not change the total parity of the bits. As a result, any circuit involving an and gates will, if two inputs x and y have the same parity, give outputs only with the same parity, restricting the class of functions which may be computed, and thus precluding universality. or gate. The prototypical multi-qubit quantum logic gate is the controlledThis gate has two input qubits, known as the control qubit and the target qubit, respecis shown in the top right of Figure 1.6; tively. The circuit representation for the the top line represents the control qubit, while the bottom line represents the target Quantum computation = NOT = > =  = > 21 = AND >  = > = OR >  = XOR >    = > = NAND >   = > = NOR >  Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical . The matrix representation of the controlled, UCN , is written with multiple qubit gate, the controlledrespect to the amplitudes for |00, |01, |10, and |11, in that order. qubit. The action of the gate may be described as follows. If the control qubit is set to 0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit is flipped. In equations: |00 → |00; |01 → |01; |10 → |11; |11 → |10. (1.18) is as a generalization of the classical gate, since Another way of describing the the action of the gate may be summarized as |A, B → |A, B ⊕ A, where ⊕ is addition gate does. That is, the control qubit and the modulo two, which is exactly what the ed and stored in the target qubit. target qubit are is to give a matrix represenYet another way of describing the action of the tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first column of UCN describes the transformation that occurs to |00, and similarly for the other computational basis states, |01, |10, and |11. As for the single qubit case, the requirement that probability be conserved is expressed in the fact that UCN is a unitary † UCN = I. matrix, that is, UCN can be regarded as a type of generalizedgate. Can We noticed that the other classical gates such as the or the regular gate be understood as unitary gate represents the classical gates in a sense similar to the way the quantum gate? It turns out that this is not possible. The reason is because the and gates are essentially irreversible or non-invertible. For example, given the output A ⊕ B from gate, it is not possible to determine what the inputs A and B were; there is an an gate. irretrievable loss of information associated with the irreversible action of the On the other hand, unitary quantum gates are always invertible, since the inverse of a unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted by another quantum gate. Understanding how to do classical logic in this reversible or invertible sense will be a crucial step in understanding how to harness the power of 22 Introduction and overview quantum mechanics for computation. We’ll explain the basic idea of how to do reversible computation in Section 1.4.1. . Of course, there are many interesting quantum gates other than the controlledand single qubit gates are the prototypes for all However, in a sense the controlledother gates because of the following remarkable universality result: Any multiple qubit and single qubit gates. The proof is given in logic gate may be composed from gate. Section 4.5, and is the quantum parallel of the universality of the 1.3.3 Measurements in bases other than the computational basis We’ve described quantum measurements of a single qubit in the state α|0 + β|1 as yielding the result 0 or 1 and leaving the qubit in the corresponding state |0 or |1, with respective probabilities |α|2 and |β|2 . In fact, quantum mechanics allows somewhat more versatility in the class of measurements that may be performed, although certainly nowhere near enough to recover α and β from a single measurement! Note that the states |0 and |1 represent just one of many possible choices of basis √ states for a √ qubit. Another possible choice is the set |+ ≡ (|0 + |1)/ 2 and |− ≡ (|0 − |1)/ 2. An arbitrary state |ψ = α|0 + β|1 can be re-expressed in terms of the states |+ and |−: |ψ = α|0 + β|1 = α |+ − |− α + β α−β |+ + |− √ √ +β = √ |+ + √ |−. (1.19) 2 2 2 2 It turns out that it is possible to treat the |+ and |− states as though they were the computational basis states, and measure with respect to this new basis. Naturally, measuring with respect to the |+, |− basis results in the result ‘+’ with probability |α + β|2 /2 and the result ‘−’ with probability |α − β|2 /2, with corresponding post-measurement states |+ and |−, respectively. More generally, given any basis states |a and |b for a qubit, it is possible to express an arbitrary state as a linear combination α|a + β|b of those states. Furthermore, provided the states are orthonormal, it is possible to perform a measurement with respect to the |a, |b basis, giving the result a with probability |α|2 and b with probability |β|2 . The orthonormality constraint is necessary in order that |α|2 + |β|2 = 1 as we expect for probabilities. In an analogous way it is possible in principle to measure a quantum system of many qubits with respect to an arbitrary orthonormal basis. However, just because it is possible in principle does not mean that such a measurement can be done easily, and we return later to the question of how efficiently a measurement in an arbitrary basis can be performed. There are many reasons for using this extended formalism for quantum measurements, but ultimately the best one is this: the formalism allows us to describe observed experimental results, as we will see in our discussion of the Stern–Gerlach experiment in Section 1.5.1. An even more sophisticated and convenient (but essentially equivalent) formalism for describing quantum measurements is described in the next chapter, in Section 2.2.3. 1.3.4 Quantum circuits We’ve already met a few simple quantum circuits. Let’s look in a little more detail at the elements of a quantum circuit. A simple quantum circuit containing three quantum gates is shown in Figure 1.7. The circuit is to be read from left-to-right. Each line Quantum computation 23 in the circuit represents a wire in the quantum circuit. This wire does not necessarily correspond to a physical wire; it may correspond instead to the passage of time, or perhaps to a physical particle such as a photon – a particle of light – moving from one location to another through space. It is conventional to assume that the state input to the circuit is a computational basis state, usually the state consisting of all |0s. This rule is broken frequently in the literature on quantum computation and quantum information, but it is considered polite to inform the reader when this is the case. The circuit in Figure 1.7 accomplishes a simple but useful task – it swaps the states of the two qubits. To see that this circuit accomplishes the swap operation, note that the sequence of gates has the following sequence of effects on a computational basis state |a, b, |a, b −→ |a, a ⊕ b −→ |a ⊕ (a ⊕ b), a ⊕ b = |b, a ⊕ b −→ |b, (a ⊕ b) ⊕ b = |b, a , (1.20) where all additions are done modulo 2. The effect of the circuit, therefore, is to interchange the state of the two qubits. Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful circuit. There are a few features allowed in classical circuits that are not usually present in quantum circuits. First of all, we don’t allow ‘loops’, that is, feedback from one part of the quantum circuit to another; we say the circuit is acyclic. Second, classical circuits allow , with the resulting single wire wires to be ‘joined’ together, an operation known as of the inputs. Obviously this operation is not reversible and containing the bitwise in our quantum circuits. Third, the inverse therefore not unitary, so we don’t allow , whereby several copies of a bit are produced is also not allowed in operation, quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a operation impossible! We’ll see an example of this in the next qubit, making the section when we attempt to design a circuit to copy a qubit. As we proceed we’ll introduce new quantum gates as needed. It’s convenient to introduce another convention about quantum circuits at this point. This convention is illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number n of qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a gate. Such a gate controlled-U gate which is a natural extension of the controlledhas a single control qubit, indicated by the line with the black dot, and n target qubits, indicated by the boxed U . If the control qubit is set to 0 then nothing happens to the target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits. gate, which is The prototypical example of the controlled-U gate is the controlleda controlled-U gate with U = X, as illustrated in Figure 1.9. Another important operation is measurement, which we represent by a ‘meter’ symbol, 24 Introduction and overview Figure 1.8. Controlled-U gate. Figure 1.9. Two different representations for the controlled- . as shown in Figure 1.10. As previously described, this operation converts a single qubit state |ψ = α|0 + β|1 into a probabilistic classical bit M (distinguished from a qubit by drawing it as a double-line wire), which is 0 with probability |α|2 , or 1 with probability |β|2 . ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✙ ✤✤ ✤✤ ✙✙ ✤✤ ✤✤✤ ✙✙ ✙ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ✤ Figure 1.10. Quantum circuit symbol for measurement. We shall find quantum circuits useful as models of all quantum processes, including but not limited to computation, communication, and even quantum noise. Several simple examples illustrate this below. 1.3.5 Qubit copying circuit? The gate is useful for demonstrating one particularly fundamental property of quantum information. Consider the task of copying a classical bit. This may be done gate, which takes in the bit to copy (in some unknown state x) using a classical and a ‘scratchpad’ bit initialized to zero, as illustrated in Figure 1.11. The output is two bits, both of which are in the same state x. Suppose we try to copy a qubit in the unknown state |ψ = a |0 + b |1 in the same manner by using a gate. The input state of the two qubits may be written as  a |0 + b |1 |0 = a |00 + b |10, (1.21) is to negate the second qubit when the first qubit is 1, and thus The function of the output is simply a |00 + b |11. Have we successfully copied |ψ? That is, have we created the state |ψ|ψ? In the case where |ψ = |0 or |ψ = |1 that is indeed what this circuit does; it is possible to use quantum circuits to copy classical information encoded as a |0 or a |1. However, for a general state |ψ we see that |ψ|ψ = a2 |00 + ab|01 + ab|10 + b2 |11. (1.22) Quantum computation N N N N O NÅ O N 25 Figure 1.11. Classical and quantum circuits to ‘copy’ an unknown bit or qubit. Comparing with a|00 + b|11, we see that unless ab = 0 the ‘copying circuit’ above does not copy the quantum state input. In fact, it turns out to be impossible to make a copy of an unknown quantum state. This property, that qubits cannot be copied, is known as the no-cloning theorem, and it is one of the chief differences between quantum and classical information. The no-cloning theorem is discussed at more length in Box 12.1 on page 532; the proof is very simple, and we encourage you to skip ahead and read the proof now. There is another way of looking at the failure of the circuit in Figure 1.11, based on the intuition that a qubit somehow contains ‘hidden’ information not directly accessible to measurement. Consider what happens when we measure one of the qubits of the state a|00 + b|11. As previously described, we obtain either 0 or 1 with probabilities |a|2 and |b|2 . However, once one qubit is measured, the state of the other one is completely determined, and no additional information can be gained about a and b. In this sense, the extra hidden information carried in the original qubit |ψ was lost in the first measurement, and cannot be regained. If, however, the qubit had been copied, then the state of the other qubit should still contain some of that hidden information. Therefore, a copy cannot have been created. 1.3.6 Example: Bell states Let’s consider a slightly more complicated circuit, shown in Figure 1.12, which has a , and transforms the four computational basis states Hadamard gate followed by a according to the table √ given. As an explicit example, the Hadamard gate takes the input √ gives the output state (|00 + |11)/ 2. |00 to (|0 + |1)|0/ 2, and then the Note how this works: first, the Hadamard transform puts the top qubit in a superposition; , and the target gets inverted only when the this then acts as a control input to the control is 1. The output states |00 + |11 √ ; 2 |01 + |10 √ |β01  = ; 2 |00 − |11 √ ; and |β10  = 2 |01 − |10 √ |β11  = , 2 |β00  = (1.23) (1.24) (1.25) (1.26) are known as the Bell states, or sometimes the EPR states or EPR pairs, after some of the people – Bell, and Einstein, Podolsky, and Rosen – who first pointed out the strange properties of states like these. The mnemonic notation |β00 , |β01 , |β10 , |β11  may be 26 Introduction and overview understood via the equations |βxy  ≡ |0, y + (−1)x |1, ȳ √ , 2 (1.27) where ȳ is the negation of y. In |00 |01 |10 |11 Out √ (|00 + |11)/ 2 ≡ |β00  √ (|01 + |10)/ 2 ≡ |β01  √ (|00 − |11)/ 2 ≡ |β10  √ (|01 − |10)/ 2 ≡ |β11  Figure 1.12. Quantum circuit to create Bell states, and its input–ouput quantum ‘truth table’. 1.3.7 Example: quantum teleportation We will now apply the techniques of the last few pages to understand something nontrivial, surprising, and a lot of fun – quantum teleportation! Quantum teleportation is a technique for moving quantum states around, even in the absence of a quantum communications channel linking the sender of the quantum state to the recipient. Here’s how quantum teleportation works. Alice and Bob met long ago but now live far apart. While together they generated an EPR pair, each taking one qubit of the EPR pair when they separated. Many years later, Bob is in hiding, and Alice’s mission, should she choose to accept it, is to deliver a qubit |ψ to Bob. She does not know the state of the qubit, and moreover can only send classical information to Bob. Should Alice accept the mission? Intuitively, things look pretty bad for Alice. She doesn’t know the state |ψ of the qubit she has to send to Bob, and the laws of quantum mechanics prevent her from determining the state when she only has a single copy of |ψ in her possession. What’s worse, even if she did know the state |ψ, describing it precisely takes an infinite amount of classical information since |ψ takes values in a continuous space. So even if she did know |ψ, it would take forever for Alice to describe the state to Bob. It’s not looking good for Alice. Fortunately for Alice, quantum teleportation is a way of utilizing the entangled EPR pair in order to send |ψ to Bob, with only a small overhead of classical communication. In outline, the steps of the solution are as follows: Alice interacts the qubit |ψ with her half of the EPR pair, and then measures the two qubits in her possession, obtaining one of four possible classical results, 00, 01, 10, and 11. She sends this information to Bob. Depending on Alice’s classical message, Bob performs one of four operations on his half of the EPR pair. Amazingly, by doing this he can recover the original state |ψ! The quantum circuit shown in Figure 1.13 gives a more precise description of quantum teleportation. The state to be teleported is |ψ = α|0+β|1, where α and β are unknown amplitudes. The state input into the circuit |ψ0  is |ψ0  = |ψ|β00  (1.28) Quantum computation ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ✤✤ ✙✙ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴ ✙ ✙ ❴ ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ✤✤ ✙✙ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴ ✙ ✙ ❴ 27 ❴ ❴ ✤✤ ✤✤ ✤ ✤ ❴ ❴ ✤ ❴ ❴ ✤✤ ✤✤✤ ✤ ❴ ❴ ✤ Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom line is Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical bits (recall that single lines denote qubits). 1  = √ α|0(|00 + |11) + β|1(|00 + |11) , 2 (1.29) where we use the convention that the first two qubits (on the left) belong to Alice, and the third qubit to Bob. As we explained previously, Alice’s second qubit and Bob’s qubit gate, obtaining start out in an EPR state. Alice sends her qubits through a  1 (1.30) |ψ1  = √ α|0(|00 + |11) + β|1(|10 + |01) . 2 She then sends the first qubit through a Hadamard gate, obtaining 1 α(|0 + |1)(|00 + |11) + β(|0 − |1)(|10 + |01) . |ψ2  = 2 This state may be re-written in the following way, simply by regrouping terms: 1 |ψ2  = |00 α|0 + β|1 + |01 α|1 + β|0 2 + |10 α|0 − β|1 + |11 α|1 − β|0 . (1.31) (1.32) This expression naturally breaks down into four terms. The first term has Alice’s qubits in the state |00, and Bob’s qubit in the state α|0 + β|1 – which is the original state |ψ. If Alice performs a measurement and obtains the result 00 then Bob’s system will be in the state |ψ. Similarly, from the previous expression we can read off Bob’s postmeasurement state, given the result of Alice’s measurement:  00 −→ |ψ3 (00) ≡ α|0 + β|1 (1.33)  (1.34) 01 −→ |ψ3 (01) ≡ α|1 + β|0  10 −→ |ψ3 (10) ≡ α|0 − β|1 (1.35)  (1.36) 11 −→ |ψ3 (11) ≡ α|1 − β|0 . Depending on Alice’s measurement outcome, Bob’s qubit will end up in one of these four possible states. Of course, to know which state it is in, Bob must be told the result of Alice’s measurement – we will show later that it is this fact which prevents teleportation 28 Introduction and overview from being used to transmit information faster than light. Once Bob has learned the measurement outcome, Bob can ‘fix up’ his state, recovering |ψ, by applying the appropriate quantum gate. For example, in the case where the measurement yields 00, Bob doesn’t need to do anything. If the measurement is 01 then Bob can fix up his state by applying the X gate. If the measurement is 10 then Bob can fix up his state by applying the Z gate. If the measurement is 11 then Bob can fix up his state by applying first an X and then a Z gate. Summing up, Bob needs to apply the transformation Z M1 X M2 (note how time goes from left to right in circuit diagrams, but in matrix products terms on the right happen first) to his qubit, and he will recover the state |ψ. There are many interesting features of teleportation, some of which we shall return to later in the book. For now we content ourselves with commenting on a couple of aspects. First, doesn’t teleportation allow one to transmit quantum states faster than light? This would be rather peculiar, because the theory of relativity implies that faster than light information transfer could be used to send information backwards in time. Fortunately, quantum teleportation does not enable faster than light communication, because to complete the teleportation Alice must transmit her measurement result to Bob over a classical communications channel. We will show in Section 2.4.3 that without this classical communication, teleportation does not convey any information at all. The classical channel is limited by the speed of light, so it follows that quantum teleportation cannot be accomplished faster than the speed of light, resolving the apparent paradox. A second puzzle about teleportation is that it appears to create a copy of the quantum state being teleported, in apparent violation of the no-cloning theorem discussed in Section 1.3.5. This violation is only illusory since after the teleportation process only the target qubit is left in the state |ψ, and the original data qubit ends up in one of the computational basis states |0 or |1, depending upon the measurement result on the first qubit. What can we learn from quantum teleportation? Quite a lot! It’s much more than just a neat trick one can do with quantum states. Quantum teleportation emphasizes the interchangeability of different resources in quantum mechanics, showing that one shared EPR pair together with two classical bits of communication is a resource at least the equal of one qubit of communication. Quantum computation and quantum information has revealed a plethora of methods for interchanging resources, many built upon quantum teleportation. In particular, in Chapter 10 we explain how teleportation can be used to build quantum gates which are resistant to the effects of noise, and in Chapter 12 we show that teleportation is intimately connected with the properties of quantum error-correcting codes. Despite these connections with other subjects, it is fair to say that we are only beginning to understand why it is that quantum teleportation is possible in quantum mechanics; in later chapters we endeavor to explain some of the insights that make such an understanding possible. 1.4 Quantum algorithms What class of computations can be performed using quantum circuits? How does that class compare with the computations which can be performed using classical logical circuits? Can we find a task which a quantum computer may perform better than a classical computer? In this section we investigate these questions, explaining how to perform classical computations on quantum computers, giving some examples of problems for Quantum algorithms 29 which quantum computers offer an advantage over classical computers, and summarizing the known quantum algorithms. 1.4.1 Classical computations on a quantum computer Can we simulate a classical logic circuit using a quantum circuit? Not surprisingly, the answer to this question turns out to be yes. It would be very surprising if this were not the case, as physicists believe that all aspects of the world around us, including classical logic circuits, can ultimately be explained using quantum mechanics. As pointed out earlier, the reason quantum circuits cannot be used to directly simulate classical circuits is because unitary quantum logic gates are inherently reversible, whereas many classical gate are inherently irreversible. logic gates such as the Any classical circuit can be replaced by an equivalent circuit containing only reversible elements, by making use of a reversible gate known as the Toffoli gate. The Toffoli gate has three input bits and three output bits, as illustrated in Figure 1.14. Two of the bits are control bits that are unaffected by the action of the Toffoli gate. The third bit is a target bit that is flipped if both control bits are set to 1, and otherwise is left alone. Note that applying the Toffoli gate twice to a set of bits has the effect (a, b, c) → (a, b, c ⊕ ab) → (a, b, c), and thus the Toffoli gate is a reversible gate, since it has an inverse – itself. Inputs a b c 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Outputs a′ b′ c′ 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 Figure 1.14. Truth table for the Toffoli gate, and its circuit representation. gates, as shown in Figure 1.15, and The Toffoli gate can be used to simulate , as shown in Figure 1.16. With these two operations it can also be used to do becomes possible to simulate all other elements in a classical circuit, and thus an arbitrary classical circuit can be simulated by an equivalent reversible circuit. The Toffoli gate has been described as a classical gate, but it can also be implemented as a quantum logic gate. By definition, the quantum logic implementation of the Toffoli gate simply permutes computational basis states in the same way as the classical Toffoli gate. For example, the quantum Toffoli gate acting on the state |110 flips the third qubit because the first two are set, resulting in the state |111. It is tedious but not difficult to write this transformation out as an 8 by 8 matrix, U , and verify explicitly that U is a unitary matrix, and thus the Toffoli gate is a legitimate quantum gate. The quantum Toffoli gate can be used to simulate irreversible classical logic gates, just as the classical 30 Introduction and overview Figure 1.15. Classical circuit implementing a gate using a Toffoli gate. The top two bits represent the input , while the third bit is prepared in the standard state 1, sometimes known as an ancilla state. The to the is on the third bit. output from the Figure 1.16. with the Toffoli gate, with the second bit being the input to the (and the other two bits standard ancilla states), and the output from appearing on the second and third bits. Toffoli gate was, and ensures that quantum computers are capable of performing any computation which a classical (deterministic) computer may do. What if the classical computer is non-deterministic, that is, has the ability to generate random bits to be used in the computation? Not surprisingly, it is easy for a quantum computer to simulate this. To perform such a simulation it turns out to be sufficient to produce random fair coin tosses, which can be done by preparing √ a qubit in the state |0, sending it through a Hadamard gate to produce (|0 + |1)/ 2, and then measuring the state. The result will be |0 or |1 with 50/50 probability. This provides a quantum computer with the ability to efficiently simulate a non-deterministic classical computer. Of course, if the ability to simulate classical computers were the only feature of quantum computers there would be little point in going to all the trouble of exploiting quantum effects! The advantage of quantum computing is that much more powerful functions may be computed using qubits and quantum gates. In the next few sections we explain how to do this, culminating in the Deutsch–Jozsa algorithm, our first example of a quantum algorithm able to solve a problem faster than any classical algorithm. 1.4.2 Quantum parallelism Quantum parallelism is a fundamental feature of many quantum algorithms. Heuristically, and at the risk of over-simplifying, quantum parallelism allows quantum computers to evaluate a function f (x) for many different values of x simultaneously. In this section we explain how quantum parallelism works, and some of its limitations. Suppose f (x) : {0, 1} → {0, 1} is a function with a one-bit domain and range. A Quantum algorithms 31 convenient way of computing this function on a quantum computer is to consider a two qubit quantum computer which starts in the state |x, y. With an appropriate sequence of logic gates it is possible to transform this state into |x, y ⊕ f (x), where ⊕ indicates addition modulo 2; the first register is called the ‘data’ register, and the second register the ‘target’ register. We give the transformation defined by the map |x, y → |x, y ⊕ f (x) a name, Uf , and note that it is easily shown to be unitary. If y = 0, then the final state of the second qubit is just the value f (x). (In Section 3.2.5 we show that given a classical circuit for computing f there is a quantum circuit of comparable efficiency which computes the transformation Uf on a quantum computer. For our purposes it can be considered to be a black box.) Figure 1.17. Quantum circuit for evaluating f (0) and f (1) simultaneously. Uf is the quantum circuit which takes inputs like |x, y to |x, y ⊕ f (x). Consider the circuit shown in Figure 1.17, which applies Uf to an input not in the computational basis. Instead, the data register is prepared in the superposition (|0 + √ |1)/ 2, which can be created with a Hadamard gate acting on |0. Then we apply Uf , resulting in the state: |0, f (0) + |1, f (1) √ . 2 (1.37) This is a remarkable state! The different terms contain information about both f (0) and f (1); it is almost as if we have evaluated f (x) for two values of x simultaneously, a feature known as ‘quantum parallelism’. Unlike classical parallelism, where multiple circuits each built to compute f (x) are executed simultaneously, here a single f (x) circuit is employed to evaluate the function for multiple values of x simultaneously, by exploiting the ability of a quantum computer to be in superpositions of different states. This procedure can easily be generalized to functions on an arbitrary number of bits, by using a general operation known as the Hadamard transform, or sometimes the Walsh– Hadamard transform. This operation is just n Hadamard gates acting in parallel on n qubits. For example, shown in Figure 1.18 is the case n = 2 with qubits initially prepared as |0, which gives  |0 + |1 √ 2  |0 + |1 √ 2  = |00 + |01 + |10 + |11 2 (1.38) as output. We write H ⊗2 to denote the parallel action of two Hadamard gates, and read ‘⊗’ as ‘tensor’. More generally, the result of performing the Hadamard transform on n 32 Introduction and overview qubits initially in the all |0 state is 1 √ 2n x |x , (1.39) where the sum is over all possible values of x, and we write H ⊗n to denote this action. That is, the Hadamard transform produces an equal superposition of all computational basis states. Moreover, it does this extremely efficiently, producing a superposition of 2n states using just n gates. Figure 1.18. The Hadamard transform H ⊗2 on two qubits. Quantum parallel evaluation of a function with an n bit input x and 1 bit output, f (x), can thus be performed in the following manner. Prepare the n + 1 qubit state |0⊗n |0, then apply the Hadamard transform to the first n qubits, followed by the quantum circuit implementing Uf . This produces the state 1 √ 2n x |x|f (x) . (1.40) In some sense, quantum parallelism enables all possible values of the function f to be evaluated simultaneously, even though we apparently only evaluated f once. However, this parallelism is not immediately useful. In our single qubit example, measurement of the state gives only either |0, f (0) or |1, f (1)! Similarly, in the general case, measurement of  the state x |x, f (x) would give only f (x) for a single value of x. Of course, a classical computer can do this easily! Quantum computation requires something more than just quantum parallelism to be useful; it requires the ability to extract information about more  than one value of f (x) from superposition states like x |x, f (x). Over the next two sections we investigate examples of how this may be done. 1.4.3 Deutsch’s algorithm A simple modification of the circuit in Figure 1.17 demonstrates how quantum circuits can outperform classical ones by implementing Deutsch’s algorithm (we actually present a simplified and improved version of the original algorithm; see ‘History and further reading’ at the end of the chapter). Deutsch’s algorithm combines quantum parallelism with a property of quantum mechanics known as interference. As before, let √ us use the Hadamard gate to prepare the first qubit as the superposition (|0 √ + |1)/ 2, but now let us prepare the second qubit y as the superposition (|0 − |1)/ 2, using a Hadamard gate applied to the state |1. Let us follow the states along to see what happens in this circuit, shown in Figure 1.19. The input state |ψ0  = |01 (1.41) Quantum algorithms 33 Figure 1.19. Quantum circuit implementing Deutsch’s algorithm. is sent through two Hadamard gates to give    |0 + |1 |0 − |1 √ √ |ψ1  = . 2 2 (1.42) √ A little thought shows that if we√apply Uf to the state |x(|0 − |1)/ 2 then we obtain the state (−1)f (x) |x(|0 − |1)/ 2. Applying Uf to |ψ1  therefore leaves us with one of two possibilities: ⎧    |0 + |1 |0 − |1 ⎪ ⎪ √ √ if f (0) = f (1) ⎪ ± ⎪ ⎨ 2 2 (1.43) |ψ2  =    ⎪ ⎪ |0 − |1 |0 − |1 ⎪ ⎪ √ √ if f (0) = f (1). ⎩ ± 2 2 The final Hadamard gate on the first qubit thus gives us ⎧   |0 − |1 ⎪ ⎪ √ if f (0) = f (1) ±|0 ⎪ ⎪ ⎨ 2 |ψ3  =   ⎪ ⎪ |0 − |1 ⎪ ⎪ √ if f (0) = f (1). ⎩ ±|1 2 (1.44) Realizing that f (0) ⊕ f (1) is 0 if f (0) = f (1) and 1 otherwise, we can rewrite this result concisely as   |0 − |1 √ |ψ3  = ±|f (0) ⊕ f (1) , (1.45) 2 so by measuring the first qubit we may determine f (0) ⊕ f (1). This is very interesting indeed: the quantum circuit has given us the ability to determine a global property of f (x), namely f (0)⊕ f (1), using only one evaluation of f (x)! This is faster than is possible with a classical apparatus, which would require at least two evaluations. This example highlights the difference between quantum parallelism and classical randomized algorithms. Naively, one might think that the state |0|f (0) + |1|f (1) corresponds rather closely to a probabilistic classical computer that evaluates f (0) with probability one-half, or f (1) with probability one-half. The difference is that in a classical computer these two alternatives forever exclude one another; in a quantum computer it is 34 Introduction and overview possible for the two alternatives to interfere with one another to yield some global property of the function f , by using something like the Hadamard gate to recombine the different alternatives, as was done in Deutsch’s algorithm. The essence of the design of many quantum algorithms is that a clever choice of function and final transformation allows efficient determination of useful global information about the function – information which cannot be attained quickly on a classical computer. 1.4.4 The Deutsch–Jozsa algorithm Deutsch’s algorithm is a simple case of a more general quantum algorithm, which we shall refer to as the Deutsch–Jozsa algorithm. The application, known as Deutsch’s problem, may be described as the following game. Alice, in Amsterdam, selects a number x from 0 to 2n − 1, and mails it in a letter to Bob, in Boston. Bob calculates some function f (x) and replies with the result, which is either 0 or 1. Now, Bob has promised to use a function f which is of one of two kinds; either f (x) is constant for all values of x, or else f (x) is balanced, that is, equal to 1 for exactly half of all the possible x, and 0 for the other half. Alice’s goal is to determine with certainty whether Bob has chosen a constant or a balanced function, corresponding with him as little as possible. How fast can she succeed? In the classical case, Alice may only send Bob one value of x in each letter. At worst, Alice will need to query Bob at least 2n /2 + 1 times, since she may receive 2n /2 0s before finally getting a 1, telling her that Bob’s function is balanced. The best deterministic classical algorithm she can use therefore requires 2n /2 + 1 queries. Note that in each letter, Alice sends Bob n bits of information. Furthermore, in this example, physical distance is being used to artificially elevate the cost of calculating f (x), but this is not needed in the general problem, where f (x) may be inherently difficult to calculate. If Bob and Alice were able to exchange qubits, instead of just classical bits, and if Bob agreed to calculate f (x) using a unitary transform Uf , then Alice could achieve her goal in just one correspondence with Bob, using the following algorithm. Analogously to Deutsch’s algorithm, Alice has an n qubit register to store her query in, and a single qubit register which she will give to Bob, to store the answer in. She begins by preparing both her query and answer registers in a superposition state. Bob will evaluate f (x) using quantum parallelism and leave the result in the answer register. Alice then interferes states in the superposition using a Hadamard transform on the query register, and finishes by performing a suitable measurement to determine whether f was constant or balanced. The specific steps of the algorithm are depicted in Figure 1.20. Let us follow the states through this circuit. The input state |ψ0  = |0⊗n |1 (1.46) is similar to that of Equation (1.41), but here the query register describes the state of n qubits all prepared in the |0 state. After the Hadamard transform on the query register and the Hadamard gate on the answer register we have   |x |0 − |1 √ √ |ψ1  = . (1.47) 2n 2 x∈{0,1}n The query register is now a superposition of all values, and the answer register is in an Quantum algorithms 35 Figure 1.20. Quantum circuit implementing the general Deutsch–Jozsa algorithm. The wire with a ‘/’ through it represents a set of n qubits, similar to the common engineering notation. evenly weighted superposition of 0 and 1. Next, the function f is evaluated (by Bob) using Uf : |x, y → |x, y ⊕ f (x), giving   (−1)f (x) |x |0 − |1 √ √ . (1.48) |ψ2  = 2n 2 x Alice now has a set of qubits in which the result of Bob’s function evaluation is stored in the amplitude of the qubit superposition state. She now interferes terms in the superposition using a Hadamard transform on the query register. To determine the result of the Hadamard transform it helps to first calculate the effect of the Hadamard transform on a state |x. By checking the √ cases x = 0 and x = 1 separately we see that for a single  qubit H|x = z (−1)xz |z/ 2. Thus  x1 z1 +·· +xn zn |z1 , . . . , zn  z1 ,...,zn (−1) ⊗n √ . (1.49) H |x1 , . . . , xn  = 2n This can be summarized more succinctly in the very useful equation  (−1)x·z |z , H ⊗n |x = z √ 2n (1.50) where x · z is the bitwise inner product of x and z, modulo 2. Using this equation and (1.48) we can now evaluate |ψ3 ,   (−1)x·z+f (x) |z |0 − |1 √ |ψ3  = . (1.51) 2n 2 z x Alice now observes the query register. Note that the amplitude for the state |0⊗n is  f (x) /2n . Let’s look at the two possible cases – f constant and f balanced – to x (−1) discern what happens. In the case where f is constant the amplitude for |0⊗n is +1 or −1, depending on the constant value f (x) takes. Because |ψ3  is of unit length it follows that all the other amplitudes must be zero, and an observation will yield 0s for all qubits in the query register. If f is balanced then the positive and negative contributions to the amplitude for |0⊗n cancel, leaving an amplitude of zero, and a measurement must yield a result other than 0 on at least one qubit in the query register. Summarizing, if Alice 36 Introduction and overview measures all 0s then the function is constant; otherwise the function is balanced. The Deutsch–Jozsa algorithm is summarized below. Algorithm: Deutsch–Jozsa Inputs: (1) A black box Uf which performs the transformation |x|y → |x|y ⊕ f (x), for x ∈ {0, . . . , 2n − 1} and f (x) ∈ {0, 1}. It is promised that f (x) is either constant for all values of x, or else f (x) is balanced, that is, equal to 1 for exactly half of all the possible x, and 0 for the other half. Outputs: 0 if and only if f is constant. Runtime: One evaluation of Uf . Always succeeds. Procedure: 1. 2. 3. 4. 5. |0⊗n |1   2n −1 1 |0 − |1 √ |x →√ 2n x=0 2   |0 − |1 √ → (−1)f (x) |x 2 x   x·z+f (x) (−1) |z |0 − |1 √ √ → 2n 2 z x →z initialize state create superposition using Hadamard gates calculate function f using Uf perform Hadamard transform measure to obtain final output z We’ve shown that a quantum computer can solve Deutsch’s problem with one evaluation of the function f compared to the classical requirement for 2n /2 + 1 evaluations. This appears impressive, but there are several important caveats. First, Deutsch’s problem is not an especially important problem; it has no known applications. Second, the comparison between classical and quantum algorithms is in some ways an apples and oranges comparison, as the method for evaluating the function is quite different in the two cases. Third, if Alice is allowed to use a probabilistic classical computer, then by asking Bob to evaluate f (x) for a few randomly chosen x she can very quickly determine with high probability whether f is constant or balanced. This probabilistic scenario is perhaps more realistic than the deterministic scenario we have been considering. Despite these caveats, the Deutsch–Jozsa algorithm contains the seeds for more impressive quantum algorithms, and it is enlightening to attempt to understand the principles behind its operation. Exercise 1.1: (Probabilistic classical algorithm) Suppose that the problem is not to distinguish between the constant and balanced functions with certainty, but rather, with some probability of error ǫ < 1/2. What is the performance of the best classical algorithm for this problem? 1.4.5 Quantum algorithms summarized The Deutsch–Jozsa algorithm suggests that quantum computers may be capable of solving some computational problems much more efficiently than classical computers. Unfortunately, the problem it solves is of little practical interest. Are there more interesting Quantum algorithms 37 problems whose solution may be obtained more efficiently using quantum algorithms? What are the principles underlying such algorithms? What are the ultimate limits of a quantum computer’s computational power? Broadly speaking, there are three classes of quantum algorithms which provide an advantage over known classical algorithms. First, there is the class of algorithms based upon quantum versions of the Fourier transform, a tool which is also widely used in classical algorithms. The Deutsch–Jozsa algorithm is an example of this type of algorithm, as are Shor’s algorithms for factoring and discrete logarithm. The second class of algorithms is quantum search algorithms. The third class of algorithms is quantum simulation, whereby a quantum computer is used to simulate a quantum system. We now briefly describe each of these classes of algorithms, and then summarize what is known or suspected about the computational power of quantum computers. Quantum algorithms based upon the Fourier transform The discrete Fourier transform is usually described as transforming a set x0 , . . . , xN −1 of N complex numbers into a set of complex numbers y0 , . . . , yN −1 defined by 1 yk ≡ √ N N −1 e2πijk/N xj . (1.52) j=0 Of course, this transformation has an enormous number of applications in many branches of science; the Fourier transformed version of a problem is often easier than the original problem, enabling a solution. The Fourier transform has proved so useful that a beautiful generalized theory of Fourier transforms has been developed which goes beyond the definition (1.52). This general theory involves some technical ideas from the character theory of finite groups, and we will not attempt to describe it here. What is important is that the Hadamard transform used in the Deutsch–Jozsa algorithm is an example of this generalized class of Fourier transforms. Moreover, many of the other important quantum algorithms also involve some type of Fourier transform. The most important quantum algorithms known, Shor’s fast algorithms for factoring and discrete logarithm, are two examples of algorithms based upon the Fourier transform defined in Equation (1.52). The Equation (1.52) does not appear terribly quantum mechanical in the form we have written it. Imagine, however, that we define a linear transformation U on n qubits by its action on computational basis states |j, where 0 ≤ j ≤ 2n − 1, 1 |j −→ √ 2n 2n −1 k=0 n e2πijk/2 |k . (1.53) It can be checked that this transformation is unitary, and in fact can be realized as a quantum circuit. Moreover, if we write out its action on superpositions, ⎡ ⎤ 2n −1 2n −1 2n −1 2n −1 n 1 2πijk/2 ⎣ xj |j −→ √ e xj  |k = yk |k , (1.54) 2n k=0 j=0 j=0 k=0 we see that it corresponds to a vector notation for the Fourier transform (1.52) for the case N = 2n . 38 Introduction and overview How quickly can we perform the Fourier transform? Classically, the fast Fourier transform takes roughly N log(N ) = n2n steps to Fourier transform N = 2n numbers. On a quantum computer, the Fourier transform can be accomplished using about log2 (N ) = n2 steps, an exponential saving! The quantum circuit to do this is explained in Chapter 5. This result seems to indicate that quantum computers can be used to very quickly compute the Fourier transform of a vector of 2n complex numbers, which would be fantastically useful in a wide range of applications. However, that is not exactly the case; the Fourier transform is being performed on the information ‘hidden’ in the amplitudes of the quantum state. This information is not directly accessible to measurement. The catch, of course, is that if the output state is measured, it will collapse each qubit into the state |0 or |1, preventing us from learning the transform result yk directly. This example speaks to the heart of the conundrum of devising a quantum algorithm. On the one hand, we can perform certain calculations on the 2n amplitudes associated with n qubits far more efficiently than would be possible on a classical computer. But on the other hand, the results of such a calculation are not available to us if we go about it in a straightforward manner. More cleverness is required in order to harness the power of quantum computation. Fortunately, it does turn out to be possible to utilize the quantum Fourier transform to efficiently solve several problems that are believed to have no efficient solution on a classical computer. These problems include Deutsch’s problem, and Shor’s algorithms for discrete logarithm and factoring. This line of thought culminated in Kitaev’s discovery of a method to solve the Abelian stabilizer problem, and the generalization to the hidden subgroup problem, Let f be a function from a finitely generated group G to a finite set X such that f is constant on the cosets of a subgroup K, and distinct on each coset. Given a quantum black box for performing the unitary transform U |g|h = |g|h⊕f (g), for g ∈ G, h ∈ X, and ⊕ an appropriately chosen binary operation on X, find a generating set for K. The Deutsch–Jozsa algorithm, Shor’s algorithms, and related ‘exponentially fast’ quantum algorithms can all be viewed as special cases of this algorithm. The quantum Fourier transform and its applications are described in Chapter 5. Quantum search algorithms A completely different class of algorithms is represented by the quantum search algorithm, whose basic principles were discovered by Grover. The quantum search algorithm solves the following problem: Given a search space of size N , and no prior knowledge about the structure of the information in it, we want to find an element of that search space satisfying a known property. How long does it take to find an element satisfying that property? Classically, this problem requires approximately N operations, but the quantum search √ algorithm allows it to be solved using approximately N operations. The quantum search algorithm offers only a quadratic speedup, as opposed to the more impressive exponential speedup offered by algorithms based on the quantum Fourier transform. However, the quantum search algorithm is still of great interest, since searching heuristics have a wider range of application than the problems solved using the quantum Fourier transform, and adaptations of the quantum search algorithm may have utility Quantum algorithms 39 for a very wide range of problems. The quantum search algorithm and its applications are described in Chapter 6. Quantum simulation Simulating naturally occurring quantum mechanical systems is an obvious candidate for a task at which quantum computers may excel, yet which is believed to be difficult on a classical computer. Classical computers have difficulty simulating general quantum systems for much the same reasons they have difficulty simulating quantum computers – the number of complex numbers needed to describe a quantum system generally grows exponentially with the size of the system, rather than linearly, as occurs in classical systems. In general, storing the quantum state of a system with n distinct components takes something like cn bits of memory on a classical computer, where c is a constant which depends upon details of the system being simulated, and the desired accuracy of the simulation. By contrast, a quantum computer can perform the simulation using kn qubits, where k is again a constant which depends upon the details of the system being simulated. This allows quantum computers to efficiently perform simulations of quantum mechanical systems that are believed not to be efficiently simulatable on a classical computer. A significant caveat is that even though a quantum computer can simulate many quantum systems far more efficiently than a classical computer, this does not mean that the fast simulation will allow the desired information about the quantum system to be obtained. When measured, a kn qubit simulation will collapse into a definite state, giving only kn bits of information; the cn bits of ‘hidden information’ in the wavefunction is not entirely accessible. Thus, a crucial step in making quantum simulations useful is development of systematic means by which desired answers can be efficiently extracted; how to do this is only partially understood. Despite this caveat, quantum simulation is likely to be an important application of quantum computers. The simulation of quantum systems is an important problem in many fields, notably quantum chemistry, where the computational constraints imposed by classical computers make it difficult to accurately simulate the behavior of even moderately sized molecules, much less the very large molecules that occur in many important biological systems. Obtaining faster and more accurate simulations of such systems may therefore have the welcome effect of enabling advances in other fields in which quantum phenomena are important. In the future we may discover a physical phenomenon in Nature which cannot be efficiently simulated on a quantum computer. Far from being bad news, this would be wonderful! At the least, it will stimulate us to extend our models of computation to encompass the new phenomenon, and increase the power of our computational models beyond the existing quantum computing model. It also seems likely that very interesting new physical effects will be associated with any such phenomenon! Another application for quantum simulation is as a general method to obtain insight into other quantum algorithms; for example, in Section 6.2 we explain how the quantum search algorithm can be viewed as the solution to a problem of quantum simulation. By approaching the problem in this fashion it becomes much easier to understand the origin of the quantum search algorithm. Finally, quantum simulation also gives rise to an interesting and optimistic ‘quantum corollary’ to Moore’s law. Recall that Moore’s law states that the power of classical 40 Introduction and overview computers will double once every two years or so, for constant cost. However, suppose we are simulating a quantum system on a classical computer, and want to add a single qubit (or a larger system) to the system being simulated. This doubles or more the memory requirements needed for a classical computer to store a description of the state of the quantum system, with a similar or greater cost in the time needed to simulate the dynamics. The quantum corollary to Moore’s law follows from this observation, stating that quantum computers are keeping pace with classical computers provided a single qubit is added to the quantum computer every two years. This corollary should not be taken too seriously, as the exact nature of the gain, if any, of quantum computation over classical is not yet clear. Nevertheless, this heuristic statement helps convey why we should be interested in quantum computers, and hopeful that they will one day be able to outperform the most powerful classical computers, at least for some applications. The power of quantum computation How powerful are quantum computers? What gives them their power? Nobody yet knows the answers to these questions, despite the suspicions fostered by examples such as factoring, which strongly suggest that quantum computers are more powerful than classical computers. It is still possible that quantum computers are no more powerful than classical computers, in the sense that any problem which can be efficiently solved on a quantum computer can also be efficiently solved on a classical computer. On the other hand, it may eventually be proved that quantum computers are much more powerful than classical computers. We now take a brief look at what is known about the power of quantum computation. Computational complexity theory is the subject of classifying the difficulty of various computational problems, both classical and quantum, and to understand the power of quantum computers we will first examine some general ideas from computational complexity. The most basic idea is that of a complexity class. A complexity class can be thought of as a collection of computational problems, all of which share some common feature with respect to the computational resources needed to solve those problems. Two of the most important complexity classes go by the names P and NP. Roughly speaking, P is the class of computational problems that can be solved quickly on a classical computer. NP is the class of problems which have solutions which can be quickly checked on a classical computer. To understand the distinction between P and NP, consider the problem of finding the prime factors of an integer, n. So far as is known there is no fast way of solving this problem on a classical computer, which suggests that the problem is not in P. On the other hand, if somebody tells you that some number p is a factor of n, then we can quickly check that this is correct by dividing p into n, so factoring is a problem in NP. It is clear that P is a subset of NP, since the ability to solve a problem implies the ability to check potential solutions. What is not so clear is whether or not there are problems in NP that are not in P. Perhaps the most important unsolved problem in theoretical computer science is to determine whether these two classes are different: ? P = NP . (1.55) Most researchers believe that NP contains problems that are not in P. In particular, there is an important subclass of the NP problems, the NP-complete problems, that are Quantum algorithms 41 of especial importance for two reasons. First, there are thousands of problems, many highly important, that are known to be NP-complete. Second, any given NP-complete problem is in some sense ‘at least as hard’ as all other problems in NP. More precisely, an algorithm to solve a specific NP-complete problem can be adapted to solve any other problem in NP, with a small overhead. In particular, if P = NP, then it will follow that no NP-complete problem can be efficiently solved on a classical computer. It is not known whether quantum computers can be used to quickly solve all the problems in NP, despite the fact that they can be used to solve some problems – like factoring – which are believed by many people to be in NP but not in P. (Note that factoring is not known to be NP-complete, otherwise we would already know how to efficiently solve all problems in NP using quantum computers.) It would certainly be very exciting if it were possible to solve all the problems in NP efficiently on a quantum computer. There is a very interesting negative result known in this direction which rules out using a simple variant of quantum parallelism to solve all the problems in NP. Specifically, one approach to the problem of solving problems in NP on a quantum computer is to try to use some form of quantum parallelism to search in parallel through all the possible solutions to the problem. In Section 6.6 we will show that no approach based upon such a search-based methodology can yield an efficient solution to all the problems in NP. While it is disappointing that this approach fails, it does not rule out that some deeper structure exists in the problems in NP that will allow them all to be solved quickly using a quantum computer. P and NP are just two of a plethora of complexity classes that have been defined. Another important complexity class is PSPACE. Roughly speaking, PSPACE consists of those problems which can be solved using resources which are few in spatial size (that is, the computer is ‘small’), but not necessarily in time (‘long’ computations are fine). PSPACE is believed to be strictly larger than both P and NP although, again, this has never been proved. Finally, the complexity class BPP is the class of problems that can be solved using randomized algorithms in polynomial time, if a bounded probability of error (say 1/4) is allowed in the solution to the problem. BPP is widely regarded as being, even more so than P, the class of problems which should be considered efficiently soluble on a classical computer. We have elected to concentrate here on P rather than BPP because P has been studied in more depth, however many similar ideas and conclusions arise in connection with BPP. What of quantum complexity classes? We can define BQP to be the class of all computational problems which can be solved efficiently on a quantum computer, where a bounded probability of error is allowed. (Strictly speaking this makes BQP more analogous to the classical complexity class BPP than to P, however we will ignore this subtlety for the purposes of the present discussion, and treat it as the analogue of P.) Exactly where BQP fits with respect to P, NP and PSPACE is as yet unknown. What is known is that quantum computers can solve all the problems in P efficiently, but that there are no problems outside of PSPACE which they can solve efficiently. Therefore, BQP lies somewhere between P and PSPACE, as illustrated in Figure 1.21. An important implication is that if it is proved that quantum computers are strictly more powerful than classical computers, then it will follow that P is not equal to PSPACE. Proving this latter result has been attempted without success by many computer scientists, suggesting that it may be non-trivial to prove that quantum computers are more powerful than classical computers, despite much evidence in favor of this proposition. 42 Introduction and overview     Figure 1.21. The relationship between classical and quantum complexity classes. Quantum computers can quickly solve any problem in P, and it is known that they can’t solve problems outside of PSPACE quickly. Where quantum computers fit between P and PSPACE is not known, in part because we don’t even know whether PSPACE is bigger than P! We won’t speculate further on the ultimate power of quantum computation now, preferring to wait until after we have better understood the principles on which fast quantum algorithms are based, a topic which occupies us for most of Part II of this book. What is already clear is that the theory of quantum computation poses interesting and significant challenges to the traditional notions of computation. What makes this an important challenge is that the theoretical model of quantum computation is believed to be experimentally realizable, because – to the best of our knowledge – this theory is consistent with the way Nature works. If this were not so then quantum computation would be just another mathematical curiosity. 1.5 Experimental quantum information processing Quantum computation and quantum information is a wonderful theoretical discovery, but its central concepts, such as superpositions and entanglement, run counter to the intuition we garner from the everyday world around us. What evidence do we have that these ideas truly describe how Nature operates? Will the realization of large-scale quantum Experimental quantum information processing 43 computers be experimentally feasible? Or might there be some principle of physics which fundamentally prohibits their eventual scaling? In the next two sections we address these questions. We begin with a review of the famous ‘Stern–Gerlach’ experiment, which provides evidence for the existence of qubits in Nature. We then widen our scope, addressing the broader problem of how to build practical quantum information processing systems. 1.5.1 The Stern–Gerlach experiment The qubit is a fundamental element for quantum computation and quantum information. How do we know that systems with the properties of qubits exist in Nature? At the time of writing there is an enormous amount of evidence that this is so, but in the early days of quantum mechanics the qubit structure was not at all obvious, and people struggled with phenomena that we may now understand in terms of qubits, that is, in terms of two level quantum systems. A decisive (and very famous) early experiment indicating the qubit structure was conceived by Stern in 1921 and performed with Gerlach in 1922 in Frankfurt. In the original Stern–Gerlach experiment, hot atoms were ‘beamed’ from an oven through a magnetic field which caused the atoms to be deflected, and then the position of each atom was recorded, as illustrated in Figure 1.22. The original experiment was done with silver atoms, which have a complicated structure that obscures the effects we are discussing. What we describe below actually follows a 1927 experiment done using hydrogen atoms. The same basic effect is observed, but with hydrogen atoms the discussion is easier to follow. Keep in mind, though, that this privilege wasn’t available to people in the early 1920s, and they had to be very ingenious to think up explanations for the more complicated effects they observed. Hydrogen atoms contain a proton and an orbiting electron. You can think of this electron as a little ‘electric current’ around the proton. This electric current causes the atom to have a magnetic field; each atom has what physicists call a ‘magnetic dipole moment’. As a result each atom behaves like a little bar magnet with an axis corresponding to the axis the electron is spinning around. Throwing little bar magnets through a magnetic field causes the magnets to be deflected by the field, and we expect to see a similar deflection of atoms in the Stern–Gerlach experiment. How the atom is deflected depends upon both the atom’s magnetic dipole moment – the axis the electron is spinning around – and the magnetic field generated by the Stern– Gerlach device. We won’t go through the details, but suffice to say that by constructing the Stern–Gerlach device appropriately, we can cause the atom to be deflected by an amount that depends upon the ẑ component of the atom’s magnetic dipole moment, where ẑ is some fixed external axis. Two major surprises emerge when this experiment is performed. First, since the hot atoms exiting the oven would naturally be expected to have their dipoles oriented randomly in every direction, it would follow that there would be a continuous distribution of atoms seen at all angles exiting from the Stern–Gerlach device. Instead, what is seen is atoms emerging from a discrete set of angles. Physicists were able to explain this by assuming that the magnetic dipole moment of the atoms is quantized, that is, comes in discrete multiples of some fundamental amount. This observation of quantization in the Stern–Gerlach experiment was surprising to physicists of the 1920s, but not completely astonishing because evidence for quantization 44 Introduction and overview effects in other systems was becoming widespread at that time. What was truly surprising was the number of peaks seen in the experiment. The hydrogen atoms being used were such that they should have had zero magnetic dipole moment. Classically, this is surprising in itself, since it corresponds to no orbital motion of the electron, but based on what was known of quantum mechanics at that time this was an acceptable notion. Since the hydrogen atoms would therefore have zero magnetic moment, it was expected that only one beam of atoms would be seen, and this beam would not be deflected by the magnetic field. Instead, two beams were seen, one deflected up by the magnetic field, and the other deflected down! This puzzling doubling was explained after considerable effort by positing that the electron in the hydrogen atom has associated with it a quantity called spin. This spin is not in any way associated to the usual rotational motion of the electron around the proton; it is an entirely new quantity to be associated with an electron. The great physicist Heisenberg labeled the idea ‘brave’ at the time it was suggested, and it is a brave idea, since it introduces an essentially new physical quantity into Nature. The spin of the electron is posited to make an extra contribution to the magnetic dipole moment of a hydrogen atom, in addition to the contribution due to the rotational motion of the electron. / / / Figure 1.22. Abstract schematic of the Stern–Gerlach experiment. Hot hydrogen atoms are beamed from an oven through a magnetic field, causing a deflection either up (| + Z) or down (| − Z). What is the proper description of the spin of the electron? As a first guess, we might hypothesize that the spin is specified by a single bit, telling the hydrogen atom to go up or down. Additional experimental results provide further useful information to determine if this guess needs refinement or replacement. Let’s represent the original Stern–Gerlach apparatus as shown in Figure 1.22. Its outputs are two beams of atoms, which we shall call | + Z and | − Z. (We’re using suggestive notation which looks quantum mechanical, but of course you’re free to use whatever notation you prefer.) Now suppose we cascade two Stern–Gerlach apparatus together, as shown in Figure 1.23. We arrange it so that the second apparatus is tipped sideways, so the magnetic field deflects atoms along the x̂ axis. In our thought-experiment we’ll block off the | − Z output from the first Stern–Gerlach apparatus, while the | + Z output is sent through a second apparatus oriented along the x̂ axis. A detector is placed at the final output to measure the distribution of atoms along the x̂ axis. A classical magnetic dipole pointed in the +ẑ direction has no net magnetic moment in the x̂ direction, so we might expect that the final output would have one central peak. However, experimentally it is observed that there are two peaks of equal intensity! So perhaps these atoms are peculiar, and have definite magnetic moments along each axis, independently. That is, maybe each atom passing through the second apparatus can be Experimental quantum information processing / 45 / / / / Figure 1.23. Cascaded Stern–Gerlach measurements. described as being in a state we might write as | + Z| + X or | + Z| − X, to indicate the two values for spin that might be observed. / / / / / / / Figure 1.24. Three stage cascaded Stern–Gerlach measurements. Another experiment, shown in Figure 1.24, can test this hypothesis by sending one beam of the previous output through a second ẑ oriented Stern–Gerlach apparatus. If the atoms had retained their | + Z orientation, then the output would be expected to have only one peak, at the | + Z output. However, again two beams are observed at the final output, of equal intensity. Thus, the conclusion would seem to be that contrary to classical expectations, a | + Z state consists of equal portions of | + X and | − X states, and a | + X state consists of equal portions of | + Z and | − Z states. Similar conclusions can be reached if the Stern–Gerlach apparatus is aligned along some other axis, like the ŷ axis. The qubit model provides a simple explanation of this experimentally observed behavior. Let |0 and |1 be the states of a qubit, and make the assignments | + Z ← |0 | − Z ← |1 (1.56) √ | + X ← (|0 + |1)/ 2. √ | − X ← (|0 − |1)/ 2 (1.57) (1.58) (1.59) Then the results of the cascaded Stern–Gerlach experiment can be explained by assuming that the ẑ Stern–Gerlach apparatus measures the spin (that is, the qubit) in the computational basis |0, |1, and apparatus measures the spin with respect to √ √ the x̂ Stern–Gerlach the basis (|0 + |1)/ 2, (|0 − |1)/ 2. For example, in the cascaded ẑ-x̂-ẑ experiment, √ if we assume that the spins are in the state | + Z = |0 = (| + X + | − X)/ 2 after exiting the first Stern–Gerlach experiment, then the probability for obtaining | + X out of the second apparatus is 1/2, and the probability for | − X is 1/2. Similarly, the probability for obtaining | + Z out of the third apparatus is 1/2. A qubit model thus properly predicts results from this type of cascaded Stern–Gerlach experiment. 46 Introduction and overview This example demonstrates how qubits could be a believable way of modeling systems in Nature. Of course it doesn’t establish beyond all doubt that the qubit model is the correct way of understanding electron spin – far more experimental corroboration is required. Nevertheless, because of many experiments like these, we now believe that electron spin is best described by the qubit model. What is more, we believe that the qubit model (and generalizations of it to higher dimensions; quantum mechanics, in other words) is capable of describing every physical system. We now turn to the question of what systems are especially well adapted to quantum information processing. 1.5.2 Prospects for practical quantum information processing Building quantum information processing devices is a great challenge for scientists and engineers of the third millennium. Will we rise to meet this challenge? Is it possible at all? Is it worth attempting? If so, how might the feat be accomplished? These are difficult and important questions, to which we essay brief answers in this section, to be expanded upon throughout the book. The most fundamental question is whether there is any point of principle that prohibits us from doing one or more forms of quantum information processing? Two possible obstructions suggest themselves: that noise may place a fundamental barrier to useful quantum information processing; or that quantum mechanics may fail to be correct. Noise is without a doubt a significant obstruction to the development of practical quantum information processing devices. Is it a fundamentally irremovable obstruction that will forever prevent the development of large-scale quantum information processing devices? The theory of quantum error-correcting codes strongly suggests that while quantum noise is a practical problem that needs to be addressed, it does not present a fundamental problem of principle. In particular, there is a threshold theorem for quantum computation, which states, roughly speaking, that provided the level of noise in a quantum computer can be reduced below a certain constant ‘threshold’ value, quantum error-correcting codes can be used to push it down even further, essentially ad infinitum, for a small overhead in the complexity of the computation. The threshold theorem makes some broad assumptions about the nature and magnitude of the noise occurring in a quantum computer, and the architecture available for performing quantum computation; however, provided those assumptions are satisfied, the effects of noise can be made essentially negligible for quantum information processing. Chapters 8, 10 and 12 discuss quantum noise, quantum error-correction and the threshold theorem in detail. A second possibility that may preclude quantum information processing is if quantum mechanics is incorrect. Indeed, probing the validity of quantum mechanics (both relativistic and non-relativistic) is one reason for being interested in building quantum information processing devices. Never before have we explored a regime of Nature in which complete control has been obtained over large-scale quantum systems, and perhaps Nature may reveal some new surprises in this regime which are not adequately explained by quantum mechanics. If this occurs, it will be a momentous discovery in the history of science, and can be expected to have considerable consequences in other areas of science and technology, as did the discovery of quantum mechanics. Such a discovery might also impact quantum computation and quantum information; however, whether the impact would enhance, detract or not affect the power of quantum information processing cannot be predicted in advance. Until and unless such effects are found we have no way of knowing how they might affect information processing, so for the remainder of this book Experimental quantum information processing 47 we go with all the evidence to date and assume that quantum mechanics is a complete and correct description of the world. Given that there is no fundamental obstacle to building quantum information processing devices, why should we invest enormous amounts of time and money in the attempt to do so? We have already discussed several reasons for wanting to do so: practical applications such as quantum cryptography and the factoring of large composite numbers; and the desire to obtain fundamental insights into Nature and into information processing. These are good reasons, and justify a considerable investment of time and money in the effort to build quantum information processing devices. However, it is fair to say that a clearer picture of the relative power of quantum and classical information processing is needed in order to assess their relative merits. To obtain such a picture requires further theoretical work on the foundations of quantum computation and quantum information. Of particular interest is a decisive answer to the question ‘Are quantum computers more powerful than classical computers?’ Even if the answer to such a question eludes us for the time being, it would be useful to have a clear path of interesting applications at varying levels of complexity to aid researchers aiming to experimentally realize quantum information processing. Historically, the advance of technology is often hastened by the use of short- to medium-term incentives as a stepping-stone to long-term goals. Consider that microprocessors were initially used as controllers for elevators and other simple devices, before graduating to be the fundamental component in personal computers (and then on to who-knows-what). Below we sketch out a path of short- to medium-term goals for people interested in achieving the long-term goal of large-scale quantum information processing. Surprisingly many small-scale applications of quantum computation and quantum information are known. Not all are as flashy as cousins like the quantum factoring algorithm, but the relative ease of implementing small-scale applications makes them extremely important as medium-term goals in themselves. Quantum state tomography and quantum process tomography are two elementary processes whose perfection is of great importance to quantum computation and quantum information, as well as being of independent interest in their own right. Quantum state tomography is a method for determining the quantum state of a system. To do this, it has to overcome the ‘hidden’ nature of the quantum state – remember, the state can’t be directly determined by a measurement – by performing repeated preparations of the same quantum state, which is then measured in different ways in order to build up a complete description of the quantum state. Quantum process tomography is a more ambitious (but closely related) procedure to completely characterize the dynamics of a quantum system. Quantum process tomography can, for example, be used to characterize the performance of an alleged quantum gate or quantum communications channel, or to determine the types and magnitudes of different noise processes in a system. Beside obvious applications to quantum computation and quantum information, quantum process tomography can be expected to have significant applications as a diagnostic tool to aid in the evaluation and improvement of primitive operations in any field of science and technology where quantum effects are important. Quantum state tomography and quantum process tomography are described in more detail in Chapter 8. Various small-scale communications primitives are also of great interest. We have already mentioned quantum cryptography and quantum teleportation. The former is likely to be useful in practical applications involving the distribution of a small amount of key 48 Introduction and overview material that needs to be highly secure. The uses of quantum teleportation are perhaps more open to question. We will see in Chapter 12 that teleportation may be an extremely useful primitive for transmitting quantum states between distant nodes in a network, in the presence of noise. The idea is to focus one’s efforts on distributing EPR pairs between the nodes that wish to communicate. The EPR pairs may be corrupted during communication, but special ‘entanglement distillation’ protocols can then be used to ‘clean up’ the EPR pairs, enabling them to be used to teleport quantum states from one location to another. In fact, procotols based upon entanglement distillation and teleportation offer performance superior to more conventional quantum error-correction techniques in enabling noise free communication of qubits. What of the medium-scale? A promising medium-scale application of quantum information processing is to the simulation of quantum systems. To simulate a quantum system containing even a few dozen ‘qubits’ (or the equivalent in terms of some other basic system) strains the resources of even the largest supercomputers. A simple calculation is instructive. Suppose we have a system containing 50 qubits. To describe the state of such a system requires 250 ≈ 1015 complex amplitudes. If the amplitudes are stored to 128 bits of precision, then it requires 256 bits or 32 bytes in order to store each amplitude, for a total of 32 × 1015 bytes of information, or about 32 thousand terabytes of information, well beyond the capacity of existing computers, and corresponding to about the storage capacity that might be expected to appear in supercomputers during the second decade of the twenty-first century, presuming that Moore’s law continues on schedule. 90 qubits at the same level of precision requires 32 × 1027 bytes, which, even if implemented using single atoms to represent bits, would require kilograms (or more) of matter. How useful will quantum simulations be? It seems likely that conventional methods will still be used to determine elementary properties of materials, such as bond strengths and basic spectroscopic properties. However, once the basic properties are well understood, it seems likely that quantum simulation will be of great utility as a laboratory for the design and testing of properties of novel molecules. In a conventional laboratory setup, many different types of ‘hardware’ – chemicals, detectors, and so on – may be required to test a wide variety of possible designs for a molecule. On a quantum computer, these different types of hardware can all be simulated in software, which is likely to be much less expensive and much faster. Of course, final design and testing must be performed with real physical systems; however, quantum computers may enable a much larger range of potential designs to be explored and evaluated en route to a better final design. It is interesting to note that such ab initio calculations to aid in the design of new molecules have been attempted on classical computers; however, they have met with limited success due to the enormous computational resources needed to simulate quantum mechanics on a classical computer. Quantum computers should be able to do much better in the relatively near future. What of large-scale applications? Aside from scaling up applications like quantum simulation and quantum cryptography, relatively few large-scale applications are known: the factoring of large numbers, taking discrete logarithms, and quantum searching. Interest in the first two of these derives mainly from the negative effect they would have of limiting the viability of existing public key cryptographic systems. (They might also be of substantial practical interest to mathematicians interested in these problems simply for their own sake.) So it does not seem likely that factoring and discrete logarithm Experimental quantum information processing 49 will be all that important as applications for the long run. Quantum searching may be of tremendous use because of the wide utility of the search heuristic, and we discuss some possible applications in Chapter 6. What would really be superb are many more large-scale applications of quantum information processing. This is a great goal for the future! Given a path of potential applications for quantum information processing, how can it be achieved in real physical systems? At the small scale of a few qubits there are already several working proposals for quantum information processing devices. Perhaps the easiest to realize are based upon optical techniques, that is, electromagnetic radiation. Simple devices like mirrors and beamsplitters can be used to do elementary manipulations of photons. Interestingly, a major difficulty has been producing single photons on demand; experimentalists have instead opted to use schemes which produce single photons ‘every now and then’, at random, and wait for such an event to occur. Quantum cryptography, superdense coding, and quantum teleportation have all been realized using such optical techniques. A major advantage of the optical techniques is that photons tend to be highly stable carriers of quantum mechanical information. A major disadvantage is that photons don’t directly interact with one another. Instead, the interaction has to be mediated by something else, like an atom, which introduces additional noise and complications into the experiment. An effective interaction between two photons is set up, which essentially works in two steps: photon number one interacts with the atom, which in turn interacts with the second photon, causing an overall interaction between the two photons. An alternative scheme is based upon methods for trapping different types of atom: there is the ion trap, in which a small number of charged atoms are trapped in a confined space; and neutral atom traps, for trapping uncharged atoms in a confined space. Quantum information processing schemes based upon atom traps use the atoms to store qubits. Electromagnetic radiation also shows up in these schemes, but in a rather different way than in what we referred to as the ‘optical’ approach to quantum information processing. In these schemes, photons are used to manipulate the information stored in the atoms themselves, rather than as the place the information is stored. Single qubit quantum gates can be performed by applying appropriate pulses of electromagnetic radiation to individual atoms. Neighboring atoms can interact with one another via (for example) dipole forces that enable quantum gates to be accomplished. Moreover, the exact nature of the interaction between neighboring atoms can be modified by applying appropriate pulses of electromagnetic radiation to the atoms, giving the experimentalist control over what gates are performed in the system. Finally, quantum measurement can be accomplished in these systems using the long established quantum jumps technique, which implements with superb accuracy the measurements in the computational basis used for quantum computation. Another class of quantum information processing schemes is based upon Nuclear Magnetic Resonance, often known by its initials, NMR. These schemes store quantum information in the nuclear spin of atoms in a molecule, and manipulate that information using electromagnetic radiation. Such schemes pose special difficulties, because in NMR it is not possible to directly access individual nuclei. Instead, a huge number (typically around 1015 ) of essentially identical molecules are stored in solution. Electromagnetic pulses are applied to the sample, causing each molecule to respond in roughly the same way. You should think of each molecule as being an independent computer, and the sample as containing a huge number of computers all running in parallel (classically). 50 Introduction and overview NMR quantum information processing faces three special difficulties that make it rather different from other quantum information processing schemes. First, the molecules are typically prepared by letting them equilibrate at room temperature, which is so much higher than typical spin flip energies that the spins become nearly completely randomly oriented. This fact makes the initial state rather more ‘noisy’ than is desirable for quantum information processing. How this noise may be overcome is an interesting story that we tell in Chapter 7. A second problem is that the class of measurements that may be performed in NMR falls well short of the most general measurements we would like to perform in quantum information processing. Nevertheless, for many instances of quantum information processing the class of measurements allowed in NMR is sufficient. Third, because molecules cannot be individually addressed in NMR you might ask how it is that individual qubits can be manipulated in an appropriate way. Fortunately, different nuclei in the molecule can have different properties that allow them to be individually addressed – or at least addressed at a sufficiently fine-grained scale to allow the operations essential for quantum computation. Many of the elements required to perform large-scale quantum information processing can be found in existing proposals: superb state preparation and quantum measurements can be performed on a small number of qubits in the ion trap; superb dynamics can be performed in small molecules using NMR; fabrication technology in solid state systems allows designs to be scaled up tremendously. A single system having all these elements would be a long way down the road to a dream quantum computer. Unfortunately, all these systems are very different, and we are many, many years from having large-scale quantum computers. However, we believe that the existence of all these properties in existing (albeit different) systems does bode well for the long-term existence of largescale quantum information processors. Furthermore, it suggests that there is a great deal of merit to pursuing hybrid designs which attempt to marry the best features of two or more existing technologies. For example, there is much work being done on trapping atoms inside electromagnetic cavities. This enables flexible manipulation of the atom inside the cavity via optical techniques, and makes possible real-time feedback control of single atoms in ways unavailable in conventional atom traps. To conclude, note that it is important not to assess quantum information processing as though it were just another technology for information processing. For example, it is tempting to dismiss quantum computation as yet another technological fad in the evolution of the computer that will pass in time, much as other fads have passed – for example, the ‘bubble memories’ widely touted as the next big thing in memory during the early 1980s. This is a mistake, since quantum computation is an abstract paradigm for information processing that may have many different implementations in technology. One can compare two different proposals for quantum computing as regards their technological merits – it makes sense to compare a ‘good’ proposal to a ‘bad’ proposal – however even a very poor proposal for a quantum computer is of a different qualitative nature from a superb design for a classical computer. 1.6 Quantum information The term ‘quantum information’ is used in two distinct ways in the field of quantum computation and quantum information. The first usage is as a broad catch-all for all manner of operations that might be interpreted as related to information processing Quantum information 51 using quantum mechanics. This use encompasses subjects such as quantum computation, quantum teleportation, the no-cloning theorem, and virtually all other topics in this book. The second use of ‘quantum information’ is much more specialized: it refers to the study of elementary quantum information processing tasks. It does not typically include, for example, quantum algorithm design, since the details of specific quantum algorithms are beyond the scope of ‘elementary’. To avoid confusion we will use the term ‘quantum information theory’ to refer to this more specialized field, in parallel with the widely used term ‘(classical) information theory’ to describe the corresponding classical field. Of course, the term ‘quantum information theory’ has a drawback of its own – it might be seen as implying that theoretical considerations are all that matter! Of course, this is not the case, and experimental demonstration of the elementary processes studied by quantum information theory is of great interest. The purpose of this section is to introduce the basic ideas of quantum information theory. Even with the restriction to elementary quantum information processing tasks, quantum information theory may look like a disordered zoo to the beginner, with many apparently unrelated subjects falling under the ‘quantum information theory’ rubric. In part, that’s because the subject is still under development, and it’s not yet clear how all the pieces fit together. However, we can identify a few fundamental goals uniting work on quantum information theory: (1) Identify elementary classes of static resources in quantum mechanics. An example is the qubit. Another example is the bit; classical physics arises as a special case of quantum physics, so it should not be surprising that elementary static resources appearing in classical information theory should also be of great relevance in quantum information theory. Yet another example of an elementary class of static resources is a Bell state shared between two distant parties. (2) Identify elementary classes of dynamical processes in quantum mechanics. A simple example is memory, the ability to store a quantum state over some period of time. Less trivial processes are quantum information transmission between two parties, Alice and Bob; copying (or trying to copy) a quantum state, and the process of protecting quantum information processing against the effects of noise. (3) Quantify resource tradeoffs incurred performing elementary dynamical processes. For example, what are the minimal resources required to reliably transfer quantum information between two parties using a noisy communications channel? Similar goals define classical information theory; however, quantum information theory is broader in scope than classical information theory, for quantum information theory includes all the static and dynamic elements of classical information theory, as well as additional static and dynamic elements. The remainder of this section describes some examples of questions studied by quantum information theory, in each case emphasizing the fundamental static and dynamic elements under consideration, and the resource tradeoffs being considered. We begin with an example that will appear quite familiar to classical information theorists: the problem of sending classical information through a quantum channel. We then begin to branch out and explore some of the new static and dynamic processes present in quantum mechanics, such as quantum error-correction, the problem of distinguishing quantum states, and entanglement transformation. The chapter concludes with some reflections on how the 52 Introduction and overview tools of quantum information theory can be applied elsewhere in quantum computation and quantum information. 1.6.1 Quantum information theory: example problems Classical information through quantum channels The fundamental results of classical information theory are Shannon’s noiseless channel coding theorem and Shannon’s noisy channel coding theorem. The noiseless channel coding theorem quantifies how many bits are required to store information being emitted by a source of information, while the noisy channel coding theorem quantifies how much information can be reliably transmitted through a noisy communications channel. What do we mean by an information source? Defining this notion is a fundamental problem of classical and quantum information theory, one we’ll re-examine several times. For now, let’s go with a provisional definition: a classical information source is described by a set of probabilities pj , j = 1, 2, . . . , d. Each use of the source results in the ‘letter’ j being emitted, chosen at random with probability pj , independently for each use of the source. For instance, if the source were of English text, then the numbers j might correspond to letters of the alphabet and punctuation, with the probabilities pj giving the relative frequencies with which the different letters appear in regular English text. Although it is not true that the letters in English appear in an independent fashion, for our purposes it will be a good enough approximation. Regular English text includes a considerable amount of redundancy, and it is possible to exploit that redundancy to compress the text. For example, the letter ‘e’ occurs much more frequently in regular English text than does the letter ‘z’. A good scheme for compressing English text will therefore represent the letter ‘e’ using fewer bits of information than it uses to represent ‘z’. Shannon’s noiseless channel coding theorem quantifies exactly how well such a compression scheme can be made to work. More precisely, the noiseless channel coding theorem tells us that a classical source described by probabilities pj can be compressed so that on average each use of the source can be represented using H(pj ) bits  of information, where H(pj ) ≡ − j pj log(pj ) is a function of the source probability distribution known as the Shannon entropy. Moreover, the noiseless channel coding theorem tells us that to attempt to represent the source using fewer bits than this will result in a high probability of error when the information is decompressed. (Shannon’s noiseless channel coding theorem is discussed in much greater detail in Chapter 12.) Shannon’s noiseless coding theorem provides a good example where the goals of information theory listed earlier are all met. Two static resources are identified (goal number 1): the bit and the information source. A two-stage dynamic process is identified (goal 2), compressing an information source, and then decompressing to recover the information source. Finally a quantitative criterion for determining the resources consumed (goal 3) by an optimal data compression scheme is found. Shannon’s second major result, the noisy channel coding theorem, quantifies the amount of information that can be reliably transmitted through a noisy channel. In particular, suppose we wish to transfer the information being produced by some information source to another location through a noisy channel. That location may be at another point in space, or at another point in time – the latter is the problem of storing information in the presence of noise. The idea in both instances is to encode the information being produced using error-correcting codes, so that any noise introduced by the channel can be corrected at the other end of the channel. The way error-correcting codes achieve this Quantum information 53 is by introducing enough redundancy into the information sent through the channel so that even after some of the information has been corrupted it is still possible to recover the original message. For example, suppose the noisy channel is for the transmission of single bits, and the noise in the channel is such that to achieve reliable transmission each bit produced by the source must be encoded using two bits before being sent through the channel. We say that such a channel has a capacity of half a bit, since each use of the channel can be used to reliably convey roughly half a bit of information. Shannon’s noisy channel coding theorem provides a general procedure for calculating the capacity of an arbitrary noisy channel. Shannon’s noisy channel coding theorem also achieves the three goals of information theory we stated earlier. Two types of static resources are involved (goal 1), the information source, and the bits being sent through the channel. Three dynamical processes are involved (goal 2). The primary process is the noise in the channel. To combat this noise we perform the dual processes of encoding and decoding the state in an error-correcting code. For a fixed noise model, Shannon’s theorem tells us how much redundancy must be introduced by an optimal error-correction scheme if reliable information transmission is to be achieved (goal 3). For both the noiseless and noisy channel coding theorems Shannon restricted himself to storing the output from an information source in classical systems – bits and the like. A natural question for quantum information theory is what happens if the storage medium is changed so that classical information is transmitted using quantum states as the medium. For example, it may be that Alice wishes to compress some classical information produced by an information source, transmitting the compressed information to Bob, who then decompresses it. If the medium used to store the compressed information is a quantum state, then Shannon’s noiseless channel coding theorem cannot be used to determine the optimal compression and decompression scheme. One might wonder, for example, if using qubits allows a better compression rate than is possible classically. We’ll study this question in Chapter 12, and prove that, in fact, qubits do not allow any significant saving in the amount of communication required to transmit information over a noiseless channel. Naturally, the next step is to investigate the problem of transmitting classical information through a noisy quantum channel. Ideally, what we’d like is a result that quantifies the capacity of such a channel for the transmission of information. Evaluating the capacity is a very tricky job for several reasons. Quantum mechanics gives us a huge variety of noise models, since it takes place in a continuous space, and it is not at all obvious how to adapt classical error-correction techniques to combat the noise. Might it be advantageous, for example, to encode the classical information using entangled states, which are then transmitted one piece at a time through the noisy channel? Or perhaps it will be advantageous to decode using entangled measurements? In Chapter 12 we’ll prove the HSW (Holevo–Schumacher–Westmoreland) theorem, which provides a lower bound on the capacity of such a channel. Indeed, it is widely believed that the HSW theorem provides an exact evaluation of the capacity, although a complete proof of this is not yet known! What remains at issue is whether or not encoding using entangled states can be used to raise the capacity beyond the lower bound provided by the HSW theorem. All evidence to date suggests that this doesn’t help raise the capacity, but it is still a fascinating open problem of quantum information theory to determine the truth or falsity of this conjecture. 54 Introduction and overview Quantum information through quantum channels Classical information is, of course, not the only static resource available in quantum mechanics. Quantum states themselves are a natural static resource, even more natural than classical information. Let’s look at a different quantum analogue of Shannon’s coding theorems, this time involving the compression and decompression of quantum states. To begin, we need to define some quantum notion of an information source, analogous to the classical definition of an information source. As in the classical case, there are several different ways of doing this, but for the sake of definiteness let’s make the provisional definition that a quantum source is described by a set of probabilities pj and corresponding quantum states |ψj . Each use of the source produces a state |ψj  with probability pj , with different uses of the source being independent of one another. Is it possible to compress the output from such a quantum mechanical source? Consider the case of a qubit source which outputs the state |0 with probability p and the state |1 with probability 1 − p. This is essentially the same as a classical source emitting single bits, either 0 with probability p, or 1 with probability 1 − p, so it is not surprising that similar techniques can be used to compress the source so that only H(p, 1 − p) qubits are required to store the compressed source, where H(·) is again the Shannon entropy function. What if the source√had instead been producing the state |0 with probability p, and the state (|0 + |1)/ 2 with probability 1 − p? The standard techniques of classical data compression no longer apply, √ since in general it is not possible for us to distinguish the states |0 and (|0 + |1)/ 2. Might it still be possible to perform some type of compression operation? It turns out that a type of compression is still possible, even in this instance. What is interesting is that the compression may no longer be error-free, in the sense that the quantum states being produced by the source may be slightly distorted by the compression– decompression procedure. Nevertheless, we require that this distortion ought to become very small and ultimately negligible in the limit of large blocks of source output being compressed. To quantify the distortion we introduce a fidelity measure for the compression scheme, which measures the average distortion introduced by the compression scheme. The idea of quantum data compression is that the compressed data should be recovered with very good fidelity. Think of the fidelity as being analogous to the probability of doing the decompression correctly – in the limit of large block lengths, it should tend towards the no error limit of 1. Schumacher’s noiseless channel coding theorem quantifies the resources required to do quantum data compression, with the restriction that it be possible to recover the source with fidelity close to 1. In the case of a source producing orthogonal quantum states |ψj  with probabilities pj Schumacher’s theorem reduces to telling us that the source may be compressed down to but not beyond the classical limit H(pj ). However, in the more general case of non-orthogonal states being produced by the source, Schumacher’s theorem tells us how much a quantum source may be compressed, and the answer is not the Shannon entropy H(pj )! Instead, a new entropic quantity, the von Neumann entropy, turns out to be the correct answer. In general, the von Neumann entropy agrees with the Shannon entropy if and only if the states |ψj  are orthogonal. Otherwise, the von Neumann entropy for the source pj , |ψj  is in general strictly smaller than the Shannon entropy H(pj ). Thus, for example, a source producing the state |0 with probability p Quantum information 55 √ and (|0 + |1)/ 2 with probability 1 − p can be reliably compressed using fewer than H(p, 1 − p) qubits per use of the source! The basic intuition for this decrease in resources required can be understood √ quite easily. Suppose the source emitting states |0 with probability p and (|0 + |1)/ 2 with probability 1 − p is used a large number n times. Then by the law of large numbers, with high probability the source emits about np copies of |0 and n(1 − p) copies of √ (|0 + |1)/ 2. That is, it has the form ⊗n(1−p)  |0 + |1 ⊗np √ , (1.60) |0 2 up to re-ordering of the systems involved. Suppose we expand the product of |0 + |1 terms on the right hand side. Since n(1 − p) is large, we can again use the law of large numbers to deduce that the terms in the product will be roughly one-half |0s and onehalf |1s. That is, the |0 + |1 product can be well approximated by a superposition of states of the form |0⊗n(1−p)/2 |1⊗n(1−p)/2 . (1.61) Thus the state emitted by the source can be approximated as a superposition of terms of the form |0⊗n(1+p)/2 |1⊗n(1−p)/2 . (1.62) How many states of this form are there? Roughly n choose n(1 + p)/2, which by Stirling’s approximation is equal to N ≡ 2nH[(1+p)/2,(1−p)/2] . A simple compression method then is to label all states of the form (1.62) |c1  through |cN . It is possible to perform a unitary transform on the n qubits emitted from the source that takes |cj  to |j|0⊗n−nH[(1+p)/2,(1−p)/2] , since j is an nH[(1 + p)/2, (1 − p)/2] bit number. The compression operation is to perform this unitary transformation, and then drop the final n−nH[(1+p)/2, (1−p)/2] qubits, leaving a compressed state of nH[(1+p)/2, (1−p)/2] qubits. To decompress we append the state |0⊗n−nH[(1+p)/2,(1−p)/2] to the compressed state, and perform the inverse unitary transformation. This procedure for quantum data compression and decompression results in a storage requirement of H[(1 + p)/2, (1 − p)/2] qubits per use of the source, which whenever p ≥ 1/3 is an improvement over the H(p, 1 − p) qubits we might naively have expected from Shannon’s noiseless channel coding theorem. In fact, Schumacher’s noiseless channel coding theorem allows us to do somewhat better even than this, as we will see in Chapter 12; however, the essential reason in that construction is the same as √ the reason we were able to compress here: we exploited the fact that |0 and (|0 + |1)/ 2 are not orthogonal. Intuitively, the states contain some redundancy since both have a component in the |0 direction, which results in more physical similarity than would be obtained from orthogonal states. It is this redundancy that we have exploited in the coding scheme just described, and which is used in the full proof of Schumacher’s noiseless channel coding theorem. Note that the restriction p ≥ 1/3 arises because when p < 1/3 this particular scheme doesn’t exploit the redundancy in the states: we end up effectively increasing the redundancy present in the problem! Of course, this is an artifact of the particular scheme we have chosen, and the general solution exploits the redundancy in a much more sensible way to achieve data compression. Schumacher’s noiseless channel coding theorem is an analogue of Shannon’s noiseless 56 Introduction and overview channel coding theorem for the compression and decompression of quantum states. Can we find an analogue of Shannon’s noisy channel coding theorem? Considerable progress on this important question has been made, using the theory of quantum error-correcting codes; however, a fully satisfactory analogue has not yet been found. We review some of what is known about the quantum channel capacity in Chapter 12. Quantum distinguishability Thus far all the dynamical processes we have considered – compression, decompression, noise, encoding and decoding error-correcting codes – arise in both classical and quantum information theory. However, the introduction of new types of information, such as quantum states, enlarges the class of dynamical processes beyond those considered in classical information theory. A good example is the problem of distinguishing quantum states. Classically, we are used to being able to distinguish different items of information, at least in principle. In practice, of course, a smudged letter ‘a’ written on a page may be very difficult to distinguish from a letter ‘o’, but in principle it is possible to distinguish between the two possibilities with perfect certainty. On the other hand, quantum mechanically it is not always possible to distinguish between arbitrary states. For example, there is no process allowed by quantum mechanics √ that will reliably distinguish between the states |0 and (|0 + |1)/ 2. Proving this rigorously requires tools we don’t presently have available (it is done in Chapter 2), but by considering examples it’s pretty easy to convince oneself that it is not possible. Suppose, for example, that we try to distinguish the two states by measuring in the computational basis. Then, if we have been given the state |0, the √ measurement will yield 0 with probability 1. However, when we measure (|0 + |1)/ 2 the measurement yields 0 with probability 1/2 and 1 with probability 1/2. √ Thus, while a measurement result of 1 implies that state must have been (|0 + |1)/ 2, since it couldn’t have been |0, we can’t infer anything about the identity of the quantum state from a measurement result of 0. This indistinguishability of non-orthogonal quantum states is at the heart of quantum computation and quantum information. It is the essence of our assertion that a quantum state contains hidden information that is not accessible to measurement, and thus plays a key role in quantum algorithms and quantum cryptography. One of the central problems of quantum information theory is to develop measures quantifying how well non-orthogonal quantum states may be distinguished, and much of Chapters 9 and 12 is concerned with this goal. In this introduction we’ll limit ourselves to pointing out two interesting aspects of indistinguishability – a connection with the possibility of fasterthan-light communication, and an application to ‘quantum money.’ Imagine for a moment that we could distinguish between arbitrary quantum states. We’ll show that this implies the ability to communicate faster than light, using entanglement. √ Suppose Alice and Bob share an entangled pair of qubits in the state (|00 + |11)/ 2. Then, if Alice measures in the computational basis, the post-measurement states will be |00 with probability 1/2, and |11 with probability 1/2. Thus Bob’s system is either in the state |0, with probability 1/2, or in the state |1, with probability 1/2. Suppose, however, in the |+, |− basis. Recall that √ √ that Alice had instead measured |0 = (|+ + |−)/ 2 and |1 = (|+ − |−)/ 2. A little algebra shows√that the initial state of Alice and Bob’s system may be rewritten as (| + + + | − −)/ 2. Therefore, if Alice measures in the |+, |− basis, the state of Bob’s system after the measurement Quantum information 57 will be |+ or |− with probability 1/2 each. So far, this is all basic quantum mechanics. But if Bob had access to a device that could distinguish the four states |0, |1, |+, |− from one another, then he could tell whether Alice had measured in the computational basis, or in the |+, |− basis. Moreover, he could get that information instantaneously, as soon as Alice had made the measurement, providing a means by which Alice and Bob could achieve faster-than-light communication! Of course, we know that it is not possible to distinguish non-orthogonal quantum states; this example shows that this restriction is also intimately tied to other physical properties which we expect the world to obey. The indistinguishability of non-orthogonal quantum states need not always be a handicap. Sometimes it can be a boon. Imagine that a bank produces banknotes imprinted with a (classical) √ serial number, and a sequence of qubits each in either the state |0 or (|0 + |1)/ 2. Nobody but the bank knows what sequence of these two states is embedded in the note, and the bank maintains a list matching serial numbers to embedded states. The note is impossible to counterfeit exactly, because it is impossible for a would-be counterfeiter to determine with certainty the state of the qubits in the original note, without destroying them. When presented with the banknote a merchant (of certifiable repute) can verify that it is not a counterfeit by calling the bank, telling them the serial number, and then asking what sequence of states were embedded in the note. They can then √ note is genuine by measuring the qubits in the √ check that the |0, |1 or (|0 + |1)/ 2, (|0 − |1)/ 2 basis, as directed by the bank. With probability which increases exponentially to one with the number of qubits checked, any would-be counterfeiter will be detected at this stage! This idea is the basis for numerous other quantum cryptographic protocols, and demonstrates the utility of the indistinguishability of non-orthogonal quantum states. Exercise 1.2: Explain how a device which, upon input of one of two non-orthogonal quantum states |ψ or |ϕ correctly identified the state, could be used to build a device which cloned the states |ψ and |ϕ, in violation of the no-cloning theorem. Conversely, explain how a device for cloning could be used to distinguish non-orthogonal quantum states. Creation and transformation of entanglement Entanglement is another elementary static resource of quantum mechanics. Its properties are amazingly different from those of the resources most familiar from classical information theory, and they are not yet well understood; we have at best an incomplete collage of results related to entanglement. We don’t yet have all the language needed to understand the solutions, but let’s at least look at two information-theoretic problems related to entanglement. Creating entanglement is a simple dynamical process of interest in quantum information theory. How many qubits must two parties exchange if they are to create a particular entangled state shared between them, given that they share no prior entanglement? A second dynamical process of interest is transforming entanglement from one form into another. Suppose, for example, that Alice and Bob share between them a Bell state, and wish to transform it into some other type of entangled state. What resources do they need to accomplish this task? Can they do it without communicating? With classical communication only? If quantum communication is required then how much quantum communication is required? 58 Introduction and overview Answering these and more complex questions about the creation and transformation of entanglement forms a fascinating area of study in its own right, and also promises to give insight into tasks such as quantum computation. For example, a distributed quantum computation may be viewed as simply a method for generating entanglement between two or more parties; lower bounds on the amount of communication that must be done to perform such a distributed quantum computation then follow from lower bounds on the amount of communication that must be performed to create appropriate entangled states. 1.6.2 Quantum information in a wider context We have given but the barest glimpse of quantum information theory. Part III of this book discusses quantum information theory in much greater detail, especially Chapter 11, which deals with fundamental properties of entropy in quantum and classical information theory, and Chapter 12, which focuses on pure quantum information theory. Quantum information theory is the most abstract part of quantum computation and quantum information, yet in some sense it is also the most fundamental. The question driving quantum information theory, and ultimately all of quantum computation and quantum information, is what makes quantum information processing tick? What is it that separates the quantum and the classical world? What resources, unavailable in a classical world, are being utilized in a quantum computation? Existing answers to these questions are foggy and incomplete; it is our hope that the fog may yet lift in the years to come, and we will obtain a clear appreciation for the possibilities and limitations of quantum information processing. Problem 1.1: (Feynman-Gates conversation) Construct a friendly imaginary discussion of about 2000 words between Bill Gates and Richard Feynman, set in the present, on the future of computation. (Comment: You might like to try waiting until you’ve read the rest of the book before attempting this question. See the ‘History and further reading’ below for pointers to one possible answer for this question.) Problem 1.2: What is the most significant discovery yet made in quantum computation and quantum information? Write an essay of about 2000 words for an educated lay audience about the discovery. (Comment: As for the previous problem, you might like to try waiting until you’ve read the rest of the book before attempting this question.) History and further reading Most of the material in this chapter is revisited in more depth in later chapters. Therefore the historical references and further reading below are limited to material which does not recur in later chapters. Piecing together the historical context in which quantum computation and quantum information have developed requires a broad overview of the history of many fields. We have tried to tie this history together in this chapter, but inevitably much background material was omitted due to limited space and expertise. The following recommendations attempt to redress this omission. History and further reading 59 The history of quantum mechanics has been told in many places. We recommend especially the outstanding works of Pais[Pai82, Pai86, Pai91]. Of these three, [Pai86] is most directly concerned with the development of quantum mechanics; however, Pais’ biographies of Einstein[Pai82] and of Bohr[Pai91] also contain much material of interest, at a less intense level. The rise of technologies based upon quantum mechanics has been described by Milburn[Mil97, Mil98]. Turing’s marvelous paper on the foundations of computer science[Tur36] is well worth reading. It can be found in the valuable historical collection of Davis[Dav65]. Hofstadter[Hof79] and Penrose[Pen89] contain entertaining and informative discussions of the foundations of computer science. Shasha and Lazere’s biography of fifteen leading computer scientists[SL98] gives considerable insight into many different facets of the history of computer science. Finally, Knuth’s awesome series of books[Knu97, Knu98a, Knu98b] contain an amazing amount of historical information. Shannon’s brilliant papers founding information theory make excellent reading[Sha48] (also reprinted in [SW49]). MacWilliams and Sloane[MS77] is not only an excellent text on error-correcting codes, but also contains an enormous amount of useful historical information. Similarly, Cover and Thomas[CT91] is an excellent text on information theory, with extensive historical information. Shannon’s collected works, together with many useful historical items have been collected in a large volume[SW93] edited by Sloane and Wyner. Slepian has also collected a useful set of reprints on information theory[Sle74]. Cryptography is an ancient art with an intricate and often interesting history. Kahn[Kah96] is a huge history of cryptography containing a wealth of information. For more recent developments we recommend the books by Menezes, van Oorschot, and Vanstone[MvOV96], Schneier[Sch96a], and by Diffie and Landau[DL98] . Quantum teleportation was discovered by Bennett, Brassard, Crépeau, Jozsa, Peres, + and Wootters[BBC 93], and later experimentally realized in various different forms by + Boschi, Branca, De Martini, Hardy and Popescu[BBM 98] using optical techniques, by + Bouwmeester, Pan, Mattle, Eibl, Weinfurter, and Zeilinger[BPM 97] using photon polarization, by Furusawa, Sørensen, Braunstein, Fuchs, Kimble, and Polzik using ‘squeezed’ + states of light[FSB 98], and by Nielsen, Knill, and Laflamme using NMR[NKL98]. Deutsch’s problem was posed by Deutsch[Deu85], and a one-bit solution was given in the same paper. The extension to the general n-bit case was given by Deutsch and Jozsa[DJ92]. The algorithms in these early papers have been substantially improved subsequently by Cleve, Ekert, Macchiavello, and Mosca[CEMM98], and independently in unpublished work by Tapp. In this chapter we have given the improved version of the algorithm, which fits very nicely into the hidden subgroup problem framework that will later be discussed in Chapter 5. The original algorithm of Deutsch only worked probabilistically; Deutsch and Jozsa improved this to obtain a deterministic algorithm, but their method required two function evaluations, in contrast to the improved algorithms presented in this chapter. Nevertheless, it is still conventional to refer to these algorithms as Deutsch’s algorithm and the Deutsch–Jozsa algorithm in honor of two huge leaps forward: the concrete demonstration by Deutsch that a quantum computer could do something faster than a classical computer; and the extension by Deutsch and Jozsa which demonstrated for the first time a similar gap for the scaling of the time required to solve a problem. Excellent discussions of the Stern–Gerlach experiment can be found in standard quantum mechanics textbooks such as the texts by Sakurai[Sak95], Volume III of Feynman, Leighton and Sands[FLS65a], and Cohen-Tannoudji, Diu and Laloë[CTDL77a, CTDL77b]. Problem 1.1 was suggested by the lovely article of Rahim[Rah99]. 2 Introduction to quantum mechanics I ain’t no physicist but I know what matters. – Popeye the Sailor Quantum mechanics: Real Black Magic Calculus – Albert Einstein Quantum mechanics is the most accurate and complete description of the world known. It is also the basis for an understanding of quantum computation and quantum information. This chapter provides all the necessary background knowledge of quantum mechanics needed for a thorough grasp of quantum computation and quantum information. No prior knowledge of quantum mechanics is assumed. Quantum mechanics is easy to learn, despite its reputation as a difficult subject. The reputation comes from the difficulty of some applications, like understanding the structure of complicated molecules, which aren’t fundamental to a grasp of the subject; we won’t be discussing such applications. The only prerequisite for understanding is some familiarity with elementary linear algebra. Provided you have this background you can begin working out simple problems in a few hours, even with no prior knowledge of the subject. Readers already familiar with quantum mechanics can quickly skim through this chapter, to become familiar with our (mostly standard) notational conventions, and to assure themselves of familiarity with all the material. Readers with little or no prior knowledge should work through the chapter in detail, pausing to attempt the exercises. If you have difficulty with an exercise, move on, and return later to make another attempt. The chapter begins with a review of some material from linear algebra in Section 2.1. This section assumes familiarity with elementary linear algebra, but introduces the notation used by physicists to describe quantum mechanics, which is different to that used in most introductions to linear algebra. Section 2.2 describes the basic postulates of quantum mechanics. Upon completion of the section, you will have understood all of the fundamental principles of quantum mechanics. This section contains numerous simple exercises designed to help consolidate your grasp of this material. The remaining sections of the chapter, and of this book, elucidate upon this material, without introducing fundamentally new physical principles. Section 2.3 explains superdense coding, a surprising and illuminating example of quantum information processing which combines many of the postulates of quantum mechanics in a simple setting. Sections 2.4 and 2.5 develop powerful mathematical tools – the density operator, purifications, and the Schmidt decomposition – which are especially useful in the study of quantum computation and quantum information. Understanding these tools will also help you consolidate your understanding of elementary quantum mechanics. Finally, Section 2.6 examines the question of how quantum mechanics goes beyond the usual ‘classical’ understanding of the way the world works. Linear algebra 61 2.1 Linear algebra This book is written as much to disturb and annoy as to instruct. – The first line of About Vectors, by Banesh Hoffmann. Life is complex – it has both real and imaginary parts. – Anonymous Linear algebra is the study of vector spaces and of linear operations on those vector spaces. A good understanding of quantum mechanics is based upon a solid grasp of elementary linear algebra. In this section we review some basic concepts from linear algebra, and describe the standard notations which are used for these concepts in the study of quantum mechanics. These notations are summarized in Figure 2.1 on page 62, with the quantum notation in the left column, and the linear-algebraic description in the right column. You may like to glance at the table, and see how many of the concepts in the right column you recognize. In our opinion the chief obstacle to assimilation of the postulates of quantum mechanics is not the postulates themselves, but rather the large body of linear algebraic notions required to understand them. Coupled with the unusual Dirac notation adopted by physicists for quantum mechanics, it can appear (falsely) quite fearsome. For these reasons, we advise the reader not familiar with quantum mechanics to quickly read through the material which follows, pausing mainly to concentrate on understanding the absolute basics of the notation being used. Then proceed to a careful study of the main topic of the chapter – the postulates of quantum mechanics – returning to study the necessary linear algebraic notions and notations in more depth, as required. The basic objects of linear algebra are vector spaces. The vector space of most interest to us is Cn , the space of all n-tuples of complex numbers, (z1 , . . . , zn ). The elements of a vector space are called vectors, and we will sometimes use the column matrix notation   z1  ..  (2.1)  .  zn to indicate a vector. There is an addition operation defined which takes pairs of vectors to other vectors. In Cn the addition operation for vectors is defined by    ′    z1 z1 z1 + z1′  ..   ..    .. (2.2)  . + . ≡ , . zn′ zn zn + zn′ where the addition operations on the right are just ordinary additions of complex numbers. Furthermore, in a vector space there is a multiplication by a scalar operation. In Cn this operation is defined by     zz1 z1     (2.3) z  ...  ≡  ...  , zn zzn 62 Introduction to quantum mechanics where z is a scalar, that is, a complex number, and the multiplications on the right are ordinary multiplication of complex numbers. Physicists sometimes refer to complex numbers as c-numbers. Quantum mechanics is our main motivation for studying linear algebra, so we will use the standard notation of quantum mechanics for linear algebraic concepts. The standard quantum mechanical notation for a vector in a vector space is the following: |ψ. (2.4) ψ is a label for the vector (any label is valid, although we prefer to use simple labels like ψ and ϕ). The |· notation is used to indicate that the object is a vector. The entire object |ψ is sometimes called a ket, although we won’t use that terminology often. A vector space also contains a special zero vector, which we denote by 0. It satisfies the property that for any other vector |v, |v + 0 = |v. Note that we do not use the ket notation for the zero vector – it is the only exception we shall make. The reason for making the exception is because it is conventional to use the ‘obvious’ notation for the zero vector, |0, to mean something else entirely. The scalar multiplication operation is such that z0 = 0 for any complex number z. For convenience, we use the notation (z1 , . . . , zn ) to denote a column matrix with entries z1 , . . . , zn . In Cn the zero element is (0, 0, . . . , 0). A vector subspace of a vector space V is a subset W of V such that W is also a vector space, that is, W must be closed under scalar multiplication and addition. Notation z∗ |ψ ψ| ϕ|ψ |ϕ ⊗ |ψ |ϕ|ψ A∗ AT A† ϕ|A|ψ Description Complex conjugate of the complex number z. (1 + i)∗ = 1 − i Vector. Also known as a ket. Vector dual to |ψ. Also known as a bra. Inner product between the vectors |ϕ and |ψ. Tensor product of |ϕ and |ψ. Abbreviated notation for tensor product of |ϕ and |ψ. Complex conjugate of the A matrix. Transpose of the A matrix. Hermitian conjugate or adjoint of the A matrix, A† = (AT )∗ .  †  ∗  a c∗ a b = . b∗ d∗ c d Inner product between |ϕ and A|ψ. Equivalently, inner product between A† |ϕ and |ψ. Figure 2.1. Summary of some standard quantum mechanical notation for notions from linear algebra. This style of notation is known as the Dirac notation. 2.1.1 Bases and linear independence A spanning set for a vector space is a set of vectors |v1 , . . . , |vn  such that any vector  |v in the vector space can be written as a linear combination |v = i ai |vi  of vectors 63 Linear algebra in that set. For example, a spanning set for the vector space C2 is the set     0 1 , ; |v2  ≡ |v1  ≡ 1 0 (2.5) since any vector |v =  a1 a2  (2.6) in C2 can be written as a linear combination |v = a1 |v1  + a2 |v2  of the vectors |v1  and |v2 . We say that the vectors |v1  and |v2  span the vector space C2 . Generally, a vector space may have many different spanning sets. A second spanning set for the vector space C2 is the set     1 1 1 1 ; |v2  ≡ √ , (2.7) |v1  ≡ √ 2 1 2 −1 since an arbitrary vector |v = (a1 , a2 ) can be written as a linear combination of |v1  and |v2 , |v = a1 + a2 a −a √ |v1  + 1√ 2 |v2 . 2 2 (2.8) A set of non-zero vectors |v1 , . . . , |vn  are linearly dependent if there exists a set of complex numbers a1 , . . . , an with ai = 0 for at least one value of i, such that a1 |v1  + a2 |v2  + · · · + an |vn  = 0. (2.9) A set of vectors is linearly independent if it is not linearly dependent. It can be shown that any two sets of linearly independent vectors which span a vector space V contain the same number of elements. We call such a set a basis for V . Furthermore, such a basis set always exists. The number of elements in the basis is defined to be the dimension of V . In this book we will only be interested in finite dimensional vector spaces. There are many interesting and often difficult questions associated with infinite dimensional vector spaces. We won’t need to worry about these questions. Exercise 2.1: (Linear dependence: example) Show that (1, −1), (1, 2) and (2, 1) are linearly dependent. 2.1.2 Linear operators and matrices A linear operator between vector spaces V and W is defined to be any function A : V → W which is linear in its inputs,   A i ai |vi  = i ai A |vi  . (2.10) Usually we just write A|v to denote A(|v). When we say that a linear operator A is defined on a vector space, V , we mean that A is a linear operator from V to V . An important linear operator on any vector space V is the identity operator, IV , defined by the equation IV |v ≡ |v for all vectors |v. Where no chance of confusion arises we drop the subscript V and just write I to denote the identity operator. Another important linear operator is the zero operator, which we denote 0. The zero operator maps all vectors to 64 Introduction to quantum mechanics the zero vector, 0|v ≡ 0. It is clear from (2.10) that once the action of a linear operator A on a basis is specified, the action of A is completely determined on all inputs. Suppose V, W , and X are vector spaces, and A : V → W and B : W → X are linear operators. Then we use the notation BA to denote the composition of B with A, defined by (BA)(|v) ≡ B(A(|v)). Once again, we write BA|v as an abbreviation for (BA)(|v). The most convenient way to understand linear operators is in terms of their matrix representations. In fact, the linear operator and matrix viewpoints turn out to be completely equivalent. The matrix viewpoint may be more familiar to you, however. To see the connection, it helps to first understand that an m by n complex matrix A with entries Aij is in fact a linear operator sending vectors in the vector space Cn to the vector space Cm , under matrix multiplication of the matrix A by a vector in Cn . More precisely, the claim that the matrix A is a linear operator just means that   A i ai |vi  = i ai A|vi  (2.11) is true as an equation where the operation is matrix multiplication of A by column vectors. Clearly, this is true! We’ve seen that matrices can be regarded as linear operators. Can linear operators be given a matrix representation? In fact they can, as we now explain. This equivalence between the two viewpoints justifies our interchanging terms from matrix theory and operator theory throughout the book. Suppose A : V → W is a linear operator between vector spaces V and W . Suppose |v1 , . . . , |vm  is a basis for V and |w1 , . . . , |wn  is a basis for W . Then for each j in the range 1, . . . , m, there exist complex numbers A1j through Anj such that A|vj  = i Aij |wi . (2.12) The matrix whose entries are the values Aij is said to form a matrix representation of the operator A. This matrix representation of A is completely equivalent to the operator A, and we will use the matrix representation and abstract operator viewpoints interchangeably. Note that to make the connection between matrices and linear operators we must specify a set of input and output basis states for the input and output vector spaces of the linear operator. Exercise 2.2: (Matrix representations: example) Suppose V is a vector space with basis vectors |0 and |1, and A is a linear operator from V to V such that A|0 = |1 and A|1 = |0. Give a matrix representation for A, with respect to the input basis |0, |1, and the output basis |0, |1. Find input and output bases which give rise to a different matrix representation of A. Exercise 2.3: (Matrix representation for operator products) Suppose A is a linear operator from vector space V to vector space W , and B is a linear operator from vector space W to vector space X. Let |vi , |wj , and |xk  be bases for the vector spaces V, W , and X, respectively. Show that the matrix representation for the linear transformation BA is the matrix product of the matrix representations for B and A, with respect to the appropriate bases. 65 Linear algebra Exercise 2.4: (Matrix representation for identity) Show that the identity operator on a vector space V has a matrix representation which is one along the diagonal and zero everywhere else, if the matrix representation is taken with respect to the same input and output bases. This matrix is known as the identity matrix. 2.1.3 The Pauli matrices Four extremely useful matrices which we shall often have occasion to use are the Pauli matrices. These are 2 by 2 matrices, which go by a variety of notations. The matrices, and their corresponding notations, are depicted in Figure 2.2. The Pauli matrices are so useful in the study of quantum computation and quantum information that we encourage you to memorize them by working through in detail the many examples and exercises based upon them in subsequent sections. σ0 ≡ I ≡  1 0 0 1  σ2 ≡ σ y ≡ Y ≡  0 −i i 0  σ1 ≡ σ x ≡ X ≡  0 1 1 0  σ3 ≡ σ z ≡ Z ≡  1 0 0 −1  Figure 2.2. The Pauli matrices. Sometimes I is omitted from the list with just X, Y and Z known as the Pauli matrices. 2.1.4 Inner products An inner product is a function which takes as input two vectors |v and |w from a vector space and produces a complex number as output. For the time being, it will be convenient to write the inner product of |v and |w as (|v, |w). This is not the standard quantum mechanical notation; for pedagogical clarity the (·, ·) notation will be useful occasionally in this chapter. The standard quantum mechanical notation for the inner product (|v, |w) is v|w, where |v and |w are vectors in the inner product space, and the notation v| is used for the dual vector to the vector |v; the dual is a linear operator from the inner product space V to the complex numbers C, defined by v|(|w) ≡ v|w ≡ (|v, |w). We will see shortly that the matrix representation of dual vectors is just a row vector. A function (·, ·) from V × V to C is an inner product if it satisfies the requirements that: (1) (·, ·) is linear in the second argument,   |v, i λi |wi  = i λi |v, |wi  . (2.13) (2) (|v, |w) = (|w, |v)∗ . (3) (|v, |v) ≥ 0 with equality if and only if |v = 0. For example, Cn has an inner product defined by ((y1 , . . . , yn ), (z1 , . . . , zn )) ≡ i ⎡   ⎢ yi∗ zi = y1∗ . . . yn∗ ⎣ ⎤ z1 .. ⎥ . .  zn (2.14) 66 Introduction to quantum mechanics We call a vector space equipped with an inner product an inner product space. Exercise 2.5: Verify that (·, ·) just defined is an inner product on Cn . Exercise 2.6: Show that any inner product (·, ·) is conjugate-linear in the first argument,   i λi |wi , |v = i λ∗i (|wi , |v). (2.15) Discussions of quantum mechanics often refer to Hilbert space. In the finite dimensional complex vector spaces that come up in quantum computation and quantum information, a Hilbert space is exactly the same thing as an inner product space. From now on we use the two terms interchangeably, preferring the term Hilbert space. In infinite dimensions Hilbert spaces satisfy additional technical restrictions above and beyond inner product spaces, which we will not need to worry about. Vectors |w and |v are orthogonal if their inner product is zero. For example, |w ≡ (1, 0) and |v ≡ (0, 1) are orthogonal with respect to the inner product defined by (2.14). We define the norm of a vector |v by  (2.16) |v ≡ v|v . A unit vector is a vector |v such that |v = 1. We also say that |v is normalized if |v = 1. It is convenient to talk of normalizing a vector by dividing by its norm; thus |v/|v is the normalized form of |v, for any non-zero vector |v. A set |i of vectors with index i is orthonormal if each vector is a unit vector, and distinct vectors in the set are orthogonal, that is, i|j = δij , where i and j are both chosen from the index set. Exercise 2.7: Verify that |w ≡ (1, 1) and |v ≡ (1, −1) are orthogonal. What are the normalized forms of these vectors? Suppose |w1 , . . . , |wd  is a basis set for some vector space V with an inner product. There is a useful method, the Gram–Schmidt procedure, which can be used to produce an orthonormal basis set |v1 , . . . , |vd  for the vector space V . Define |v1  ≡ |w1 / |w1  , and for 1 ≤ k ≤ d − 1 define |vk+1  inductively by  |wk+1  − ki=1 vi |wk+1 |vi  |vk+1  ≡ . (2.17)  |wk+1  − ki=1 vi |wk+1 |vi  It is not difficult to verify that the vectors |v1 , . . . , |vd  form an orthonormal set which is also a basis for V . Thus, any finite dimensional vector space of dimension d has an orthonormal basis, |v1 , . . . , |vd . Exercise 2.8: Prove that the Gram–Schmidt procedure produces an orthonormal basis for V . From now on, when we speak of a matrix representation for a linear operator, we mean a matrix representation with respect to orthonormal input and output bases. We also use the convention that if the input and output spaces for a linear operator are the same, then the input and output bases are the same, unless noted otherwise. Linear algebra 67 With these conventions, the inner product on a Hilbert space can be given a convenient   matrix representation. Let |w = i wi |i and |v = j vj |j be representations of vectors |w and |v with respect to some orthonormal basis |i. Then, since i|j = δij , ⎞ ⎛ v|w = ⎝ i vi |i, wj |j⎠ = j ⎡ vi∗ wi vi∗ wj δij = (2.18) i ij ⎤ w1 ⎢  ⎥ = v1∗ . . . vn∗ ⎣ ...  . wn (2.19) That is, the inner product of two vectors is equal to the vector inner product between two matrix representations of those vectors, provided the representations are written with respect to the same orthonormal basis. We also see that the dual vector v| has a nice interpretation as the row vector whose components are complex conjugates of the corresponding components of the column vector representation of |v. There is a useful way of representing linear operators which makes use of the inner product, known as the outer product representation. Suppose |v is a vector in an inner product space V , and |w is a vector in an inner product space W . Define |wv| to be the linear operator from V to W whose action is defined by |wv| |v ′  ≡ |w v|v ′  = v|v ′ |w. (2.20) This equation fits beautifully into our notational conventions, according to which the expression |wv|v ′  could potentially have one of two meanings: we will use it to denote the result when the operator |wv| acts on |v ′ , and it has an existing interpretation as the result of multiplying |w by the complex number v|v ′ . Our definitions are chosen so that these two potential meanings coincide. Indeed, we define the former in terms of the latter! We can take linear combinations of outer product operators |wv| in the obvious way.  By definition i ai |wi vi | is the linear operator which, when acting on |v ′ , produces  ′ i ai |wi vi |v  as output. The usefulness of the outer product notation can be discerned from an important result known as the completeness relation for orthonormal vectors. Let |i be any orthonormal  basis for the vector space V , so an arbitrary vector |v can be written |v = i vi |i for some set of complex numbers vi . Note that i|v = vi and therefore   i |ii| |v = i |ii|v = i vi |i = |v. (2.21) Since the last equation is true for all |v it follows that i |ii| = I. (2.22) This equation is known as the completeness relation. One application of the completeness relation is to give a means for representing any operator in the outer product notation. Suppose A : V → W is a linear operator, |vi  is an orthonormal basis for V , and |wj  an orthonormal basis for W . Using the completeness relation twice we obtain A = IW AIV (2.23) 68 Introduction to quantum mechanics |wj wj |A|vi vi | (2.24) ij wj |A|vi |wj vi |, (2.25) ij = = which is the outer product representation for A. We also see from this equation that A has matrix element wj |A|vi  in the ith column and jth row, with respect to the input basis |vi  and output basis |wj . A second application illustrating the usefulness of the completeness relation is the Cauchy–Schwarz inequality. This important result is discussed in Box 2.1, on this page. Exercise 2.9: (Pauli operators and the outer product) The Pauli matrices (Figure 2.2 on page 65) can be considered as operators with respect to an orthonormal basis |0, |1 for a two-dimensional Hilbert space. Express each of the Pauli operators in the outer product notation. Exercise 2.10: Suppose |vi  is an orthonormal basis for an inner product space V . What is the matrix representation for the operator |vj vk |, with respect to the |vi  basis? Box 2.1: The Cauchy-Schwarz inequality The Cauchy–Schwarz inequality is an important geometric fact about Hilbert spaces. It states that for any two vectors |v and |w, |v|w|2 ≤ v|vw|w. To see this, use the Gram–Schmidt procedure to construct an orthonormalbasis |i for the vector space such that the first member of the basis |i is |w/ w|w.  Using the completeness relation i |ii| = I, and dropping some non-negative terms gives v|vw|w = ≥ i v|ii|vw|w v|ww|v w|w w|w = v|ww|v = |v|w|2 , (2.26) (2.27) (2.28) as required. A little thought shows that equality occurs if and only if |v and |w are linearly related, |v = z|w or |w = z|v, for some scalar z. 2.1.5 Eigenvectors and eigenvalues An eigenvector of a linear operator A on a vector space is a non-zero vector |v such that A|v = v|v, where v is a complex number known as the eigenvalue of A corresponding to |v. It will often be convenient to use the notation v both as a label for the eigenvector, and to represent the eigenvalue. We assume that you are familiar with the elementary properties of eigenvalues and eigenvectors – in particular, how to find them, via the characteristic equation. The characteristic function is defined to be c(λ) ≡ det |A − λI|, 69 Linear algebra where det is the determinant function for matrices; it can be shown that the characteristic function depends only upon the operator A, and not on the specific matrix representation used for A. The solutions of the characteristic equation c(λ) = 0 are the eigenvalues of the operator A. By the fundamental theorem of algebra, every polynomial has at least one complex root, so every operator A has at least one eigenvalue, and a corresponding eigenvector. The eigenspace corresponding to an eigenvalue v is the set of vectors which have eigenvalue v. It is a vector subspace of the vector space on which A acts. A diagonal representation for an operator A on a vector space V is a representation  A = i λi |ii|, where the vectors |i form an orthonormal set of eigenvectors for A, with corresponding eigenvalues λi . An operator is said to be diagonalizable if it has a diagonal representation. In the next section we will find a simple set of necessary and sufficient conditions for an operator on a Hilbert space to be diagonalizable. As an example of a diagonal representation, note that the Pauli Z matrix may be written   1 0 = |00| − |11|, (2.29) Z= 0 −1 where the matrix representation is with respect to orthonormal vectors |0 and |1, respectively. Diagonal representations are sometimes also known as orthonormal decompositions. When an eigenspace is more than one dimensional we say that it is degenerate. For example, the matrix A defined by ⎤ ⎡ 2 0 0 (2.30) A≡⎣ 0 2 0  0 0 0 has a two-dimensional eigenspace corresponding to the eigenvalue 2. The eigenvectors (1, 0, 0) and (0, 1, 0) are said to be degenerate because they are linearly independent eigenvectors of A with the same eigenvalue. Exercise 2.11: (Eigendecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X, Y , and Z. Exercise 2.12: Prove that the matrix  1 0 1 1  (2.31) is not diagonalizable. 2.1.6 Adjoints and Hermitian operators Suppose A is any linear operator on a Hilbert space, V . It turns out that there exists a unique linear operator A† on V such that for all vectors |v, |w ∈ V , (|v, A|w) = (A† |v, |w). (2.32) This linear operator is known as the adjoint or Hermitian conjugate of the operator A. From the definition it is easy to see that (AB)† = B † A† . By convention, if |v is a vector, then we define |v† ≡ v|. With this definition it is not difficult to see that (A|v)† = v|A† . 70 Introduction to quantum mechanics Exercise 2.13: If |w and |v are any two vectors, show that (|wv|)† = |vw|. Exercise 2.14: (Anti-linearity of the adjoint) Show that the adjoint operation is anti-linear,  † ai Ai a∗i A†i . = i (2.33) i Exercise 2.15: Show that (A† )† = A. In a matrix representation of an operator A, the action of the Hermitian conjugation operation is to take the matrix of A to the conjugate-transpose matrix, A† ≡ (A∗ )T , where the ∗ indicates complex conjugation, and T indicates the transpose operation. For example, we have  †   1 − 3i 1 − i 1 + 3i 2i . (2.34) = −2i 1 + 4i 1 + i 1 − 4i An operator A whose adjoint is A is known as a Hermitian or self-adjoint operator. An important class of Hermitian operators is the projectors. Suppose W is a k-dimensional vector subspace of the d-dimensional vector space V . Using the Gram– Schmidt procedure it is possible to construct an orthonormal basis |1, . . . , |d for V such that |1, . . . , |k is an orthonormal basis for W . By definition, k P ≡ i=1 |ii| (2.35) is the projector onto the subspace W . It is easy to check that this definition is independent of the orthonormal basis |1, . . . , |k used for W . From the definition it can be shown that |vv| is Hermitian for any vector |v, so P is Hermitian, P † = P . We will often refer to the ‘vector space’ P , as shorthand for the vector space onto which P is a projector. The orthogonal complement of P is the operator Q ≡ I − P . It is easy to see that Q is a projector onto the vector space spanned by |k + 1, . . . , |d, which we also refer to as the orthogonal complement of P , and may denote by Q. Exercise 2.16: Show that any projector P satisfies the equation P 2 = P . An operator A is said to be normal if AA† = A† A. Clearly, an operator which is Hermitian is also normal. There is a remarkable representation theorem for normal operators known as the spectral decomposition, which states that an operator is a normal operator if and only if it is diagonalizable. This result is proved in Box 2.2 on page 72, which you should read closely. Exercise 2.17: Show that a normal matrix is Hermitian if and only if it has real eigenvalues. A matrix U is said to be unitary if U † U = I. Similarly an operator U is unitary if U †U = I. It is easily checked that an operator is unitary if and only if each of its matrix representations is unitary. A unitary operator also satisfies U U † = I, and therefore U is normal and has a spectral decomposition. Geometrically, unitary operators are important because they preserve inner products between vectors. To see this, let |v and |w be any 71 Linear algebra two vectors. Then the inner product of U |v and U |w is the same as the inner product of |v and |w, U |v, U |w = v|U † U |w = v|I|w = v|w. (2.36) This result suggests the following elegant outer product representation of any unitary U . Let |vi  be any orthonormal basis set. Define |wi  ≡ U |vi , so |wi  is also an orthonormal  basis set, since unitary operators preserve inner products. Note that U = i |wi vi |. Conversely, if |vi  and |wi  are any two orthonormal bases, then it is easily checked that  the operator U defined by U ≡ i |wi vi | is a unitary operator. Exercise 2.18: Show that all eigenvalues of a unitary matrix have modulus 1, that is, can be written in the form eiθ for some real θ. Exercise 2.19: (Pauli matrices: Hermitian and unitary) Show that the Pauli matrices are Hermitian and unitary. Exercise 2.20: (Basis changes) Suppose A′ and A′′ are matrix representations of an operator A on a vector space V with respect to two different orthonormal bases, |vi  and |wi . Then the elements of A′ and A′′ are A′ij = vi |A|vj  and A′′ij = wi |A|wj . Characterize the relationship between A′ and A′′ . A special subclass of Hermitian operators is extremely important. This is the positive operators. A positive operator A is defined to be an operator such that for any vector |v, (|v, A|v) is a real, non-negative number. If (|v, A|v) is strictly greater than zero for all |v = 0 then we say that A is positive definite. In Exercise 2.24 on this page you will show that any positive operator is automatically Hermitian, and therefore by the spectral  decomposition has diagonal representation i λi |ii|, with non-negative eigenvalues λi . Exercise 2.21: Repeat the proof of the spectral decomposition in Box 2.2 for the case when M is Hermitian, simplifying the proof wherever possible. Exercise 2.22: Prove that two eigenvectors of a Hermitian operator with different eigenvalues are necessarily orthogonal. Exercise 2.23: Show that the eigenvalues of a projector P are all either 0 or 1. Exercise 2.24: (Hermiticity of positive operators) Show that a positive operator is necessarily Hermitian. (Hint: Show that an arbitrary operator A can be written A = B + iC where B and C are Hermitian.) Exercise 2.25: Show that for any operator A, A† A is positive. 2.1.7 Tensor products The tensor product is a way of putting vector spaces together to form larger vector spaces. This construction is crucial to understanding the quantum mechanics of multiparticle systems. The following discussion is a little abstract, and may be difficult to follow if you’re not already familiar with the tensor product, so feel free to skip ahead now and revisit later when you come to the discussion of tensor products in quantum mechanics. Suppose V and W are vector spaces of dimension m and n respectively. For convenience we also suppose that V and W are Hilbert spaces. Then V ⊗ W (read ‘V tensor 72 Introduction to quantum mechanics Box 2.2: The spectral decomposition – important! The spectral decomposition is an extremely useful representation theorem for normal operators. Theorem 2.1: (Spectral decomposition) Any normal operator M on a vector space V is diagonal with respect to some orthonormal basis for V . Conversely, any diagonalizable operator is normal. Proof The converse is a simple exercise, so we prove merely the forward implication, by induction on the dimension d of V . The case d = 1 is trivial. Let λ be an eigenvalue of M , P the projector onto the λ eigenspace, and Q the projector onto the orthogonal complement. Then M = (P + Q)M (P + Q) = P M P + QM P + P M Q + QM Q. Obviously P M P = λP . Furthermore, QM P = 0, as M takes the subspace P into itself. We claim that P M Q = 0 also. To see this, let |v be an element of the subspace P . Then M M †|v = M †M |v = λM † |v. Thus, M †|v has eigenvalue λ and therefore is an element of the subspace P . It follows that QM † P = 0. Taking the adjoint of this equation gives P M Q = 0. Thus M = P M P + QM Q. Next, we prove that QM Q is normal. To see this, note that QM = QM (P + Q) = QM Q, and QM † = QM † (P + Q) = QM †Q. Therefore, by the normality of M , and the observation that Q2 = Q, QM Q QM †Q = QM QM †Q † = QM M Q (2.37) (2.38) † (2.39) † = QM QM Q (2.40) † (2.41) = QM M Q = QM Q QM Q , so QM Q is normal. By induction, QM Q is diagonal with respect to some orthonormal basis for the subspace Q, and P M P is already diagonal with respect to some orthonormal basis for P . It follows that M = P M P + QM Q is diagonal with respect to some orthonormal basis for the total vector space. In terms of the outer product representation, this means that M can be written as  M = i λi |ii|, where λi are the eigenvalues of M , |i is an orthonormal basis for V , and each |i an eigenvector of M with eigenvalue λi . In terms of projectors,  M = i λi Pi , where λi are again the eigenvalues of M , and Pi is the projector onto the λi eigenspace of M . These projectors satisfy the completeness relation  i Pi = I, and the orthonormality relation Pi Pj = δij Pi . W ’) is an mn dimensional vector space. The elements of V ⊗ W are linear combinations of ‘tensor products’ |v ⊗ |w of elements |v of V and |w of W . In particular, if |i and |j are orthonormal bases for the spaces V and W then |i ⊗ |j is a basis for V ⊗ W . We often use the abbreviated notations |v|w, |v, w or even |vw for the tensor product Linear algebra 73 |v ⊗ |w. For example, if V is a two-dimensional vector space with basis vectors |0 and |1 then |0 ⊗ |0 + |1 ⊗ |1 is an element of V ⊗ V . By definition the tensor product satisfies the following basic properties: (1) For an arbitrary scalar z and elements |v of V and |w of W , z |v ⊗ |w = z|v ⊗ |w = |v ⊗ z|w . (2.42) (2) For arbitrary |v1  and |v2  in V and |w in W , |v1  + |v2  ⊗ |w = |v1  ⊗ |w + |v2  ⊗ |w. (2.43) (3) For arbitrary |v in V and |w1  and |w2  in W , |v ⊗ |w1  + |w2  = |v ⊗ |w1  + |v ⊗ |w2 . (2.44) What sorts of linear operators act on the space V ⊗ W ? Suppose |v and |w are vectors in V and W , and A and B are linear operators on V and W , respectively. Then we can define a linear operator A ⊗ B on V ⊗ W by the equation (A ⊗ B)(|v ⊗ |w) ≡ A|v ⊗ B|w. (2.45) The definition of A ⊗ B is then extended to all elements of V ⊗ W in the natural way to ensure linearity of A ⊗ B, that is,   (A ⊗ B) i ai |vi  ⊗ |wi  ≡ i ai A|vi  ⊗ B|wi . (2.46) It can be shown that A ⊗ B defined in this way is a well-defined linear operator on V ⊗ W . This notion of the tensor product of two operators extends in the obvious way to the case where A : V → V ′ and B : W → W ′ map between different vector spaces. Indeed, an arbitrary linear operator C mapping V ⊗ W to V ′ ⊗ W ′ can be represented as a linear combination of tensor products of operators mapping V to V ′ and W to W ′ , C= i where by definition  i  ci Ai ⊗ Bi , ci Ai ⊗ Bi |v ⊗ |w ≡ i (2.47) ci Ai |v ⊗ Bi |w. (2.48) The inner products on the spaces V and W can be used to define a natural inner product on V ⊗ W . Define ⎛ ⎞ ⎝ i ai |vi  ⊗ |wi , j bj |vj′  ⊗ |wj′ ⎠ ≡ ij a∗i bj vi |vj′ wi |wj′ . (2.49) It can be shown that the function so defined is a well-defined inner product. From this inner product, the inner product space V ⊗W inherits the other structure we are familiar with, such as notions of an adjoint, unitarity, normality, and Hermiticity. All this discussion is rather abstract. It can be made much more concrete by moving 74 Introduction to quantum mechanics to a convenient matrix representation known as the Kronecker product. Suppose A is an m by n matrix, and B is a p by q matrix. Then we have the matrix representation: nq ⎡ A11 B ⎢ A21 B ⎢ A⊗B ≡ ⎢ .. ⎣ . Am1 B A12 B A22 B .. . !" Am2 B # ⎤⎫ . . . A1n B ⎪ ⎪ ⎪ ⎬ . . . A2n B ⎥ ⎥ ⎥ mp . .. .. ⎪ ⎪ . . ⎪ ⎭ . . . Amn B (2.50) In this representation terms like A11 B denote p by q submatrices whose entries are proportional to B, with overall proportionality constant A11 . For example, the tensor product of the vectors (1, 2) and (2, 3) is the vector ⎤ ⎡ ⎤ ⎡ 1×2 2     ⎢ 1×3 ⎥ ⎢ 3 ⎥ 2 1 ⎥ ⎢ ⎥ =⎢ ⊗ (2.51) ⎣ 2×2 =⎣ 4  . 3 2 2×3 6 The tensor product of the Pauli matrices X and Y is ⎡ 0   ⎢ 0 0·Y 1·Y =⎢ X ⊗Y = ⎣ 0 1·Y 0·Y i ⎤ 0 0 −i 0 i 0 ⎥ ⎥. −i 0 0  0 0 0 (2.52) Finally, we mention the useful notation |ψ⊗k , which means |ψ tensored with itself k times. For example |ψ⊗2 = |ψ ⊗ |ψ. An analogous notation is also used for operators on tensor product spaces. √ Exercise 2.26: Let |ψ = (|0 + |1)/ 2. Write out |ψ⊗2 and |ψ⊗3 explicitly, both in terms of tensor products like |0|1, and using the Kronecker product. Exercise 2.27: Calculate the matrix representation of the tensor products of the Pauli operators (a) X and Z; (b) I and X; (c) X and I. Is the tensor product commutative? Exercise 2.28: Show that the transpose, complex conjugation, and adjoint operations distribute over the tensor product, (A ⊗ B)∗ = A∗ ⊗ B ∗ ; (A ⊗ B)T = AT ⊗ B T ; (A ⊗ B)† = A† ⊗ B † .(2.53) Exercise 2.29: Show that the tensor product of two unitary operators is unitary. Exercise 2.30: Show that the tensor product of two Hermitian operators is Hermitian. Exercise 2.31: Show that the tensor product of two positive operators is positive. Exercise 2.32: Show that the tensor product of two projectors is a projector. Exercise 2.33: The Hadamard operator on one qubit may be written as 1  H = √ (|0 + |1)0| + (|0 − |1)1| . 2 (2.54) Linear algebra 75 Show explicitly that the Hadamard transform on n qubits, H ⊗n , may be written as 1 H ⊗n = √ 2n x,y (−1)x·y |xy|. (2.55) Write out an explicit matrix representation for H ⊗2 . 2.1.8 Operator functions There are many important functions which can be defined for operators and matrices. Generally speaking, given a function f from the complex numbers to the complex numbers, it is possible to define a corresponding matrix function on normal matrices (or some subclass, such as the Hermitian matrices) by the following construc tion. Let A = a a|aa| be a spectral decomposition for a normal operator A. Define  f (A) ≡ a f (a)|aa|. A little thought shows that f (A) is uniquely defined. This procedure can be used, for example, to define the square root of a positive operator, the logarithm of a positive-definite operator, or the exponential of a normal operator. As an example,   θ e 0 , (2.56) exp(θZ) = 0 e−θ since Z has eigenvectors |0 and |1. Exercise 2.34: Find the square root and logarithm of the matrix   4 3 . 3 4 (2.57) Exercise 2.35: (Exponential of the Pauli matrices) Let v be any real, three-dimensional unit vector and θ a real number. Prove that where v · σ ≡ 3 i=1 exp(iθv · σ) = cos(θ)I + i sin(θ)v · σ, (2.58) vi σi . This exercise is generalized in Problem 2.1 on page 117. Another important matrix function is the trace of a matrix. The trace of A is defined to be the sum of its diagonal elements, tr(A) ≡ Aii . (2.59) i The trace is easily seen to be cyclic, tr(AB) = tr(BA), and linear, tr(A + B) = tr(A) + tr(B), tr(zA) = z tr(A), where A and B are arbitrary matrices, and z is a complex number. Furthermore, from the cyclic property it follows that the trace of a matrix is invariant under the unitary similarity transformation A → U AU †, as tr(U AU †) = tr(U † U A) = tr(A). In light of this result, it makes sense to define the trace of an operator A to be the trace of any matrix representation of A. The invariance of the trace under unitary similarity transformations ensures that the trace of an operator is well defined. As an example of the trace, suppose |ψ is a unit vector and A is an arbitrary operator. To evaluate tr(A|ψψ|) use the Gram–Schmidt procedure to extend |ψ to an 76 Introduction to quantum mechanics orthonormal basis |i which includes |ψ as the first element. Then we have tr(A|ψψ|) = i i|A|ψψ|i = ψ|A|ψ. (2.60) (2.61) This result, that tr(A|ψψ|) = ψ|A|ψ is extremely useful in evaluating the trace of an operator. Exercise 2.36: Show that the Pauli matrices except for I have trace zero. Exercise 2.37: (Cyclic property of the trace) If A and B are two linear operators show that tr(AB) = tr(BA). (2.62) Exercise 2.38: (Linearity of the trace) If A and B are two linear operators, show that tr(A + B) = tr(A) + tr(B) (2.63) and if z is an arbitrary complex number show that tr(zA) = ztr(A). (2.64) Exercise 2.39: (The Hilbert–Schmidt inner product on operators) The set LV of linear operators on a Hilbert space V is obviously a vector space – the sum of two linear operators is a linear operator, zA is a linear operator if A is a linear operator and z is a complex number, and there is a zero element 0. An important additional result is that the vector space LV can be given a natural inner product structure, turning it into a Hilbert space. (1) Show that the function (·, ·) on LV × LV defined by (A, B) ≡ tr(A† B) (2.65) is an inner product function. This inner product is known as the Hilbert–Schmidt or trace inner product. (2) If V has d dimensions show that LV has dimension d2 . (3) Find an orthonormal basis of Hermitian matrices for the Hilbert space LV . 2.1.9 The commutator and anti-commutator The commutator between two operators A and B is defined to be [A, B] ≡ AB − BA. (2.66) If [A, B] = 0, that is, AB = BA, then we say A commutes with B. Similarly, the anti-commutator of two operators A and B is defined by {A, B} ≡ AB + BA; (2.67) we say A anti-commutes with B if {A, B} = 0. It turns out that many important properties of pairs of operators can be deduced from their commutator and anti-commutator. Perhaps the most useful relation is the following connection between the commutator and the property of being able to simultaneously diagonalize Hermitian operators A and B, 77 Linear algebra   that is, write A = i ai |ii|, B = i bi |ii|, where |i is some common orthonormal set of eigenvectors for A and B. Theorem 2.2: (Simultaneous diagonalization theorem) Suppose A and B are Hermitian operators. Then [A, B] = 0 if and only if there exists an orthonormal basis such that both A and B are diagonal with respect to that basis. We say that A and B are simultaneously diagonalizable in this case. This result connects the commutator of two operators, which is often easy to compute, to the property of being simultaneously diagonalizable, which is a priori rather difficult to determine. As an example, consider that       0 1 0 −i 0 −i 0 1 (2.68) − [X, Y ] = 1 0 i 0 i 0 1 0   1 0 = 2i (2.69) 0 −1 = 2iZ , (2.70) so X and Y do not commute. You have already shown, in Exercise 2.11, that X and Y do not have common eigenvectors, as we expect from the simultaneous diagonalization theorem. Proof You can (and should!) easily verify that if A and B are diagonal in the same orthonormal basis then [A, B] = 0. To show the converse, let |a, j be an orthonormal basis for the eigenspace Va of A with eigenvalue a; the index j is used to label possible degeneracies. Note that AB|a, j = BA|a, j = aB|a, j, (2.71) and therefore B|a, j is an element of the eigenspace Va . Let Pa denote the projector onto the space Va and define Ba ≡ Pa BPa . It is easy to see that the restriction of Ba to the space Va is Hermitian on Va , and therefore has a spectral decomposition in terms of an orthonormal set of eigenvectors which span the space Va . Let’s call these eigenvectors |a, b, k, where the indices a and b label the eigenvalues of A and Ba , and k is an extra index to allow for the possibility of a degenerate Ba . Note that B|a, b, k is an element of Va , so B|a, b, k = Pa B|a, b, k. Moreover we have Pa |a, b, k = |a, b, k, so B|a, b, k = Pa BPa |a, b, k = b|a, b, k. (2.72) It follows that |a, b, k is an eigenvector of B with eigenvalue b, and therefore |a, b, k is an orthonormal set of eigenvectors of both A and B, spanning the entire vector space on which A and B are defined. That is, A and B are simultaneously diagonalizable. Exercise 2.40: (Commutation relations for the Pauli matrices) Verify the commutation relations [X, Y ] = 2iZ; [Y, Z] = 2iX; [Z, X] = 2iY. (2.73) There is an elegant way of writing this using ǫjkl , the antisymmetric tensor on 78 Introduction to quantum mechanics three indices, for which ǫjkl = 0 except for ǫ123 = ǫ231 = ǫ312 = 1, and ǫ321 = ǫ213 = ǫ132 = −1: 3 [σj , σk ] = 2i ǫjkl σl . (2.74) l=1 Exercise 2.41: (Anti-commutation relations for the Pauli matrices) Verify the anti-commutation relations {σi , σj } = 0 (2.75) where i = j are both chosen from the set 1, 2, 3. Also verify that (i = 0, 1, 2, 3) σi2 = I. (2.76) Exercise 2.42: Verify that AB = [A, B] + {A, B} . 2 (2.77) Exercise 2.43: Show that for j, k = 1, 2, 3, 3 σj σk = δjk I + i ǫjkl σl . (2.78) l=1 Exercise 2.44: Suppose [A, B] = 0, {A, B} = 0, and A is invertible. Show that B must be 0. Exercise 2.45: Show that [A, B]† = [B † , A† ]. Exercise 2.46: Show that [A, B] = −[B, A]. Exercise 2.47: Suppose A and B are Hermitian. Show that i[A, B] is Hermitian. 2.1.10 The polar and singular value decompositions The polar and singular value decompositions are useful ways of breaking linear operators up into simpler parts. In particular, these decompositions allow us to break general linear operators up into products of unitary operators and positive operators. While we don’t understand the structure of general linear operators terribly well, we do understand unitary operators and positive operators in quite some detail. The polar and singular value decompositions allow us to apply this understanding to better understand general linear operators. Theorem 2.3: (Polar decomposition) Let A be a linear operator on a vector space V . Then there exists unitary U and positive operators J and K such that A = U J = KU, (2.79) where the unique √ J and K satisfying these equations are √positive operators defined by J ≡ A† A and K ≡ AA† . Moreover, if A is invertible then U is unique. 79 Linear algebra We call the expression A = U J the left polar decomposition of A, and A = KU the right polar decomposition of A. Most often, we’ll omit the ‘right’ or ‘left’ nomenclature, and use the term ‘polar decomposition’ for both expressions, with context indicating which is meant. Proof √ J ≡ A† A is a positive operator, so it can be given a spectral decomposition, J =  2 i λi |ii| (λi ≥ 0). Define |ψi  ≡ A|i. From the definition, we see that ψi |ψi  = λi . Consider for now only those i for which λi = 0. For those i define |ei  ≡ |ψi /λi , so the |ei  are normalized. Moreover, they are orthogonal, since if i = j then ei |ej  = i|A† A|j/λi λj = i|J 2 |j/λi λj = 0. We have been considering i such that λi = 0. Now use the Gram–Schmidt procedure to extend the orthonormal set |ei  so it forms an orthonormal basis, which we also label  |ei . Define a unitary operator U ≡ i |ei i|. When λi = 0 we have U J|i = λi |ei  = |ψi  = A|i. When λi = 0 we have U J|i = 0 = |ψi . We have proved that the action of A and U J agree on the basis |i, and thus that A = U J. J is unique, since multiplying A = U J on√the left by the adjoint equation A† = JU † gives J 2 = A† A, from which we see that J = A† A, uniquely. A little thought shows that if A is invertible, then so is J, so U is uniquely determined by the equation U = AJ −1 . The proof of the right polar decomposition follows, since A = U J = U JU †U = KU , where√K ≡ U JU † is a positive operator. Since AA† = KU U †K = K 2 we must have K = AA† , as claimed. The singular value decomposition combines the polar decomposition and the spectral theorem. Corollary 2.4: (Singular value decomposition) Let A be a square matrix. Then there exist unitary matrices U and V , and a diagonal matrix D with non-negative entries such that A = U DV . (2.80) The diagonal elements of D are called the singular values of A. Proof By the polar decomposition, A = SJ, for unitary S, and positive J. By the spectral theorem, J = T DT † , for unitary T and diagonal D with non-negative entries. Setting U ≡ ST and V ≡ T † completes the proof. Exercise 2.48: What is the polar decomposition of a positive matrix P ? Of a unitary matrix U ? Of a Hermitian matrix, H? Exercise 2.49: Express the polar decomposition of a normal matrix in the outer product representation. Exercise 2.50: Find the left and right polar decompositions of the matrix   1 0 . 1 1 (2.81) 80 Introduction to quantum mechanics 2.2 The postulates of quantum mechanics All understanding begins with our not accepting the world as it appears. – Alan Kay The most incomprehensible thing about the world is that it is comprehensible. – Albert Einstein Quantum mechanics is a mathematical framework for the development of physical theories. On its own quantum mechanics doesn’t tell you what laws a physical system must obey, but it does provide a mathematical and conceptual framework for the development of such laws. In the next few sections we give a complete description of the basic postulates of quantum mechanics. These postulates provide a connection between the physical world and the mathematical formalism of quantum mechanics. The postulates of quantum mechanics were derived after a long process of trial and (mostly) error, which involved a considerable amount of guessing and fumbling by the originators of the theory. Don’t be surprised if the motivation for the postulates is not always clear; even to experts the basic postulates of quantum mechanics appear surprising. What you should expect to gain in the next few sections is a good working grasp of the postulates – how to apply them, and when. 2.2.1 State space The first postulate of quantum mechanics sets up the arena in which quantum mechanics takes place. The arena is our familiar friend from linear algebra, Hilbert space. Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system’s state space. Quantum mechanics does not tell us, for a given physical system, what the state space of that system is, nor does it tell us what the state vector of the system is. Figuring that out for a specific system is a difficult problem for which physicists have developed many intricate and beautiful rules. For example, there is the wonderful theory of quantum electrodynamics (often known as QED), which describes how atoms and light interact. One aspect of QED is that it tells us what state spaces to use to give quantum descriptions of atoms and light. We won’t be much concerned with the intricacies of theories like QED (except in so far as they apply to physical realizations, in Chapter 7), as we are mostly interested in the general framework provided by quantum mechanics. For our purposes it will be sufficient to make some very simple (and reasonable) assumptions about the state spaces of the systems we are interested in, and stick with those assumptions. The simplest quantum mechanical system, and the system which we will be most concerned with, is the qubit. A qubit has a two-dimensional state space. Suppose |0 and |1 form an orthonormal basis for that state space. Then an arbitrary state vector in the state space can be written |ψ = a|0 + b|1, (2.82) The postulates of quantum mechanics 81 where a and b are complex numbers. The condition that |ψ be a unit vector, ψ|ψ = 1, is therefore equivalent to |a|2 + |b|2 = 1. The condition ψ|ψ = 1 is often known as the normalization condition for state vectors. We will take the qubit as our fundamental quantum mechanical system. Later, in Chapter 7, we will see that there are real physical systems which may be described in terms of qubits. For now, though, it is sufficient to think of qubits in abstract terms, without reference to a specific realization. Our discussions of qubits will always be referred to some orthonormal set of basis vectors, |0 and |1, which should be thought of as being fixed in advance. Intuitively, the states |0 and |1 are analogous to the two values 0 and 1 which a bit may take. The way a qubit differs from a bit is that superpositions of these two states, of the form a|0 + b|1, can also exist, in which it is not possible to say that the qubit is definitely in the state |0, or definitely in the state |1. We conclude with some useful terminology which is often used in connection with  the description of quantum states. We say that any linear combination i αi |ψi  is a superposition of the states |ψi  with amplitude αi for the state |ψi . So, for example, the state |0 − |1 √ 2 (2.83) √ is a superposition √ of the states |0 and |1 with amplitude 1/ 2 for the state |0, and amplitude −1/ 2 for the state |1. 2.2.2 Evolution How does the state, |ψ, of a quantum mechanical system change with time? The following postulate gives a prescription for the description of such state changes. Postulate 2: The evolution of a closed quantum system is described by a unitary transformation. That is, the state |ψ of the system at time t1 is related to the state |ψ ′  of the system at time t2 by a unitary operator U which depends only on the times t1 and t2 , |ψ ′  = U |ψ . (2.84) Just as quantum mechanics does not tell us the state space or quantum state of a particular quantum system, it does not tell us which unitary operators U describe realworld quantum dynamics. Quantum mechanics merely assures us that the evolution of any closed quantum system may be described in such a way. An obvious question to ask is: what unitary operators are natural to consider? In the case of single qubits, it turns out that any unitary operator at all can be realized in realistic systems. Let’s look at a few examples of unitary operators on a single qubit which are important in quantum computation and quantum information. We have already seen several examples of such unitary operators – the Pauli matrices, defined in Section 2.1.3, and the quantum gates described in Chapter 1. As remarked in Section 1.3.1, the X matrix is gate, by analogy to the classical gate. The X and often known as the quantum Z Pauli matrices are also sometimes referred to as the bit flip and phase flip matrices: the X matrix takes |0 to |1, and |1 to |0, thus earning the name bit flip; and the Z matrix leaves |0 invariant, and takes |1 to −|1, with the extra factor of −1 added known as a phase factor, thus justifying the term phase flip. We will not use the term phase flip for 82 Introduction to quantum mechanics Z very often, since it is easily confused with the phase gate to be defined in Chapter 4. (Section 2.2.7 contains more discussion of the many uses of the term ‘phase’.) Another interesting unitary operator √ is the Hadamard gate, √ which we denote H. This has the action H|0 ≡ (|0 + |1)/ 2, H|1 ≡ (|0 − |1)/ 2, and corresponding matrix representation   1 1 1 . (2.85) H=√ 2 1 −1 Exercise 2.51: Verify that the Hadamard gate H is unitary. Exercise 2.52: Verify that H 2 = I. Exercise 2.53: What are the eigenvalues and eigenvectors of H? Postulate 2 requires that the system being described be closed. That is, it is not interacting in any way with other systems. In reality, of course, all systems (except the Universe as a whole) interact at least somewhat with other systems. Nevertheless, there are interesting systems which can be described to a good approximation as being closed, and which are described by unitary evolution to some good approximation. Furthermore, at least in principle every open system can be described as part of a larger closed system (the Universe) which is undergoing unitary evolution. Later, we’ll introduce more tools which allow us to describe systems which are not closed, but for now we’ll continue with the description of the evolution of closed systems. Postulate 2 describes how the quantum states of a closed quantum system at two different times are related. A more refined version of this postulate can be given which describes the evolution of a quantum system in continuous time. From this more refined postulate we will recover Postulate 2. Before we state the revised postulate, it is worth pointing out two things. First, a notational remark. The operator H appearing in the following discussion is not the same as the Hadamard operator, which we just introduced. Second, the following postulate makes use of the apparatus of differential equations. Readers with little background in the study of differential equations should be reassured that they will not be necessary for much of the book, with the exception of parts of Chapter 7, on real physical implementations of quantum information processing. Postulate 2′ : The time evolution of the state of a closed quantum system is described by the Schrödinger equation, i d|ψ = H|ψ. dt (2.86) In this equation,  is a physical constant known as Planck’s constant whose value must be experimentally determined. The exact value is not important to us. In practice, it is common to absorb the factor  into H, effectively setting  = 1. H is a fixed Hermitian operator known as the Hamiltonian of the closed system. If we know the Hamiltonian of a system, then (together with a knowledge of ) we understand its dynamics completely, at least in principle. In general figuring out the Hamiltonian needed to describe a particular physical system is a very difficult problem – much of twentieth century physics has been concerned with this problem – which requires substantial input from experiment in order to be answered. From our point of 83 The postulates of quantum mechanics view this is a problem of detail to be addressed by physical theories built within the framework of quantum mechanics – what Hamiltonian do we need to describe atoms in such-and-such a configuration – and is not a question that needs to be addressed by the theory of quantum mechanics itself. Most of the time in our discussion of quantum computation and quantum information we won’t need to discuss Hamiltonians, and when we do, we will usually just posit that some matrix is the Hamiltonian as a starting point, and proceed from there, without attempting to justify the use of that Hamiltonian. Because the Hamiltonian is a Hermitian operator it has a spectral decomposition E|EE|, H= (2.87) E with eigenvalues E and corresponding normalized eigenvectors |E. The states |E are conventionally referred to as energy eigenstates, or sometimes as stationary states, and E is the energy of the state |E. The lowest energy is known as the ground state energy for the system, and the corresponding energy eigenstate (or eigenspace) is known as the ground state. The reason the states |E are sometimes known as stationary states is because their only change in time is to acquire an overall numerical factor, |E → exp(−iEt/)|E. (2.88) As an example, suppose a single qubit has Hamiltonian H = ωX. (2.89) In this equation ω is a parameter that, in practice, needs to be experimentally determined. We won’t worry about the parameter overly much here – the point is to give you a feel for the sort of Hamiltonians that are sometimes written down in the study of quantum computation and quantum information. The energy eigenstates √ of this Hamiltonian√are obviously the same as the eigenstates of X, namely (|0 + |1)/ 2 and (|0 − |1)/√2, with corresponding energies ω and −ω. The ground state is therefore (|0 − |1)/ 2, and the ground state energy is −ω. What is the connection between the Hamiltonian picture of dynamics, Postulate 2′ , and the unitary operator picture, Postulate 2? The answer is provided by writing down the solution to Schrödinger’s equation, which is easily verified to be:   −iH(t2 − t1 ) |ψ(t1 ) = U (t1 , t2 )|ψ(t1 ) , (2.90) |ψ(t2 ) = exp  where we define U (t1 , t2 ) ≡ exp   −iH(t2 − t1 ) .  (2.91) You will show in the exercises that this operator is unitary, and furthermore, that any unitary operator U can be realized in the form U = exp(iK) for some Hermitian operator K. There is therefore a one-to-one correspondence between the discrete-time description of dynamics using unitary operators, and the continuous time description using Hamiltonians. For most of the book we use the unitary formulation of quantum dynamics. Exercise 2.54: Suppose A and B are commuting Hermitian operators. Prove that exp(A) exp(B) = exp(A + B). (Hint: Use the results of Section 2.1.9.) 84 Introduction to quantum mechanics Exercise 2.55: Prove that U (t1 , t2 ) defined in Equation (2.91) is unitary. Exercise 2.56: Use the spectral decomposition to show that K ≡ −i log(U ) is Hermitian for any unitary U , and thus U = exp(iK) for some Hermitian K. In quantum computation and quantum information we often speak of applying a unitary operator to a particular quantum system. For example, in the context of quantum circuits we may speak of applying the unitary gate X to a single qubit. Doesn’t this contradict what we said earlier, about unitary operators describing the evolution of a closed quantum system? After all, if we are ‘applying’ a unitary operator, then that implies that there is an external ‘we’ who is interacting with the quantum system, and the system is not closed. An example of this occurs when a laser is focused on an atom. After a lot of thought and hard work it is possible to write down a Hamiltonian describing the total atom– laser system. The interesting thing is that when we write down the Hamiltonian for the atom–laser system and consider the effects on the atom alone, the behavior of the state vector of the atom turns out to be almost but not quite perfectly described by another Hamiltonian, the atomic Hamiltonian. The atomic Hamiltonian contains terms related to laser intensity, and other parameters of the laser, which we can vary at will. It is as if the evolution of the atom were being described by a Hamiltonian which we can vary at will, despite the atom not being a closed system. More generally, for many systems like this it turns out to be possible to write down a time-varying Hamiltonian for a quantum system, in which the Hamiltonian for the system is not a constant, but varies according to some parameters which are under an experimentalist’s control, and which may be changed during the course of an experiment. The system is not, therefore, closed, but it does evolve according to Schrödinger’s equation with a time-varying Hamiltonian, to some good approximation. The upshot is that to begin we will often describe the evolution of quantum systems – even systems which aren’t closed – using unitary operators. The main exception to this, quantum measurement, will be described in the next section. Later on we will investigate in more detail possible deviations from unitary evolution due to the interaction with other systems, and understand more precisely the dynamics of realistic quantum systems. 2.2.3 Quantum measurement We postulated that closed quantum systems evolve according to unitary evolution. The evolution of systems which don’t interact with the rest of the world is all very well, but there must also be times when the experimentalist and their experimental equipment – an external physical system in other words – observes the system to find out what is going on inside the system, an interaction which makes the system no longer closed, and thus not necessarily subject to unitary evolution. To explain what happens when this is done, we introduce Postulate 3, which provides a means for describing the effects of measurements on quantum systems. Postulate 3: Quantum measurements are described by a collection {Mm } of measurement operators. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is |ψ immediately before the measurement then the probability that result m occurs is The postulates of quantum mechanics 85 given by † Mm |ψ , p(m) = ψ|Mm (2.92) and the state of the system after the measurement is Mm |ψ  . † ψ|Mm Mm |ψ (2.93) The measurement operators satisfy the completeness equation, † Mm Mm = I . (2.94) m The completeness equation expresses the fact that probabilities sum to one: p(m) = 1= m m † ψ|Mm Mm |ψ . (2.95) This equation being satisfied for all |ψ is equivalent to the completeness equation. However, the completeness equation is much easier to check directly, so that’s why it appears in the statement of the postulate. A simple but important example of a measurement is the measurement of a qubit in the computational basis. This is a measurement on a single qubit with two outcomes defined by the two measurement operators M0 = |00|, M1 = |11|. Observe that each measurement operator is Hermitian, and that M02 = M0 , M12 = M1 . Thus the completeness relation is obeyed, I = M0†M0 + M1† M1 = M0 + M1 . Suppose the state being measured is |ψ = a|0 + b|1. Then the probability of obtaining measurement outcome 0 is p(0) = ψ|M0† M0 |ψ = ψ|M0 |ψ = |a|2 . (2.96) Similarly, the probability of obtaining the measurement outcome 1 is p(1) = |b|2 . The state after measurement in the two cases is therefore M0 |ψ a = |0 |a| |a| b M1 |ψ = |1. |b| |b| (2.97) (2.98) We will see in Section 2.2.7 that multipliers like a/|a|, which have modulus one, can effectively be ignored, so the two post-measurement states are effectively |0 and |1, just as described in Chapter 1. The status of Postulate 3 as a fundamental postulate intrigues many people. Measuring devices are quantum mechanical systems, so the quantum system being measured and the measuring device together are part of a larger, isolated, quantum mechanical system. (It may be necessary to include quantum systems other than the system being measured and the measuring device to obtain a completely isolated system, but the point is that this can be done.) According to Postulate 2, the evolution of this larger isolated system can be described by a unitary evolution. Might it be possible to derive Postulate 3 as a consequence of this picture? Despite considerable investigation along these lines there is still disagreement between physicists about whether or not this is possible. We, however, are going to take the very pragmatic approach that in practice it is clear when to apply 86 Introduction to quantum mechanics Postulate 2 and when to apply Postulate 3, and not worry about deriving one postulate from the other. Over the next few sections we apply Postulate 3 to several elementary but important measurement scenarios. Section 2.2.4 examines the problem of distinguishing a set of quantum states. Section 2.2.5 explains a special case of Postulate 3, the projective or von Neumann measurements. Section 2.2.6 explains another special case of Postulate 3, known as POVM measurements. Many introductions to quantum mechanics only discuss projective measurements, omitting a full discussion of Postulate 3 or of POVM elements. For this reason we have included Box 2.5 on page 91 which comments on the relationship between the different classes of measurement we describe. Exercise 2.57: (Cascaded measurements are single measurements) Suppose {Ll } and {Mm } are two sets of measurement operators. Show that a measurement defined by the measurement operators {Ll } followed by a measurement defined by the measurement operators {Mm } is physically equivalent to a single measurement defined by measurement operators {Nlm } with the representation Nlm ≡ Mm Ll . 2.2.4 Distinguishing quantum states An important application of Postulate 3 is to the problem of distinguishing quantum states. In the classical world, distinct states of an object are usually distinguishable, at least in principle. For example, we can always identify whether a coin has landed heads or tails, at least in the ideal limit. Quantum mechanically, the situation is more complicated. In Section 1.6 we gave a plausible argument that non-orthogonal quantum states cannot be distinguished. With Postulate 3 as a firm foundation we can now give a much more convincing demonstration of this fact. Distinguishability, like many ideas in quantum computation and quantum information, is most easily understood using the metaphor of a game involving two parties, Alice and Bob. Alice chooses a state |ψi  (1 ≤ i ≤ n) from some fixed set of states known to both parties. She gives the state |ψi  to Bob, whose task it is to identify the index i of the state Alice has given him. Suppose the states |ψi  are orthonormal. Then Bob can do a quantum measurement to distinguish these states, using the following procedure. Define measurement operators Mi ≡ |ψi ψi |, one for each possible index i, and an additional measurement operator  M0 defined as the positive square root of the positive operator I − i = 0 |ψi ψi |. These operators satisfy the completeness relation, and if the state |ψi  is prepared then p(i) = ψi |Mi |ψi  = 1, so the result i occurs with certainty. Thus, it is possible to reliably distinguish the orthonormal states |ψi . By contrast, if the states |ψi  are not orthonormal then we can prove that there is no quantum measurement capable of distinguishing the states. The idea is that Bob will do a measurement described by measurement operators Mj , with outcome j. Depending on the outcome of the measurement Bob tries to guess what the index i was using some rule, i = f (j), where f (·) represents the rule he uses to make the guess. The key to why Bob can’t distinguish non-orthogonal states |ψ1  and |ψ2  is the observation that |ψ2  can be decomposed into a (non-zero) component parallel to |ψ1 , and a component orthogonal to |ψ1 . Suppose j is a measurement outcome such that f (j) = 1, that is, Bob guesses that the state was |ψ1  when he observes j. But because of the component of |ψ2  parallel 87 The postulates of quantum mechanics to |ψ1 , there is a non-zero probability of getting outcome j when |ψ2  is prepared, so sometimes Bob will make an error identifying which state was prepared. A more rigorous argument that non-orthogonal states can’t be distinguished is given in Box 2.3, but this captures the essential idea. Box 2.3: Proof that non-orthogonal states can’t be reliably distinguished A proof by contradiction shows that no measurement distinguishing the nonorthogonal states |ψ1  and |ψ2  is possible. Suppose such a measurement is possible. If the state |ψ1  (|ψ2 ) is prepared then the probability of measuring j such that  f (j) = 1 (f (j) = 2) must be 1. Defining Ei ≡ j:f (j)=i Mj†Mj , these observations may be written as: ψ1 |E1 |ψ1  = 1; ψ2 |E2 |ψ2  = 1. (2.99)  Since i Ei = I it follows that i ψ1 |E√i |ψ1  = 1, and since ψ1 |E1 |ψ1  = 1 we must have ψ1 |E2 |ψ1  = 0, and thus E2 |ψ1  = 0. Suppose we decompose + |β|2 = 1, and |β| < 1 |ψ2  = α|ψ1  + β|ϕ, where |ϕ is orthonormal√to |ψ1 , |α|2 √ since |ψ1  and |ψ2  are not orthogonal. Then E2 |ψ2  = β E2 |ϕ, which implies a contradiction with (2.99), as  ψ2 |E2 |ψ2  = |β|2 ϕ|E2 |ϕ ≤ |β|2 < 1, (2.100) where the second last inequality follows from the observation that ϕ|E2 |ϕ ≤ i ϕ|Ei |ϕ = ϕ|ϕ = 1. (2.101) 2.2.5 Projective measurements In this section we explain an important special case of the general measurement postulate, Postulate 3. This special class of measurements is known as projective measurements. For many applications of quantum computation and quantum information we will be concerned primarily with projective measurements. Indeed, projective measurements actually turn out to be equivalent to the general measurement postulate, when they are augmented with the ability to perform unitary transformations, as described in Postulate 2. We will explain this equivalence in detail in Section 2.2.8, as the statement of the measurement postulate for projective measurements is superficially rather different from the general postulate, Postulate 3. Projective measurements: A projective measurement is described by an observable, M , a Hermitian operator on the state space of the system being observed. The observable has a spectral decomposition, mPm , M= (2.102) m where Pm is the projector onto the eigenspace of M with eigenvalue m. The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable. Upon measuring the state |ψ, the probability of getting result m is 88 Introduction to quantum mechanics given by p(m) = ψ|Pm |ψ . (2.103) Given that outcome m occurred, the state of the quantum system immediately after the measurement is P |ψ √m . p(m) (2.104) Projective measurements can be understood as a special case of Postulate 3. Suppose the measurement operators in Postulate 3, in addition to satisfying the completeness relation  † m Mm Mm = I, also satisfy the conditions that Mm are orthogonal projectors, that is, the Mm are Hermitian, and Mm Mm′ = δm,m′ Mm . With these additional restrictions, Postulate 3 reduces to a projective measurement as just defined. Projective measurements have many nice properties. In particular, it is very easy to calculate average values for projective measurements. By definition, the average (see Appendix 1 for elementary definitions and results in probability theory) value of the measurement is  m p(m) (2.110) E(M ) = m =  m = ψ| mψ|Pm |ψ   m (2.111)  mPm |ψ = ψ|M |ψ. (2.112) (2.113) This is a useful formula, which simplifies many calculations. The average value of the observable M is often written M  ≡ ψ|M |ψ. From this formula for the average follows a formula for the standard deviation associated to observations of M , [∆(M )]2 = (M − M )2  2 2 = M  − M  . (2.114) (2.115) The standard deviation is a measure of the typical spread of the observed values upon measurement of M . In particular, if we perform a large number of experiments in which the state |ψ is prepared and the observable M is measured, then the standard deviation ∆(M ) of the observed values is determined by the formula ∆(M ) = M 2  − M 2 . This formulation of measurement and standard deviations in terms of observables gives rise in an elegant way to results such as the Heisenberg uncertainty principle (see Box 2.4). Exercise 2.58: Suppose we prepare a quantum system in an eigenstate |ψ of some observable M , with corresponding eigenvalue m. What is the average observed value of M , and the standard deviation? Two widely used nomenclatures for measurements deserve emphasis. Rather than giving an observable to describe a projective measurement, often people simply list a com plete set of orthogonal projectors Pm satisfying the relations m Pm = I and Pm Pm′ = 89 The postulates of quantum mechanics Box 2.4: The Heisenberg uncertainty principle Perhaps the best known result of quantum mechanics is the Heisenberg uncertainty principle. Suppose A and B are two Hermitian operators, and |ψ is a quantum state. Suppose ψ|AB|ψ = x + iy, where x and y are real. Note that ψ|[A, B]|ψ = 2iy and ψ|{A, B}|ψ = 2x. This implies that 2 2 2 |ψ|[A, B]|ψ| + |ψ|{A, B}|ψ| = 4 |ψ|AB|ψ| . (2.105) By the Cauchy–Schwarz inequality 2 |ψ|AB|ψ| ≤ ψ|A2 |ψψ|B 2 |ψ, (2.106) which combined with Equation (2.105) and dropping a non-negative term gives 2 |ψ|[A, B]|ψ| ≤ 4ψ|A2 |ψψ|B 2 |ψ. (2.107) Suppose C and D are two observables. Substituting A = C −C and B = D−D into the last equation, we obtain Heisenberg’s uncertainty principle as it is usually stated: |ψ|[C, D]|ψ| . (2.108) Δ(C)Δ(D) ≥ 2 You should be wary of a common misconception about the uncertainty principle, that measuring an observable C to some ‘accuracy’ Δ(C) causes the value of D to be ‘disturbed’ by an amount Δ(D) in such a way that some sort of inequality similar to (2.108) is satisfied. While it is true that measurements in quantum mechanics cause disturbance to the system being measured, this is most emphatically not the content of the uncertainty principle. The correct interpretation of the uncertainty principle is that if we prepare a large number of quantum systems in identical states, |ψ, and then perform measurements of C on some of those systems, and of D in others, then the standard deviation Δ(C) of the C results times the standard deviation Δ(D) of the results for D will satisfy the inequality (2.108). As an example of the uncertainty principle, consider the observables X and Y when measured for the quantum state |0. In Equation (2.70) we showed that [X, Y ] = 2iZ, so the uncertainty principle tells us that Δ(X)Δ(Y ) ≥ 0|Z|0 = 1 . (2.109) One elementary consequence of this is that Δ(X) and Δ(Y ) must both be strictly greater than 0, as can be verified by direct calculation.  δmm′ Pm . The corresponding observable implicit in this usage is M = m mPm . Another widely used phrase, to ‘measure in a basis |m’, where |m form an orthonormal basis, simply means to perform the projective measurement with projectors Pm = |mm|. Let’s look at an example of projective measurements on single qubits. First is the measurement of the observable Z. This has eigenvalues +1 and −1 with corresponding eigenvectors√|0 and |1. Thus, for example, measurement of Z on the state |ψ = (|0 + |1)/ 2 gives the result +1 with probability ψ|00|ψ = 1/2, and similarly the 90 Introduction to quantum mechanics result −1 with probability 1/2. More generally, suppose v is any real three-dimensional unit vector. Then we can define an observable: v · σ ≡ v1 σ1 + v2 σ2 + v3 σ3 . (2.116) Measurement of this observable is sometimes referred to as a ‘measurement of spin along the v axis’, for historical reasons. The following two exercises encourage you to work out some elementary but important properties of such a measurement. Exercise 2.59: Suppose we have qubit in the state |0, and we measure the observable X. What is the average value of X? What is the standard deviation of X? Exercise 2.60: Show that v · σ has eigenvalues ±1, and that the projectors onto the corresponding eigenspaces are given by P± = (I ± v · σ)/2. Exercise 2.61: Calculate the probability of obtaining the result +1 for a measurement of v · σ, given that the state prior to measurement is |0. What is the state of the system after the measurement if +1 is obtained? 2.2.6 POVM measurements The quantum measurement postulate, Postulate 3, involves two elements. First, it gives a rule describing the measurement statistics, that is, the respective probabilities of the different possible measurement outcomes. Second, it gives a rule describing the postmeasurement state of the system. However, for some applications the post-measurement state of the system is of little interest, with the main item of interest being the probabilities of the respective measurement outcomes. This is the case, for example, in an experiment where the system is measured only once, upon conclusion of the experiment. In such instances there is a mathematical tool known as the POVM formalism which is especially well adapted to the analysis of the measurements. (The acronym POVM stands for ‘Positive Operator-Valued Measure’, a technical term whose historical origins we won’t worry about.) This formalism is a simple consequence of the general description of measurements introduced in Postulate 3, but the theory of POVMs is so elegant and widely used that it merits a separate discussion here. Suppose a measurement described by measurement operators Mm is performed upon a quantum system in the state |ψ. Then the probability of outcome m is given by † Mm |ψ. Suppose we define p(m) = ψ|Mm † Mm . Em ≡ Mm (2.117) Then from Postulate 3 and elementary linear algebra, Em is a positive operator such  that m Em = I and p(m) = ψ|Em |ψ. Thus the set of operators Em are sufficient to determine the probabilities of the different measurement outcomes. The operators Em are known as the POVM elements associated with the measurement. The complete set {Em } is known as a POVM. As an example of a POVM, consider a projective measurement described by measurement operators Pm , where the Pm are projectors such that Pm Pm′ = δmm′ Pm and  m Pm = I. In this instance (and only this instance) all the POVM elements are the † P m = Pm . same as the measurement operators themselves, since Em ≡ Pm The postulates of quantum mechanics Box 2.5: General measurements, projective measurements, and POVMs Most introductions to quantum mechanics describe only projective measurements, and consequently the general description of measurements given in Postulate 3 may be unfamiliar to many physicists, as may the POVM formalism described in Section 2.2.6. The reason most physicists don’t learn the general measurement formalism is because most physical systems can only be measured in a very coarse manner. In quantum computation and quantum information we aim for an exquisite level of control over the measurements that may be done, and consequently it helps to use a more comprehensive formalism for the description of measurements. Of course, when the other axioms of quantum mechanics are taken into account, projective measurements augmented by unitary operations turn out to be completely equivalent to general measurements, as shown in Section 2.2.8. So a physicist trained in the use of projective measurements might ask to what end we start with the general formalism, Postulate 3? There are several reasons for doing so. First, mathematically general measurements are in some sense simpler than projective measurements, since they involve fewer restrictions on the measurement operators; there is, for example, no requirement for general measurements analogous to the condition Pi Pj = δij Pi for projective measurements. This simpler structure also gives rise to many useful properties for general measurements that are not possessed by projective measurements. Second, it turns out that there are important problems in quantum computation and quantum information – such as the optimal way to distinguish a set of quantum states – the answer to which involves a general measurement, rather than a projective measurement. A third reason for preferring Postulate 3 as a starting point is related to a property of projective measurements known as repeatability. Projective measurements are repeatable in the sense that if we perform a projective measurement once, and obtain the outcome m, repeating the measurement gives the outcome m again and does not change the state. To see this, suppose |ψ was the initial state. After the ' (  first measurement the state is |ψm  = Pm |ψ / ψ|Pm |ψ. Applying Pm to |ψm  does not change it, so we have ψm |Pm |ψm  = 1, and therefore repeated measurement gives the result m each time, without changing the state. This repeatability of projective measurements tips us off to the fact that many important measurements in quantum mechanics are not projective measurements. For instance, if we use a silvered screen to measure the position of a photon we destroy the photon in the process. This certainly makes it impossible to repeat the measurement of the photon’s position! Many other quantum measurements are also not repeatable in the same sense as a projective measurement. For such measurements, the general measurement postulate, Postulate 3, must be employed. Where do POVMs fit in this picture? POVMs are best viewed as a special case of the general measurement formalism, providing the simplest means by which one can study general measurement statistics, without the necessity for knowing the post-measurement state. They are a mathematical convenience that sometimes gives extra insight into quantum measurements. 91 92 Introduction to quantum mechanics Exercise 2.62: Show that any measurement where the measurement operators and the POVM elements coincide is a projective measurement.  Above we noticed that the POVM operators are positive and satisfy m Em = I.  Suppose now that {Em } is some arbitrary set of positive operators such that m Em = I. We will show that there exists a set of measurement operators Mm defining a measurement √  † Mm = described by the POVM {Em }. Defining Mm ≡ Em we see that m Mm  m Em = I, and therefore the set {Mm } describes a measurement with POVM {Em }. For this reason it is convenient to define a POVM to be any set of operators {Em } such  that: (a) each operator Em is positive; and (b) the completeness relation m Em = I is obeyed, expressing the fact that probabilities sum to one. To complete the description of POVMs, we note again that given a POVM {Em }, the probability of outcome m is given by p(m) = ψ|Em |ψ. We’ve looked at projective measurements as an example of the use of POVMs, but it wasn’t very exciting since we didn’t learn much that was new. The following more sophisticated example illustrates the use of the POVM formalism as a guide for our intuition in quantum computation and quantum information. Suppose √ Alice gives Bob a qubit prepared in one of two states, |ψ1  = |0 or |ψ2  = (|0 + |1)/ 2. As explained in Section 2.2.4 it is impossible for Bob to determine whether he has been given |ψ1  or |ψ2  with perfect reliability. However, it is possible for him to perform a measurement which distinguishes the states some of the time, but never makes an error of mis-identification. Consider a POVM containing three elements, √ 2 √ |11|, (2.118) E1 ≡ 1+ 2 √ 2 |0 − |1 0| − 1| √ , (2.119) E2 ≡ 2 1+ 2 (2.120) E3 ≡ I − E1 − E2 . It is straightforward to verify that these are positive operators which satisfy the com pleteness relation m Em = I, and therefore form a legitimate POVM. Suppose Bob is given the state |ψ1  = |0. He performs the measurement described by the POVM {E1 , E2 , E3 }. There is zero probability that he will observe the result E1 , since E1 has been cleverly chosen to ensure that ψ1 |E1 |ψ1  = 0. Therefore, if the result of his measurement is E1 then Bob can safely conclude that the state he received must have been |ψ2 . A similar line of reasoning shows that if the measurement outcome E2 occurs then it must have been the state |ψ1  that Bob received. Some of the time, however, Bob will obtain the measurement outcome E3 , and he can infer nothing about the identity of the state he was given. The key point, however, is that Bob never makes a mistake identifying the state he has been given. This infallibility comes at the price that sometimes Bob obtains no information about the identity of the state. This simple example demonstrates the utility of the POVM formalism as a simple and intuitive way of gaining insight into quantum measurements in instances where only the measurement statistics matter. In many instances later in the book we will only be concerned with measurement statistics, and will therefore use the POVM formalism rather than the more general formalism for measurements described in Postulate 3. Exercise 2.63: Suppose a measurement is described by measurement operators Mm . 93 The postulates of quantum mechanics √ Show that there exist unitary operators Um such that Mm = Um Em , where Em is the POVM associated to the measurement. Exercise 2.64: Suppose Bob is given a quantum state chosen from a set |ψ1 , . . . , |ψm  of linearly independent states. Construct a POVM {E1 , E2 , . . . , Em+1 } such that if outcome Ei occurs, 1 ≤ i ≤ m, then Bob knows with certainty that he was given the state |ψi . (The POVM must be such that ψi |Ei |ψi  > 0 for each i.) 2.2.7 Phase ‘Phase’ is a commonly used term in quantum mechanics, with several different meanings dependent upon context. At this point it is convenient to review a couple of these meanings. Consider, for example, the state eiθ |ψ, where |ψ is a state vector, and θ is a real number. We say that the state eiθ |ψ is equal to |ψ, up to the global phase factor eiθ . It is interesting to note that the statistics of measurement predicted for these two states are the same. To see this, suppose Mm is a measurement operator associated to some quantum measurement, and note that the respective probabilities for outcome m † † † Mm |ψ and ψ|e−iθ Mm Mm eiθ |ψ = ψ|Mm Mm |ψ. Therefore, occurring are ψ|Mm from an observational point of view these two states are identical. For this reason we may ignore global phase factors as being irrelevant to the observed properties of the physical system. There is another kind of phase known as the relative phase, which has quite a different meaning. Consider the states |0 + |1 √ 2 and |0 − |1 √ . 2 (2.121) √ 2. For the second state the amplitude is In the first state the amplitude of |1 is 1/ √ −1/ 2. In each case the magnitude of the amplitudes is the same, but they differ in sign. More generally, we say that two amplitudes, a and b, differ by a relative phase if there is a real θ such that a = exp(iθ)b. More generally still, two states are said to differ by a relative phase in some basis if each of the amplitudes in that basis is related by such a phase factor. For example, the two states displayed above are the same up to a relative phase shift because the |0 amplitudes are identical (a relative phase factor of 1), and the |1 amplitudes differ only by a relative phase factor of −1. The difference between relative phase factors and global phase factors is that for relative phase the phase factors may vary from amplitude to amplitude. This makes the relative phase a basis-dependent concept unlike global phase. As a result, states which differ only by relative phases in some basis give rise to physically observable differences in measurement statistics, and it is not possible to regard these states as physically equivalent, as we do with states differing by a global phase factor √ √ Exercise 2.65: Express the states (|0 + |1)/ 2 and (|0 − |1)/ 2 in a basis in which they are not the same up to a relative phase shift. 2.2.8 Composite systems Suppose we are interested in a composite quantum system made up of two (or more) distinct physical systems. How should we describe states of the composite system? The following postulate describes how the state space of a composite system is built up from the state spaces of the component systems. 94 Introduction to quantum mechanics Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state |ψi , then the joint state of the total system is |ψ1  ⊗ |ψ2  ⊗ · · · ⊗ |ψn . Why is the tensor product the mathematical structure used to describe the state space of a composite physical system? At one level, we can simply accept it as a basic postulate, not reducible to something more elementary, and move on. After all, we certainly expect that there be some canonical way of describing composite systems in quantum mechanics. Is there some other way we can arrive at this postulate? Here is one heuristic that is sometimes used. Physicists sometimes like to speak of the superposition principle of quantum mechanics, which states that if |x and |y are two states of a quantum system, then any superposition α|x + β|y should also be an allowed state of a quantum system, where |α|2 + |β|2 = 1. For composite systems, it seems natural that if |A is a state of system A, and |B is a state of system B, then there should be some corresponding state, which we might denote |A|B, of the joint system AB. Applying the superposition principle to product states of this form, we arrive at the tensor product postulate given above. This is not a derivation, since we are not taking the superposition principle as a fundamental part of our description of quantum mechanics, but it gives you the flavor of the various ways in which these ideas are sometimes reformulated. A variety of different notations for composite systems appear in the literature. Part of the reason for this proliferation is that different notations are better adapted for different applications, and we will also find it convenient to introduce some specialized notations on occasion. At this point it suffices to mention a useful subscript notation to denote states and operators on different systems, when it is not clear from context. For example, in a system containing three qubits, X2 is the Pauli σx operator acting on the second qubit. Exercise 2.66: Show that the average value of the √ observable X1 Z2 for a two qubit system measured in the state (|00 + |11)/ 2 is zero. In Section 2.2.5 we claimed that projective measurements together with unitary dynamics are sufficient to implement a general measurement. The proof of this statement makes use of composite quantum systems, and is a nice illustration of Postulate 4 in action. Suppose we have a quantum system with state space Q, and we want to perform a measurement described by measurement operators Mm on the system Q. To do this, we introduce an ancilla system, with state space M , having an orthonormal basis |m in one-to-one correspondence with the possible outcomes of the measurement we wish to implement. This ancilla system can be regarded as merely a mathematical device appearing in the construction, or it can be interpreted physically as an extra quantum system introduced into the problem, which we assume has a state space with the required properties. Letting |0 be any fixed state of M , define an operator U on products |ψ|0 of states |ψ from Q with the state |0 by U |ψ|0 ≡ m Mm |ψ|m. Using the orthonormality of the states |m and the completeness relation (2.122)  m † Mm Mm = The postulates of quantum mechanics 95 I, we can see that U preserves inner products between states of the form |ψ|0, ϕ|0|U †U |ψ|0 = m,m′ = m † ϕ|Mm Mm′ |ψ m|m′  (2.123) † ϕ|Mm Mm |ψ (2.124) = ϕ|ψ. (2.125) By the results of Exercise 2.67 it follows that U can be extended to a unitary operator on the space Q ⊗ M , which we also denote by U . Exercise 2.67: Suppose V is a Hilbert space with a subspace W . Suppose U : W → V is a linear operator which preserves inner products, that is, for any |w1  and |w2  in W , w1 |U † U |w2  = w1 |w2 . (2.126) Prove that there exists a unitary operator U ′ : V → V which extends U . That is, U ′ |w = U |w for all |w in W , but U ′ is defined on the entire space V . Usually we omit the prime symbol ′ and just write U to denote the extension. Next, suppose we perform a projective measurement on the two systems described by projectors Pm ≡ IQ ⊗ |mm|. Outcome m occurs with probability p(m) = ψ|0|U †Pm U |ψ|0 = m′ ,m′′ † ′ ψ|Mm ′ m |(IQ (2.127) ′′ ⊗ |mm|)Mm′′ |ψ|m  † Mm |ψ, = ψ|Mm (2.128) (2.129) just as given in Postulate 3. The joint state of the system QM after measurement, conditional on result m occurring, is given by Pm U |ψ|0 Mm |ψ|m  . = † † ψ|U Pm U |ψ ψ|Mm Mm |ψ (2.130) It follows that the state of system M after the measurement is |m, and the state of system Q is Mm |ψ  , † ψ|Mm Mm |ψ (2.131) just as prescribed by Postulate 3. Thus unitary dynamics, projective measurements, and the ability to introduce ancillary systems, together allow any measurement of the form described in Postulate 3 to be realized. Postulate 4 also enables us to define one of the most interesting and puzzling ideas associated with composite quantum systems – entanglement. Consider the two qubit state |ψ = |00 + |11 √ . 2 (2.132) This state has the remarkable property that there are no single qubit states |a and |b such that |ψ = |a|b, a fact which you should now convince yourself of: 96 Introduction to quantum mechanics Exercise 2.68: Prove that |ψ = |a|b for all single qubit states |a and |b. We say that a state of a composite system having this property (that it can’t be written as a product of states of its component systems) is an entangled state. For reasons which nobody fully understands, entangled states play a crucial role in quantum computation and quantum information, and arise repeatedly through the remainder of this book. We have already seen entanglement play a crucial role in quantum teleportation, as described in Section 1.3.7. In this chapter we give two examples of the strange effects enabled by entangled quantum states, superdense coding (Section 2.3), and the violation of Bell’s inequality (Section 2.6). 2.2.9 Quantum mechanics: a global view We have now explained all the fundamental postulates of quantum mechanics. Most of the rest of the book is taken up with deriving consequences of these postulates. Let’s quickly review the postulates and try to place them in some kind of global perspective. Postulate 1 sets the arena for quantum mechanics, by specifying how the state of an isolated quantum system is to be described. Postulate 2 tells us that the dynamics of closed quantum systems are described by the Schrödinger equation, and thus by unitary evolution. Postulate 3 tells us how to extract information from our quantum systems by giving a prescription for the description of measurement. Postulate 4 tells us how the state spaces of different quantum systems may be combined to give a description of the composite system. What’s odd about quantum mechanics, at least by our classical lights, is that we can’t directly observe the state vector. It’s a little bit like a game of chess where you can never find out exactly where each piece is, but only know the rank of the board they are on. Classical physics – and our intuition – tells us that the fundamental properties of an object, like energy, position, and velocity, are directly accessible to observation. In quantum mechanics these quantities no longer appear as fundamental, being replaced by the state vector, which can’t be directly observed. It is as though there is a hidden world in quantum mechanics, which we can only indirectly and imperfectly access. Moreover, merely observing a classical system does not necessarily change the state of the system. Imagine how difficult it would be to play tennis if each time you looked at the ball its position changed! But according to Postulate 3, observation in quantum mechanics is an invasive procedure that typically changes the state of the system. What conclusions should we draw from these strange features of quantum mechanics? Might it be possible to reformulate quantum mechanics in a mathematically equivalent way so that it had a structure more like classical physics? In Section 2.6 we’ll prove Bell’s inequality, a surprising result that shows any attempt at such a reformulation is doomed to failure. We’re stuck with the counter-intuitive nature of quantum mechanics. Of course, the proper reaction to this is glee, not sorrow! It gives us an opportunity to develop tools of thought that make quantum mechanics intuitive. Moreover, we can exploit the hidden nature of the state vector to do information processing tasks beyond what is possible in the classical world. Without this counter-intuitive behavior, quantum computation and quantum information would be a lot less interesting. We can also turn this discussion about, and ask ourselves: ‘If quantum mechanics is so different from classical physics, then how come the everyday world looks so classical?’ Why do we see no evidence of a hidden state vector in our everyday lives? It turns out Application: superdense coding 97 that the classical world we see can be derived from quantum mechanics as an approximate description of the world that will be valid on the sort of time, length and mass scales we commonly encounter in our everyday lives. Explaining the details of how quantum mechanics gives rise to classical physics is beyond the scope of this book, but the interested reader should check out the discussion of this topic in ‘History and further reading’at the end of Chapter 8. 2.3 Application: superdense coding Superdense coding is a simple yet surprising application of elementary quantum mechanics. It combines in a concrete, non-trivial way all the basic ideas of elementary quantum mechanics, as covered in the previous sections, and is therefore an ideal example of the information processing tasks that can be accomplished using quantum mechanics. Superdense coding involves two parties, conventionally known as ‘Alice’ and ‘Bob’, who are a long way away from one another. Their goal is to transmit some classical information from Alice to Bob. Suppose Alice is in possession of two classical bits of information which she wishes to send Bob, but is only allowed to send a single qubit to Bob. Can she achieve her goal? Superdense coding tells us that the answer to this question is yes. Suppose Alice and Bob initially share a pair of qubits in the entangled state |ψ = |00 + |11 √ . 2 (2.133) Alice is initially in possession of the first qubit, while Bob has possession of the second qubit, as illustrated in Figure 2.3. Note that |ψ is a fixed state; there is no need for Alice to have sent Bob any qubits in order to prepare this state. Instead, some third party may prepare the entangled state ahead of time, sending one of the qubits to Alice, and the other to Bob. =          00 + 11 2    Figure 2.3. The initial setup for superdense coding, with Alice and Bob each in possession of one half of an entangled pair of qubits. Alice can use superdense coding to transmit two classical bits of information to Bob, using only a single qubit of communication and this preshared entanglement. By sending the single qubit in her possession to Bob, it turns out that Alice can communicate two bits of classical information to Bob. Here is the procedure she uses. If she wishes to send the bit string ‘00’ to Bob then she does nothing at all to her qubit. If she wishes to send ‘01’ then she applies the phase flip Z to her qubit. If she wishes to gate, X, to her qubit. If she wishes to send send ‘10’ then she applies the quantum ‘11’ then she applies the iY gate to her qubit. The four resulting states are easily seen 98 Introduction to quantum mechanics to be: |00 + |11 √ 2 |00 − |11 √ 01 : |ψ → 2 |10 + |01 √ 10 : |ψ → 2 |01 − |10 √ 11 : |ψ → . 2 00 : |ψ → (2.134) (2.135) (2.136) (2.137) As we noted in Section 1.3.6, these four states are known as the Bell basis, Bell states, or EPR pairs, in honor of several of the pioneers who first appreciated the novelty of entanglement. Notice that the Bell states form an orthonormal basis, and can therefore be distinguished by an appropriate quantum measurement. If Alice sends her qubit to Bob, giving Bob possession of both qubits, then by doing a measurement in the Bell basis Bob can determine which of the four possible bit strings Alice sent. Summarizing, Alice, interacting with only a single qubit, is able to transmit two bits of information to Bob. Of course, two qubits are involved in the protocol, but Alice never need interact with the second qubit. Classically, the task Alice accomplishes would have been impossible had she only transmitted a single classical bit, as we will show in Chapter 12. Furthermore, this remarkable superdense coding protocol has received partial verification in the laboratory. (See ‘History and further reading’ for references to the experimental verification.) In later chapters we will see many other examples, some of them much more spectacular than superdense coding, of quantum mechanics being harnessed to perform information processing tasks. However, a key point can already be seen in this beautiful example: information is physical, and surprising physical theories such as quantum mechanics may predict surprising information processing abilities. Exercise 2.69: Verify that the Bell basis forms an orthonormal basis for the two qubit state space. Exercise 2.70: Suppose E is any positive operator acting on Alice’s qubit. Show that ψ|E ⊗ I|ψ takes the same value when |ψ is any of the four Bell states. Suppose some malevolent third party (‘Eve’) intercepts Alice’s qubit on the way to Bob in the superdense coding protocol. Can Eve infer anything about which of the four possible bit strings 00, 01, 10, 11 Alice is trying to send? If so, how, or if not, why not? 2.4 The density operator We have formulated quantum mechanics using the language of state vectors. An alternate formulation is possible using a tool known as the density operator or density matrix. This alternate formulation is mathematically equivalent to the state vector approach, but it provides a much more convenient language for thinking about some commonly encountered scenarios in quantum mechanics. The next three sections describe the density operator formulation of quantum mechanics. Section 2.4.1 introduces the density operator using the concept of an ensemble of quantum states. Section 2.4.2 develops some general The density operator 99 properties of the density operator. Finally, Section 2.4.3 describes an application where the density operator really shines – as a tool for the description of individual subsystems of a composite quantum system. 2.4.1 Ensembles of quantum states The density operator language provides a convenient means for describing quantum systems whose state is not completely known. More precisely, suppose a quantum system is in one of a number of states |ψi , where i is an index, with respective probabilities pi . We shall call {pi , |ψi } an ensemble of pure states. The density operator for the system is defined by the equation ρ≡ i pi |ψi ψi |. (2.138) The density operator is often known as the density matrix; we will use the two terms interchangeably. It turns out that all the postulates of quantum mechanics can be reformulated in terms of the density operator language. The purpose of this section and the next is to explain how to perform this reformulation, and explain when it is useful. Whether one uses the density operator language or the state vector language is a matter of taste, since both give the same results; however it is sometimes much easier to approach problems from one point of view rather than the other. Suppose, for example, that the evolution of a closed quantum system is described by the unitary operator U . If the system was initially in the state |ψi  with probability pi then after the evolution has occurred the system will be in the state U |ψi  with probability pi . Thus, the evolution of the density operator is described by the equation U ρ= i pi |ψi ψi | −→ i pi U |ψi ψi |U † = U ρU †. (2.139) Measurements are also easily described in the density operator language. Suppose we perform a measurement described by measurement operators Mm . If the initial state was |ψi , then the probability of getting result m is † † p(m|i) = ψi |Mm Mm |ψi  = tr(Mm Mm |ψi ψi |), (2.140) where we have used Equation (2.61) to obtain the last equality. By the law of total probability (see Appendix 1 for an explanation of this and other elementary notions of probability theory) the probability of obtaining result m is p(m) = p(m|i)pi (2.141) † pi tr(Mm Mm |ψi ψi |) (2.142) i = i † Mm ρ). = tr(Mm (2.143) What is the density operator of the system after obtaining the measurement result m? If the initial state was |ψi  then the state after obtaining the result m is Mm |ψi  |ψim  =  . † ψi |Mm Mm |ψi  (2.144) 100 Introduction to quantum mechanics Thus, after a measurement which yields the result m we have an ensemble of states |ψim  with respective probabilities p(i|m). The corresponding density operator ρm is therefore ρm = i p(i|m)|ψim ψim | = p(i|m) i † Mm |ψi ψi |Mm † ψi |Mm Mm |ψi  . (2.145) But by elementary probability theory, p(i|m) = p(m, i)/p(m) = p(m|i)pi /p(m). Substituting from (2.143) and (2.140) we obtain pi ρm = i = † Mm |ψi ψi |Mm † tr(Mm Mm ρ) † Mm ρMm † tr(Mm Mm ρ) . (2.146) (2.147) What we have shown is that the basic postulates of quantum mechanics related to unitary evolution and measurement can be rephrased in the language of density operators. In the next section we complete this rephrasing by giving an intrinsic characterization of the density operator that does not rely on the idea of a state vector. Before doing so, however, it is useful to introduce some more language, and one more fact about the density operator. First, the language. A quantum system whose state |ψ is known exactly is said to be in a pure state. In this case the density operator is simply ρ = |ψψ|. Otherwise, ρ is in a mixed state; it is said to be a mixture of the different pure states in the ensemble for ρ. In the exercises you will be asked to demonstrate a simple criterion for determining whether a state is pure or mixed: a pure state satisfies tr(ρ2 ) = 1, while a mixed state satisfies tr(ρ2 ) < 1. A few words of warning about the nomenclature: sometimes people use the term ‘mixed state’ as a catch-all to include both pure and mixed quantum states. The origin for this usage seems to be that it implies that the writer is not necessarily assuming that a state is pure. Second, the term ‘pure state’ is often used in reference to a state vector |ψ, to distinguish it from a density operator ρ. Finally, imagine a quantum system is prepared in the state ρi with probability pi . It is not difficult to convince yourself that the system may be described by the density matrix  i pi ρi . A proof of this is to suppose that ρi arises from some ensemble {pij , |ψij } (note that i is fixed) of pure states, so the probability for being in the state |ψij  is pi pij . The density matrix for the system is thus ρ= ij = pi pij |ψij ψij | (2.148) pi ρi , (2.149) i  where we have used the definition ρi = j pij |ψij ψij |. We say that ρ is a mixture of the states ρi with probabilities pi . This concept of a mixture comes up repeatedly in the analysis of problems like quantum noise, where the effect of the noise is to introduce ignorance into our knowledge of the quantum state. A simple example is provided by the measurement scenario described above. Imagine that, for some reason, our record of the result m of the measurement was lost. We would have a quantum system in the state ρm with probability p(m), but would no longer know the actual value of m. The state of The density operator 101 such a quantum system would therefore be described by the density operator ρ= p(m)ρm (2.150) m † tr(Mm Mm ρ) = m † Mm ρMm † tr(Mm Mm ρ) † Mm ρMm , = (2.151) (2.152) m a nice compact formula which may be used as the starting point for analysis of further operations on the system. 2.4.2 General properties of the density operator The density operator was introduced as a means of describing ensembles of quantum states. In this section we move away from this description to develop an intrinsic characterization of density operators that does not rely on an ensemble interpretation. This allows us to complete the program of giving a description of quantum mechanics that does not take as its foundation the state vector. We also take the opportunity to develop numerous other elementary properties of the density operator. The class of operators that are density operators are characterized by the following useful theorem: Theorem 2.5: (Characterization of density operators) An operator ρ is the density operator associated to some ensemble {pi , |ψi } if and only if it satisfies the conditions: (1) (Trace condition) ρ has trace equal to one. (2) (Positivity condition) ρ is a positive operator. Proof  Suppose ρ = i pi |ψi ψi | is a density operator. Then tr(ρ) = i pi tr(|ψi ψi |) = pi = 1, (2.153) i so the trace condition tr(ρ) = 1 is satisfied. Suppose |ϕ is an arbitrary vector in state space. Then ϕ|ρ|ϕ = pi ϕ|ψi ψi |ϕ (2.154) i (2.155) i pi |ϕ|ψi |2 = ≥ 0, (2.156) so the positivity condition is satisfied. Conversely, suppose ρ is any operator satisfying the trace and positivity conditions. Since ρ is positive, it must have a spectral decomposition ρ= j λj |jj|, (2.157) where the vectors |j are orthogonal, and λj are real, non-negative eigenvalues of ρ. 102 Introduction to quantum mechanics  From the trace condition we see that j λj = 1. Therefore, a system in state |j with probability λj will have density operator ρ. That is, the ensemble {λj , |j} is an ensemble of states giving rise to the density operator ρ. This theorem provides a characterization of density operators that is intrinsic to the operator itself: we can define a density operator to be a positive operator ρ which has trace equal to one. Making this definition allows us to reformulate the postulates of quantum mechanics in the density operator picture. For ease of reference we state all the reformulated postulates here: Postulate 1: Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system. The system is completely described by its density operator, which is a positive operator ρ with trace one, acting on the state space of the system. If a quantum system is in the state ρi with probability pi , then the density operator for  the system is i pi ρi . Postulate 2: The evolution of a closed quantum system is described by a unitary transformation. That is, the state ρ of the system at time t1 is related to the state ρ′ of the system at time t2 by a unitary operator U which depends only on the times t1 and t2 , ρ′ = U ρU †. (2.158) Postulate 3: Quantum measurements are described by a collection {Mm } of measurement operators. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is ρ immediately before the measurement then the probability that result m occurs is given by † Mm ρ), p(m) = tr(Mm (2.159) and the state of the system after the measurement is † Mm ρMm † tr(Mm Mm ρ) . (2.160) The measurement operators satisfy the completeness equation, † Mm Mm = I. (2.161) m Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state ρi , then the joint state of the total system is ρ1 ⊗ ρ2 ⊗ . . . ρn . These reformulations of the fundamental postulates of quantum mechanics in terms of the density operator are, of course, mathematically equivalent to the description in terms of the state vector. Nevertheless, as a way of thinking about quantum mechanics, the density operator approach really shines for two applications: the description of quantum systems whose state is not known, and the description of subsystems of a composite 103 The density operator quantum system, as will be described in the next section. For the remainder of this section we flesh out the properties of the density matrix in more detail. Exercise 2.71: (Criterion to decide if a state is mixed or pure) Let ρ be a density operator. Show that tr(ρ2 ) ≤ 1, with equality if and only if ρ is a pure state. It is a tempting (and surprisingly common) fallacy to suppose that the eigenvalues and eigenvectors of a density matrix have some special significance with regard to the ensemble of quantum states represented by that density matrix. For example, one might suppose that a quantum system with density matrix 3 1 ρ = |00| + |11| . 4 4 (2.162) must be in the state |0 with probability 3/4 and in the state |1 with probability 1/4. However, this is not necessarily the case. Suppose we define ) ) 3 1 |0 + |1 (2.163) |a ≡ 4 4 ) ) 3 1 |0 − |1, (2.164) |b ≡ 4 4 and the quantum system is prepared in the state |a with probability 1/2 and in the state |b with probability 1/2. Then it is easily checked that the corresponding density matrix is 1 1 3 1 ρ = |aa| + |bb| = |00| + |11|. 2 2 4 4 (2.165) That is, these two different ensembles of quantum states give rise to the same density matrix. In general, the eigenvectors and eigenvalues of a density matrix just indicate one of many possible ensembles that may give rise to a specific density matrix, and there is no reason to suppose it is an especially privileged ensemble. A natural question to ask in the light of this discussion is what class of ensembles does give rise to a particular density matrix? The solution to this problem, which we now give, has surprisingly many applications in quantum computation and quantum information, notably in the understanding of quantum noise and quantum error-correction (Chapters 8 and 10). For the solution it is convenient to make use of vectors |ψ̃i  which may not be  normalized to unit length. We say the set |ψ̃i  generates the operator ρ ≡ i |ψ̃i ψ̃i |, and thus the connection to the usual ensemble picture of density operators is expressed √ by the equation |ψ̃i  = pi |ψi . When do two sets of vectors, |ψ̃i  and |ϕ̃j  generate the same operator ρ? The solution to this problem will enable us to answer the question of what ensembles give rise to a given density matrix. Theorem 2.6: (Unitary freedom in the ensemble for density matrices) The sets |ψ̃i  and |ϕ̃j  generate the same density matrix if and only if |ψ̃i  = j uij |ϕ̃j  , (2.166) where uij is a unitary matrix of complex numbers, with indices i and j, and we 104 Introduction to quantum mechanics ‘pad’ whichever set of vectors |ψ̃i  or |ϕ̃j  is smaller with additional vectors 0 so that the two sets have the same number of elements.   As a consequence of the theorem, note that ρ = i pi |ψi ψi | = j qj |ϕj ϕj | for normalized states |ψi , |ϕj  and probability distributions pi and qj if and only if √ √ uij qj |ϕj , pi |ψi  = (2.167) j for some unitary matrix uij , and we may pad the smaller ensemble with entries having probability zero in order to make the two ensembles the same size. Thus, Theorem 2.6 characterizes the freedom in ensembles {pi , |ψi } giving rise to a given density matrix ρ. Indeed, it is easily checked that our earlier example of a density matrix with two different decompositions, (2.162), arises as a special case of this general result. Let’s turn now to the proof of the theorem. Proof  Suppose |ψ̃i  = j uij |ϕ̃j  for some unitary uij . Then i |ψ̃i ψ̃i | = ijk = jk = jk = j uij u∗ik |ϕ̃j ϕ̃k | (2.168)  (2.169) u†ki uij i  |ϕ̃j ϕ̃k | δkj |ϕ̃j ϕ̃k | (2.170) |ϕ̃j ϕ̃j |, (2.171) which shows that |ψ̃i  and |ϕ̃j  generate the same operator. Conversely, suppose A= i |ψ̃i ψ̃i | = j |ϕ̃j ϕ̃j | . (2.172)  Let A = k λk |kk| be a decomposition for A such that the states |k are orthonormal, and the√ λk are strictly positive. Our strategy is to relate the states |ψ̃i  to the states |k̃ ≡ λk |k, and similarly relate the states |ϕ̃j  to the states |k̃. Combining the two relations will give the result. Let |ψ be any vector orthonormal to the space spanned by the |k̃, so ψ|k̃k̃|ψ = 0 for all k, and thus we see that 0 = ψ|A|ψ = i ψ|ψ̃i ψ̃i |ψ = i |ψ|ψ̃i |2 . (2.173) Thus ψ|ψ̃i  = 0 for all i and all |ψ orthonormal to the space spanned by the |k̃. It follows that each |ψ̃i  can be expressed as a linear combination of the |k̃, |ψ̃i  =    i |ψ̃i ψ̃i | we see that k |k̃k̃| = k cik |k̃. Since A =   k |k̃k̃| = kl i cik c∗il |k̃l̃|. (2.174) The operators |k̃l̃| are easily seen to be linearly independent, and thus it must be that The density operator  105 ∗ i cik cil = δkl . This ensures that we may append extra columns to c to obtain a unitary  matrix v such that |ψ̃i  = k vik |k̃, where we have appended zero vectors to the list  of |k̃. Similarly, we can find a unitary matrix w such that |ϕ̃j  = k wjk |k̃. Thus  |ψ̃i  = j uij |ϕ̃j , where u = vw† is unitary. Exercise 2.72: (Bloch sphere for mixed states) The Bloch sphere picture for pure states of a single qubit was introduced in Section 1.2. This description has an important generalization to mixed states as follows. (1) Show that an arbitrary density matrix for a mixed state qubit may be written as I + r · σ , (2.175) ρ= 2 where r is a real three-dimensional vector such that r ≤ 1. This vector is known as the Bloch vector for the state ρ. (2) What is the Bloch vector representation for the state ρ = I/2? (3) Show that a state ρ is pure if and only if r = 1. (4) Show that for pure states the description of the Bloch vector we have given coincides with that in Section 1.2. Exercise 2.73: Let ρ be a density operator. A minimal ensemble for ρ is an ensemble {pi , |ψi } containing a number of elements equal to the rank of ρ. Let |ψ be any state in the support of ρ. (The support of a Hermitian operator A is the vector space spanned by the eigenvectors of A with non-zero eigenvalues.) Show that there is a minimal ensemble for ρ that contains |ψ, and moreover that in any such ensemble |ψ must appear with probability pi = 1 , ψi |ρ−1 |ψi  (2.176) where ρ−1 is defined to be the inverse of ρ, when ρ is considered as an operator acting only on the support of ρ. (This definition removes the problem that ρ may not have an inverse.) 2.4.3 The reduced density operator Perhaps the deepest application of the density operator is as a descriptive tool for subsystems of a composite quantum system. Such a description is provided by the reduced density operator, which is the subject of this section. The reduced density operator is so useful as to be virtually indispensable in the analysis of composite quantum systems. Suppose we have physical systems A and B, whose state is described by a density operator ρAB . The reduced density operator for system A is defined by ρA ≡ trB (ρAB ), (2.177) where trB is a map of operators known as the partial trace over system B. The partial trace is defined by   trB |a1 a2 | ⊗ |b1 b2 | ≡ |a1 a2 | tr(|b1 b2 |), (2.178) where |a1  and |a2  are any two vectors in the state space of A, and |b1  and |b2  are any two vectors in the state space of B. The trace operation appearing on the right hand side 106 Introduction to quantum mechanics is the usual trace operation for system B, so tr(|b1 b2 |) = b2 |b1 . We have defined the partial trace operation only on a special subclass of operators on AB; the specification is completed by requiring in addition to Equation (2.178) that the partial trace be linear in its input. It is not obvious that the reduced density operator for system A is in any sense a description for the state of system A. The physical justification for making this identification is that the reduced density operator provides the correct measurement statistics for measurements made on system A. This is explained in more detail in Box 2.6 on page 107. The following simple example calculations may also help understand the reduced density operator. First, suppose a quantum system is in the product state ρAB = ρ ⊗ σ, where ρ is a density operator for system A, and σ is a density operator for system B. Then ρA = trB (ρ ⊗ σ) = ρ tr(σ) = ρ, (2.184) B which is the result we intuitively expect. √ Similarly, ρ = σ for this state. A less trivial example is the Bell state (|00 + |11)/ 2. This has density operator    00| + 11| |00 + |11 √ √ ρ= (2.185) 2 2 |0000| + |1100| + |0011| + |1111| = . (2.186) 2 Tracing out the second qubit, we find the reduced density operator of the first qubit, ρ1 = tr2 (ρ) tr2 (|0000|) + tr2 (|1100|) + tr2 (|0011|) + tr2 (|1111|) = 2 |00|0|0 + |10|0|1 + |01|1|0 + |11|1|1 = 2 |00| + |11| = 2 I = . 2 (2.187) (2.188) (2.189) (2.190) (2.191) Notice that this state is a mixed state, since tr((I/2)2 ) = 1/2 < 1. This is quite a remarkable result. The state of the joint system of two qubits is a pure state, that is, it is known exactly; however, the first qubit is in a mixed state, that is, a state about which we apparently do not have maximal knowledge. This strange property, that the joint state of a system can be completely known, yet a subsystem be in mixed states, is another hallmark of quantum entanglement. Exercise 2.74: Suppose a composite of systems A and B is in the state |a|b, where |a is a pure state of system A, and |b is a pure state of system B. Show that the reduced density operator of system A alone is a pure state. Exercise 2.75: For each of the four Bell states, find the reduced density operator for each qubit. Quantum teleportation and the reduced density operator A useful application of the reduced density operator is to the analysis of quantum teleportation. Recall from Section 1.3.7 that quantum teleportation is a procedure for sending The density operator 107 Box 2.6: Why the partial trace? Why is the partial trace used to describe part of a larger quantum system? The reason for doing this is because the partial trace operation is the unique operation which gives rise to the correct description of observable quantities for subsystems of a composite system, in the following sense. Suppose M is any observable on system A, and we have some measuring device which is capable of realizing measurements of M . Let M̃ denote the corresponding observable for the same measurement, performed on the composite system AB. Our immediate goal is to argue that M̃ is necessarily equal to M ⊗ IB . Note that if the system AB is prepared in the state |m|ψ, where |m is an eigenstate of M with eigenvalue m, and |ψ is any state of B, then the measuring device must yield the result m for the measurement, with probability one. Thus, if Pm is the projector onto the m eigenspace of the observable M , then the corresponding projector for M̃ is Pm ⊗ IB . We therefore have M̃ = m mPm ⊗ IB = M ⊗ IB . (2.179) The next step is to show that the partial trace procedure gives the correct measurement statistics for observations on part of a system. Suppose we perform a measurement on system A described by the observable M . Physical consistency requires that any prescription for associating a ‘state’, ρA , to system A, must have the property that measurement averages be the same whether computed via ρA or ρAB , tr(M ρA ) = tr(M̃ ρAB ) = tr((M ⊗ IB )ρAB ). (2.180) This equation is certainly satisfied if we choose ρA ≡ trB (ρAB ). In fact, the partial trace turns out to be the unique function having this property. To see this uniqueness property, let f (·) be any map of density operators on AB to density operators on A such that tr(M f (ρAB )) = tr((M ⊗ IB )ρAB ), (2.181) for all observables M . Let Mi be an orthonormal basis of operators for the space of Hermitian operators with respect to the Hilbert–Schmidt inner product (X, Y ) ≡ tr(XY ) (compare Exercise 2.39 on page 76). Then expanding f (ρAB ) in this basis gives f (ρAB ) = Mi tr(Mi f (ρAB )) (2.182) Mi tr((Mi ⊗ IB )ρAB ). (2.183) i = i It follows that f is uniquely determined by Equation (2.180). Moreover, the partial trace satisfies (2.180), so it is the unique function having this property. quantum information from Alice to Bob, given that Alice and Bob share an EPR pair, and have a classical communications channel. 108 Introduction to quantum mechanics At first sight it appears as though teleportation can be used to do faster than light communication, a big no-no according to the theory of relativity. We surmised in Section 1.3.7 that what prevents faster than light communication is the need for Alice to communicate her measurement result to Bob. The reduced density operator allows us to make this rigorous. Recall that immediately before Alice makes her measurement the quantum state of the three qubits is (Equation (1.32)): 1 |00 α|0 + β|1 + |01 α|1 + β|0 |ψ2  = 2 +|10 α|0 − β|1 + |11 α|1 − β|0 . (2.192) Measuring in Alice’s computational basis, the state of the system after the measurement is:  1 |00 α|0 + β|1 with probability (2.193) 4  1 (2.194) |01 α|1 + β|0 with probability 4  1 (2.195) |10 α|0 − β|1 with probability 4  1 (2.196) |11 α|1 − β|0 with probability . 4 The density operator of the system is thus 1 |0000|(α|0 + β|1)(α∗ 0| + β ∗ 1|) + |0101|(α|1 + β|0)(α∗ 1| + β ∗ 0|) ρ= 4 +|1010|(α|0 − β|1)(α∗ 0| − β ∗ 1|) + |1111|(α|1 − β|0)(α∗ 1| − β ∗ 0|) . (2.197) Tracing out Alice’s system, we see that the reduced density operator of Bob’s system is 1 ρB = (α|0 + β|1)(α∗ 0| + β ∗ 1|) + (α|1 + β|0)(α∗ 1| + β ∗ 0|) 4 +(α|0 − β|1)(α∗ 0| − β ∗ 1|) + (α|1 − β|0)(α∗ 1| − β ∗ 0|) 2 2 2 2(|α| + |β| )|00| + 2(|α| + |β| )|11| 4 |00| + |11| = 2 I = , 2 = (2.198) 2 (2.199) (2.200) (2.201) where we have used the completeness relation in the last line. Thus, the state of Bob’s system after Alice has performed the measurement but before Bob has learned the measurement result is I/2. This state has no dependence upon the state |ψ being teleported, and thus any measurements performed by Bob will contain no information about |ψ, thus preventing Alice from using teleportation to transmit information to Bob faster than light. 109 The Schmidt decomposition and purifications 2.5 The Schmidt decomposition and purifications Density operators and the partial trace are just the beginning of a wide array of tools useful for the study of composite quantum systems, which are at the heart of quantum computation and quantum information. Two additional tools of great value are the Schmidt decomposition and purifications. In this section we present both these tools, and try to give the flavor of their power. Theorem 2.7: (Schmidt decomposition) Suppose |ψ is a pure state of a composite system, AB. Then there exist orthonormal states |iA  for system A, and orthonormal states |iB  of system B such that |ψ = i λi |iA |iB , where λi are non-negative real numbers satisfying co-efficients. (2.202)  i λ2i = 1 known as Schmidt This result is very useful. As a taste of its power, consider the following consequence: let |ψ be a pure state of a composite system, AB. Then by the Schmidt decomposition   ρA = i λ2i |iA iA | and ρB = i λ2i |iB iB |, so the eigenvalues of ρA and ρB are identical, namely λ2i for both density operators. Many important properties of quantum systems are completely determined by the eigenvalues of the reduced density operator of the system, so for a pure state of a composite system such properties will be the same√for both systems. As an example, consider the state of two qubits, (|00 + |01 + |11)/ 3. This has no obvious symmetry property, yet if you calculate tr (ρA )2 and tr (ρB )2 you will discover that they have the same value, 7/9 in each case. This is but one small consequence of the Schmidt decomposition. Proof We give the proof for the case where systems A and B have state spaces of the same dimension, and leave the general case to Exercise 2.76. Let |j and |k be any fixed orthonormal bases for systems A and B, respectively. Then |ψ can be written |ψ = jk ajk |j|k, (2.203) for some matrix a of complex numbers ajk . By the singular value decomposition, a = udv, where d is a diagonal matrix with non-negative elements, and u and v are unitary matrices. Thus |ψ = Defining |iA  ≡  j uji |j, |iB  ≡ ijk  k |ψ = uji dii vik |j|k. (2.204) vik |k, and λi ≡ dii , we see that this gives i λi |iA |iB . (2.205) It is easy to check that |iA  forms an orthonormal set, from the unitarity of u and the orthonormality of |j, and similarly that the |iB  form an orthonormal set. 110 Introduction to quantum mechanics Exercise 2.76: Extend the proof of the Schmidt decomposition to the case where A and B may have state spaces of different dimensionality. Exercise 2.77: Suppose ABC is a three component quantum system. Show by example that there are quantum states |ψ of such systems which can not be written in the form |ψ = i λi |iA |iB |iC , (2.206) where λi are real numbers, and |iA , |iB , |iC  are orthonormal bases of the respective systems. The bases |iA  and |iB  are called the Schmidt bases for A and B, respectively, and the number of non-zero values λi is called the Schmidt number for the state |ψ. The Schmidt number is an important property of a composite quantum system, which in some sense quantifies the ‘amount’ of entanglement between systems A and B. To get some idea of why this is the case, consider the following obvious but important property: the Schmidt number is preserved under unitary transformations on system A or system  B alone. To see this, notice that if i λi |iA |iB  is the Schmidt decomposition for |ψ  then i λi (U |iA )|iB  is the Schmidt decomposition for U |ψ, where U is a unitary operator acting on system A alone. Algebraic invariance properties of this type make the Schmidt number a very useful tool. Exercise 2.78: Prove that a state |ψ of a composite system AB is a product state if and only if it has Schmidt number 1. Prove that |ψ is a product state if and only if ρA (and thus ρB ) are pure states. A second, related technique for quantum computation and quantum information is purification. Suppose we are given a state ρA of a quantum system A. It is possible to introduce another system, which we denote R, and define a pure state |AR for the joint system AR such that ρA = trR (|ARAR|). That is, the pure state |AR reduces to ρA when we look at system A alone. This is a purely mathematical procedure, known as purification, which allows us to associate pure states with mixed states. For this reason we call system R a reference system: it is a fictitious system, without a direct physical significance. To prove that purification can be done for any state, we explain how to construct a system R and purification |AR for ρA . Suppose ρA has orthonormal decomposition  ρA = i pi |iA iA |. To purify ρA we introduce a system R which has the same state space as system A, with orthonormal basis states |iR , and define a pure state for the combined system √ A R pi |i |i . (2.207) |AR ≡ i We now calculate the reduced density operator for system A corresponding to the state |AR: √ trR (|ARAR|) = pi pj |iA j A | tr(|iR j R |) (2.208) ij √ = ij pi pj |iA j A | δij (2.209) EPR and the Bell inequality = i A pi |iA iA | =ρ . 111 (2.210) (2.211) Thus |AR is a purification of ρA . Notice the close relationship of the Schmidt decomposition to purification: the procedure used to purify a mixed state of system A is to define a pure state whose Schmidt basis for system A is just the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square root of the eigenvalues of the density operator being purified. In this section we’ve explained two tools for studying composite quantum systems, the Schmidt decomposition and purifications. These tools will be indispensable to the study of quantum computation and quantum information, especially quantum information, which is the subject of Part III of this book. Exercise 2.79: Consider a composite system consisting of two qubits. Find the Schmidt decompositions of the states |00 + |01 + |10 |00 + |11 |00 + |01 + |10 + |11 √ √ ; and ; . (2.212) 2 3 2 Exercise 2.80: Suppose |ψ and |ϕ are two pure states of a composite quantum system with components A and B, with identical Schmidt coefficients. Show that there are unitary transformations U on system A and V on system B such that |ψ = (U ⊗ V )|ϕ. Exercise 2.81: (Freedom in purifications) Let |AR1  and |AR2  be two purifications of a state ρA to a composite system AR. Prove that there exists a unitary transformation UR acting on system R such that |AR1  = (IA ⊗ UR )|AR2 . Exercise 2.82: Suppose {pi , |ψi } is an ensemble of states generating a density matrix  ρ = i pi |ψi ψi | for a quantum system A. Introduce a system R with orthonormal basis |i.  √ (1) Show that i pi |ψi |i is a purification of ρ. (2) Suppose we measure R in the basis |i, obtaining outcome i. With what probability do we obtain the result i, and what is the corresponding state of system A? (3) Let |AR be any purification of ρ to the system AR. Show that there exists an orthonormal basis |i in which R can be measured such that the corresponding post-measurement state for system A is |ψi  with probability pi . 2.6 EPR and the Bell inequality Anybody who is not shocked by quantum theory has not understood it. – Niels Bohr 112 Introduction to quantum mechanics I recall that during one walk Einstein suddenly stopped, turned to me and asked whether I really believed that the moon exists only when I look at it. The rest of this walk was devoted to a discussion of what a physicist should mean by the term ‘to exist’. – Abraham Pais ...quantum phenomena do not occur in a Hilbert space, they occur in a laboratory. – Asher Peres ...what is proved by impossibility proofs is lack of imagination. – John Bell This chapter has focused on introducing the tools and mathematics of quantum mechanics. As these techniques are applied in the following chapters of this book, an important recurring theme is the unusual, non-classical properties of quantum mechanics. But what exactly is the difference between quantum mechanics and the classical world? Understanding this difference is vital in learning how to perform information processing tasks that are difficult or impossible with classical physics. This section concludes the chapter with a discussion of the Bell inequality, a compelling example of an essential difference between quantum and classical physics. When we speak of an object such as a person or a book, we assume that the physical properties of that object have an existence independent of observation. That is, measurements merely act to reveal such physical properties. For example, a tennis ball has as one of its physical properties its position, which we typically measure using light scattered from the surface of the ball. As quantum mechanics was being developed in the 1920s and 1930s a strange point of view arose that differs markedly from the classical view. As described earlier in the chapter, according to quantum mechanics, an unobserved particle does not possess physical properties that exist independent of observation. Rather, such physical properties arise as a consequence of measurements performed upon the system. For example, according to quantum mechanics a qubit does not possess definite properties of ‘spin in the z direction, σz ’, and ‘spin in the x direction, σx ’, each of which can be revealed by performing the appropriate measurement. Rather, quantum mechanics gives a set of rules which specify, given the state vector, the probabilities for the possible measurement outcomes when the observable σz is measured, or when the observable σx is measured. Many physicists rejected this new view of Nature. The most prominent objector was Albert Einstein. In the famous ‘EPR paper’, co-authored with Nathan Rosen and Boris Podolsky, Einstein proposed a thought experiment which, he believed, demonstrated that quantum mechanics is not a complete theory of Nature. The essence of the EPR argument is as follows. EPR were interested in what they termed ‘elements of reality’. Their belief was that any such element of reality must be represented in any complete physical theory. The goal of the argument was to show that quantum mechanics is not a complete physical theory, by identifying elements of reality that were not included in quantum mechanics. The way they attempted to do this was by introducing what they claimed was a sufficient condition for a physical property to EPR and the Bell inequality 113 be an element of reality, namely, that it be possible to predict with certainty the value that property will have, immediately before measurement. Box 2.7: Anti-correlations in the EPR experiment Suppose we prepare the two qubit state |ψ = |01 − |10 √ , 2 (2.213) a state sometimes known as the spin singlet for historical reasons. It is not difficult to show that this state is an entangled state of the two qubit system. Suppose we perform a measurement of spin along the v axis on both qubits, that is, we measure the observable v · σ (defined in Equation (2.116) on page 90) on each qubit, getting a result of +1 or −1 for each qubit. It turns out that no matter what choice of v we make, the results of the two measurements are always opposite to one another. That is, if the measurement on the first qubit yields +1, then the measurement on the second qubit will yield −1, and vice versa. It is as though the second qubit knows the result of the measurement on the first, no matter how the first qubit is measured. To see why this is true, suppose |a and |b are the eigenstates of v · σ. Then there exist complex numbers α, β, γ, δ such that |0 = α|a + β|b |1 = γ|a + δ|b. (2.214) (2.215) Substituting we obtain |ab − |ba |01 − |10 √ √ = (αδ − βγ) . (2.216) 2 2   α β , and thus is equal But αδ − βγ is the determinant of the unitary matrix γ δ to a phase factor eiθ for some real θ. Thus |01 − |10 |ab − |ba √ √ = , 2 2 (2.217) up to an unobservable global phase factor. As a result, if a measurement of v · σ is performed on both qubits, then we can see that a result of +1 (−1) on the first qubit implies a result of −1 (+1) on the second qubit. Consider, for example, an entangled pair of qubits belonging to Alice and Bob, respectively: |01 − |10 √ . 2 (2.218) Suppose Alice and Bob are a long way away from one another. Alice performs a measurement of spin along the v axis, that is, she measures the observable v · σ (defined in Equation (2.116) on page 90). Suppose Alice receives the result +1. Then a simple quantum mechanical calculation, given in Box 2.7, shows that she can predict with certainty 114 Introduction to quantum mechanics that Bob will measure −1 on his qubit if he also measures spin along the v axis. Similarly, if Alice measured −1, then she can predict with certainty that Bob will measure +1 on his qubit. Because it is always possible for Alice to predict the value of the measurement result recorded when Bob’s qubit is measured in the v direction, that physical property must correspond to an element of reality, by the EPR criterion, and should be represented in any complete physical theory. However, standard quantum mechanics, as we have presented it, merely tells one how to calculate the probabilities of the respective measurement outcomes if v · σ is measured. Standard quantum mechanics certainly does not include any fundamental element intended to represent the value of v · σ, for all unit vectors v. The goal of EPR was to show that quantum mechanics is incomplete, by demonstrating that quantum mechanics lacked some essential ‘element of reality’, by their criterion. They hoped to force a return to a more classical view of the world, one in which systems could be ascribed properties which existed independently of measurements performed on those systems. Unfortunately for EPR, most physicists did not accept the above reasoning as convincing. The attempt to impose on Nature by fiat properties which she must obey seems a most peculiar way of studying her laws. Indeed, Nature has had the last laugh on EPR. Nearly thirty years after the EPR paper was published, an experimental test was proposed that could be used to check whether or not the picture of the world which EPR were hoping to force a return to is valid or not. It turns out that Nature experimentally invalidates that point of view, while agreeing with quantum mechanics. The key to this experimental invalidation is a result known as Bell’s inequality. Bell’s inequality is not a result about quantum mechanics, so the first thing we need to do is momentarily forget all our knowledge of quantum mechanics. To obtain Bell’s inequality, we’re going to do a thought experiment, which we will analyze using our common sense notions of how the world works – the sort of notions Einstein and his collaborators thought Nature ought to obey. After we have done the common sense analysis, we will perform a quantum mechanical analysis which we can show is not consistent with the common sense analysis. Nature can then be asked, by means of a real experiment, to decide between our common sense notions of how the world works, and quantum mechanics. Imagine we perform the following experiment, illustrated in Figure 2.4. Charlie prepares two particles. It doesn’t matter how he prepares the particles, just that he is capable of repeating the experimental procedure which he uses. Once he has performed the preparation, he sends one particle to Alice, and the second particle to Bob. Once Alice receives her particle, she performs a measurement on it. Imagine that she has available two different measurement apparatuses, so she could choose to do one of two different measurements. These measurements are of physical properties which we shall label PQ and PR , respectively. Alice doesn’t know in advance which measurement she will choose to perform. Rather, when she receives the particle she flips a coin or uses some other random method to decide which measurement to perform. We suppose for simplicity that the measurements can each have one of two outcomes, +1 or −1. Suppose Alice’s particle has a value Q for the property PQ . Q is assumed to be an objective property of Alice’s particle, which is merely revealed by the measurement, much as we imagine the position of a tennis ball to be revealed by the particles of light being scattered off it. Similarly, let R denote the value revealed by a measurement of the property PR . EPR and the Bell inequality 115 Similarly, suppose that Bob is capable of measuring one of two properties, PS or PT , once again revealing an objectively existing value S or T for the property, each taking value +1 or −1. Bob does not decide beforehand which property he will measure, but waits until he has received the particle and then chooses randomly. The timing of the experiment is arranged so that Alice and Bob do their measurements at the same time (or, to use the more precise language of relativity, in a causally disconnected manner). Therefore, the measurement which Alice performs cannot disturb the result of Bob’s measurement (or vice versa), since physical influences cannot propagate faster than light.   Q = ±1 R = ±1 S = ±1 T = ±1 Figure 2.4. Schematic experimental setup for the Bell inequalities. Alice can choose to measure either Q or R, and Bob chooses to measure either S or T . They perform their measurements simultaneously. Alice and Bob are assumed to be far enough apart that performing a measurement on one system can not have any effect on the result of measurements on the other. We are going to do some simple algebra with the quantity QS + RS + RT − QT . Notice that QS + RS + RT − QT = (Q + R)S + (R − Q)T. (2.219) Because R, Q = ±1 it follows that either (Q + R)S = 0 or (R − Q)T = 0. In either case, it is easy to see from (2.219) that QS + RS + RT − QT = ±2. Suppose next that p(q, r, s, t) is the probability that, before the measurements are performed, the system is in a state where Q = q, R = r, S = s, and T = t. These probabilities may depend on how Charlie performs his preparation, and on experimental noise. Letting E(·) denote the mean value of a quantity, we have E(QS + RS + RT − QT ) = p(q, r, s, t)(qs + rs + rt − qt) (2.220) qrst ≤ p(q, r, s, t) × 2 (2.221) qrst = 2. (2.222) Also, E(QS + RS + RT − QT ) = p(q, r, s, t)qs + qrst + qrst p(q, r, s, t)rs qrst p(q, r, s, t)rt − p(q, r, s, t)qt (2.223) qrst = E(QS) + E(RS) + E(RT ) − E(QT ). (2.224) Comparing (2.222) and (2.224) we obtain the Bell inequality, E(QS) + E(RS) + E(RT ) − E(QT ) ≤ 2. (2.225) 116 Introduction to quantum mechanics This result is also often known as the CHSH inequality after the initials of its four discoverers. It is part of a larger set of inequalities known generically as Bell inequalities, since the first was found by John Bell. By repeating the experiment many times, Alice and Bob can determine each quantity on the left hand side of the Bell inequality. For example, after finishing a set of experiments, Alice and Bob get together to analyze their data. They look at all the experiments where Alice measured PQ and Bob measured PS . By multiplying the results of their experiments together, they get a sample of values for QS. By averaging over this sample, they can estimate E(QS) to an accuracy only limited by the number of experiments which they perform. Similarly, they can estimate all the other quantities on the left hand side of the Bell inequality, and thus check to see whether it is obeyed in a real experiment. It’s time to put some quantum mechanics back in the picture. Imagine we perform the following quantum mechanical experiment. Charlie prepares a quantum system of two qubits in the state |ψ = |01 − |10 √ . 2 (2.226) He passes the first qubit to Alice, and the second qubit to Bob. They perform measurements of the following observables: Q = Z1 R = X1 −Z2 − X2 √ 2 Z2 − X2 T = √ . 2 S= (2.227) (2.228) Simple calculations show that the average values for these observables, written in the quantum mechanical · notation, are: 1 1 1 1 QS = √ ; RS = √ ; RT  = √ ; QT  = − √ . 2 2 2 2 (2.229) √ QS + RS + RT  − QT  = 2 2. (2.230) Thus, Hold on! We learned back in (2.225) that the average value of QS plus the average value of RS plus the average value of RT minus the average value of QT can never √ exceed two. Yet here, quantum mechanics predicts that this sum of averages yields 2 2! Fortunately, we can ask Nature to resolve the apparent paradox for us. Clever experiments using photons – particles of light – have been done to check the prediction (2.230) of quantum mechanics versus the Bell inequality (2.225) which we were led to by our common sense reasoning. The details of the experiments are outside the scope of the book, but the results were resoundingly in favor of the quantum mechanical prediction. The Bell inequality (2.225) is not obeyed by Nature. What does this mean? It means that one or more of the assumptions that went into the derivation of the Bell inequality must be incorrect. Vast tomes have been written analyzing the various forms in which this type of argument can be made, and analyzing the subtly different assumptions which must be made to reach Bell-like inequalities. Here we merely summarize the main points. There are two assumptions made in the proof of (2.225) which are questionable: 117 Chapter problems (1) The assumption that the physical properties PQ , PR , PS , PT have definite values Q, R, S, T which exist independent of observation. This is sometimes known as the assumption of realism. (2) The assumption that Alice performing her measurement does not influence the result of Bob’s measurement. This is sometimes known as the assumption of locality. These two assumptions together are known as the assumptions of local realism. They are certainly intuitively plausible assumptions about how the world works, and they fit our everyday experience. Yet the Bell inequalities show that at least one of these assumptions is not correct. What can we learn from Bell’s inequality? For physicists, the most important lesson is that their deeply held commonsense intuitions about how the world works are wrong. The world is not locally realistic. Most physicists take the point of view that it is the assumption of realism which needs to be dropped from our worldview in quantum mechanics, although others have argued that the assumption of locality should be dropped instead. Regardless, Bell’s inequality together with substantial experimental evidence now points to the conclusion that either or both of locality and realism must be dropped from our view of the world if we are to develop a good intuitive understanding of quantum mechanics. What lessons can the fields of quantum computation and quantum information learn from Bell’s inequality? Historically the most useful lesson has perhaps also been the most vague: there is something profoundly ‘up’ with entangled states like the EPR state. A lot of mileage in quantum computation and, especially, quantum information, has come from asking the simple question: ‘what would some entanglement buy me in this problem?’ As we saw in teleportation and superdense coding, and as we will see repeatedly later in the book, by throwing some entanglement into a problem we open up a new world of possibilities unimaginable with classical information. The bigger picture is that Bell’s inequality teaches us that entanglement is a fundamentally new resource in the world that goes essentially beyond classical resources; iron to the classical world’s bronze age. A major task of quantum computation and quantum information is to exploit this new resource to do information processing tasks impossible or much more difficult with classical resources. Problem 2.1: (Functions of the Pauli matrices) Let f (·) be any function from complex numbers to complex numbers. Let n be a normalized vector in three dimensions, and let θ be real. Show that f (θn · σ) = f (θ) − f (−θ) f (θ) + f (−θ) I+ n · σ. 2 2 (2.231) Problem 2.2: (Properties of the Schmidt number) Suppose |ψ is a pure state of a composite system with components A and B. (1) Prove that the Schmidt number of |ψ is equal to the rank of the reduced density matrix ρA ≡ trB (|ψψ|). (Note that the rank of a Hermitian operator is equal to the dimension of its support.)  (2) Suppose |ψ = j |αj |βj  is a representation for |ψ, where |αj  and |βj  are (un-normalized) states for systems A and B, respectively. Prove that the 118 Introduction to quantum mechanics number of terms in such a decomposition is greater than or equal to the Schmidt number of |ψ, Sch(ψ). (3) Suppose |ψ = α|ϕ + β|γ. Prove that Sch(ψ) ≥ |Sch(ϕ) − Sch(γ)| . (2.232) Problem 2.3: (Tsirelson’s inequality) Suppose Q = q · σ, R = r · σ, S = s · σ, T = t · σ, where q, r, s and t are real unit vectors in three dimensions. Show that (Q ⊗ S + R ⊗ S + R ⊗ T − Q ⊗ T )2 = 4I + [Q, R] ⊗ [S, T ]. (2.233) Use this result to prove that √ Q ⊗ S + R ⊗ S + R ⊗ T  − Q ⊗ T  ≤ 2 2, (2.234) so the violation of the Bell inequality found in Equation (2.230) is the maximum possible in quantum mechanics. History and further reading There are an enormous number of books on linear algebra at levels ranging from High School through to Graduate School. Perhaps our favorites are the two volume set by Horn and Johnson[HJ85, HJ91], which cover an extensive range of topics in an accessible manner. Other useful references include Marcus and Minc[MM92], and Bhatia[Bha97]. Good introductions to linear algebra include Halmos[Hal58], Perlis[Per52], and Strang[Str76]. There are many excellent books on quantum mechanics. Unfortunately, most of these books focus on topics of tangential interest to quantum information and computation. Perhaps the most relevant in the existing literature is Peres’ superb book[Per93]. Beside an extremely clear exposition of elementary quantum mechanics, Peres gives an extensive discussion of the Bell inequalities and related results. Good introductory level texts include Sakurai’s book[Sak95], Volume III of the superb series by Feynman, Leighton, and Sands[FLS65a], and the two volume work by Cohen-Tannoudji, Diu and Laloë[CTDL77a, CTDL77b]. All three of these works are somewhat closer in spirit to quantum computation and quantum information than are most other quantum mechanics texts, although the great bulk of each is still taken up by applications far removed from quantum computation and quantum information. As a result, none of these texts need be read in detail by someone interested in learning about quantum computation and quantum information. However, any one of these texts may prove handy as a reference, especially when reading articles by physicists. References for the history of quantum mechanics may be found at the end of Chapter 1. Many texts on quantum mechanics deal only with projective measurements. For applications to quantum computing and quantum information it is more convenient – and, we believe, easier for novices – to start with the general description of measurements, of which projective measurements can be regarded as a special case. Of course, ultimately, as we have shown, the two approaches are equivalent. The theory of generalized measurements which we have employed was developed between the 1940s and 1970s. Much of the history can be distilled from the book of Kraus[Kra83]. Interesting discussion of quantum measurements may be found in Section 2.2 of Gardiner[Gar91], and in the book by Braginsky and Khahili[BK92]. The POVM measurement for distinguishing History and further reading 119 non-orthogonal states described in Section 2.2.6 is due to Peres[Per88]. The extension described in Exercise 2.64 appeared in Duan and Guo[DG98]. Superdense coding was invented by Bennett and Wiesner[BW92]. An experiment implementing a variant of superdense coding using entangled photon pairs was performed by Mattle, Weinfurter, Kwiat, and Zeilinger[MWKZ96]. The density operator formalism was introduced independently by Landau[Lan27] and by von Neumann[von27]. The unitary freedom in the ensemble for density matrices, Theorem 2.6, was first pointed out by Schrod̈inger[Sch36], and was later rediscovered and extended by Jaynes[Jay57] and by Hughston, Jozsa and Wootters[HJW93]. The result of Exercise 2.73 is from the paper by Jaynes, and the results of Exercises 2.81 and 2.82 appear in the paper by Hughston, Jozsa and Wootters. The class of probability distributions which may appear in a density matrix decomposition for a given density matrix has been studied by Uhlmann[Uhl70] and by Nielsen[Nie99b]. Schmidt’s eponymous decomposition appeared in[Sch06]. The result of Exercise 2.77 was noted by Peres[Per95]. The EPR thought experiment is due to Einstein, Podolsky and Rosen[EPR35], and was recast in essentially the form we have given here by Bohm[Boh51]. It is sometimes misleadingly referred to as the EPR ‘paradox’. The Bell inequality is named in honour of Bell[Bel64], who first derived inequalities of this type. The form we have presented is due to Clauser, Horne, Shimony, and Holt[CHSH69], and is often known as the CHSH inequality. This inequality was derived independently by Bell, who did not publish the result. Part 3 of Problem 2.2 is due to Thapliyal (private communication). Tsirelson’s inequality is due to Tsirelson[Tsi80]. 3 Introduction to computer science In natural science, Nature has given us a world and we’re just to discover its laws. In computers, we can stuff laws into it and create a world. – Alan Kay Our field is still in its embryonic stage. It’s great that we haven’t been around for 2000 years. We are still at a stage where very, very important results occur in front of our eyes. – Michael Rabin, on computer science Algorithms are the key concept of computer science. An algorithm is a precise recipe for performing some task, such as the elementary algorithm for adding two numbers which we all learn as children. This chapter outlines the modern theory of algorithms developed by computer science. Our fundamental model for algorithms will be the Turing machine. This is an idealized computer, rather like a modern personal computer, but with a simpler set of basic instructions, and an idealized unbounded memory. The apparent simplicity of Turing machines is misleading; they are very powerful devices. We will see that they can be used to execute any algorithm whatsoever, even one running on an apparently much more powerful computer. The fundamental question we are trying to address in the study of algorithms is: what resources are required to perform a given computational task? This question splits up naturally into two parts. First, we’d like to understand what computational tasks are possible, preferably by giving explicit algorithms for solving specific problems. For example, we have many excellent examples of algorithms that can quickly sort a list of numbers into ascending order. The second aspect of this question is to demonstrate limitations on what computational tasks may be accomplished. For example, lower bounds can be given for the number of operations that must be performed by any algorithm which sorts a list of numbers into ascending order. Ideally, these two tasks – the finding of algorithms for solving computational problems, and proving limitations on our ability to solve computational problems – would dovetail perfectly. In practice, a significant gap often exists between the best techniques known for solving a computational problem, and the most stringent limitations known on the solution. The purpose of this chapter is to give a broad overview of the tools which have been developed to aid in the analysis of computational problems, and in the construction and analysis of algorithms to solve such problems. Why should a person interested in quantum computation and quantum information spend time investigating classical computer science? There are three good reasons for this effort. First, classical computer science provides a vast body of concepts and techniques which may be reused to great effect in quantum computation and quantum information. Many of the triumphs of quantum computation and quantum information have come by combining existing ideas from computer science with novel ideas from quantum Introduction to computer science 121 mechanics. For example, some of the fast algorithms for quantum computers are based upon the Fourier transform, a powerful tool utilized by many classical algorithms. Once it was realized that quantum computers could perform a type of Fourier transform much more quickly than classical computers this enabled the development of many important quantum algorithms. Second, computer scientists have expended great effort understanding what resources are required to perform a given computational task on a classical computer. These results can be used as the basis for a comparison with quantum computation and quantum information. For example, much attention has been focused on the problem of finding the prime factors of a given number. On a classical computer this problem is believed to have no ‘efficient’ solution, where ‘efficient’ has a meaning we’ll explain later in the chapter. What is interesting is that an efficient solution to this problem is known for quantum computers. The lesson is that, for this task of finding prime factors, there appears to be a gap between what is possible on a classical computer and what is possible on a quantum computer. This is both intrinsically interesting, and also interesting in the broader sense that it suggests such a gap may exist for a wider class of computational problems than merely the finding of prime factors. By studying this specific problem further, it may be possible to discern features of the problem which make it more tractable on a quantum computer than on a classical computer, and then act on these insights to find interesting quantum algorithms for the solution of other problems. Third, and most important, there is learning to think like a computer scientist. Computer scientists think in a rather different style than does a physicist or other natural scientist. Anybody wanting a deep understanding of quantum computation and quantum information must learn to think like a computer scientist at least some of the time; they must instinctively know what problems, what techniques, and most importantly what problems are of greatest interest to a computer scientist. The structure of this chapter is as follows. In Section 3.1 we introduce two models for computation: the Turing machine model, and the circuit model. The Turing machine model will be used as our fundamental model for computation. In practice, however, we mostly make use of the circuit model of computation, and it is this model which is most useful in the study of quantum computation. With our models for computation in hand, the remainder of the chapter discusses resource requirements for computation. Section 3.2 begins by overviewing the computational tasks we are interested in as well as discusing some associated resource questions. It continues with a broad look at the key concepts of computational complexity, a field which examines the time and space requirements necessary to solve particular computational problems, and provides a broad classification of problems based upon their difficulty of solution. Finally, the section concludes with an examination of the energy resources required to perform computations. Surprisingly, it turns out that the energy required to perform a computation can be made vanishingly small, provided one can make the computation reversible. We explain how to construct reversible computers, and explain some of the reasons they are important both for computer science and for quantum computation and quantum information. Section 3.3 concludes the chapter with a broad look at the entire field of computer science, focusing on issues of particular relevance to quantum computation and quantum information. 122 Introduction to computer science 3.1 Models for computation ...algorithms are concepts that have existence apart from any programming language. – Donald Knuth What does it mean to have an algorithm for performing some task? As children we all learn a procedure which enables us to add together any two numbers, no matter how large those numbers are. This is an example of an algorithm. Finding a mathematically precise formulation of the concept of an algorithm is the goal of this section. Historically, the notion of an algorithm goes back centuries; undergraduates learn Euclid’s two thousand year old algorithm for finding the greatest common divisor of two positive integers. However, it wasn’t until the 1930s that the fundamental notions of the modern theory of algorithms, and thus of computation, were introduced, by Alonzo Church, Alan Turing, and other pioneers of the computer era. This work arose in response to a profound challenge laid down by the great mathematician David Hilbert in the early part of the twentieth century. Hilbert asked whether or not there existed some algorithm which could be used, in principle, to solve all the problems of mathematics. Hilbert expected that the answer to this question, sometimes known as the entscheidungsproblem, would be yes. Amazingly, the answer to Hilbert’s challenge turned out to be no: there is no algorithm to solve all mathematical problems. To prove this, Church and Turing had to solve the deep problem of capturing in a mathematical definition what we mean when we use the intuitive concept of an algorithm. In so doing, they laid the foundations for the modern theory of algorithms, and consequently for the modern theory of computer science. In this chapter, we use two ostensibly different approaches to the theory of computation. The first approach is that proposed by Turing. Turing defined a class of machines, now known as Turing machines, in order to capture the notion of an algorithm to perform a computational task. In Section 3.1.1, we describe Turing machines, and then discuss some of the simpler variants of the Turing machine model. The second approach is via the circuit model of computation, an approach that is especially useful as preparation for our later study of quantum computers. The circuit model is described in Section 3.1.2. Although these models of computation appear different on the surface, it turns out that they are equivalent. Why introduce more than one model of computation, you may ask? We do so because different models of computation may yield different insights into the solution of specific problems. Two (or more) ways of thinking about a concept are better than one. 3.1.1 Turing machines The basic elements of a Turing machine are illustrated in Figure 3.1. A Turing machine contains four main elements: (a) a program, rather like an ordinary computer; (b) a finite state control, which acts like a stripped-down microprocessor, co-ordinating the other operations of the machine; (c) a tape, which acts like a computer memory; and (d) a readwrite tape-head, which points to the position on the tape which is currently readable or writable. We now describe each of these four elements in more detail. The finite state control for a Turing machine consists of a finite set of internal states, Models for computation  123 !"  " % &' (  #$            Figure 3.1. Main elements of a Turing machine. In the text, blanks on the tape are denoted by a ‘b’. Note the ⊲ marking the left hand end of the tape. q1 , . . . , qm . The number m is allowed to be varied; it turns out that for m sufficiently large this does not affect the power of the machine in any essential way, so without loss of generality we may suppose that m is some fixed constant. The best way to think of the finite state control is as a sort of microprocessor, co-ordinating the Turing machine’s operation. It provides temporary storage off-tape, and a central place where all processing for the machine may be done. In addition to the states q1 , . . . , qm , there are also two special internal states, labelled qs and qh . We call these the starting state and the halting state, respectively. The idea is that at the beginning of the computation, the Turing machine is in the starting state qs . The execution of the computation causes the Turing machine’s internal state to change. If the computation ever finishes, the Turing machine ends up in the state qh to indicate that the machine has completed its operation. The Turing machine tape is a one-dimensional object, which stretches off to infinity in one direction. The tape consists of an infinite sequence of tape squares. We number the tape squares 0, 1, 2, 3, . . .. The tape squares each contain one symbol drawn from some alphabet, Γ, which contains a finite number of distinct symbols. For now, it will be convenient to assume that the alphabet contains four symbols, which we denote by 0, 1, b (the ‘blank’ symbol), and ⊲, to mark the left hand edge of the tape. Initially, the tape contains a ⊲ at the left hand end, a finite number of 0s and 1s, and the rest of the tape contains blanks. The read-write tape-head identifies a single square on the Turing machine tape as the square that is currently being accessed by the machine. Summarizing, the machine starts its operation with the finite state control in the state qs , and with the read-write head at the leftmost tape square, the square numbered 0. The computation then proceeds in a step by step manner according to the program, to be defined below. If the current state is qh , then the computation has halted, and the output of the computation is the current (non-blank) contents of the tape. A program for a Turing machine is a finite ordered list of program lines of the form q, x, q ′ , x′ , s. The first item in the program line, q, is a state from the set of internal states of the machine. The second item, x, is taken from the alphabet of symbols which may appear on the tape, Γ. The way the program works is that on each machine cycle, the Turing machine looks through the list of program lines in order, searching for a line q, x, ·, ·, ·, such that the current internal state of the machine is q, and the symbol 124 Introduction to computer science being read on the tape is x. If it doesn’t find such a program line, the internal state of the machine is changed to qh , and the machine halts operation. If such a line is found, then that program line is executed. Execution of a program line involves the following steps: the internal state of the machine is changed to q ′ ; the symbol x on the tape is overwritten by the symbol x′ , and the tape-head moves left, right, or stands still, depending on whether s is −1, +1, or 0, respectively. The only exception to this rule is if the tape-head is at the leftmost tape square, and s = −1, in which case the tape-head stays put. Now that we know what a Turing machine is, let’s see how it may be used to compute a simple function. Consider the following example of a Turing machine. The machine starts with a binary number, x, on the tape, followed by blanks. The machine has three internal states, q1 , q2 , and q3 , in addition to the starting state qs and halting state qh . The program contains the following program lines (the numbers on the left hand side are for convenience in referring to the program lines in later discussion, and do not form part of the program): 1 : qs , ⊲, q1 , ⊲, +1 2 : q1 , 0, q1 , b, +1 3 : q1 , 1, q1 , b, +1 4 : q1 , b, q2 , b, −1 5 : q2 , b, q2 , b, −1 6 : q2 , ⊲, q3 , ⊲, +1 7 : q3 , b, qh , 1, 0. What function does this program compute? Initially the machine is in the state qs and at the left-most tape position so line 1, qs , ⊲, q1 , ⊲, +1, is executed, which causes the tape-head to move right without changing what is written on the tape, but changing the internal state of the machine to q1 . The next three lines of the program ensure that while the machine is in the state q1 the tape-head will continue moving right while it reads either 0s (line 2) or 1s (line 3) on the tape, over-writing the tape contents with blanks as it goes and remaining in the state q1 , until it reaches a tape square that is already blank, at which point the tape-head is moved one position to the left, and the internal state is changed to q2 (line 4). Line 5 then ensures that the tape-head keeps moving left while blanks are being read by the tape-head, without changing the contents of the tape. This keeps up until the tape-head returns to its starting point, at which point it reads a ⊲ on the tape, changes the internal state to q3 , and moves one step to the right (line 6). Line 7 completes the program, simply printing the number 1 onto the tape, and then halting. The preceding analysis shows that this program computes the constant function f (x) = 1. That is, regardless of what number is input on the tape the number 1 is output. More generally, a Turing machine can be thought of as computing functions from the nonnegative integers to the non-negative integers; the initial state of the tape is used to represent the input to the function, and the final state of the tape is used to represent the output of the function. It seems as though we have gone to a very great deal of trouble to compute this simple function using our Turing machines. Is it possible to build up more complicated functions using Turing machines? For example, could we construct a machine such that when two numbers, x and y, are input on the tape with a blank to demarcate them, it will Models for computation 125 output the sum x + y on the tape? More generally, what class of functions is it possible to compute using a Turing machine? It turns out that the Turing machine model of computation can be used to compute an enormous variety of functions. For example, it can be used to do all the basic arithmetical operations, to search through text represented as strings of bits on the tape, and many other interesting operations. Surprisingly, it turns out that a Turing machine can be used to simulate all the operations performed on a modern computer! Indeed, according to a thesis put forward independently by Church and by Turing, the Turing machine model of computation completely captures the notion of computing a function using an algorithm. This is known as the Church–Turing thesis: The class of functions computable by a Turing machine corresponds exactly to the class of functions which we would naturally regard as being computable by an algorithm. The Church–Turing thesis asserts an equivalence between a rigorous mathematical concept – function computable by a Turing machine – and the intuitive concept of what it means for a function to be computable by an algorithm. The thesis derives its importance from the fact that it makes the study of real-world algorithms, prior to 1936 a rather vague concept, amenable to rigorous mathematical study. To understand the significance of this point it may be helpful to consider the definition of a continuous function from real analysis. Every child can tell you what it means for a line to be continuous on a piece of paper, but it is far from obvious how to capture that intuition in a rigorous definition. Mathematicians in the nineteenth century spent a great deal of time arguing about the merits of various definitions of continuity before the modern definition of continuity came to be accepted. When making fundamental definitions like that of continuity or of computability it is important that good definitions be chosen, ensuring that one’s intuitive notions closely match the precise mathematical definition. From this point of view the Church–Turing thesis is simply the assertion that the Turing machine model of computation provides a good foundation for computer science, capturing the intuitive notion of an algorithm in a rigorous definition. A priori it is not obvious that every function which we would intuitively regard as computable by an algorithm can be computed using a Turing machine. Church, Turing and many other people have spent a great deal of time gathering evidence for the Church–Turing thesis, and in sixty years no evidence to the contrary has been found. Nevertheless, it is possible that in the future we will discover in Nature a process which computes a function not computable on a Turing machine. It would be wonderful if that ever happened, because we could then harness that process to help us perform new computations which could not be performed before. Of course, we would also need to overhaul the definition of computability, and with it, computer science. Exercise 3.1: (Non-computable processes in Nature) How might we recognize that a process in Nature computes a function not computable by a Turing machine? Exercise 3.2: (Turing numbers) Show that single-tape Turing machines can each be given a number from the list 1, 2, 3, . . . in such a way that the number uniquely specifies the corresponding machine. We call this number the Turing number of the corresponding Turing machine. (Hint: Every positive integer has 126 Introduction to computer science a unique prime factorization pa1 1 pa2 2 . . . pakk , where pi are distinct prime numbers, and a1 , . . . , ak are non-negative integers.) In later chapters, we will see that quantum computers also obey the Church–Turing thesis. That is, quantum computers can compute the same class of functions as is computable by a Turing machine. The difference between quantum computers and Turing machines turns out to lie in the efficiency with which the computation of the function may be performed – there are functions which can be computed much more efficiently on a quantum computer than is believed to be possible with a classical computing device such as a Turing machine. Demonstrating in complete detail that the Turing machine model of computation can be used to build up all the usual concepts used in computer programming languages is beyond the scope of this book (see ‘History and further reading’ at the end of the chapter for more information). When specifying algorithms, instead of explicitly specifying the Turing machine used to compute the algorithm, we shall usually use a much higher level pseudocode, trusting in the Church–Turing thesis that this pseudocode can be translated into the Turing machine model of computation. We won’t give any sort of rigorous definition for pseudocode. Think of it as a slightly more formal version of English or, if you like, a sloppy version of a high-level programming language such as C++ or BASIC. Pseudocode provides a convenient way of expressing algorithms, without going into the extreme level of detail required by a Turing machine. An example use of pseudocode may be found in Box 3.2 on page 130; it is also used later in the book to describe quantum algorithms. There are many variants on the basic Turing machine model. We might imagine Turing machines with different kinds of tapes. For example, one could consider two-way infinite tapes, or perhaps computation with tapes of more than one dimension. So far as is presently known, it is not possible to change any aspect of the Turing model in a way that is physically reasonable, and which manages to extend the class of functions computable by the model. As an example consider a Turing machine equipped with multiple tapes. For simplicity we consider the two-tape case, as the generalization to more than two tapes is clear from this example. Like the basic Turing machine, a two-tape Turing machine has a finite number of internal states q1 , . . . , qm , a start state qs , and a halt state qh . It has two tapes, each of which contain symbols from some finite alphabet of symbols, Γ. As before we find it convenient to assume that the alphabet contains four symbols, 0, 1, b and ⊲, where ⊲ marks the left hand edge of each tape. The machine has two tape-heads, one for each tape. The main difference between the two-tape Turing machine and the basic Turing machine is in the program. Program lines are of the form q, x1 , x2 , q ′ , x′1 , x′2 , s1 , s2 , meaning that if the internal state of the machine is q, tape one is reading x1 at its current position, and tape two is reading x2 at its current position, then the internal state of the machine should be changed to q ′ , x1 overwritten with x′1 , x2 overwritten with x′2 , and the tape-heads for tape one and tape two moved according to whether s1 or s2 are equal to +1, −1 or 0, respectively. In what sense are the basic Turing machine and the two-tape Turing machine equivalent models of computation? They are equivalent in the sense that each computational model is able to simulate the other. Suppose we have a two-tape Turing machine which takes as input a bit string x on the first tape and blanks on the remainder of both tapes, Models for computation 127 except the endpoint marker ⊲. This machine computes a function f (x), where f (x) is defined to be the contents of the first tape after the Turing machine has halted. Rather remarkably, it turns out that given a two-tape Turing machine to compute f , there exists an equivalent single-tape Turing machine that is also able to compute f . We won’t explain how to do this explicitly, but the basic idea is that the single-tape Turing machine simulates the two-tape Turing machine, using its single tape to store the contents of both tapes of the two-tape Turing machine. There is some computational overhead required to do this simulation, but the important point is that in principle it can always be done. In fact, there exists a Universal Turing machine (see Box 3.1) which can simulate any other Turing machine! Another interesting variant of the Turing machine model is to introduce randomness into the model. For example, imagine that the Turing machine can execute a program line whose effect is the following: if the internal state is q and the tape-head reads x, then flip an unbiased coin. If the coin lands heads, change the internal state to qiH , and if it lands tails, change the internal state to qiT , where qiH and qiT are two internal states of the Turing machine. Such a program line can be represented as q, x, qiH , qiT . However, even this variant doesn’t change the essential power of the Turing machine model of computation. It is not difficult to see that we can simulate the effect of the above algorithm on a deterministic Turing machine by explicitly ‘searching out’ all the possible computational paths corresponding to different values of the coin tosses. Of course, this deterministic simulation may be far less efficient than the random model, but the key point for the present discussion is that the class of functions computable is not changed by introducing randomness into the underlying model. Exercise 3.3: (Turing machine to reverse a bit string) Describe a Turing machine which takes a binary number x as input, and outputs the bits of x in reverse order. (Hint: In this exercise and the next it may help to use a multi-tape Turing machine and/or symbols other than ⊲, 0, 1 and the blank.) Exercise 3.4: (Turing machine to add modulo 2) Describe a Turing machine to add two binary numbers x and y modulo 2. The numbers are input on the Turing machine tape in binary, in the form x, followed by a single blank, followed by a y. If one number is not as long as the other then you may assume that it has been padded with leading 0s to make the two numbers the same length. Let us return to Hilbert’s entscheidungsproblem, the original inspiration for the founders of computer science. Is there an algorithm to decide all the problems of mathematics? The answer to this question was shown by Church and Turing to be no. In Box 3.2, we explain Turing’s proof of this remarkable fact. This phenomenon of undecidability is now known to extend far beyond the examples which Church and Turing constructed. For example, it is known that the problem of deciding whether two topological spaces are topologically equivalent (‘homeomorphic’) is undecidable. There are simple problems related to the behavior of dynamical systems which are undecidable, as you will show in Problem 3.4. References for these and other examples are given in the end of chapter ‘History and further reading’. Besides its intrinsic interest, undecidability foreshadows a topic of great concern in computer science, and also to quantum computation and quantum information: the dis- 128 Introduction to computer science Box 3.1: The Universal Turing Machine We’ve described Turing machines as containing three elements which may vary from machine to machine – the initial configuration of the tape, the internal states of the finite state control, and the program for the machine. A clever idea known as the Universal Turing Machine (UTM) allows us to fix the program and finite state control once and for all, leaving the initial contents of the tape as the only part of the machine which needs to be varied. The Universal Turing Machine (see the figure below) has the following property. Let M be any Turing machine, and let TM be the Turing number associated to machine M . Then on input of the binary representation for TM followed by a blank, followed by any string of symbols x on the remainder of the tape, the Universal Turing Machine gives as output whatever machine M would have on input of x. Thus, the Universal Turing Machine is capable of simulating any other Turing machine! )#* #*   )#* $ * The Universal Turing Machine is similar in spirit to a modern programmable computer, in which the action to be taken by the computer – the ‘program’ – is stored in memory, analogous to the bit string TM stored at the beginning of the tape by the Universal Turing Machine. The data to be processed by the program is stored in a separate part of memory, analogous to the role of x in the Universal Turing Machine. Then some fixed hardware is used to run the program, producing the output. This fixed hardware is analogous to the internal states and the (fixed) program being executed by the Universal Turing Machine. Describing the detailed construction of a Universal Turing Machine is beyond the scope of this book. (Though industrious readers may like to attempt the construction.) The key point is the existence of such a machine, showing that a single fixed machine can be used to run any algorithm whatsoever. The existence of a Universal Turing Machine also explains our earlier statement that the number of internal states in a Turing machine does not matter much, for provided that number m exceeds the number needed for a Universal Turing Machine, such a machine can be used to simulate a Turing machine with any number of internal states. tinction between problems which are easy to solve, and problems which are hard to solve. Undecidability provides the ultimate example of problems which are hard to solve – so hard that they are in fact impossible to solve. Exercise 3.5: (Halting problem with no inputs) Show that given a Turing Models for computation 129 machine M there is no algorithm to determine whether M halts when the input to the machine is a blank tape. Exercise 3.6: (Probabilistic halting problem) Suppose we number the probabilistic Turing machines using a scheme similar to that found in Exercise 3.2 and define the probabilistic halting function hp (x) to be 1 if machine x halts on input of x with probability at least 1/2 and 0 if machine x halts on input of x with probability less than 1/2. Show that there is no probabilistic Turing machine which can output hp (x) with probability of correctness strictly greater than 1/2 for all x. Exercise 3.7: (Halting oracle) Suppose a black box is made available to us which takes a non-negative integer x as input, and then outputs the value of h(x), where h(·) is the halting function defined in Box 3.2 on page 130. This type of black box is sometimes known as an oracle for the halting problem. Suppose we have a regular Turing machine which is augmented by the power to call the oracle. One way of accomplishing this is to use a two-tape Turing machine, and add an extra program instruction to the Turing machine which results in the oracle being called, and the value of h(x) being printed on the second tape, where x is the current contents of the second tape. It is clear that this model for computation is more powerful than the conventional Turing machine model, since it can be used to compute the halting function. Is the halting problem for this model of computation undecidable? That is, can a Turing machine aided by an oracle for the halting problem decide whether a program for the Turing machine with oracle will halt on a particular input? 3.1.2 Circuits Turing machines are rather idealized models of computing devices. Real computers are finite in size, whereas for Turing machines we assumed a computer of unbounded size. In this section we investigate an alternative model of computation, the circuit model, that is equivalent to the Turing machine in terms of computational power, but is more convenient and realistic for many applications. In particular the circuit model of computation is especially important as preparation for our investigation of quantum computers. A circuit is made up of wires and gates, which carry information around, and perform simple computational tasks, respectively. For example, Figure 3.2 shows a simple circuit gate, which flips which takes as input a single bit, a. This bit is passed through a gate serve merely to the bit, taking 1 to 0 and 0 to 1. The wires before and after the gate; they can represent movement of the bit through carry the bit to and from the space, or perhaps just through time. More generally, a circuit may involve many input and output bits, many wires, and many logical gates. A logic gate is a function f : {0, 1}k → {0, 1}l from some fixed gate number k of input bits to some fixed number l of output bits. For example, the is a gate with one input bit and one output bit which computes the function f (a) = 1 ⊕ a, where a is a single bit, and ⊕ is modulo 2 addition. It is also usual to make the convention that no loops are allowed in the circuit, to avoid possible instabilities, as illustrated in Figure 3.3. We say such a circuit is acyclic, and we adhere to the convention that circuits in the circuit model of computation be acyclic. 130 Introduction to computer science Box 3.2: The halting problem In Exercise 3.2 you showed that each Turing machine can be uniquely associated with a number from the list 1, 2, 3, . . .. To solve Hilbert’s problem, Turing used this numbering to pose the halting problem: does the machine with Turing number x halt upon input of the number y? This is a well posed and interesting mathematical problem. After all, it is a matter of some considerable interest to us whether our algorithms halt or not. Yet it turns out that there is no algorithm which is capable of solving the halting problem. To see this, Turing asked whether there is an algorithm to solve an even more specialized problem: does the machine with Turing number x halt upon input of the same number x? Turing defined the halting function, * 0 if machine number x does not halt upon input of x h(x) ≡ 1 if machine number x halts upon input of x. If there is an algorithm to solve the halting problem, then there surely is an algorithm to evaluate h(x). We will try to reach a contradiction by supposing such an algorithm exists, denoted by HALT(x). Consider an algorithm computing the function TURING(x), with pseudocode TURING(x) y = HALT(x) if y = 0 then halt else loop forever end if Since HALT is a valid program, TURING must also be a valid program, with some Turing number, t. By definition of the halting function, h(t) = 1 if and only if TURING halts on input of t. But by inspection of the program for TURING, we see that TURING halts on input of t if and only if h(t) = 0. Thus h(t) = 1 if and only if h(t) = 0, a contradiction. Therefore, our initial assumption that there is an algorithm to evaluate h(x) must have been wrong. We conclude that there is no algorithm allowing us to solve the halting problem. = Figure 3.2. Elementary circuit performing a single = gate on a single input bit. There are many other elementary logic gates which are useful for computation. A gate, the gate, the gate, the gate, and the partial list includes the gate. Each of these gates takes two bits as input, and produces a single bit as output. gate outputs 1 if and only if both of its inputs are 1. The gate outputs 1 if The Models for computation 131 Figure 3.3. Circuits containing cycles can be unstable, and are not usually permitted in the circuit model of computation. and only if at least one of its inputs is 1. The gate outputs the sum, modulo 2, of and gates take the and , respectively, of their inputs, its inputs. The and then apply a to whatever is output. The action of these gates is illustrated in Figure 3.4. = NOT = > = = AND >  = >  = > = OR > = XOR >     = > = NAND >   = > = NOR >  Figure 3.4. Elementary circuits performing the , , , , and gates. There are two important ‘gates’ missing from Figure 3.4, namely the gate and gate. In circuits we often allow bits to ‘divide’, replacing a bit with two the copies of itself, an operation referred to as . We also allow bits to , that is, the value of two bits are interchanged. A third operation missing from Figure 3.4, not really a logic gate at all, is to allow the preparation of extra ancilla or work bits, to allow extra working space during the computation. These simple circuit elements can be put together to perform an enormous variety of computations. Below we’ll show that these elements can be used to compute any function whatsoever. In the meantime, let’s look at a simple example of a circuit which adds two n bit integers, using essentially the same algorithm taught to school-children around the 132 Introduction to computer science world. The basic element in this circuit is a smaller circuit known as a half-adder, shown in Figure 3.5. A half-adder takes two bits, x and y, as input, and outputs the sum of the bits x ⊕ y modulo 2, together with a carry bit set to 1 if x and y are both 1, or 0 otherwise. N ? N ÅO O Figure 3.5. Half-adder circuit. The carry bit c is set to 1 when x and y are both 1, otherwise it is 0. Two cascaded half-adders may be used to build a full-adder, as shown in Figure 3.6. A full-adder takes as input three bits, x, y, and c. The bits x and y should be thought of as data to be added, while c is a carry bit from an earlier computation. The circuit outputs two bits. One output bit is the modulo 2 sum, x ⊕ y ⊕ c of all three input bits. The second output bit, c′ , is a carry bit, which is set to 1 if two or more of the inputs is 1, and is 0 otherwise. N O ? ? ( ( N ÅO Å? Figure 3.6. Full-adder circuit. By cascading many of these full-adders together we obtain a circuit to add two n-bit integers, as illustrated in Figure 3.7 for the case n = 3. N O N O N O ! ! ( Figure 3.7. Addition circuit for two three-bit integers, x = x2 x1 x0 and y = y2 y1 y0 , using the elementary algorithm taught to school-children. We claimed earlier that just a few fixed gates can be used to compute any function f : {0, 1}n → {0, 1}m whatsoever. We will now prove this for the simplified case of a function f : {0, 1}n → {0, 1} with n input bits and a single output bit. Such a function Models for computation 133 is known as a Boolean function, and the corresponding circuit is a Boolean circuit. The general universality proof follows immediately from the special case of Boolean functions. The proof is by induction on n. For n = 1 there are four possible functions: the identity, which has a circuit consisting of a single wire; the bit flip, which is implemented using gate; the function which replaces the input bit with a 0, which can be a single ing the input with a work bit initially in the 0 state; and the function obtained by which replaces the input with a 1, which can be obtained by ing the input with a work bit initially in the 1 state. To complete the induction, suppose that any function on n bits may be computed by a circuit, and let f be a function on n + 1 bits. Define n-bit functions f0 and f1 by f0 (x1 , . . . , xn ) ≡ f (0, x1 , . . . , xn ) and f1 (x1 , . . . , xn ) ≡ f (1, x1 , . . . , xn ). These are both n-bit functions, so by the inductive hypothesis there are circuits to compute these functions. It is now an easy matter to design a circuit which computes f . The circuit computes both f0 and f1 on the last n bits of the input. Then, depending on whether the first bit of the input was a 0 or a 1 it outputs the appropriate answer. A circuit to do this is shown in Figure 3.8. This completes the induction. +# . . . . . . , -+% . . . , Figure 3.8. Circuit to compute an arbitrary function f on n + 1 bits, assuming by induction that there are circuits to compute the n-bit functions f0 and f1 . Five elements may be identified in the universal circuit construction: (1) wires, which preserve the states of the bits; (2) ancilla bits prepared in standard states, used in the operation, which takes a single bit as input n = 1 case of the proof; (3) the operation, which interchanges and outputs two copies of that bit; (4) the , , and gates. In Chapter 4 we’ll define the value of two bits; and (5) the the quantum circuit model of computation in a manner analogous to classical circuits. It is interesting to note that many of these five elements pose some interesting challenges when extending to the quantum case: it is not necessarily obvious that good quantum wires for the preservation of qubits can be constructed, even in principle, the 134 Introduction to computer science operation cannot be performed in a straightforward manner in quantum mechanics, due and gates to the no-cloning theorem (as explained in Section 1.3.5), and the are not invertible, and thus can’t be implemented in a straightforward manner as unitary quantum gates. There is certainly plenty to think about in defining a quantum circuit model of computation! Exercise 3.8: (Universality of simulate the , and are available. ) Show that the gate can be used to gates, provided wires, ancilla bits and Let’s return from our brief quantum digression, to the properties of classical circuits. We claimed earlier that the Turing machine model is equivalent to the circuit model of computation. In what sense do we mean the two models are equivalent? On the face of it, the two models appear quite different. The unbounded nature of a Turing machine makes them more useful for abstractly specifying what it is we mean by an algorithm, while circuits more closely capture what an actual physical computer does. The two models are connected by introducing the notion of a uniform circuit family. A circuit family consists of a collection of circuits, {Cn }, indexed by a positive integer n. The circuit Cn has n input bits, and may have any finite number of extra work bits, and output bits. The output of the circuit Cn , upon input of a number x of at most n bits in length, is denoted by Cn (x). We require that the circuits be consistent, that is, if m < n and x is at most m bits in length, then Cm (x) = Cn (x). The function computed by the circuit family {Cn } is the function C(·) such that if x is n bits in length then C(x) = Cn (x). For example, consider a circuit Cn that squares an n-bit number. This defines a family of circuits {Cn } that computes the function, C(x) = x2 , where x is any positive integer. It’s not enough to consider unrestricted families of circuits, however. In practice, we need an algorithm to build the circuit. Indeed, if we don’t place any restrictions on the circuit family then it becomes possible to compute all sorts of functions which we do not expect to be able to compute in a reasonable model of computation. For example, let hn (x) denote the halting function, restricted to values of x which are n bits in length. Thus hn is a function from n bits to 1 bit, and we have proved there exists a circuit Cn to compute hn (·). Therefore the circuit family {Cn } computes the halting function! However, what prevents us from using this circuit family to solve the halting problem is that we haven’t specified an algorithm which will allow us to build the circuit Cn for all values of n. Adding this requirement results in the notion of a uniform circuit family. That is, a family of circuits {Cn } is said to be a uniform circuit family if there is some algorithm running on a Turing machine which, upon input of n, generates a description of Cn . That is, the algorithm outputs a description of what gates are in the circuit Cn , how those gates are connected together to form a circuit, any ancilla bits needed by and operations, and where the output from the circuit the circuit, should be read out. For example, the family of circuits we described earlier for squaring n-bit numbers is certainly a uniform circuit family, since there is an algorithm which, given n, outputs a description of the circuit needed to square an n-bit number. You can think of this algorithm as the means by which an engineer is able to generate a description of (and thus build) the circuit for any n whatsoever. By contrast, a circuit family that is not uniform is said to be a non-uniform circuit family. There is no algorithm to construct The analysis of computational problems 135 the circuit for arbitrary n, which prevents our engineer from building circuits to compute functions like the halting function. Intuitively, a uniform circuit family is a family of circuits that can be generated by some reasonable algorithm. It can be shown that the class of functions computable by uniform circuit families is exactly the same as the class of functions which can be computed on a Turing machine. With this uniformity restriction, results in the Turing machine model of computation can usually be given a straightforward translation into the circuit model of computation, and vice versa. Later we give similar attention to issues of uniformity in the quantum circuit model of computation. 3.2 The analysis of computational problems The analysis of computational problems depends upon the answer to three fundamental questions: (1) What is a computational problem? Multiplying two numbers together is a computational problem; so is programming a computer to exceed human abilities in the writing of poetry. In order to make progress developing a general theory for the analysis of computational problems we are going to isolate a special class of problems known as decision problems, and concentrate our analysis on those. Restricting ourselves in this way enables the development of a theory which is both elegant and rich in structure. Most important, it is a theory whose principles have application far beyond decision problems. (2) How may we design algorithms to solve a given computational problem? Once a problem has been specified, what algorithms can be used to solve the problem? Are there general techniques which can be used to solve wide classes of problems? How can we be sure an algorithm behaves as claimed? (3) What are the minimal resources required to solve a given computational problem? Running an algorithm requires the consumption of resources, such as time, space, and energy. In different situations it may be desirable to minimize consumption of one or more resource. Can we classify problems according to the resource requirements needed to solve them? In the next few sections we investigate these three questions, especially questions 1 and 3. Although question 1, ‘what is a computational problem?’, is perhaps the most fundamental of the questions, we shall defer answering it until Section 3.2.3, pausing first to establish some background notions related to resource quantification in Section 3.2.1, and then reviewing the key ideas of computational complexity in Section 3.2.2. Question 2, how to design good algorithms, is the subject of an enormous amount of ingenious work by many researchers. So much so that in this brief introduction we cannot even begin to describe the main ideas employed in the design of good algorithms. If you are interested in this beautiful subject, we refer you to the end of chapter ‘History and further reading’. Our closest direct contact with this subject will occur later in the book, when we study quantum algorithms. The techniques involved in the creation of quantum algorithms have typically involved a blend of deep existing ideas in algorithm design for classical computers, and the creation of new, wholly quantum mechanical techniques for algorithm design. For this reason, and because the spirit of quantum algorithm design 136 Introduction to computer science is so similar in many ways to classical algorithm design, we encourage you to become familiar with at least the basic ideas of algorithm design. Question 3, what are the minimal resources required to solve a given computational problem, is the main focus of the next few sections. For example, suppose we are given two numbers, each n bits in length, which we wish to multiply. If the multiplication is performed on a single-tape Turing machine, how many computational steps must be executed by the Turing machine in order to complete the task? How much space is used on the Turing machine while completing the task? These are examples of the type of resource questions we may ask. Generally speaking, computers make use of many different kinds of resources, however we will focus most of our attention on time, space, and energy. Traditionally in computer science, time and space have been the two major resource concerns in the study of algorithms, and we study these issues in Sections 3.2.2 through 3.2.4. Energy has been a less important consideration; however, the study of energy requirements motivates the subject of reversible classical computation, which in turn is a prerequisite for quantum computation, so we examine energy requirements for computation in some considerable detail in Section 3.2.5. 3.2.1 How to quantify computational resources Different models of computation lead to different resource requirements for computation. Even something as simple as changing from a single-tape to a two-tape Turing machine may change the resources required to solve a given computational problem. For a computational task which is extremely well understood, like addition of integers, for example, such differences between computational models may be of interest. However, for a first pass at understanding a problem, we would like a way of quantifying resource requirements that is independent of relatively trivial changes in the computational model. One of the tools which has been developed to do this is the asymptotic notation, which can be used to summarize the essential behavior of a function. This asymptotic notation can be used, for example, to summarize the essence of how many time steps it takes a given algorithm to run, without worrying too much about the exact time count. In this section we describe this notation in detail, and apply it to a simple problem illustrating the quantification of computational resources – the analysis of algorithms for sorting a list of names into alphabetical order. Suppose, for example, that we are interested in the number of gates necessary to add together two n-bit numbers. Exact counts of the number of gates required obscure the big picture: perhaps a specific algorithm requires 24n + 2⌈log n⌉ + 16 gates to perform this task. However, in the limit of large problem size the only term which matters is the 24n term. Furthermore, we disregard constant factors as being of secondary importance to the analysis of the algorithm. The essential behavior of the algorithm is summed up by saying that the number of operations required scales like n, where n is the number of bits in the numbers being added. The asymptotic notation consists of three tools which make this notion precise. The O (‘big O’) notation is used to set upper bounds on the behavior of a function. Suppose f (n) and g(n) are two functions on the non-negative integers. We say ‘f (n) is in the class of functions O(g(n))’, or just ‘f (n) is O(g(n))’, if there are constants c and n0 such that for all values of n greater than n0 , f (n) ≤ cg(n). That is, for sufficiently large n, the function g(n) is an upper bound on f (n), up to an unimportant constant The analysis of computational problems 137 factor. The big O notation is particularly useful for studying the worst-case behavior of specific algorithms, where we are often satisfied with an upper bound on the resources consumed by an algorithm. When studying the behaviors of a class of algorithms – say the entire class of algorithms which can be used to multiply two numbers – it is interesting to set lower bounds on the resources required. For this the Ω (‘big Omega’) notation is used. A function f (n) is said to be Ω(g(n)) if there exist constants c and n0 such that for all n greater than n0 , cg(n) ≤ f (n). That is, for sufficiently large n, g(n) is a lower bound on f (n), up to an unimportant constant factor. Finally, the Θ (‘big Theta’) notation is used to indicate that f (n) behaves the same as g(n) asymptotically, up to unimportant constant factors. That is, we say f (n) is Θ(g(n)) if it is both O(g(n)) and Ω(g(n)). Asymptotic notation: examples Let’s consider a few simple examples of the asymptotic notation. The function 2n is in the class O(n2 ), since 2n ≤ 2n2 for all positive n. The function 2n is Ω(n3 ), since √ n3 ≤ 2n for sufficiently large n. Finally, the function 7n2 + n log(n) is Θ(n2 ), since √ 7n2 ≤ 7n2 + n log(n) ≤ 8n2 for all sufficiently large values of n. In the following few exercises you will work through some of the elementary properties of the asymptotic notation that make it a useful tool in the analysis of algorithms. Exercise 3.9: Prove that f (n) is O(g(n)) if and only if g(n) is Ω(f (n)). Deduce that f (n) is Θ(g(n)) if and only if g(n) is Θ(f (n)). Exercise 3.10: Suppose g(n) is a polynomial of degree k. Show that g(n) is O(nl ) for any l ≥ k. Exercise 3.11: Show that log n is O(nk ) for any k > 0. Exercise 3.12: (nlog n is super-polynomial) Show that nk is O(nlog n ) for any k, but that nlog n is never O(nk ). Exercise 3.13: (nlog n is sub-exponential) Show that cn is Ω(nlog n ) for any c > 1, but that nlog n is never Ω(cn ). Exercise 3.14: Suppose e(n) is O(f (n)) and g(n) is O(h(n)). Show that e(n)g(n) is O(f (n)h(n)). An example of the use of the asymptotic notation in quantifying resources is the following simple application to the problem of sorting an n element list of names into alphabetical order. Many sorting algorithms are based upon the ‘compare-and-swap’ operation: two elements of an n element list are compared, and swapped if they are in the wrong order. If this compare-and-swap operation is the only means by which we can access the list, how many such operations are required in order to ensure that the list has been correctly sorted? A simple compare-and-swap algorithm for solving the sorting problem is as follows: (note that compare-and-swap(j,k) compares the list entries numbered j and k, and swaps them if they are out of order) 138 Introduction to computer science for j = 1 to n-1 for k = j+1 to n compare-and-swap(j,k) end k end j It is clear that this algorithm correctly sorts a list of n names into alphabetical order. Note that the number of compare-and-swap operations executed by the algorithm is (n − 1) + (n − 2) + · · · + 1 = n(n − 1)/2. Thus the number of compare-and-swap operations used by the algorithm is Θ(n2 ). Can we do better than this? It turns out that we can. Algorithms such as ‘heapsort’ are known which run using O(n log n) compare-andswap operations. Furthermore, in Exercise 3.15 you’ll work through a simple counting argument that shows any algorithm based upon the compare-and-swap operation requires Ω(n log n) such operations. Thus, the sorting problem requires Θ(n log n) compare-andswap operations, in general. Exercise 3.15: (Lower bound for compare-and-swap based sorts) Suppose an n element list is sorted by applying some sequence of compare-and-swap operations to the list. There are n! possible initial orderings of the list. Show that after k of the compare-and-swap operations have been applied, at most 2k of the possible initial orderings will have been sorted into the correct order. Conclude that Ω(n log n) compare-and-swap operations are required to sort all possible initial orderings into the correct order. 3.2.2 Computational complexity The idea that there won’t be an algorithm to solve it – this is something fundamental that won’t ever change – that idea appeals to me. – Stephen Cook Sometimes it is good that some things are impossible. I am happy there are many things that nobody can do to me. – Leonid Levin It should not come as a surprise that our choice of polynomial algorithms as the mathematical concept that is supposed to capture the informal notion of ‘practically efficient computation’ is open to criticism from all sides. [. . . ] Ultimately, our argument for our choice must be this: Adopting polynomial worst-case performance as our criterion of efficiency results in an elegant and useful theory that says something meaningful about practical computation, and would be impossible without this simplification. – Christos Papadimitriou What time and space resources are required to perform a computation? In many cases these are the most important questions we can ask about a computational problem. Problems like addition and multiplication of numbers are regarded as efficiently solvable because we have fast algorithms to perform addition and multiplication, which consume The analysis of computational problems 139 little space when running. Many other problems have no known fast algorithm, and are effectively impossible to solve, not because we can’t find an algorithm to solve the problem, but because all known algorithms consume such vast quantities of space or time as to render them practically useless. Computational complexity is the study of the time and space resources required to solve computational problems. The task of computational complexity is to prove lower bounds on the resources required by the best possible algorithm for solving a problem, even if that algorithm is not explicitly known. In this and the next two sections, we give an overview of computational complexity, its major concepts, and some of the more important results of the field. Note that computational complexity is in a sense complementary to the field of algorithm design; ideally, the most efficient algorithms we could design would match perfectly with the lower bounds proved by computational complexity. Unfortunately, this is often not the case. As already noted, in this book we won’t examine classical algorithm design in any depth. One difficulty in formulating a theory of computational complexity is that different computational models may require different resources to solve the same problem. For instance, multiple-tape Turing machines can solve many problems substantially faster than single-tape Turing machines. This difficulty is resolved in a rather coarse way. Suppose a problem is specified by giving n bits as input. For instance, we might be interested in whether a particular n-bit number is prime or not. The chief distinction made in computational complexity is between problems which can be solved using resources which are bounded by a polynomial in n, or which require resources which grow faster than any polynomial in n. In the latter case we usually say that the resources required are exponential in the problem size, abusing the term exponential, since there are functions like nlog n which grow faster than any polynomial (and thus are ‘exponential’ according to this convention), yet which grow slower than any true exponential. A problem is regarded as easy, tractable or feasible if an algorithm for solving the problem using polynomial resources exists, and as hard, intractable or infeasible if the best possible algorithm requires exponential resources. As a simple example, suppose we have two numbers with binary expansions x1 . . . xm1 and y1 . . . ym2 , and we wish to determine the sum of the two numbers. The total size of the input is n ≡ m1 + m2 . It’s easy to see that the two numbers can be added using a number of elementary operations that scales as Θ(n); this algorithm uses a polynomial (indeed, linear) number of operations to perform its tasks. By contrast, it is believed (though it has never been proved!) that the problem of factoring an integer into its prime factors is intractable. That is, the belief is that there is no algorithm which can factor an arbitrary n-bit integer using O(p(n)) operations, where p is some fixed polynomial function of n. We will later give many other examples of problems which are believed to be intractable in this sense. The polynomial versus exponential classification is rather coarse. In practice, an algorithm that solves a problem using 2n/1000 operations is probably more useful than one which runs in n1000 operations. Only for very large input sizes (n ≈ 108 ) will the ‘efficient’ polynomial algorithm be preferable to the ‘inefficient’ exponential algorithm, and for many purposes it may be more practical to prefer the ‘inefficient’ algorithm. Nevertheless, there are many reasons to base computational complexity primarily on the polynomial versus exponential classification. First, historically, with few exceptions, polynomial resource algorithms have been much faster than exponential algorithms. We 140 Introduction to computer science might speculate that the reason for this is lack of imagination: coming up with algorithms requiring n, n2 or some other low degree polynomial number of operations is often much easier than finding a natural algorithm which requires n1000 operations, although examples like the latter do exist. Thus, the predisposition for the human mind to come up with relatively simple algorithms has meant that in practice polynomial algorithms usually do perform much more efficiently than their exponential cousins. A second and more fundamental reason for emphasizing the polynomial versus exponential classification is derived from the strong Church–Turing thesis. As discussed in Section 1.1, it was observed in the 1960s and 1970s that probabilistic Turing machines appear to be the strongest ‘reasonable’ model of computation. More precisely, researchers consistently found that if it was possible to compute a function using k elementary operations in some model that was not the probabilistic Turing machine model of computation, then it was always possible to compute the same function in the probabilistic Turing machine model, using at most p(k) elementary operations, where p(·) is some polynomial function. This statement is known as the strong Church–Turing thesis: Strong Church–Turing thesis: Any model of computation can be simulated on a probabilistic Turing machine with at most a polynomial increase in the number of elementary operations required. The strong Church–Turing thesis is great news for the theory of computational complexity, for it implies that attention may be restricted to the probabilistic Turing machine model of computation. After all, if a problem has no polynomial resource solution on a probabilistic Turing machine, then the strong Church–Turing thesis implies that it has no efficient solution on any computing device. Thus, the strong Church–Turing thesis implies that the entire theory of computational complexity will take on an elegant, model-independent form if the notion of efficiency is identified with polynomial resource algorithms, and this elegance has provided a strong impetus towards acceptance of the identification of ‘solvable with polynomial resources’ and ‘efficiently solvable’. Of course, one of the prime reasons for interest in quantum computers is that they cast into doubt the strong Church–Turing thesis, by enabling the efficient solution of a problem which is believed to be intractable on all classical computers, including probabilistic Turing machines! Nevertheless, it is useful to understand and appreciate the role the strong Church–Turing thesis has played in the search for a model-independent theory of computational complexity. Finally, we note that, in practice, computer scientists are not only interested in the polynomial versus exponential classification of problems. This is merely the first and coarsest way of understanding how difficult a computational problem is. However, it is an exceptionally important distinction, and illustrates many broader points about the nature of resource questions in computer science. For most of this book, it will be our central concern in evaluating the efficiency of a given algorithm. Having examined the merits of the polynomial versus exponential classification, we now have to confess that the theory of computational complexity has one remarkable outstanding failure: it seems very hard to prove that there are interesting classes of problems which require exponential resources to solve. It is quite easy to give non-constructive proofs that most problems require exponential resources (see Exercise 3.16, below), and furthermore many interesting problems are conjectured to require exponential resources for their solution, but rigorous proofs seem very hard to come by, at least with the present The analysis of computational problems 141 state of knowledge. This failure of computational complexity has important implications for quantum computation, because it turns out that the computational power of quantum computers can be related to some major open problems in classical computational complexity theory. Until these problems are resolved, it cannot be stated with certainty how computationally powerful a quantum computer is, or even whether it is more powerful than a classical computer! Exercise 3.16: (Hard-to-compute functions exist) Show that there exist Boolean functions on n inputs which require at least 2n / log n logic gates to compute. 3.2.3 Decision problems and the complexity classes P and NP Many computational problems are most cleanly formulated as decision problems – problems with a yes or no answer. For example, is a given number m a prime number or not? This is the primality decision problem. The main ideas of computational complexity are most easily and most often formulated in terms of decision problems, for two reasons: the theory takes its simplest and most elegant form in this form, while still generalizing in a natural way to more complex scenarios; and historically computational complexity arose primarily from the study of decision problems. Although most decision problems can easily be stated in simple, familiar language, discussion of the general properties of decision problems is greatly helped by the terminology of formal languages. In this terminology, a language L over the alphabet Σ is a subset of the set Σ∗ of all (finite) strings of symbols from Σ. For example, if Σ = {0, 1}, then the set of binary representations of even numbers, L = {0, 10, 100, 110, . . .} is a language over Σ. Decision problems may be encoded in an obvious way as problems about languages. For instance, the primality decision problem can be encoded using the binary alphabet Σ = {0, 1}. Strings from Σ∗ can be interpreted in a natural way as non-negative integers. For example, 0010 can be interpreted as the number 2. The language L is defined to consist of all binary strings such that the corresponding number is prime. To solve the primality decision problem, what we would like is a Turing machine which, when started with a given number n on its input tape, eventually outputs some equivalent of ‘yes’ if n is prime, and outputs ‘no’ if n is not prime. To make this idea precise, it is convenient to modify our old Turing machine definition (of Section 3.1.1) slightly, replacing the halting state qh with two states qY and qN to represent the answers ‘yes’ and ‘no’ respectively. In all other ways the machine behaves in the same way, and it still halts when it enters the state qY or qN . More generally, a language L is decided by a Turing machine if the machine is able to decide whether an input x on its tape is a member of the language of L or not, eventually halting in the state qY if x ∈ L, and eventually halting in the state qN if x ∈ L. We say that the machine has accepted or rejected x depending on which of these two cases comes about. How quickly can we determine whether or not a number is prime? That is, what is the fastest Turing machine which decides the language representing the primality decision problem? We say that a problem is in TIME(f (n)) if there exists a Turing machine which decides whether a candidate x is in the language in time O(f (n)), where n is the length of x. A problem is said to be solvable in polynomial time if it is in TIME(nk ) for some finite k. The collection of all languages which are in TIME(nk ), for some k, is denoted P. P is our first example of a complexity class. More generally, a complexity 142 Introduction to computer science class is defined to be a collection of languages. Much of computational complexity theory is concerned with the definition of various complexity classes, and understanding the relationship between different complexity classes. Not surprisingly, there are problems which cannot be solved in polynomial time. Unfortunately, proving that any given problem can’t be solved in polynomial time seems to be very difficult, although conjectures abound! A simple example of an interesting decision problem which is believed not to be in P is the factoring decision problem: : Given a composite integer m and l < m, does m have a non-trivial factor less than l? An interesting property of factoring is that if somebody claims that the answer is ‘yes, m does have a non-trivial factor less than l’ then they can establish this by exhibiting such a factor, which can then be efficiently checked by other parties, simply by doing long-division. We call such a factor a witness to the fact that m has a factor less than l. This idea of an easily checkable witness is the key idea in the definition of the complexity class NP, below. We have phrased factoring as a decision problem, but you can easily verify that the decision problem is equivalent to finding the factors of a number: Exercise 3.17: Prove that a polynomial-time algorithm for finding the factors of a number m exists if and only if the factoring decision problem is in P. Factoring is an example of a problem in an important complexity class known as NP. What distinguishes problems in NP is that ‘yes’ instances of a problem can easily be verified with the aid of an appropriate witness. More rigorously, a language L is in NP if there is a Turing machine M with the following properties: (1) If x ∈ L then there exists a witness string w such that M halts in the state qY after a time polynomial in |x| when the machine is started in the state x-blank-w. (2) If x ∈ L then for all strings w which attempt to play the role of a witness, the machine halts in state qN after a time polynomial in |x| when M is started in the state x-blank-w. There is an interesting asymmetry in the definition of NP. While we have to be able to quickly decide whether a possible witness to x ∈ L is truly a witness, there is no such need to produce a witness to x ∈ L. For instance, in the factoring problem, we have an easy way of proving that a given number has a factor less than m, but exhibiting a witness to prove that a number has no factors less than m is more daunting. This suggests defining coNP, the class of languages which have witnesses to ‘no’ instances; obviously the languages in coNP are just the complements of languages in NP. How are P and NP related? It is clear that P is a subset of NP. The most famous open problem in computer science is whether or not there are problems in NP which are not in P, often abbreviated as the P = NP problem. Most computer scientists believe that P = NP, but despite decades of work nobody has been able to prove this, and the possibility remains that P = NP. Exercise 3.18: Prove that if coNP = NP then P = NP. Upon first acquaintance it’s tempting to conclude that the conjecture P = NP ought to be pretty easy to resolve. To see why it’s actually rather subtle it helps to see couple of The analysis of computational problems 143 examples of problems that are in P and NP. We’ll draw the examples from graph theory, a rich source of decision problems with surprisingly many practical applications. A graph is a finite collection of vertices {v1 , . . . , vn } connected by edges, which are pairs (vi , vj ) of vertices. For now, we are only concerned with undirected graphs, in which the order of the vertices (in each edge pair) does not matter; similar ideas can be investigated for directed graphs in which the order of vertices does matter. A typical graph is illustrated in Figure 3.9. 70 61 52 43 70 61 52 43 ❥ ❥ ❥ ⑧ ❥ ❥ ❥ ❥ ⑧⑧⑧ ❥ ⑧⑧ ⑧ ❥ ❥ ⑧ ❥ ❥ ⑧⑧ ⑧⑧ ❥ ❥ ❥ ❥ ⑧⑧ ⑧⑧ ❥ ❥ ❥ ❥ ❥ ⑧ ❥ ❥ ⑧⑧ ⑧ ⑧ ❥ ⑧ ⑧⑧ ❥ ❥ ❥ ❥ ⑧⑧ ❥ ❥ ❥ ❥ ⑧⑧ 70 61 52 43 ❥ ❥ 70 16 25 34 ⑧ ❄❄❄ ❄❄ ⑧⑧ ❄❄ ⑧⑧ ⑧ ❄❄ ⑧⑧ ⑧ ❄❄ ❄❄ ⑧⑧ ❄ ⑧⑧ ⑧ 70 61 52 43 70 61 52 43 Figure 3.9. A graph. A cycle in a graph is a sequence v1 , . . . , vm of vertices such that each pair (vj , vj+1 ) is an edge, as is (v1 , vm ). A simple cycle is a cycle in which none of the vertices is repeated, except for the first and last vertices. A Hamiltonian cycle is a simple cycle which visits every vertex in the graph. Examples of graphs with and without Hamiltonian cycles are shown in Figure 3.10. 70 61 52 43 70 61 52 43 ❥ ❥ ❥ ⑧⑧ ❥ ❥ ❥ ❥ ⑧⑧⑧ ❥ ❥ ❥ ⑧⑧ ⑧ ⑧ ❥ ❥ ⑧ ⑧⑧ t❥ ❥ ❥ ❥ ⑧ ? ?⑧ ⑧⑧ ❥ ❥ ❥ t❥ ❥ ⑧ ❥ ❥ ⑧⑧ ⑧ ⑧ ❥ ⑧ ⑧⑧ ❥ ❥ ❥ ❥ ⑧⑧ ❥ ❥ ❥ ❥ ⑧⑧  70 61 52 43 ❥ ❥ 70 61 52 43 O ⑧ ❄❄❄ ❄❄ ⑧⑧ ⑧ ❄❄ ⑧  ❄ ❄ ? ?⑧ ⑧ ❄❄ ⑧⑧ ⑧ ❄❄ ⑧⑧ ❄ ⑧⑧ 70 61 52 43 70 61 52 43 70 61 52 43 ⑧⑧ ❥ ⑧⑧ ⑧ ❥ ❥ ❥ ❥ ⑧ ❥ ❥ ❥ ❥ ❥ ❥ ⑧⑧ ⑧ ❥ ⑧ ❥ ❥ ❥ ❥ ⑧⑧ ❥ ❥ ❥ ❥ ⑧❥⑧ ❥ ❥ ❥ ❥ ❥ ⑧⑧ 70 61 52 43 70 61 52 43 ⑧⑧ ⑧⑧ ⑧⑧ ⑧ ⑧ ⑧⑧ ⑧⑧ ⑧ ⑧ 70 61 52 43 70 61 52 43 ❥ ❥ ❥ ❥⑧ ❥ ❥ ❥ ❥ ⑧⑧⑧ ⑧⑧ ⑧⑧ ⑧⑧ ⑧ ⑧ 70 61 52 43 Figure 3.10. The graph on the left contains a Hamiltonian cycle, 0, 1, 2, 3, 4, 5, 0. The graph on the right contains no Hamiltonian cycle, as can be verified by inspection. The Hamiltonian cycle problem ( ) is to determine whether a given graph contains is a decision problem in NP, since if a given graph has a a Hamiltonian cycle or not. Hamiltonian cycle, then that cycle can be used as an easily checkable witness. Moreover, has no known polynomial time algorithm. Indeed, is a problem in the class of so-called NP-complete problems, which can be thought of as the ‘hardest’ problems in in time t allows any other problem in NP to be solved NP, in the sense that solving in time O(poly(t)). This also means that if any NP-complete problem has a polynomial time solution then it will follow that P = NP. There is a problem, the Euler cycle decision problem, which is superficially similar to , but which has astonishingly different properties. An Euler cycle is an ordering of the edges of a graph G so that every edge in the graph is visited exactly once. The Euler 144 Introduction to computer science cycle decision problem ( ) is to determine, given a graph G on n vertices, whether that is, in fact, exactly the same problem as , only graph contains an Euler cycle or not. the path visits edges, rather than vertices. Consider the following remarkable theorem, to be proven in Exercise 3.20: Theorem 3.1: (Euler’s theorem) A connected graph contains an Euler cycle if and only if every vertex has an even number of edges incident upon it. Euler’s theorem gives us a method for efficiently solving . First, check to see whether the graph is connected; this is easily done with O(n2 ) operations, as shown in Exercise 3.19. If the graph is not connected, then obviously no Euler cycle exists. If the graph is connected then for each vertex check whether there is an even number of edges incident upon the vertex. If a vertex is found for which this is not the case, then there is no Euler cycle, otherwise an Euler cycle exists. Since there are n vertices, and at most n(n − 1)/2 is in P! Somehow, edges, this algorithm requires O(n3 ) elementary operations. Thus there is a structure present in the problem of visiting each edge that can be exploited to provide an efficient algorithm for , yet which does not seem to be reflected in the problem of visiting each vertex; it is not at all obvious why such a structure should be present in one case, but not in the other, if indeed it is absent for the problem. Exercise 3.19: The problem is to determine whether there is a path can be between two specified vertices in a graph. Show that solved using O(n) operations if the graph has n vertices. Use the solution to to show that it is possible to decide whether a graph is connected in O(n2 ) operations. Exercise 3.20: (Euler’s theorem) Prove Euler’s theorem. In particular, if each vertex has an even number of incident edges, give a constructive procedure for finding an Euler cycle. The equivalence between the factoring decision problem and the factoring problem proper is a special instance of one of the most important ideas in computer science, an idea known as reduction. Intuitively, we know that some problems can be viewed as special instances of other problems. A less trivial example of reduction is the reduction of to the traveling salesman decision problem ( ). The traveling salesman decision problem is as follows: we are given n cities 1, 2, . . . , n and a non-negative integer distance dij between each pair of cities. Given a distance d the problem is to determine if there is a tour of all the cities of distance less than d. to goes as follows. Suppose we have a graph containing n The reduction of by thinking of each vertex of the graph as a vertices. We turn this into an instance of ‘city’ and defining the distance dij between cities i and j to be one if vertices i and j are connected, and the distance to be two if the vertices are unconnected. Then a tour of the cities of distance less than n + 1 must be of distance n, and be a Hamiltonian cycle for the graph. Conversely, if a Hamiltonian cycle exists then a tour of the cities of distance less , we can convert than n + 1 must exist. In this way, given an algorithm for solving without much overhead. Two consequences can be it into an algorithm for solving is a tractable problem, then is also tractable. Second, if inferred from this. First, if is hard then must also be hard. This is an example of a general technique known The analysis of computational problems 145 as reduction: we’ve reduced the problem to the problem . This is a technique we will use repeatedly throughout this book. A more general notion of reduction is illustrated in Figure 3.11. A language B is said to be reducible to another language A if there exists a Turing machine operating in polynomial time such that given as input x it outputs R(x), and x ∈ B if and only if R(x) ∈ A. Thus, if we have an algorithm for deciding A, then with a little extra overhead we can decide the language B. In this sense, the language B is essentially no more difficult to decide than the language A. Is x ∈ B  Compute R (x) in polynomial time  ( ) Is R x ∈ A ?  ‘‘Yes’’ or ‘‘No’’ Figure 3.11. Reduction of B to A. Exercise 3.21: (Transitive property of reduction) Show that if a language L1 is reducible to the language L2 and the language L2 is reducible to L3 then the language L1 is reducible to the language L3 . Some complexity classes have problems which are complete with respect to that complexity class, meaning there is a language L in the complexity class which is the ‘most difficult’ to decide, in the sense that every other language in the complexity class can be reduced to L. Not all complexity classes have complete problems, but many of the complexity classes we are concerned with do have complete problems. A trivial example is provided by P. Let L be any language in P which is not empty or equal to the set of all words. That is, there exists a string x1 such that x1 ∈ L and a string x2 such that x2 ∈ L. Then any other language L′ in P can be reduced to L using the following reduction: given an input x, use the polynomial time decision procedure to determine whether x ∈ L′ or not. If it is not, then set R(x) = x1 , otherwise set R(x) = x2 . Exercise 3.22: Suppose L is complete for a complexity class, and L′ is another language in the complexity class such that L reduces to L′ . Show that L′ is complete for the complexity class. Less trivially, NP also contains complete problems. An important example of such a problem and the prototype for all other NP-complete problems is the circuit satisfiability : given a Boolean circuit composed of , and gates, is there problem or an assignment of values to the inputs to the circuit that results in the circuit outputting 1, is known that is, is the circuit satisfiable for some input? The NP-completeness of as the Cook–Levin theorem, for which we now outline a proof. 146 Introduction to computer science Theorem 3.2: (Cook–Levin) is NP-complete. Proof The proof has two parts. The first part of the proof is to show that is in NP, and . Both parts the second part is to show that any language in NP can be reduced to of the proof are based on simulation techniques: the first part of the proof is essentially showing that a Turing machine can efficiently simulate a circuit, while the second part of the proof is essentially showing that a circuit can efficiently simulate a Turing machine. Both parts of the proof are quite straightforward; for the purposes of illustration we give the second part in some detail. is in NP. Given a circuit containing The first part of the proof is to show that n circuit elements, and a potential witness w, it is obviously easy to check in polynomial time on a Turing machine whether or not w satisfies the circuit, which establishes that is in NP. The second part of the proof is to show that any language L ∈ NP can be reduced to . That is, we aim to show that there is a polynomial time computable reduction R such that x ∈ L if and only if R(x) is a satisfiable circuit. The idea of the reduction is to find a circuit which simulates the action of the machine M which is used to check instance-witness pairs, (x, w), for the language L. The input variables for the circuit will represent the witness; the idea is that finding a witness which satisfies the circuit is equivalent to M accepting (x, w) for some specific witness w. Without loss of generality we may make the following assumptions about M to simplify the construction: (1) M ’s tape alphabet is ⊲,0,1 and the blank symbol. (2) M runs using time at most t(n) and total space at most s(n) where t(n) and s(n) are polynomials in n. (3) Machine M can actually be assumed to run using time exactly t(n) for all inputs of size n. This is done by adding the lines qY , x, qY , x, 0, and qN , x, qN , x, 0 for each of x = ⊲, 0, 1 and the blank, artificially halting the machine after exactly t(n) steps. The basic idea of the construction to simulate M is outlined in Figure 3.12. Each internal state of the Turing machine is represented by a single bit in the circuit. We name the corresponding bits q̃s , q̃1 , . . . , q̃m , q̃Y , q̃N . Initially, q̃s is set to one, and all the other bits representing internal states are set to zero. Each square on the Turing machine tape is represented by three bits: two bits to represent the letter of the alphabet (⊲, 0, 1 or blank) currently residing on the tape, and a single ‘flag’ bit which is set to one if the read-write head is pointing to the square, and set to zero otherwise. We denote the bits representing the tape contents by (u1 , v1 ), . . . , (us(n) , vs(n) ) and the corresponding flag bits by f1 , . . . , fs(n) . Initially the uj and vj bits are set to represent the inputs x and w, as appropriate, while f1 = 1 and all other fj = 0. There is also a lone extra ‘global flag’ bit, F , whose function will be explained later. F is initially set to zero. We regard all the bits input to the circuit as fixed, except for those representing the witness w, which are the variable bits for the circuit. The action of M is obtained by repeating t(n) times a ‘simulation step’ which simulates the execution of a single program line for the Turing machine. Each simulation step may be broken up into a sequence of steps corresponding in turn to the respective program lines, with a final step which resets the global flag F to zero, as 147 The analysis of computational problems m+3 fixed input bits 3n + 6 ⎧ ⎪ ⎪ q˜s ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ q ˜1 ⎪ ⎪ ⎪ ⎨ .. . ⎪ q˜m ⎪ ⎪ ⎪ ⎪ ⎪ q˜Y ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ q˜N ⎧ ⎪ ⎪ ⎪ ✄ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ x fixed ⎪ ⎪ ⎪ input bits ⎪ ⎪ ⎪ 3w(n) ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ b. . fixed ⎪ . ⎪ ⎪ input bits ⎪ ⎩ b 1 fixed input bit / m+3 Simulation Step ⎧ ⎨ ⎩ F / Simulation Step ··· 3w(n) ··· 3s(n) ··· / output bit ··· 3n+6 b variable w ⎪ ⎪ input bits ⎪ ⎪ ⎩ 3s(n) / q̃Y Simulation Step ··· " # t (n) simulation steps ! Figure 3.12. Outline of the procedure used to simulate a Turing machine using a circuit. illustrated in Figure 3.13. To complete the simulation, we only need to simulate a program line of the form qi , x, qj , x′ , s. For convenience, we assume qi = qj , but a similar construction works in the case when qi = qj . The procedure is as follows: (1) Check to see that q̃i = 1, indicating that the current state of the machine is qi . (2) For each tape square: (a) Check to see that the global flag bit is set to zero, indicating that no action has yet been taken by the Turing machine. (b) Check that the flag bit is set to one, indicating that the tape head is at this tape square. (c) Check that the simulated tape contents at this point are x. (d) If all conditions check out, then perform the following steps: 1. Set q̃i = 0 and q̃j = 1. 2. Update the simulated tape contents at this tape square to x′ . 3. Update the flag bit of this and adjacent ‘squares’ as appropriate, depending on whether s = +1, 0, −1, and whether we are at the left hand end of the tape. 4. Set the global flag bit to one, indicating that this round of computation has been completed. 148 Introduction to computer science This is a fixed procedure which involves a constant number of bits, and by the universality result of Section 3.1.2 can be performed using a circuit containing a constant number of gates. Figure 3.13. Outline of the simulation step used to simulate a Turing machine using a circuit. The total number of gates in the entire circuit is easily seen to be O(t(n)(s(n) + n)), which is polynomial in size. At the end of the circuit, it is clear that q̃Y = 1 if and only if the machine M accepts (x, w). Thus, the circuit is satisfiable if and only if there exists w such that machine M accepts (x, w), and we have found the desired reduction from . L to gives us a foot in the door which enables us to easily prove that many other problems are NP-complete. Instead of directly proving that a problem is NP-complete, reduces to it, so by Exercise 3.22 the we can instead prove that it is in NP and that problem must be NP-complete. A small sample of NP-complete problems is discussed in Box 3.3. An example of another NP-complete problem is the satisfiability problem ( ), which is phrased in terms of a Boolean formula. Recall that a Boolean formula ϕ is composed of the following elements: a set of Boolean variables, x1 , x2 , . . .; Boolean connectives, that is, a Boolean function with one or two inputs and one output, such as ∧ (AND), ∨ (OR), and ¬ (NOT); and parentheses. The truth or falsity of a Boolean formula for a given set of Boolean variables is decided according to the usual laws of Boolean algebra. For example, the formula ϕ = x1 ∨ ¬x2 has the satisfying assignment x1 = 0 and x2 = 0, while x1 = 0 and x2 = 1 is not a satisfying assignment. The satisfiability problem is to determine, given a Boolean formula ϕ, whether or not it is satisfiable by any set of possible inputs. is NP-complete by first showing that is in NP, and Exercise 3.23: Show that reduces to . (Hint: for the reduction it may help to then showing that by different variables in a represent each distinct wire in an instance of Boolean formula.) is also NP-complete, the 3-satisfiability problem An important restricted case of ), which is concerned with formulae in 3-conjunctive normal form. A formula is ( said to be in conjunctive normal form if it is the AND of a collection of clauses, each of which is the OR of one or more literals, where a literal is an expression is of the form x or ¬x. For example, the formula (x1 ∨ ¬x2 ) ∧ (x2 ∨ x3 ∨ ¬x4 ) is in conjunctive normal form. A formula is in 3-conjunctive normal form or 3-CNF if each clause has exactly three literals. For example, the formula (¬x1 ∨x2 ∨¬x2 )∧(¬x1 ∨x3 ∨¬x4 )∧(x2 ∨x3 ∨x4 ) is in 3-conjunctive normal form. The 3-satisfiability problem is to determine whether a formula in 3-conjunctive normal form is satisfiable or not. is NP-complete is straightforward, but is a little too lengthy to The proof that and , is in some sense justify inclusion in this overview. Even more than The analysis of computational problems 149 the NP-complete problem, and it is the basis for countless proofs that other problems are NP-complete. We conclude our discussion of NP-completeness with the surprising , the analogue of in which every clause has two literals, can be solved fact that in polynomial time: Exercise 3.24: ( has an efficient solution) Suppose ϕ is a Boolean formula in conjunctive normal form, in which each clause contains only two literals. (1) Construct a (directed) graph G(ϕ) with directed edges in the following way: the vertices of G correspond to variables xj and their negations ¬xj in ϕ. There is a (directed) edge (α, β) in G if and only if the clause (¬α ∨ β) or the clause (β ∨ ¬α) is present in ϕ. Show that ϕ is not satisfiable if and only if there exists a variable x such that there are paths from x to ¬x and from ¬x to x in G(ϕ). (2) Show that given a directed graph G containing n vertices it is possible to determine whether two vertices v1 and v2 are connected in polynomial time. . (3) Find an efficient algorithm to solve Box 3.3: A zoo of NP-complete problems The importance of the class NP derives, in part, from the enormous number of computational problems that are known to be NP-complete. We can’t possibly hope to survey this topic here (see ‘History and further reading’), but the following examples, taken from many distinct areas of mathematics, give an idea of the delicious melange of problems known to be NP-complete. • (graph theory): A clique in an undirected graph G is a subset of vertices, each pair of which is connected by an edge. The size of a clique is the number of vertices it contains. Given an integer m and a graph G, does G have a clique of size m? (arithmetic): Given a finite collection S of positive integers and a • target t, is there any subset of S which sums to t? (linear programming): Given an integer m × n • matrix A and an m-dimensional vector y with integer values, does there exist an n-dimensional vector x with entries in the set {0, 1} such that Ax ≤ y? • (graph theory): A vertex cover for an undirected graph G is a ′ set of vertices V such that every edge in the graph has one or both vertices contained in V ′ . Given an integer m and a graph G, does G have a vertex cover V ′ containing m vertices? Assuming that P = NP it is possible to prove that there is a non-empty class of problems NPI (NP intermediate) which are neither solvable with polynomial resources, nor are NP-complete. Obviously, there are no problems known to be in NPI (otherwise we would know that P = NP) but there are several problems which are regarded as being likely candidates. Two of the strongest candidates are the factoring and graph isomorphism problems: 150 Introduction to computer science : Suppose G and G′ are two undirected graphs over the vertices V ≡ {v1 , . . . , vn }. Are G and G′ isomorphic? That is, does there exist a one-to-one function ϕ : V → V such that the edge (vi , vj ) is contained in G if and only if (ϕ(vi ), ϕ(vj )) is contained in G? Problems in NPI are interesting to researchers in quantum computation and quantum information for two reasons. First, it is desirable to find fast quantum algorithms to solve problems which are not in P. Second, many suspect that quantum computers will not be able to efficiently solve all problems in NP, ruling out NP-complete problems. Thus, it is natural to focus on the class NPI. Indeed, a fast quantum algorithm for factoring has been discovered (Chapter 5), and this has motivated the search for fast quantum algorithms for other problems suspected to be in NPI. 3.2.4 A plethora of complexity classes We have investigated some of the elementary properties of some important complexity classes. A veritable pantheon of complexity classes exists, and there are many non-trivial relationships known or suspected between these classes. For quantum computation and quantum information, it is not necessary to understand all the different complexity classes that have been defined. However, it is useful to have some appreciation for the more important of the complexity classes, many of which have natural analogues in the study of quantum computation and quantum information. Furthermore, if we are to understand how powerful quantum computers are, then it behooves us to understand how the class of problems solvable on a quantum computer fits into the zoo of complexity classes which may be defined for classical computers. There are essentially three properties that may be varied in the definition of a complexity class: the resource of interest (time, space, . . . ), the type of problem being considered (decision problem, optimization problem, . . . ), and the underlying computational model (deterministic Turing machine, probabilistic Turing machine, quantum computer, . . . ). Not surprisingly, this gives us an enormous range to define complexity classes. In this section, we briefly review a few of the more important complexity classes and some of their elementary properties. We begin with a complexity class defined by changing the resource of interest from time to space. The most natural space-bounded complexity class is the class PSPACE of decision problems which may be solved on a Turing machine using a polynomial number of working bits, with no limitation on the amount of time that may be used by the machine (see Exercise 3.25). Obviously, P is included in PSPACE, since a Turing machine that halts after polynomial time can only traverse polynomially many squares, but it is also true that NP is a subset of PSPACE. To see this, suppose L is any language in NP. Suppose problems of size n have witnesses of size at most p(n), where p(n) is some polynomial in n. To determine whether or not the problem has a solution, we may sequentially test all 2p(n) possible witnesses. Each test can be run in polynomial time, and therefore polynomial space. If we erase all the intermediate working between tests then we can test all the possibilities using polynomial space. Unfortunately, at present it is not even known whether PSPACE contains problems which are not in P! This is a pretty remarkable situation – it seems fairly obvious that having unlimited time and polynomial spatial resources must be more powerful than having only a polynomial amount of time. However, despite considerable effort and in- The analysis of computational problems 151 genuity, this has never been shown. We will see later that the class of problems solvable on a quantum computer in polynomial time is a subset of PSPACE, so proving that a problem efficiently solvable on a quantum computer is not efficiently solvable on a classical computer would establish that P = PSPACE, and thus solve a major outstanding problem of computer science. An optimistic way of looking at this result is that ideas from quantum computation might be useful in proving that P = PSPACE. Pessimistically, one might conclude that it will be a long time before anyone rigorously proves that quantum computers can be used to efficiently solve problems that are intractable on a classical computer. Even more pessimistically, it is possible that P = PSPACE, in which case quantum computers offer no advantage over classical computers! However, very few (if any) computational complexity theorists believe that P = PSPACE. Exercise 3.25: (PSPACE ⊆ EXP) The complexity class EXP (for exponential time) contains all decision problems which may be decided by a Turing machine k running in exponential time, that is time O(2n ), where k is any constant. Prove that PSPACE ⊆ EXP. (Hint: If a Turing machine has l internal states, an m letter alphabet, and uses space p(n), argue that the machine can exist in one of at most lmp(n) different states, and that if the Turing machine is to avoid infinite loops then it must halt before revisiting a state.) Exercise 3.26: (L ⊆ P) The complexity class L (for logarithmic space) contains all decision problems which may be decided by a Turing machine running in logarithmic space, that is, in space O(log(n)). More precisely, the class L is defined using a two-tape Turing machine. The first tape contains the problem instance, of size n, and is a read-only tape, in the sense that only program lines which don’t change the contents of the first tape are allowed. The second tape is a working tape which initially contains only blanks. The logarithmic space requirement is imposed on the second, working tape only. Show that L ⊆ P. Does allowing more time or space give greater computational power? The answer to this question is yes in both cases. Roughly speaking, the time hierarchy theorem states that TIME(f (n)) is a proper subset of TIME(f (n) log2 (f (n))). Similarly, the space hierarchy theorem states that SPACE(f (n)) is a proper subset of SPACE(f (n) log(f (n))), where SPACE(f (n)) is, of course, the complexity class consisting of all languages that can be decided with spatial resources O(f (n)). The hierarchy theorems have interesting implications with respect to the equality of complexity classes. We know that L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP. (3.1) Unfortunately, although each of these inclusions is widely believed to be strict, none of them has ever been proved to be strict. However, the time hierarchy theorem implies that P is a strict subset of EXP, and the space hierarchy theorem implies that L is a strict subset of PSPACE! So we can conclude that at least one of the inclusions in (3.1) must be strict, although we do not know which one. What should we do with a problem once we know that it is NP-complete, or that some other hardness criterion holds? It turns out that this is far from being the end of the story in problem analysis. One possible line of attack is to identify special cases of the problem which may be amenable to attack. For example, in Exercise 3.24 we saw problem has an efficient solution, despite the NP-completeness of . that the 152 Introduction to computer science Another approach is to change the type of problem which is being considered, a tactic which typically results in the definition of new complexity classes. For example, instead of finding exact solutions to an NP-complete problem, we can instead try to find good algorithms for finding approximate solutions to a problem. For example, the problem is an NP-complete problem, yet in Exercise 3.27 we show that it is possible to efficiently find an approximation to the minimal vertex cover which is correct to within a factor two! On the other hand, in Problem 3.6 we show that it is not possible correct to within any factor, unless P = NP! to find approximations to solutions of ) Let G = (V, E) Exercise 3.27: (Approximation algorithm for be an undirected graph. Prove that the following algorithm finds a vertex cover for G that is within a factor two of being a minimal vertex cover: VC =∅ E′ = E do until E ′ = ∅ let (α, β) be any edge of E ′ V C = V C ∪ {α, β} remove from E ′ every edge incident on α or β return V C. Why is it possible to approximate the solution of one NP-complete problem, but not another? After all, isn’t it possible to efficiently transform from one problem to another? This is certainly true, however it is not necessarily true that this transformation preserves the notion of a ‘good approximation’ to a solution. As a result, the computational complexity theory of approximation algorithms for problems in NP has a structure that goes beyond the structure of NP proper. An entire complexity theory of approximation algorithms exists, which unfortunately is beyond the scope of this book. The basic idea, however, is to define a notion of reduction that corresponds to being able to efficiently reduce one approximation problem to another, in such a way that the notion of good approximation is preserved. With such a notion, it is possible to define complexity classes such as MAXSNP by analogy to the class NP, as the set of problems for which it is possible to efficiently verify approximate solutions to the problem. Complete problems exist for MAXSNP, just as for NP, and it is an interesting open problem to determine how the class MAXSNP compares to the class of approximation problems which are efficiently solvable. We conclude our discussion with a complexity class that results when the underlying model of computation itself is changed. Suppose a Turing machine is endowed with the ability to flip coins, using the results of the coin tosses to decide what actions to take during the computation. Such a Turing machine may only accept or reject inputs with a certain probability. The complexity class BPP (for bounded-error probabilistic time) contains all languages L with the property that there exists a probabilistic Turing machine M such that if x ∈ L then M accepts x with probability at least 3/4, and if x ∈ L, then M rejects x with probability at least 3/4. The following exercise shows that the choice of the constant 3/4 is essentially arbitrary: The analysis of computational problems 153 Exercise 3.28: (Arbitrariness of the constant in the definition of BPP) Suppose k is a fixed constant, 1/2 < k ≤ 1. Suppose L is a language such that there exists a Turing machine M with the property that whenever x ∈ L, M accepts x with probability at least k, and whenever x ∈ L, M rejects x with probability at least k. Show that L ∈ BPP. Indeed, the Chernoff bound, discussed in Box 3.4, implies that with just a few repetitions of an algorithm deciding a language in BPP the probability of success can be amplified to the point where it is essentially equal to one, for all intents and purposes. For this reason, BPP even more than P is the class of decision problems which is usually regarded as being efficiently solvable on a classical computer, and it is the quantum analogue of BPP, known as BQP, that is most interesting in our study of quantum algorithms. 3.2.5 Energy and computation Computational complexity studies the amount of time and space required to solve a computational problem. Another important computational resource is energy. In this section, we study the energy requirements for computation. Surprisingly, it turns out that computation, both classical and quantum, can in principle be done without expending any energy! Energy consumption in computation turns out to be deeply linked to the gate, which takes as reversibility of the computation. Consider a gate like the input two bits, and produces a single bit as output. This gate is intrinsically irreversible because, given the output of the gate, the input is not uniquely determined. For example, if the output of the gate is 1, then the input could have been any one of 00, 01, gate is an example of a reversible logic gate because, or 10. On the other hand, the gate, it is possible to infer what the input must have been. given the output of the Another way of understanding irreversibility is to think of it in terms of information erasure. If a logic gate is irreversible, then some of the information input to the gate is lost irretrievably when the gate operates – that is, some of the information has been erased by the gate. Conversely, in a reversible computation, no information is ever erased, because the input can always be recovered from the output. Thus, saying that a computation is reversible is equivalent to saying that no information is erased during the computation. What is the connection between energy consumption and irreversibility in computation? Landauer’s principle provides the connection, stating that, in order to erase information, it is necessary to dissipate energy. More precisely, Landauer’s principle may be stated as follows: Landauer’s principle (first form): Suppose a computer erases a single bit of information. The amount of energy dissipated into the environment is at least kB T ln 2, where kB is a universal constant known as Boltzmann’s constant, and T is the temperature of the environment of the computer. According to the laws of thermodynamics, Landauer’s principle can be given an alternative form stated not in terms of energy dissipation, but rather in terms of entropy: Landauer’s principle (second form): Suppose a computer erases a single bit of information. The entropy of the environment increases by at least kB ln 2, where kB is Boltzmann’s constant. Justifying Landauer’s principle is a problem of physics that lies beyond the scope of this 154 Introduction to computer science Box 3.4: BPP and the Chernoff bound Suppose we have an algorithm for a decision problem which gives the correct answer with probability 1/2 + ǫ, and the wrong answer with probability 1/2 − ǫ. If we run the algorithm n times, then it seems reasonable to guess that the correct answer is whichever appeared most frequently. How reliably does this procedure work? The Chernoff bound is a simple result from elementary probability which answers this question. Theorem 3.3: (The Chernoff bound) Suppose X1 , . . . , Xn are independent and identically distributed random variables, each taking the value 1 with probability 1/2 + ǫ, and the value 0 with probability 1/2 − ǫ. Then   n p i=1 2 ≤ e−2ǫ n . Xi ≤ n/2 (3.2) Proof Consider any sequence (x1 , . . . , xn ) containing at most n/2 ones. The probability of such a sequence occurring is maximized when it contains ⌊n/2⌋ ones, so   n2   n2 1 1 p(X1 = x1 , . . . , Xn = xn ) ≤ −ǫ +ǫ (3.3) 2 2 n (1 − 4ǫ2 ) 2 . (3.4) = 2n There can be at most 2n such sequences, so   n (1 − 4ǫ2 ) 2 n = (1 − 4ǫ2 ) 2 . Xi ≤ n/2 ≤ 2n × (3.5) p n 2 i Finally, by calculus, 1 − x ≤ exp(−x), so   p i Xi ≤ n/2 2 2 ≤ e−4ǫ n/2 = e−2ǫ n . (3.6) What this tells us is that for fixed ǫ, the probability of making an error decreases exponentially quickly in the number of repetitions of the algorithm. In the case of BPP we have ǫ = 1/4, so it takes only a few hundred repetitions of the algorithm to reduce the probability of error below 10−20 , at which point an error in one of the computer’s components becomes much more likely than an error due to the probabilistic nature of the algorithm. book – see the end of chapter ‘History and further reading’ if you wish to understand why Landauer’s principle holds. However, if we accept Landauer’s principle as given, then it raises a number of interesting questions. First of all, Landauer’s principle only provides a lower bound on the amount of energy that must be dissipated to erase information. The analysis of computational problems 155 How close are existing computers to this lower bound? Not very, turns out to be the answer – computers circa the year 2000 dissipate roughly 500kB T ln 2 in energy for each elementary logical operation. Although existing computers are far from the limit set by Landauer’s principle, it is still an interesting problem of principle to understand how much the energy consumption can be reduced. Aside from the intrinsic interest of the problem, a practical reason for the interest follows from Moore’s law: if computer power keeps increasing then the amount of energy dissipated must also increase, unless the energy dissipated per operation drops at least as fast as the rate of increase in computing power. If all computations could be done reversibly, then Landauer’s principle would imply no lower bound on the amount of energy dissipated by the computer, since no bits at all are erased during a reversible computation. Of course, it is possible that some other physical principle might require that energy be dissipated during the computation; fortunately, this turns out not to be the case. But is it possible to perform universal computation without erasing any information? Physicists can cheat on this problem to see in advance that the answer to this question must be yes, because our present understanding of the laws of physics is that they are fundamentally reversible. That is, if we know the final state of a closed physical system, then the laws of physics allow us to work out the initial state of the system. If we believe that those laws are correct, then we must conclude that and , there must be some underlying hidden in the irreversible logic gates like reversible computation. But where is this hidden reversibility, and can we use it to construct manifestly reversible computers? We will use two different techniques to give reversible circuit-based models capable of universal computation. The first model, a computer built entirely of billiard balls and mirrors, gives a beautiful concrete realization of the principles of reversible computation. The second model, based on a reversible logic gate known as the Toffoli gate (which we first encountered in Section 1.4.1), is a more abstract view of reversible computation that will later be of great use in our discussion of quantum computation. It is also possible to build reversible Turing machines that are universal for computation; however, we won’t study these here, since the reversible circuit models turn out to be much more useful for quantum computation. The basic idea of the billiard ball computer is illustrated in Figure 3.14. Billiard ball ‘inputs’ enter the computer from the left hand side, bouncing off mirrors and each other, before exiting as ‘outputs’ on the right hand side. The presence or absence of a billiard ball at a possible input site is used to indicate a logical 1 or a logical 0, respectively. The fascinating thing about this model is that it is manifestly reversible, insofar as its operation is based on the laws of classical mechanics. Furthermore, this model of computation turns out to be universal in the sense that it can be used to simulate an arbitrary computation in the standard circuit model of computation. Of course, if a billiard ball computer were ever built it would be highly unstable. As any billiards player can attest, a billiard ball rolling frictionlessly over a smooth surface is easily knocked off course by small perturbations. The billiard ball model of computation depends on perfect operation, and the absence of external perturbations such as those caused by thermal noise. Periodic corrections can be performed, but information gained by doing this would have to be erased, requiring work to be performed. Expenditure of energy thus serves the purpose of reducing this susceptibility to noise, which is necessary for a practical, real-world computational machine. For the purposes of this introduction, 156 Introduction to computer science . ? ? > > = = Figure 3.14. A simple billiard ball computer, with three input bits and three output bits, shown entering on the left and leaving on the right, respectively. The presence or absence of a billiard ball indicates a 1 or a 0, respectively. Empty circles illustrate potential paths due to collisions. This particular computer implements the Fredkin classical reversible logic gate, discussed in the text. we will ignore the effects of noise on the billiard ball computer, and concentrate on understanding the essential elements of reversible computation. The billiard ball computer provides an elegant means for implementing a reversible universal logic gate known as the Fredkin gate. Indeed, the properties of the Fredkin gate provide an informative overview of the general principles of reversible logic gates and circuits. The Fredkin gate has three input bits and three output bits, which we refer to as a, b, c and a′ , b′ , c′ , respectively. The bit c is a control bit, whose value is not changed by the action of the Fredkin gate, that is, c′ = c. The reason c is called the control bit is because it controls what happens to the other two bits, a and b. If c is set to 0 then a and b are left alone, a′ = a, b′ = b. If c is set to 1, a and b are swapped, a′ = b, b′ = a. The explicit truth table for the Fredkin gate is shown in Figure 3.15. It is easy to see that the Fredkin gate is reversible, because given the output a′ , b′ , c′ , we can determine the inputs a, b, c. In fact, to recover the original inputs a, b and c we need only apply another Fredkin gate to a′ , b′ , c′ : Exercise 3.29: (Fredkin gate is self-inverse) Show that applying two consecutive Fredkin gates gives the same outputs as inputs. Examining the paths of the billiard balls in Figure 3.14, it is not difficult to verify that this billiard ball computer implements the Fredkin gate: Exercise 3.30: Verify that the billiard ball computer in Figure 3.14 computes the Fredkin gate. In addition to reversibility, the Fredkin gate also has the interesting property that the number of 1s is conserved between the input and output. In terms of the billiard ball computer, this corresponds to the number of billiard balls going into the Fredkin gate being equal to the number coming out. Thus, it is sometimes referred to as being a conservative reversible logic gate. Such reversibility and conservative properties are interesting to a physicist because they can be motivated by fundamental physical princi- The analysis of computational problems Inputs a b 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 c 0 1 0 1 0 1 0 1 157 Outputs a b′ c′ 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 ′ Figure 3.15. Fredkin gate truth table and circuit representation. The bits a and b are swapped if the control bit c is set, and otherwise are left alone. ples. The laws of Nature are reversible, with the possible exception of the measurement postulate of quantum mechanics, discussed in Section 2.2.3 on page 84. The conservative property can be thought of as analogous to properties such as conservation of mass, or conservation of energy. Indeed, in the billiard ball model of computation the conservative property corresponds exactly to conservation of mass. Figure 3.16. Fredkin gate configured to perform the elementary gates (left), (middle), and a primitive routing function, the (right). The middle gate also serves to perform the operation, since it produces two copies of x at the output. Note that each of these configurations requires the use of extra ‘ancilla’ bits gate – and in general the output prepared in standard states – for example, the 0 input on the first line of the contains ‘garbage’ not needed for the remainder of the computation. The Fredkin gate is not only reversible and conservative, it’s a universal logic gate as well! As illustrated in Figure 3.16, the Fredkin gate can be configured to simulate , , and functions, and thus can be cascaded to simulate any classical circuit whatsoever. using the Fredkin gate, we made use of two To simulate irreversible gates such as ideas. First, we allowed the input of ‘ancilla’ bits to the Fredkin gate, in specially prepared states, either 0 or 1. Second, the output of the Fredkin gate contained extraneous ‘garbage’ not needed for the remainder of the computation. These ancilla and garbage bits are not directly important to the computation. Their importance lies in the fact that they make and may the computation reversible. Indeed the irreversibility of gates like the be viewed as a consequence of the ancilla and garbage bits being ‘hidden’. Summarizing, given any classical circuit computing a function f (x), we can build a reversible circuit made entirely of Fredkin gates, which on input of x, together with some ancilla bits 158 Introduction to computer science in a standard state a, computes f (x), together with some extra ‘garbage’ output, g(x). Therefore, we represent the action of the computation as (x, a) → (f (x), g(x)). We now know how to compute functions reversibly. Unfortunately, this computation produces unwanted garbage bits. With some modifications it turns out to be possible to perform the computation so that any garbage bits produced are in a standard state. This construction is crucial for quantum computation, because garbage bits whose value depends upon x will in general destroy the interference properties crucial to quantum gate computation. To understand how this works it is convenient to assume that the is available in our repertoire of reversible gates, so we may as well assume that the ancilla bits a all start out as 0s, with gates being added where necessary to turn the ancilla gate is 0s into 1s. It will also be convenient to assume that the classical controlledavailable, defined in a manner analogous to the quantum definition of Section 1.3.2, that is, the inputs (c, t) are taken to (c, t ⊕ c), where ⊕ denotes addition modulo 2. Notice can be thought of as a reversible that t = 0 gives (c, 0) → (c, c), so the controlled, which leaves no garbage bits at the output. copying gate or gates appended at the beginning of the circuit, the action With the additional of the computation may be written as (x, 0) → (f (x), g(x)). We could also have added gates to the beginning of the circuit, in order to create a copy of x which is not changed during the subsequent computation. With this modification, the action of the circuit may be written (x, 0, 0) → (x, f (x), g(x)) . (3.7) Equation (3.7) is a very useful way of writing the action of the reversible circuit, because it allows an idea known as uncomputation to be used to get rid of the garbage bits, for a small cost in the running time of the computation. The idea is the following. Suppose we start with a four register computer in the state (x, 0, 0, y). The second register is used to store the result of the computation, and the third register is used to provide workspace for the computation, that is, the garbage bits g(x). The use of the fourth register is described shortly, and we assume it starts in an arbitrary state y. We begin as before, by applying a reversible circuit to compute f , resulting in the state (x, f (x), g(x), y). Next, we use s to add the result f (x) bitwise to the fourth register, leaving the machine in the state (x, f (x), g(x), y ⊕ f (x)). However, all the steps used to compute f (x) were reversible and did not affect the fourth register, so by applying the reverse of the circuit used to compute f we come to the state (x, 0, 0, y ⊕f (x)). Typically, we omit the ancilla 0s from the description of the function evaluation, and just write the action of the circuit as (x, y) → (x, y ⊕ f (x)) . (3.8) In general we refer to this modified circuit computing f as the reversible circuit computing f , even though in principle there are many other reversible circuits which could be used to compute f . What resource overhead is involved in doing reversible computation? To analyze this question, we need to count the number of extra ancilla bits needed in a reversible circuit, and compare the gate counts with classical models. It ought to be clear that the number of gates in a reversible circuit is the same as in an irreversible circuit to within the constant factor which represents the number of Fredkin gates needed to simulate a single element of the irreversible circuit, and an additional factor of two for uncomputation, with an The analysis of computational problems 159 overhead for the extra operations used in reversible computation which is linear in the number of bits involved in the circuit. Similarly, the number of ancilla bits required scales at most linearly with the number of gates in the irreversible circuit, since each element in the irreversible circuit can be simulated using a constant number of ancilla bits. As a result, natural complexity classes such as P and NP are the same no matter whether a reversible or irreversible model of computation is used. For more elaborate complexity classes like PSPACE the situation is not so immediately clear; see Problem 3.9 and ‘History and further reading’ for a discussion of some such subtleties. Exercise 3.31: (Reversible half-adder) Construct a reversible circuit which, when two bits x and y are input, outputs (x, y, c, x ⊕ y), where c is the carry bit when x and y are added. The Fredkin gate and its implementation using the billiard ball computer offers a beautiful paradigm for reversible computation. There is another reversible logic gate, the Toffoli gate, which is also universal for classical computation. While the Toffoli gate does not have quite the same elegant physical simplicity as the billiard ball implementation of the Fredkin gate, it will be more useful in the study of quantum computation. We have already met the Toffoli gate in Section 1.4.1, but for convenience we review its properties here. The Toffoli gate has three input bits, a, b and c. a and b are known as the first and second control bits, while c is the target bit. The gate leaves both control bits unchanged, flips the target bit if both control bits are set, and otherwise leaves the target bit alone. The truth table and circuit representation for the Toffoli gate are shown in Figure 3.17. Inputs a b c 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Outputs a′ b′ c′ 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 Figure 3.17. Truth table and circuit representation of the Toffoli gate. How can the Toffoli gate be used to do universal computation? Suppose we wish to the bits a and b. To do this using the Toffoli gate, we input a and b as control bits, and send in an ancilla bit set to 1 as the target bit, as shown in Figure 3.18. The of a and b is output as the target bit. As expected from our study of the Fredkin requires the use of a special ancilla input, gate, the Toffoli gate simulation of a and some of the outputs from the simulation are garbage bits. operation by inputting The Toffoli gate can also be used to implement the an ancilla 1 to the first control bit, and a to the second control bit, producing the output and are together 1, a, a. This is illustrated in Figure 3.19. Recalling that 160 Introduction to computer science Figure 3.18. Implementing a gate using a Toffoli gate. The top two bits represent the input to the , while the third bit is prepared in the standard state 1, sometimes known as an ancilla state. The output from the is on the third bit. universal for computation, we see that an arbitrary circuit can be efficiently simulated using a reversible circuit consisting only of Toffoli gates and ancilla bits, and that useful additional techniques such as uncomputation may be achieved using the same methods as were employed with the Fredkin gate. Figure 3.19. with the Toffoli gate, with the second bit being the input to the appears on the second and third bits. bits standard ancilla states. The output from , and the other two Our interest in reversible computation was motivated by our desire to understand the energy requirements for computation. It is clear that the noise-free billiard ball model of computation requires no energy for its operation; what about models based upon the Toffoli gate? This can only be determined by examining specific models for the computation of the Toffoli gate. In Chapter 7, we examine several such implementations, and it turns out that, indeed, the Toffoli gate can be implemented in a manner which does not require the expenditure of energy. There is a significant caveat attached to the idea that computation can be done without the expenditure of energy. As we noted earlier, the billiard ball model of computation is highly sensitive to noise, and this is true of many other models of reversible computation. To nullify the effects of noise, some form of error-correction needs to be done. Such error-correction typically involves the performance of measurements on the system to determine whether the system is behaving as expected, or if an error has occurred. Because the computer’s memory is finite, the bits used to store the measurement results utilized in error-correction must eventually be erased to make way for new measurement results. According to Landauer’s principle, this erasure carries an associated energy cost Perspectives on computer science 161 that must be accounted for when tallying the total energy cost of the computation. We analyze the energy cost associated with error-correction in more detail in Section 12.4.4. What can we conclude from our study of reversible computation? There are three key ideas. First, reversibility stems from keeping track of every bit of information; irreversibility occurs only when information is lost or erased. Second, by doing computation reversibly, we obviate the need for energy expenditure during computation. All computations can be done, in principle, for zero cost in energy. Third, reversible computation can be done efficiently, without the production of garbage bits whose value depends upon the input to the computation. That is, if there is an irreversible circuit computing a function f , then there is an efficient simulation of this circuit by a reversible circuit with action (x, y) → (x, y ⊕ f (x)). What are the implications of these results for physics, computer science, and for quantum computation and quantum information? From the point of view of a physicist or hardware engineer worried about heat dissipation, the good news is that, in principle, it is possible to make computation dissipation-free by making it reversible, although in practice energy dissipation is required for system stability and immunity from noise. At an even more fundamental level, the ideas leading to reversible computation also lead to the resolution of a century-old problem in the foundations of physics, the famous problem of Maxwell’s demon. The story of this problem and its resolution is outlined in Box 3.5 on page 162. From the point of view of a computer scientist, reversible computation validates the use of irreversible elements in models of computation such as the Turing machine (since using them or not gives polynomially equivalent models). Moreover, since the physical world is fundamentally reversible, one can argue that complexity classes based upon reversible models of computation are more natural than complexity classes based upon irreversible models, a point revisited in Problem 3.9 and ‘History and further reading’. From the point of view of quantum computation and quantum information, reversible computation is enormously important. To harness the full power of quantum computation, any classical subroutines in a quantum computation must be performed reversibly and without the production of garbage bits depending on the classical input. Exercise 3.32: (From Fredkin to Toffoli and back again) What is the smallest number of Fredkin gates needed to simulate a Toffoli gate? What is the smallest number of Toffoli gates needed to simulate a Fredkin gate? 3.3 Perspectives on computer science In a short introduction such as this chapter, it is not remotely possible to cover in detail all the great ideas of a field as rich as computer science. We hope to have conveyed to you something of what it means to think like a computer scientist, and provided a basic vocabulary and overview of some of the fundamental concepts important in the understanding of computation. To conclude this chapter, we briefly touch on some more general issues, in order to provide some perspective on how quantum computation and quantum information fits into the overall picture of computer science. Our discussion has revolved around the Turing machine model of computation. How does the computational power of unconventional models of computation such as massively parallel computers, DNA computers and analog computers compare with the standard 162 Introduction to computer science Box 3.5: Maxwell’s demon The laws of thermodynamics govern the amount of work that can be performed by a physical system at thermodynamic equilibrium. One of these laws, the second law of thermodynamics, states that the entropy in a closed system can never decrease. In 1871, James Clerk Maxwell proposed the existence of a machine that apparently violated this law. He envisioned a miniature little ‘demon’, like that shown in the figure below, which could reduce the entropy of a gas cylinder initially at equilibrium by individually separating the fast and slow molecules into the two halves of the cylinder. This demon would sit at a little door at the middle partition. When a fast molecule approaches from the left side the demon opens a door between the partitions, allowing the molecule through, and then closes the door. By doing this many times the total entropy of the cylinder can be decreased, in apparent violation of the second law of thermodynamics. The resolution to the Maxwell’s demon paradox lies in the fact that the demon must perform measurements on the molecules moving between the partitions, in order to determine their velocities. The result of this measurement must be stored in the demon’s memory. Because any memory is finite, the demon must eventually begin erasing information from its memory, in order to have space for new measurement results. By Landauer’s principle, this act of erasing information increases the total entropy of the combined system – demon, gas cylinder, and their environments. In fact, a complete analysis shows that Landauer’s principle implies that the entropy of the combined system is increased at least as much by this act of erasing information as the entropy of the combined system is decreased by the actions of the demon, thus ensuring that the second law of thermodynamics is obeyed. Turing machine model of computation and, implicitly, with quantum computation? Let’s begin with parallel computing architectures. The vast majority of computers in existence are serial computers, processing instructions one at a time in some central processing unit. By contrast, parallel computers can process more than one instruction at a time, leading to a substantial savings in time and money for some applications. Nevertheless, parallel processing does not offer any fundamental advantage over the standard Turing machine model when issues of efficiency are concerned, because a Turing machine can simulate a parallel computer with polynomially equivalent total physical resources – the total space and time used by the computation. What a parallel computer gains in time, Perspectives on computer science 163 it loses in the total spatial resources required to perform the computation, resulting in a net of no essential change in the power of the computing model. An interesting specific example of massively parallel computing is the technique of DNA computing. A strand of DNA, deoxyribonucleic acid, is a molecule composed of a sequence (a polymer) of four kinds of nucleotides distinguished by the bases they carry, denoted by the letter A (adenine), C (cytosine), G (guanine) and T (thymine). Two strands, under certain circumstances, can anneal to form a double strand, if the respective base pairs form complements of each other (A matches T and G matches C). The ends are also distinct and must match appropriately. Chemical techniques can be used to amplify the number of strands beginning or ending with specific sequences (polymerase chain reaction), separate the strands by length (gel electrophoresis), dissolve double strands into single strands (changing temperature and pH), read the sequence on a strand, cut strands at a specific position (restriction enzymes), and detect if a certain sequence of DNA is in a test tube. The procedure for using these mechanisms in a robust manner is rather involved, but the basic idea can be appreciated from an example. The directed Hamiltonian path problem is a simple and equivalently hard variant of the Hamiltonian cycle problem of Section 3.2.2, in which the goal is to determine if a path exists or not between two specified vertices j1 and jN in a directed graph G of N vertices, entering each vertex exactly once, and following only allowed edge directions. This problem can be solved with a DNA computer using the following five steps, in which xj are chosen to be unique sequences of bases (and x̄j their complements), DNA strands xj xk encode edges, and strands x̄j x̄j encode vertices. (1) Generate random paths through G, by combining a mixture of all possible vertex and edge DNA strands, and waiting for the strands to anneal. (2) Keep only the paths beginning with j1 and ending with jN , by amplifying only the double strands beginning with x̄j1 and ending with x̄jN . (3) Select only paths of length N , by separating the strands according to their length. (4) Select only paths which enter each vertex at least once, by dissolving the DNA into single strands, and annealing with all possible vertex strands one at a time and filtering out only those strands which anneal. And (5) detect if any strands have survived the selection steps; if so, then a path exists, and otherwise, it does not. To ensure the answer is correct with sufficiently high probability, xj may be chosen to contain many (≈ 30) bases, and a large number (≈ 1014 or more are feasible) of strands are used in the reaction. Heuristic methods are available to improve upon this basic idea. Of course, exhaustive search methods such as this only work as long as all possible paths can be generated efficiently, and thus the number of molecules used must grow exponentially as the size of the problem (the number of vertices in the example above). DNA molecules are relatively small and readily synthesized, and the huge number of DNA combinations one can fit into a test tube can stave off the exponential complexity cost increase for a while – up to a few dozen vertices – but eventually the exponential cost limits the applicability of this method. Thus, while DNA computing offers an attractive and physically realizable model of computation for the solution of certain problems, it is a classical computing technique and offers no essential improvement in principle over a Turing machine. Analog computers offer a yet another paradigm for performing computation. A computer is analog when the physical representation of information it uses for computation is based on continuous degrees of freedom, instead of zeroes and ones. For example, a thermometer is an analog computer. Analog circuitry, using resistors, capacitors, and amplifiers, is also said to perform analog computation. Such machines have an infinite 164 Introduction to computer science resource to draw upon in the ideal limit, since continuous variables like position and voltage can store an unlimited amount of information. But this is only true in the absence of noise. The presence of a finite amount of noise reduces the number of distinguishable states of a continuous variable to a finite number – and thus restricts analog computers to the representation of a finite amount of information. In practice, noise reduces analog computers to being no more powerful than conventional digital computers, and through them Turing machines. One might suspect that quantum computers are just analog computers, because of the use of continuous parameters in describing qubit states; however, it turns out that the effects of noise on a quantum computer can effectively be digitized. As a result, their computational advantages remain even in the presence of a finite amount of noise, as we shall see in Chapter 10. What of the effects of noise on digital computers? In the early days of computation, noise was a very real problem for computers. In some of the original computers a vacuum tube would malfunction every few minutes. Even today, noise is a problem for computational devices such as modems and hard drives. Considerable effort was devoted to the problem of understanding how to construct reliable computers from unreliable components. It was proven by von Neumann that this is possible with only a polynomial increase in the resources required for computation. Ironically, however, modern computers use none of those results, because the components of modern computers are fantastically reliable. Failure rates of 10−17 and even less are common in modern electronic components. For this reason, failures happen so rarely that the extra effort required to protect against them is not regarded as being worth making. On the other hand, we shall find that quantum computers are very delicate machines, and will likely require substantial application of error-correction techniques. Different architectures may change the effects of noise. For example, if the effect of noise is ignored, then changing to a computer architecture in which many operations are performed in parallel may not change the number of operations which need to be done. However, a parallel system may be substantially more resistant to noise, because the effects of noise have less time to accumulate. Therefore, in a realistic analysis, the parallel version of an algorithm may have some substantial advantages over a serial implementation. Architecture design is a well developed field of study for classical computers. Hardly anything similar has been developed along the same lines for quantum computers, but the study of noise already suggests some desirable traits for future quantum computer architectures, such as a high level of parallelism. A fourth model of computation is distributed computation, in which two or more spatially separated computational units are available to solve a computational problem. Obviously, such a model of computation is no more powerful than the Turing machine model in the sense that it can be efficiently simulated on a Turing machine. However, distributed computation gives rise to an intriguing new resource challenge: how best to utilize multiple computational units when the cost of communication between the units is high. This problem of distributed computation becomes especially interesting as computers are connected through high speed networks; although the total computational capacity of all the computers on a network might be extremely large, utilization of that potential is difficult. Most interesting problems do not divide easily into independent chunks that can be solved separately, and may frequently require global communication between different computational subsystems to exchange intermediate results or synchronize status. The field of communication complexity has been developed to address such issues, by Chapter problems 165 quantifying the cost of communication requirements in solving problems. When quantum resources are available and can be exchanged between distributed computers, the communication costs can sometimes be greatly reduced. A recurring theme through these concluding thoughts and through the entire book is that despite the traditional independence of computer science from physical constraints, ultimately physical laws have tremendous impact not only upon how computers are realized, but also the class of problems they are capable of solving. The success of quantum computation and quantum information as a physically reasonable alternative model of computation questions closely held tenets of computer science, and thrusts notions of computer science into the forefront of physics. The task of the remainder of this book is to stir together ideas from these disparate fields, and to delight in what results! Problem 3.1: (Minsky machines) A Minsky machine consists of a finite set of registers, r1 , r2 , . . . , rk , each capable of holding an arbitrary non-negative integer, and a program, made up of orders of one of two types. The first type has the form: O N M LH I J K / / The interpretation is that at point m in the program register rj is incremented by one, and execution proceeds to point n in the program. The second type of order has the form: / ♥♥ ♥♥♥ 6 ♥ ♥ ♥ ♥♥♥ O N M HL ♥ I J K PPP P P P( P( P P PPP The interpretation is that at point m in the program, register rj is decremented if it contains a positive integer, and execution proceeds to point n in the program. If register rj is zero then execution simply proceeds to point p in the program. The program for the Minsky machine consists of a collection of such orders, of a form like: / O N M LH I J K ❋ ❋❋❋ ❋ ❋b ❋❋  / ❋❋ ❋❋ ❋❋  O N M LH I J K The starting and all possible halting points for the program are conventionally labeled zero. This program takes the contents of register r1 and adds them to register r2 , while decrementing r1 to zero. 166 Introduction to computer science (1) Prove that all (Turing) computable functions can be computed on a Minsky machine, in the sense that given a computable function f (·) there is a Minsky machine program that when the registers start in the state (n, 0, . . . , 0) gives as output (f (n), 0, . . . , 0). (2) Sketch a proof that any function which can be computed on a Minsky machine, in the sense just defined, can also be computed on a Turing machine. Problem 3.2: (Vector games) A vector game is specified by a finite list of vectors, all of the same dimension, and with integer co-ordinates. The game is to start with a vector x of non-negative integer co-ordinates and to add to x the first vector from the list which preserves the non-negativity of all the components, and to repeat this process until it is no longer possible. Prove that for any computable function f (·) there is a vector game which when started with the vector (n, 0, . . . , 0) reaches (f (n), 0, . . . , 0). (Hint: Show that a vector game in k + 2 dimensions can simulate a Minsky machine containing k registers.) Problem 3.3: (Fractran) A Fractran program is defined by a list of positive rational numbers q1 , . . . , qn . It acts on a positive integer m by replacing it by qi m, where i is the least number such that qi m is an integer. If there is ever a time when there is no i such that qi m is an integer, then execution stops. Prove that for any computable function f (·) there is a Fractran program which when started with 2n reaches 2f (n) without going through any intermediate powers of 2. (Hint: use the previous problem.) Problem 3.4: (Undecidability of dynamical systems) A Fractran program is essentially just a very simple dynamical system taking positive integers to positive integers. Prove that there is no algorithm to decide whether such a dynamical system ever reaches 1. Problem 3.5: (Non-universality of two bit reversible logic) Suppose we are trying to build circuits using only one and two bit reversible logic gates, and ancilla bits. Prove that there are Boolean functions which cannot be computed in this fashion. Deduce that the Toffoli gate cannot be simulated using one and two bit reversible gates, even with the aid of ancilla bits. Problem 3.6: (Hardness of approximation of ) Let r ≥ 1 and suppose that which is guaranteed to find the there is an approximation algorithm for shortest tour among n cities to within a factor r. Let G = (V, E) be any graph on by identifying cities with vertices in V , and n vertices. Define an instance of defining the distance between cities i and j to be 1 if (i, j) is an edge of G, and to be ⌈r⌉|V | + 1 otherwise. Show that if the approximation algorithm is applied to then it returns a Hamiltonian cycle for G if one exists, and this instance of otherwise returns a tour of length more than ⌈r⌉|V |. From the NP-completeness it follows that no such approximation algorithm can exist unless P = NP. of Problem 3.7: (Reversible Turing machines) (1) Explain how to construct a reversible Turing machine that can compute the same class of functions as is computable on an ordinary Turing machine. (Hint: It may be helpful to use a multi-tape construction.) 167 History and further reading (2) Give general space and time bounds for the operation of your reversible Turing machine, in terms of the time t(x) and space s(x) required on an ordinary single-tape Turing machine to compute a function f (x). Problem 3.8: (Find a hard-to-compute class of functions (Research)) Find a natural class of functions on n inputs which requires a super-polynomial number of Boolean gates to compute. Problem 3.9: (Reversible PSPACE = PSPACE) It can be shown that the problem , is PSPACE-complete. That is, every other ‘quantified satisfiability’, or in polynomial time. The language language in PSPACE can be reduced to is defined to consist of all Boolean formulae ϕ in n variables x1 , . . . , xn , and in conjunctive normal form, such that: ∃x1 ∀x2 ∃x3 . . . ∀xn ϕ if n is even; ∃x1 ∀x2 ∃x3 . . . ∃xn ϕ if n is odd. (3.9) (3.10) Prove that a reversible Turing machine operating in polynomial space can be . Thus, the class of languages decidable by a computer used to solve operating reversibly in polynomial space is equal to PSPACE. Problem 3.10: (Ancilla bits and efficiency of reversible computation) Let pm be the mth prime number. Outline the construction of a reversible circuit which, upon input of m and n such that n > m, outputs the product pm pn , that is (m, n) → (pm pn , g(m, n)), where g(m, n) is the final state of the ancilla bits used by the circuit. Estimate the number of ancilla qubits your circuit requires. Prove that if a polynomial (in log n) size reversible circuit can be found that uses O(log(log n)) ancilla bits then the problem of factoring a product of two prime numbers is in P. History and further reading Computer science is a huge subject with many interesting subfields. We cannot hope for any sort of completeness in this brief space, but instead take the opportunity to recommend a few titles of general interest, and some works on subjects of specific interest in relation to topics covered in this book, with the hope that they may prove stimulating. Modern computer science dates to the wonderful 1936 paper of Turing[Tur36]. The Church–Turing thesis was first stated by Church[Chu36] in 1936, and was then given a more complete discussion from a different point of view by Turing. Several other researchers found their way to similar conclusions at about the same time. Many of these contributions and a discussion of the history may be found in a volume edited by Davis[Dav65]. Provocative discussions of the Church–Turing thesis and undecidability may be found in Hofstadter[Hof79] and Penrose[Pen89]. There are many excellent books on algorithm design. We mention only three. First, there is the classic series by Knuth[Knu97, Knu98a, Knu98b] which covers an enormous portion of computer science. Second, there is the marvelous book by Cormen, Leiserson, and Rivest[CLR90]. This huge book contains a plethora of well-written material on many areas 168 Introduction to computer science of algorithm design. Finally, the book of Motwani and Raghavan[MR95] is an excellent survey of the field of randomized algorithms. The modern theory of computational complexity was especially influenced by the papers of Cook[Coo71] and Karp[Kar72]. Many similar ideas were arrived at independently in Russia by Levin[Lev73], but unfortunately took time to propagate to the West. The classic book by Garey and Johnson[GJ79] has also had an enormous influence on the field. More recently, Papadimitriou[Pap94] has written a beautiful book that surveys many of the main ideas of computational complexity theory. Much of the material in this chapter is based upon Papadimitriou’s book. In this chapter we considered only one type of reducibility between languages, polynomial time reducibility. There are many other notions of reductions between languages. An early survey of these notions was given by Ladner, Lynch and Selman[LLS75]. The study of different notions of reducibility later blossomed into a subfield of research known as structural complexity, which has been reviewed by Balcázar, Diaz, and Gabarró[BDG88a, BDG88b]. The connection between information, energy dissipation, and computation has a long history. The modern understanding is due to a 1961 paper by Landauer[Lan61], in which Landauer’s principle was first formulated. A paper by Szilard[Szi29] and a 1949 lecture by von Neumann[von66] (page 66) arrive at conclusions close to Landauer’s principle, but do not fully grasp the essential point that it is the erasure of information that requires dissipation. Reversible Turing machines were invented by Lecerf[Lec63] and later, but independently, in an influential paper by Bennett[Ben73]. Fredkin and Toffoli[FT82] introduced reversible circuit models of computation. Two interesting historical documents are Barton’s May, 1978 MIT 6.895 term paper[Bar78], and Ressler’s 1981 Master’s thesis[Res81], which contain designs for a reversible PDP-10! Today, reversible logic is potentially important in implementations of low-power CMOS circuitry[YK95]. Maxwell’s demon is a fascinating subject, with a long and intricate history. Maxwell proposed his demon in 1871[Max71]. Szilard published a key paper in 1929[Szi29] which anticipated many of the details of the final resolution of the problem of Maxwell’s demon. In 1965 Feynman[FLS65b] resolved a special case of Maxwell’s demon. Bennett, building on Landauer’s work[Lan61], wrote two beautiful papers on the subject[BBBW82, Ben87] which completed the resolution of the problem. An interesting book about the history of Maxwell’s demon and its exorcism is the collection of papers by Leff and Rex[LR90]. DNA computing was invented by Adleman, and the solution of the directed Hamiland tonian path problem we describe is his[Adl94]. Lipton has also shown how circuit satisfiability can be solved in this model[Lip95]. A good general article is Adleman’s Scientific American article[Adl98]; for an insightful look into the universality of DNA operations, see Winfree[Win98]. An interesting place to read about performing reliable computation in the presence of noise is the book by Winograd and Cowan[WC67]. This topic will be addressed again in Chapter 10. A good textbook on computer architecture is by Hennessey, Goldberg, and Patterson.[HGP96]. Problems 3.1 through 3.4 explore a line of thought originated by Minsky (in his beautiful book on computational machines[Min67]) and developed by Conway[Con72, Con86]. The Fractran programming language is certainly one of the most beautiful and elegant universal computational models known, as demonstrated by the following example, known History and further reading 169 as PRIMEGAME[Con86]. PRIMEGAME is defined by the list of rational numbers: 17 78 19 23 29 77 95 77 1 11 13 15 1 55 ; ; ; ; ; ; ; ; ; ; ; ; ; . (3.11) 91 85 51 38 33 29 23 19 17 13 11 2 7 1 Amazingly, when PRIMEGAME is started at 2, the other powers of 2 that appear, namely, 22 , 23 , 25 , 27 , 211 , 213 , . . . , are precisely the prime powers of 2, with the powers stepping through the prime numbers, in order. Problem 3.9 is a special case of the more general subject of the spatial requirements for reversible computation. See the papers by Bennett[Ben89], and by Li, Tromp and Vitanyi[LV96, LTV98]. II Quantum computation 4 Quantum circuits The theory of computation has traditionally been studied almost entirely in the abstract, as a topic in pure mathematics. This is to miss the point of it. Computers are physical objects, and computations are physical processes. What computers can or cannot compute is determined by the laws of physics alone, and not by pure mathematics. – David Deutsch Like mathematics, computer science will be somewhat different from the other sciences, in that it deals with artificial laws that can be proved, instead of natural laws that are never known with certainty. – Donald Knuth The opposite of a profound truth may well be another profound truth. – Niels Bohr This chapter begins Part II of the book, in which we explore quantum computation in detail. The chapter develops the fundamental principles of quantum computation, and establishes the basic building blocks for quantum circuits, a universal language for describing sophisticated quantum computations. The two fundamental quantum algorithms known to date are constructed from these circuits in the following two chapters. Chapter 5 presents the quantum Fourier transform and its applications to phase estimation, order-finding and factoring. Chapter 6 describes the quantum search algorithm, and its applications to database search, counting and speedup of solutions to NP-complete problems. Chapter 7 concludes Part II with a discussion of how quantum computation may one day be experimentally realized. Two other topics of great interest for quantum computation, quantum noise and quantum error-correction, are deferred until Part III of the book, in view of their wide interest also outside quantum computation. There are two main ideas introduced in this chapter. First, we explain in detail the fundamental model of quantum computation, the quantum circuit model. Second, we demonstrate that there exists a small set of gates which are universal, that is, any quantum computation whatsoever can be expressed in terms of those gates. Along the way we also have occasion to describe many other basic results of quantum computation. Section 4.1 begins the chapter with an overview of quantum algorithms, focusing on what algorithms are known, and the unifying techniques underlying their construction. Section 4.2 is a detailed study of single qubit operations. Despite their simplicity, single qubit operations offer a rich playground for the construction of examples and techniques, and it is essential to understand them in detail. Section 4.3 shows how to perform multi-qubit controlled unitary operations, and Section 4.4 discusses the description of measurement in the quantum circuits model. These elements are then brought together in Section 4.5 for the statement and proof of the universality theorem. We summarize all the basic elements 172 Quantum circuits of quantum computation in Section 4.6, and discuss possible variants of the model, and the important question of the relationship in computational power between classical and quantum computers. Section 4.7 concludes the chapter with an important and instructive application of quantum computation to the simulation of real quantum systems. This chapter is perhaps the most reader-intensive of all the chapters in the book, with a high density of exercises for you to complete, and it is worth explaining the reason for this intensity. Obtaining facility with the basic elements of the quantum circuit model of computation is quite easy, but requires assimilating a large number of simple results and techniques that must become second nature if one is to progress to the more difficult problem of designing quantum algorithms. For this reason we take an example-oriented approach in this chapter, and ask you to fill in many of the details, in order to acquire such a facility. A less intensive, but somewhat superficial overview of the basic elements of quantum computation may be obtained by skipping to Section 4.6. 4.1 Quantum algorithms What is a quantum computer good for? We’re all familiar with the frustration of needing more computer resources to solve a computational problem. Practically speaking, many interesting problems are impossible to solve on a classical computer, not because they are in principle insoluble, but because of the astronomical resources required to solve realistic cases of the problem. The spectacular promise of quantum computers is to enable new algorithms which render feasible problems requiring exorbitant resources for their solution on a classical computer. At the time of writing, two broad classes of quantum algorithms are known which fulfill this promise. The first class of algorithms is based upon Shor’s quantum Fourier transform, and includes remarkable algorithms for solving the factoring and discrete logarithm problems, providing a striking exponential speedup over the best known classical algorithms. The second class of algorithms is based upon Grover’s algorithm for performing quantum searching. These provide a less striking but still remarkable quadratic speedup over the best possible classical algorithms. The quantum searching algorithm derives its importance from the widespread use of search-based techniques in classical algorithms, which in many instances allows a straightforward adaptation of the classical algorithm to give a faster quantum algorithm. Figure 4.1 sketches the state of knowledge about quantum algorithms at the time of writing, including some sample applications of those algorithms. Naturally, at the core of the diagram are the quantum Fourier transform and the quantum searching algorithm. Of particular interest in the figure is the quantum counting algorithm. This algorithm is a clever combination of the quantum searching and Fourier transform algorithms, which can be used to estimate the number of solutions to a search problem more quickly than is possible on a classical computer. The quantum searching algorithm has many potential applications, of which but a few are illustrated. It can be used to extract statistics, such as the minimal element, from an unordered data set, more quickly than is possible on a classical computer. It can be used to speed up algorithms for some problems in NP – specifically, those problems for which a straightforward search for a solution is the best algorithm known. Finally, it can be used to speed up the search for keys to cryptosystems such as the widely used Data Encryption Standard (DES). These and other applications are explained in Chapter 6. Quantum algorithms Quantum search  Statistics mean,median,min 173 Fourier o / Hidden subgroup problem transform OOO 22 KKK s o OOO KKssss ooo 22 O' wooo ss KKKK 22 s KKK ss Quantum 22  yss %  22 counting Order-finding Discrete log 22 '' GG ww  22 '' GGGG ww  22 # {ww ' 22 '' Factoring  22 ''  22 ''   22 ''  22 ''  22 '      Speed up for some Search for Break cryptosystems crypto keys NP problems (RSA) Figure 4.1. The main quantum algorithms and their relationships, including some notable applications. The quantum Fourier transform also has many interesting applications. It can be used to solve the discrete logarithm and factoring problems. These results, in turn, enable a quantum computer to break many of the most popular cryptosystems now in use, including the RSA cryptosystem. The Fourier transform also turns out to be closely related to an important problem in mathematics, finding a hidden subgroup (a generalization of finding the period of a periodic function). The quantum Fourier transform and several of its applications, including fast quantum algorithms for factoring and discrete logarithm, are explained in Chapter 5. Why are there so few quantum algorithms known which are better than their classical counterparts? The answer is that coming up with good quantum algorithms seems to be a difficult problem. There are at least two reasons for this. First, algorithm design, be it classical or quantum, is not an easy business! The history of algorithms shows us that considerable ingenuity is often required to come up with near optimal algorithms, even for apparently very simple problems, like the multiplication of two numbers. Finding good quantum algorithms is made doubly difficult because of the additional constraint that we want our quantum algorithms to be better than the best known classical algorithms. A second reason for the difficulty of finding good quantum algorithms is that our intuitions are much better adapted to the classical world than they are to the quantum world. If we think about problems using our native intuition, then the algorithms which we come up with are going to be classical algorithms. It takes special insights and special tricks to come up with good quantum algorithms. Further study of quantum algorithms will be postponed until the next chapter. In this chapter we provide an efficient and powerful language for describing quantum algorithms, the language of quantum circuits – assemblies of discrete sets of components which describe computational procedures. This construction will enable us to quantify the cost of an algorithm in terms of things like the total number of gates required, or the circuit depth. The circuit language also comes with a toolbox of tricks that simplifies algorithm design and provides ready conceptual understanding. 174 Quantum circuits 4.2 Single qubit operations The development of our quantum computational toolkit begins with operations on the simplest quantum system of all – a single qubit. Single qubit gates were introduced in Section 1.3.1. Let us quickly summarize what we learned there; you may find it useful to refer to the notes on notation on page xxiii as we go along. A single qubit is a vector |ψ = a|0 + b|1 parameterized by two complex numbers satisfying |a|2 + |b|2 = 1. Operations on a qubit must preserve this norm, and thus are described by 2×2 unitary matrices. Of these, some of the most important are the Pauli matrices; it is useful to list them again here:       0 1 1 0 0 −i ; Z≡ ; Y ≡ . (4.1) X≡ i 0 1 0 0 −1 Three other quantum gates will play a large part in what follows, the Hadamard gate (denoted H), phase gate (denoted S), and π/8 gate (denoted T ):       1 1 0 1 0 1 1 . (4.2) ; T = ; S= H=√ 0 exp(iπ/4) 0 i 2 1 −1 √ A couple of useful algebraic facts to keep in mind are that H = (X + Z)/ 2 and S = T 2 . You might wonder why the T gate is called the π/8 gate when it is π/4 that appears in the definition. The reason is that the gate has historically often been referred to as the π/8 gate, simply because up to an unimportant global phase T is equal to a gate which has exp(±iπ/8) appearing on its diagonals.   exp(−iπ/8) 0 T = exp(iπ/8) . (4.3) 0 exp(iπ/8) Nevertheless, the nomenclature is in some respects rather unfortunate, and we often refer to this gate as the T gate. Recall also that a single qubit in the state a|0 + b|1 can be visualized as a point (θ, ϕ) on the unit sphere, where a = cos(θ/2), b = eiϕ sin(θ/2), and a can be taken to be real because the overall phase of the state is unobservable. This is called the Bloch sphere representation, and the vector (cos ϕ sin θ, sin ϕ sin θ, cos θ) is called the Bloch vector. We shall return to this picture often as an aid to intuition. Exercise 4.1: In Exercise 2.11, which you should do now if you haven’t already done it, you computed the eigenvectors of the Pauli matrices. Find the points on the Bloch sphere which correspond to the normalized eigenvectors of the different Pauli matrices. The Pauli matrices give rise to three useful classes of unitary matrices when they are exponentiated, the rotation operators about the x̂, ŷ, and ẑ axes, defined by the equations:   θ θ cos θ2 −i sin θ2 −iθX/2 (4.4) = cos I − i sin X = Rx (θ) ≡ e cos θ2 −i sin θ2 2 2   θ θ cos θ2 − sin θ2 Ry (θ) ≡ e−iθY /2 = cos I − i sin Y = (4.5) cos θ2 sin θ2 2 2   −iθ/2 θ θ e 0 −iθZ/2 Rz (θ) ≡ e . (4.6) = cos I − i sin Z = 0 eiθ/2 2 2 175 Single qubit operations Exercise 4.2: Let x be a real number and A a matrix such that A2 = I. Show that exp(iAx) = cos(x)I + i sin(x)A. (4.7) Use this result to verify Equations (4.4) through (4.6). Exercise 4.3: Show that, up to a global phase, the π/8 gate satisfies T = Rz (π/4). Exercise 4.4: Express the Hadamard gate H as a product of Rx and Rz rotations and eiϕ for some ϕ. If n̂ = (nx , ny , nz ) is a real unit vector in three dimensions then we generalize the previous definitions by defining a rotation by θ about the n̂ axis by the equation     θ θ I − i sin (nx X + ny Y + nz Z) , (4.8) Rn̂ (θ) ≡ exp(−iθ n̂ · σ/2) = cos 2 2 where σ denotes the three component vector (X, Y, Z) of Pauli matrices. Exercise 4.5: Prove that (n̂ · σ)2 = I, and use this to verify Equation (4.8). Exercise 4.6: (Bloch sphere interpretation of rotations) One reason why the Rn̂ (θ) operators are referred to as rotation operators is the following fact, which you are to prove. Suppose a single qubit has a state represented by the Bloch vector λ. Then the effect of the rotation Rn̂ (θ) on the state is to rotate it by an angle θ about the n̂ axis of the Bloch sphere. This fact explains the rather mysterious looking factor of two in the definition of the rotation matrices. Exercise 4.7: Show that XY X = −Y and use this to prove that XRy (θ)X = Ry (−θ). Exercise 4.8: An arbitrary single qubit unitary operator can be written in the form U = exp(iα)Rn̂ (θ) (4.9) for some real numbers α and θ, and a real three-dimensional unit vector n̂. 1. Prove this fact. 2. Find values for α, θ, and n̂ giving the Hadamard gate H. 3. Find values for α, θ, and n̂ giving the phase gate   1 0 . S= 0 i (4.10) An arbitrary unitary operator on a single qubit can be written in many ways as a combination of rotations, together with global phase shifts on the qubit. The following theorem provides a means of expressing an arbitrary single qubit rotation that will be particularly useful in later applications to controlled operations. Theorem 4.1: (Z-Y decomposition for a single qubit) Suppose U is a unitary operation on a single qubit. Then there exist real numbers α, β, γ and δ such that U = eiα Rz (β)Ry (γ)Rz (δ). (4.11) 176 Quantum circuits Proof Since U is unitary, the rows and columns of U are orthonormal, from which it follows that there exist real numbers α, β, γ,and δ such that  i(α−β/2−δ/2)  e cos γ2 −ei(α−β/2+δ/2) sin γ2 U= . (4.12) ei(α+β/2+δ/2) cos γ2 ei(α+β/2−δ/2) sin γ2 Equation (4.11) now follows immediately from the definition of the rotation matrices and matrix multiplication. Exercise 4.9: Explain why any single qubit unitary operator may be written in the form (4.12). Exercise 4.10: (X-Y decomposition of rotations) Give a decomposition analogous to Theorem 4.1 but using Rx instead of Rz . Exercise 4.11: Suppose m̂ and n̂ are non-parallel real unit vectors in three dimensions. Use Theorem 4.1 to show that an arbitrary single qubit unitary U may be written U = eiα Rn̂ (β)Rm̂ (γ)Rn̂ (δ), (4.13) for appropriate choices of α, β, γ and δ. The utility of Theorem 4.1 lies in the following mysterious looking corollary, which is the key to the construction of controlled multi-qubit unitary operations, as explained in the next section. Corollary 4.2: Suppose U is a unitary gate on a single qubit. Then there exist unitary operators A, B, C on a single qubit such that ABC = I and U = eiα AXBXC, where α is some overall phase factor. Proof In the notation of Theorem 4.1, set A ≡ Rz (β)Ry (γ/2), B ≡ Ry (−γ/2)Rz (−(δ + β)/2) and C ≡ Rz ((δ − β)/2). Note that     ' γ( 'γ ( δ+β δ−β Ry − Rz − Rz =I. (4.14) ABC = Rz (β)Ry 2 2 2 2 Since X 2 = I, and using Exercise 4.7, we see that     ' γ( 'γ ( δ+β δ+β XXRz − X = Ry Rz . XBX = XRy − 2 2 2 2 Thus 'γ ( 'γ ( Ry Rz 2 2 = Rz (β)Ry (γ)Rz (δ) . AXBXC = Rz (β)Ry  δ+β 2  Rz Thus U = eiα AXBXC and ABC = I, as required. Exercise 4.12: Give A, B, C, and α for the Hadamard gate.  δ−β 2  (4.15) (4.16) (4.17) 177 Controlled operations Exercise 4.13: (Circuit identities) It is useful to be able to simplify circuits by inspection, using well-known identities. Prove the following three identities: HXH = Z; HY H = −Y ; HZH = X. (4.18) Exercise 4.14: Use the previous exercise to show that HT H = Rx (π/4), up to a global phase. Exercise 4.15: (Composition of single qubit operations) The Bloch representation gives a nice way to visualize the effect of composing two rotations. (1) Prove that if a rotation through an angle β1 about the axis n̂1 is followed by a rotation through an angle β2 about an axis n̂2 , then the overall rotation is through an angle β12 about an axis n̂12 given by c12 = c1 c2 − s1 s2 n̂1 · n̂2 (4.19) s12 n̂12 = s1 c2 n̂1 + c1 s2 n̂2 − s1 s2 n̂2 × n̂1 , (4.20) where ci = cos(βi /2), si = sin(βi /2), c12 = cos(β12 /2), and s12 = sin(β12 /2). (2) Show that if β1 = β2 and n̂1 = ẑ these equations simplify to c12 = c2 − s2 ẑ · n̂2 (4.21) 2 s12 n̂12 = sc(ẑ + n̂2 ) − s n̂2 × ẑ , (4.22) where c = c1 and s = s1 . Symbols for the common single qubit gates are shown in Figure 4.2. Recall the basic properties of quantum circuits: time proceeds from left to right; wires represent qubits, and a ‘/’ may be used to indicate a bundle of qubits. Hadamard Pauli-X Pauli-Y Pauli-Z Phase π/8   1 1 1 √ 2 1 −1  0 1 1 0   0 −i i 0   1 0 0 −1   1 0 0 i   1 0 0 eiπ/4 Figure 4.2. Names, symbols, and unitary matrices for the common single qubit gates. 4.3 Controlled operations ‘If A is true, then do B’. This type of controlled operation is one of the most useful in computing, both classical and quantum. In this section we explain how complex controlled operations may be implemented using quantum circuits built from elementary operations. 178 Quantum circuits The prototypical controlled operation is the controlled, which we met in Sec, is a quantum gate tion 1.2.1. Recall that this gate, which we’ll often refer to as with two input qubits, known as the control qubit and target qubit, respectively. It is drawn as shown in Figure 4.3. In terms of the computational basis, the action of the is given by |c|t → |c|t ⊕ c; that is, if the control qubit is set to |1 then the target qubit is flipped, otherwise the target qubit is left alone. Thus, in the computational is basis |control, target the matrix representation of ⎤ ⎡ 1 0 0 0 ⎢ 0 1 0 0 ⎥ ⎥ ⎢ (4.23) ⎣ 0 0 0 1 . 0 0 1 0 Figure 4.3. Circuit representation for the controlledbottom line the target qubit. gate. The top line represents the control qubit, the More generally, suppose U is an arbitrary single qubit unitary operation. A controlledU operation is a two qubit operation, again with a control and a target qubit. If the control qubit is set then U is applied to the target qubit, otherwise the target qubit is left alone; that is, |c|t → |cU c |t. The controlled-U operation is represented by the circuit shown in Figure 4.4. Figure 4.4. Controlled-U operation. The top line is the control qubit, and the bottom line is the target qubit. If the control qubit is set then U is applied to the target, otherwise it is left alone. Exercise 4.16: (Matrix representation of multi-qubit gates) What is the 4×4 unitary matrix for the circuit in the computational basis? What is the unitary matrix for the circuit Controlled operations 179 in the computational basis? from controlled-Z gates) Construct a gate Exercise 4.17: (Building from one controlled-Z gate, that is, the gate whose action in the computational basis is specified by the unitary matrix ⎡ ⎤ 1 0 0 0 ⎢0 1 0 0 ⎥ ⎢ ⎥ ⎣0 0 1 0  , 0 0 0 −1 and two Hadamard gates, specifying the control and target qubits. Exercise 4.18: Show that Exercise 4.19: ( action on density matrices) The gate is a simple permutation whose action on a density matrix ρ is to rearrange the elements in the matrix. Write out this action explicitly in the computational basis. basis transformations) Unlike ideal classical gates, ideal Exercise 4.20: ( quantum gates do not have (as electrical engineers say) ‘high-impedance’ inputs. In fact, the role of ‘control’ and ‘target’ are arbitrary – they depend on what basis behaves you think of a device as operating in. We have described how the with respect to the computational basis, and in this description the state of the control qubit is not changed. However, if we work in a different basis then the control qubit does change: we will show that its phase is flipped depending on the state of the ‘target’ qubit! Show that √ Introducing basis states |± ≡ (|0 ± |1)/ 2, use this circuit identity to show with the first qubit as control and the second qubit as that the effect of a target is as follows: |+|+ → |+|+ |−|+ → |−|+ |+|− → |−|− |−|− → |+|−. (4.24) (4.25) (4.26) (4.27) Thus, with respect to this new basis, the state of the target qubit is not changed, while the state of the control qubit is flipped if the target starts as |−, otherwise 180 Quantum circuits it is left alone. That is, in this basis, the target and control have essentially interchanged roles! Our immediate goal is to understand how to implement the controlled-U operation gate. Our for arbitrary single qubit U , using only single qubit operations and the strategy is a two-part procedure based upon the decomposition U = eiα AXBXC given in Corollary 4.2 on page 176. Our first step will be to apply the phase shift exp(iα) on the target qubit, controlled by the control qubit. That is, if the control qubit is |0, then the target qubit is left alone, while if the control qubit is |1, a phase shift exp(iα) is applied to the target. A circuit implementing this operation using just a single qubit unitary gate is depicted on the right hand side of Figure 4.5. To verify that this circuit works correctly, note that the effect of the circuit on the right hand side is |00 → |00, |01 → |01, |10 → eiα |10, |11 → eiα |11, (4.28) which is exactly what is required for the controlled operation on the left hand side. Figure 4.5. Controlled phase shift gate and an equivalent circuit for two qubits. We may now complete the construction of the controlled-U operation, as shown in Figure 4.6. To understand why this circuit works, recall from Corollary 4.2 that U may be written in the form U = eiα AXBXC, where A, B and C are single qubit operations such that ABC = I. Suppose that the control qubit is set. Then the operation eiα AXBXC = U is applied to the second qubit. If, on the other hand, the control qubit is not set, then the operation ABC = I is applied to the second qubit; that is, no change is made. That is, this circuit implements the controlled-U operation. Now that we know how to condition on a single qubit being set, what about conditioning on multiple qubits? We’ve already met one example of multiple qubit conditioning, the Toffoli gate, which flips the third qubit, the target qubit, conditioned on the first two qubits, the control qubits, being set to one. More generally, suppose we have n + k qubits, and U is a k qubit unitary operator. Then we define the controlled operation C n (U ) by the equation C n (U )|x1 x2 . . . xn |ψ = |x1 x2 . . . xn U x1 x2 ...xn |ψ , (4.29) where x1 x2 . . . xn in the exponent of U means the product of the bits x1 , x2 , . . . , xn . That is, the operator U is applied to the last k qubits if the first n qubits are all equal to one, and otherwise, nothing is done. Such conditional operations are so useful that we Controlled operations 181 Figure 4.6. Circuit implementing the controlled-U operation for single qubit U . α, A, B and C satisfy U = exp(iα)AXBXC, ABC = I. introduce a special circuit notation for them, illustrated in Figure 4.7. For the following we assume that k = 1, for simplicity. Larger k can be dealt with using essentially the same methods, however for k ≥ 2 there is the added complication that we don’t (yet) know how to perform arbitrary operations on k qubits. Figure 4.7. Sample circuit representation for the C n (U ) operation, where U is a unitary operator on k qubits, for n = 4 and k = 3. Suppose U is a single qubit unitary operator, and V is a unitary operator chosen so that V 2 = U . Then the operation C 2 (U ) may be implemented using the circuit shown in Figure 4.8. Exercise 4.21: Verify that Figure 4.8 implements the C 2 (U ) operation. Exercise 4.22: Prove that a C 2 (U ) gate (for any single qubit unitary U ) can be s. constructed using at most eight one-qubit gates, and six controlledExercise 4.23: Construct a C 1 (U ) gate for U = Rx (θ) and U = Ry (θ), using only and single qubit gates. Can you reduce the number of single qubit gates needed in the construction from three to two? The familiar Toffoli gate is an especially important special case of the C 2 (U ) operation, 182 Quantum circuits Figure 4.8. Circuit for the C 2 (U ) gate. V is any unitary operator satisfying V 2 = U . The special case V ≡ (1 − i)(I + iX)/2 corresponds to the Toffoli gate. the case C 2 (X). Defining V ≡ (1 − i)(I + iX)/2 and noting that V 2 = X, we see that Figure 4.8 gives an implementation of the Toffoli gate in terms of one and two qubit operations. From a classical viewpoint this is a remarkable result; recall from Problem 3.5 that one and two bit classical reversible gates are not sufficient to implement the Toffoli gate, or, more generally, universal computation. By contrast, in the quantum case we see that one and two qubit reversible gates are sufficient to implement the Toffoli gate, and will eventually prove that they suffice for universal computation. Ultimately we will show that any unitary operation can be composed to an arbitrarily and π/8 gates. good approximation from just the Hadamard, phase, controlledBecause of the great usefulness of the Toffoli gate it is interesting to see how it can be built from just this gate set. Figure 4.9 illustrates a simple circuit for the Toffoli gate made up of just Hadamard, phase, controlledand π/8 gates. • • ⊕ • = • • • T T† ⊕ T† ⊕ S H ⊕ T† ⊕ T ⊕ T† ⊕ T H • • Figure 4.9. Implementation of the Toffoli gate using Hadamard, phase, controlled- and π/8 gates. Exercise 4.24: Verify that Figure 4.9 implements the Toffoli gate. Exercise 4.25: (Fredkin gate construction) Recall that the Fredkin (controlled-swap) gate performs the transform ⎡1 0 0 0 0 0 0 0⎤ ⎢0 ⎢ ⎢0 ⎢ ⎢0 ⎢ ⎢0 ⎢ ⎢0 ⎢ ⎣0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0⎥ ⎥ 0⎥ ⎥ 0⎥ ⎥. 0⎥ ⎥ 0⎥ ⎥ 0 1 (4.30) 183 Controlled operations (1) Give a quantum circuit which uses three Toffoli gates to construct the Fredkin gate (Hint: think of the swap gate construction – you can control each gate, one at a time). gates. (2) Show that the first and last Toffoli gates can be replaced by (3) Now replace the middle Toffoli gate with the circuit in Figure 4.8 to obtain a Fredkin gate construction using only six two-qubit gates. (4) Can you come up with an even simpler construction, with only five two-qubit gates? Exercise 4.26: Show that the circuit: • • Ry π/ ⊕ Ry π/ • ⊕ Ry −π/ ⊕ Ry −π/ differs from a Toffoli gate only by relative phases. That is, the circuit takes |c1 , c2 , t to eiθ(c1 ,c2 ,t) |c1 , c2 , t ⊕ c1 · c2 , where eiθ(c1 ,c2 ,t) is some relative phase factor. Such gates can sometimes be useful in experimental implementations, where it may be much easier to implement a gate that is the same as the Toffoli up to relative phases than it is to do the Toffoli directly. s and Toffoli Exercise 4.27: Using just perform the transformation ⎡1 0 0 0 ⎢0 0 0 0 ⎢ ⎢0 1 0 0 ⎢ ⎢0 0 1 0 ⎢ ⎢0 0 0 1 ⎢ ⎢0 0 0 0 ⎢ ⎣0 0 0 0 0 0 0 0 gates, construct a quantum circuit to 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0⎤ 1⎥ ⎥ 0⎥ ⎥ 0⎥ ⎥. 0⎥ ⎥ 0⎥ ⎥ 0 0 (4.31) This kind of partial cyclic permutation operation will be useful later, in Chapter 7. How may we implement C n (U ) gates using our existing repertoire of gates, where U is an arbitrary single qubit unitary operation? A particularly simple circuit for achieving this task is illustrated in Figure 4.10. The circuit divides up into three stages, and makes use of a small number (n − 1) of working qubits, which all start and end in the state |0. Suppose the control qubits are in the computational basis state |c1 , c2 , . . . , cn . The all the control bits c1 , . . . , cn together to first stage of the circuit is to reversibly s c1 and produce the product c1 · c2 . . . cn . To do this, the first gate in the circuit c2 together, using a Toffoli gate, changing the state of the first work qubit to |c1 · c2 . s c3 with the product c1 · c2 , changing the state of the second The next Toffoli gate work qubit to |c1 · c2 · c3 . We continue applying Toffoli gates in this fashion, until the final work qubit is in the state |c1 · c2 . . . cn . Next, a U operation on the target qubit is 184 Quantum circuits performed, conditional on the final work qubit being set to one. That is, U is applied if and only if all of c1 through cn are set. Finally, the last part of the circuit just reverses the steps of the first stage, returning all the work qubits to their initial state, |0. The combined result, therefore, is to apply the unitary operator U to the target qubit, if and only if all the control bits c1 through cn are set, as desired. Figure 4.10. Network implementing the C n (U ) operation, for the case n = 5. Exercise 4.28: For U = V 2 with V unitary, construct a C 5 (U ) gate analogous to that in Figure 4.10, but using no work qubits. You may use controlled-V and controlled-V † gates. Exercise 4.29: Find a circuit containing O(n2 ) Toffoli, and single qubit gates which implements a C n (X) gate (for n > 3), using no work qubits. Exercise 4.30: Suppose U is a single qubit unitary operation. Find a circuit and single qubit gates which implements a containing O(n2 ) Toffoli, C n (U ) gate (for n > 3), using no work qubits. In the controlled gates we have been considering, conditional dynamics on the target qubit occurs if the control bits are set to one. Of course, there is nothing special about one, and it is often useful to consider dynamics which occur conditional on the control bit being set to zero. For instance, suppose we wish to implement a two qubit gate in which the second (‘target’) qubit is flipped, conditional on the first (‘control’) qubit being set to zero. In Figure 4.11 we introduce a circuit notation for this gate, together with an equivalent circuit in terms of the gates we have already introduced. Generically we shall use the open circle notation to indicate conditioning on the qubit being set to zero, while a closed circle indicates conditioning on the qubit being set to one. A more elaborate example of this convention, involving three control qubits, is illustrated in Figure 4.12. The operation U is applied to the target qubit if the first and third qubits are set to zero, and the second qubit is set to one. It is easy to verify by inspection that the circuit on the right hand side of the figure implements the desired operation. More generally, it is easy to move between circuits which condition on qubits being set Measurement 185     Figure 4.11. Controlled operation with a qubit being set to zero. gate being performed on the second qubit, conditional on the first to one and circuits which condition on qubits being set to zero, by insertion of X gates in appropriate locations, as illustrated in Figure 4.12. gates to have Another convention which is sometimes useful is to allow controlledmultiple targets, as shown in Figure 4.13. This natural notation means that when the control qubit is 1, then all the qubits marked with a ⊕ are flipped, and otherwise nothing happens. It is convenient to use, for example, in constructing classical functions such as permutations, or in encoders and decoders for quantum error-correction circuits, as we shall see in Chapter 10. Exercise 4.31: (More circuit identities) Let subscripts denote which qubit an with qubit 1 the control qubit and qubit 2 operator acts on, and let C be a the target qubit. Prove the following identities: CX1 C = X1 X2 (4.32) CY1 C = Y1 X2 (4.33) CZ1 C = Z1 (4.34) CX2 C = X2 (4.35) CY2 C = Z1 Y2 (4.36) CZ2 C = Z1 Z2 (4.37) Rz,1 (θ)C = CRz,1 (θ) (4.38) Rx,2 (θ)C = CRx,2 (θ). (4.39) 4.4 Measurement A final element used in quantum circuits, almost implicitly sometimes, is measurement. In our circuits, we shall denote a projective measurement in the computational basis (Section 2.2.5) using a ‘meter’ symbol, illustrated in Figure 4.14. In the theory of quantum circuits it is conventional to not use any special symbols to denote more general measurements, because, as explained in Chapter 2, they can always be represented by unitary transforms with ancilla qubits followed by projective measurements. There are two important principles that it is worth bearing in mind about quantum circuits. Both principles are rather obvious; however, they are of such great utility that they are worth emphasizing early. The first principle is that classically conditioned operations can be replaced by quantum conditioned operations: 186 Quantum circuits         Figure 4.12. Controlled-U operation and its equivalent in terms of circuit elements we already know how to implement. The fourth qubit has U applied if the first and third qubits are set to zero, and the second qubit is set to one. • ⊕ ⊕ ≡ Figure 4.13. Controlled- • • ⊕ ⊕ gate with multiple targets. Principle of deferred measurement: Measurements can always be moved from an intermediate stage of a quantum circuit to the end of the circuit; if the measurement results are used at any stage of the circuit then the classically controlled operations can be replaced by conditional quantum operations. Often, quantum measurements are performed as an intermediate step in a quantum circuit, and the measurement results are used to conditionally control subsequent quantum gates. This is the case, for example, in the teleportation circuit of Figure 1.13 on page 27. However, such measurements can always be moved to the end of the circuit. Figure 4.15 illustrates how this may be done by replacing all the classical conditional operations by corresponding quantum conditional operations. (Of course, some of the interpretation of this circuit as performing ‘teleportation’ is lost, because no classical information is transmitted from Alice to Bob, but it is clear that the overall action of the two quantum circuits is the same, which is the key point.) The second principle is even more obvious – and surprisingly useful! ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤✤ ✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ Figure 4.14. Symbol for projective measurement on a single qubit. In this circuit nothing further is done with the measurement result, but in more general quantum circuits it is possible to change later parts of the quantum circuit, conditional on measurement outcomes in earlier parts of the circuit. Such a usage of classical information is depicted using wires drawn with double lines (not shown here). 187 Measurement ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ✤✤ ✙✙ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴ ✙ ✙ ❴ ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ✤✤ ✙✙ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴ ✙ ✙ ❴ ❴ ❴ ✤✤ ✤✤ ✤ ✤ ❴ ❴ ✤ ❴ ❴ ✤✤ ✤✤ ✤ ✤ ❴ ❴ ✤ Figure 4.15. Quantum teleportation circuit in which measurements are done at the end, instead of in the middle of the circuit. As in Figure 1.13, the top two qubits belong to Alice, and the bottom one to Bob. Principle of implicit measurement: Without loss of generality, any unterminated quantum wires (qubits which are not measured) at the end of a quantum circuit may be assumed to be measured. To understand why this is true, imagine you have a quantum circuit containing just two qubits, and only the first qubit is measured at the end of the circuit. Then the measurement statistics observed at this time are completely determined by the reduced density matrix of the first qubit. However, if a measurement had also been performed on the second qubit, then it would be highly surprising if that measurement could change the statistics of measurement on the first qubit. You’ll prove this in Exercise 4.32 by showing that the reduced density matrix of the first qubit is not affected by performing a measurement on the second. As you consider the role of measurements in quantum circuits, it is important to keep in mind that in its role as an interface between the quantum and classical worlds, measurement is generally considered to be an irreversible operation, destroying quantum information and replacing it with classical information. In certain carefully designed cases, however, this need not be true, as is vividly illustrated by teleportation and quantum error-correction (Chapter 10). What teleportation and quantum error-correction have in common is that in neither instance does the measurement result reveal any information about the identity of the quantum state being measured. Indeed, we will see in Chapter 10 that this is a more general feature of measurement – in order for a measurement to be reversible, it must reveal no information about the quantum state being measured! Exercise 4.32: Suppose ρ is the density matrix describing a two qubit system. Suppose we perform a projective measurement in the computational basis of the second qubit. Let P0 = |00| and P1 = |11| be the projectors onto the |0 and |1 states of the second qubit, respectively. Let ρ′ be the density matrix which would be assigned to the system after the measurement by an observer who did not learn the measurement result. Show that ρ′ = P0 ρP0 + P1 ρP1 . (4.40) Also show that the reduced density matrix for the first qubit is not affected by the measurement, that is, tr2 (ρ) = tr2 (ρ′ ). Exercise 4.33: (Measurement in the Bell basis) The measurement model we have specified for the quantum circuit model is that measurements are performed only 188 Quantum circuits in the computational basis. However, often we want to perform a measurement in some other basis, defined by a complete set of orthonormal states. To perform this measurement, simply unitarily transform from the basis we wish to perform the measurement in to the computational basis, then measure. For example, show that the circuit ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ✤✤ ✙✙ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴ ✙ ✙ ❴ ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ✙✙ ✤✤✤ ✙✙ ✤✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ ✤✤ ✤ ✤ ❴ ❴ ✤ ❴ ❴ ✤✤ ✤✤ ✤ ✤ ❴ ❴ ✤ performs a measurement in the basis of the Bell states. More precisely, show that this circuit results in a measurement being performed with corresponding POVM elements the four projectors onto the Bell states. What are the corresponding measurement operators? Exercise 4.34: (Measuring an operator) Suppose we have a single qubit operator U with eigenvalues ±1, so that U is both Hermitian and unitary, so it can be regarded both as an observable and a quantum gate. Suppose we wish to measure the observable U . That is, we desire to obtain a measurement result indicating one of the two eigenvalues, and leaving a post-measurement state which is the corresponding eigenvector. How can this be implemented by a quantum circuit? Show that the following circuit implements a measurement of U : |0 H |ψin  • ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ H |ψout  U Exercise 4.35: (Measurement commutes with controls) A consequence of the principle of deferred measurement is that measurements commute with quantum gates when the qubit being measured is a control qubit, that is: • U ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✙✙ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴ ✙ ✙ ❴ ❴ ❴ ✤✤✤ ✤✤✤ ✤ = ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ • U = ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ U (Recall that the double lines represent classical bits in this diagram.) Prove the first equality. The rightmost circuit is simply a convenient notation to depict the use of a measurement result to classically control a quantum gate. 4.5 Universal quantum gates A small set of gates (e.g. , , ) can be used to compute an arbitrary classical function, as we saw in Section 3.1.2. We say that such a set of gates is universal for classical computation. In fact, since the Toffoli gate is universal for classical computation, quantum circuits subsume classical circuits. A similar universality result is true for quantum computation, where a set of gates is said to be universal for quantum computation if any unitary operation may be approximated to arbitrary accuracy by a quantum circuit 189 Universal quantum gates involving only those gates. We now describe three universality constructions for quantum computation. These constructions build upon each other, and culminate in a proof that any unitary operation can be approximated to arbitrary accuracy using Hadamard, phase, , and π/8 gates. You may wonder why the phase gate appears in this list, since it can be constructed from two π/8 gates; it is included because of its natural role in the fault-tolerant constructions described in Chapter 10. The first construction shows that an arbitrary unitary operator may be expressed exactly as a product of unitary operators that each acts non-trivially only on a subspace spanned by two computational basis states. The second construction combines the first construction with the results of the previous section to show that an arbitrary unitary gates. The third conoperator may be expressed exactly using single qubit and struction combines the second construction with a proof that single qubit operation may be approximated to arbitrary accuracy using the Hadamard, phase, and π/8 gates. This in turn implies that any unitary operation can be approximated to arbitrary accuracy using , and π/8 gates. Hadamard, phase, Our constructions say little about efficiency – how many (polynomially or exponentially many) gates must be composed in order to create a given unitary transform. In Section 4.5.4 we show that there exist unitary transforms which require exponentially many gates to approximate. Of course, the goal of quantum computation is to find interesting families of unitary transformations that can be performed efficiently. Exercise 4.36: Construct a quantum circuit to add two two-bit numbers x and y modulo 4. That is, the circuit should perform the transformation |x, y → |x, x + y mod 4. 4.5.1 Two-level unitary gates are universal Consider a unitary matrix U which acts on a d-dimensional Hilbert space. In this section we explain how U may be decomposed into a product of two-level unitary matrices; that is, unitary matrices which act non-trivially only on two-or-fewer vector components. The essential idea behind this decomposition may be understood by considering the case when U is 3×3, so suppose that U has the form ⎡ ⎤ a d g U = ⎣ b e h . c f j (4.41) We will find two-level unitary matrices U1 , . . . , U3 such that U3 U2 U1 U = I . (4.42) U = U1†U2† U3† . (4.43) It follows that U1 , U2 and U3 are all two-level unitary matrices, and it is easy to see that their inverses, U1† , U2† and U3† are also two-level unitary matrices. Thus, if we can demonstrate (4.42), then we will have shown how to break U up into a product of two-level unitary matrices. 190 Quantum circuits Use the following procedure to construct ⎡ 1 U1 ≡ ⎣ 0 0 If b = 0 then set ⎡ ⎢ U1 ≡ ⎢ ⎣ a∗ |a|2 +|b|2 √ b2 2 |a| +|b| √ 0 Note that in either case U1 is a two-level matrices out we get ⎡ ′ a ⎢ U1 U = ⎣ 0 ′ c U1 : if b = 0 then set ⎤ 0 0 1 0 . 0 1 b∗ |a|2 +|b|2 √ −a |a|2 +|b|2 √ 0 (4.44) ⎤ ⎥ 0 ⎥ . 1 0 (4.45) unitary matrix, and when we multiply the ′ d ′ e ′ f ⎤ ′ g ′ ⎥ h . ′ j (4.46) The key point to note is that the middle entry in the left hand column is zero. We denote the other entries in the matrix with a generic prime ′ ; their actual values do not matter. Now apply a similar procedure to find a two-level matrix U2 such that U2 U1 U has no ′ entry in the bottom left corner. That is, if c = 0 we set ⎤ ⎡ ′∗ a 0 0 ⎥ ⎢ (4.47) U2 ≡ ⎣ 0 1 0  , 0 0 1 ′ while if c = 0 then we set ⎡ ⎢ ⎢ U2 ≡ ⎢ ⎣ √ ′∗ a |a′ |2 +|c′ |2 0 √ 0 1 ′ c |a′ |2 +|c′ |2 √ 0 c ′∗ |a′ |2 +|c′ |2 0 √ ′ −a |a′ |2 +|c′ |2 ⎤ ⎥ ⎥ ⎥.  In either case, when we carry out the matrix multiplication we find that ⎡ ⎤ ′′ ′′ 1 d g ′′ ′′ ⎥ ⎢ U2 U1 U = ⎣ 0 e h . ′′ ′′ 0 f j (4.48) (4.49) ′′ ′′ Since U, U1 and U2 are unitary, it follows that U2 U1 U is unitary, and thus d = g = 0, since the first row of U2 U1 U must have norm 1. Finally, set ⎡ ⎤ 1 0 0 ′′ ∗ ′′ ∗ ⎥ ⎢ f (4.50) U3 ≡ ⎣ 0 e . ∗ ′′ ′′ ∗ 0 h j It is now easy to verify that U3 U2 U1 U = I, and thus U = U1† U2† U3†, which is a decomposition of U into two-level unitaries. More generally, suppose U acts on a d-dimensional space. Then, in a similar fashion to the 3×3 case, we can find two-level unitary matrices U1 , . . . , Ud−1 such that the matrix Universal quantum gates 191 Ud−1 Ud−2 . . . U1 U has a one in the top left hand corner, and all zeroes elsewhere in the first row and column. We then repeat this procedure for the d − 1 by d − 1 unitary submatrix in the lower right hand corner of Ud−1 Ud−2 . . . U1 U , and so on, with the end result that an arbitrary d×d unitary matrix may be written U = V1 . . . Vk , (4.51) where the matrices Vi are two-level unitary matrices, and k ≤ (d − 1) + (d − 2) + · · · + 1 = d(d − 1)/2. Exercise 4.37: Provide a decomposition of the transform ⎤ 1 1 1 1 1⎢ i −1 −i ⎥ ⎥ ⎢1 ⎣ 2 1 −1 1 −1  1 −i −1 i ⎡ (4.52) into a product of two-level unitaries. This is a special case of the quantum Fourier transform, which we study in more detail in the next chapter. A corollary of the above result is that an arbitrary unitary matrix on an n qubit system may be written as a product of at most 2n−1 (2n − 1) two-level unitary matrices. For specific unitary matrices, it may be possible to find much more efficient decompositions, but as you will now show there exist matrices which cannot be decomposed as a product of fewer than d − 1 two-level unitary matrices! Exercise 4.38: Prove that there exists a d×d unitary matrix U which cannot be decomposed as a product of fewer than d − 1 two-level unitary matrices. gates are universal 4.5.2 Single qubit and We have just shown that an arbitrary unitary matrix on a d-dimensional Hilbert space may be written as a product of two-level unitary matrices. Now we show that single gates together can be used to implement an arbitrary two-level unitary qubit and operation on the state space of n qubits. Combining these results we see that single qubit and gates can be used to implement an arbitrary unitary operation on n qubits, and therefore are universal for quantum computation. Suppose U is a two-level unitary matrix on an n qubit quantum computer. Suppose in particular that U acts non-trivially on the space spanned by the computational basis states |s and |t, where s = s1 . . . sn and t = t1 . . . tn are the binary expansions for s and t. Let Ũ be the non-trivial 2×2 unitary submatrix of U ; Ũ can be thought of as a unitary operator on a single qubit. Our immediate goal is to construct a circuit implementing U , built from single qubit gates. To do this, we need to make use of Gray codes. Suppose we have and distinct binary numbers, s and t. A Gray code connecting s and t is a sequence of binary numbers, starting with s and concluding with t, such that adjacent members of the list differ in exactly one bit. For instance, with s = 101001 and t = 110011 we have the Gray 192 Quantum circuits code 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 (4.53) Let g1 through gm be the elements of a Gray code connecting s and t, with g1 = s and gm = t. Note that we can always find a Gray code such that m ≤ n + 1 since s and t can differ in at most n locations. The basic idea of the quantum circuit implementing U is to perform a sequence of gates effecting the state changes |g1  → |g2  → . . . → |gm−1 , then to perform a controlled-Ũ operation, with the target qubit located at the single bit where gm−1 and gm differ, and then to undo the first stage, transforming |gm−1  → |gm−2  → . . . → |g1 . Each of these steps can be easily implemented using operations developed earlier in this chapter, and the final result is an implementation of U . A more precise description of the implementation is as follows. The first step is to swap the states |g1  and |g2 . Suppose g1 and g2 differ at the ith digit. Then we accomplish the swap by performing a controlled bit flip on the ith qubit, conditional on the values of the other qubits being identical to those in both g1 and g2 . Next we use a controlled operation to swap |g2  and |g3 . We continue in this fashion until we swap |gm−2  with |gm−1 . The effect of this sequence of m − 2 operations is to achieve the operation |g1  → |gm−1  |g2  → |g1  (4.54) (4.55) |g3  → |g2  (4.56) |gm−1  → |gm−2 . (4.57) ... ... ... All other computational basis states are left unchanged by this sequence of operations. Next, suppose gm−1 and gm differ in the jth bit. We apply a controlled-Ũ operation with the jth qubit as target, conditional on the other qubits having the same values as appear in both gm and gm−1 . Finally, we complete the U operation by undoing the swap operations: we swap |gm−1  with |gm−2 , then |gm−2  with |gm−3  and so on, until we swap |g2  with |g1 . A simple example illuminates the procedure further. Suppose we wish to implement the two-level unitary transformation ⎡ ⎤ a 0 0 0 0 0 0 c ⎢ 0 1 0 0 0 0 0 0 ⎥ ⎢ ⎥ ⎢ 0 0 1 0 0 0 0 0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 0 0 0 1 0 0 0 0 ⎥ (4.58) U =⎢ ⎥. ⎢ 0 0 0 0 1 0 0 0 ⎥ ⎢ ⎥ ⎢ 0 0 0 0 0 1 0 0 ⎥ ⎢ ⎥ ⎣ 0 0 0 0 0 0 1 0  b 0 0 0 0 0 0 d   a c is a unitary matrix. Here, a, b, c and d are any complex numbers such that Ũ ≡ b d 193 Universal quantum gates Notice that U acts non-trivially only on the states |000 and |111. We write a Gray code connecting 000 and 111: A B C 0 0 0 0 0 1 . 0 1 1 1 1 1 (4.59) From this we read off the required circuit, shown in Figure 4.16. The first two gates shuffle the states so that |000 gets swapped with |011. Next, the operation Ũ is applied to the first qubit of the states |011 and |111, conditional on the second and third qubits being in the state |11. Finally, we unshuffle the states, ensuring that |011 gets swapped back with the state |000.                         Figure 4.16. Circuit implementing the two-level unitary operation defined by (4.58). Returning to the general case, we see that implementing the two-level unitary operation U requires at most 2(n − 1) controlled operations to swap |g1  with |gm−1  and then back again. Each of these controlled operations can be realized using O(n) single qubit and gates; the controlled-Ũ operation also requires O(n) gates. Thus, implementing gates. We saw in the previous section that an U requires O(n2 ) single qubit and arbitrary unitary matrix on the 2n -dimensional state space of n qubits may be written as a product of O(22n ) = O(4n ) two-level unitary operations. Combining these results, we see that an arbitrary unitary operation on n qubits can be implemented using a circuit gates. Obviously, this construction does not containing O(n2 4n ) single qubit and provide terribly efficient quantum circuits! However, we show in Section 4.5.4 that the construction is close to optimal in the sense that there are unitary operations that require an exponential number of gates to implement. Thus, to find fast quantum algorithms we will clearly need a different approach than is taken in the universality construction. Exercise 4.39: Find a quantum circuit using single qubit operations and implement the transformation ⎤ ⎡ 1 0 0 0 0 0 0 0 ⎢ 0 1 0 0 0 0 0 0 ⎥ ⎥ ⎢ ⎢ 0 0 a 0 0 0 0 c ⎥ ⎥ ⎢ ⎥ ⎢ ⎢ 0 0 0 1 0 0 0 0 ⎥ ⎥, ⎢ ⎢ 0 0 0 0 1 0 0 0 ⎥ ⎥ ⎢ ⎢ 0 0 0 0 0 1 0 0 ⎥ ⎥ ⎢ ⎣ 0 0 0 0 0 0 1 0  0 0 b 0 0 0 0 d s to (4.60) 194 Quantum circuits where Ũ =  a c b d  is an arbitrary 2×2 unitary matrix. 4.5.3 A discrete set of universal operations and single qubit unitaries together form In the previous section we proved that the a universal set for quantum computation. Unfortunately, no straightforward method is known to implement all these gates in a fashion which is resistant to errors. Fortunately, in this section we’ll find a discrete set of gates which can be used to perform universal quantum computation, and in Chaper 10 we’ll show how to perform these gates in an error-resistant fashion, using quantum error-correcting codes. Approximating unitary operators Obviously, a discrete set of gates can’t be used to implement an arbitrary unitary operation exactly, since the set of unitary operations is continuous. Rather, it turns out that a discrete set can be used to approximate any unitary operation. To understand how this works, we first need to study what it means to approximate a unitary operation. Suppose U and V are two unitary operators on the same state space. U is the target unitary operator that we wish to implement, and V is the unitary operator that is actually implemented in practice. We define the error when V is implemented instead of U by E(U, V ) ≡ max (U − V )|ψ, (4.61) |ψ where the maximum is over all normalized quantum states |ψ in the state space. In Box 4.1 on page 195 we show that this measure of error has the interpretation that if E(U, V ) is small, then any measurement performed on the state V |ψ will give approximately the same measurement statistics as a measurement of U |ψ, for any initial state |ψ. More precisely, we show that if M is a POVM element in an arbitrary POVM, and PU (or PV ) is the probability of obtaining this outcome if U (or V ) were performed with a starting state |ψ, then |PU − PV | ≤ 2E(U, V ) . (4.62) Thus, if E(U, V ) is small, then measurement outcomes occur with similar probabilities, regardless of whether U or V were performed. Also shown in Box 4.1 is that if we perform a sequence of gates V1 , . . . , Vm intended to approximate some other sequence of gates U1 , . . . , Um , then the errors add at most linearly, m E(Um Um−1 . . . U1 , Vm Vm−1 . . . V1 ) ≤ E(Uj , Vj ) . (4.63) j=1 The approximation results (4.62) and (4.63) are extremely useful. Suppose we wish to perform a quantum circuit containing m gates, U1 through Um . Unfortunately, we are only able to approximate the gate Uj by the gate Vj . In order that the probabilities of different measurement outcomes obtained from the approximate circuit be within a tolerance Δ > 0 of the correct probabilities, it suffices that E(Uj , Vj ) ≤ Δ/(2m), by the results (4.62) and (4.63). + π/8 gates Universality of Hadamard + phase + We’re now in a good position to study the approximation of arbitrary unitary operations by discrete sets of gates. We’re going to consider two different discrete sets of gates, both 195 Universal quantum gates Box 4.1: Approximating quantum circuits Suppose a quantum system starts in the state |ψ, and we perform either the unitary operation U , or the unitary operation V . Following this, we perform a measurement. Let M be a POVM element associated with the measurement, and let PU (or PV ) be the probability of obtaining the corresponding measurement outcome if the operation U (or V ) was performed. Then + + |PU − PV | = +ψ|U † M U |ψ − ψ|V † M V |ψ+ . (4.64) Let |Δ ≡ (U − V )|ψ. Simple algebra and the Cauchy–Schwarz inequality show that + + |PU − PV | = +ψ|U † M |Δ + Δ|M V |ψ+ . (4.65) ≤ |ψ|U † M |Δ| + |Δ|M V |ψ| ≤ |Δ + |Δ ≤ 2E(U, V ). (4.66) (4.67) (4.68) The inequality |PU − PV | ≤ 2E(U, V ) gives quantitative expression to the idea that when the error E(U, V ) is small, the difference in probabilities between measurement outcomes is also small. Suppose we perform a sequence V1 , V2 , . . . , Vm of gates intended to approximate some other sequence of gates, U1 , U2 , . . . , Um . Then it turns out that the error caused by the entire sequence of imperfect gates is at most the sum of the errors in the individual gates, m E(Um Um−1 . . . U1 , Vm Vm−1 . . . V1 ) ≤ E(Uj , Vj ). (4.69) j=1 To prove this we start with the case m = 2. Note that for some state |ψ we have E(U2 U1 , V2 V1 ) = (U2 U1 − V2 V1 )|ψ = (U2 U1 − V2 U1 )|ψ + (V2 U1 − V2 V1 )|ψ. (4.70) (4.71) Using the triangle inequality |a + |b ≤ |a + |b, we obtain E(U2 U1 , V2 V1 ) ≤ (U2 − V2 )U1 |ψ + V2 (U1 − V1 )|ψ ≤ E(U2 , V2 ) + E(U1 , V1 ), (4.72) (4.73) which was the desired result. The result for general m follows by induction. of which are universal. The first set, the standard set of universal gates, consists of the and π/8 gates. We provide fault-tolerant constructions Hadamard, phase, controlledfor these gates in Chapter 10; they also provide an exceptionally simple universality construction. The second set of gates we consider consists of the Hadamard gate, phase gate, and the Toffoli gate. These gates can also all be done faultgate, the controlledtolerantly; however, the universality proof and fault-tolerance construction for these gates is a little less appealing. We begin the universality proof by showing that the Hadamard and π/8 gates can be 196 Quantum circuits used to approximate any single qubit unitary operation to arbitrary accuracy. Consider the gates T and HT H. T is, up to an unimportant global phase, a rotation by π/4 radians around the ẑ axis on the Bloch sphere, while HT H is a rotation by π/4 radians around the x̂ axis on the Bloch sphere (Exercise 4.14). Composing these two operations gives, up to a global phase,        π π π π π π exp −i Z exp −i X = cos I − i sin Z cos I − i sin X (4.74) 8 8 8 8 8 8   π π π π = cos2 I − i cos (X + Z) + sin Y sin . 8 8 8 8 (4.75) This is a rotation of the Bloch sphere about an axis along n = (cos π8 , sin π8 , cos π8 ) with corresponding unit vector n̂, and through an angle θ defined by cos(θ/2) ≡ cos2 π8 . That is, using only the Hadamard and π/8 gates we can construct Rn̂ (θ). Moreover, this θ can be shown to be an irrational multiple of 2π. Proving this latter fact is a little beyond our scope; see the end of chapter ‘History and further reading’. Next, we show that repeated iteration of Rn̂ (θ) can be used to approximate to arbitrary accuracy any rotation Rn̂ (α). To see this, let δ > 0 be the desired accuracy, and let N be an integer larger than 2π/δ. Define θk so that θk ∈ [0, 2π) and θk = (kθ)mod 2π. Then the pigeonhole principle implies that there are distinct j and k in the range 1, . . . , N such that |θk − θj | ≤ 2π/N < δ. Without loss of generality assume that k > j, so we have |θk−j | < δ. Since j = k and θ is an irrational multiple of 2π we must have θk−j = 0. It follows that the sequence θl(k−j) fills up the interval [0, 2π) as l is varied, so that adjacent members of the sequence are no more than δ apart. It follows that for any ǫ > 0 there exists an n such that ǫ E(Rn̂ (α), Rn̂ (θ)n ) < . (4.76) 3 Exercise 4.40: For arbitrary α and β show that E(Rn̂ (α), Rn̂ (α + β)) = |1 − exp(iβ/2)| , (4.77) and use this to justify (4.76). We are now in position to verify that any single qubit operation can be approximated to arbitrary accuracy using the Hadamard and π/8 gates. Simple algebra implies that for any α HRn̂ (α)H = Rm̂ (α) , (4.78) where m̂ is a unit vector in the direction (cos π8 , − sin π8 , cos π8 ), from which it follows that ǫ E(Rm̂ (α), Rm̂ (θ)n ) < . (4.79) 3 But by Exercise 4.11 an arbitrary unitary U on a single qubit may be written as U = Rn̂ (β)Rm̂ (γ)Rn̂ (δ), (4.80) up to an unimportant global phase shift. The results (4.76) and (4.79), together with the Universal quantum gates 197 chaining inequality (4.63) therefore imply that for suitable positive integers n1 , n2 , n3 , E(U, Rn̂ (θ)n1 HRn̂ (θ)n2 HRn̂ (θ)n3 ) < ǫ . (4.81) That is, given any single qubit unitary operator U and any ǫ > 0 it is possible to approximate U to within ǫ using a circuit composed of Hadamard gates and π/8 gates alone. Since the π/8 and Hadamard gates allow us to approximate any single qubit unitary operator, it follows from the arguments of Section 4.5.2 that we can approximate any m gate quantum circuit, as follows. Given a quantum circuit containing m gates, either s or single qubit unitary gates, we may approximate it using Hadamard, and π/8 gates (later, we will find that phase gates make it possible to do controlledthe appoximation fault-tolerantly, but for the present universality argument they are not strictly necessary). If we desire an accuracy of ǫ for the entire circuit, then this may be achieved by approximating each single qubit unitary using the above procedure to within ǫ/m and applying the chaining inequality (4.63) to obtain an accuracy of ǫ for the entire circuit. How efficient is this procedure for approximating quantum circuits using a discrete set of gates? This is an important question. Suppose, for example, that approximating an arbitrary single qubit unitary to within a distance ǫ were to require Ω(21/ǫ ) gates from the discrete set. Then to approximate the m gate quantum circuit considered in the previous paragraph would require Ω(m2m/ǫ ) gates, an exponential increase over the original circuit size! Fortunately, the rate of convergence is much better than this. Intuitively, it is plausible that the sequence of angles θk ‘fills in’ the interval [0, 2π) in a more or less uniform fashion, so that to approximate an arbitrary single qubit gate ought to take roughly Θ(1/ǫ) gates from the discrete set. If we use this estimate for the number of gates required to approximate an arbitrary single qubit gate, then the number required to approximate an m gate circuit to accuracy ǫ becomes Θ(m2 /ǫ). This is a quadratic increase over the original size of the circuit, m, which for many applications may be sufficient. Rather remarkably, however, a much faster rate of convergence can be proved. The Solovay–Kitaev theorem, proved in Appendix 3, implies that an arbitrary single qubit gate may be approximated to an accuracy ǫ using O(log c (1/ǫ)) gates from our discrete set, where c is a constant approximately equal to 2. The Solovay–Kitaev theorem therefore implies that to approximate a circuit containing m s and single qubit unitaries to c an accuracy ǫ requires O(m log (m/ǫ)) gates from the discrete set, a polylogarithmic increase over the size of the original circuit, which is likely to be acceptable for virtually all applications. To sum up, we have shown that the Hadamard, phase, controlledand π/8 gates s are universal for quantum computation in the sense that given a circuit containing and arbitrary single qubit unitaries it is possible to simulate this circuit to good accuracy using only this discrete set of gates. Moreover, the simulation can be performed efficiently, in the sense that the overhead required to perform the simulation is polynomial in log(m/ǫ), where m is the number of gates in the original circuit, and ǫ is the desired accuracy of the simulation. Exercise 4.41: This and the next two exercises develop a construction showing that and Toffoli gates are universal. Show that the Hadamard, phase, controlled- 198 Quantum circuits ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤✤ ✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ Figure 4.17. Provided both measurement outcomes are 0 this circuit applies Rz (θ) to the target, where cos θ = 3/5. If some other measurement outcome occurs then the circuit applies Z to the target. the circuit in Figure 4.17 applies the operation Rz (θ) to the third (target) qubit if the measurement outcomes are both 0, where cos θ = 3/5, and otherwise applies Z to the target qubit. Show that the probability of both measurement outcomes being 0 is 5/8, and explain how repeated use of this circuit and Z = S 2 gates may be used to apply a Rz (θ) gate with probability approaching 1. Exercise 4.42: (Irrationality of θ) Suppose cos θ = 3/5. We give a proof by contradiction that θ is an irrational multiple of 2π. (1) Using the fact that eiθ = (3 + 4i)/5, show that if θ is rational, then there must exist a positive integer m such that (3 + 4i)m = 5m . (2) Show that (3 + 4i)m = 3 + 4i (mod 5) for all m > 0, and conclude that no m such that (3 + 4i)m = 5m can exist. Exercise 4.43: Use the results of the previous two exercises to show that the Hadamard, phase, controlledand Toffoli gates are universal for quantum computation. Exercise 4.44: Show that the three qubit gate G defined by the circuit: • • iRx πα is universal for quantum computation whenever α is irrational. Exercise 4.45: Suppose U is a unitary transform implemented by an n qubit quantum and Toffoli gates. Show that U is of the circuit constructed from H, S, form 2−k/2 M , for some integer k, where M is a 2n ×2n matrix with only complex integer entries. Repeat this exercise with the Toffoli gate replaced by the π/8 gate. 4.5.4 Approximating arbitrary unitary gates is generically hard We’ve seen that any unitary transformation on n qubits can be built up out of a small set of elementary gates. Is it always possible to do this efficiently? That is, given a unitary transformation U on n qubits does there always exist a circuit of size polynomial in n approximating U ? The answer to this question turns out to be a resounding no: in fact, most unitary transformations can only be implemented very inefficiently. One way to see Universal quantum gates 199 this is to consider the question: how many gates does it take to generate an arbitrary state of n qubits? A simple counting argument shows that this requires exponentially many operations, in general; it immediately follows that there are unitary operations requiring exponentially many operations. To see this, suppose we have g different types of gates available, and each gate works on at most f input qubits. These numbers, f and g, are fixed by the computing hardware we have available, and may be considered to be constants. Suppose we have a quantum circuit containing m gates, starting from the computational basis state |0⊗n . For any particular gate in the circuit there are therefore  g n at most = O(nf g ) possible choices. It follows that at most O(nf gm ) different f states may be computed using m gates. Figure 4.18. Visualization of covering the set of possible states with patches of constant radius. Suppose we wish to approximate a particular state, |ψ, to within a distance ǫ. The idea of the proof is to cover the set of all possible states with a collection of ‘patches,’ each of radius ǫ (Figure 4.18), and then to show that the number of patches required rises doubly exponentially in n; comparing with the exponential number of different states that may be computed using m gates will imply the result. The first observation we need is that the space of state vectors of n qubits can be regarded as just the unit (2n+1 −1)-sphere. To see this, suppose the n qubit state has amplitudes ψj = Xj + iYj , where Xj and Yj are the real and imaginary parts, respectively, of the jth amplitude. The normalization condition  for quantum states can be written j (Xj2 + Yj2 ) = 1, which is just the condition for a point to be on the unit sphere in 2n+1 real dimensions, that is, the unit (2n+1 − 1)-sphere. Similarly, the surface area of radius ǫ near |ψ is approximately the same as the volume of a (2n+1 − 2)-sphere of radius ǫ. Using the formula Sk (r) = 2π (k+1)/2 rk /Γ((k + 1)/2) for the surface area of a k-sphere of radius r, and Vk (r) = 2π (k+1)/2 rk+1 /[(k + 1)Γ((k + 1)/2)] for the volume of a k-sphere of radius r, we see that the number of patches needed to 200 Quantum circuits cover the state space goes like S2n+1 −1 (1) = V2n+1 −2 (ǫ) √ πΓ(2n − 12 )(2n+1 − 1) , Γ(2n )ǫ2n+1 −1 (4.82) where Γ is the usual generalization of the factorial function. But Γ(2n −1/2) ≥ Γ(2n )/2n , so the number of patches required to cover the space is at least   1 (4.83) Ω 2n+1 −1 . ǫ Recall that the number of patches which can be reached in m gates is O(nf gm ), so in order to reach all the ǫ-patches we must have   1 (4.84) O nf gm ≥ Ω 2n+1 −1 ǫ which gives us m=Ω   2n log(1/ǫ) . log(n) (4.85) That is, there are states of n qubits which take Ω(2n log(1/ǫ)/ log(n)) operations to approximate to within a distance ǫ. This is exponential in n, and thus is ‘difficult’, in the sense of computational complexity introduced in Chapter 3. Furthermore, this immediately implies that there are unitary transformations U on n qubits which take Ω(2n log(1/ǫ)/ log(n)) operations to approximate by a quantum circuit implementing an operation V such that E(U, V ) ≤ ǫ. By contrast, using our universality constructions and the Solovay–Kitaev theorem it follows that an arbitrary unitary operation U on n qubits may be approximated to within a distance ǫ using O(n2 4n logc (n2 4n /ǫ)) gates. Thus, to within a polynomial factor the construction for universality we have given is optimal; unfortunately, it does not address the problem of determining which families of unitary operations can be computed efficiently in the quantum circuits model. 4.5.5 Quantum computational complexity In Chapter 3 we described a theory of ‘computational complexity’ for classical computers that classified the resource requirements to solve computational problems on classical computers. Not surprisingly there is considerable interest in developing a theory of quantum computational complexity, and relating it to classical computational complexity theory. Although only first steps have been taken in this direction, it will doubtless be an enormously fruitful direction for future researchers. We content ourselves with presenting one result about quantum complexity classes, relating the quantum complexity class BQP to the classical complexity class PSPACE. Our discussion of this result is rather informal; for more details you are referred to the paper of Bernstein and Vazirani referenced in the end of chapter ‘History and further reading’. Recall that PSPACE was defined in Chapter 3 as the class of decision problems which can be solved on a Turing machine using space polynomial in the problem size and an arbitrary amount of time. BQP is an essentially quantum complexity class consisting of those decision problems that can be solved with bounded probability of error using a polynomial size quantum circuit. Slightly more formally, we say a language L is in BQP if there is a family of polynomial size quantum circuits which decides the language, Universal quantum gates 201 accepting strings in the language with probability at least 3/4, and rejecting strings which aren’t in the language with probability at least 3/4. In practice, what this means is that the quantum circuit takes as input binary strings, and tries to determine whether they are elements of the language or not. At the conclusion of the circuit one qubit is measured, with 0 indicating that the string has been accepted, and 1 indicating rejection. By testing the string a few times to determine whether it is in L, we can determine with very high probability whether a given string is in L. Of course, a quantum circuit is a fixed entity, and any given quantum circuit can only decide whether strings up to some finite length are in L. For this reason, we use an entire family of circuits in the definition of BQP; for every possible input length there is a different circuit in the family. We place two restrictions on the circuit in addition to the acceptance / rejection criterion already described. First, the size of the circuits should only grow polynomially with the size of the input string x for which we are trying to determine whether x ∈ L. Second, we require that the circuits be uniformly generated, in a sense similar to that described in Section 3.1.2. This uniformity requirement arises because, in practice, given a string x of some length n, somebody will have to build a quantum circuit capable of deciding whether x is in L. To do so, they will need to have a clear set of instructions – an algorithm – for building the circuit. For this reason, we require that our quantum circuits be uniformly generated, that is, there is a Turing machine capable of efficiently outputting a description of the quantum circuit. This restriction may seem rather technical, and in practice is nearly always satisfied trivially, but it does save us from pathological examples such as that described in Section 3.1.2. (You might also wonder if it matters whether the Turing machine used in the uniformity requirement is a quantum or classical Turing machine; it turns out that it doesn’t matter – see ‘History and further reading’.) One of the most significant results in quantum computational complexity is that BQP ⊆ PSPACE. It is clear that BPP ⊆ BQP, where BPP is the classical complexity class of decision problems which can be solved with bounded probability of error using polynomial time on a classical Turing machine. Thus we have the chain of inclusions BPP ⊆ BQP ⊆ PSPACE. Proving that BQP = BPP – intuitively the statement that quantum computers are more powerful than classical computers – will therefore imply that BPP = PSPACE. However, it is not presently known whether BPP = PSPACE, and proving this would represent a major breakthrough in classical computer science! So proving that quantum computers are more powerful than classical computers would have some very interesting implications for classical computational complexity! Unfortunately, it also means that providing such a proof may be quite difficult. Why is it that BQP ⊆ PSPACE? Here is an intuitive outline of the proof (a rigorous proof is left to the references in ‘History and further reading’). Suppose we have an n qubit quantum computer, and do a computation involving a sequence of p(n) gates, where p(n) is some polynomial in n. Supposing the quantum circuit starts in the state |0 we will explain how to evaluate in polynomial space on a classical computer the probability that it ends up in the state |y. Suppose the gates that are executed on the quantum computer are, in order, U1 , U2 , . . . , Up(n) . Then the probability of ending up in the state |y is the modulus squared of y|Up(n) · · · U2 U1 |0 . (4.86) This quantity may be estimated in polynomial space on a classical computer. The basic 202 Quantum circuits idea is to insert the completeness relation obtaining y|Up(n) · · · U2 U1 |0 = x1 ,...,xp(n)−1  x |xx| = I between each term in (4.86), y|Up(n) |xp(n)−1 xp(n)−1 |Up(n)−2 . . . U2 |x1 x1 |U1 |0 . (4.87) Given that the individual unitary gates appearing in this sum are operations such as the , and so on, it is clear that each term in the sum can be calculated Hadamard gate, to high accuracy using only polynomial space on a classical computer, and thus the sum as a whole can be calculated using polynomial space, since individual terms in the sum can be erased after being added to the running total. Of course, this algorithm is rather slow, since there are exponentially many terms in the sum which need to be calculated and added to the total; however, only polynomially much space is consumed, and thus BQP ⊆ PSPACE, as we set out to show. A similar procedure can be used to simulate an arbitrary quantum computation on a classical computer, no matter the length of the quantum computation. Therefore, the class of problems solvable on a quantum computer with unlimited time and space resources is no larger than the class of problems solvable on a classical computer. Stated another way, this means that quantum computers do not violate the Church–Turing thesis that any algorithmic process can be simulated efficiently using a Turing machine. Of course, quantum computers may be much more efficient than their classical counterparts, thereby challenging the strong Church–Turing thesis that any algorithmic process can be simulated efficiently using a probabilistic Turing machine. 4.6 Summary of the quantum circuit model of computation In this book the term ‘quantum computer’ is synonymous with the quantum circuit model of computation. This chapter has provided a detailed look at quantum circuits, their basic elements, universal families of gates, and some applications. Before we move on to more sophisticated applications, let us summarize the key elements of the quantum circuit model of computation: (1) Classical resources: A quantum computer consists of two parts, a classical part and a quantum part. In principle, there is no need for the classical part of the computer, but in practice certain tasks may be made much easier if parts of the computation can be done classically. For example, many schemes for quantum error-correction (Chapter 10) are likely to involve classical computations in order to maximize efficiency. While classical computations can always be done, in principle, on a quantum computer, it may be more convenient to perform the calculations on a classical computer. (2) A suitable state space: A quantum circuit operates on some number, n, of qubits. The state space is thus a 2n -dimensional complex Hilbert space. Product states of the form |x1 , . . . , xn , where xi = 0, 1, are known as computational basis states of the computer. |x denotes a computational basis state, where x is the number whose binary representation is x1 . . . xn . (3) Ability to prepare states in the computational basis: It is assumed that any computational basis state |x1 , . . . , xn  can be prepared in at most n steps. Summary of the quantum circuit model of computation 203 (4) Ability to perform quantum gates: Gates can be applied to any subset of qubits as desired, and a universal family of gates can be implemented. For example, it gate to any pair of qubits in the quantum should be possible to apply the and π/8 gates form a family of gates from computer. The Hadamard, phase, which any unitary operation can be approximated, and thus is a universal set of gates. Other universal families exist. (5) Ability to perform measurements in the computational basis: Measurements may be performed in the computational basis of one or more of the qubits in the computer. The quantum circuit model of quantum computation is equivalent to many other models of computation which have been proposed, in the sense that other models result in essentially the same resource requirements for the same problems. As a simple example which illustrates the basic idea, one might wonder whether moving to a design based on three-level quantum systems, rather than the two-level qubits, would confer any computational advantage. Of course, although there may be some slight advantage in using three-level quantum systems (qutrits) over two-level systems, any difference will be essentially negligible from the theoretical point of view. At a less trivial level, the ‘quantum Turing machine’ model of computation, a quantum generalization of the classical Turing machine model, has been shown to be equivalent to the model based upon quantum circuits. We do not consider that model of computation in this book, but the reader interested in learning more about quantum Turing machines may consult the references given in the end of chapter ‘History and further reading’. Despite the simplicity and attraction of the quantum circuit model, it is useful to keep in mind possible criticisms, modifications, and extensions. For example, it is by no means clear that the basic assumptions underlying the state space and starting conditions in the quantum circuit model are justified. Everything is phrased in terms of finite dimensional state spaces. Might there be anything to be gained by using systems whose state space is infinite dimensional? Assuming that the starting state of the computer is a computational basis state is also not necessary; we know that many systems in Nature ‘prefer’ to sit in highly entangled states of many systems; might it be possible to exploit this preference to obtain extra computational power? It might be that having access to certain states allows particular computations to be done much more easily than if we are constrained to start in the computational basis. Likewise, the ability to efficiently perform entangling measurements in multi-qubit bases might be as useful as being able to perform just entangling unitary operations. Indeed, it may be possible to harness such measurements to perform tasks intractable within the quantum circuit model. A detailed examination and attempted justification of the physics underlying the quantum circuit model is outside the scope of the present discussion, and, indeed, outside the scope of present knowledge! By raising these issues we wish to introduce the question of the completeness of the quantum circuit model, and re-emphasize the fundamental point that information is physical. In our attempts to formulate models for information processing we should always attempt to go back to fundamental physical laws. For the purposes of this book, we shall stay within the quantum circuit model of computation. It offers a rich and powerful model of computation that exploits the properties of quantum mechanics to perform amazing feats of information processing, without classical prece- 204 Quantum circuits dent. Whether physically reasonable models of computation exist which go beyond the quantum circuit model is a fascinating question which we leave open for you. 4.7 Simulation of quantum systems Perhaps [...] we need a mathematical theory of quantum automata. [...] the quantum state space has far greater capacity than the classical one: for a classical system with N states, its quantum version allowing superposition accommodates cN states. When we join two classical systems, their number of states N1 and N2 are multiplied, and in the quantum case we get the exponential growth cN1 N2 . [...] These crude estimates show that the quantum behavior of the system might be much more complex than its classical simulation. – Yu Manin (1980)[Man80], as translated in [Man99] The quantum-mechanical computation of one molecule of methane requires 1042 grid points. Assuming that at each point we have to perform only 10 elementary operations, and that the computation is performed at the extremely low temperature T = 3 × 10−3 K, we would still have to use all the energy produced on Earth during the last century. – R. P. Poplavskii (1975)[Pop75], as quoted by Manin Can physics be simulated by a universal computer? [...] the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics [...] the full description of quantum mechanics for a large system with R particles [...] has too many variables, it cannot be simulated with a normal computer with a number of elements proportional to R [ ... but it can be simulated with ] quantum computer elements. [...] Can a quantum system be probabilistically simulated by a classical (probabilistic, I’d assume) universal computer? [...] If you take the computer to be the classical kind I’ve described so far [..] the answer is certainly, No! – Richard P. Feynman (1982)[Fey82] Let us close out this chapter by providing an interesting and useful application of the quantum circuit model. One of the most important practical applications of computation is the simulation of physical systems. For example, in the engineering design of a new building, finite element analysis and modeling is used to ensure safety while minimizing cost. Cars are made lightweight, structurally sound, attractive, and inexpensive, by using computer aided design. Modern aeronautical engineering depends heavily on computational fluid dynamics simulations for aircraft designs. Nuclear weapons are no longer exploded (for the most part), but rather, tested by exhaustive computational modeling. Examples abound, because of the tremendous practical applications of predictive simulations. We begin by describing some instances of the simulation problem, then we present a quantum algorithm for simulation and an illustrative example, concluding with some perspective on this application. 4.7.1 Simulation in action The heart of simulation is the solution of differential equations which capture the physical laws governing the dynamical behavior of a system. Some examples include Newton’s Simulation of quantum systems 205 law,   d dx m =F, dt dt (4.88)  · (k ∇  u) = Q , −∇ (4.89) Poisson’s equation, the electromagnetic vector wave equation, 2 E  = ǫ0 μ0 ∂ E ,  ·∇ ∇ ∂t2 (4.90) and the diffusion equation,  2 ψ = 1 ∂ψ , (4.91) ∇ a2 ∂t just to name a very few. The goal is generally: given an initial state of the system, what is the state at some other time and/or position? Solutions are usually obtained by approximating the state with a digital representation, then discretizing the differential equation in space and time such that an iterative application of a procedure carries the state from the initial to the final conditions. Importantly, the error in this procedure is bounded, and known not to grow faster than some small power of the number of iterations. Furthermore, not all dynamical systems can be simulated efficiently: generally, only those systems which can be described efficiently can be simulated efficiently. Simulation of quantum systems by classical computers is possible, but generally only very inefficiently. The dynamical behavior of many simple quantum systems is governed by Schrödinger’s equation, d (4.92) i |ψ = H|ψ . dt We will find it convenient to absorb  into H, and use this convention for the rest of this section. For a typical Hamiltonian of interest to physicists dealing with real particles in space (rather than abstract systems such as qubits, which we have been dealing with!), this reduces to   1 ∂2 ∂ + V (x) ψ(x) , (4.93) i ψ(x) = − ∂t 2m ∂x2 using a convention known as the position representation x|ψ = ψ(x). This is an elliptical equation very much like Equation (4.91). So just simulating Schrödinger’s equation is not the especial difficulty faced in simulating quantum systems. What is the difficulty? The key challenge in simulating quantum systems is the exponential number of differential equations which must be solved. For one qubit evolving according to the Schrödinger equation, a system of two differential equations must be solved; for two qubits, four equations; and for n qubits, 2n equations. Sometimes, insightful approximations can be made which reduce the effective number of equations involved, thus making classical simulation of the quantum system feasible. However, there are many physically interesting quantum systems for which no such approximations are known. Exercise 4.46: (Exponential complexity growth of quantum systems) Let ρ be a density matrix describing the state of n qubits. Show that describing ρ requires 4n − 1 independent real numbers. 206 Quantum circuits The reader with a physics background may appreciate that there are many important quantum systems for which classical simulation is intractable. These include the Hubbard model, a model of interacting fermionic particles with the Hamiltonian n t0 c∗kσ cjσ , V0 nk↑ nk↓ + H= k=1 (4.94) k,j neighbors,σ which is useful in the study of superconductivity and magnetism, the Ising model, n H= k=1 σk · σk+1 , (4.95) and many others. Solutions to such models give many physical properties such as the dielectric constant, conductivity, and magnetic susceptibility of materials. More sophisticated models such as quantum electrodynamics (QED) and quantum chromodynamics (QCD) can be used to compute constants such as the mass of the proton. Quantum computers can efficiently simulate quantum systems for which there is no known efficient classical simulation. Intuitively, this is possible for much the same reason any quantum circuit can be constructed from a universal set of quantum gates. Moreover, just as there exist unitary operations which cannot be efficiently approximated, it is possible in principle to imagine quantum systems with Hamiltonians which cannot be efficiently simulated on a quantum computer. Of course, we believe that such systems aren’t actually realized in Nature, otherwise we’d be able to exploit them to do information processing beyond the quantum circuit model. 4.7.2 The quantum simulation algorithm Classical simulation begins with the realization that in solving a simple differential equation such as dy/dt = f (y), to first order, it is known that y(t + Δt) ≈ y(t) + f (y)Δt. Similarly, the quantum case is concerned with the solution of id|ψ/dt = H|ψ, which, for a time-independent H, is just |ψ(t) = e−iHt |ψ(0) . (4.96) Since H is usually extremely difficult to exponentiate (it may be sparse, but it is also exponentially large), a good beginning is the first order solution |ψ(t + Δt) ≈ (I − iHΔt)|ψ(t). This is tractable, because for many Hamiltonians H it is straightforward to compose quantum gates to efficiently approximate I − iHΔt. However, such first order solutions are generally not very satisfactory. Efficient approximation of the solution to Equation (4.96), to high order, is possible for many classes of Hamiltonian. For example, in most physical systems, the Hamiltonian can be written as a sum over many local interactions. Specifically, for a system of n particles, L Hk , H= (4.97) k=1 where each Hk acts on at most a constant c number of systems, and L is a polynomial in n. For example, the terms Hk are often just two-body interactions such as Xi Xj and onebody Hamiltonians such as Xi . Both the Hubbard and Ising models have Hamiltonians of this form. Such locality is quite physically reasonable, and originates in many systems Simulation of quantum systems 207 from the fact that most interactions fall off with increasing distance or difference in energy. There are sometimes additional global symmetry constraints such as particle statistics; we shall come to those shortly. The important point is that although e−iHt is difficult to compute, e−iHk t acts on a much smaller subsystem, and is straightforward to approximate , using quantum circuits. But because [Hj , Hk ] = 0 in general, e−iHt = k e−iHk t ! How, then, can e−iHk t be useful in constructing e−iHt ?  −iHt Exercise 4.47: For H = L = e−iH1 t e−iH2 t . . . e−iHL t for all t k Hk , prove that e if [Hj , Hk ] = 0, for all j, k. Exercise 4.48: Show that the restriction of Hk to involve at most c particles implies that in the sum (4.97), L is upper bounded by a polynomial in n. The heart of quantum simulation algorithms is the following asymptotic approximation theorem: Theorem 4.3: (Trotter formula) Let A and B be Hermitian operators. Then for any real t, lim (eiAt/n eiBt/n )n = ei(A+B)t . (4.98) n→∞ Note that (4.98) is true even if A and B do not commute. Even more interestingly, perhaps, it can be generalized to hold for A and B which are generators of certain kinds of semigroups, which correspond to general quantum operations; we shall describe such generators (the ‘Lindblad form’) in Section 8.4.1 of Chapter 8. For now, we only consider the case of A and B being Hermitian matrices. Proof By definition, e iAt/n 1 = I + iAt + O n  1 n2  and thus e iAt/n iBt/n e 1 = I + i(A + B)t + O n ,  (4.99) 1 n2  . (4.100)   1 , n (4.101) Taking products of these gives us n (eiAt/n eiBt/n )n = I + k=1  n k  1  i(A + B)t nk k +O    1 1 = 1+O /k!, this gives and since nk n      n (i(A + B)t)k 1 1 iAt/n iBt/n n lim (e 1+O +O = ei(A+B)t . e ) = lim n→∞ n→∞ k! n n k=0 (4.102)  n k  Modifications of the Trotter formula provide the methods by which higher order 208 Quantum circuits approximations can be derived for performing quantum simulations. For example, using similar reasoning to the proof above, it can be shown that ei(A+B)Δt = eiAΔt eiBΔt + O(Δt2 ) . (4.103) ei(A+B)Δt = eiAΔt/2 eiBΔt eiAΔt/2 + O(Δt3 ) . (4.104) Similarly, An overview of the quantum simulation algorithm is given below, and an explicit example of simulating the one-dimensional non-relativistic Schrödinger equation is shown in Box 4.2. Algorithm: Quantum simulation  Inputs: (1) A Hamiltonian H = k Hk acting on an N -dimensional system, where each Hk acts on a small subsystem of size independent of N , (2) an initial state |ψ0 , of the system at t = 0, (3) a positive, non-zero accuracy δ, and (3) a time tf at which the evolved state is desired. Outputs: A state |ψ̃(tf ) such that |ψ̃(tf )|e−iHtf |ψ0 |2 ≥ 1 − δ. Runtime: O(poly(1/δ)) operations. Procedure: Choose a representation such that the state |ψ̃ of n = poly(log N ) qubits approximates the system and the operators e−iHk Δt have efficient quantum circuit approximations. Select an approximation method (see for example Equations (4.103)–(4.105)) and Δt such that the expected error is acceptable (and jΔt = tf for an integer j), construct the corresponding quantum circuit UΔt for the iterative step, and do: 1. 2. 3. 4. |ψ̃0  ← |ψ0  ; j = 0 initialize state → |ψ̃j+1  = UΔt |ψ̃j  iterative update → j = j + 1 ; goto 2 until jΔt ≥ tf loop → |ψ̃(tf ) = |ψ̃j  final result Exercise 4.49: (Baker–Campbell–Hausdorf formula) Prove that 1 2 e(A+B)Δt = eAΔt eBΔt e− 2 [A,B]Δt + O(Δt3 ) , and also prove Equations (4.103) and (4.104).  Exercise 4.50: Let H = L k Hk , and define   UΔt = e−iH1 Δt e−iH2 Δt . . . e−iHL Δt e−iHL Δt e−iHL−1 Δt . . . e−iH1 Δt . (4.105) (4.106) (a) Prove that UΔt = e−2iHΔt + O(Δt3 ). (b) Use the results in Box 4.1 to prove that for a positive integer m, m −2miHΔt E(UΔt ,e ) ≤ mαΔt3 , for some constant α. (4.107) Simulation of quantum systems 209 Box 4.2: Quantum simulation of Schrödinger’s equation The methods and limitations of quantum simulation may be illustrated by the following example, drawn from the conventional models studied by physicists, rather than the abstract qubit model. Consider a single particle living on a line, in a onedimensional potential V (x), governed by the Hamiltonian p2 + V (x) , (4.108) 2m where p is the momentum operator and x is the position operator. The eigenvalues of x are continuous, and the system state |ψ resides in an infinite dimensional Hilbert space; in the x basis, it can be written as - ∞ |xx|ψ dx . (4.109) |ψ = H= −∞ In practice, only some finite region is of interest, which we may take to be the range −d ≤ x ≤ d. Furthermore, it is possible to choose a differential step size Δx sufficiently small compared to the shortest wavelength in the system such that d/Δx |ψ̃ = k=−d/Δx ak |kΔx (4.110) provides a good physical approximation of |ψ. This state can be represented using n = ⌈log(2d/Δx + 1)⌉ qubits; we simply replace the basis |kΔx (an eigenstate of the x operator) with |k, a computational basis state of n qubits. Note that only n qubits are required for this simulation, whereas classically 2n complex numbers would have to be kept track of, thus leading to an exponential resource saving when performing the simulation on a quantum computer. Computation of |ψ̃(t) = e−iHt |ψ̃(0) must utilize one of the approximations of Equations (4.103)–(4.105) because in general H1 = V (x) does not commute with H0 = p2 /2m. Thus, we must be able to compute e−iH1 Δt and e−iH0 Δt . Because |ψ̃ is expressed in the eigenbasis of H1 , e−iH1 Δt is a diagonal transformation of the form |k → e−iV (kΔx)Δt |k . (4.111) It is straightforward to compute this, since we can compute V (kΔx)Δt. (See also Problem 4.1.) The second term is also simple, because x and p are conju† gate variables related by a quantum Fourier transform UFFT xUFFT = p, and thus −iH0 Δt −ix2 Δt/2m † −iH0 Δt = UFFT e UFFT ; to compute e , do e 2 † |k . |k → UFFT e−ix /2m UFFT (4.112) The construction of UFFT is discussed in Chapter 5. 4.7.3 An illustrative example The procedure we have described for quantum simulations has concentrated on simulating Hamiltonians which are sums of local interations. However, this is not a fundamental 210 Quantum circuits requirement! As the following example illustrates, efficient quantum simulations are possible even for Hamiltonians which act non-trivially on all or nearly all parts of a large system. Suppose we have the Hamiltonian H = Z 1 ⊗ Z 2 ⊗ · · · ⊗ Zn , (4.113) which acts on an n qubit system. Despite this being an interaction involving all of the system, indeed, it can be simulated efficiently. What we desire is a simple quantum circuit which implements e−iHΔt , for arbitrary values of Δt. A circuit doing precisely this, for n = 3, is shown in Figure 4.19. The main insight is that although the Hamiltonian involves all the qubits in the system, it does so in a classical manner: the phase shift applied to the system is e−iΔt if the parity of the n qubits in the computational basis is even; otherwise, the phase shift should be eiΔt . Thus, simple simulation of H is possible by first classically computing the parity (storing the result in an ancilla qubit), then applying the appropriate phase shift conditioned on the parity, then uncomputing the parity (to erase the ancilla). This strategy clearly works not only for n = 3, but also for arbitrary values of n. • • • • • |0 • ⊕ ⊕ ⊕ e−i∆tZ ⊕⊕⊕ |0 Figure 4.19. Quantum circuit for simulating the Hamiltonian H = Z1 ⊗ Z2 ⊗ Z3 for time Δt. Furthermore, extending the same procedure allows us to simulate more complicated extended Hamiltonians. Specifically, we can efficiently simulate any Hamiltonian of the form n . k σc(k) , (4.114) H= k=1 k where σc(k) is a Pauli matrix (or the identity) acting on the kth qubit, with c(k) ∈ {0, 1, 2, 3} specifying one of {I, X, Y, Z}. The qubits upon which the identity operation is performed can be disregarded, and X or Y terms can be transformed by single qubit gates to Z operations. This leaves us with a Hamiltonian of the form of (4.113), which is simulated as described above. Exercise 4.51: Construct a quantum circuit to simulate the Hamiltonian H = X1 ⊗ Y2 ⊗ Z3 , (4.115) performing the unitary transform e−iΔtH for any Δt. Using this procedure allows us to simulate a wide class of Hamiltonians containing terms which are not local. In particular, it is possible to simulate a Hamiltonian of the form Simulation of quantum systems 211  H= L k=1 Hk where the only restriction is that the individual Hk have a tensor product structure, and that L is polynomial in the total number of particles n. More generally, all that is required is that there be an efficient circuit to simulate each Hk separately. As an  example, the Hamiltonian H = nk=1 Xk + Z ⊗n can easily be simulated using the above techniques. Such Hamiltonians typically do not arise in Nature. However, they provide a new and possibly valuable vista on the world of quantum algorithms. 4.7.4 Perspectives on quantum simulation The quantum simulation algorithm is very similar to classical methods, but also differs in a fundamental way. Each iteration of the quantum algorithm must completely replace the old state with the new one; there is no way to obtain (non-trivial) information from an intermediate step without significantly changing the algorithm, because the state is a quantum one. Furthermore, the final measurement must be chosen cleverly to provide the desired result, because it disturbs the quantum state. Of course, the quantum simulation can be repeated to obtain statistics, but it is desirable to repeat the algorithm only at most a polynomial number of times. It may be that even though the simulation can be performed efficiently, there is no way to efficiently perform a desired measurement. Also, there are Hamiltonians which simply can’t be simulated efficiently. In Section 4.5.4, we saw that there exist unitary transformations which quantum computers cannot efficiently approximate. As a corollary, not all Hamiltonian evolutions can be efficiently simulated on a quantum computer, for if this were possible, then all unitary transformations could be efficiently approximated! Another difficult problem – one which is very interesting – is the simulation of equilibration processes. A system with Hamiltonian H in contact with an environment at temperature T will generally come to thermal equilibrium in a state known as the Gibbs state, ρtherm = e−H/kB T /Z, where kB is Boltzmann’s constant, and Z = tr e−H/kB T is the usual partition function normalization, which ensures that tr(ρ) = 1. The process by which this equilibration occurs is not very well understood, although certain requirements are known: the environment must be large, it must have non-zero population in states with energies matching the eigenstates of H, and its coupling with the system should be weak. Obtaining ρtherm for arbitrary H and T is generally an exponentially difficult problem for a classical computer. Might a quantum computer be able to solve this efficiently? We do not yet know. On the other hand, as we discussed above many interesting quantum problems can indeed be simulated efficiently with a quantum computer, even when they have extra constraints beyond the simple algorithms presented here. A particular class of these involve global symmetries originating from particle statistics. In the everyday world, we are used to being able to identify different particles; tennis balls can be followed around a tennis court, keeping track of which is which. This ability to keep track of which object is which is a general feature of classical objects – by continuously measuring the position of a classical particle it can be tracked at all times, and thus uniquely distinguished from other particles. However, this breaks down in quantum mechanics, which prevents us from following the motion of individual particles exactly. If the two particles are inherently different, say a proton and an electron, then we can distinguish them by measuring the sign of the charge to tell which particle is which. But in the case of identical particles, like two electrons, it is found that they are truly indistinguishable. Indistinguishability of particles places a constraint on the state vector of a system which 212 Quantum circuits manifests itself in two ways. Experimentally, particles in Nature are found to come in two distinct flavors, known as bosons and fermions. The state vector of a system of bosons remains unchanged under permutation of any two constituents, reflecting their fundamental indistinguishability. Systems of fermions, in contrast, experience a sign change in their state vector under interchange of any two constituents. Both kinds of systems can be simulated efficiently on a quantum computer. The detailed description of how this is done is outside the scope of this book; suffice it to say the procedure is fairly straightforward. Given an initial state of the wrong symmetry, it can be properly symmetrized before the simulation begins. And the operators used in the simulation can be constructed to respect the desired symmetry, even allowing for the effects of higher order error terms. The reader who is interested in pursuing this and other topics further will find pointers to the literature in ‘History and further reading,’ at the end of the chapter. Problem 4.1: (Computable phase shifts) Let m and n be positive integers. Suppose f : {0, . . . , 2m − 1} → {0, . . . , 2n − 1} is a classical function from m to n bits which may be computed reversibly using T Toffoli gates, as described in Section 3.2.5. That is, the function (x, y) → (x, y ⊕ f (x)) may be implemented using T Toffoli gates. Give a quantum circuit using 2T + n (or fewer) one, two, and three qubit gates to implement the unitary operation defined by   −2iπf (x) |x . (4.116) |x → exp 2n Problem 4.2: Find a depth O(log n) construction for the C n (X) gate. (Comment: The depth of a circuit is the number of distinct timesteps at which gates are applied; the point of this problem is that it is possible to parallelize the C n (X) construction by applying many gates in parallel during the same timestep.) Problem 4.3: (Alternate universality construction) Suppose U is a unitary matrix on n qubits. Define H ≡ i ln(U ). Show that (1) H is Hermitian, with eigenvalues in the range 0 to 2π. (2) H can be written H= hg g , (4.117) g where hg are real numbers and the sum is over all n-fold tensor products g of the Pauli matrices {I, X, Y, Z}. (3) Let Δ = 1/k, for some positive integer k. Explain how the unitary operation exp(−ihg gΔ) may be implemented using O(n) one and two qubit operations. (4) Show that / exp(−iHΔ) = exp(−ihg gΔ) + O(4n Δ2 ) , (4.118) g where the product is taken with respect to any fixed ordering of the n-fold tensor products of Pauli matrices, g. Chapter problems 213 (5) Show that U= 0 / g 1k exp(−ihg gΔ) + O(4n Δ). (4.119) (6) Explain how to approximate U to within a distance ǫ > 0 using O(n16n /ǫ) one and two qubit unitary operations. Problem 4.4: (Minimal Toffoli construction) (Research) (1) What is the smallest number of two qubit gates that can be used to implement the Toffoli gate? gates that can be (2) What is the smallest number of one qubit gates and used to implement the Toffoli gate? (3) What is the smallest number of one qubit gates and controlled-Z gates that can be used to implement the Toffoli gate? Problem 4.5: (Research) Construct a family of Hamiltonians, {Hn }, on n qubits, such that simulating Hn requires a number of operations super-polynomial in n. (Comment: This problem seems to be quite difficult.) Problem 4.6: (Universality with prior entanglement) Controlledgates and single qubit gates form a universal set of quantum logic gates. Show that an alternative universal set of resources is comprised of single qubit unitaries, the ability to perform measurements of pairs of qubits in the Bell basis, and the ability to prepare arbitrary four qubit entangled states. Summary of Chapter 4: Quantum circuits • Universality: Any unitary operation on n qubits may be implemented exactly by gates. composing single qubit and controlled• Universality with a discrete set: The Hadamard gate, phase gate, controlledgate, and π/8 gate are universal for quantum computation, in the sense that an arbitrary unitary operation on n qubits can be approximated to an arbitrary accuracy ǫ > 0 using a circuit composed of only these gates. Replacing the π/8 gate in this list with the Toffoli gate also gives a universal family. • Not all unitary operations can be efficiently implemented: There are unitary operations on n qubits which require Ω(2n log(1/ǫ)/ log(n)) gates to approximate to within a distance ǫ using any finite set of gates.  • Simulation: For a Hamiltonian H = k Hk which is a sum of polynomially many terms Hk such that efficient quantum circuits for Hk can be constructed, a quantum computer can efficiently simulate the evolution e−iHt and approximate |ψ(t) = e−iHt |ψ(0), given |ψ(0). 214 Quantum circuits History and further reading The gate constructions in this chapter are drawn from a wide variety of sources. The paper by Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor, Sleator, Smolin, and + Weinfurter[BBC 95] was the source of many of the circuit constructions in this chapter, gates. Another useful and for the universality proof for single qubit and controlledsource of insights about quantum circuits is the paper by Beckman, Chari, Devabhaktuni, and Preskill[BCDP96]. A gentle and accessible introduction has been provided by DiVincenzo[DiV98]. The fact that measurements commute with control qubit terminals was pointed out by Griffiths and Niu[GN96]. The universality proof for two-level unitaries is due to Reck, Zeilinger, Bernstein, and and single qubit gates was proved Bertani[RZBB94]. The universality of the controlledby DiVincenzo[DiV95b]. The universal gate G in Exercise 4.44 is sometimes known as the Deutsch gate[Deu89]. Deutsch, Barenco, and Ekert[DBE95] and Lloyd[Llo95] independently proved that almost any two qubit quantum logic gate is universal. That errors caused by sequences of gates is at most the sum of the errors of the individual gates was proven by Bernstein and Vazirani [BV97]. The specific universal set of gates we have focused on – the and π/8 gates, was proved universal in Boykin, Mor, Hadamard, phase, controlled+ Pulver, Roychowdhury, and Vatan[BMP 99], which also contains a proof that θ defined by cos(θ/2) ≡ cos2 (π/8) is an irrational multiple of π. The bound in Section 4.5.4 is based on a paper by Knill[Kni95], which does a much more detailed investigation of the hardness of approximating arbitrary unitary operations using quantum circuits. In particular, Knill obtains tighter and more general bounds than we do, and his analysis applies also to cases where the universal set is a continuum of gates, not just a finite set, as we have considered. The quantum circuit model of computation is due to Deutsch[Deu89], and was further developed by Yao[Yao93]. The latter paper showed that the quantum circuit model of computation is equivalent to the quantum Turing machine model. Quantum Turing machines were introduced in 1980 by Benioff[Ben80], further developed by Deutsch[Deu85] and Yao[Yao93], and their modern definition given by Bernstein and Vazirani[BV97]. The latter two papers also take first steps towards setting up a theory of quantum computational complexity, analogous to classical computational complexity theory. In particular, the inclusion BQP ⊆ PSPACE and some slightly stronger results was proved by Bernstein and Vazirani. Knill and Laflamme[KL99] develop some fascinating connections between quantum and classical computational complexity. Other interesting work on quantum computational complexity includes the paper by Adleman, Demarrais and Huang[ADH97], and the paper by Watrous[Wat99]. The latter paper gives intriguing evidence to suggest that quantum computers are more powerful than classical computers in the setting of ‘interactive proof systems’. The suggestion that non-computational basis starting states may be used to obtain computational power beyond the quantum circuits model was made by Daniel Gottesman and Michael Nielson. That quantum computers might simulate quantum systems more efficiently than classical computers was intimated by Manin[Man80] in 1980, and independently developed in more detail by Feynman[Fey82] in 1982. Much more detailed investigations were subsequently carried out by Abrams and Lloyd[AL97], Boghosian and Taylor[BT97], Sornborger and Stewart[SS99], Wiesner[Wie96], and Zalka[Zal98]. The Trotter formula is attributed to Trotter[Tro59], and was also proven by Chernoff[Che68], although the simpler form for History and further reading 215 unitary operators is much older, and goes back to the time of Sophus Lie. The third order version of the Baker–Campbell–Hausdorff formula, Equation (4.104), was given by Sornborger and Stewart[SS99]. Abrams and Lloyd[AL97] give a procedure for simulating many-body Fermi systems on a quantum computer. Terhal and DiVincenzo address the problem of simulating the equilibration of quantum systems to the Gibbs state[TD98]. The method used to simulate the Schrödinger equation in Box 4.2 is due to Zalka[Zal98] and Wiesner[Wie96]. Exercise 4.25 is due to Vandersypen, and is related to work by Chau and Wilczek[CW95]. + Exercise 4.45 is due to Boykin, Mor, Pulver, Roychowdhury, and Vatan[BMP 99]. Problem 4.2 is due to Gottesman. Problem 4.6 is due to Gottesman and Chuang[GC99]. 5 The quantum Fourier transform and its applications If computers that you build are quantum, Then spies everywhere will all want ’em. Our codes will all fail, And they’ll read our email, Till we get crypto that’s quantum, and daunt ’em. – Jennifer and Peter Shor To read our E-mail, how mean of the spies and their quantum machine; be comforted though, they do not yet know how to factorize twelve or fifteen. – Volker Strassen Computer programming is an art form, like the creation of poetry or music. – Donald Knuth The most spectacular discovery in quantum computing to date is that quantum computers can efficiently perform some tasks which are not feasible on a classical computer. For example, finding the prime factorization of an n-bit integer is thought to require exp(Θ(n1/3 log2/3 n)) operations using the best classical algorithm known at the time of writing, the so-called number field sieve. This is exponential in the size of the number being factored, so factoring is generally considered to be an intractable problem on a classical computer: it quickly becomes impossible to factor even modest numbers. In contrast, a quantum algorithm can accomplish the same task using O(n2 log n log log n) operations. That is, a quantum computer can factor a number exponentially faster than the best known classical algorithms. This result is important in its own right, but perhaps the most exciting aspect is the question it raises: what other problems can be done efficiently on a quantum computer which are infeasible on a classical computer? In this chapter we develop the quantum Fourier transform, which is the key ingredient for quantum factoring and many other interesting quantum algorithms. The quantum Fourier transform, with which we begin in Section 5.1, is an efficient quantum algorithm for performing a Fourier transform of quantum mechanical amplitudes. It does not speed up the classical task of computing Fourier transforms of classical data. But one important task which it does enable is phase estimation, the approximation of the eigenvalues of a unitary operator under certain circumstances, as described in Section 5.2. This allows us to solve several other interesting problems, including the order-finding problem and the factoring problem, which are covered in Section 5.3. Phase estimation can also be combined with the quantum search algorithm to solve the problem of counting solutions to a search problem, as described in the next chapter. Section 5.4 concludes the chapter with a discussion of how the quantum Fourier transform may be used to solve the hidden The quantum Fourier transform 217 subgroup problem, a generalization of the phase estimation and order-finding problems that has among its special cases an efficient quantum algorithm for the discrete logarithm problem, another problem thought to be intractable on a classical computer. 5.1 The quantum Fourier transform A good idea has a way of becoming simpler and solving problems other than that for which it was intended. – Robert Tarjan One of the most useful ways of solving a problem in mathematics or computer science is to transform it into some other problem for which a solution is known. There are a few transformations of this type which appear so often and in so many different contexts that the transformations are studied for their own sake. A great discovery of quantum computation has been that some such transformations can be computed much faster on a quantum computer than on a classical computer, a discovery which has enabled the construction of fast algorithms for quantum computers. One such transformation is the discrete Fourier transform. In the usual mathematical notation, the discrete Fourier transform takes as input a vector of complex numbers, x0 , . . . , xN −1 where the length N of the vector is a fixed parameter. It outputs the transformed data, a vector of complex numbers y0 , . . . , yN −1 , defined by 1 yk ≡ √ N N −1 xj e2πijk/N . (5.1) j=0 The quantum Fourier transform is exactly the same transformation, although the conventional notation for the quantum Fourier transform is somewhat different. The quantum Fourier transform on an orthonormal basis |0, . . . , |N − 1 is defined to be a linear operator with the following action on the basis states, 1 |j −→ √ N N −1 k=0 e2πijk/N |k . (5.2) Equivalently, the action on an arbitrary state may be written N −1 j=0 xj |j −→ N −1 k=0 yk |k , (5.3) where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . It is not obvious from the definition, but this transformation is a unitary transformation, and thus can be implemented as the dynamics for a quantum computer. We shall demonstrate the unitarity of the Fourier transform by constructing a manifestly unitary quantum circuit computing the Fourier transform. It is also easy to prove directly that the Fourier transform is unitary: Exercise 5.1: Give a direct proof that the linear transformation defined by Equation (5.2) is unitary. Exercise 5.2: Explicitly compute the Fourier transform of the n qubit state |00 . . . 0. 218 The quantum Fourier transform and its applications In the following, we take N = 2n , where n is some integer, and the basis |0, . . . , |2n − 1 is the computational basis for an n qubit quantum computer. It is helpful to write the state |j using the binary representation j = j1 j2 . . . jn . More formally, j = j1 2n−1 + j2 2n−2 + · · · + jn 20 . It is also convenient to adopt the notation 0.jl jl+1 . . . jm to represent the binary fraction jl /2 + jl+1 /4 + · · · + jm /2m−l+1 . With a little algebra the quantum Fourier transform can be given the following useful product representation:      |0 + e2πi0.jn |1 |0 + e2πi0.jn−1 jn |1 · · · |0 + e2πi0.j1 j2 ···jn |1 . |j1 , . . . , jn  → 2n/2 (5.4) This product representation is so useful that you may even wish to consider this to be the definition of the quantum Fourier transform. As we explain shortly this representation allows us to construct an efficient quantum circuit computing the Fourier transform, a proof that the quantum Fourier transform is unitary, and provides insight into algorithms based upon the quantum Fourier transform. As an incidental bonus we obtain the classical fast Fourier transform, in the exercises! The equivalence of the product representation (5.4) and the definition (5.2) follows from some elementary algebra: |j → = = = = 1 2n/2 n 2 −1 ... k1 =0 1 1  2n/2 k1 =0 1  1 2n/2  l=1 n  e 2πij kn =0 ... 1  n   n l=1 kl 2−l  |k1 . . . kn  e2πijkl 2 |kl  −l (5.6) (5.7) kn =0 l=1 n 1 1   2n/2 (5.5) k=0 1 1  2n/2 n e2πijk/2 |k e2πijkl 2 |kl  −l (5.8) kl =0 |0 + e2πij2 |1 −l (5.9) l=1 |0 + e2πi0.jn |1     |0 + e2πi0.jn−1 jn |1 · · · |0 + e2πi0.j1 j2 ···jn |1 .(5.10) 2n/2 The product representation (5.4) makes it easy to derive an efficient circuit for the quantum Fourier transform. Such a circuit is shown in Figure 5.1. The gate Rk denotes the unitary transformation = Rk ≡ 1 0 2πi/2k 0 e . (5.11) To see that the pictured circuit computes the quantum Fourier transform, consider what happens when the state |j1 . . . jn  is input. Applying the Hadamard gate to the first bit produces the state  1  2πi0.j1 |1 |j2 . . . jn  , (5.12) |0 + e 21/2 The quantum Fourier transform 219 Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which √ reverse the order of the qubits, or normalization factors of 1/ 2 in the output. since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate produces the state ( 1 ' |0 + e2πi0.j1 j2 |1 |j2 . . . jn  . (5.13) 1/2 2 We continue applying the controlled-R3 , R4 through Rn gates, each of which adds an extra bit to the phase of the co-efficient of the first |1. At the end of this procedure we have the state ( 1 ' 2πi0.j1 j2 ...jn |0 + e |1 |j2 . . . jn  . (5.14) 21/2 Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us in the state (' ( 1 ' 2πi0.j1 j2 ...jn 2πi0.j2 |0 + e |1 |0 + e |1 |j3 . . . jn  , (5.15) 22/2 and the controlled-R2 through Rn−1 gates yield the state (' ( 1 ' 2πi0.j1 j2 ...jn 2πi0.j2 ...jn |0 + e |1 |0 + e |1 |j3 . . . jn . (5.16) 22/2 We continue in this fashion for each qubit, giving a final state (' ( ' ( 1 ' 2πi0.j1 j2 ...jn 2πi0.j2 ...jn 2πi0.jn |0 + e |1 |0 + e |1 . . . |0 + e |1 . (5.17) 2n/2 Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Figure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap operations, the state of the qubits is (' ( ' ( 1 ' 2πi0.jn 2πi0.jn−1 jn 2πi0.j1 j2 ···jn |0 + e |1 |0 + e |1 . . . |0 + e |1 . (5.18) 2n/2 Comparing with Equation (5.4) we see that this is the desired output from the quantum Fourier transform. This construction also proves that the quantum Fourier transform is unitary, since each gate in the circuit is unitary. An explicit example showing a circuit for the quantum Fourier transform on three qubits is given in Box 5.1. How many gates does this circuit use? We start by doing a Hadamard gate and n − 1 conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard gate and n − 2 conditional rotations on the second qubit, for a total of n + (n − 1) gates. Continuing in this way, we see that n + (n − 1) + · · · + 1 = n(n + 1)/2 gates are required, 220 The quantum Fourier transform and its applications Box 5.1: Three qubit quantum Fourier transform For concreteness it may help to look at the explicit circuit for the three qubit quantum Fourier transform: Recall that S and T are the phase and π/8 gates (see page xxiii). As a matrix the quantum Fourier √ transform in this instance may be written out explicitly, using ω = e2πi/8 = i, as ⎡1 1 1 1 1 1 1 1 ⎤ ⎢1 ⎢ ⎢1 ⎢ 1 ⎢ 1 √ ⎢ ⎢1 8⎢ ⎢1 ⎢ ⎣1 1 ω ω2 ω3 ω4 ω5 ω6 ω7 ω2 ω4 ω6 1 ω2 ω4 ω6 ω3 ω6 ω1 ω4 ω7 ω2 ω5 ω4 1 ω4 1 ω4 1 ω4 ω5 ω2 ω7 ω4 ω1 ω6 ω3 ω6 ω4 ω2 1 ω6 ω4 ω2 ω7 ⎥ ⎥ ω6 ⎥ ⎥ ω5 ⎥ ⎥. ω4 ⎥ ⎥ ω3 ⎥ ⎥ ω2  ω1 (5.19) plus the gates involved in the swaps. At most n/2 swaps are required, and each swap gates. Therefore, this circuit provides a can be accomplished using three controlledΘ(n2 ) algorithm for performing the quantum Fourier transform. In contrast, the best classical algorithms for computing the discrete Fourier transform on 2n elements are algorithms such as the Fast Fourier Transform (FFT), which compute the discrete Fourier transform using Θ(n2n ) gates. That is, it requires exponentially more operations to compute the Fourier transform on a classical computer than it does to implement the quantum Fourier transform on a quantum computer. At face value this sounds terrific, since the Fourier transform is a crucial step in so many real-world data processing applications. For example, in computer speech recognition, the first step in phoneme recognition is to Fourier transform the digitized sound. Can we use the quantum Fourier transform to speed up the computation of these Fourier transforms? Unfortunately, the answer is that there is no known way to do this. The problem is that the amplitudes in a quantum computer cannot be directly accessed by measurement. Thus, there is no way of determining the Fourier transformed amplitudes of the original state. Worse still, there is in general no way to efficiently prepare the original state to be Fourier transformed. Thus, finding uses for the quantum Fourier transform is more subtle than we might have hoped. In this and the next chapter we develop several algorithms based upon a more subtle application of the quantum Fourier transform. Phase estimation 221 Exercise 5.3: (Classical fast Fourier transform) Suppose we wish to perform a Fourier transform of a vector containing 2n complex numbers on a classical computer. Verify that the straightforward method for performing the Fourier transform, based upon direct evaluation of Equation (5.1) requires Θ(22n ) elementary arithmetic operations. Find a method for reducing this to Θ(n2n ) operations, based upon Equation (5.4). Exercise 5.4: Give a decomposition of the controlled-Rk gate into single qubit and gates. Exercise 5.5: Give a quantum circuit to perform the inverse quantum Fourier transform. Exercise 5.6: (Approximate quantum Fourier transform) The quantum circuit construction of the quantum Fourier transform apparently requires gates of exponential precision in the number of qubits used. However, such precision is never required in any quantum circuit of polynomial size. For example, let U be the ideal quantum Fourier transform on n qubits, and V be the transform which results if the controlled-Rk gates are performed to a precision Δ = 1/p(n) for some polynomial p(n). Show that the error E(U, V ) ≡ max|ψ (U − V )|ψ scales as Θ(n2 /p(n)), and thus polynomial precision in each gate is sufficient to guarantee polynomial accuracy in the output state. 5.2 Phase estimation The Fourier transform is the key to a general procedure known as phase estimation, which in turn is the key for many quantum algorithms. Suppose a unitary operator U has an eigenvector |u with eigenvalue e2πiϕ , where the value of ϕ is unknown. The goal of the phase estimation algorithm is to estimate ϕ. To perform the estimation we assume that we have available black boxes (sometimes known as oracles) capable of preparing the j state |u and performing the controlled-U 2 operation, for suitable non-negative integers j. The use of black boxes indicates that the phase estimation procedure is not a complete quantum algorithm in its own right. Rather, you should think of phase estimation as a kind of ‘subroutine’ or ‘module’ that, when combined with other subroutines, can be used to perform interesting computational tasks. In specific applications of the phase estimation procedure we shall do exactly this, describing how these black box operations are to be performed, and combining them with the phase estimation procedure to do genuinely useful tasks. For the moment, though, we will continue to imagine them as black boxes. The quantum phase estimation procedure uses two registers. The first register contains t qubits initially in the state |0. How we choose t depends on two things: the number of digits of accuracy we wish to have in our estimate for ϕ, and with what probability we wish the phase estimation procedure to be successful. The dependence of t on these quantities emerges naturally from the following analysis. The second register begins in the state |u, and contains as many qubits as is necessary to store |u. Phase estimation is performed in two stages. First, we apply the circuit shown in Figure 5.2. The circuit begins by applying a Hadamard transform to the first register, followed by application of controlled-U operations on the second register, with U raised 222 The quantum Fourier transform and its applications to successive powers of two. The final state of the first register is easily seen to be: (' ( ' ( 1 ' 2πi2t−1 ϕ 2πi2t−2 ϕ 2πi20 ϕ |0 + e |1 |0 + e |1 . . . |0 + e |1 2t/2 = 2t −1 1 2t/2 k=0 e2πiϕk |k . (5.20) We omit the second register from this description, since it stays in the state |u throughout the computation. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ First register ⎨ t qubits ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎨ Second register ⎩ |0 H |0 H |0 H |0 H |u ··· • • • 0 U2 1 U2 2 U2 t−1 ϕ) |0 e2πi(2 ··· |0 e2πi(2 ··· |0 e2πi(2 ··· |0 e2πi(2 ··· • t−1 U2 |1 2 ϕ) |1 1 ϕ) |1 0 ϕ) |1 |u √ Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of 1/ 2 have been omitted, on the right. Exercise 5.7: Additional insight into the circuit in Figure 5.2 may be obtained by showing, as you should now do, that the effect of the sequence of controlled-U operations like that in Figure 5.2 is to take the state |j|u to |jU j |u. (Note that this does not depend on |u being an eigenstate of U .) The second stage of phase estimation is to apply the inverse quantum Fourier transform on the first register. This is obtained by reversing the circuit for the quantum Fourier transform in the previous section (Exercise 5.5), and can be done in Θ(t2 ) steps. The third and final stage of phase estimation is to read out the state of the first register by doing a measurement in the computational basis. We will show that this provides a pretty good estimate of ϕ. An overall schematic of the algorithm is shown in Figure 5.3. To sharpen our intuition as to why phase estimation works, suppose ϕ may be expressed exactly in t bits, as ϕ = 0.ϕ1 . . . ϕt . Then the state (5.20) resulting from the first stage of phase estimation may be rewritten (' ( ' ( 1 ' 2πi0.ϕt 2πi0.ϕt−1 ϕt 2πi0.ϕ1 ϕ2 ···ϕt |0 + e |1 |0 + e |1 . . . |0 + e |1 . (5.21) 2t/2 The second stage of phase estimation is to apply the inverse quantum Fourier transform. But comparing the previous equation with the product form for the Fourier transform, Equation (5.4), we see that the output state from the second stage is the product state |ϕ1 . . . ϕt . A measurement in the computational basis therefore gives us ϕ exactly! Phase estimation 223 ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ Figure 5.3. Schematic of the overall phase estimation procedure. The top t qubits (the ‘/’ denotes a bundle of wires, as usual) are the first register, and the bottom qubits are the second register, numbering as many as required 2πiϕ . The output of the measurement is an to perform U . |u is an eigenstate of2U with eigenvalue 3 e 1 bits, with probability of success at least 1 − ǫ. approximation to ϕ accurate to t − log 2 + 2ǫ Summarizing, the phase estimation algorithm allows one to estimate the phase ϕ of an eigenvalue of a unitary operator U , given the corresponding eigenvector |u. An essential feature at the heart of this procedure is the ability of the inverse Fourier transform to perform the transformation 2t −1 1 2t/2 j=0 e2πiϕj |j|u → |ϕ̃|u , (5.22) where |ϕ̃ denotes a state which is a good estimator for ϕ when measured. 5.2.1 Performance and requirements The above analysis applies to the ideal case, where ϕ can be written exactly with a t bit binary expansion. What happens when this is not the case? It turns out that the procedure we have described will produce a pretty good approximation to ϕ with high probability, as foreshadowed by the notation used in (5.22). Showing this requires some careful manipulations. Let b be the integer in the range 0 to 2t − 1 such that b/2t = 0.b1 . . . bt is the best t bit approximation to ϕ which is less than ϕ. That is, the difference δ ≡ ϕ − b/2t between ϕ and b/2t satisfies 0 ≤ δ ≤ 2−t . We aim to show that the observation at the end of the phase estimation procedure produces a result which is close to b, and thus enables us to estimate ϕ accurately, with high probability. Applying the inverse quantum Fourier transform to the state (5.20) produces the state 1 2t 2t −1 e −2πikl 2t k,l=0 e2πiϕk |l . (5.23) Let αl be the amplitude of |(b + l)(mod 2t ), 1 αl ≡ t 2 2t −1 ' t e2πi(ϕ−(b+l)/2 k=0 ) (k . This is the sum of a geometric series, so   t 1 1 − e2πi(2 ϕ−(b+l)) αl = t 2 1 − e2πi(ϕ−(b+l)/2t ) (5.24) (5.25) 224 The quantum Fourier transform and its applications 1 = t 2  t 1 − e2πi(2 δ−l) 1 − e2πi(δ−l/2t )  . (5.26) Suppose the outcome of the final measurement is m. We aim to bound the probability of obtaining a value of m such that |m − b| > e, where e is a positive integer characterizing our desired tolerance to error. The probability of observing such an m is given by p(|m − b| > e) = −2t−1 <l≤−(e+1) |αl |2 + e+1≤l≤2t−1 |αl |2 . (5.27) But for any real θ, |1 − exp(iθ)| ≤ 2, so |αl | ≤ 2 . 2t |1 − e2πi(δ−l/2t ) | (5.28) By elementary geometry or calculus |1 − exp(iθ)| ≥ 2|θ|/π whenever −π ≤ θ ≤ π. But when −2t−1 < l ≤ 2t−1 we have −π ≤ 2π(δ − l/2t ) ≤ π. Thus |αl | ≤ 2t+1 (δ 1 . − l/2t ) Combining (5.27) and (5.29) gives ⎡ ⎤ −(e+1) 2t−1 1 1 1⎣ . + p(|m − b| > e) ≤ 4 l=−2t−1 +1 (l − 2t δ)2 l=e+1 (l − 2t δ)2 Recalling that 0 ≤ 2t δ ≤ 1, we obtain ⎡ 1⎣ p(|m − b| > e) ≤ 4 −(e+1) l=−2t−1 +1 2t−1 −1 ≤ 1 2 ≤ 1 2 = 1 . 2(e − 1) - l=e 1 l2 2t−1 −1 e−1 ⎤ 2t−1 1  1 + l2 l=e+1 (l − 1)2 (5.29) (5.30) (5.31) (5.32) dl 1 l2 (5.33) (5.34) Suppose we wish to approximate ϕ to an accuracy 2−n , that is, we choose e = 2t−n − 1. By making use of t = n + p qubits in the phase estimation algorithm we see from (5.34) that the probability of obtaining an approximation correct to this accuracy is at least 1 − 1/2(2p − 2). Thus to successfully obtain ϕ accurate to n bits with probability of success at least 1 − ǫ we choose 4  5 1 . (5.35) t = n + log 2 + 2ǫ In order to make use of the phase estimation algorithm, we need to be able to prepare an eigenstate |u of U . What if we do not know how to prepare such an eigenstate? Suppose that we prepare some other state |ψ in place of |u. Expanding this state in terms of  eigenstates |u of U gives |ψ = u cu |u. Suppose the eigenstate |u has eigenvalue e2πiϕu . Intuitively, the result of running the phase estimation algorithm will be to give Phase estimation 225  6u |u, where ϕ 6u is a pretty good approximation to the as output a state close to u cu |ϕ phase ϕu . Therefore, we expect that reading out the first register will give us a good approximation to ϕu , where u is chosen at random with probability |cu |2 . Making this argument rigorous is left for Exercise 5.8. This procedure allows us to avoid preparing a (possibly unknown) eigenstate, at the cost of introducing some additional randomness into the algorithm. Exercise 5.8: Suppose the phase estimation algorithm takes the state |0|u to the  6u |u, so that given the input |0 state |ϕ u cu |u , the algorithm outputs  6u |u. Show that if t is chosen according to (5.35), then the probability u cu |ϕ for measuring ϕu accurate to n bits at the conclusion of the phase estimation algorithm is at least |cu |2 (1 − ǫ). Why is phase estimation interesting? For its own sake, phase estimation solves a problem which is both non-trivial and interesting from a physical point of view: how to estimate the eigenvalue associated to a given eigenvector of a unitary operator. Its real use, though, comes from the observation that other interesting problems can be reduced to phase estimation, as will be shown in subsequent sections. The phase estimation algorithm is summarized below. Algorithm: Quantum phase estimation Inputs: (1) A black box wich performs a controlled-U j operation,2 for integer j, 3 (2) an eigenstate |u of U with eigenvalue e2πiϕu , and (3) t = n + log 2 + 2ǫ1 qubits initialized to |0. 6u to ϕu . Outputs: An n-bit approximation ϕ Runtime: O(t2 ) operations and one call to controlled-U j black box. Succeeds with probability at least 1 − ǫ. Procedure: 1. 2. 3. |0|u 1 →√ 2t 1 →√ 2t initial state 2t −1 j=0 2t −1 j=0 1 =√ 2t 4. 5. 6u |u → |ϕ 6u →ϕ |j|u create superposition |jU j |u apply black box 2t −1 j=0 e2πijϕu |j|u result of black box apply inverse Fourier transform measure first register Exercise 5.9: Let U be a unitary transform with eigenvalues ±1, which acts on a state |ψ. Using the phase estimation procedure, construct a quantum circuit to collapse |ψ into one or the other of the two eigenspaces of U , giving also a 226 The quantum Fourier transform and its applications classical indicator as to which space the final state is in. Compare your result with Exercise 4.34. 5.3 Applications: order-finding and factoring The phase estimation procedure can be used to solve a variety of interesting problems. We now describe two of the most interesting of these problems: the order-finding problem, and the factoring problem. These two problems are, in fact, equivalent to one another, so in Section 5.3.1 we explain a quantum algorithm for solving the order-finding problem, and in Section 5.3.2 we explain how the order-finding problem implies the ability to factor as well. To understand the quantum algorithms for factoring and order-finding requires a little background in number theory. All the required materials are collected together in Appendix 4. The description we give over the next two sections focuses on the quantum aspects of the problem, and requires only a little familiarity with modular arithmetic to be readable. Detailed proofs of the number-theoretic results we quote here may be found in Appendix 4. The fast quantum algorithms for order-finding and factoring are interesting for at least three reasons. First, and most important in our opinion, they provide evidence for the idea that quantum computers may be inherently more powerful than classical computers, and provide a credible challenge to the strong Church–Turing thesis. Second, both problems are of sufficient intrinsic worth to justify interest in any novel algorithm, be it classical or quantum. Third, and most important from a practical standpoint, efficient algorithms for order-finding and factoring can be used to break the RSA public-key cryptosystem (Appendix 5). 5.3.1 Application: order-finding For positive integers x and N , x < N , with no common factors, the order of x modulo N is defined to be the least positive integer, r, such that xr = 1(mod N ). The order-finding problem is to determine the order for some specified x and N . Order-finding is believed to be a hard problem on a classical computer, in the sense that no algorithm is known to solve the problem using resources polynomial in the O(L) bits needed to specify the problem, where L ≡ ⌈log(N )⌉ is the number of bits needed to specify N . In this section we explain how phase estimation may be used to obtain an efficient quantum algorithm for order-finding. Exercise 5.10: Show that the order of x = 5 modulo N = 21 is 6. Exercise 5.11: Show that the order of x satisfies r ≤ N . The quantum algorithm for order-finding is just the phase estimation algorithm applied to the unitary operator U |y ≡ |xy(mod N ) , (5.36) with y ∈ {0, 1}L . (Note that here and below, when N ≤ y ≤ 2L − 1, we use the convention that xy(mod N ) is just y again. That is, U only acts non-trivially when 227 Applications: order-finding and factoring 0 ≤ y ≤ N − 1.) A simple calculation shows that the states defined by   r−1 1 −2πisk exp |xk mod N  , |us  ≡ √ r k=0 r for integer 0 ≤ s ≤ r − 1 are eigenstates of U , since   r−1 1 −2πisk U |us  = √ exp |xk+1 mod N  r k=0 r   2πis |us  . = exp r (5.37) (5.38) (5.39) Using the phase estimation procedure allows us to obtain, with high accuracy, the corresponding eigenvalues exp(2πis/r), from which we can obtain the order r with a little bit more work. Exercise 5.12: Show that U is unitary (Hint: x is co-prime to N , and therefore has an inverse modulo N ). There are two important requirements for us to be able to use the phase estimation j procedure: we must have efficient procedures to implement a controlled-U 2 operation for any integer j, and we must be able to efficiently prepare an eigenstate |us  with a nontrivial eigenvalue, or at least a superposition of such eigenstates. The first requirement is satisfied by using a procedure known as modular exponentiation, with which we j can implement the entire sequence of controlled-U 2 operations applied by the phase estimation procedure using O(L3 ) gates, as described in Box 5.2. The second requirement is a little tricker: preparing |us  requires that we know r, so this is out of the question. Fortunately, there is a clever observation which allows us to circumvent the problem of preparing |us , which is that 1 √ r r−1 s=0 |us  = |1 . (5.44) 2 3 In performing the phase estimation procedure, if we use t = 2L + 1 + log 2 + 2ǫ1 qubits in the first register (referring to Figure 5.3), and prepare the second register in the state |1 – which is trivial to construct – it follows that for each s in the range 0 through r − 1, we will obtain an estimate of the phase ϕ ≈ s/r accurate to 2L + 1 bits, with probability at least (1 − ǫ)/r. The order-finding algorithm is schematically depicted in Figure 5.4. Exercise 5.13: Prove (5.44). (Hint: 1 √ r r−1 s=0 r−1 s=0 exp(−2πisk/r) = rδk0 .) In fact, prove that e2πisk/r |us  = |xk mod N  . (5.45) Exercise 5.14: The quantum state produced in the order-finding algorithm, before the inverse Fourier transform, is |ψ = 2t −1 j=0 j |jU |1 = 2t −1 j=0 |j|xj mod N  , (5.46) 228 The quantum Fourier transform and its applications Box 5.2: Modular exponentiation j How can we compute the sequence of controlled-U 2 operations used by the phase estimation procedure as part of the order-finding algorithm? That is, we wish to compute the transformation t−1 |z|y → |zU zt2 t−1 = |z|xzt 2 z 0 . . . U z12 |y (5.40) 0 × · · · × xz1 2 y(mod N ) = |z|x y(mod N ). (5.41) (5.42) j Thus the sequence of controlled-U 2 operations used in phase estimation is equivalent to multiplying the contents of the second register by the modular exponential xz (mod N ), where z is the contents of the first register. This operation may be accomplished easily using the techniques of reversible computation. The basic idea is to reversibly compute the function xz (mod N ) of z in a third register, and then to reversibly multiply the contents of the second register by xz (mod N ), using the trick of uncomputation to erase the contents of the third register upon completion. The algorithm for computing the modular exponential has two stages. The first stage uses modular multiplication to compute x2 (mod N ), by squaring x modulo N , then computes x4 (mod N ) by squaring x2 (mod N ), and continues in this way, computing j x2 (mod N ) for all j up to t − 1. We use t = 2L + 1 + ⌈log(2 + 1/(2ǫ))⌉ = O(L), so a total of t − 1 = O(L) squaring operations is performed at a cost of O(L2 ) each (this cost assumes the circuit used to do the squaring implements the familiar algorithm we all learn as children for multiplication), for a total cost of O(L3 ) for the first stage. The second stage of the algorithm is based upon the observation we’ve already noted, ' (' ( ' ( t−1 t−2 0 xz (mod N ) = xzt 2 (mod N ) xzt−1 2 (mod N ) . . . xz1 2 (mod N ) . (5.43) Performing t − 1 modular multiplications with a cost O(L2 ) each, we see that this product can be computed using O(L3 ) gates. This is sufficiently efficient for our purposes, but more efficient algorithms are possible based on more efficient algorithms for multiplication (see ‘History and further reading’). Using the techniques of Section 3.2.5, it is now straightforward to construct a reversible circuit with a t bit register and an L bit register which, when started in the state (z, y) outputs (z, xz y (mod N )), using O(L3 ) gates, which can be translated into a quantum circuit using O(L3 ) gates computing the transformation |z|y → |z|xz y (mod N ). if we initialize the second register as |1. Show that the same state is obtained if we replace U j with a different unitary transform V , which computes V |j|k = |j|k + xj mod N  , (5.47) and start the second register in the state |0. Also show how to construct V using O(L3 ) gates. 229 Applications: order-finding and factoring Register 1 t qubits |0  / Register 2 |1  / L qubits H ⊗t |j • FT† ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✤✤ ✤✤ ✙✙ ✤ ✤✤ ✙✙ ✤❴ ❴ ❴ ❴ ❴✙ ✙ ❴ ❴ ❴ ✤✤ xj mod N Figure 5.4. Quantum circuit for the order-finding algorithm. The second register is shown as being initialized to the |1 state, but if the method of Exercise 5.14 is used, it can be initialized to |0 instead. This circuit can also be used for factoring, using the reduction given in Section 5.3.2. The continued fraction expansion The reduction of order-finding to phase estimation is completed by describing how to obtain the desired answer, r, from the result of the phase estimation algorithm, ϕ ≈ s/r. We only know ϕ to 2L + 1 bits, but we also know a priori that it is a rational number – the ratio of two bounded integers – and if we could compute the nearest such fraction to ϕ we might obtain r. Remarkably, there is an algorithm which accomplishes this task efficiently, known as the continued fractions algorithm. An example of how this works is described in Box 5.3. The reason this algorithm satisfies our needs is the following theorem, which is proved in Appendix 4: Theorem 5.1: Suppose s/r is a rational number such that +s + 1 + + + − ϕ+ ≤ 2 . r 2r (5.48) Then s/r is a convergent of the continued fraction for ϕ, and thus can be computed in O(L3 ) operations using the continued fractions algorithm. Since ϕ is an approximation of s/r accurate to 2L + 1 bits, it follows that |s/r − ϕ| ≤ 2−2L−1 ≤ 1/2r2 , since r ≤ N ≤ 2L . Thus, the theorem applies. Summarizing, given ϕ the continued fractions algorithm efficiently produces numbers s′ and r′ with no common factor, such that s′ /r′ = s/r. The number r′ is our candidate ′ for the order. We can check to see whether it is the order by calculating xr mod N , and seeing if the result is 1. If so, then r′ is the order of x modulo N , and we are done! Performance How can the order-finding algorithm fail? There are two possibilities. First, the phase estimation procedure might produce a bad estimate to s/r. This occurs with probability at most ǫ, and can be made small with a negligible increase in the size of the circuit. More seriously, it might be that s and r have a common factor, in which case the number r′ returned by the continued fractions algorithm be a factor of r, and not r itself. Fortunately, there are at least three ways around this problem. Perhaps the most straightforward way is to note that for randomly chosen s in the range 0 through r − 1, it’s actually pretty likely that s and r are co-prime, in which case the continued fractions algorithm must return r. To see that this is the case, note that by Problem 4.1 on page 638 the number of prime numbers less than r is at least 230 The quantum Fourier transform and its applications Box 5.3: The continued fractions algorithm The idea of the continued fractions algorithm is to describe real numbers in terms of integers alone, using expressions of the form [a0 , . . . , aM ] ≡ a0 + 1 a1 + , 1 a2 + (5.49) 1 ...+ 1 aM where a0 , . . . , aM are positive integers. (For applications to quantum computing it is convenient to allow a0 = 0 as well.) We define the mth convergent (0 ≤ m ≤ M ) to this continued fraction to be [a0 , . . . , am ]. The continued fractions algorithm is a method for determining the continued fraction expansion of an arbitrary real number. It is easily understood by example. Suppose we are trying to decompose 31/13 as a continued fraction. The first step of the continued fractions algorithm is to split 31/13 into its integer and fractional part, 31 5 =2+ . 13 13 Next we invert the fractional part, obtaining (5.50) 31 1 = 2 + 13 . 13 5 (5.51) These steps – split then invert – are now applied to 13/5, giving 1 31 = 2+ 13 2+ 3 5 =2+ 1 2+ 1 . (5.52) 5 3 Next we split and invert 5/3: 31 1 1 =2+ . = 2+ 1 13 2 + 1+ 2 2 + 1+1 1 (5.53) 3 2 3 The decomposition into a continued fraction now terminates, since 1 3 = 1+ (5.54) 2 2 may be written with a 1 in the numerator without any need to invert, giving a final continued fraction representation of 31/13 as 1 31 =2+ . 13 2 + 1+ 1 1 (5.55) 1+ 1 2 It’s clear that the continued fractions algorithm terminates after a finite number of ‘split and invert’ steps for any rational number, since the numerators which appear (31, 5, 3, 2, 1 in the example) are strictly decreasing. How quickly does this termination occur? It turns out that if ϕ = s/r is a rational number, and s and r are L bit integers, then the continued fraction expansion for ϕ can be computed using O(L3 ) operations – O(L) ‘split and invert’ steps, each using O(L2 ) gates for elementary arithmetic. Applications: order-finding and factoring 231 r/2 log r, and thus the chance that s is prime (and therefore, co-prime to r) is at least 1/2 log(r) > 1/2 log(N ). Thus, repeating the algorithm 2 log(N ) times we will, with high probability, observe a phase s/r such that s and r are co-prime, and therefore the continued fractions algorithm produces r, as desired. A second method is to note that if r′ = r, then r′ is guaranteed to be a factor of r, unless s = 0, which possibility occurs with probability 1/r ≤ 1/2, and which can be ′ discounted further by a few repetitions. Suppose we replace a by a′ ≡ ar (mod N ). Then the order of a′ is r/r′ . We can now repeat the algorithm, and try to compute the order of a′ , which, if we succeed, allows us to compute the order of a, since r = r′ × r/r′ . If we fail, then we obtain r′′ which is a factor of r/r′ , and we now try to compute the ′′ order of a′′ ≡ (a′ )r (mod N ). We iterate this procedure until we determine the order of a. At most log(r) = O(L) iterations are required, since each repetition reduces the order ′′ of the current candidate a ... by a factor of at least two. The third method is better than the first two methods, in that it requires only a constant number of trials, rather than O(L) repetitions. The idea is to repeat the phase estimation-continued fractions procedure twice, obtaining r1′ , s′1 the first time, and r2′ , s′2 the second time. Provided s′1 and s′2 have no common factors, r may be extracted by taking the least common multiple of r1 and r2 . The probability that s′1 and s′2 have no common factors is given by 1− p(q|s′1 )p(q|s′2 ) , (5.56) q where the sum is over all prime numbers q, and p(x|y) here means the probability of x dividing y. If q divides s′1 then it must also divide the true value of s, s1 , on the first iteration, so to upper bound p(q|s′1 ) it suffices to upper bound p(q|s1 ), where s1 is chosen uniformly at random from 0 through r − 1. It is easy to see that p(q|s1 ) ≤ 1/q, and thus p(q|s′1 ) ≤ 1/q. Similarly, p(q|s′2 ) ≤ 1/q, and thus the probability that s′1 and s′2 have no common factors satisfies 1 p(q|s′1 )p(q|s′2 ) ≥ 1 − 1− . (5.57) q2 q q The right hand side can be upper bounded in a number of ways; a simple technique is provided in Exercise 5.16, which gives 1− q p(q|s′1 )p(q|s′2 ) ≥ 1 , 4 (5.58) and thus the probability of obtaining the correct r is at least 1/4. Exercise 5.15: Show that the least common multiple of positive integers x and y is xy/ gcd(x, y), and thus may be computed in O(L2 ) operations if x and y are L bit numbers. 7 x+1 Exercise 5.16: For all x ≥ 2 prove that x 1/y 2 dy ≥ 2/3x2 . Show that 3 ∞ 1 3 1 ≤ dy = , (5.59) 2 2 q 2 2 y 4 q and thus that (5.58) holds. 232 The quantum Fourier transform and its applications What resource requirements does this algorithm consume? The Hadamard transform requires O(L) gates, and the inverse Fourier transform requires O(L2 ) gates. The major cost in the quantum circuit proper actually comes from the modular exponentiation, which uses O(L3 ) gates, for a total of O(L3 ) gates in the quantum circuit proper. The continued fractions algorithm adds O(L3 ) more gates, for a total of O(L3 ) gates to obtain r′ . Using the third method for obtaining r from r′ we need only repeat this procedure a constant number of times to obtain the order, r, for a total cost of O(L3 ). The algorithm is summarized below. Algorithm: Quantum order-finding Inputs: (1) A black box Ux,N which performs the transformation |j|k → |j|x2j k mod N ,3 for x co-prime to the L-bit number N , (2) t = 2L + 1 + log 2 + 2ǫ1 qubits initialized to |0, and (3) L qubits initialized to the state |1. Outputs: The least integer r > 0 such that xr = 1 (mod N ). Runtime: O(L3 ) operations. Succeeds with probability O(1). Procedure: 1. 2. 3. |0|1 1 →√ 2t 1 →√ 2t initial state 2t −1 j=0 2t −1 j=0 1 ≈√ r2t 4. 5. 6. 1 →√ r 8 → s/r →r r−1 s=0 |j|1 create superposition |j|xj mod N  apply Ux,N r−1 2t −1 s=0 j=0 8 |s/r|u s e2πisj/r |j|us  apply inverse Fourier transform to first register measure first register apply continued fractions algorithm 5.3.2 Application: factoring The problem of distinguishing prime numbers from composites, and of resolving composite numbers into their prime factors, is one of the most important and useful in all of arithmetic. [ . . . ] The dignity of science seems to demand that every aid to the solution of such an elegant and celebrated problem be zealously cultivated. – Carl Friedrich Gauss, as quoted by Donald Knuth Given a positive composite integer N , what prime numbers when multiplied together equal it? This factoring problem turns out to be equivalent to the order-finding problem 233 Applications: order-finding and factoring we just studied, in the sense that a fast algorithm for order-finding can easily be turned into a fast algorithm for factoring. In this section we explain the method used to reduce factoring to order-finding, and give a simple example of this reduction. The reduction of factoring to order-finding proceeds in two basic steps. The first step is to show that we can compute a factor of N if we can find a non-trivial solution x = ± 1(mod N ) to the equation x2 = 1(mod N ). The second step is to show that a randomly chosen y co-prime to N is quite likely to have an order r which is even, and such that y r/2 = ± 1(mod N ), and thus x ≡ y r/2 (mod N ) is a non-trivial solution to x2 = 1(mod N ). These two steps are embodied in the following theorems, whose proofs may be found in Section A4.3 of Appendix 4. Theorem 5.2: Suppose N is an L bit composite number, and x is a non-trivial solution to the equation x2 = 1(mod N ) in the range 1 ≤ x ≤ N , that is, neither x = 1(mod N ) nor x = N − 1 = −1(mod N ). Then at least one of gcd(x − 1, N ) and gcd(x + 1, N ) is a non-trivial factor of N that can be computed using O(L3 ) operations. Theorem 5.3: Suppose N = pα1 1 . . . pαmm is the prime factorization of an odd composite positive integer. Let x be an integer chosen uniformly at random, subject to the requirements that 1 ≤ x ≤ N − 1 and x is co-prime to N . Let r be the order of x modulo N . Then p(r is even and xr/2 = − 1(mod N )) ≥ 1 − 1 . 2m (5.60) Theorems 5.2 and 5.3 can be combined to give an algorithm which, with high probability, returns a non-trivial factor of any composite N . All the steps in the algorithm can be performed efficiently on a classical computer except (so far as is known today) an order-finding ‘subroutine’ which is used by the algorithm. By repeating the procedure we may find a complete prime factorization of N . The algorithm is summarized below. Algorithm: Reduction of factoring to order-finding Inputs: A composite number N Outputs: A non-trivial factor of N . Runtime: O((log N )3 ) operations. Succeeds with probability O(1). Procedure: 1. If N is even, return the factor 2. 2. Determine whether N = ab for integers a ≥ 1 and b ≥ 2, and if so return the factor a (uses the classical algorithm of Exercise 5.17). 3. Randomly choose x in the range 1 to N −1. If gcd(x, N ) > 1 then return the factor gcd(x, N ). 4. Use the order-finding subroutine to find the order r of x modulo N . 234 The quantum Fourier transform and its applications 5. If r is even and xr/2 = − 1(mod N ) then compute gcd(xr/2 − 1, N ) and gcd(xr/2 + 1, N ), and test to see if one of these is a non-trivial factor, returning that factor if so. Otherwise, the algorithm fails. Steps 1 and 2 of the algorithm either return a factor, or else ensure that N is an odd integer with more than one prime factor. These steps may be performed using O(1) and O(L3 ) operations, respectively. Step 3 either returns a factor, or produces a randomly chosen element x of {0, 1, 2, . . . , N − 1}. Step 4 calls the order-finding subroutine, computing the order r of x modulo N . Step 5 completes the algorithm, since Theorem 5.3 guarantees that with probability at least one-half r will be even and xr/2 = − 1(mod N ), and then Theorem 5.2 guarantees that either gcd(xr/2 − 1, N ) or gcd(xr/2 + 1, N ) is a non-trivial factor of N . An example illustrating the use of this algorithm with the quantum order-finding subroutine is shown in Box 5.4. Exercise 5.17: Suppose N is L bits long. The aim of this exercise is to find an efficient classical algorithm to determine whether N = ab for some integers a ≥ 1 and b ≥ 2. This may be done as follows: (1) Show that b, if it exists, satisfies b ≤ L. (2) Show that it takes at most O(L2 ) operations to compute log2 N , x = y/b for b ≤ L, and the two integers u1 and u2 nearest to 2x . (3) Show that it takes at most O(L2 ) operations to compute ub1 and ub2 (use repeated squaring) and check to see if either is equal to N . (4) Combine the previous results to give an O(L3 ) operation algorithm to determine whether N = ab for integers a and b. Exercise 5.18: (Factoring 91) Suppose we wish to factor N = 91. Confirm that steps 1 and 2 are passed. For step 3, suppose we choose x = 4, which is co-prime to 91. Compute the order r of x with respect to N , and show that xr/2 mod 91 = 64 = − 1(mod 91), so the algorithm succeeds, giving gcd(64 − 1, 19) = 7. It is unlikely that this is the most efficient method you’ve seen for factoring 91. Indeed, if all computations had to be carried out on a classical computer, this reduction would not result in an efficient factoring algorithm, as no efficient method is known for solving the order-finding problem on a classical computer. Exercise 5.19: Show that N = 15 is the smallest number for which the order-finding subroutine is required, that is, it is the smallest composite number that is not even or a power of some smaller integer. 5.4 General applications of the quantum Fourier transform The main applications of the quantum Fourier transform we have described so far in this chapter are phase estimation and order-finding. What other problems can be solved with these techniques? In this section, we define a very general problem known as the hidden subgroup problem, and describe an efficient quantum algorithm for solving it. This problem, which encompasses all known ‘exponentially fast’ applications of the quantum Fourier transform, can be thought of as a generalization of the task of finding the unknown period of a periodic function, in a context where the structure of the domain and range 235 General applications of the quantum Fourier transform Box 5.4: Factoring 15 quantum-mechanically The use of order-finding, phase estimation, and continued fraction expansions in the quantum factoring algorithm is illustrated by applying it to factor N = 15. First, we choose a random number which has no common factors with N ; suppose we choose x = 7. Next, we compute the order r of x with respect to N , using the quantum order-finding algorithm: begin with the state |0|0 and create the state 1 √ 2t 2t −1 k=0 1  |k|0 = √ |0 + |1 + |2 + · · · + |2t − 1 |0 t 2 (5.61) by applying t = 11 Hadamard transforms to the first register. Choosing this value of t ensures an error probability ǫ of at most 1/4. Next, compute f (k) = xk mod N , leaving the result in the second register, 1 √ 2t 2t −1 k=0 |k|xk mod N  (5.62) 1  |0|1 + |1|7 + |2|4 + |3|13 + |4|1 + |5|7 + |6|4 + · · · . =√ 2t We now apply the inverse Fourier transform F T † to the first register and measure it. One way of analyzing the distribution of outcomes obtained is to calculate the reduced density matrix for the first register, and apply F T † to it, and calculate the measurement statistics. However, since no further operation is applied to the second register, we can instead apply the principle of implicit measurement (Section 4.4) and assume that the second register is measured, obtaining a random result from 1, 7, 4, or 13. Suppose we get 4 (any  of the results works); this means the state input 4 † to F T would have been 2t |2 + |6 + |10 + |14 + · · · . After applying F T †  we obtain some state ℓ αℓ |ℓ, with the probability distribution 0.25 |αℓ|2 0.2 0.15 0.1 0.05 0 200 400 600 800 1000 1200 1400 1600 1800 2000 ℓ shown for 2t = 2048. The final measurement therefore gives either 0, 512, 1024, or 1536, each with probability almost exactly 1/4. Suppose we obtain ℓ = 1536 from the measurement; computing the continued fraction expansion thus gives 1536/2048 = 1/(1 + (1/3)), so that 3/4 occurs as a convergent in the expansion, giving r = 4 as the order of x = 7. By chance, r is even, and moreover, xr/2 mod N = 72 mod 15 = 4 = − 1 mod 15, so the algorithm works: computing the greatest common divisor gcd(x2 − 1, 15) = 3 and gcd(x2 + 1, 15) = 5 tells us that 15 = 3×5. 236 The quantum Fourier transform and its applications of the function may be very intricate. In order to present this problem in the most approachable manner, we begin with two more specific applications: period-finding (of a one-dimensional function), and discrete logarithms. We then return to the general hidden subgroup problem. Note that the presentation in this section is rather more schematic and conceptual than earlier sections in this chapter; of necessity, this means that the reader interested in understanding all the details will have to work much harder! 5.4.1 Period-finding Consider the following problem. Suppose f is a periodic function producing a single bit as output and such that f (x + r) = f (x), for some unknown 0 < r < 2L , where x, r ∈ {0, 1, 2, . . .}. Given a quantum black box U which performs the unitary transform U |x|y → |x|y ⊕ f (x) (where ⊕ denotes addition modulo 2) how many black box queries and other operations are required to determine r? Note that in practice U operates on a finite domain, whose size is determined by the desired accuracy for r. Here is a quantum algorithm which solves this problem using one query, and O(L2 ) other operations: Algorithm: Period-finding Inputs: (1) A black box which performs the operation U |x|y = |x|y ⊕ f (x), (2) a state to store the function evaluation, initialized to |0, and (3) t = O(L + log(1/ǫ)) qubits initialized to |0. Outputs: The least integer r > 0 such that f (x + r) = f (x). Runtime: One use of U , and O(L2 ) operations. Succeeds with probability O(1). Procedure: 1. 2. 3. |0|0 1 →√ 2t 1 →√ 2t initial state 2t −1 x=0 2t −1 x=0 1 ≈√ r2t 4. 5. 6. 1 →√ r 8 → ℓ/r →r r−1 ℓ=0 |x|0 create superposition |x|f (x) apply U r−1 2t −1 ℓ=0 x=0 e2πiℓx/r |x|fˆ(ℓ) 8 fˆ(ℓ) |ℓ/r| apply inverse Fourier transform to first register measure first register apply continued fractions algorithm The key to understanding this algorithm, which is based on phase estimation, and is nearly identical to the algorithm for quantum order-finding, is step 3, in which we introduce the state r−1 1 e−2πiℓx/r |f (x) , (5.63) |fˆ(ℓ) ≡ √ r x=0 237 General applications of the quantum Fourier transform the Fourier transform of |f (x). The identity used in step 3 is based on 1 |f (x) = √ r r−1 ℓ=0 e2πiℓx/r |fˆ(ℓ) , (5.64) r−1 2πiℓx/r e = r for x an integer multiple of r, which is easy to verify by noting that ℓ=0 and zero otherwise. The approximate equality in step 3 is required because 2t may not be an integer multiple of r in general (it need not be: this is taken account of by the phase estimation bounds). By Equation (5.22), applying the inverse Fourier transform to the first register, in step 4, gives an estimate of the phase ℓ/r, where ℓ is chosen randomly. r can be efficiently obtained in the final step using a continued fraction expansion. Box 5.5: The shift-invariance property of the Fourier transform The Fourier transform, Equation (5.1), has an interesting and very useful property, known as shift invariance. Using notation which is useful in describing the general application of this property, let us describe the quantum Fourier transform as h∈H αh |h → g∈G α̃g |g , (5.65)  where α̃g = h∈H αh exp(2πigh/|G|), H is some subset of G, and G indexes the states in an orthonormal basis of the Hilbert space. For example, G may be the set of numbers from 0 to 2n − 1 for an n qubit system. |G| denotes the number of elements in G. Suppose we apply to the initial state an operator Uk which performs the unitary transform Uk |g = |g + k , (5.66) then apply the Fourier transform. The result, Uk h∈H αh |h = h∈H αh |h + k → g∈G e2πigk/|G| α̃g |g (5.67) has the property that the magnitude of the amplitude for |g does not change, no matter what k is, that is: | exp(2πigk/|G|)α̃g | = |α̃g |. In the language of group theory, G is a group, H a subgroup of G, and we say that if a function f on G is constant on cosets of H, then the Fourier transform of f is invariant over cosets of H. Why does this work? One way to understand this is to realize that (5.63) is approximately the Fourier transform over {0, 1, . . . , 2L − 1} of |f (x) (see Exercise 5.20), and the Fourier transform has an interesting and very useful property, known as shift invariance, described in Box 5.5. Another is to realize that what the order-finding algorithm does is just to find the period of the function f (k) = xk mod N , so the ability to find the period of a general periodic function is not unexpected. Yet another way is to realize that the implementation of the black box U is naturally done using a certain unitary operator whose eigenvectors are precisely |fˆ(ℓ), as described in Exercise 5.21 below, so that the phase estimation procedure of Section 5.2 can be applied. 238 The quantum Fourier transform and its applications Exercise 5.20: Suppose f (x + r) = f (x), and 0 ≤ x < N , for N an integer multiple of r. Compute 1 fˆ(ℓ) ≡ √ N N −1 e−2πiℓx/N f (x) , (5.68) x=0 and relate the result to (5.63). You will need to use the fact that *  N/r if ℓ is an integer multiple of N/r 2πikℓ/N e = 0 otherwise. k∈{0,r,2r,...,N −r} (5.69) Exercise 5.21: (Period-finding and phase estimation) Suppose you are given a unitary operator Uy which performs the transformation Uy |f (x) = |f (x + y), for the periodic function described above. (1) Show that the eigenvectors of Uy are |fˆ(ℓ), and calculate their eigenvalues. (2) Show that given |f (x0 ) for some x0 , Uy can be used to realize a black box which is as useful as U in solving the period-finding problem. 5.4.2 Discrete logarithms The period finding problem we just considered is a simple one, in that the domain and range of the periodic function were integers. What happens when the function is more complex? Consider the function f (x1 , x2 ) = asx1 +x2 mod N , where all the variables are integers, and r is the smallest positive integer for which ar mod N = 1. This function is periodic, since f (x1 + ℓ, x2 − ℓs) = f (x1 , x2 ), but now the period is a 2-tuple, (ℓ, −ℓs), for integer ℓ. This may seem to be a strange function, but it is very useful in cryptography, since determining s allows one to solve what is known as the discrete logarithm problem: given a and b = as , what is s? Here is a quantum algorithm which solves this problem using one query of a quantum black box U which performs the unitary transform U |x1 |x2 |y → |x1 |x2 |y ⊕ f (x) (where ⊕ denotes bitwise addition modulo 2), and O(⌈log r⌉2 ) other operations. We assume knowledge of the minimum r > 0 such that ar mod N = 1, which can be obtained using the order-finding algorithm described previously. Algorithm: Discrete logarithm Inputs: (1) A black box which performs the operation U |x1 |x2 |y = |x1 |x2 |y ⊕ f (x1 , x2 ), for f (x1 , x2 ) = bx1 ax2 , (2) a state to store the function evaluation, initialized to |0, and (3) two t = O(⌈log r⌉ + log(1/ǫ)) qubit registers initialized to |0. Outputs: The least positive integer s such that as = b. Runtime: One use of U , and O(⌈log r⌉2 ) operations. Succeeds with probability O(1). Procedure: 1. |0|0|0 initial state 239 General applications of the quantum Fourier transform 2. 3. 1 → t 2 → 1 2t 2t −1 2t −1 x1 =0 x2 =0 2t −1 2t −1 x1 =0 x2 =0 1 ≈ t√ 2 r 1 = t√ 2 r 5. 6. create superposition |x1 |x2 |f (x1 , x2 ) apply U r−1 2t −1 2t −1 ℓ2 =0 x1 =0 x2 =0 r−1 ℓ2 =0 r−1 4. |x1 |x2 |0 ⎡ 2t −1 ⎣ x1 =0 e2πi(sℓ2 x1 +ℓ2 x2 )/r |x1 |x2 |fˆ(sℓ2 , ℓ2 ) ⎤⎡ 2t −1 e2πi(sℓ2 x1 )/r |x1  ⎣ x2 =0 1 8 ˆ |sℓ8 →√ 2 /r|ℓ2 /r|f (sℓ2 , ℓ2 ) r ℓ =0 2 ( ' 8 → sℓ8 2 /r, ℓ2 /r →s ⎤ e2πi(ℓ2 x2 )/r |x2  |fˆ(sℓ2 , ℓ2 ) apply inverse Fourier transform to first two registers measure first two registers apply generalized continued fractions algorithm Again, the key to understanding this algorithm is step 3, in which we introduce the state 1 |fˆ(ℓ1 , ℓ2 ) = √ r r−1 j=0 e−2πiℓ2 j/r |f (0, j) , (5.70) the Fourier transform of |f (x1 , x2 ) (see Exercise 5.22). In this equation, the values of ℓ1 and ℓ2 must satisfy r−1 e2πik(ℓ1 /s−ℓ2 )/r = r . (5.71) k=0 Otherwise, the amplitude of |fˆ(ℓ1 , ℓ2 ) is nearly zero. The generalized continued fraction expansion used in the final step to determine s is analogous to the procedures used in Section 5.3.1, and is left as a simple exercise for you to construct. Exercise 5.22: Show that r−1 r−1 |fˆ(ℓ1 , ℓ2 ) = 1 e−2πi(ℓ1 x1 +ℓ2 x2 )/r |f (x1 , x2 ) = √ r x =0 x =0 1 2 r−1 j=0 e−2πiℓ2 j/r |f (0, j) , (5.72) and we are constrained to have ℓ1 /s − ℓ2 be an integer multiple of r for this expression to be non-zero. Exercise 5.23: Compute 1 r r−1 r−1 ℓ1 =0 ℓ2 =0 e−2πi(ℓ1 x1 +ℓ2 x2 )/r |fˆ(ℓ1 , ℓ2 ) (5.73) using (5.70), and show that the result is f (x1 , x2 ). Exercise 5.24: Construct the generalized continued fractions algorithm needed in 240 The quantum Fourier transform and its applications step 6 of the discrete logarithm algorithm to determine s from estimates of sℓ2 /r and ℓ2 /r. Exercise 5.25: Construct a quantum circuit for the black box U used in the quantum discrete logarithm algorithm, which takes a and b as parameters, and performs the unitary transform |x1 |x2 |y → |x1 |x2 |y ⊕ bx1 ax2 . How many elementary operations are required? 5.4.3 The hidden subgroup problem By now, a pattern should be coming clear: if we are given a periodic function, even when the structure of the periodicity is quite complicated, we can often use a quantum algorithm to determine the period efficiently. Importantly, however, not all periods of periodic functions can be determined. The general problem which defines a broad framework for these questions can be succinctly expressed in the language of group theory (see Appendix 2 for a quick review) as follows: Let f be a function from a finitely generated group G to a finite set X such that f is constant on the cosets of a subgroup K, and distinct on each coset. Given a quantum black box for performing the unitary transform U |g|h = |g|h⊕f (g), for g ∈ G, h ∈ X, and ⊕ an appropriately chosen binary operation on X, find a generating set for K. Order-finding, period-finding, discrete logarithms, and many other problems are instances of this hidden subgroup problem; some interesting ones are listed in Figure 5.5. For G a finite Abelian group, a quantum computer can solve the hidden subgroup problem using a number of operations polynomial in log |G|, and one use of the black box function evaluation, using an algorithm very similar to the others in this section. (In fact, solution for a finitely generated Abelian group is also possible, along similar lines, but we’ll stick to the finite case here.) We shall leave detailed specification of the algorithm to you as an exercise, which should be simple after we explain the basic idea. Many things remain essentially the same, because finite Abelian groups are isomorphic to products of additive groups over the integers in modular arithmetic. This means that the quantum Fourier transform of f over G is well defined (see Section A2.3), and can still be done efficiently. The first non-trivial step of the algorithm is to use a Fourier transform (generalizing the Hadamard operation) to create a superposition over group elements, which is then transformed by applying the quantum black box for f in the next step, to give 1  |g|f (g) . (5.74) |G| g∈G As before, we would now like to rewrite |f (g) in the Fourier basis. We start with 1 |f (g) =  |G| |G|−1 ℓ=0 e2πiℓg/|G| |fˆ(ℓ) , (5.75) where we have chosen exp[−2πiℓg/|G|] as a representation (see Exercise A2.13) of g ∈ G indexed by ℓ (the Fourier transform maps between group elements and representations: see Exercise A2.23). The key is to recognize that this expression can be simplified because 241 General applications of the quantum Fourier transform Name G X K Function * f (x) = 0 K = {0, 1} : f (x) = 1 * f (x) = x K = {0} : f (x) = 1 − x Deutsch {0, 1}, ⊕ {0, 1} {0} or {0, 1} Simon {0, 1}n , ⊕ any finite set {0, s} s ∈ {0, 1}n f (x ⊕ s) = f (x) Periodfinding Z, + any finite set {0, r, 2r, . . .} r∈G f (x + r) = f (x) Orderfinding Z, + {aj } j ∈ Zr ar = 1 {0, r, 2r, . . .} r∈G Discrete logarithm Zr × Zr + (mod r) {aj } j ∈ Zr ar = 1 (ℓ, −ℓs) ℓ, s ∈ Zr Order of a permutation Z2m × Z2n + (mod 2m ) Z2n {0, r, 2r, . . .} r∈X Hidden linear function Z × Z, + ZN (ℓ, −ℓs) ℓ, s ∈ X Abelian stabilizer (H, X) H = any Abelian group any finite set {s ∈ H | f (s, x) = x, ∀x ∈ X} f (x) = ax f (x + r) = f (x) f (x1 , x2 ) = akx1 +x2 f (x1 + ℓ, x2 − ℓs) = f (x1 , x2 ) f (x, y) = π x (y) f (x + r, y) = f (x, y) π = permutation on X f (x1 , x2 ) = π(sx1 + x2 mod N ) π = permutation on X f (gh, x) = f (g, f (h, x)) f (gs, x) = f (g, x) Figure 5.5. Hidden subgroup problems. The function f maps from the group G to the finite set X, and is promised to be constant on cosets of the hidden subgroup K ⊆ G. ZN represents the set {0, 1, . . . , N − 1} in this table, and Z is the integers. The problem is to find K (or a generating set for it), given a black box for f . f is constant and distinct on cosets of the subgroup K, so that 1 e−2πiℓg/|G| |f (g) |fˆ(ℓ) =  |G| g∈G (5.76) has nearly zero amplitude for all values of ℓ except those which satisfy h∈K e−2πiℓh/|G| = |K| . (5.77) 242 The quantum Fourier transform and its applications If we can determine ℓ, then using the linear constraints given by this expression allows us to determine elements of K, and since K is Abelian, this allows us to eventually determine a generating set for the whole hidden subgroup, solving the problem. However, life is not so simple. An important reason why the period-finding and discrete logarithm algorithms work is because of the success of the continued fraction expansion in obtaining ℓ from ℓ/|G|. In those problems, ℓ and |G| are arranged to not have any common factors, with high probability. In the general case, however, this may not be true, since |G| is free to be a composite number with many factors, and we have no useful prior information about ℓ. Fortunately, this problem can be solved: as mentioned above, any finite Abelian group G is isomorphic to a product of cyclic groups of prime power order, that is, G = Zp1 × Zp2 ×· · ·×ZpM , where pi are primes, and Zpi is the group over integers {0, 1, . . . , pi −1} with addition modulo pi being the group operation. We can thus re-express the phase which appears in (5.75) as e2πiℓg/|G| = M / ′ e2πiℓi gi /pi (5.78) i=1 for gi ∈ Zpi . The phase estimation procedure now gives us ℓ′i , from which we determine ℓ, and thus, sample K as described above, to solve the hidden subgroup problem. Exercise 5.26: Since K is a subgroup of G, when we decompose G into a product of cyclic groups of prime power order, this also decomposes K. Re-express (5.77) to show that determining ℓ′i allows one to sample from the corresponding cyclic subgroup Kpi of K. Exercise 5.27: Of course, the decomposition of a general finite Abelian group G into a product of cyclic groups of prime power order is usually a difficult problem (at least as hard as factoring integers, for example). Here, quantum algorithms come to the rescue again: explain how the algorithms in this chapter can be used to efficiently decompose G as desired. Exercise 5.28: Write out a detailed specification of the quantum algorithm to solve the hidden subgroup problem, complete with runtime and success probability estimates, for finite Abelian groups. Exercise 5.29: Give quantum algorithms to solve the Deutsch and Simon problems listed in Figure 5.5, using the framework of the hidden subgroup problem. 5.4.4 Other quantum algorithms? One of the most intriguing aspects of this framework for describing quantum algorithms in terms of the hidden subgroup problem is the suggestion that more difficult problems might be solvable by considering various groups G and functions f . We have only described the solution of this problem for Abelian groups. What about non-Abelian groups? They are quite interesting (see Appendix 2 for a discussion of general Fourier transforms over non-Abelian groups): for example, the problem of graph isomorphism is to determine if two given graphs are the same under some permutation of the labels of the n vertices (Section 3.2.3). These permutations can be described as transformations under the symmetric group Sn , and algorithms for performing fast Fourier transforms Chapter problems 243 over these groups exists. However, a quantum algorithm for efficiently solving the graph isomporphism problem remains unknown. Even if more general cases of the hidden subgroup problem remain unsolvable by quantum computers, having this unifying framework is useful, because it allows us to ask questions about how one might be able to step outside its limitations. It is difficult to believe that all fast quantum algorithms that will ever be discovered will be just ways to solve the hidden subgroup problem. If one thinks of these problems as being based on the coset invariance property of the Fourier transform, in searching for new algorithms, perhaps the thing to do then is to investigate other transforms with different invariances. Going in another direction, one might ask: what difficult hidden subgroup problems might be efficiently solved given an arbitrary (but specified independently of the problem) quantum state as a helper? After all, as discussed in Chapter 4, most quantum states are actually exponentially hard to construct. Such a state might be a useful resource (a real ‘quantum oracle’), if quantum algorithms existed to utilize them to solve hard problems! The hidden subgroup problem also captures an important constraint underlying the class of quantum algorithms which are exponentially faster than their (known) classical counterparts: this is a promise problem, meaning that it is of the form ‘F (X) is promised to have such and such property: characterize that property.’ Rather disappointingly, perhaps, we shall show at the end of the next chapter that, in solving problems without some sort of promise, quantum computers cannot achieve an exponential speedup over classical computers; the best speedup is polynomial. On the other hand, this gives us an important clue as to what kinds of problems quantum computers might be good at: in retrospect, the hidden subgroup problem might be thought of as a natural candidate for quantum computation. What other natural problems are there? Think about it! Problem 5.1: Construct a quantum circuit to perform the quantum Fourier transform 1 |j −→ √ p p−1 k=0 e2πijk/p |k (5.79) where p is prime. Problem 5.2: (Measured quantum Fourier transform) Suppose the quantum Fourier transform is performed as the last step of a quantum computation, followed by a measurement in the computational basis. Show that the combination of quantum Fourier transform and measurement is equivalent to a circuit consisting entirely of one qubit gates and measurement, with classical control, and no two qubit gates. You may find the discussion of Section 4.4 useful. Problem 5.3: (Kitaev’s algorithm) Consider the quantum circuit ❴✤✤ ❴ ❴ ❴ ❴ ❴ L ❴ ❴ ✤✤ ✙ ✤✤ ✤✤ ✙✙ ✤✤ ✤✤ ✙✙ ❴✤ ❴ ❴ ❴ ❴ ✙ ❴ ❴ ❴ ✤ where |u is an eigenstate of U with eigenvalue e2πiϕ . Show that the top qubit is 244 The quantum Fourier transform and its applications measured to be 0 with probability p ≡ cos2 (πϕ). Since the state |u is unaffected by the circuit it may be reused; if U can be replaced by U k , where k is an arbitrary integer under your control, show that by repeating this circuit and increasing k appropriately, you can efficiently obtain as many bits of p as desired, and thus, of ϕ. This is an alternative to the phase estimation algorithm. Problem 5.4: The runtime bound O(L3 ) we have given for the factoring algorithm is not tight. Show that a better upper bound of O(L2 log L log log L) operations can be achieved. Problem 5.5: (Non-Abelian hidden subgroups – Research) Let f be a function on a finite group G to an arbitrary finite range X, which is promised to be constant and distinct on distinct left cosets of a subgroup K. Start with the state 1  |G|m g1 ,...,gm |g1 , . . . , gm |f (g1 ), . . . , f (gm ) , (5.80) and prove that picking m = 4 log |G| + 2 allows K to be identified with probability at least 1 − 1/|G|. Note that G does not necessarily have to be Abelian, and being able to perform a Fourier transform over G is not required. This result shows that one can produce (using only O(log |G|) oracle calls) a final result in which the pure state outcomes corresponding to different possible hidden subgroups are nearly orthogonal. However, it is unknown whether a POVM exists or not which allows the hidden subgroup to be identified efficiently (i.e. using poly(log |G|) operations) from this final state. Problem 5.6: (Addition by Fourier transforms) Consider the task of constructing a quantum circuit to compute |x → |x + y mod 2n , where y is a fixed constant, and 0 ≤ x < 2n . Show that one efficient way to do this, for values of y such as 1, is to first perform a quantum Fourier transform, then to apply single qubit phase shifts, then an inverse Fourier transform. What values of y can be added easily this way, and how many operations are required? 245 History and further reading Summary of Chapter 5: The quantum Fourier transform and its applications • When N = 2n the quantum Fourier transform 1 |j = |j1 , . . . , jn  −→ √ N N −1 k=0 jk e2πi N |k (5.81) may be written in the form 1 |0 + e2πi0.jn−1 jn |1 . . . |0 + e2πi0.j1 j2 ...jn |1 , (5.82) and may be implemented using Θ(n2 ) gates. |j → 2n/2 |0 + e2πi0.jn |1 • Phase estimation: Let |u be an eigenstate of the operator U with eigenvalue e2πiϕ . Starting from the initial state |0⊗t |u, and given the ability to efficiently k perform U 2 for integer k, this algorithm (shown in Figure 5.3) can be used 2to efficiently 3obtain the state |ϕ̃|u, where ϕ̃ accurately approximates ϕ to t − log 2 + 2ǫ1 bits with probability at least 1 − ǫ. • Order-finding: The order of x modulo N is the least positive integer r such that xr mod N = 1. This number can be computed in O(L3 ) operations using the quantum phase estimation algorithm, for L-bit integers x and N . • Factoring: The prime factors of an L-bit integer N can be determined in O(L3 ) operations by reducing this problem to finding the order of a random number x co-prime with N . • Hidden subgroup problem: All the known fast quantum algorithms can be described as solving the following problem: Let f be a function from a finitely generated group G to a finite set X such that f is constant on the cosets of a subgroup K, and distinct on each coset. Given a quantum black box for performing the unitary transform U |g|h = |g|h ⊕ f (g), for g ∈ G and h ∈ X, find a generating set for K. History and further reading The definition of the Fourier transform may be generalized beyond what we have considered in this chapter. In the general scenario a Fourier transform is defined on a set of complex numbers αg , where the index g is chosen from some group, G. In this chapter we have chosen G to be the additive group of integers modulo 2n , often denoted Z2n . Deutsch[Deu85] showed that the Fourier transform over the group Zn2 could be implemented efficiently on a quantum computer – this is the Hadamard transform of earlier chapters. Shor [Sho94] realized to spectacular effect that quantum computers could efficiently implement the quantum Fourier transform over groups Zm for certain special values of m. Inspired by this result Coppersmith[Cop94], Deutsch (unpublished), and Cleve (unpublished) gave the simple quantum circuits for computing the quantum Fourier transform over Z2n which we have used in this chapter. Cleve, Ekert, Mac- 246 The quantum Fourier transform and its applications chiavello and Mosca[CEMM98] and Griffiths and Niu[GN96] independently discovered the product formula (5.4); in fact, this result had been realized much earlier by Danielson and Lanczos. The simplified proof starting in Equation (5.5) was suggested by Zhou. Griffiths and Niu[GN96] are responsible for the measured quantum Fourier transform found in Problem 5.2. The Fourier transform over Z2n was generalized to obtain a Fourier transform over an arbitrary finite Abelian group by Kitaev[Kit95], who also introduced the phase estimation procedure in the form given in Problem 5.3. Cleve, Ekert, Macchiavello and Mosca[CEMM98] also integrated several of the techniques of Shor and Kitaev into one nice picture, upon which Section 5.2 is based. A good description of the phase estimation algorithm can be found in Mosca’s Ph.D. thesis[Mos99]. Shor announced the quantum order-finding algorithm in a seminal paper in 1994[Sho94], and noted that the problems of performing discrete logarithms and factoring could be reduced to order-finding. The final paper, including extended discussion and references, was published in 1997[Sho97]. This paper also contains a discussion of clever multiplication methods that may be used to speed up the algorithm even further than in our description, which uses relatively naive multiplication techniques. With these faster multiplication methods the resources required to factor a composite integer n scale as O(n2 log n log log n), as claimed in the introduction to the chapter. In 1995 Kitaev[Kit95] announced an algorithm for finding the stabilizer of a general Abelian group, which he showed could be used to solve discrete logarithm and factoring as special cases. In addition, this algorithm contained several elements not present in Shor’s algorithm. A good review of the factoring algorithm was written by Ekert and Jozsa [EJ96]; also see DiVincenzo [DiV95a]. The discussion of continued fractions is based upon Chapter 10 of Hardy and Wright[HW60]. At the time of writing, the most efficient classical algorithm for factoring on a classical computer is the number field sieve. This is described in a collection edited by A. K. Lenstra and H. W. Lenstra, Jr.[LL93]. The generalization of quantum algorithms to solving the hidden subgroup problem has been considered by many authors. Historically, Simon was first to note that a quantum computer could find a hidden period of a function satisfying f (x⊕s) = f (x)[Sim94, Sim97]. In fact, Shor found his result by generalizing Simon’s result, and by applying a Fourier transform over ZN instead of Simon’s Hadamard transforms (a Fourier transform over Zk2 ). Boneh and Lipton then noted the connection to the hidden subgroup problem, and described a quantum algorithm for solving the hidden linear function problem[BL95]. Jozsa was the first to explicitly provide a uniform description of the Deutsch–Jozsa, Simon, and Shor algorithms in terms of the hidden subgroup problem[Joz97]. Ekert and Jozsa’s work in studying the role of the Abelian and non-Abelian Fast Fourier Transform algorithms in speedup of quantum algorithms[EJ98] has also been insightful. Our description of the hidden subgroup problem in Section 5.4 follows the framework of Mosca and Ekert[ME99, Mos99]. Cleve has proven that the problem of finding an order of a permutation requires an exponential number of queries for a bounded-error probabilistic classical computer[Cle99]. Generalizations of this method to beyond Abelian groups have been attempted by Ettinger and Høyer[EH99], by Roetteler and Beth[RB98] and Pueschel, Roetteler, and Beth[PRB98], by Beals, who also described constructions of quantum Fourier + transforms over the symmetric group[BBC 98], and by Ettinger, Høyer, and Knill[EHK99]. These results have shown, so far, that there exists a quantum algorithm to solve the History and further reading 247 hidden subgroup problem for non-Abelian groups using only O(log |G|) oracle calls, but whether this can be realized in polynomial time is unknown (Problem 5.5). 6 Quantum search algorithms Suppose you are given a map containing many cities, and wish to determine the shortest route passing through all cities on the map. A simple algorithm to find this route is to search all possible routes through the cities, keeping a running record of which route has the shortest length. On a classical computer, if there are N possible routes, it obviously takes O(N ) operations to determine the shortest route using this method. Remarkably, there is a quantum search algorithm, sometimes known as Grover’s algorithm, which √ enables this search method to be sped up substantially, requiring only O( N ) operations. Moreover, the quantum search algorithm is general in the sense that it can be applied far beyond the route-finding example just described to speed up many (though not all) classical algorithms that use search heuristics. In this chapter we explain the fast quantum search algorithm. The basic algorithm is described in Section 6.1. In Section 6.2 we derive the algorithm from another point of view, based on the quantum simulation algorithm of Section 4.7. Three important applications of this algorithm are also described: quantum counting in Section 6.3, speedup of solution of NP-complete problems in Section 6.4, and search of unstructured databases in Section 6.5. One might hope to improve upon the search algorithm to do even better than a square root speedup but, as we show in Section 6.6, it turns out this is not possible. We conclude in Section 6.7 by showing that this speed limit applies to most unstructured problems. 6.1 The quantum search algorithm Let us begin by setting the stage for the search algorithm in terms of an oracle, similar to that encountered in Section 3.1.1. This allows us to present a very general description of the search procedure, and a geometric way to visualize its action and see how it performs. 6.1.1 The oracle Suppose we wish to search through a search space of N elements. Rather than search the elements directly, we concentrate on the index to those elements, which is just a number in the range 0 to N − 1. For convenience we assume N = 2n , so the index can be stored in n bits, and that the search problem has exactly M solutions, with 1 ≤ M ≤ N . A particular instance of the search problem can conveniently be represented by a function f , which takes as input an integer x, in the range 0 to N − 1. By definition, f (x) = 1 if x is a solution to the search problem, and f (x) = 0 if x is not a solution to the search problem. Suppose we are supplied with a quantum oracle – a black box whose internal workings we discuss later, but which are not important at this stage – with the ability to recognize solutions to the search problem. This recognition is signalled by making use of an oracle The quantum search algorithm 249 qubit. More precisely, the oracle is a unitary operator, O, defined by its action on the computational basis: O |x|q → |x|q ⊕ f (x) , (6.1) where |x is the index register, ⊕ denotes addition modulo 2, and the oracle qubit |q is a single qubit which is flipped if f (x) = 1, and is unchanged otherwise. We can check whether x is a solution to our search problem by preparing |x|0, applying the oracle, and checking to see if the oracle qubit has been flipped to |1. In the quantum search algorithm √ it is useful to apply the oracle with the oracle qubit initially in the state (|0 − |1)/ 2, just as was done in the Deutsch–Jozsa algorithm of Section 1.4.4. If√x is not a solution to the search problem, applying the oracle to the state |x(|0 − |1)/ 2 does not change the state. On the other hand, if x is a solution to the search problem, then |0 and √ |1 are interchanged by the action of the oracle, giving a final state −|x(|0 − |1)/ 2. The action of the oracle is thus:     |0 − |1 |0 − |1 O √ √ −→ (−1)f (x) |x . (6.2) |x 2 2 Notice that √ the state of the oracle qubit is not changed. It turns out that this remains (|0 − |1)/ 2 throughout the quantum search algorithm, and can therefore be omitted from further discussion of the algorithm, simplifying our description. With this convention, the action of the oracle may be written: O |x −→ (−1)f (x) |x . (6.3) We say that the oracle marks the solutions to the search problem, by shifting the phase of the solution. For an N item search problem with M solutions, it turns out that we need only apply the search oracle O( N/M ) times in order to obtain a solution, on a quantum computer. This discussion of the oracle without describing how it works in practice is rather abstract, and perhaps even puzzling. It seems as though the oracle already knows the answer to the search problem; what possible use could it be to have a quantum search algorithm based upon such oracle consultations?! The answer is that there is a distinction between knowing the solution to a search problem, and being able to recognize the solution; the crucial point is that it is possible to do the latter without necessarily being able to do the former. A simple example to illustrate this is the problem of factoring. Suppose we have been given a large number, m, and told that it is a product of two primes, p and q – the same sort of situation as arises in trying to break the RSA public key cryptosystem (Appendix 5). To determine p and q, the obvious method on a classical computer is to search all numbers from 2 through m1/2 for the smaller of the two prime factors. That is, we successively do a trial division of m by each number in the range 2 to m1/2 , until we find the smaller prime factor. The other prime factor can then be found by dividing m by the smaller prime. Obviously, this search-based method requires roughly m1/2 trial divisions to find a factor on a classical computer. The quantum search algorithm can be used to speed up this process. By definition, the action of the oracle upon input of the state |x is to divide m by x, and check to see if the division is exact, flipping the oracle qubit if this is so. Applying the quantum search algorithm with this oracle yields the smaller of the two prime factors with high probability. 250 Quantum search algorithms But to make the algorithm work, we need to construct an efficient circuit implementing the oracle. How to do this is an exercise in the techniques of reversible computation. We begin by defining the function f (x) ≡ 1 if x divides m, and f (x) = 0 otherwise; f (x) tells us whether the trial division is successful or not. Using the techniques of reversible computation discussed in Section 3.2.5, construct a classical reversible circuit which takes (x, q) – representing an input register initially set to x and a one bit output register initially set to q – to (x, q ⊕ f (x)), by modifying the usual (irreversible) classical circuit for doing trial division. The resource cost of this reversible circuit is the same to within a factor two as the irreversible classical circuit used for trial division, and therefore we regard the two circuits as consuming essentially the same resources. Furthermore, the classical reversible circuit can be immediately translated into a quantum circuit that takes |x|q to |x|q ⊕ f (x), as required of the oracle. The key point is that even without knowing the prime factors of m, we can explicitly construct an oracle which recognizes a solution to the search problem when it sees one. Using this oracle and the quantum search algorithm we can search the range 2 to m1/2 using O(m1/4 ) oracle consultations. That is, we need only perform the trial division roughly m1/4 times, instead of m1/2 times, as with the classical algorithm! The factoring example is conceptually interesting but not practical: there are classical algorithms for factoring which work much faster than searching through all possible divisors. However, it illustrates the general way in which the quantum search algorithm may be applied: classical algorithms which rely on search-based techniques may be sped up using the quantum search algorithm. Later in this chapter we examine scenarios where the quantum search algorithm offers a genuinely useful aid in speeding up the solution of NP-complete problems. 6.1.2 The procedure Schematically, the search algorithm operates as shown in Figure 6.1. The algorithm proper makes use of a single n qubit register. The internal workings of the oracle, including the possibility of it needing extra work qubits, are not important to the description of the quantum search algorithm proper. The goal of the algorithm is to find a solution to the search problem, using the smallest possible number of applications of the oracle. The algorithm begins with the computer in the state |0⊗n . The Hadamard transform is used to put the computer in the equal superposition state, 1 |ψ = 1/2 N N −1 x=0 |x . (6.4) The quantum search algorithm then consists of repeated application of a quantum subroutine, know as the Grover iteration or Grover operator, which we denote G. The Grover iteration, whose quantum circuit is illustrated in Figure 6.2, may be broken up into four steps: (1) Apply the oracle O. (2) Apply the Hadamard transform H ⊗n . (3) Perform a conditional phase shift on the computer, with every computational basis state except |0 receiving a phase shift of −1, |x → −(−1)δx0 |x. (6.5) The quantum search algorithm 251 (4) Apply the Hadamard transform H ⊗n . Exercise 6.1: Show that the unitary operator corresponding to the phase shift in the Grover iteration is 2|00| − I. Figure 6.1. Schematic circuit for the quantum search algorithm. The oracle may employ work qubits for its implementation, but the analysis of the quantum search algorithm involves only the n qubit register. Figure 6.2. Circuit for the Grover iteration, G. Each of the operations in the Grover iteration may be efficiently implemented on a quantum computer. Steps 2 and 4, the Hadamard transforms, require n = log(N ) operations each. Step 3, the conditional phase shift, may be implemented using the techniques of Section 4.3, using O(n) gates. The cost of the oracle call depends upon the specific application; for now, we merely need note that the Grover iteration requires only a single oracle call. It is useful to note that the combined effect of steps 2, 3, and 4 is H ⊗n (2|00| − I)H ⊗n = 2|ψψ| − I , (6.6) where |ψ is the equally weighted superposition of states, (6.4). Thus the Grover iteration, G, may be written G = (2|ψψ| − I)O. Exercise 6.2: Show that the operation (2|ψψ| − I) applied to a general state  k αk |k produces  −αk + 2α |k , k (6.7) 252 Quantum search algorithms  where α ≡ k αk /N is the mean value of the αk . For this reason, (2|ψψ| − I) is sometimes referred to as the inversion about mean operation. 6.1.3 Geometric visualization What does the Grover iteration do? We have noted that G = (2|ψψ| − I)O. In fact, we will show that the Grover iteration can be regarded as a rotation in the two-dimensional space spanned by the starting vector |ψ and the state consisting of a uniform superposition of solutions to the search problem. To see this it is useful to adopt the convention   that ′x indicates a sum over all x which are solutions to the search problem, and ′′x indicates a sum over all x which are not solutions to the search problem. Define normalized states ′′ 1 |x (6.8) |α ≡ √ N −M x ′ 1 |x . (6.9) |β ≡ √ M x Simple algebra shows that the initial state |ψ may be re-expressed as ) ) N −M M |ψ = |α + |β , N N (6.10) so the initial state of the quantum computer is in the space spanned by |α and |β. The effect of G can be understood in a beautiful way by realizing that the oracle operation O performs a reflection about the vector |α in the plane defined by |α and |β. That is, O(a|α + b|β) = a|α − b|β. Similarly, 2|ψψ| − I also performs a reflection in the plane defined by |α and |β, about the vector |ψ. And the product of two reflections is a rotation! This tells us that the state Gk |ψ remains in the space spanned by |α and |β for all k. It also gives us the rotation angle. Let cos θ/2 = (N − M )/N , so that |ψ = cos θ/2|α + sin θ/2|β. As Figure 6.3 shows, the two reflections which comprise G take |ψ to 3θ 3θ |α + sin |β , (6.11) 2 2 so the rotation angle is in fact θ. It follows that continued application of G takes the state to     2k + 1 2k + 1 (6.12) θ |α + sin θ |β . Gk |ψ = cos 2 2 G|ψ = cos Summarizing, G is a rotation in the two-dimensional space spanned by |α and |β, rotating the space by θ radians per application of G. Repeated application of the Grover iteration rotates the state vector close to |β. When this occurs, an observation in the computational basis produces with high probability one of the outcomes superposed in |β, that is, a solution to the search problem! An example illustrating the search algorithm with N = 4 is given in Box 6.1. Exercise 6.3: Show that in the |α, |β basis, we may write the Grover iteration as   cos θ − sin θ , (6.13) G= sin θ cos θ The quantum search algorithm 253 Figure 6.3. The action of a single Grover iteration, G: the state vector is rotated by θ towards the superposition |β of all solutions to the search problem. Initially, it is inclined at angle θ/2 from |α, a state orthogonal to |β. An oracle operation O reflects the state about the state |α, then the operation 2|ψ ψ| − I reflects it about |ψ. In the figure |α and |β are lengthened slightly to reduce clutter (all states should be unit vectors). After repeated Grover iterations, the state vector gets close to |β, at which point an observation in the computational basis outputs a solution to the search  probability. The remarkable efficiency of the algorithm occurs  problem with high because θ behaves like Ω( M/N ), so only O( N/M ) applications of G are required to rotate the state vector close to |β. where θ is a real number in the range 0 to π/2 (assuming for simplicity that M ≤ N/2; this limitation will be lifted shortly), chosen so that √ 2 M (N − M ) sin θ = . (6.14) N 6.1.4 Performance How many times must the Grover iteration be repeated in orderto rotate |ψ near |β? The initial stateof the system is |ψ = (N − M )/N |α + M/N |β, so rotating through arccos M/N radians takes the system to |β. Let CI(x) denote the integer closest to the real number x, where by convention we round halves down, CI(3.5) = 3, for example. Then repeating the Grover iteration    arccos M/N (6.15) R = CI θ times rotates |ψ to within an angle θ/2 ≤ π/4 of |β. Observation of the state in the computational basis then yields a solution to the search problem with probability at least one-half. Indeed, for specific values of M and N it is possible to achieve a  much higher M/N , and probability of success. For example, when M ≪ N we have θ ≈ sin θ ≈ 2  thus the angular error in the final state is at most θ/2 ≈ M/N, giving a probability of error of at most M/N . Note that R depends on the number of solutions M , but not 254 Quantum search algorithms on the identity of those solutions, so provided we know M we can apply the quantum search algorithm as described. In Section 6.3 we will explain how to remove even the need for a knowledge of M in applying the search algorithm. The form (6.15) is useful as an exact expression for the number of oracle calls used to perform the quantum search algorithm, but it would be useful to have a simpler expression summarizing the essential behavior of R. To achieve this, note from (6.15) that R ≤ ⌈π/2θ⌉, so a lower bound on θ will give an upper bound on R. Assuming for the moment that M ≤ N/2, we have  M θ θ ≥ sin = , (6.16) 2 2 N from which we obtain an elegant upper bound on the number of iterations required,    π N . (6.17) R≤ 4 M  That is, R = O( N/M ) Grover iterations (and thus oracle calls) must be performed in order to obtain a solution to the search problem with high probability, a quadratic improvement over the O(N/M ) oracle calls required classically. The quantum search algorithm is summarized below, for the case M = 1. Algorithm: Quantum search Inputs: (1) a black box oracle O which performs the transformation O|x|q = |x|q ⊕ f (x), where f (x) = 0 for all 0 ≤ x < 2n except x0 , for which f (x0 ) = 1; (2) n + 1 qubits in the state |0. Outputs: x0 . √ Runtime: O( 2n ) operations. Succeeds with probability O(1). Procedure: 1. |0⊗n |0   2n −1 1  |0 − |1 √ 2. → √ |x 2n x=0 2 R 3. → (2|ψ ψ| − I)O   |0 − |1 √ ≈ |x0  2 4. → x0 initial state apply H ⊗n to the first n qubits, and HX to the last qubit n   2 −1 |0 − |1 1  √ √ |x 2n x=0 2 apply √ the Grover iteration R ≈ ⌈π 2n /4⌉ times. measure the first n qubits Exercise 6.4: Give explicit steps for the quantum search algorithm, as above, but for the case of multiple solutions (1 < M < N/2). What happens when more than half the items are √ solutions to the search problem, that is, M ≥ N/2? From the expression θ = arcsin(2 M (N − M )/N ) (compare (6.14)) we see that the angle θ gets smaller as M varies from N/2 to N . As a result, the number of iterations needed by the search algorithm increases with M , for M ≥ N/2. Intuitively, Quantum search as a quantum simulation 255 this is a silly property for a search algorithm to have: we expect that it should become easier to find a solution to the problem as the number of solutions increases. There are at least two ways around this problem. If M is known in advance to be larger than N/2 then we can just randomly pick an item from the search space, and then check that it is a solution using the oracle. This approach has a success probability at least one-half, and only requires one consultation with the oracle. It has the disadvantage that we may not know the number of solutions M in advance. In the case where it isn’t known whether M ≥ N/2, another approach can be used. This approach is interesting in its own right, and has a useful application to simplify the analysis of the quantum algorithm for counting the number of solutions to the search problem, as presented in Section 6.3. The idea is to double the number of elements in the search space by adding N extra items to the search space, none of which are solutions. As a consequence, less than half the items in the new search space are solutions. This is effected by adding a single qubit |q to the search index, doubling the number of items to be searched to 2N . A new augmented oracle O′ is constructed which marks an item only if it is a solution to the search problem and the extra bit is set to zero. In Exercise 6.5 you will explain how the oracle O′ may be constructed using one call to O. The new search problem has only M solutions out of 2N entries,  so running the search algorithm with the new oracle  O′ we see that at most R = π/4 2N/M calls to O′ are required, and it follows that O( N/M ) calls to O are required to perform the search. Exercise 6.5: Show that the augmented oracle O′ may be constructed using one application of O, and elementary quantum gates, using the extra qubit |q. The quantum search algorithm may be used in a wide variety of ways, some of which will be explored in subsequent sections. The great utility of the algorithm arises because we do not assume any particular structure to the search problems being performed. This is the great advantage of posing the problem in terms of a ‘black box’ oracle, and we adopt this point of view whenever convenient through the remainder of this chapter. In practical applications, of course, it is necessary to understand how the oracle is being implemented, and in each of the practical problems we concern ourselves with an explicit description of the oracle implementation is given. Exercise 6.6: Verify that the gates in the dotted box in the second figure of Box 6.1 perform the conditional phase shift operation 2|0000| − I, up to an unimportant global phase factor. 6.2 Quantum search as a quantum simulation The correctness of the quantum search algorithm is easily verified, but it is by no means obvious how one would dream up such an algorithm from a state of ignorance. In this section we sketch a heuristic means by which one can ‘derive’ the quantum search algorithm, in the hope of lending some intuition as to the tricky task of quantum algorithm design. As a useful side effect we also obtain a deterministic quantum search algorithm. Because our goal is to obtain insight rather than generality, we assume for the sake of simplicity that the search problem has exactly one solution, which we label x. Our method involves two steps. First, we make a guess as to a Hamiltonian which 256 Quantum search algorithms Box 6.1: Quantum search: a two-bit example Here is an explicit example illustrating how the quantum search algorithm works on a search space of size N = 4. The oracle, for which f (x) = 0 for all x except x = x0 , in which case f (x0 ) = 1, can be taken to be one of the four circuits                 corresponding to x0 = 0, 1, 2, or 3 from left to right, where the top two qubits carry the query x, and the bottom qubit carries the oracle’s response. The quantum circuit which performs the initial Hadamard transforms and a single Grover iteration G is Initially, the top two qubits are prepared in the state |0, and the bottom one as |1. The gates in the dotted box perform the conditional phase shift operation 2|0000| − I. How many times must we repeat G to obtain x0 ? From Equation (6.15), using M = 1, we find that less than one iteration is required. It turns out that because θ = π/3 in (6.14), only exactly one iteration is required, to perfectly obtain x0 , in this special case. In the geometric picture of Figure 6.3, our initial state |ψ = (|00 + |01 + |10 + |11)/2 is 30◦ from |α, and a single rotation by θ = 60◦ moves |ψ to |β. You can confirm for yourself directly, using the quantum circuits, that measurement of the top two qubits gives x0 , after using the oracle only once. In contrast, a classical computer – or classical circuit – trying to differentiate between the four oracles would require on average 2.25 oracle queries! solves the search problem. More precisely, we write down a Hamiltonian H which depends on the solution x and an initial state |ψ such that a quantum system evolving according to H will change from |ψ to |x after some prescribed time. Once we’ve found such a Hamiltonian and initial state, we can move on to the second step, which is to attempt to simulate the action of the Hamiltonian using a quantum circuit. Amazingly, following this procedure leads very quickly to the quantum search algorithm! We have already met this two-part procedure while studying universality in quantum circuits, in Problem 4.3, and it also serves well in the study of quantum searching. We suppose that the algorithm starts with the quantum computer in a state |ψ. We’ll tie down what |ψ should be later on, but it is convenient to leave |ψ undetermined until we understand the dynamics of the algorithm. The goal of quantum searching is to Quantum search as a quantum simulation 257 change |ψ into |x or some approximation thereof. What Hamiltonians might we guess do a good job of causing such an evolution? Simplicity suggests that we should guess a Hamiltonian constructed entirely from the terms |ψ and |x. Thus, the Hamiltonian must be a sum of terms like |ψψ|, |xx|, |ψx| and |xψ|. Perhaps the simplest choices along these lines are the Hamiltonians: H = |xx| + |ψψ| H = |xψ| + |ψx|. (6.18) (6.19) It turns out that both these Hamiltonians lead to the quantum search algorithm! For now, however, we restrict ourselves to analyzing the Hamiltonian in Equation (6.18). Recall from Section 2.2.2 that after a time t, the state of a quantum system evolving according to the Hamiltonian H and initially in the state |ψ is given by exp(−iHt)|ψ . (6.20) Intuitively it looks pretty good: for small t the effect of the evolution is to take |ψ to (I − itH)|ψ = (1 − it)|ψ − itx|ψ|x. That is, the |ψ vector is rotated slightly, into the |x direction. Let’s actually do a full analysis, with the goal being to determine whether there is a t such that exp(−iHt)|ψ = |x. Clearly we can restrict the analysis to the two-dimensional space spanned by |x and |ψ. Performing the Gram–Schmidt procedure, we can find |y such that |x, |y forms an orthonormal basis for this space, and |ψ = α|x + β|y, for some α, β such that α2 + β 2 = 1, and for convenience we have chosen the phases of |x and |y so that α and β are real and non-negative. In the |x, |y basis we have      2  1 + α2 αβ α αβ 1 0 = I + α(βX + αZ) . (6.21) = + H= αβ 1 − α2 αβ β 2 0 0 Thus  exp(−iHt)|ψ = exp(−it) cos(αt)|ψ − i sin(αt) (βX + αZ) |ψ . (6.22) cos(αt)|ψ − i sin(αt)|x . (6.23) The global phase factor exp(−it) can be ignored, and simple algebra shows that (βX + αZ)|ψ = |x, so the state of the system after a time t is Thus, observation of the system at time t = π/2α yields the result |x with probability one: we have found a solution to the search problem! Unfortunately, the time of the observation depends on α, the component of |ψ in the |x direction, and thus on x, which is what we are trying to determine. The obvious solution is to attempt to arrange α to be the same for all |x, that is, to choose |ψ to be the uniform superposition state  |x . (6.24) |ψ = √x N √ Making this choice gives α = 1/ N for all x, and thus the time of observation t = √ π N /2 does not depend on knowing the value of x. Furthermore, the state (6.24) has the obvious advantage that we already know how to prepare such a state by doing a Hadamard transform. We now know that the Hamiltonian (6.18) rotates the vector |ψ to |x. Can we find 258 Quantum search algorithms a quantum circuit to simulate the Hamiltonian (6.18), and thus obtain a quantum search algorithm? Applying the method of Section 4.7, we see that a natural way of simulating H is to alternately simulate the Hamiltonians H1 ≡ |xx| and H2 ≡ |ψψ| for short time increments Δt. These Hamiltonians are easily simulated using the methods of Chapter 4, as illustrated in Figures 6.4 and 6.5. Exercise 6.7: Verify that the circuits shown in Figures 6.4 and 6.5 implement the operations exp(−i|xx|Δt) and exp(−i|ψψ|Δt), respectively, with |ψ as in (6.24). Figure 6.4. Circuit implementing the operation exp(−i|x x|Δt) using two oracle calls.                         Figure 6.5. Circuit implementing the operation exp(−i|ψ ψ|Δt), for |ψ as in (6.24). The number of oracle calls required by the quantum simulation is determined by how small a time-step is required to obtain reasonably accurate results. Suppose we use a 2 number of steps required simulation step √ √ √ of length Δt that is accurate to O(Δt ). The total is t/Δt = Θ( N /Δt), and thus the cumulative error is O(Δt2 × N /Δt) = O(Δt N ). To obtain a reasonably high success √ probability we need the error to be O(1), which means that we must choose Δt = Θ(1/ N ) which results in a number of oracle calls that scales like O(N ) – no better than the classical solution! What if we use a more accurate method of quantum simulation, say one that is accurate to O(Δt3 )? The cumulative error in this √ case is O(Δt2 N ), and thus to achieve a reasonable success probability we need to choose Δt = Θ(N −1/4 ), resulting in a total number of oracle calls O(N 3/4 ), which is a distinct improvement over the classical situation, although still not as good as achieved by the quantum search algorithm of Section 6.1! In general going to a more accurate quantum simulation technique results in a reduction in the number of oracle calls required to perform the simulation: Exercise 6.8: Suppose the simulation step is performed to an accuracy O(Δtr ). Show Quantum search as a quantum simulation 259 that the number of oracle calls required to simulate H to reasonable accuracy is O(N r/2(r−1) ). Note that as r becomes large the exponent of N approaches 1/2. We have been analyzing the accuracy of the quantum simulation of the Hamiltonian (6.18) using general results on quantum simulation from Section 4.7. Of course, in this instance we are dealing with a specific Hamiltonian, not the general case, which suggests that it might be interesting to calculate explicitly the effect of a simulation step of time Δt, rather than relying on the general analysis. We can do this for any specific choice of simulation method – it can be a little tedious to work out the effect of the simulation step, but it is essentially a straightforward calculation. The obvious starting point is to explicitly calculate the action of the lowest-order simulation techniques, that is, to calculate one or both of exp(−i|xx|Δt) exp(−i|ψψ|Δt) or exp(−i|ψψ|Δt) exp(−i|xx|Δt). The results are essentially the same in both instances; we will focus on the study of U (Δt) ≡ exp(−i|ψψ|Δt) exp(−i|xx|Δt). U (Δt) clearly acts non-trivially only in the space spanned by |xx| and |ψψ|, so we restrict ourselves to that space, working in the basis |x, |y, where |y is defined as before. Note that in this representation |xx| = (I + Z)/2 = (I + ẑ · σ)/2, where ẑ ≡ (0, 0, 1) is the unit vector in the z direction, and |ψψ| = (I + ψ · σ)/2, where ψ = (2αβ, 0, (α2 − β 2 )) (recall that this is the Bloch vector representation; see Section 4.2). A simple calculation shows that up to an unimportant global phase factor,       Δt Δt 2 2 − sin U (Δt) = cos ψ · ẑ I 2 2         Δt ψ + ẑ Δt ψ × ẑ Δt −2i sin cos ·σ. (6.25) + sin 2 2 2 2 2 Exercise 6.9: Verify Equation (6.25). (Hint: see Exercise 4.15.) Equation (6.25) implies that U (Δt) is a rotation on the Bloch sphere about an axis of rotation r defined by     Δt ψ + ẑ Δt ψ × ẑ r = cos + sin , (6.26) 2 2 2 2 and through an angle θ defined by       θ Δt Δt = cos2 − sin2 cos ψ · ẑ, 2 2 2 which simplifies upon substitution of ψ · ẑ = α2 − β 2 = (2/N − 1) to     2 θ Δt cos =1− . sin2 2 N 2 (6.27) (6.28) Note that ψ · r = ẑ · r, so both |ψψ| and |xx| lie on the same circle of revolution about the r axis on the Bloch sphere. Summarizing, the action of U (Δt) is to rotate |ψψ| about the r axis, through an angle θ for each application of U (Δt), as illustrated in Figure 6.6. We terminate the procedure when enough rotations have been performed to rotate |ψψ| near to the solution |xx|. Now initially we imagined that Δt was small, since we were considering the case of quantum simulation, but Equation (6.28) shows 260 Quantum search algorithms that the smart thing to do is to choose Δt = π, in order to maximize the rotation angle θ. If we√do this, then we obtain cos(θ/2) = 1 − 2/N , which for large N corresponds √ to θ ≈ 4/ N , and the number of oracle calls required to find the solution |x is O( N ), just as for the original quantum search algorithm. Figure 6.6. Bloch sphere diagram showing the initial state ψ rotating around the axis of rotation r going toward the final state ẑ. Indeed, if we make the choice Δt = π, then this ‘quantum simulation’ is in fact identical with the original quantum search algorithm, since the operators applied in the quantum simulation are exp(−iπ|ψψ|) = I − 2|ψψ| and exp(−iπ|xx|) = I − 2|xx|, and up to a global phase shift these are identical to the steps making up the Grover iteration. Viewed this way, the circuits shown in Figures 6.2 and 6.3 for the quantum search algorithm are simplifications of the circuits shown in Figures 6.4 and 6.5 for the simulation, in the special case Δt = π! Exercise 6.10: Show that by choosing√Δt appropriately we can obtain a quantum search algorithm which uses O( N ) queries, and for which the final state is |x exactly, that is, the algorithm works with probability 1, rather than with some smaller probability. We have re-derived the quantum search algorithm from a different point of view, the point of view of quantum simulation. Why did this approach work? Might it be used to find other fast quantum algorithms? We can’t answer these questions in any definitive way, but the following few thoughts may be of some interest. The basic procedure used is four-fold: (1) specify the problem to be solved, including a description of the desired input and output from the quantum algorithm; (2) guess a Hamiltonian to solve the problem, and verify that it does in fact work; (3) find a procedure to simulate the Hamiltonian; and (4) analyze the resource costs of the simulation. This is different from the more conventional approach in two respects: we guess a Hamiltonian, rather than a quantum circuit, and there is no analogue to the simulation step in the conventional approach. The more important of these two differences is the first. There is a great deal of freedom in specifying a quantum circuit to solve a problem. While that freedom is, in part, responsible Quantum counting 261 for the great power of quantum computation, it makes searching for good circuits rather difficult. By contrast, specifying a Hamiltonian is a much more constrained problem, and therefore affords less freedom in the solution of problems, but those same constraints may in fact make it much easier to find an efficient quantum algorithm to solve a problem. We’ve seen this happen for the quantum search algorithm, and perhaps other quantum algorithms will be discovered by this method; we don’t know. What seems certain is that this ‘quantum algorithms as quantum simulations’ point of view offers a useful alternative viewpoint to stimulate in the development of quantum algorithms. Exercise 6.11: (Multiple solution continuous quantum search) Guess a Hamiltonian with which one may solve the continuous time search problem in the case where the search problem has M solutions. Exercise 6.12: (Alternative Hamiltonian for quantum search) Suppose H = |xψ| + |ψx| . (6.29) (1) Show that it takes time O(1) to rotate from the state |ψ to the state |x, given an evolution according to the Hamiltonian H. (2) Explain how a quantum simulation of the Hamiltonian H may be performed, and determine the number of oracle calls your simulation technique requires to obtain the solution with high probability. 6.3 Quantum counting How quickly can we determine the number of solutions, M , to an N item search problem, if M is not known in advance? Clearly, on a classical computer it takes Θ(N ) consultations with an oracle to determine M . On a quantum computer it is possible to estimate the number of solutions much more quickly than is possible on a classical computer by combining the Grover iteration with the phase estimation technique based upon the quantum Fourier transform (Chapter 5). This has some important applications. First, if we can estimate the number of solutions quickly then it is also possible to find a solution quickly, even if the number of solutions is unknown, by first counting the number of solutions, and then applying the quantum search algorithm to find a solution. Second, quantum counting allows us to decide whether or not a solution even exists, depending on whether the number of solutions is zero, or non-zero. This has applications, for example, to the solution of NP-complete problems, which may be phrased in terms of the existence of a solution to a search problem. Exercise 6.13: Consider a classical algorithm for the counting problem which samples uniformly and independently k times from the search space, and let X1 , . . . , Xk be the results of the oracle calls, that is, Xj = 1 if the jth oracle call revealed a solution to the problem, and Xj = 0 if the jth oracle call did not reveal a  solution to the problem. This algorithm returns the estimate S ≡ N × j Xj /k for the number of solutions  to the search problem. Show that the standard deviation in S is ΔS = M (N − M )/k. Prove that to obtain √ a probability at least 3/4 of estimating M correctly to within an accuracy M for all values of M we must have k = Ω(N ). 262 Quantum search algorithms Exercise 6.14: Prove that any classical counting algorithm with √ a probability at least 3/4 for estimating M correctly to within an accuracy c M for some constant c and for all values of M must make Ω(N ) oracle calls. Quantum counting is an application of the phase estimation procedure of Section 5.2 to estimate the eigenvalues of the Grover iteration G, which in turn enables us to determine the number of solutions M to the search problem. Suppose |a and |b are the two eigenvectors of the Grover iteration in the space spanned by |α and |β. Let θ be the angle of rotation determined by the Grover iteration. From Equation (6.13) we see that the corresponding eigenvalues are eiθ and ei(2π−θ) . For ease of analysis it is convenient to assume that the oracle has been augmented, as described in Section 6.1, expanding the size of the search space to 2N , and ensuring that sin2 (θ/2) = M/2N . The phase estimation circuit used for quantum counting is shown in Figure 6.7. The function of the circuit is to estimate θ to m bits of accuracy, with a probability of success at least 1 − ǫ. The first register contains t ≡ m + ⌈log(2 + 1/2ǫ)⌉ qubits, as per the phase estimation algorithm, and the second register contains n + 1 qubits, enough to implement the Grover iteration on the augmented search space. The state of the second register  is initialized to an equal superposition of all possible inputs x |x by a Hadamard transform. As we saw in Section 6.1 this state is a superposition of the eigenstates |a and |b, so by the results of Section 5.2 the circuit in Figure 6.7 gives us an estimate of θ or 2π − θ accurate to within |Δθ| ≤ 2−m , with probability at least 1 − ǫ. Furthermore, an estimate for 2π − θ is clearly equivalent to an estimate of θ with the same level of accuracy, so effectively the phase estimation algorithm determines θ to an accuracy 2−m with probability 1 − ǫ. Figure 6.7. Circuit for performing approximate quantum counting on a quantum computer. Speeding up the solution of NP-complete problems 263 Using the equation sin2 (θ/2) = M/2N and our estimate for θ we obtain an estimate of the number of solutions, M . How large an error, ΔM , is there in this estimate? +    + θ ++ |ΔM | ++ 2 θ + Δθ 2 (6.30) − sin = +sin 2N 2 2 +      +    + + + θ + Δθ θ +sin θ + Δθ − sin θ + . + sin (6.31) = sin + 2 2 2 2 + Calculus implies that | sin((θ +Δθ)/2)−sin(θ/2)| ≤ |Δθ|/2, and elementary trigonometry that | sin((θ + Δθ)/2)| < sin(θ/2) + |Δθ|/2, so     |Δθ| |Δθ| θ |ΔM | + < 2 sin . (6.32) 2N 2 2 2 Substituting sin2 (θ/2) = M/2N and |Δθ| ≤ 2−m gives our final estimate for the error in our estimate of M , √  N 2M N + m+1 2−m . (6.33) |ΔM | < 2 As an example, suppose we choose m √ = ⌈n/2⌉ + 1, and ǫ = 1/6. Then we √ have t = N ) Grover iterations, and thus Θ( N ) oracle ⌈n/2⌉ + 3, so the algorithm requires Θ(  √ calls. By (6.33) our accuracy is |ΔM | < M/2 + 1/4 = O( M ). Compare this with Exercise 6.14, according to which it would have required O(N ) oracle calls to obtain a similar accuracy on a classical computer. Indeed, the example just described serves double duty as an algorithm for determining whether a solution to the search problem exists at all, that is, whether M = 0 or M = 0. If M = 0 then we have |ΔM | < 1/4, so the algorithm must produce the estimate zero with probability at least 5/6. Conversely, if M = 0 then it is easy to verify that the estimate for M is not equal to 0 with probability at least 5/6. Another application of quantum counting is to find a solution to a search problem when the number M of solutions is unknown. The difficulty in applying the quantum search algorithm as described in Section 6.1 is that the number of times to repeat the Grover iteration, Equation (6.15), depends on knowing the number of solutions M . This problem can be alleviated by using the quantum counting algorithm to first estimate θ and M to high accuracy using phase estimation, and then to apply the quantum search algorithm as in Section 6.1, repeating the Grover iteration a number of times determined by (6.15), with the estimates for θ and M obtained by phase estimation substituted to determine R. The angular error in this case is at most π/4(1 + |Δθ|/θ), so choosing m = ⌈n/2⌉ + 1 as before gives an angular error at most π/4 × 3/2 =√ 3π/8, which corresponds to a success probability of at least cos2 (3π/8) = 1/2 − 1/2 2 ≈ 0.15 for the search algorithm. If the probability of obtaining an estimate of θ this accurate is 5/6, as in our earlier example, then the total probability of obtaining a solution to the search problem is 5/6 × cos2 (3π/8) ≈ 0.12, a probability which may quickly be boosted close to 1 by a few repetitions of the combined counting–search procedure. 6.4 Speeding up the solution of NP-complete problems Quantum searching may be used to speed up the solution to problems in the complexity class NP (Section 3.2.2). We already saw, in Section 6.1.1, how factoring can be sped 264 Quantum search algorithms up; here, we illustrate how quantum search can be applied to assist the solution of the Hamiltonian cycle problem ( ). Recall that a Hamiltonian cycle of a graph is a simple problem is to determine whether a cycle which visits every vertex of the graph. The given graph has a Hamiltonian cycle or not. This problem belongs to the class of NPcomplete problems, widely believed (but not yet proved) to be intractable on a classical computer. is to perform a search through all possible orderings A simple algorithm to solve of the vertices: (1) Generate each possible ordering (v1 , . . . , vn ) of vertices for the graph. Repetitions will be allowed, as they ease the analysis without affecting the essential result. (2) For each ordering check to see whether it is a Hamiltonian cycle for the graph. If not, continue checking the orderings. Since there are nn = 2n log n possible orderings of the vertices which must be searched, this algorithm requires 2n log n checks for the Hamiltonian cycle property in the worst case. Indeed, any problem in NP may be solved in a similar way: if a problem of size n has witnesses which can be specified using w(n) bits, where w(n) is some polynomial in n, then searching through all 2w(n) possible witnesses will reveal a solution to the problem, if one exists. The quantum search algorithm may be used to speed up this algorithm by increasing the speed of the search. Specifically, we use the algorithm described in Section 6.3 to determine whether a solution to the search problem exists. Let m ≡ ⌈log n⌉. The search space for the algorithm will be represented by a string of mn qubits, each block of m qubits being used to store the index to a single vertex. Thus we can write the computational basis states as |v1 , . . . , vn , where each |vi  is represented by the appropriate string of m qubits, for a total of nm qubits. The oracle for the search algorithm must apply the transformation: * |v1 , . . . , vn  if v1 , . . . , vn is not a Hamiltonian cycle (6.34) O|v1 , . . . , vn  = −|v1 , . . . , vn  if v1 , . . . , vn is a Hamiltonian cycle Such an oracle is easy to design and implement when one has a description of the graph. One takes a polynomial size classical circuit recognizing Hamiltonian cycles in the graph, and converts it to a reversible circuit, also of polynomial size, computing the transformation (v1 , . . . , vn , q) → (v1 , . . . , vn , q ⊕ f (v1 , . . . , vn )), where f (v1 , . . . , vn ) = 1 if v1 , . . . , vn is a Hamiltonian cycle, and is 0 otherwise. Implementing the corresponding √ circuit on a quantum computer with the final qubit starting in the state (|0 − |1)/ 2 gives the desired transformation. We won’t explicitly describe the details here, except to note the key point: the oracle requires a number of gates polynomial in n, as a direct consequence of the fact that Hamiltonian cycles can be recognized using polynomially many gates classically. Applying the variant of the search algorithm which determines whether a solution to the search problem exists (Section 6.3) we see that it takes O(2mn/2 ) = O(2n⌈log n⌉/2 ) applications of the oracle to determine whether a Hamiltonian cycle exists. When one does exist it is easy to apply the combined counting–search algorithm to find an example of such a cycle, which can then be exhibited as a witness for the problem. To summarize: • The classical algorithm requires O p(n)2n⌈log n⌉ operations to determine whether a Quantum search of an unstructured database 265 Hamiltonian cycle exists, where the polynomial factor p(n) is overhead predominantly due to the implementation of the oracle, that is, the gates checking whether a candidate path is Hamiltonian or not. The dominant effect in determining the resources required is the exponent in 2n⌈log n⌉ . The classical algorithm is deterministic, that is, it succeeds with probability 1. • The quantum algorithm requires O p(n)2n⌈log n⌉/2 operations to determine whether a Hamiltonian cycle exists. Once again, the polynomial p(n) is overhead predominantly due to implementation of the oracle. The dominant effect in determining the resources required is the exponent in 2n⌈log n⌉/2 . There is a constant probability (say, 1/6) of error for the algorithm, which may be reduced to 1/6r by r repetitions of the algorithm. • Asymptotically the quantum algorithm requires the square root of the number of operations the classical algorithm requires. 6.5 Quantum search of an unstructured database Suppose somebody gives you a list containing one thousand flower names, and asks you where ‘Perth Rose’ appears on the list. If the flower appears exactly once on the list, and the list is not ordered in any obvious way, then you will need to examine five hundred names, on average, before you find the ‘Perth Rose’. Might it be possible to speed up this kind of database searching using the quantum search algorithm? Indeed, the quantum search algorithm is sometimes referred to as a database search algorithm, but its usefulness for that application is limited, and based on certain assumptions. In this section we take a look at how the quantum search algorithm can conceptually be used to search an unstructured database, in a setting rather like that found on a conventional computer. The picture we construct will clarify what resources are required to enable a quantum computer to search classical databases. Suppose we have a database containing N ≡ 2n items, each of length l bits. We will label these items d1 , . . . , dN . We want to determine where a particular l bit string, s, is in the database. A classical computer, used to solve this problem, is typically split into two parts, illustrated in Figure 6.8. One is the central processing unit, or CPU, where data manipulation takes place, using a small amount of temporary memory. The second part is a large memory which stores the database in a string of 2n blocks of l bit cells. The memory is assumed to be passive, in the sense that it is not capable of processing data on its own. What is possible is to LOAD data from memory into the CPU, and STORE data from the CPU in memory, and to do manipulations of the data stored temporarily in the CPU. Of course, classical computers may be designed along different lines, but this CPU–memory split is a popular and common architecture. To find out where a given string s is in the unstructured database, the most efficient classical algorithm is as follows. First, an n-bit index to the database elements is set up in the CPU. We assume that the CPU is large enough to store the n ≡ ⌈log N ⌉ bit index. The index starts out at zero, and is incremented by one on each iteration of the algorithm. At each iteration, the database entry corresponding to the index is loaded into the CPU, and compared to the string which is being searched for. If they are the same, the algorithm outputs the value of the index and halts. If not, the algorithm continues incrementing the index. Obviously, this algorithm requires that items be loaded from 266 Quantum search algorithms $""""""%""""""&  ) / / /     Figure 6.8. Classical database searching on a computer with distinct central processing unit (CPU) and memory. Only two operations may be directly performed on the memory – a memory element may be LOADed into the CPU, or an item from the CPU may be STOREd in memory. memory 2n times in the worst case. It is also clear that this is the most efficient possible algorithm for solving the problem in this model of computation. How efficiently can an analogous algorithm be implemented on a quantum computer? And, even if a quantum speedup is possible, how useful is such an algorithm? We show first that a speedup is possible, and then return to the question of the utility of such an algorithm. Suppose our quantum computer consists of two units, just like the classical computer, a CPU and a memory. We assume that the CPU contains four registers: (1) an n qubit ‘index’ register initialized to |0; (2) an l qubit register initialized to |s and remaining in that state for the entire computation; (3) an l√qubit ‘data’ register initialized to |0; and (4) a 1 qubit register initialized to (|0 − |1)/ 2. The memory unit can be implemented in one of two ways. The simplest is a quantum memory containing N = 2n cells of l qubits each, containing the database entries |dx . The second implementation is to implement the memory as a classical memory with N = 2n cells of l bits each, containing the database entries dx . Unlike a traditional classical memory, however, it can be addressed by an index x which can be in a superposition of multiple values. This quantum index allows a superposition of cell values to be LOADed from memory. Memory access works in the following way: if the CPU’s index register is in the state |x and the data register is in the state |d, then the contents dx of the xth memory cell are added to the data register: |d → |d ⊕ dx , where the addition is done bitwise, modulo 2. First, let us see how this capability is used to perform quantum search, then we shall discuss how such a memory might be physically constructed. The key part of implementing the quantum search algorithm is realization of the oracle, which must flip the phase of the index which locates s in the memory. Suppose the CPU is in the state |x|s|0 |0 − |1 √ . 2 (6.35) Applying the LOAD operation puts the computer in the state |x|s|dx  |0 − |1 √ . 2 (6.36) Now the second and third registers are compared, and if they are the same, then a bit Quantum search of an unstructured database 267 flip is applied to register 4; otherwise nothing is changed. The effect of this operation is ⎧ |0 − |1 ⎪ ⎪ ⎨ −|x|s|dx  √ |0 − |1 2 |x|s|dx  √ → |0 − |1 ⎪ 2 ⎪ ⎩ |x|s|dx  √ 2 if dx = s (6.37) if dx = s. The data register is then restored to the state |0 by performing the LOAD operation again. The total action of the oracle thus leaves registers 2, 3 and 4 unaffected, and unentangled with register 1. Thus, the overall effect is to take the state of register 1 from |x to −|x if dx = s, and to leave the register alone otherwise. Using the oracle implemented in this way, we may apply√the quantum search algorithm to determine the location of s in the database, using O( N ) LOAD operations, compared to the N LOAD operations that were required classically. In order for the oracle to function correctly on superpositions it seems at first glance as though the memory needs to be quantum mechanical. In fact, as we noted above, with some caveats the memory can actually be implemented classically, which likely makes it much more resistant to the effects of noise. But a quantum addressing scheme is still needed; a conceptual picture illustrating how this might be done is shown in Figure 6.9. The principle of operation is a means by which the binary encoded state of the quantum index (where 0 to 2n − 1 is represented by n qubits) is translated into a unary encoding (where 0 to 2n − 1 is represented by the position of a single probe within 2n possible locations) which addresses the classical database. The database effects a change on a degree of freedom within the probe which is unrelated to its position. The binary to unary encoding is then reversed, leaving the data register with the desired contents. Are there practical instances in which the quantum search algorithm could be useful for searching classical databases? Two distinct points may be made. First, databases are not ordinarily unstructured. Simple databases, like one containing flower names discussed in the introduction to this section, may be maintained in alphabetical order, such that a binary search can be used to locate an item in time which is O(log(N )) for an N -element database. However, some databases may require a much more complex structure, and although sophisticated techniques exist to optimize classical searches, given queries of a sufficiently complex or unanticipated nature, a predetermined structure may not be of assistance, and the problem can be regarded as being essentially the unstructured database search problem we discussed. Second, for a quantum computer to be able to search a classical database, a quantum addressing scheme is required. The scheme we depicted requires O(N log N ) quantum switches – about the same amount of hardware as would be required to store the database itself. Presumably, these switches may someday be as simple and inexpensive as classical memory elements, but if that is not the case, then building a quantum computer to perform a quantum search may not be economically advantageous, compared with using classical computing hardware distributed over the memory elements. Given these considerations, it appears that the principle use of quantum search algorithms will not be in searching classical databases. Rather, their use will probably be in searching for solutions to hard problems, as discussed in the last section, such as the Hamiltonian cycle, traveling salesman, and satisfiability problems. 268 Quantum search algorithms 01 03 03 02 02 0 0 0 0 0 0 0 0 0 0 ////  2 3 0 1 7 0 8 24 0 0 25 26 0 0 3 0 0 02 3 32 0 0 02 03 03 01 Figure 6.9. Conceptual diagram of a 32 cell classical memory with a five qubit quantum addressing scheme. Each circle represents a switch, addressed by the qubit inscribed within. For example, when |x4  = |0, the corresponding switch routes the√input qubit towards the left; when |x4  = |1 the switch routes the input qubit to the right. If |x4  = (|0 + |1)/ 2, then an equal superposition of both routes is taken. The data register qubits enter at the top of the tree, and are routed down to the database, which changes their state according to the contents of the memory. The qubits are then routed back into a definite position, leaving them with the retrieved information. Physically, this could be realized using, for example, single photons for the data register qubits, which are steered using nonlinear interferometers (Chapter 7). The classical database could be just a simple sheet of plastic in which a ‘zero’ (illustrated as white squares) transmits light unchanged, and a ‘one’ (shaded squares) shifts the polarization of the incident light by 90◦ . Optimality of the search algorithm 269 6.6 Optimality of the search algorithm We have shown √ that a quantum computer can search N items, consulting the search oracle only O( N ) times. √ We now prove that no quantum algorithm can perform this task using fewer than Ω( N ) accesses to the search oracle, and thus the algorithm we have demonstrated is optimal. Suppose the algorithm starts in the state |ψ. For simplicity, we prove the lower bound for the case where the search problem has a single solution, x. To determine x we are allowed to apply an oracle Ox which gives a phase shift of −1 to the solution |x and leaves all other states invariant, Ox = I − 2|xx|. We suppose the algorithm starts in a state |ψ and applies the oracle Ox exactly k times, with unitary operations U1 , U2 , . . . , Uk interleaved between the oracle operations. Define |ψkx  ≡ Uk Ox Uk−1 Ox . . . U1 Ox |ψ (6.38) |ψk  ≡ Uk Uk−1 . . . U1 |ψ . (6.39) That is, |ψk  is the state that results when the sequence of unitary operations U1 , . . . , Uk is carried out, without the oracle operations. Let |ψ0  = |ψ. Our goal will be to bound the quantity Dk ≡ x  ψkx − ψk 2 , (6.40) where we use the notation ψ for |ψ as a convenience to simplify formulas. Intuitively, Dk is a measure of the deviation after k steps caused by the oracle, from the evolution that would otherwise have ensued. If this quantity is small, then all the states |ψkx  are roughly the same, and it is not possible to correctly identify x with high probability. The strategy of the proof is to demonstrate two things: (a) a bound on Dk that shows it can grow no faster than O(k2 ); and (b) a proof that Dk must be Ω(N ) if it is to be possible to distinguish N alternatives. Combining these two results gives the desired lower bound. First, we give an inductive proof that Dk ≤ 4k 2 . This is clearly true for k = 0, where Dk = 0. Note that (6.41) x  Ox ψkx − ψk 2 (6.42) x  Ox (ψkx − ψk ) + (Ox − I)ψk 2 . Dk+1 = = Applying b+c2 ≤ b2 +2b c+c2 with b ≡ Ox (ψkx −ψk ) and c ≡ (Ox −I)ψk = −2x|ψk |x, gives Dk+1 ≤ x ψkx − ψk 2 + 4ψkx − ψk  |x|ψk | + 4|ψk |x|2 . (6.43) Applying the Cauchy–Schwarz inequality to the second term on the right hand side, and  noting that x |x|ψk |2 = 1 gives Dk+1 ≤ Dk + 4  x ψkx − ψk 2  ≤ Dk + 4 Dk + 4.  12  x′ |ψk |x′ |2  12 +4 (6.44) (6.45) 270 Quantum search algorithms By the inductive hypothesis Dk ≤ 4k 2 we obtain Dk+1 ≤ 4k 2 + 8k + 4 = 4(k + 1)2 , (6.46) which completes the induction. To complete the proof we need to show that the probability of success can only be high if Dk is Ω(N ). We suppose |x|ψkx |2 ≥ 1/2 for all x, so that an observation yields a solution to the search problem with probability at least one-half. Replacing |x by eiθ |x does not change the probability of success, so without loss of generality we may assume that x|ψkx  = |x|ψkx |, and therefore √ (6.47) ψkx − x2 = 2 − 2|x|ψkx | ≤ 2 − 2. √  Defining Ek ≡ x ψkx − x2 we see that Ek ≤ (2 − 2)N . We are now in position to  prove that Dk is Ω(N ). Defining Fk ≡ x x − ψk 2 we have x (ψkx − x) + (x − ψk )2 x ψkx − x2 − 2 Dk = ≥ = Ek + Fk − 2 x ψkx − x x − ψk  + ψkx − x x − ψk  . x (6.48) x x − ψk 2 (6.49) (6.50) √  Applying the Cauchy–Schwarz inequality gives x ψkx − x x − ψk  ≤ Ek Fk , so we have    (6.51) Dk ≥ Ek + Fk − 2 Ek Fk = ( Fk − Ek )2 . √ In Exercise √ 6.15 you will show that Fk ≥ 2N − 2 N . Combining this with the result Ek ≤ (2 − 2)N gives Dk ≥ cN for sufficiently large N , where c is any constant less √ √ than ( 2 − 2 − 2)2 ≈ 0.42. Since Dk ≤ 4k 2 this implies that  (6.52) k ≥ cN/4 . Summarizing, to achieve a probability of success√at least one-half for finding a solution to the search problem we must call the oracle Ω( N ) times. Exercise 6.15: Use the Cauchy–Schwarz inequality to show that for any normalized state vector |ψ and set of N orthonormal basis vectors |x, √ ψ − x2 ≥ 2N − 2 N . (6.53) x Exercise 6.16: Suppose we merely require that the probability of an error being made is less than 1/2 when averaged uniformly over the possible values for x, instead √ of for all values of x. Show that O( N ) oracle calls are still required to solve the search problem. This result, that the quantum search algorithm is essentially optimal, is both exciting and disappointing. It is exciting because it tells us that for this problem, at least, we have fully plumbed the depths of quantum mechanics; no further improvement is possible. The disappointment arises because we might have hoped to do much better than the square root speedup offered by the quantum search algorithm. The sort of dream result Black box algorithm limits 271 we might have hoped for a priori is that it would be possible to search an N item search space using O(log N ) oracle calls. If such an algorithm existed, it would allow us to solve NP-complete problems efficiently on a quantum computer, since it could search all 2w(n) possible witnesses using roughly w(n) oracle calls, where the polynomial w(n) is the length of a witness in bits. Unfortunately, such an algorithm is not possible. This is useful information for would-be algorithm designers, since it indicates that a naive search-based method for attacking NP-complete problems is guaranteed to fail. Venturing into the realm of opinion, we note that many researchers believe that the essential reason for the difficulty of NP-complete problems is that their search space has essentially no structure, and that (up to polynomial factors) the best possible method for solving such a problem is to adopt a search method. If one takes this point of view, then it is bad news for quantum computing, indicating that the class of problems efficiently soluble on a quantum computer, BQP, does not contain the NP-complete problems. Of course, this is merely opinion, and it is still possible that the NP-complete problems contain some unknown structure that allows them to be efficiently solved on a quantum computer, or perhaps even on a classical computer. A nice example to illustrate this point is the problem of factoring, widely believed to be in the class NPI of problems intermediate in difficulty between P and the NP-complete problems. The key to the efficient quantum mechanical solution of the factoring problem was the exploitation of a structure ‘hidden’ within the problem – a structure revealed by the reduction to orderfinding. Even with this amazing structure revealed, it has not been found possible to exploit the structure to develop an efficient classical algorithm for factoring, although, of course, quantum mechanically the structure can be harnessed to give an efficient factoring algorithm! Perhaps a similar structure lurks in other problems suspected to be in NPI, such as the graph isomorphism problem, or perhaps even in the NP-complete problems themselves. Exercise 6.17: (Optimality for multiple solutions) Suppose the search problem  has M solutions. Show that O( N/M ) oracle applications are required to find a solution. 6.7 Black box algorithm limits We conclude this chapter with a generalization of the quantum search algorithm which provides insightful bounds on the power of quantum computation. At the beginning of the chapter, we described the search problem as finding an n-bit integer x such that the function f : {0, 1}n → {0, 1} evaluates to f (x) = 1. Related to this is the decision problem of whether or not there exists x such that f (x) = 1. Solving this decision problem is equivalently difficult, and can be expressed as computing the Boolean function F (X) = X0 ∨ X1 ∨ · · · ∨ XN −1 , where ∨ denotes the binary OR operation, Xk ≡ f (k), and X denotes the set {X0 , X1 , . . . , XN −1 }. More generally, we may wish to compute some function other than OR. For example, F (X) could be the AND, PARITY (sum modulo two), or MAJORITY (F (X) = 1 if and only if more Xk = 1 than not) functions. In general, we can consider F to be any Boolean function. How fast (measured in number of queries) can a computer, classical or quantum, compute these functions, given an oracle for f ? It might seem difficult to answer such questions without knowing something about the 272 Quantum search algorithms function f , but in fact a great deal can be determined even in this ‘black box’ model, where the means by which the oracle accomplishes its task is taken for granted, and complexity is measured only in terms of the number of required oracle queries. The analysis of the search algorithm in the previous sections demonstrated one way to approach such problems, but a more powerful approach for obtaining query complexities is the method of polynomials, which we now briefly describe. Let us begin with some useful definitions. The deterministic query complexity D(F ) is the minimum number of oracle queries a classical computer must perform to compute F with certainty. The quantum equivalent, QE (F ), is the minimum number of oracle queries a quantum computer requires to compute F with certainty. Since a quantum computer produces probabilistic outputs by nature, a more interesting quantity is the bounded error complexity Q2 (F ), the minimum number of oracle queries a quantum computer requires to produce an output which equals F with probability at least 2/3. (The 2/3 is an arbitrary number – the probability need only be bounded finitely away from 1/2 in order to be boosted close to 1 by repetitions.) A related measure is the zeroerror complexity Q0 (F ), the minimum number of oracle queries a quantum computer requires to produce an output which either equals F with certainty, or, with probability less than 1/2, an admission of an inconclusive result. All these bounds must hold for any oracle function f (or in other words, any input X into F ). Note that Q2 (F ) ≤ Q0 (F ) ≤ QE (F ) ≤ D(F ) ≤ N . The method of polynomials is based upon the properties of minimum-degree multilinear polynomials (over the real numbers) which represent Boolean functions. All the polynomials we shall consider below are functions of Xk ∈ {0, 1} and are thus multilinear, since Xk2 = Xk . We say that a polynomial p : RN → R represents F if p(X) = F (X) for all X ∈ {0, 1}N (where R denotes the real numbers). Such a polynomial p always exists, since we can explicitly construct a suitable candidate: p(X) = F (Y ) Y ∈{0,1}N N −1  / k=0 1 − (Yk − Xk )2 . (6.54) That the minimum degree p is unique is left as Exercise 6.18 for the reader. The minimum degree of such a representation for F , denoted as deg(F ), is a useful measure of the complexity of F . For example, it is known that deg(OR), deg(AND), and deg(PARITY) are all equal to N . In fact, it is known that the degree of most functions is of order N . Moreover, it has also been proven that D(F ) ≤ 2 deg(F )4 . (6.55) This result places an upper bound on the performance of deterministic classical computation in calculating most Boolean functions. Extending this concept, if a polynomial 8 ) satisfies |p(X)−F (X)| ≤ 1/3 for all X ∈ {0, 1}N , we say p approximates F , and deg(F denotes the minimum degree of such an approximating polynomial. Such measures are important in randomized classical computation and, as we shall see, in describing the 8 = N, quantum case. It is known that deg(PARITY) √ √ 8 8 deg(OR) ∈ Θ( N ) and deg(AND) ∈ Θ( N ) , (6.56) and 8 )6 . D(F ) ≤ 216 deg(F (6.57) 273 Black box algorithm limits The bounds of Equations (6.55) and (6.57) are only the best known at the time of writing; their proof is outside the scope of this book, but you may find further information about them in ‘History and further reading’. It is believed that tighter bounds are possible, but these will be good enough for our purposes. Exercise 6.18: Prove that the minimum degree polynomial representing a Boolean function F (X) is unique. Exercise 6.19: Show that P (X) = 1 − (1 − X0 )(1 − X1 ) . . . (1 − XN −1 ) represents OR. Polynomials naturally arise in describing the results of quantum algorithms. Let us write the output of a quantum algorithm Q which performs T queries to an oracle O as 2n −1 k=0 ck |k . (6.58) We will show that the amplitudes ck are polynomials of degree at most T in the variables X0 , X1 , . . . , XN −1 . Any Q can be realized using the quantum circuit shown in Figure 6.10. The state |ψ0  right before the first oracle query can be written as ' ( ai0j |i|0 + ai1j |i|1 |j , (6.59) |ψ0  = ij where the first label corresponds to the n qubit oracle query, the next to a single qubit in which the oracle leaves its result, and the last to the m − n − 1 working qubits used by Q. After the oracle query, we obtain the state ' ( |ψ1  = ai0j |i|Xi  + ai1j |i|Xi ⊕ 1 |j , (6.60) ij but since Xi is either 0 or 1, we can re-express this as ' ( ' ( |ψ1  = (1 − Xi )ai0j + Xi ai1j |i0 + (1 − Xi )ai1j + Xi ai0j |i1 |j . (6.61) ij Note that in |ψ0 , the amplitudes of the computational basis states were of degree 0 in X, while those of |ψ1  are of degree 1 (linear in X). The important observation is that any unitary operation which Q performs before or after the oracle query cannot change the degree of these polynomials, but each oracle call can increase the degree by at most one. Thus, after T queries, the amplitudes are polynomials of at most degree T . Moreover, measuring the final output (6.58) in the computational basis produces a result k with probability Pk (X) = |ck |2 , which are real-valued polynomials in X of degree at most 2T . Figure 6.10. General quantum circuit for a quantum algorithm which performs T queries to an oracle O. U0 , U1 , . . . , UT are arbitrary unitary transforms on m qubits, and the oracle acts on n + 1 qubits. 274 Quantum search algorithms The total probability P (X) of obtaining a one as the output from the algorithm is a sum over some subset of the polynomials Pk (X), and thus also has degree at most 2T . In the case that Q produces the correct answer with certainty we must have P (X) = F (X), and thus deg(F ) ≤ 2T , from which we deduce QE (F ) ≥ deg(F ) . 2 (6.62) In the case where Q produces an answer with bounded probability of error it follows that 8 ) ≤ 2T , from which we deduce P (X) approximates F (X), and thus deg(F Q2 (F ) ≥ Combining (6.55) and (6.62), we find that  8 ) deg(F . 2 D(F ) QE (F ) ≥ 32 1/4 (6.63) . Similarly, combining (6.57) and (6.63), we find that   D(F ) 1/6 Q2 (F ) ≥ . 13 824 (6.64) (6.65) This means that in computing Boolean functions using a black box, quantum algorithms may only provide a polynomial speedup over classical algorithms, at best – and even that is not generally possible (since deg(F ) is Ω(N ) for most functions). On the other hand, it is known that for F = OR, D(F ) = N , and the randomized classical query complexity R(F ) ∈ Θ(N ), whereas combining (6.63) and (6.56), √ and the known performance of the quantum search algorithm, shows that Q2 (F ) ∈ Θ( N ). This square root speedup is just what the quantum search algorithm achieves, and the method of polynomials indicates that the result can perhaps be generalized to a somewhat wider class of problems, but without extra information about the structure of the black box oracle function f , no exponential speedup over classical algorithms is possible. Exercise 6.20: Show that Q0 (OR) ≥ N by constructing a polynomial which represents the OR function from the output of a quantum circuit which computes OR with zero error. Problem 6.1: (Finding the minimum) Suppose x1 , . . . , xN is a database√of numbers held in memory, as in Section 6.5. Show that only O(log(N ) N ) accesses to the memory are required on a quantum computer, in order to find the smallest element on the list, with probability at least one-half. Problem 6.2: (Generalized quantum searching) Let |ψ be a quantum state, and define U|ψ ≡ I − 2|ψψ|. That is, U|ψ gives the state |ψ a −1 phase, and leaves states orthogonal to |ψ invariant. (1) Suppose we have a quantum circuit implementing a unitary operator U such that U |0⊗n = |ψ. Explain how to implement U|ψ . Chapter problems 275 √ √ (2) Let |ψ1  = |1, |ψ2  = (|0 − |1)/ 2, |ψ3  = (|0 − i|1)/ 2. Suppose an unknown oracle O is selected from the set U|ψ1  , U|ψ2 , U|ψ3  . Give a quantum algorithm which identifies the oracle with just one application of the oracle. (Hint: consider superdense coding.) (3) Research: More generally, given k states |ψ1 , . . . , |ψk , and an unknown oracle O selected from the set U|ψ1  , . . . , U|ψk  , how many oracle applications are required to identify the oracle, with high probability? Problem 6.3: (Database retrieval) Given a quantum oracle which returns |k, y ⊕ Xk  given an n qubit query (and one scratchpad qubit) |k, y, show that n with high √ √ probability, all N = 2 bits of X can be obtained using only N/2 + N queries. This implies the general upper bound Q2 (F ) ≤ N/2 + N for any F . Problem 6.4: (Quantum searching and cryptography) Quantum searching can, potentially, be used to speed up the search for cryptographic keys. The idea is to search through the space of all possible keys for decryption, in each case trying the key, and checking to see whether the decrypted message makes ‘sense’. Explain why this idea doesn’t work for the Vernam cipher (Section 12.6). When might it work for cryptosystems such as DES? (For a description of DES see, for example, [MvOV96] or [Sch96a].) Summary of Chapter 6: Quantum search algorithms • Quantum search algorithm: For a search problem with M solutions out of  N = 2n possibilities, prepare x |x and then repeat G ≡ H ⊗n U H ⊗n O a total of O( N/M ) times, where O is the search oracle, |x → −|x if x is a solution, no change otherwise, and U takes |0 → −|0 and leaves all other computational basis states alone. Measuring yields a solution to the search problem with high probability. • Quantum counting algorithm: Suppose a search problem has an unknown number M of solutions. G has eigenvalues exp(±iθ) where sin2 (θ/2) = M/N . The Fourier transform based√phase estimation procedure enables us to estimate M to high accuracy using O( N ) oracle applications. Quantum counting, in turn, allows us to determine whether a given search problem has any solutions, and to find one if there are, even if the number of solutions is not known in advance. • Polynomial bounds: For problems which are described as evaluations of total functions F (as opposed to partial functions, or ‘promise’ problems), quantum algorithms can give no more than a polynomial speedup over classical algorithms.  1/6 . Moreover, the performance of the quanSpecifically, Q2 (F ) ≥ D(F )/13 824 √ tum search is optimal: it is Θ( N ). 276 Quantum search algorithms History and further reading The quantum search algorithm and much of its further development and elaboration is due to Grover[Gro96, Gro97]. Boyer, Brassard, Høyer and Tapp[BBHT98] wrote an influential paper in which they developed the quantum search algorithm for cases where the number of solutions M is greater than one, and outlined the quantum counting algorithm, later developed in more detail by Brassard, Høyer, and Tapp[BHT98], and from the point of view of phase estimation by Mosca[Mos98]. That the Grover iteration can be understood as a product of two reflections was first pointed out in a review by Aharonov[Aha99b]. The continuous-time Hamiltonian (6.18) was first investigated by Farhi and Gutmann[FG98], from a rather different point of view than we take in Section 6.2. That Grover’s algorithm is the best possible oracle-based search algorithm was proved by Bennett, Bernstein, Brassard and Vazirani[BBBV97]. The version of this proof we have presented is based upon that given by Boyer, Brassard, Høyer and Tapp[BBHT98]. Zalka[Zal99] has refined these proofs to show that the quantum search algorithm is, asymptotically, exactly optimal. The method of polynomials for bounding the power of quantum algorithms was intro+ duced into quantum computing by Beals, Buhrman, Cleve, Mosca, and de Wolf[BBC 98]. An excellent discussion is also available in Mosca’s Ph.D. thesis[Mos99], on which much of the discussion in Section 6.7 is based. A number of results are quoted in that section without proof; here are the citations: Equation (6.55) is attributed to Nisan and Smolensky in [BBC+ 98], but otherwise is presently unpublished, (6.56) is derived from a theorem by Paturi[Pat92] and (6.57) is derived in [BBC+ 98]. A better bound than (6.65) is given in [BBC+ 98], but requires concepts such as block sensitivity which are outside the scope of this book. A completely different approach for bounding quantum black box algorithms, using arguments based on entanglement, was presented by Ambainis[Amb00]. Problem 6.1 is due to Dürr and Høyer[DH96]. Problem 6.3 is due to van Dam[van98a]. 7 Quantum computers: physical realization Computers in the future may weigh no more than 1.5 tons. – Popular Mechanics, forecasting the relentless march of science, 1949 I think there is a world market for maybe five computers. – Thomas Watson, chairman of IBM, 1943 Quantum computation and quantum information is a field of fundamental interest because we believe quantum information processing machines can actually be realized in Nature. Otherwise, the field would be just a mathematical curiosity! Nevertheless, experimental realization of quantum circuits, algorithms, and communication systems has proven extremely challenging. In this chapter we explore some of the guiding principles and model systems for physical implementation of quantum information processing devices and systems. We begin in Section 7.1 with an overview of the tradeoffs in selecting a physical realization of a quantum computer. This discussion provides perspective for an elaboration of a set of conditions sufficient for the experimental realization of quantum computation in Section 7.2. These conditions are illustrated in Sections 7.3 through 7.7, through a series of case studies, which consider five different model physical systems: the simple harmonic oscillator, photons and nonlinear optical media, cavity quantum electrodynamics devices, ion traps, and nuclear magnetic resonance with molecules. For each system, we briefly describe the physical apparatus, the Hamiltonian which governs its dynamics, means for controlling the system to perform quantum computation, and its principal drawbacks. We do not go into much depth in describing the physics of these systems; as each of these are entire fields unto themselves, that would be outside the scope of this book! Instead, we summarize just the concepts relevant to quantum computation and quantum information such that both the experimental challenge and theoretical potential can be appreciated. On the other hand, analyzing these systems from the standpoint of quantum information also provides a fresh perspective which we hope you will find insightful and useful, as it also allows strikingly simple derivations of some important physics. We conclude the chapter in Section 7.8 by discussing aspects of some other physical systems – quantum dots, superconducting gates, and spins in semiconductors – which are also of interest to this field. For the benefit of the reader wishing to catch just the highlights of each implementation, a summary is provided at the end of each section. 7.1 Guiding principles What are the experimental requirements for building a quantum computer? The elementary units of the theory are quantum bits – two-level quantum systems; in Section 1.5 we took a brief look at why it is believed that qubits exist in Nature, and what physical forms they may take on. To realize a quantum computer, we must not only give qubits 278 Quantum computers: physical realization some robust physical representation (in which they retain their quantum properties), but also select a system in which they can be made to evolve as desired. Furthermore, we must be able to prepare qubits in some specified set of initial states, and to measure the final output state of the system. The challenge of experimental realization is that these basic requirements can often only be partially met. A coin has two states, and makes a good bit, but a poor qubit because it cannot remain in a superposition state (of ‘heads’ and ‘tails’) for very long. A single nuclear spin can be a very good qubit, because superpositions of being aligned with or against an external magnetic field can last a long time – even for days. But it can be difficult to build a quantum computer from nuclear spins because their coupling to the world is so small that it is hard to measure the orientation of single nuclei. The observation that the constraints are opposing is general: a quantum computer has to be well isolated in order to retain its quantum properties, but at the same time its qubits have to be accessible so that they can be manipulated to perform a computation and to read out the results. A realistic implementation must strike a delicate balance between these constraints, so that the relevant question is not how to build a quantum computer, but rather, how good a quantum computer can be built. System τQ τop nop = λ−1 Nuclear spin Electron spin Ion trap (In+ ) Electron – Au Electron – GaAs Quantum dot Optical cavity Microwave cavity 10−2 − 108 10−3 10−1 10−8 10−10 10−6 10−5 100 10−3 − 10−6 10−7 10−14 10−14 10−13 10−9 10−14 10−4 105 − 1014 104 1013 106 103 103 109 104 Figure 7.1. Crude estimates for decoherence times τQ (seconds), operation times τop (seconds), and maximum number of operations nop = λ−1 = τQ /τop for various candidate physical realizations of interacting systems of quantum bits. Despite the number of entries in this table, only three fundamentally different qubit representations are given: spin, charge, and photon. The ion trap utilizes either fine or hyperfine transitions of a trapped atom (Section 7.6), which correspond to electron and nuclear spin flips. The estimates for electrons in gold and GaAs, and in quantum dots are given for a charge representation, with an electrode or some confined area either containing an electron or not. In optical and microwave cavities, photons (of frequencies from gigahertz to hundreds of terahertz) populating different modes of the cavities represent the qubit. Take these estimates with a grain of salt: they are only meant to give some perspective on the wide range of possibilities. What physical systems are potentially good candidates for handling quantum information? A key concept in understanding the merit of a particular quantum computer realization is the notion of quantum noise (sometimes called decoherence) , the subject of Chapter 8: processes corrupting the desired evolution of the system. This is because the length of the longest possible quantum computation is roughly given by the ratio of τQ , the time for which a system remains quantum-mechanically coherent, to τop , the time it takes to perform elementary unitary transformations (which involve at least two qubits). These two times are actually related to each other in many systems, since they are both Conditions for quantum computation 279 determined by the strength of coupling of the system to the external world. Nevertheless, λ = τop /τQ can vary over a surprisingly wide range, as shown in Figure 7.1. These estimates give some insight into the merits of different possible physical realizations of a quantum information processing machine, but many other important sources of noise and imperfections arise in actual implementations. For example, manipulations of a qubit represented by two electronic levels of an atom by using light to cause transitions between levels would also cause transitions to other electronic levels with some probability. These would also be considered noise processes, since they take the system out of the two states which define the qubit. Generally speaking, anything which causes loss of (quantum) information is a noise process – later, in Chapter 8, we discuss the theory of quantum noise in more depth. 7.2 Conditions for quantum computation Let us return to discuss in detail the four basic requirements for quantum computation which were mentioned at the beginning of the previous section. These requirements are the abilities to: 1. 2. 3. 4. Robustly represent quantum information Perform a universal family of unitary transformations Prepare a fiducial initial state Measure the output result 7.2.1 Representation of quantum information Quantum computation is based on transformation of quantum states. Quantum bits are two-level quantum systems, and as the simplest elementary building blocks for a quantum computer, they provide a convenient labeling for pairs of states and their physical realizations. Thus, for example, the four states of a spin-3/2 particle, |m = +3/2, |m = +1/2, |m = −1/2, |m = −3/2, could be used to represent two qubits. For the purpose of computation, the crucial realization is that the set of accessible states should be finite. The position x of a particle along a one-dimensional line is not generally a good set of states for computation, even though the particle may be in a quantum state  |x, or even some superposition x cx |x. This is because x has a continuous range of possibilities, and the Hilbert space has infinite size, so that in the absence of noise the information capacity is infinite. For example, in a perfect world, the entire texts of Shakespeare could be stored in (and retrieved from) the infinite number of digits in the binary fraction x = 0.010111011001 . . .. This is clearly unrealistic; what happens in reality is that the presence of noise reduces the number of distinguishable states to a finite number. In fact, it is generally desirable to have some aspect of symmetry dictate the finiteness of the state space, in order to minimize decoherence. For example, a spin-1/2 particle lives in a Hilbert space spanned by the | ↑ and | ↓ states; the spin state cannot be anything outside this two-dimensional space, and thus is a nearly ideal quantum bit when well isolated. If the choice of representation is poor, then decoherence will result. For example, as described in Box 7.1, a particle in a finite square well which is just deep enough to contain two bound states would make a mediocre quantum bit, because transitions from 280 Quantum computers: physical realization the bound states to the continuum of unbound states would be possible. These would lead to decoherence since they could destroy qubit superposition states. For single qubits, the figure of merit is the minimum lifetime of arbitrary superposition states; a good measure, used for spin states √ and atomic systems, is T2 , the (‘transverse’) relaxation time of states such as (|0 + |1)/ 2. Note that T1 , the (‘longitudinal’) relaxation time of the higher energy |1 state, is just a classical state lifetime, which is usually longer than T2 . Box 7.1: Square wells and qubits A prototypical quantum system is known as the ‘square well,’ which is a particle in a one-dimensional box, behaving according to Schrödinger’s equation, (2.86). The Hamiltonian for this system is H = p2 /2m + V (x), where V (x) = 0 for 0 < x < L, and V (x) = ∞ otherwise. The energy eigenstates, expressed as wavefunctions in the position basis, are ) ' nπ ( 2 (7.1) sin x , |ψn  = L L where n is an integer, and |ψn (t) = e−iEn t |ψn , with En = n2 π 2 m/2L2 . These states have a discrete spectrum. In particular, suppose that we arrange matters such that only the two lowest energy levels need be considered in an experiment. We define an arbitrary wavefunction of interest as |ψ = a |ψ1  + b |ψ2 . Since   |ψ(t) = e−i(E1 +E2 )/2t ae−iωt |ψ1  + beiωt |ψ2  , (7.2) where ω = (E1 − E2 )/2, we can just forget about everything except  a and b, and a write our state abstractly as the two-component vector |ψ = . This two-level b system represents a qubit! Does our two-level system transform like a qubit? Under time evolution, this qubit evolves under the effective Hamiltonian H = ωZ, which can be disregarded by moving into the rotating frame. To perform operations to this qubit, we perturb H. Consider the effect of adding the additional term   1 9π 2 x − (7.3) δV (x) = −V0 (t) 16L L 2 to V (x). In the basis of our two-level system, this can be rewritten by taking the matrix elements Vnm = ψn |δV (x)|ψm , giving V11 = V22 = 0, and V12 = V21 = V0 , such that, to lowest order in V0 , the perturbation to H is H1 = V0 (t)X. This generates rotations about the x̂ axis. Similar techniques can be used to perform other single qubit operations, by manipulating the potential function. This shows how a single qubit can be represented by the two lowest levels in a square well potential, and how simple perturbations of the potential can effect computational operations on the qubit. However, perturbations also introduce higher order effects, and in real physical systems boxes are not infinitely deep, other levels begin to enter the picture, and our two-level approximation begins to fail. Also, in reality, the controlling system is just another quantum system, and it couples to the one we are trying to do quantum computation with. These problems lead to decoherence. Conditions for quantum computation 281 7.2.2 Performance of unitary transformations Closed quantum systems evolve unitarily as determined by their Hamiltonians, but to perform quantum computation one must be able to control the Hamiltonian to effect an arbitrary selection from a universal family of unitary transformations (as described in Section 4.5). For example, a single spin might evolve under the Hamiltonian H = Px (t)X + Py (t)Y , where P{x,y} are classically controllable parameters. From Exercise 4.10, we know that by manipulating Px and Py appropriately, one can perform arbitrary single spin rotations. According to the theorems of Section 4.5, any unitary transform can be composed from single spin operations and controlledgates, and thus realization of those two kinds of quantum logic gates are natural goals for experimental quantum computation. However, implicitly required also is the ability to address individual qubits, and to apply these gates to select qubits or pairs of qubits. This is not simple to accomplish in many physical systems. For example, in an ion trap, one can direct a laser at one of many individual ions to selectively excite it, but only as long as the ions are spatially separated by a wavelength or more. Unrecorded imperfections in unitary transforms can lead to decoherence. In Chapter 8 we shall see how the average effect of random kicks (small rotations to a single spin about its ẑ axis) leads to loss of quantum information which is represented by the relative phases in a quantum state. Similarly, the cumulative effect of systematic errors is decoherence, when the information needed to be able to reverse them is lost. Furthermore, the control parameters in the Hamiltonian are only approximately classical controls: in reality, the controlling system is just another quantum system, and the true Hamiltonian should include the back-action of the control system upon the quantum computer. For example, instead of Px (t) in the above example, one actually has a Jaynes–Cummings type atom–  † photon interaction Hamiltonian (Section 7.5.2), with Px (t) = k ωk (t)(ak + ak ) or something similar being the cavity photon field. After interacting with a qubit, a photon can carry away information about the state of the qubit, and this is thus a decoherence process. Two important figures of merit for unitary transforms are the minimum achievable fidelity F (Chapter 9), and the maximum time top required to perform elementary opgate. erations such as single spin rotations or a controlled7.2.3 Preparation of fiducial initial states One of the most important requirements for being able to perform a useful computation, even classically, is to be able to prepare the desired input. If one has a box which can perform perfect computations, what use is it if numbers cannot be input? With classical machines, establishing a definite input state is rarely a difficulty – one merely sets some switches in the desired configuration and that defines the input state. However, with quantum systems this can be very difficult, depending on the realization of qubits. Note that it is only necessary to be able to (repeatedly) produce one specific quantum state with high fidelity, since a unitary transform can turn it into any other desired input state. For example, being able to put n spins into the |00 . . . 0 state is good enough. The fact that they may not stay there for very long due to thermal heating is a problem with the choice of representation. Input state preparation is a significant problem for most physical systems. For example, ions can be prepared in good input states by physically cooling them into their ground state 282 Quantum computers: physical realization (Section 7.6), but this is challenging. Moreover, for physical systems in which ensembles of quantum computers are involved, extra concerns arise. In nuclear magnetic resonance (Section 7.7), each molecule can be thought of as a single quantum computer, and a large number of molecules is needed to obtain a measurable signal strength. Although qubits can remain in arbitrary superposition states for relatively long times, it is difficult to put all of the qubits in all of the molecules into the same state, because the energy difference ω between the |0 and |1 states is much smaller than kB T . On the other hand, simply letting the system equilibrate establishes it in a very well-known state, the thermal one, with the density matrix ρ ≈ e−H/kB T /Z, where Z is a normalization factor required to maintain tr(ρ) = 1. Two figures of merit are relevant to input state preparation: the minimum fidelity with which the initial state can be prepared in a given state ρin , and the entropy of ρin . The entropy is important because, for example, it is very easy to prepare the state ρin = I/2n with high fidelity, but that is a useless state for quantum computation, since it is invariant under unitary transforms! Ideally, the input state is a pure state, with zero entropy. Generally, input states with non-zero entropy reduce the accessibility of the answer from the output result. 7.2.4 Measurement of output result What measurement capability is required for quantum computation? For the purpose of the present discussion, let us think of measurement as a process of coupling one or more qubits to a classical system such that after some interval of time, the state of the qubits is indicated by the state of the classical system. For example, a qubit state a|0 + b|1, represented by the ground and excited states of a two-level atom, might be measured by pumping the excited state and looking for fluorescence. If an electrometer indicates that fluorescence had been detected by a photomultiplier tube, then the qubit would collapse into the |1 state; this would happen with probability |b|2 . Otherwise, the electrometer would detect no charge, and the qubit would collapse into the |0 state. An important characteristic of the measurement process for quantum computation is the wavefunction collapse which describes what happens when a projective measurement is performed (Section 2.2.5). The output from a good quantum algorithm is a superposition state which gives a useful answer with high probability when measured. For example, one step in Shor’s quantum factoring algorithm is to find an integer r from the measurement result, which is an integer close to qc/r, where q is the dimension of a Hilbert space. The output state is actually in a nearly uniform superposition of all possible values of c, but a measurement collapses this into a single, random integer, thus allowing r to be determined with high probability (using a continued fraction expansion, as was described in Chapter 5). Many difficulties with measurement can be imagined; for example, inefficient photon counters and amplifier thermal noise can reduce the information obtained about measured qubit states in the scheme just described. Furthermore, projective measurements (sometimes called ‘strong’ measurements) are often difficult to implement. They require that the coupling between the quantum and classical systems be large, and switchable. Measurements should not occur when not desired; otherwise they can be a decoherence process. Surprisingly, however, strong measurements are not necessary; weak measurements which are performed continuously and never switched off, are usable for quantum com- Harmonic oscillator quantum computer 283 putation. This is made possible by completing the computation in time short compared with the measurement coupling, and by using large ensembles of quantum computers. These ensembles together give an aggregate signal which is macroscopically observable and indicative of the quantum state. Use of an ensemble introduces additional problems. For example, in the factoring algorithm, if the measurement output is qc/r, the algorithm would fail because c, the average value of c, is not necessarily an integer (and thus the continued fraction expansion would not be possible). Fortunately, it is possible to modify quantum algorithms to work with ensemble average readouts. This will be discussed further in Section 7.7. A good figure of merit for measurement capability is the signal to noise ratio (SNR). This accounts for measurement inefficiency as well as inherent signal strength available from coupling a measurement apparatus to the quantum system. 7.3 Harmonic oscillator quantum computer Before continuing on to describe a complete physical model for a realizable quantum computer, let us pause for a moment to consider a very elementary system – the simple harmonic oscillator – and discuss why it does not serve as a good quantum computer. The formalism used in this example will also serve as a basis for studying other physical systems. 7.3.1 Physical apparatus An example of a simple harmonic oscillator is a particle in a parabolic potential well, V (x) = mω 2 x2 /2. In the classical world, this could be a mass on a spring, which oscillates back and forth as energy is transfered between the potential energy of the spring and the kinetic energy of the mass. It could also be a resonant electrical circuit, where the energy sloshes back and forth between the inductor and the capacitor. In these systems, the total energy of the system is a continuous parameter. In the quantum domain, which is reached when the coupling to the external world becomes very small, the total energy of the system can only take on a discrete set of values. An example is given by a single mode of electromagnetic radiation trapped in a high Q cavity; the total amount of energy (up to a fixed offset) can only be integer multiples of ω, an energy scale which is determined by the fundamental constant  and the frequency of the trapped radiation, ω. The set of discrete energy eigenstates of a simple harmonic oscillator can be labeled as |n, where n = 0, 1, . . . , ∞. The relationship to quantum computation comes by taking a finite subset of these states to represent qubits. These qubits will have lifetimes determined by physical parameters such as the cavity quality factor Q, which can be made very large by increasing the reflectivity of the cavity walls. Moreover, unitary transforms can be applied by simply allowing the system to evolve in time. However, there are problems with this scheme, as will become clear below. We begin by studying the system Hamiltonian, then discuss how one might implement simple quantum logic gates such . as the controlled- 284 Quantum computers: physical realization 7.3.2 The Hamiltonian The Hamiltonian for a particle in a one-dimensional parabolic potential is 1 p2 (7.4) + mω 2 x2 , 2m 2 where p is the particle momentum operator, m is the mass, x is the position operator, and ω is related to the potential depth. Recall that x and p are operators in this expression (see Box 7.2), which can be rewritten as   1 , (7.5) H = ω a† a + 2 H= where a† and a are creation and annihilation operators, defined as ' ( 1 a= √ mωx + ip 2mω ' ( 1 a† = √ mωx − ip . 2mω (7.6) (7.7) The zero point energy ω/2 contributes an unobservable overall phase factor, which can be disregarded for our present purpose. The eigenstates |n of H, where n = 0, 1, . . ., have the properties a† a|n = n|n √ a† |n = n + 1 |n + 1 √ a|n = n |n − 1 . (7.10) (7.11) (7.12) Later, we will find it convenient to express interactions with a simple harmonic oscillator by introducing additional terms involving a and a† , and interactions between oscillators with terms such as a†1 a2 + a1 a†2 . For now, however, we confine our attention to a single oscillator. Exercise 7.1: Using the fact that x and p do not commute, and that in fact [x, p] = i, explicitly show that a† a = H/ω − 1/2. Exercise 7.2: Given that [x, p] = i, compute [a, a† ]. Exercise 7.3: Compute [H, a] and use the result to show that if |ψ is an eigenstate of H with energy E ≥ nω, then an |ψ is an eigenstate with energy E − nω. Exercise 7.4: Show that |n = † n (a √ ) |0. n! Exercise 7.5: Verify that Equations (7.11) and (7.12) are consistent with (7.10) and the normalization condition n|n = 1. Time evolution of the eigenstates is given by solving the Schrödinger equation, (2.86),  from which we find that the state |ψ(0) = n cn (0)|n evolves in time to become |ψ(t) = e−iHt/ |ψ(0) = n cn e−inωt |n . (7.13) We will assume for the purpose of discussion that an arbitrary state can be perfectly prepared, and that the state of the system can be projectively measured (Section 2.2.3), Harmonic oscillator quantum computer 285 Box 7.2: The quantum harmonic oscillator The harmonic oscillator is an extremely important and useful concept in the quantum description of the physical world, and a good way to begin to understand its properties is to determine the energy eigenstates of its Hamiltonian, (7.4). One way to do this is simply to solve the Schrödinger equation 2 d2 ψn (x) 1 (7.8) + mω 2 x2 ψn (x) = Eψn (x) 2m dx2 2 7 for ψn (x) and the eigenenergies E, subject to ψ(x) → 0 at x = ±∞, and |ψ(x)|2 = 1; the first five solutions are sketched here: These wavefunctions describe the probability amplitudes that a particle in the harmonic oscillator will be found at different positions within the potential. Although these pictures may give some intuition about what a physical system is doing in co-ordinate space, we will generally be more interested in the abstract algebraic properties of the states. Specifically, suppose |ψ satisfies (7.8) with energy E. Then defining operators a and a† as in (7.6)–(7.7), we find that since [H, a† ] = ωa† , ' ( Ha† |ψ = [H, a† ] + a† H |ψ = (ω + E)a† |ψ , (7.9) that is, a† |ψ is an eigenstate of H, with energy E + ω! Similarly, a|ψ is an eigenstate with energy E − ω. Because of this, a† and a are called raising and n lowering operators. It follows that a† |ψ are eigenstates for any integer n, with energies E + nω. There are thus an infinite number of energy eigenstates, whose energies are equally spaced apart, by ω. Moreover, since H is positive definite, there must be some |ψ0  for which a|ψ0  = 0; this is the ground state – the eigenstate of H with lowest energy. These results efficiently capture the essence of the quantum harmonic oscillator, and allow us to use a compact notation |n for the eigenstates, where n is an integer, and H|n = (n + 1/2)|n. We shall often work with |n, a, and a† in this chapter, as harmonic oscillators arise in the guise of many different physical systems. 286 Quantum computers: physical realization but otherwise, there are no interactions with the external world, so that the system is perfectly closed. 7.3.3 Quantum computation Suppose we want to perform quantum computation with the single simple harmonic oscillator described above. What can be done? The most natural choice for representation of qubits are the energy eigenstates |n. This choice allows us to perform a controlledgate in the following way. Recall that this transformation performs the mapping |00L |01L |10L |11L → → → → |00L |01L |11L |10L , (7.14) on two qubit states (here, the subscript L is used to clearly distinguish ‘logical’ states in contrast to the harmonic oscillator basis states). Let us encode these two qubits using the mapping |00L |01L |10L |11L = = = = |0 |2 √ (|4 + |1)/ √2 (|4 − |1)/ 2 . (7.15) Now suppose that at t = 0 the system is started in a state spanned by these basis states, and we simply evolve the system forward to time t = π/ω. This causes the energy eigenstates to undergo the transformation |n → exp(−iπa† a)|n = (−1)n |n, such that |0, |2, and |4 stay unchanged, but |1 → −|1. As a result, we obtain the desired gate transformation. controlledIn general, a necessary and sufficient condition for a physical system to be able to perform a unitary transform U is simply that the time evolution operator for the system, T = exp(−iHt), defined by its Hamiltonian H, has nearly the same eigenvalue spectrum as U . In the case above, the controlledgate was simple to implement because it only has eigenvalues +1 and −1; it was straightforward to arrange an encoding to obtain the same eigenvalues from the time evolution operator for the harmonic oscillator. The Hamiltonian for an oscillator could be perturbed to realize nearly any eigenvalue spectrum, and any number of qubits could be represented by simply mapping them into the infinite number of eigenstates of the system. This suggests that perhaps one might be able to realize an entire quantum computer in a single simple harmonic oscillator! 7.3.4 Drawbacks Of course, there are many problems with the above scenario. Clearly, one will not always know the eigenvalue spectrum of the unitary operator for a certain quantum computation, even though one may know how to construct the operator from elementary gates. In fact, for most problems addressed by quantum algorithms, knowledge of the eigenvalue spectrum is tantamount to knowledge of the solution! Another obvious problem is that the technique used above does not allow one computation to be cascaded with another, because in general, cascading two unitary transforms results in a new transform with unrelated eigenvalues. Finally, the idea of using a single harmonic oscillator to perform quantum computation Optical photon quantum computer 287 is flawed because it neglects the principle of digital representation of information. A Hilbert space of 2n dimensions mapped into the state space of a single harmonic oscillator would have to allow for the possibility of states with energy 2n ω. In contrast, the same Hilbert space could be obtained by using n two-level quantum systems, which has an energy of at most nω. Similar comparisons can be made between a classical dial with 2n settings, and a register of n classical bits. Quantum computation builds upon digital computation, not analog computation. The main features of the harmonic oscillator quantum computer are summarized below (each system we consider will be summarized similarly, at the end of the corresponding section). With this, we leave behind us the study of single oscillators, and turn next to systems of harmonic oscillators, made of photons and atoms. Harmonic oscillator quantum computer • Qubit representation: Energy levels |0, |1, . . ., |2n  of a single quantum oscillator give n qubits. • Unitary evolution: Arbitrary transforms U are realized by matching their eigenvalue spectrums to that given by the Hamiltonian H = a† a. • Initial state preparation: Not considered. • Readout: Not considered. • Drawbacks: Not a digital representation! Also, matching eigenvalues to realize transformations is not feasible for arbitrary U , which generally have unknown eigenvalues. 7.4 Optical photon quantum computer An attractive physical system for representing a quantum bit is the optical photon. Photons are chargeless particles, and do not interact very strongly with each other, or even with most matter. They can be guided along long distances with low loss in optical fibers, delayed efficiently using phase shifters, and combined easily using beamsplitters. Photons exhibit signature quantum phenomena, such as the interference produced in two-slit experiments. Furthermore, in principle, photons can be made to interact with each other, using nonlinear optical media which mediate interactions. There are problems with this ideal scenario; nevertheless, many things can be learned from studying the components, architecture, and drawbacks of an optical photon quantum information processor, as we shall see in this section. 7.4.1 Physical apparatus Let us begin by considering what single photons are, how they can represent quantum states, and the experimental components useful for manipulating photons. The classical behavior of phase shifters, beamsplitters, and nonlinear optical Kerr media is described. Photons can represent qubits in the following manner. As we saw in the discussion of the simple harmonic oscillator, the energy in an electromagnetic cavity is quantized in units of ω. Each such quantum is called a photon. It is possible for a cavity to contain a superposition of zero or one photon, a state which could be expressed as a qubit c0 |0 + c1 |1, but we shall do something different. Let us consider two cavities, whose total energy is ω, and take the two states of a qubit as being whether the photon is in 288 Quantum computers: physical realization one cavity (|01) or the other (|10). The physical state of a superposition would thus be written as c0 |01 + c1 |10; we shall call this the dual-rail representation. Note that we shall focus on single photons traveling as a wavepacket through free space, rather than inside a cavity; one can imagine this as having a cavity moving along with the wavepacket. Each cavity in our qubit state will thus correspond to a different spatial mode. One scheme for generating single photons in the laboratory is by attenuating the output of a laser. A laser outputs a state known as a coherent state, |α, defined as 2 |α = e−|α| /2 ∞ n=0 αn √ |n , n! (7.16) where |n is an n-photon energy eigenstate. This state, which has been the subject of thorough study in the field of quantum optics, has many beautiful properties which we shall not describe here. It suffices to understand just that coherent states are naturally radiated from driven oscillators such as a laser when pumped high above its lasing threshold. Note that the mean energy is α|n|α = |α|2 . When attenuated, a coherent state just becomes a weaker coherent state, and a weak coherent state can be made to have just one photon, with high probability. Exercise 7.6: (Eigenstates of photon annihilation) Prove that a coherent state is an eigenstate of the photon annihilation operator, that is, show a|α = λ|α for some constant λ. √ √ √ √ For example, for α = 0.1, we obtain the state 0.90 |0+ 0.09 |1+ 0.002 |2+· · ·. Thus if light ever makes it through the attenuator, one knows it is a single photon with probability better than 95%; the failure probability is thus 5%. Note also that 90% of the time, no photons come through at all; this source thus has a rate of 0.1 photons per unit time. Finally, this source does not indicate (by means of some classical readout) when a photon has been output or not; two of these sources cannot be synchronized. Better synchronicity can be achieved using parametric down-conversion. This involves sending photons of frequency ω0 into a nonlinear optical medium such as KH2 PO4 to generate photon pairs at frequencies ω1 + ω2 = ω0 . Momentum is also conserved, such that k1 + k2 = k3 , so that when a single ω2 photon is (destructively) detected, then a single ω1 photon is known to exist (Figure 7.2). By coupling this to a gate, which is opened only when a single photon (as opposed to two or more) is detected, and by appropriately delaying the outputs of multiple down-conversion sources, one can, in principle, obtain multiple single photons propagating in time synchronously, within the time resolution of the detector and gate. Single photons can be detected with high quantum efficiency for a wide range of wavelengths, using a variety of technologies. For our purposes, the most important characteristic of a detector is its capability of determining, with high probability, whether zero or one photon exists in a particular spatial mode. For the dual-rail representation, this translates into a projective measurement in the computational basis. In practice, imperfections reduce the probability of being able to detect a single photon; the quantum efficiency η (0 ≤ η ≤ 1) of a photodetector is the probability that a single photon incident on the detector generates a photocarrier pair that contributes to detector current. Other important characteristics of a detector are its bandwidth (time responsivity), noise, and ‘dark counts’ which are photocarriers generated even when no photons are incident. Optical photon quantum computer 289 w1 9:  ;: w0 w2 Figure 7.2. Parametric down-conversion scheme for generation of single photons. Three of the most experimentally accessible devices for manipulating photon states are mirrors, phase shifters and beamsplitters. High reflectivity mirrors reflect photons and change their propagation direction in space. Mirrors with 0.01% loss are not unusual. We shall take these for granted in our scenario. A phase shifter is nothing more than a slab of transparent medium with index of refraction n different from that of free space, n0 ; for example, ordinary borosilicate glass has n ≈ 1.5n0 at optical wavelengths. Propagation in such a medium through a distance L changes a photon’s phase by eikL , where k = nω/c0 , and c0 is the speed of light in vacuum. Thus, a photon propagating through a phase shifter will experience a phase shift of ei(n−n0 )Lω/c0 compared to a photon going the same distance through free space. Another useful component, the beamsplitter, is nothing more than a partially silvered piece of glass, which reflects a fraction R of the incident light, and transmits 1−R. In the laboratory, a beamsplitter is usually fabricated from two prisms, with a thin metallic layer sandwiched in-between, schematically drawn as shown in Figure 7.3. It is convenient to define the angle θ of a beamsplitter as cos θ = R; note that the angle parameterizes the amount of partial reflection, and does not necessarily have anything to do with the physical orientation of the beamsplitter. The two inputs and two outputs of this device are related by aout = ain cos θ + bin sin θ (7.17) bout = −ain sin θ + bin cos θ , (7.18) where classically we think of a and b as being the electromagnetic fields of the radiation at the two ports. Note that in this definition we have chosen a non-standard phase convention convenient for our purposes. In the special case of a 50/50 beamsplitter, θ = 45◦ . Nonlinear optics provides one final useful component for this exercise: a material > >-= > =+> = =+> = =-> Figure 7.3. Schematic of an optical beamsplitter, showing the two input ports, the two output ports, and the phase conventions for a 50/50 beamsplitter (θ = π/4). The beamsplitter on the right is the inverse of the one on the left (the two are distinguished by the dot drawn inside). The input-output relations for the mode operators a and b are given for θ = π/4. 290 Quantum computers: physical realization whose index of refraction n is proportional to the total intensity I of light going through it: n(I) = n + n2 I . (7.19) This is known as the optical Kerr effect, and it occurs (very weakly) in materials as mundane as glass and sugar water. In doped glasses, n2 ranges from 10−14 to 10−7 cm2 /W, and in semiconductors, from 10−10 to 102 . Experimentally, the relevant behavior is that when two beams of light of equal intensity are nearly co-propagated through a Kerr medium, each beam will experience an extra phase shift of ein2 ILω/c0 compared to what happens in the single beam case. This would be ideal if the length L could be arbitrarily long, but unfortunately that fails because most Kerr media are also highly absorptive, or scatter light out of the desired spatial mode. This is the primary reason why a single photon quantum computer is impractical, as we shall discuss in Section 7.4.3. We turn next to a quantum description of these optical components. 7.4.2 Quantum computation Arbitrary unitary transforms can be applied to quantum information, encoded with single photons in the c0 |01+c1 |10 dual-rail representation, using phase shifters, beamsplitters, and nonlinear optical Kerr media. How this works can be understood in the following manner, by giving a quantum-mechanical Hamiltonian description of each of these devices. The time evolution of a cavity mode of electromagnetic radiation is modeled quantummechanically by a harmonic oscillator, as we saw in Section 7.3.2. |0 is the vacuum state, n a† |1 = a† |0 is a single photon state, and in general, |n = √ |0 is an n-photon state, n! † where a is the creation operator for the mode. Free space evolution is described by the Hamiltonian H = ωa† a , (7.20) and applying (7.13), we find that the state |ψ = c0 |0 + c1 |1 evolves in time to become |ψ(t) = c0 |0 + c1 e−iωt |1. Note that the dual-rail representation is convenient because free evolution only changes |ϕ = c0 |01 + c1 |10 by an overall phase, which is undetectable. Thus, for that manifold of states, the evolution Hamiltonian is zero. Phase shifter. A phase shifter P acts just like normal time evolution, but at a different rate, and localized to only the modes going through it. That is because light slows down in a medium with larger index of refraction; specifically, it takes Δ ≡ (n − n0 )L/c0 more time to propagate a distance L in a medium with index of refraction n than in vacuum. For example, the action of P on the vacuum state is to do nothing: P |0 = |0, but on a single photon state, one obtains P |1 = eiΔ |1. P performs a useful logical operation on a dual-rail state. Placing a phase shifter in one mode retards its phase evolution with respect to another mode, which travels the same distance but without going through the shifter. For dual-rail states this transforms c0 |01 + c1 |10 to c0 e−iΔ/2 |01 + c1 eiΔ/2 |10, up to an irrelevant overall phase. Recall from Section 4.2 that this operation is nothing more than a rotation, Rz (Δ) = e−iZΔ/2 , (7.21) where we take as the logical zero |0L  = |01 and one |1L  = |10, and Z is the usual 291 Optical photon quantum computer Pauli operator. One can thus think of P as resulting from time evolution under the Hamiltonian H = (n0 − n)Z , (7.22) where P = exp(−iHL/c0 ). Exercise 7.7: Show that the circuit below transforms a dual-rail state by   iπ e 0 |ψin  , |ψout  = 0 1 (7.23) if we take the top wire to represent the |01 mode, and |10 the bottom mode, and the boxed π to represent a phase shift by π: p y out y in Note that in such ‘optical circuits’, propagation in space is explicitly represented by putting in lumped circuit elements such as in the above, to represent phase evolution. In the dual-rail representation, evolution according to (7.20) changes the logical state only by an unobservable global phase, and thus we are free to disregard it and keep only relative phase shifts. Exercise 7.8: Show that P |α = |αeiΔ  where |α is a coherent state (note that, in general, α is a complex number!). Beamsplitter. A similar Hamiltonian description of the beamsplitter also exists, but instead of motivating it phenomenologically, let us begin with the Hamiltonian and show how the expected classical behavior, Equations (7.17)–(7.18) arises from it. Recall that the beamsplitter acts on two modes, which we shall describe by the creation (annihilation) operators a (a† ) and b (b† ). The Hamiltonian is Hbs = iθ ab† − a† b , and the beamsplitter performs the unitary operation   B = exp θ a† b − ab† . (7.24) (7.25) The transformations effected by B on a and b, which will later be useful, are found to be BaB † = a cos θ + b sin θ BbB † = −a sin θ + b cos θ . and (7.26) We verify these relations using the Baker–Campbell–Hausdorf formula (also see Exercise 4.49) eλG Ae−λG = ∞ n=0 λn Cn , n! (7.27) where λ is a complex number, A, G, and Cn are operators, and Cn is defined recursively as the sequence of commutators C0 = A, C1 = [G, C0 ], C2 = [G, C1 ], C3 = [G, C2 ], . . ., Cn = [G, Cn−1 ]. Since it follows from [a, a† ] = 1 and [b, b† ] = 1 that [G, a] = −b and [G, b] = a, for G ≡ a† b−ab† , we obtain for the expansion of BaB † the series coefficients 292 Quantum computers: physical realization C0 = a, C1 = [G, a] = −b, C2 = [G, C1 ] = −a, C3 = [G, C2 ] = −[G, C0 ] = b, which in general are Cn even = in a n+1 Cn odd = i (7.28) b. (7.29) From this, our desired result follows straightforwardly: BaB † = eθG ae−θG ∞ θn = Cn n! n=0 = (7.30) (7.31) (iθ)n (iθ)n a+i b n! n! n even n odd = a cos θ − b sin θ . (7.32) (7.33) † The transform BbB is trivially found by swapping a and b in the above solution. Note that the beamsplitter operator arises from a deep relationship between the beamsplitter and the algebra of SU (2), as explained in Box 7.3. In terms of quantum logic gates, B performs a useful operation. First note that B|00 = |00, that is, when no photons in either input mode exist, no photons will exist in either output mode. When one photon exists in mode a, recalling that |1 = a† |0, we find that B|01 = Ba† |00 = Ba† B † B|00 = (a† cos θ + b† sin θ)|00 = cos θ|01 + sin θ|10 . (7.34) Similarly, B|10 = cos θ|10 − sin θ|01. Thus, on the |0L  and |1L  manifold of states, we may write B as   cos θ − sin θ B= = eiθY . (7.35) sin θ cos θ Phase shifters and beamsplitters together allow arbitrary single qubit operations to be performed to our optical qubit. This a consequence of Theorem 4.1 on page 175, which states that all single qubit operations can be generated from ẑ-axis rotations Rz (α) = exp(−iαZ/2), and ŷ-axis rotations, Ry (α) = exp(−iαY /2). A phase shifter performs Rz rotations, and a beamsplitter performs Ry rotations. Exercise 7.9: (Optical Hadamard gate) Show that the following circuit acts as a√ Hadamard gate on dual-rail √single photon states, that is, |01 → (|01 + |10)/ 2 and |10 → (|01 − |10)/ 2 up to an overall phase: p Exercise 7.10: (Mach–Zehnder interferometer) Interferometers are optical tools used to measure small phase shifts, which are constructed from two beamsplitters. Their basic principle of operation can be understood by this simple exercise. 1. Note that this circuit performs the identity operation: 293 Optical photon quantum computer Box 7.3: SU (2) Symmetry and quantum beamsplitters There is an interesting connection between the Lie group SU (2) and the algebra of two coupled harmonic oscillators, which is useful for understanding the quantum beamsplitter transformation. Identify a† a − b† b → Z (7.36) † a b → σ+ (7.37) † ab → σ− , (7.38) where Z is the Pauli operator, and σ± = (X ± iY )/2 are raising and lowering operators defined in terms of Pauli X and Y . From the commutation relations for a, a† , b, and b† , it is easy to verify that these definitions satisfy the usual commutation relations for the Pauli operators, (2.40). Also note that the total number operator, a† a + b† b, commutes with σz , σ+ , and σ− , as it should, being an invariant quantity under rotations in the SU (2) space. Using X = a† b + ab† and Y = −i(a† b − ab† ) in the traditional SU (2) rotation operator R(n̂, θ) = e−iθσ·n̂/2 (7.39) gives us the desired beamsplitter operator when n̂ is taken to be the −ŷ-axis. > > = = 2. Compute the rotation operation (on dual-rail states) which this circuit performs, as a function of the phase shift ϕ: j > = Exercise 7.11: What is B|2, 0 for θ = π/4? Exercise 7.12: (Quantum beamsplitter with classical inputs) What is B|α|β where |α and |β are two coherent states as in Equation (7.16)? (Hint: recall † n that |n = (a√n!) |0.) Nonlinear Kerr media. The most important effect of a Kerr medium is the cross phase modulation it provides between two modes of light. That is classically described by the n2 term in (7.19), which is effectively an interaction between photons, mediated by atoms in the Kerr medium. Quantum-mechanically, this effect is described by the Hamiltonian Hxpm = −χa† ab† b , (7.40) where a and b describe two modes propagating through the medium, and for a crystal of 294 Quantum computers: physical realization length L we obtain the unitary transform † K = eiχLa ab† b . (7.41) χ is a coefficient related to n2 , and the third order nonlinear susceptibility coefficient usually denoted as χ(3) . That the expected classical behavior arises from this Hamiltonian is left as Exercise 7.14 for the reader. gate can be constructed By combining Kerr media with beamsplitters, a controlledin the following manner. For single photon states, we find that K|00 = |00 (7.42) K|10 = |10 (7.44) K|01 = |01 K|11 = e iχL (7.43) |11 , (7.45) and let us take χL = π, such that K|11 = −|11. Now consider two dual-rail states, that is, four modes of light. These live in a space spanned by the four basis states |e00  = |1001, |e01  = |1010, |e10  = |0101, |e11  = |0110. Note that we have flipped the usual order of the two modes for the first pair, for convenience (physically, the two modes are easily swapped using mirrors). Now, if a Kerr medium is applied to act upon the two middle modes, then we find that K|ei  = |ei  for all i except K|e11  = −|e11 . operation can be factored into This is useful because the controlled⎡ ⎤ ⎤ 1 1 0 0 0 0 ⎢ ⎥ 0 0 ⎥ ⎥ √1 ⎢ 1 −1 0 0 ⎥ ⎣  1 0 2 0 0 1 1  0 0 1 −1 0 −1 # # !" # ! UCN K I ⊗H , (7.46) where H is the single qubit Hadamard transform (simply implemented with beamsplitters and phase shifters), and K is the Kerr interaction we just considered, with χL = π. Such an apparatus has been considered before, for constructing a reversible classical optical logic gate, as described in Box 7.4; in the single photon regime, it also functions as a quantum logic gate. can be constructed from Kerr media, and arbitrary single Summarizing, the qubit operations realized using beamsplitters and phase shifters. Single photons can be created using attenuated lasers, and detected with photodetectors. Thus, in theory, a quantum computer can be implemented using these optical components! ⎡ 1 ⎢0 ⎢ ⎣0 0 " 0 1 0 0 0 0 0 1 ⎡ ⎤⎡ ⎤ 1 1 0 0 0 1 ⎢ 1 −1 0 0 ⎥ ⎢ 0 1 0⎥ = ⎥⎢ ⎥ √ ⎢ 1 2 ⎣0 0 1 1  ⎣0 0 0 1 −1 0 0 ! " # !" I ⊗H 0 1 0 0 Exercise 7.13: (Optical Deutsch–Jozsa quantum circuit) In Section 1.4.4 (page 34), we described a quantum circuit for solving the one-bit Deutsch–Jozsa problem. Here is a version of that circuit for single photon states (in the dual-rail representation), using beamsplitters, phase shifters, and nonlinear Kerr media: Optical photon quantum computer 295 Box 7.4: The quantum optical Fredkin gate An optical Fredkin gate can be built using two beamsplitters and a nonlinear Kerr medium as shown in this schematic diagram: c c' Kerr b b' a' a † This performs the unitary transform U = B KB, where B is a 50/50 beamsplitter, † † K is the Kerr cross phase modulation operator K = eiξ b b c c , and ξ = χL is the product of the coupling constant and the interaction distance. This simplifies to give     † b−a b − a† † (7.47) U=exp iξc c 2 2 π † ξ † =ei 2 b b e 2 c c(a† b−b† a) π † ξ † e−i 2 b b ei 2 a a c† c ξ † ei 2 b b c† c . (7.48) The first and third exponentials are constant phase shifts, and the last two phase shifts come from cross phase modulation. All those effects are not fundamental, and can be compensated for. The interesting term is the second exponential, which is defines the quantum Fredkin operator   ξ † † † F (ξ) = exp c c (a b − b a) . (7.49) 2 The usual (classical) Fredkin gate operation is obtained for ξ = π, in which case when no photons are input at c, then a′ = a and b′ = b, but when a single photon is input at c, then a′ = b and b′ = a. This can be understood by realizing that F (χ) is like a controlled-beamsplitter operator, where the rotation angle is ξc† c. Note that this description does not use the dual-rail representation; in that representation, gate. this Fredkin gate corresponds to a controlled- @ ? > 7B = 1. Construct circuits for the four possible classical functions Uf using Fredkin gates and beamsplitters. 2. Why are no phase shifters necessary in this construction? 3. For each Uf show explicitly how interference can be used to explain how the quantum algorithm works. 296 Quantum computers: physical realization 4. Does this implementation work if the single photon states are replaced by coherent states? Exercise 7.14: (Classical cross phase modulation) To see that the expected classical behavior of a Kerr medium is obtained from the definition of K, Equation (7.41), apply it to two modes, one with a coherent state and the other in state |n; that is, show that K|α|n = |αeiχLn |n . (7.50) Use this to compute  ρa = Trb K|α|ββ|α|K † = e−|β| (7.51) 2m 2 m |β| |αeiχLm αeiχLm | , m! (7.52) and show that the main contribution to the sum is for m = |β|2 . 7.4.3 Drawbacks The single photon representation of a qubit is attractive. Single photons are relatively simple to generate and measure, and in the dual-rail representation, arbitrary single qubit operations are possible. Unfortunately, interacting photons is difficult – the best nonlinear Kerr media available are very weak, and cannot provide a cross phase modulation of π between single photon states. In fact, because a nonlinear index of refraction is usually obtained by using a medium near an optical resonance, there is always some absorption associated with the nonlinearity, and it can theoretically be estimated that in the best such arrangement, approximately 50 photons must be absorbed for each photon which experiences a π cross phase modulation. This means that the outlook for building quantum computers from traditional nonlinear optics components is slim at best. Nevertheless, from studying this optical quantum computer, we have gained some valuable insight into the nature of the architecture and system design of a quantum computer. We now can see what an actual quantum computer might look like in the laboratory (if only sufficiently good components were available to construct it), and a striking feature is that it is constructed nearly completely from optical interferometers. In the apparatus, information is encoded both in the photon number and the phase of the photon, and interferometers are used to convert between the two representations. Although it is feasible to construct stable optical interferometers, if an alternate, massive representation of a qubit were chosen, then it could rapidly become difficult to build stable interferometers because of the shortness of typical de Broglie wavelengths. Even with the optical representation, the multiple interlocked interferometers which would be needed to realize a large quantum algorithm would be a challenge to stabilize in the laboratory. Historically, optical classical computers were once thought to be promising replacements for electronic machines, but they ultimately failed to live up to expectations when sufficiently nonlinear optical materials were not discovered, and when their speed and parallelism advantages did not sufficiently outweigh their alignment and power disadvantages. On the other hand, optical communications is a vital and important area; one reason for this is that for distances longer than one centimeter, the energy needed to transmit Optical cavity quantum electrodynamics 297 a bit using a photon over a fiber is smaller than the energy required to charge a typical 50 ohm electronic transmission line covering the same distance. Similarly, it may be that optical qubits may find a natural home in communication of quantum information, such as in quantum cryptography, rather than in computation. Despite the drawbacks facing optical quantum computer realizations, the theoretical formalism which describes them is absolutely fundamental in all the other realizations we shall study in the remainder of this chapter. In fact, you may think of what we shall turn to next as being just another kind of optical quantum computer, but with a different (and better!) kind of nonlinear medium. Optical photon quantum computer • Qubit representation: Location of single photon between two modes, |01 and |10, or polarization. • Unitary evolution: Arbitrary transforms are constructed from phase shifters (Rz rotations), beamsplitters (Ry rotations), and nonlinear Kerr media, which allow  two single photons to cross phase modulate, performing exp iχL|1111| . • Initial state preparation: Create single photon states (e.g. by attenuating laser light). • Readout: Detect single photons (e.g. using a photomultipler tube). • Drawbacks: Nonlinear Kerr media with large ratio of cross phase modulation strength to absorption loss are difficult to realize. 7.5 Optical cavity quantum electrodynamics Cavity quantum electrodynamics (QED) is a field of study which accesses an important regime involving coupling of single atoms to only a few optical modes. Experimentally, this is made possible by placing single atoms within optical cavities of very high Q; because only one or two electromagnetic modes exist within the cavity, and each of these has a very high electric field strength, the dipole coupling between the atom and the field is very high. Because of the high Q, photons within the cavity have an opportunity to interact many times with the atoms before escaping. Theoretically, this technique presents a unique opportunity to control and study single quantum systems, opening many opportunities in quantum chaos, quantum feedback control, and quantum computation. In particular, single-atom cavity QED methods offer a potential solution to the dilemma with the optical quantum computer described in the previous section. Single photons can be good carriers of quantum information, but they require some other medium in order to interact with each other. Because they are bulk materials, traditional nonlinear optical Kerr media are unsatisfactory in satisfying this need. However, well isolated single atoms might not necessarily suffer from the same decoherence effects, and moreover, they could also provide cross phase modulation between photons. In fact, what if the state of single photons could be efficiently transfered to and from single atoms, whose interactions could be controlled? This potential scenario is the topic of this section. 298 Quantum computers: physical realization 7.5.1 Physical apparatus The two main experimental components of a cavity QED system are the electromagnetic cavity and the atom. We begin by describing the basic physics of cavity modes, and then summarize basic ideas about atomic structure and the interaction of atoms with light. Fabry–Perot cavity The main interaction involved in cavity QED is the dipolar interaction d · E between an electric dipole moment d and an electric field E. How large can this interaction be? It is difficult in practice to change the size of d; however, |E| is experimentally accessible, and one of the most important tools for realizing a very large electric field in a narrow band of frequencies and in a small volume of space, is the Fabry–Perot cavity. In the approximation that the electric field is monochromatic and occupies a single spatial mode, it can be given a very simple quantum-mechanical description:  (7.56) E(r) = iǫ E0 aeikr − a† e−ikr . As described in Box 7.5, these approximations are appropriate for the field in a FabryPerot cavity. Here, k = ω/c is the spatial frequency of the light, E0 is the field strength, ǫ is the polarization, and r is the position at which the field is desired. a and a† are creation and annihilation operators for photons in the mode, and behave as described in Section 7.4.2. Note that the Hamiltonian governing the evolution of the field in the cavity is simply Hfield = ωa† a , (7.57) and this is consistent with the semiclassical notion that the energy is the volume integral of |E|2 in the cavity. Exercise 7.15: Plot (7.55) as a function of field detuning ϕ, for R1 = R2 = 0.9. Two-level atoms Until this section of the chapter, we have discussed only photons, or interactions such as the cross phase modulation between photons mediated by a semiclassical medium. Now, let us turn our attention to atoms, their electronic structure, and their interactions with photons. This is, of course, a very deep and well-developed field of study; we shall only describe a small part of it that touches upon quantum computation. The electronic energy eigenstates of an atom can be very complicated (see Box 7.6), but for our purposes modeling an atom as having only two states is an excellent approximation. This two-level atom approximation can be valid because we shall be concerned with the interaction with monochromatic light and, in this case, the only relevant energy levels are those satisfying two conditions: their energy difference matches the energy of the incident photons, and symmetries (‘selection rules’) do not inhibit the transition. These conditions arise from basic conservation laws for energy, angular momentum, and parity. Energy conservation is no more than the condition that ω = E2 − E1 , (7.58) where E2 and E1 are two eigenenergies of the atom. Angular momentum and parity conservation requirements can be illustrated by considering the matrix element of r̂ between two orbital wavefunctions, l1 , m1 |r̂|l2 , m2 . Without loss of generality, we can 299 Optical cavity quantum electrodynamics Box 7.5: The Fabry–Perot cavity A basic component of a Fabry–Perot cavity is a partially silvered mirror, off which incident light Ea and Eb partially reflect and partially transmit, producing the output fields Ea′ and Eb′ . These are related by the unitary transform 1 √  0 √   Ea′ E R 1 − R a √ = √ , (7.53) Eb′ Eb 1−R − R where R is the reflectivity of the mirror, and the location of the ‘−’ sign is a convention chosen as given here for convenience.    in      out // / refl cav A Fabry–Perot cavity is made from two plane parallel mirrors of reflectivities R1 and R2 , upon which light Ein is incident from the outside, as shown in the figure. Inside the cavity, light bounces back and forth between the two mirrors, such that the field acquires a phase shift eiϕ on each round-trip; ϕ is a function of the path length and the frequency of the light. Thus, using (7.53), we find the cavity internal field to be √ 1 − R1 Ein √ Ek = , (7.54) Ecav = 1 + eiϕ R1 R2 k √ √ iϕ E = −e R1√ R2 Ek−1 . Similarly, we find Eout = where√E0 = 1 − R1 Ein , and k √ √ iϕ/2 1 − R2 , and Erefl = R1 Ein + 1 − R1 R2 eiϕ Ecav . e One of the most important characteristics of a Fabry–Perot cavity for our purpose is the power in the cavity internal field as a function of the input power and field frequency, + + 1 − R1 Pcav ++ Ecav ++2 √ = . (7.55) =+ + P E |1 + eiϕ R R |2 in in 1 2 Two aspects are noteworthy. First, frequency selectivity is given by the fact that ϕ = ωd/c, where d is the mirror separation, c is the speed of light, and ω is the frequency of the field. Physically, it comes about because of constructive and destructive interference between the cavity field and the front surface reflected light. And second, on resonance, the cavity field achieves a maximum value which is approximately 1/(1 − R) times the incident field. This property is invaluable for cavity QED. 300 Quantum computers: physical realization take r̂ to be in the x̂ − ŷ plane, such that it can be expressed in terms of spherical harmonics (Box 7.6) as ) 3  r̂ = (−rx + iry )Y1,+1 + (rx + iry )Y1,−1 (7.59) 8π In this basis, the relevant terms in l, m1 |r̂|l, m2  are Yl∗1 m1 Y1m Yl2 m2 dΩ . (7.60) Recall that m = ±1; this integral is non-zero only when m2 −m1 = ±1 and Δl = ±1. The first condition is the conservation of angular momentum, and the second, parity, under the dipole approximation where l1 , m1 |r̂|l2 , m2  becomes relevant. These conditions are selection rules which are important in the two-level atom approximation. Exercise 7.16: (Electric dipole selection rules) Show that (7.60) is non-zero only when m2 − m1 = ±1 and Δl = ±1. In reality, light is never perfectly monochromatic; it is generated from some source such as a laser, in which longitudinal modes, pump noise, and other sources give rise to a finite linewidth. Also, an atom coupled to the external world never has perfectly defined energy eigenstates; small perturbations such as nearby fluctuating electric potentials, or even interaction with the vacuum, cause each energy level to be smeared out and become a distribution with finite width. Nevertheless, by choosing an atom and excitation energy carefully, and by taking advantage of the selection rules, it is possible to arrange circumstances such that the two-level atom approximation i