Ecuaciones
diferenciales
con problemas con valores
en la frontera
Octava edición
Dennis G. Zill
Warren S. Wright
OCTAVA EDICIÓN
ECUACIONES
DIFERENCIALES
con problemas con valores
en la frontera
OCTAVA EDICIÓN
ECUACIONES
DIFERENCIALES
con problemas con valores
en la frontera
DENNIS G. ZILL
Loyola Marymount University
WARREN S. WRIGHT
Loyola Marymount University
MICHAEL R. CULLEN
Antiguo miembro de la Loyola Marymount University
TRADUCCIÓN
Dra. Ana Elizabeth García Hernández
Profesor invitado UAM-Azcapotzalco
REVISIÓN TÉCNICA
Dr. Edmundo Palacios Pastrana
Universidad Iberoamericana
Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur
Ecuaciones diferenciales
con problemas con valores en la frontera
Octava edición
Dennis G. Zill y Warren S. Wright
Presidente de Cengage Learning
Latinoamérica:
Fernando Valenzuela Migoya
Director Editorial, de Producción y de
Plataformas Digitales para Latinoamérica:
Ricardo H. Rodríguez
Editora de Adquisiciones para
Latinoamérica:
Claudia C. Garay Castro
Gerente de Manufactura para
Latinoamérica:
Raúl D. Zendejas Espejel
Gerente Editorial en Español para
Latinoamérica:
Pilar Hernández Santamarina
Gerente de Proyectos Especiales:
Luciana Rabuffetti
Coordinador de Manufactura:
Rafael Pérez González
Editor:
Omegar Martínez
Diseño de portada:
Anneli Daniela Torres Arroyo
Imagen de portada:
Space, © Rolffimages / Dreamstime.com
Composición tipográfica:
Aurora Esperanza López López
Impreso en México
1 2 3 4 5 6 7 17 16 15 14
© D.R. 2015 por Cengage Learning Editores, S.A. de C.V.,
una Compañía de Cengage Learning, Inc.
Corporativo Santa Fe
Av. Santa Fe núm. 505, piso 12
Col. Cruz Manca, Santa Fe
C.P. 05349, México, D.F.
Cengage Learning™ es una marca registrada
usada bajo permiso.
DERECHOS RESERVADOS. Ninguna parte de
este trabajo amparado por la Ley Federal del
Derecho de Autor, podrá ser reproducida,
transmitida, almacenada o utilizada en
cualquier forma o por cualquier medio, ya sea
gráfico, electrónico o mecánico, incluyendo,
pero sin limitarse a lo siguiente: fotocopiado,
reproducción, escaneo, digitalización,
grabación en audio, distribución en Internet,
distribución en redes de información o
almacenamiento y recopilación en sistemas
de información a excepción de lo permitido
en el Capítulo III, Artículo 27 de la Ley Federal
del Derecho de Autor, sin el consentimiento
por escrito de la Editorial.
Traducido del libro Differential Equations with
Boundary-Value Problems, Eighth Edition
Publicado en inglés por Brooks/Cole, Cengage
Learning © 2013
Datos para catalogación bibliográfica:
Zill, Dennis G. y Warren S. Wright
Ecuaciones diferenciales con problemas
con valores en la frontera, octava edición
ISBN: 978-607-519-444-8
Visite nuestro sitio en:
http://latinoamerica.cengage.com
CONTENIDO
1
Prefacio
xi
Proyectos
P-1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
1
1.1 'H¿QLFLRQHV\WHUPLQRORJtD
1.2 3UREOHPDVFRQYDORUHVLQLFLDOHV
1.3 (FXDFLRQHVGLIHUHQFLDOHVFRPRPRGHORVPDWHPiWLFRV
REPASO DEL CAPÍTULO 1
2
32
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
34
2.1 &XUYDVVROXFLyQVLQXQDVROXFLyQ
2.1.1 &DPSRVGLUHFFLRQDOHV
2.1.2 ('DXWyQRPDVGHSULPHURUGHQ
2.2 9DULDEOHVVHSDUDEOHV
2.3 (FXDFLRQHVOLQHDOHV
2.4 Ecuaciones exactas
61
2.5 6ROXFLRQHVSRUVXVWLWXFLyQ
2.6 Un método numérico
73
REPASO DEL CAPÍTULO 2
3
78
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
81
3.1 0RGHORVOLQHDOHV
3.2 0RGHORVQROLQHDOHV
3.3 0RGHODGRFRQVLVWHPDVGH('GHSULPHURUGHQ
REPASO DEL CAPÍTULO 3
111
v
vi
4
l
CONTENIDO
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
113
4.1 7HRUtDSUHOLPLQDU(FXDFLRQHVOLQHDOHV
4.1.1 3UREOHPDVFRQYDORUHVLQLFLDOHV\FRQYDORUHVHQODIURQWHUD
4.1.2 (FXDFLRQHVKRPRJpQHDV
4.1.3 (FXDFLRQHVQRKRPRJpQHDV
4.2 5HGXFFLyQGHRUGHQ
4.3 (FXDFLRQHVOLQHDOHVKRPRJpQHDVFRQFRH¿FLHQWHVFRQVWDQWHV
4.4 &RH¿FLHQWHVLQGHWHUPLQDGRV0pWRGRGHVXSHUSRVLFLyQ
4.5 &RH¿FLHQWHVLQGHWHUPLQDGRV0pWRGRGHODQXODGRU
4.6 9DULDFLyQGHSDUiPHWURV
4.7 (FXDFLyQGH&DXFK\(XOHU
4.8 Funciones de Green
164
4.8.1 3UREOHPDVFRQYDORUHVLQLFLDOHV
4.8.2 3UREOHPDVFRQYDORUHVHQODIURQWHUD
4.9 6ROXFLyQGHVLVWHPDVGH('OLQHDOHVSRUHOLPLQDFLyQ
4.10 (FXDFLRQHVGLIHUHQFLDOHVQROLQHDOHV
REPASO DEL CAPÍTULO 4
5
183
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 186
5.1 0RGHORVOLQHDOHV3UREOHPDVFRQYDORUHVLQLFLDOHV
5.1.1 6LVWHPDVUHVRUWHPDVD0RYLPLHQWROLEUHQRDPRUWLJXDGR
5.1.2 6LVWHPDVUHVRUWHPDVD0RYLPLHQWROLEUHDPRUWLJXDGR
5.1.3 6LVWHPDVUHVRUWHPDVD0RYLPLHQWRIRU]DGR
5.1.4 &LUFXLWRHQVHULHDQiORJR
5.2 0RGHORVOLQHDOHV3UREOHPDVFRQYDORUHVHQODIURQWHUD
5.3 0RGHORVQROLQHDOHV
REPASO DEL CAPÍTULO 5
6
222
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
6.1 Repaso de series de potencias
226
6.2 6ROXFLRQHVUHVSHFWRDSXQWRVRUGLQDULRV
6.3 6ROXFLRQHVHQWRUQRDSXQWRVVLQJXODUHV
6.4 )XQFLRQHVHVSHFLDOHV
REPASO DEL CAPÍTULO 6
263
225
CONTENIDO
7
LA TRANSFORMADA DE LAPLACE
l
vii
265
7.1 'H¿QLFLyQGHODWUDQVIRUPDGDGH/DSODFH
7.2 7UDQVIRUPDGDVLQYHUVDV\WUDQVIRUPDGDVGHGHULYDGDV
7.2.1 7UDQVIRUPDGDVLQYHUVDV
7.2.2 7UDQVIRUPDGDVGHGHULYDGDV
7.3 3URSLHGDGHVRSHUDFLRQDOHV,
7.3.1 7UDVODFLyQHQHOHMHs
7.3.2 7UDVODFLyQHQHOHMHt
7.4 3URSLHGDGHVRSHUDFLRQDOHV,,
7.4.1 'HULYDGDVGHXQDWUDQVIRUPDGD
7.4.2 7UDQVIRUPDGDVGHLQWHJUDOHV
7.4.3 7UDQVIRUPDGDGHXQDIXQFLyQSHULyGLFD
7.5 /DIXQFLyQGHOWDGH'LUDF
7.6 6LVWHPDVGHHFXDFLRQHVGLIHUHQFLDOHVOLQHDOHV
REPASO DEL CAPÍTULO 7
8
312
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
317
8.1 7HRUtDSUHOLPLQDU6LVWHPDVOLQHDOHV
8.2 6LVWHPDVOLQHDOHVKRPyJHQHRV
8.2.1 (LJHQYDORUHVUHDOHVGLVWLQWRV
8.2.2 (LJHQYDORUHVUHSHWLGRV
8.2.3 (LJHQYDORUHVFRPSOHMRV
8.3 6LVWHPDVOLQHDOHVQRKRPyJHQHRV
8.3.1 &RH¿FLHQWHVLQGHWHUPLQDGRV
8.3.2 9DULDFLyQGHSDUiPHWURV
8.4 0DWUL]H[SRQHQFLDO
REPASO DEL CAPÍTULO 8
9
352
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS 353
9.1 0pWRGRVGH(XOHU\DQiOLVLVGHHUURUHV
9.2 0pWRGRVGH5XQJH.XWWD
9.3 0pWRGRVPXOWLSDVRV
9.4 Ecuaciones y sistemas de orden superior
366
9.5 3UREOHPDVFRQYDORUHVHQODIURQWHUDGHVHJXQGRRUGHQ
REPASO DEL CAPÍTULO 9
375
viii
10
l
CONTENIDO
SISTEMAS AUTÓNOMOS PLANOS
376
10.1 6LVWHPDVDXWyQRPRV
10.2 (VWDELOLGDGGHVLVWHPDVOLQHDOHV
10.3 /LQHDOL]DFLyQ\HVWDELOLGDGORFDO
10.4 6LVWHPDVDXWyQRPRVFRPRPRGHORVPDWHPiWLFRV
REPASO DEL CAPÍTULO 10
11
408
SERIES DE FOURIER
410
11.1 )XQFLRQHVRUWRJRQDOHV
11.2 Series de Fourier
416
11.3 Series de Fourier de cosenos y de senos
422
11.4 3UREOHPDGH6WXUP/LRXYLOOH
11.5 6HULHVGH%HVVHO\/HJHQGUH
11.5.1 6HULHGH)RXULHU%HVVHO
11.5.2 6HULHGH)RXULHU/HJHQGUH
REPASO DEL CAPÍTULO 11
12
443
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES 445
12.1 (FXDFLRQHVGLIHUHQFLDOHVSDUFLDOHVVHSDUDEOHV
12.2 ('3FOiVLFDV\SUREOHPDVFRQYDORUHVHQODIURQWHUD
12.3 (FXDFLyQGHFDORU
12.4 (FXDFLyQGHRQGD
12.5 (FXDFLyQGH/DSODFH
12.6 3UREOHPDVQRKRPRJpQHRVFRQYDORUHVHQODIURQWHUD
12.7 'HVDUUROORVHQVHULHVRUWRJRQDOHV
12.8 3UREOHPDVGLPHQVLRQDOHVGHRUGHQVXSHULRU
REPASO DEL CAPÍTULO 12
481
CONTENIDO
l
13 PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
ix
483
13.1 &RRUGHQDGDVSRODUHV
13.2 &RRUGHQDGDVSRODUHV\FLOtQGULFDV
13.3 &RRUGHQDGDVHVIpULFDV
REPASO DEL CAPÍTULO 13
14
498
TRANSFORMADA INTEGRAL
500
14.1 )XQFLyQHUURU
14.2 7UDQVIRUPDGDGH/DSODFH
14.3 ,QWHJUDOGH)RXULHU
14.4 Transformadas de Fourier
REPASO DEL CAPÍTULO 14
15
516
522
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
15.1 (FXDFLyQGH/DSODFH
15.2 (FXDFLyQGHFDORU
15.3 (FXDFLyQGHRQGD
REPASO DEL CAPÍTULO 15
539
APÉNDICES
I
)XQFLyQJDPPD $3(1
II
0DWULFHV $3(3
III
7UDQVIRUPDGDVGH/DSODFH $3(21
5HVSXHVWDVDORVSUREOHPDVVHOHFFLRQDGRVFRQQXPHUDFLyQLPSDU
Índice
I-1
RES-1
524
PREFACIO
AL ESTUDIANTE
/RVDXWRUHVGHORVOLEURVYLYHQFRQODHVSHUDQ]DGHTXHDOJXLHQHQUHDOLGDGORVlea$O
FRQWUDULRGHORTXHXVWHGSRGUtDFUHHUFDVLWRGRWH[WRGHPDWHPiWLFDVGHQLYHOXQLYHUVLWDULRHVWiHVFULWRSDUDXVWHG\QRSDUDHOSURIHVRU&LHUWRHVTXHORVWHPDVFXELHUWRV
HQHOWH[WRVHHVFRJLHURQFRQVXOWDQGRDORVSURIHVRUHV\DTXHHOORVWRPDQODGHFLVLyQ
DFHUFDGHVLKD\TXHXVDUORVHQVXVFODVHVSHURWRGRORHVFULWRHQpOHVWiGLULJLGR
GLUHFWDPHQWHDXVWHGDOHVWXGLDQWH(QWRQFHVTXHUHPRVLQYLWDUOH²QRHQUHDOLGDG
TXHUHPRVSHGLUOH²TXH£OHDHVWHOLEURGHWH[WR3HURQRORKDJDFRPROHHUtDXQD
QRYHODQRGHEHOHHUORUiSLGR\QRGHEHVDOWDUVHQDGD3LHQVHHQHVWHOLEURFRPRXQ
FXDGHUQRGHHMHUFLFLRV&UHHPRVTXHODVPDWHPiWLFDVVLHPSUHGHEHUtDQVHUHVWXGLDGDVFRQOiSL]\SDSHODODPDQRSRUTXHPX\SUREDEOHPHQWHWHQGUiTXHWUDEDMDUORV
HMHPSORV\KDFHUORVDQiOLVLV/HD²PiVELHQWUDEDMH²WRGRVORVHMHPSORVGHXQD
VHFFLyQDQWHVGHLQWHQWDUFXDOTXLHUDGHORVHMHUFLFLRV/RVHMHPSORVVHKDQGLVHxDGR
SDUDPRVWUDUORTXHFRQVLGHUDPRVVRQORVDVSHFWRVPiVLPSRUWDQWHVGHFDGDVHFFLyQ
\SRUWDQWRPXHVWUDQORVSURFHGLPLHQWRVQHFHVDULRVSDUDWUDEDMDUODPD\RUtDGHORV
SUREOHPDVGHORVFRQMXQWRVGHHMHUFLFLRV6LHPSUHOHVGHFLPRVDQXHVWURVHVWXGLDQWHV
TXHFXDQGROHDQXQHMHPSORWDSHQVXVROXFLyQHLQWHQWHQWUDEDMDUSULPHURHQHOOD
FRPSDUDU VX UHVSXHVWD FRQ OD VROXFLyQ GDGD \ OXHJR UHVROYHU FXDOTXLHUGLIHUHQFLD
+HPRVWUDWDGRGHLQFOXLUORVSDVRVPiVLPSRUWDQWHVSDUDFDGDHMHPSORSHURVLDOJR
QRHVFODURXVWHGSRGUtDVLHPSUHLQWHQWDUFRPSOHWDUORVGHWDOOHVRSDVRVTXHIDOWDQ\
DTXtHVGRQGHHOSDSHO\HOOiSL]HQWUDQRWUDYH]3XHGHTXHQRVHDIiFLOSHURHVSDUWH
GHOSURFHVRGHDSUHQGL]DMH/DDFXPXODFLyQGHKHFKRVVHJXLGRVSRUODOHQWDDVLPLODFLyQGHODFRPSUHQVLyQVLPSOHPHQWHQRVHSXHGHDOFDQ]DUVLQWUDEDMDUDUGXDPHQWH
(QFRQFOXVLyQOHGHVHDPRVEXHQDVXHUWH\p[LWR(VSHUDPRVTXHGLVIUXWHHOOLEUR
\HOFXUVRTXHHVWiSRULQLFLDU&XDQGRpUDPRVHVWXGLDQWHVGHODOLFHQFLDWXUDHQPDWHPiWLFDVHVWHFXUVRIXHXQRGHQXHVWURVIDYRULWRVSRUTXHQRVJXVWDQODVPDWHPiWLFDV
TXHHVWiQFRQHFWDGDVFRQHOPXQGRItVLFR6LWLHQHDOJ~QFRPHQWDULRRVLHQFXHQWUD
DOJ~QHUURUFXDQGROHDRWUDEDMHFRQpVWHRVLQRVTXLHUHKDFHUOOHJDUXQDEXHQDLGHD
SDUDPHMRUDUHOOLEURSRUIDYRUSyQJDVHHQFRQWDFWRFRQQRVRWURVDWUDYpVGHQXHVWUR
HGLWRUHQ&HQJDJH/HDUQLQJPROO\WD\ORU#FHQJDJHFRP
AL PROFESOR
(QFDVRGHTXHH[DPLQHHVWHWH[WRSRUSULPHUDYH]Ecuaciones diferenciales con
problemas con valores en la fronteraRFWDYDHGLFLyQVHSXHGHXWLOL]DU\DVHDSDUD
XQ FXUVR GH XQ VHPHVWUH GH HFXDFLRQHV GLIHUHQFLDOHV RUGLQDULDV R SDUD FXEULU XQ
FXUVRGHGRVVHPHVWUHVGHHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDV\SDUFLDOHV/DYHUVLyQ FRUWD GHO OLEUR Ecuaciones diferenciales con aplicaciones de modelado GpFLPDHGLFLyQWHUPLQDHQHOFDStWXOR\HVWiGLVHxDGDSDUDXQVHPHVWUHRXQFXUVR
FRUWRGHHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDV3DUDXQFXUVRVHPHVWUDOVXSRQHPRV
TXHORVHVWXGLDQWHVKDQFRPSOHWDGRFRQp[LWRDOPHQRVGRVVHPHVWUHVGHFiOFXOR
'DGRTXHXVWHGHVWiOH\HQGRHVWRVLQGXGD\DKDH[DPLQDGRODWDEODGHFRQWHQLGRV
SDUDORVWHPDVTXHFXEULUi
xi
xii
l
PREFACIO
(QHVWHSUHIDFLRQRHQFRQWUDUi³XQSURJUDPDVXJHULGR´1RSUHWHQGHUHPRVVHUWDQ
VDELRVFRPRSDUDGHFLUDRWURVSURIHVRUHVORTXHGHEHQHQVHxDUHQVXVFODVHV6HQWLPRV
TXHKD\PXFKRPDWHULDODTXtSDUDHVFRJHU\IRUPDUXQFXUVRDVXJXVWR(OWH[WRWLHQH
XQHTXLOLEULRUD]RQDEOHHQWUHORVPpWRGRVDQDOtWLFRVFXDOLWDWLYRV\FXDQWLWDWLYRVHQHO
HVWXGLR GH ODV HFXDFLRQHV GLIHUHQFLDOHV (Q FXDQWR D QXHVWUD ³¿ORVRItD VXE\DFHQWH´
pVWDHVTXHXQOLEURSDUDHVWXGLDQWHVGHOLFHQFLDWXUDGHEHUtDHVWDUHVFULWRFRQVLGHUDQGR
VLHPSUHODFRPSUHVLyQGHOHVWXGLDQWHORTXHVLJQL¿FDTXHHOPDWHULDOGHEHUtDHVWDUSUHVHQWDGRHQXQDIRUPDGLUHFWDOHJLEOH\~WLOFRQVLGHUDQGRHOQLYHOWHyULFRFRPSDWLEOH
FRQODLGHDGHXQ³SULPHUFXUVR´
$ODVSHUVRQDVIDPLOLDUL]DGDVFRQODVHGLFLRQHVDQWHULRUHVQRVJXVWDUtDPHQFLRQDUOHV
DOJXQDVGHODVPHMRUDVKHFKDVHQHVWDHGLFLyQ
$OSULQFLSLRGHOOLEURVHSUHVHQWDQRFKRQXHYRVSUR\HFWRV&DGDSUR\HFWRLQFOX\HXQDVHULHGHSUREOHPDVUHODFLRQDGRV\XQDFRUUHODFLyQGHORVPDWHULDOHV
GHOSUR\HFWRFRQXQFDStWXORHQHOOLEUR
0XFKRVFRQMXQWRVGHHMHUFLFLRVVHKDQDFWXDOL]DGRDJUHJDQGRQXHYRVSUREOHPDV
SDUDSUREDU\GHVD¿DUPHMRUDORVHVWXGLDQWHV'HLJXDOPDQHUDYDULRVFRQMXQWRV
GHHMHUFLFLRVVHKDQPHMRUDGRHOLPLQDQGRFLHUWRVSUREOHPDV
6HKDQDJUHJDGR¿JXUDV\HMHPSORVDGLFLRQDOHVHQPXFKDVVHFFLRQHV
• Varios profesores dedicaron parte de su tiempo para expresarnos sus preocuSDFLRQHV YtD FRUUHR HOHFWUyQLFR DFHUFD GH QXHVWUR PpWRGR GH ODV HFXDFLRQHV
GLIHUHQFLDOHVOLQHDOHVGHSULPHURUGHQ(QUHVSXHVWDKHPRVUHHVFULWRODVHFFLyQ
(FXDFLRQHVOLQHDOHVFRQODLQWHQFLyQGHVLPSOL¿FDUHODQiOLVLV
6LHQWRTXHHVWHVLVWHPDSURSRUFLRQDXQDLQGLFDFLyQFODUDGHGyQGHHVWiQODV
FRVDVVLQQHFHVLGDGGHDJUHJDUHOPROHVWRQ~PHURGHSiJLQD
(VWD HGLFLyQ FRQWLHQH XQD QXHYD VHFFLyQ HQ ODV IXQFLRQHV GH *UHHQ HQ HO
FDStWXORGLULJLGDDTXLHQHVWLHQHQWLHPSRH[WUDHQVXFXUVRSDUDFRQVLGHUDU
HVWDDSOLFDFLyQHOHJDQWHGHODYDULDFLyQGHORVSDUiPHWURVHQODVROXFLyQGH
SUREOHPDVGHYDORULQLFLDO\YDORUOtPLWH/DVHFFLyQHVRSFLRQDO\VXFRQWHQLGRQRDIHFWDQLQJXQDRWUDVHFFLyQ
/D VHFFLyQ LQFOX\H DKRUD XQ DQiOLVLV VREUH FyPR XWLOL]DU DPEDV IRUPDV
WULJRQRPpWULFDV
y A sen(ȦW )y y A cos(ȦW )
SDUDGHVFULELUHOPRYLPLHQWRDUPyQLFRVLPSOH
$SHWLFLyQGHORVXVXDULRVGHHGLFLRQHVDQWHULRUHVVHKDDxDGLGRXQDQXHYD
VHFFLyQHQHOUHSDVRGHVHULHVGHSRWHQFLDVDOFDStWXOR$GHPiVJUDQSDUWH
GHHVWHFDStWXORVHKDUHHVFULWRSDUDPHMRUDUODFODULGDG(QSDUWLFXODUVHKD
DPSOLDGRHQRUPHPHQWHHODQiOLVLVGHODVIXQFLRQHVGH%HVVHOPRGL¿FDGDV\GH
ODVIXQFLRQHVGH%HVVHOHVIpULFDVGHODVHFFLyQ
(QORVHMHUFLFLRVVHKDQDJUHJDGRYDULRVSUREOHPDVGHYDORUHVDODIURQWHUD
TXHLPSOLFDQIXQFLRQHVGH%HVVHOPRGL¿FDGDV
RECURSOS PARA LOS ESTUDIANTES
/RVStudent Resource and Solutions Manual (SRM) VyORGLVSRQLEOHVHQLQJOpV VH YHQGHQ SRU VHSDUDGR HODERUDGRV SRU :DUUHQ 6 :ULJKW \ &DURO
':ULJKW(OYROXPHQFRQ,6%1DFRPSDxDDEcuaciones
diferenciales con aplicaciones de modeladoGpFLPDHGLFLyQPLHQWUDVTXH
HOTXHHOGH,6%1DFRPSDxDD Ecuaciones diferenciales con
problemas con valores en la fronteraRFWDYDHGLFLyQ$PERVSUHVHQWDQUHSDVRVGHOPDWHULDOPiVLPSRUWDQWHGHiOJHEUD\FiOFXORWRGDVODVVROXFLRQHV
GHOWHUFHUSUREOHPDGHFDGDFRQMXQWRGHHMHUFLFLRV H[FHSWRORVSUREOHPDV
GHDQiOLVLV\ODVWDUHDVGHOODERUDWRULRGHFyPSXWR ORVFRPDQGRV\VLQWD[LV
PiVLPSRUWDQWHVGHMathematica y MapleOLVWDVGHFRQFHSWRVLPSRUWDQWHV
DVtFRPR~WLOHVVXJHUHQFLDVGHFyPRHPSH]DUFLHUWRVSUREOHPDV
PREFACIO
l
xiii
RECURSOS PARA EL PROFESOR
(VWH OLEUR FXHQWD FRQ XQD VHULH GH UHFXUVRV SDUD HO SURIHVRU ORV FXDOHV HVWiQ GLVSRQLEOHV~QLFDPHQWHHQLQJOpV\VyORVHSURSRUFLRQDQDORVGRFHQWHVTXHORDGRSWHQ
FRPRWH[WRHQVXVFXUVRV3DUDPD\RULQIRUPDFLyQSyQJDVHHQFRQWDFWRFRQHOiUHDGH
VHUYLFLRDOFOLHQWHHQODVVLJXLHQWHVGLUHFFLRQHVGHFRUUHRHOHFWUyQLFR
&HQJDJH/HDUQLQJ0p[LFR\&HQWURDPpULFD
&HQJDJH/HDUQLQJ&DULEH
&HQJDJH/HDUQLQJ&RQR6XU
&HQJDJH/HDUQLQJ3DFWR$QGLQR
FOLHQWHVPH[LFRFD#FHQJDJHFRP
FOLHQWHVFDULEH#FHQJDJHFRP
FOLHQWHVFRQRVXU#FHQJDJHFRP
FOLHQWHVSDFWRDQGLQR#FHQJDJHFRP
$OLJXDOTXHORVUHFXUVRVLPSUHVRVDGLFLRQDOHVODVGLUHFFLRQHVGHORVVLWLRVZHEVHxDODGDVDORODUJRGHOWH[WR\TXHVHLQFOX\HQDPRGRGHUHIHUHQFLDQRVRQDGPLQLVWUDGDVSRU
&HQJDJH/HDUQLQJ/DWLQRDPHULFDSRUORTXHpVWDQRHVUHVSRQVDEOHGHORVFDPELRV\DFWXDOL]DFLRQHVGHODVPLVPDV
RECONOCIMIENTOS
1RV JXVWDUtD GDU XQ UHFRQRFLPLHQWR HVSHFLDO D FLHUWDV SHUVRQDV 0XFKDV JUDFLDV D
0ROO\ 7D\ORU 6KD\OLQ :DOVK +RJDQ \ $OH[ *RQWDU SRU RUTXHVWDU HO GHVDUUROOR GH
HVWDHGLFLyQ\ORVPDWHULDOHVTXHORFRPSRQHQ$OLVRQ(LJHO=DGHRIUHFLyHOLQJHQLR
HOFRQRFLPLHQWR\ODSDFLHQFLDQHFHVDULRVSDUDXQSURFHVRGHSURGXFFLyQVLQ¿VXUDV
(G'LRQQHWUDEDMyLQFDQVDEOHPHQWHSDUDSURSRUFLRQDUVHUYLFLRVGHDOWDFDOLGDGHGLWRULDO<SRU~OWLPRDJUDGHFHPRVD6FRWW%URZQSRUVXVKDELOLGDGHVVXSHULRUHVFRPR
UHYLVRUGHSUHFLVLyQ8QDYH]PiVXQDVPX\HVSHFLDOHV\VHQWLGDVJUDFLDVD/HVOLH
/DKUSRUVXDSR\RFRPSUHQVLyQ\YROXQWDGSDUDFRPXQLFDUVHSRUVXVVXJHUHQFLDV\
SRUREWHQHU\RUJDQL]DUORVH[FHOHQWHVSUR\HFWRVTXHVHSUHVHQWDQDOLQLFLRGHOOLEUR
7DPELpQH[WHQGHPRVQXHVWURPiVVLQFHURDJUDGHFLPLHQWRDODVVLJXLHQWHVSHUVRQDV
TXHKLFLHURQXQKXHFRHQVXVDSUHWDGDVDJHQGDVSDUDHQYLDUQRVXQSUR\HFWR
,YDQ.UDPHUUniversity of Maryland, Baltimore County
7RP/D)DURGustavus Adolphus College
-R*DVFRLJQHFisheries Consultant
&-.QLFNHUERFNHUSensis Corporation
.HYLQ&RRSHUWashington State University
*LOEHUW1/HZLVMichigan Technological University
0LFKDHO2OLQLFNMiddlebury College
)LQDOPHQWHFRQIRUPHKDQSDVDGRORVDxRVHVWRVOLEURVGHWH[WRVHKDQPHMRUDGR
SRUXQQ~PHURLQFRQWDEOHGHFDPLQRVJUDFLDVDODVVXJHUHQFLDV\ODVFUtWLFDVGHORV
UHYLVRUHVDVtTXHHVMXVWRFRQFOXLUFRQXQUHFRQRFLPLHQWRGHQXHVWUDGHXGDFRQODV
VLJXLHQWHVSHUVRQDVSRUFRPSDUWLUVXPDHVWUtD\H[SHULHQFLD
REVISORES DE EDICIONES ANTERIORES
:LOOLDP$WKHUWRQCleveland State University
3KLOLS%DFRQUniversity of Florida
%UXFH%D\O\University of Arizona
:LOOLDP+%H\HUUniversity of Akron
5*%UDGVKDZClarkson College
'HDQ5%URZQYoungstown State University
'DYLG%XFKWKDOUniversity of Akron
1JX\HQ3&DFUniversity of Iowa
7&KRZCalifornia State University, Sacramento
xiv
l
PREFACIO
'RPLQLF3&OHPHQFHNorth Carolina Agricultural and Technical State
University
3DVTXDOH&RQGRUniversity of Massachusetts, Lowell
9LQFHQW&RQQROO\Worcester Polytechnic Institute
3KLOLS6&URRNHVanderbilt University
%UXFH('DYLVSt. Louis Community College at Florissant Valley
3DXO:'DYLVWorcester Polytechnic Institute
5LFKDUG$'L'LRLa Salle University
-DPHV'UDSHUUniversity of Florida
-DPHV0(GPRQGVRQSanta Barbara City College
-RKQ+(OOLVRQGrove City College
5D\PRQG)DEHFLouisiana State University
'RQQD)DUULRUUniversity of Tulsa
5REHUW()HQQHOOClemson University
:()LW]JLEERQUniversity of Houston
+DUYH\-)OHWFKHUBrigham Young University
3DXO-*RUPOH\Villanova
/D\DFKL+DGMLUniversity of Alabama
5XEHQ+D\UDSHW\DQKettering University
7HUU\+HUGPDQVirginia Polytechnic Institute and State University
=G]LVODZ-DFNLHZLF]Arizona State University
6.-DLQOhio University
$QWKRQ\--RKQSoutheastern Massachusetts University
'DYLG&-RKQVRQUniversity of Kentucky, Lexington
+DUU\/-RKQVRQV.P.I & S.U.
.HQQHWK5-RKQVRQNorth Dakota State University
-RVHSK.D]LPLUEast Los Angeles College
-.HHQHUUniversity of Arizona
6WHYH%.KOLHITennessee Technological University (retirado)
&-.QLFNHUERFNHUSensis Corporation
&DUORQ$.UDQW]Kean College of New Jersey
7KRPDV*.XG]PDUniversity of Lowell
$OH[DQGUD.XUHSDNorth Carolina A&T State University
*(/DWWDUniversity of Virginia
&HFHOLD/DXULHUniversity of Alabama
-DPHV50F.LQQH\California Polytechnic State University
-DPHV/0HHNUniversity of Arkansas
*DU\+0HLVWHUVUniversity of Nebraska, Lincoln
6WHSKHQ-0HUULOOMarquette University
9LYLHQ0LOOHUMississippi State University
*HUDOG0XHOOHUColumbus State Community College
3KLOLS60XOU\Colgate University
&-1HXJHEDXHUPurdue University
7\UH$1HZWRQWashington State University
%ULDQ02¶&RQQRUTennessee Technological University
-.2GGVRQUniversity of California, Riverside
&DURO62¶'HOOOhio Northern University
$3HUHVVLQLUniversity of Illinois, Urbana, Champaign
-3HUU\PDQUniversity of Texas at Arlington
-RVHSK+3KLOOLSVSacramento City College
-DFHN3ROHZF]DNCalifornia State University Northridge
1DQF\-3R[RQCalifornia State University, Sacramento
5REHUW3UXLWWSan Jose State University
.5DJHUMetropolitan State College
)%5HLVNortheastern University
PREFACIO
l
xv
%ULDQ5RGULJXHVCalifornia State Polytechnic University
7RP5RHSouth Dakota State University
.LPPR,5RVHQWKDOUnion College
%DUEDUD6KDEHOOCalifornia Polytechnic State University
6HHQLWK6LYDVXQGDUDPEmbry-Riddle Aeronautical University
'RQ(6RDVKHillsborough Community College
):6WDOODUGGeorgia Institute of Technology
*UHJRU\6WHLQThe Cooper Union
0%7DPEXUURGeorgia Institute of Technology
3DWULFN:DUGIllinois Central College
-LDQSLQJ=KXUniversity of Akron
-DQ=LMOVWUDMiddle Tennessee State University
-D\=LPPHUPDQTowson University
REVISORES DE LAS EDICIONES ACTUALES
%HUQDUG%URRNVRochester Institute of Technology
$OOHQ%URZQWabash Valley College
+HOPXW.QDXVWThe University of Texas at El Paso
0XODWX/HPPDSavannah State University
*HRUJH0RVVUnion University
0DUWLQ1DNDVKLPDCalifornia State Polytechnic University, Pomona
%UXFH2¶1HLOOMilwaukee School of Engineering
'HQQLV*=LOO
:DUUHQ6:ULJKW
Los Ángeles
PROYECTO
PARA LA SECCIÓN 3.1
¿Invariablemente el SIDA es
una enfermedad fatal?
&pOXODLQIHFWDGDFRQ9,+
por Ivan Kramer
(VWHHQVD\RDERUGDUi\UHVSRQGHUiDODVLJXLHQWHSUHJXQWD¢(OVtQGURPHGHLQPXQRGH¿FLHQFLDDGTXLULGD 6,'$ TXHHVODHWDSD¿QDOGHODLQIHFFLyQSRUHOYLUXVGHLQPXQRGH¿FLHQFLD
KXPDQD 9,+ HVLQYDULDEOHPHQWHXQDHQIHUPHGDGIDWDO"
&RPRRWURVYLUXVHO9,+QRWLHQHQLQJ~QPHWDEROLVPR\QRSXHGHUHSURGXFLUVHIXHUD
GHXQDFpOXODYLYD/DLQIRUPDFLyQJHQpWLFDGHOYLUXVHVWiFRQWHQLGDHQGRVKHEUDVLGpQWLFDV
GHO$513DUDUHSURGXFLUVHHO9,+GHEHXWLOL]DUHODSDUDWRUHSURGXFWLYRGHODFpOXODLQYDGLpQGRODHLQIHFWiQGRODSDUDSURGXFLUFRSLDVH[DFWDVGHO$51YLUDO8QDYH]TXHSHQHWUD
HQXQDFpOXODHO9,+WUDQVFULEHVX$51HQHO$'1PHGLDQWHXQD HQ]LPD WUDQVFULSWDVD
LQYHUVD FRQWHQLGDHQHOYLUXV(O$'1GHGREOHFDGHQDYLUDOPLJUDGHQWURGHOQ~FOHRGHOD
FpOXODLQYDGLGD\VHLQVHUWDHQHOJHQRPDGHODFpOXODFRQODD\XGDGHRWUDHQ]LPDYLUDO LQWHJUDVD (QWRQFHVHO$'1YLUDO\HO$'1GHODFpOXODLQYDGLGDVHLQWHJUDQ\ODFpOXODHVWi
LQIHFWDGD&XDQGRVHHVWLPXODDODFpOXODLQIHFWDGDSDUDUHSURGXFLUVHVHWUDQVFULEHHO$'1
SURYLUDOHQHO$'1YLUDO\VHVLQWHWL]DQQXHYDVSDUWtFXODVYLUDOHV3XHVWRTXHORVPHGLFDPHQWRVDQWLUUHWURYLUDOHVFRPROD]LGRYXGLQDLQKLEHQODHQ]LPDGHO9,+GHODWUDQVFULSWDVD
LQYHUVD\GHWLHQHQODVtQWHVLVGHFDGHQD$'1SURYLUDOHQHOODERUDWRULRHVWRVIiUPDFRVTXH
JHQHUDOPHQWHVHDGPLQLVWUDQHQFRPELQDFLyQUHWUDVDQODSURJUHVLyQGHO6,'$HQDTXHOODV
SHUVRQDVTXHHVWiQLQIHFWDGDVFRQHO9,+ DQ¿WULRQHV
/RTXHKDFHWDQSHOLJURVDDODLQIHFFLyQSRU9,+HVHOKHFKRGHTXHGHELOLWDIDWDOPHQWH
DOVLVWHPDLQPXQHGHXQDQ¿WULyQXQLHQGRDODPROpFXOD&'HQODVXSHU¿FLHGHODVFpOXODV
YLWDOHVSDUDODGHIHQVDFRQWUDODHQIHUPHGDGLQFOX\HQGRODVFpOXODV7DX[LOLDUHV\XQDVXESREODFLyQGHFpOXODVDVHVLQDVQDWXUDOHV6HSRGUtDGHFLUTXHODVFpOXODV7DX[LOLDUHV FpOXODV
7&'RFpOXODV7 VRQODVFpOXODVPiVLPSRUWDQWHVGHOVLVWHPDLQPXQROyJLFR\DTXH
RUJDQL]DQODGHIHQVDGHOFXHUSRFRQWUDORVDQWtJHQRV(OPRGHODGRVXJLHUHTXHODLQIHFFLyQ
SRU9,+GHODVFpOXODVDVHVLQDVQDWXUDOHVKDFHTXHVHDimposible mediante una terapia antirretroviral moderna eliminar el virus [1@$GHPiVGHODPROpFXOD&'XQYLULyQQHFHVLWD
SRUORPHQRVGHXQSXxDGRGHPROpFXODVFRUUHFHSWRUDV SRUHMHPSOR&&5\&;&5 HQ
ODVXSHU¿FLHGHODFpOXODREMHWLYRSDUDSRGHUXQLUVHDpVWDSHQHWUDUHQVXPHPEUDQDHLQIHFWDUOD'HKHFKRDOUHGHGRUGHOGHORVFDXFiVLFRVFDUHFHQGHPROpFXODVFRUUHFHSWRUDV
\SRUORWDQWRVRQWRWDOPHQWHinmunesDLQIHFWDUVHGH9,+
8QDYH]HVWDEOHFLGDODLQIHFFLyQODHQIHUPHGDGHQWUDHQODHWDSDGHLQIHFFLyQDJXGD
GXUDQWHXQDVVHPDQDVVHJXLGDVSRUXQSHULRGRGHLQFXEDFLyQ£TXHSXHGHGXUDUGRVGpFDGDV
R PiV$XQTXHODGHQVLGDGGHFpOXODV7DX[LOLDUHVGHXQ DQ¿WULyQFDPELDFXDVLHVWiWLFDPHQWHGXUDQWHHOSHULRGRGHLQFXEDFLyQOLWHUDOPHQWHPLOHVGHPLOORQHVGHFpOXODV7LQIHFWDGDV\SDUWtFXODVGH9,+VRQGHVWUXLGDV\UHHPSOD]DGDVGLDULDPHQWH(VWRHVFODUDPHQWH
XQDJXHUUDGHGHVJDVWHHQODFXDOLQHYLWDEOHPHQWHSLHUGHHOVLVWHPDLQPXQROyJLFR
8QPRGHORGHDQiOLVLVGHODGLQiPLFDHVHQFLDOTXHRFXUUHGXUDQWHHOperiodo de incubación TXH LQHYLWDEOHPHQWH FDXVD 6,'$ HV HO VLJXLHQWH >1@<D TXH HO9,+ PXWD FRQ
UDSLGH]VXFDSDFLGDGSDUDLQIHFWDUDODVFpOXODV7HQFRQWDFWR VXLQIHFWLYLGDG ¿QDOPHQWH
DXPHQWD\ODVFpOXODVGHWLSR7VHLQIHFWDQ$VtHOVLVWHPDLQPXQROyJLFRGHEHDXPHQWDUOD
WDVDGHGHVWUXFFLyQGHODVFpOXODV7LQIHFWDGDVDOLJXDOTXHFRPRODWDVDGHSURGXFFLyQGH
RWUDVQXHYDVFpOXODVVDQDVSDUDUHHPSOD]DUORV6LQHPEDUJROOHJDXQSXQWRHQTXHFXDQGR
ODWDVDGHSURGXFFLyQGHODVFpOXODV7DOFDQ]DVXOtPLWHPi[LPRSRVLEOH\FXDOTXLHUDXPHQWRGHODLQIHFWLYLGDGGHO9,+GHEHSURYRFDUQHFHVDULDPHQWHXQDFDtGDHQODGHQVLGDG
GH7ORFXDOFRQGXFHDO6,'$6RUSUHQGHQWHPHQWHDOUHGHGRUGHOGHORVDQ¿WULRQHVQR
PXHVWUDQVLJQRVGHGHWHULRURGHOVLVWHPDLQPXQROyJLFRGXUDQWHORVGLH]SULPHURVDxRVGHOD
LQIHFFLyQ2ULJLQDOPHQWHVHSHQVDEDTXHHVWRVDQ¿WULRQHVOODPDGRVno progresores a largo
P-1
P-2
l
PROYECTO 3.1
¿INVARIABLEMENTE EL SIDA ES UNA ENFERMEDAD FATAL?
plazoHUDQSRVLEOHPHQWHLQPXQHVDGHVDUUROODUHO6,'$SHURODHYLGHQFLDGHOPRGHODGR
VXJLHUHTXH¿QDOPHQWHHVWRVDQ¿WULRQHVORGHVDUUROODUiQ>1@
(Q PiV GHO GH ORV DQ¿WULRQHV HO VLVWHPD LQPXQROyJLFR SLHUGH JUDGXDOPHQWH VX
ODUJDEDWDOODFRQHOYLUXV/DGHQVLGDGGHFpOXODV7HQODVDQJUHSHULIpULFDGHORVDQ¿WULRQHV
FRPLHQ]DDGLVPLQXLUGHVGHVXQLYHOQRUPDO HQWUH\FpOXODVPP3 DFHURORTXH
LQGLFDHO¿QDOGHOSHULRGRGHLQFXEDFLyQ(ODQ¿WULyQOOHJDDODHWDSDGHODLQIHFFLyQGH6,'$
ya seaFXDQGRXQDGHODVPiVGHYHLQWHLQIHFFLRQHVRSRUWXQLVWDVFDUDFWHUtVWLFDVGHO6,'$VH
GHVDUUROOD 6,'$FOtQLFR RFXDQGRODGHQVLGDGGHFpOXODV7FDHSRUGHEDMRGHFpOXODVPP3
XQDGH¿QLFLyQDGLFLRQDOGHO6,'$SURPXOJDGDSRUHO&'&HQ /DLQIHFFLyQGHO9,+KD
OOHJDGRDVXHWDSDSRWHQFLDOPHQWHIDWDO
3DUDPRGHODUODVXSHUYLYHQFLDGHO6,'$HOWLHPSRtHQHOFXDOXQDQ¿WULyQGHVDUUROOD
6,'$VHUiGHQRWDGDSRUt 8QPRGHORGHVXSHUYLYHQFLDSRVLEOHSDUDXQDFRKRUWHGH
SDFLHQWHVFRQ6,'$SRVWXODTXHHO6,'$QRHVXQDFRQGLFLyQIDWDOSDUDXQDIUDFFLyQGHOD
FRKRUWHGHQRWDGDSRUSiTXHVHOODPDUiDTXtODfracción inmortal3DUDODSDUWHUHVWDQWHGH
ODFRKRUWHODSUREDELOLGDGGHPRULUSRUXQLGDGGHWLHPSRDOWLHPSRtVHVXSRQHXQDFRQVWDQWH
kGRQGHSRUVXSXHVWRkVHUiSRVLWLYD3RUORWDQWRODIUDFFLyQGHVXSHUYLYHQFLDS t SDUD
HVWHPRGHORHVXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQOLQHDO
dS(t)
dt
Si]
k[S(t)
8VDQGRHOPpWRGRGHOIDFWRUGHLQWHJUDFLyQTXHVHDQDOL]DHQODVHFFLyQYHPRVTXH
ODVROXFLyQGHODHFXDFLyQ GHODIUDFFLyQGHVXSHUYLYHQFLDHVWiGDGDSRU
S(t)
Si
[1
Si]e
kt
En lugar del parámetro kTXHDSDUHFHHQODHFXDFLyQ VHSXHGHQGH¿QLUGRVQXHYRV
SDUiPHWURVSDUDXQDQ¿WULyQSDUDHOFXDOHO6,'$HVIDWDOHOtiempo promedio de supervivencia Tprom dado por Tprom k y la supervivencia de vida media Tdada por T OQ 冫k
/DVXSHUYLYHQFLDGHYLGDPHGLDGH¿QLGDFRPRODPLWDGGHWLHPSRUHTXHULGRSDUDHOFRKRUWH
DPRULUHVWRWDOPHQWHDQiORJDDODYLGDHQGHFDLPLHQWRUDGLDFWLYRQXFOHDU9HDHOSUREOHPD
HQHOHMHUFLFLR(QWpUPLQRVGHHVWRVSDUiPHWURVODGHSHQGHQFLDFRPSOHWDGHOWLHPSR
HQ VHSXHGHHVFULELUFRPR
e
kt
e
t Tprom
2
t T1 2
8WLOL]DQGRXQSURJUDPDGHPtQLPRVFXDGUDGRVSDUDDMXVWDUODIXQFLyQGHODIUDFFLyQGH
VXSHUYLYHQFLDHQ DORVGDWRVUHDOHVGHVXSHUYLYHQFLDSDUDORVKDELWDQWHVGH0DU\ODQG
TXHGHVDUUROODURQ6,'$HQVHREWLHQHHOYDORUGHODIUDFFLyQLQPRUWDOGHSi \
XQYDORUGHYLGDPHGLDGHVXSHUYLYHQFLDGHT DxRVLHQGRHOWLHPSRSURPHGLR
GHVXSHUYLYHQFLDTprom DxRV>2@9HDOD¿JXUDO3RUORWDQWRVyORFHUFDGHOGH
ODVSHUVRQDVGH0DU\ODQGTXHGHVDUUROODURQ6,'$HQVREUHYLYLHURQWUHVDxRVFRQHVWD
FRQGLFLyQ/DFXUYDGHVXSHUYLYHQFLDGHO6,'$GHHQ0DU\ODQGHVSUiFWLFDPHQWHLGpQWLFDDODVGH\(OSULPHUIiUPDFRDQWLUUHWURYLUDOTXHVHHQFRQWUyHIHFWLYRFRQWUD
HO9,+IXHOD]LGRYXGLQD DQWHULRUPHQWHFRQRFLGDFRPR$=7 3XHVWRTXHOD]LGRYXGLQD
QRHUDFRQRFLGDSRUWHQHUXQLPSDFWRHQODLQIHFFLyQSRUHO9,+DQWHVGH\QRHUDXQD
WHUDSLDFRP~QDQWHVGHHVUD]RQDEOHFRQFOXLUTXHODVXSHUYLYHQFLDGHORVSDFLHQWHV
GH 6,'$ GH 0DU\ODQG GH QR IXH VLJQL¿FDWLYDPHQWH LQÀXHQFLDGD SRU OD WHUDSLD FRQ
]LGRYXGLQD
(OYDORUSHTXHxRSHURGLVWLQWRGHFHURGHODIUDFFLyQLQPRUWDOSi obtenido de los datos
GH0DU\ODQGVHGHEHSUREDEOHPHQWHDOPpWRGRTXH0DU\ODQG\RWURVHVWDGRVXVDQSDUDGHWHUPLQDUODVXSHUYLYHQFLDGHVXVFLXGDGDQRV/RVUHVLGHQWHVFRQ6,'$TXHFDPELDURQVX
QRPEUH\OXHJRPXULHURQRTXLHQHVPXULHURQHQHOH[WUDQMHURSRGUtDQKDEHUVLGRFRQWDGRV
FRPRYLYRVSRUHO'HSDUWDPHQWRGH6DOXGH+LJLHQH0HQWDOGH0DU\ODQG3RUORWDQWR
HOYDORUGHODIUDFFLyQLQPRUWDOGHSi REWHQLGRDSDUWLUGHORVGDWRVGH
0DU\ODQGHVWiFODUDPHQWHHQHOOtPLWHVXSHULRUGHVXYHUGDGHURYDORUTXHSUREDEOHPHQWH
VHDFHUR
PROYECTO 3.1
¿INVARIABLEMENTE EL SIDA ES UNA ENFERMEDAD FATAL?
1.0
l
P-3
Fracción de supervivencia
Ajuste del modelo de dos parámetros
S(t)
0.8
0.6
0.4
0.2
0
_16
16
48
80 112 144 176 208 240 272
Tiempo de supervivencia t(w)
FIGURA 1 &XUYDGHODIUDFFLyQGHVXSHUYLYHQFLDS t
(Q(DVWHUEURRN\FRODERUDGRUHVSXEOLFDURQGDWRVGHWDOODGRVDFHUFDGHODVXSHUYLYHQFLDGHDQ¿WULRQHVLQIHFWDGRVTXHIXHURQWUDWDGRVFRQ]LGRYXGLQD\FX\DVGHQVLGDGHVFHOXODUHV7FD\HURQSRUGHEDMRGHORVYDORUHVQRUPDOHV>3@&RPRVXVGHQVLGDGHV
GHFpOXODV7FDHQDFHURHVWDVSHUVRQDVGHVDUUROODQHO6,'$FOtQLFR\HPSLH]DQDPRULU
/RVVREUHYLYLHQWHVPiVORQJHYRVGHHVWDHQIHUPHGDGYLYHQSDUDYHUTXHVXVGHQVLGDGHV7
VRQLQIHULRUHVDFpOXODVPP36LHOWLHPSRt HVUHGH¿QLGRORTXHVLJQL¿FDHOPRPHQWRHQTXHODGHQVLGDGFHOXODU7GHXQDQ¿WULyQFDHSRUGHEDMRGHFpOXODVPP3HQWRQFHV
ODVXSHUYLYHQFLDGHHVWRVDQ¿WULRQHVIXHGHWHUPLQDGDSRU(DVWHUEURRNHQ\
WUDQVFXUULGRHOWLHPSRGHXQDxRXQDxR\PHGLR\GRVDxRVUHVSHFWLYDPHQWH
&RQXQDMXVWHGHPtQLPRVFXDGUDGRVGHODIXQFLyQGHODIUDFFLyQGHVXSHUYLYHQFLDHQ
DORVGDWRVGH(DVWHUEURRNSDUD9,+ORVDQ¿WULRQHVLQIHFWDGRVFRQGHQVLGDGFHOXODU7HQ
HOUDQJRGHFpOXODVPP3SURGXFHQXQYDORUGHODIUDFFLyQLQPRUWDOGHSi \XQDYLGD
PHGLDGHVXSHUYLYHQFLDGHT DxR>4@HQIRUPDHTXLYDOHQWHHOWLHPSRSURPHGLRGH
VXSHUYLYHQFLDHVTprom DxRV(VWRVUHVXOWDGRVPXHVWUDQFODUDPHQWHTXHOD]LGRYXGLQD
QRHVH¿FD]SDUDGHWHQHUODUHSOLFDFLyQGHWRGDVODVFHSDVGHO9,+\DTXHTXLHQHVUHFLELHURQ HVWH IiUPDFR ¿QDOPHQWH PXULHURQ FDVL DO PLVPR ULWPR TXH TXLHQHV QR OR UHFLELHURQ
(QUHDOLGDGODSHTXHxDGLIHUHQFLDGHPHVHVHQODYLGDPHGLDGHVXSHUYLYHQFLDSDUDORV
DQ¿WULRQHVGHFRQGHQVLGDGHVFHOXODUHV7SRUGHEDMRGHFpOXODVPP3FRQWHUDSLDGH
]LGRYXGLQD T DxR \ODGHLQIHFWDGRVGHHQ0DU\ODQGTXHQRWRPDURQ]LGRYXGLQD TDxR VHSXHGHGHEHUWRWDOPHQWHDXQDPHMRUKRVSLWDOL]DFLyQ\DPHMRUDV
HQHOWUDWDPLHQWRGHODVLQIHFFLRQHVRSRUWXQLVWDVUHODFLRQDGDVFRQHO6,'$HQHOWUDQVFXUVRGH
HVRVDxRV$VtHQ~OWLPDLQVWDQFLDGHVDSDUHFHODFDSDFLGDGLQLFLDOGH]LGRYXGLQDSDUDSURORQJDUODVXSHUYLYHQFLDFRQODHQIHUPHGDGSRU9,+\ODLQIHFFLyQUHDQXGDVXSURJUHVLyQ6H
KDHVWLPDGRTXHODWHUDSLDGH]LGRYXGLQDDPSOtDODFDSDFLGDGGHVXSHUYLYHQFLDGHXQSDFLHQWH
LQIHFWDGRFRQ9,+TXL]iSRURPHVHVHQSURPHGLR>4@
3RU~OWLPRMXQWDQGRORVUHVXOWDGRVDQWHULRUHVGHPRGHODGRSDUDDPERVFRQMXQWRVGH
GDWRVHQFRQWUDPRVTXHHOYDORUGHODIUDFFLyQLQPRUWDOVHHQFXHQWUDHQDOJ~QOXJDUGHQWUR
GHOUDQJR Si \HOWLHPSRSURPHGLRGHVXSHUYLYHQFLDVHHQFXHQWUDGHQWURGHO
UDQJRDxRV Tprom DxRV$VtHOSRUFHQWDMHGHSHUVRQDVSDUDTXLHQHVHO6,'$
QRHVXQDHQIHUPHGDGPRUWDOHVPHQRUGH\SXHGHVHUFHUR(VWRVUHVXOWDGRVFRLQFLGHQFRQXQHVWXGLRGHVREUHODKHPR¿OLDDVRFLDGDFRQFDVRVGH6,'$HQ(VWDGRV
8QLGRVTXHHQFRQWUyTXHODGXUDFLyQPHGLDQDGHODVXSHUYLYHQFLDGHVSXpVGHGLDJQyVWLFR
GH6,'$IXHGHPHVHV>5@8QHVWXGLRPiVUHFLHQWH\FRPSOHWRGHKHPRItOLFRVFRQ
6,'$FOtQLFRXWLOL]DQGRHOPRGHORHQ HQFRQWUyTXHODIUDFFLyQLQPRUWDOIXHSi y los
WLHPSRVGHVXSHUYLYHQFLDPHGLDSDUDDTXHOORVHQWUH\DxRVGHHGDGYDULyHQWUHORV
\ORVPHVHVGHSHQGLHQGRGHODFRQGLFLyQDVRFLDGDDO6,'$>6@Aunque los trasplantes
de médula ósea que usan células madre del donante homocigótico para la supresión
del delta 32 CCR5 podrían conducir a curas, los datos clínicos resultantes consistentemente muestran que el SIDA es una enfermedad invariablemente fatal.
P-4
l
PROYECTO 3.1
¿INVARIABLEMENTE EL SIDA ES UNA ENFERMEDAD FATAL?
PROBLEMAS RELACIONADOS
1. 6XSRQJDPRVTXHODIUDFFLyQGHXQDFRKRUWHGHSDFLHQWHVFRQ6,'$TXHVREUHYLYHXQ
tiempo t GHVSXpV GH GLDJQyVWLFR GH 6,'$ HVWi GDGD SRU S t H[S kt 'HPXHVWUH
TXHHOWLHPSRSURPHGLRGHVXSHUYLYHQFLDTpromGHVSXpVGHOGLDJQyVWLFRGH6,'$SDUDXQ
PLHPEURGHHVWDFRKRUWHHVWiGDGRSRUTprom 冫k
2. /DIUDFFLyQGHXQDFRKRUWHGHSDFLHQWHVFRQ6,'$TXHVREUHYLYHDXQWLHPSRtGHVSXpV
GHOGLDJQyVWLFRGH6,'$HVWiGDGDSRUS t H[S kt 6XSRQJDPRVTXHODVXSHUYLYHQFLDPHGLDGHXQDFRKRUWHGHKHPRItOLFRVGLDJQRVWLFDGRVFRQ6,'$DQWHVGHVH
HQFRQWUyGHTprom PHVHV¢4XpIUDFFLyQGHODFRKRUWHVREUHYLYLyFLQFRDxRVGHVSXpV
GHOGLDJQyVWLFRGH6,'$"
3. /DIUDFFLyQGHXQDFRKRUWHGHSDFLHQWHVGH6,'$TXHVREUHYLYHDXQWLHPSRtGHVSXpVGH
GLDJQyVWLFRGH6,'$HVWiGDGDSRUS t H[S kt (OWLHPSRTXHWDUGDS t SDUDDOFDQ]DUHOYDORUGHVHGH¿QHFRPRHOSHULRGRGHVXSHUYLYHQFLD\HVWiGHQRWDGRSRUT
a) 'HPXHVWUHTXHS t VHSXHGHHVFULELUHQODIRUPDS t t冫T
b) 'HPXHVWUHTXHT TpromOQ GRQGHTpromHVHOWLHPSRSURPHGLRGHVXSHUYLYHQFLD
GH¿QLGRHQHOSUREOHPD 3RUORWDQWRHVFLHUWRVLHPSUHTXHT Tprom
4. $SUR[LPDGDPHQWHHOGHORVSDFLHQWHVGHFiQFHUGHSXOPyQVHFXUDQGHODHQIHUPHGDGHVGHFLUVREUHYLYHQFLQFRDxRVGHVSXpVGHOGLDJQyVWLFRFRQQLQJXQDHYLGHQFLD
GH TXH HO FiQFHU KD UHJUHVDGR 6yOR HO GH ORV SDFLHQWHV GH FiQFHU GH SXOPyQ
VREUHYLYHQFLQFRDxRVGHVSXpVGHOGLDJQyVWLFR6XSRQJDTXHODIUDFFLyQGHSDFLHQWHV
FRQFiQFHUSXOPRQDULQFXUDEOHTXHVREUHYLYHQXQWLHPSRtGHVSXpVGHODGLDJQRVLV
HVWiGDGDSRUH[S kt (QFXHQWUHXQDH[SUHVLyQSDUDODIUDFFLyQS t GHSDFLHQWHVFRQ
FiQFHUGHSXOPyQTXHVREUHYLYHQXQWLHPSRtGHVSXpVGHVHUGLDJQRVWLFDGRVFRQODHQIHUPHGDG$VHJ~UHVHGHGHWHUPLQDUORVYDORUHVGHODVFRQVWDQWHVHQVXUHVSXHVWD¢4Xp
IUDFFLyQGHSDFLHQWHVFRQFiQFHUSXOPRQDUVREUHYLYHGRVDxRVFRQODHQIHUPHGDG"
REFERENCIAS
1. .UDPHU,YDQ³:KDWWULJJHUVWUDQVLHQW$,'6LQWKHDFXWHSKDVHRI+,9LQIHFWLRQDQGFKURQLF
$,'6DWWKHHQGRIWKHLQFXEDWLRQSHULRG"´HQComputational and Mathematical Methods in
MedicineYROQ~PMXQSS
2. .UDPHU,YDQ³,V$,'6DQLQYDULDEOHIDWDOGLVHDVH"$PRGHODQDO\VLVRI$,'6VXUYLYDOFXUYHV´
en Mathematical and Computer ModellingQ~PSS
3. (DVWHUEURRN3KLOLSSD-et al.,³3URJUHVVLYH&'FHOOGHSOHWLRQDQGGHDWKLQ]LGRYXGLQHWUHDWHG
SDWLHQWV´HQJAIDSGHDJRVWRGHQ~PSS
4. .UDPHU,YDQ³7KHLPSDFWRI]LGRYXGLQH $=7 WKHUDS\RQWKHVXUYLYDELOLW\RIWKRVHZLWKSURJUHVVLYH
+,9LQIHFWLRQ´HQMathematical and Computer ModellingYROQ~PIHEGHSS
5. 6WHKU*UHHQ-.5&+ROPDQ0$0DKRQH\³6XUYLYDODQDO\VLVRIKHPRSKLOLDDVVRFLDWHG
$,'6FDVHVLQWKH86´HQAm. J. Public HealthMXOGHDxRQ~PSS
6. *DLO0LWFKHO+et al³6XUYLYDODIWHU$,'6GLDJQRVLVLQDFRKRUWRIKHPRSKLOLDSDWLHQWV´HQ
JAIDSGHDJRGHQ~PSS
ACERCA DEL AUTOR
Ivan KramerREWXYRODOLFHQFLDWXUDHQ)tVLFD\0DWHPiWLFDVHQHO&LW\&ROOHJHGH1XHYD
<RUNHQ\HOGRFWRUDGRHQItVLFDWHyULFDGHSDUWtFXODVHQOD8QLYHUVLGDGGH&DOLIRUQLD
HQ%HUNHOH\HQ(QODDFWXDOLGDGHVSURIHVRUDVRFLDGRGHItVLFDHQOD8QLYHUVLGDGGH
0DU\ODQGFRQGDGRGH%DOWLPRUH(O'U.UDPHUIXH'LUHFWRUGHO3UR\HFWRGHSURQyVWLFR
GH FDVRV GH9,+6,'$ HQ 0DU\ODQG SRU HO TXH UHFLELy XQD VXEYHQFLyQ GH OD$GPLQLVWUDFLyQ GHO 6,'$ GHO 'HSDUWDPHQWR GH 6DOXG H +LJLHQH GH 0DU\ODQG HQ $GHPiV
GHVXVPXFKRVDUWtFXORVSXEOLFDGRVVREUHODLQIHFFLyQSRU9,+\HO6,'$VXVLQWHUHVHVGH
LQYHVWLJDFLyQLQFOX\HQPRGHORVGHPXWDFLyQGHFiQFHUODHQIHUPHGDGGH$O]KHLPHU\OD
HVTXL]RIUHQLD
PROYECTO
PARA LA SECCIÓN 3.2
El efecto Allee
por Jo Gascoigne
/D'UD-RFRQ4XHHQLH
4XHHQLHHVWiDODL]TXLHUGD
/RVFLQFREHOJDVPiVIDPRVRVDOSDUHFHULQFOX\HQXQFLFOLVWDXQFDQWDQWHGHSXQNHOLQYHQWRU
GHOVD[RIyQHOFUHDGRUGH7LQWtQ\$XGUH\+HSEXUQ3LHUUH)UDQoRLV9HUKXOVWQRHVWiHQOD
OLVWDDXQTXHGHEHUtDGHHVWDU7XYRXQDYLGDUHODWLYDPHQWHFRUWDPXULHQGRDODHGDGGH
DxRVSHURXQDYLGDHPRFLRQDQWHIXHGHSRUWDGRGH5RPDSRUWUDWDUGHSHUVXDGLUDO3DSDGH
TXHORV(VWDGRV3RQWL¿FLRVQHFHVLWDEDQXQDFRQVWLWXFLyQHVFULWD7DOYH]HO3DSDVDEtDD~Q
HQWRQFHVTXHQRHUDEXHQDLGHDWRPDUFODVHVGHJREHUQDELOLGDGFRQXQEHOJD
$SDUWHGHHVWHHSLVRGLR3LHUUH9HUKXOVW IXHXQPDWHPiWLFRTXHVHRFXSy
HQWUHRWUDVFRVDVFRQODGLQiPLFDGHODVSREODFLRQHVQDWXUDOHVSHFHVFRQHMRVUDQ~QFXORV
EDFWHULDVRORTXHVHD (VWR\SUHMXLFLDGDHQIDYRUGHORVSHFHVDVtTXHGHDKRUDHQDGHODQWH KDEODUHPRV GH SHFHV (O DYDQFH HQ ODV WHRUtDV DFHUFD GHO FUHFLPLHQWR GH SREODFLRQHV
QDWXUDOHVKDEtDVLGRUHODWLYDPHQWHOLPLWDGRKDVWDHVHSXQWRDXQTXHORVFLHQWt¿FRVKDEtDQ
OOHJDGRDODFRQFOXVLyQREYLDGHTXHODWDVDGHFUHFLPLHQWRGHXQDSREODFLyQ dN冫dtGRQGH
N t HVHOWDPDxRGHODSREODFLyQHQHOWLHPSR t GHSHQGtDGH i ODWDVDGHQDWDOLGDGb\ ii
la tasa de mortalidad mODVFXDOHVSRGUtDQYDULDUHQSURSRUFLyQGLUHFWDFRQHOWDPDxRGHOD
SREODFLyQN:
dN
bN mN
dt
'HVSXpVGHFRPELQDUb y m en un parámetro rFRQRFLGRFRPRODtasa intrínseca de
incremento natural²TXHORVELyORJRVDPHQXGRVLQWLHPSRSDUDOODPDUODSRUVXQRPEUH
FRPSOHWRGHQRPLQDQGHXQDIRUPDPiVJHQHUDOVyORU²ODHFXDFLyQ HV
dN
rN
dt
(VWHPRGHORGHFUHFLPLHQWRGHSREODFLyQWLHQHXQSUREOHPDTXHGHEHUtDVHUFODURVL
QRORHVKDJDXQWUD]DGRGHdN冫dtDXPHQWDQGRORVYDORUHVGHN(OUHVXOWDGRHVXQDFXUYD
GHFUHFLPLHQWRH[SRQHQFLDOGLUHFWDORTXHVXJLHUHTXHWRGRVQRVHVWDUtDPRVDKRJDQGRHQ
SHFHV(YLGHQWHPHQWHDOJRWLHQHTXHHVWDUSDVDQGRTXHUHGXFHODYHORFLGDGGHdN冫dt)XH
LGHDGH3LHUUH9HUKXOVWTXHHVHDOJRHUDODFDSDFLGDGGHOPHGLRDPELHQWHHQRWUDVSDODEUDV
¿Cuántos peces puede realmente soportar un ecosistema?
9HUKXOVWIRUPXOyXQDHFXDFLyQGLIHUHQFLDOSDUDODSREODFLyQN t TXHLQFOXtDWDQWRDr
FRPRDODcapacidad de carga K:
dN
dt
rN 1
N
, r
K
0
/DHFXDFLyQ VHFRQRFHFRPRecuación logística\KR\HQGtDHVODEDVHGHJUDQSDUWH
GHOHVWXGLRPRGHUQRGHSREODFLRQHVGLQiPLFDV(VSHURTXHVHDFODURTXHHOWpUPLQR N冫K
TXHHVODFRQWULEXFLyQGH9HUKXOVWDODHFXDFLyQ HV N冫K 艐 FXDQGR1艐ORTXH
FRQGXFHDXQFUHFLPLHQWRH[SRQHQFLDO\TXH N冫K →FRQIRUPH1→ KSRUORWDQWR
KDFHTXHODFXUYDGHFUHFLPLHQWRGHN t VHDSUR[LPHDODDVtQWRWDKRUL]RQWDON t K$VtHO
WDPDxRGHODSREODFLyQQRSXHGHH[FHGHUODFDSDFLGDGGHFDUJDGHOPHGLRDPELHQWH
/DHFXDFLyQORJtVWLFD GDODWDVDGHFUHFLPLHQWRGHODSREODFLyQSHURHVPiVIiFLO
FRQFHSWXDOL]DUODHFRORJtDVLFRQVLGHUDPRVODWDVDGHFUHFLPLHQWRper cápitaHVGHFLUOD
WDVDGHFUHFLPLHQWRGHODSREODFLyQDSDUWLUGHOQ~PHURGHLQGLYLGXRVGHODSREODFLyQ(VWR
PLGHTXpWDQ³ELHQ´HVWiFDGDLQGLYLGXRHQODSREODFLyQ3DUDREWHQHUODWDVDGHFUHFLPLHQWR
per cápitaVyORGLYLGLPRVFDGDODGRGHODHFXDFLyQ HQWUHN:
P-5
P-6
l
PROYECTO 3.2
EL EFECTO ALLEE
1 dN
N dt
r 1
N
K
r
r
N
K
(VWDVHJXQGDYHUVLyQGH PXHVWUDLQPHGLDWDPHQWH JUDItTXHOR TXHHVWDUHODFLyQHV
XQDOtQHDUHFWDFRQXQYDORUPi[LPRGH
1 dN
en N VXSRQLHQGRTXHXQWDPDxRSREOD
N dt
FLRQDOQHJDWLYRQRHVLPSRUWDQWH \dN冫dt HQN K
(KHVSHUHXQPLQXWR«£¢³un valor máximo de
1 dN
en N ´"¢&DGDWLEXUyQHQOD
N dt
SREODFLyQ HVWi PHMRU FXDQGR KD\« FHUR WLEXURQHV" &ODUDPHQWH HVWH HV XQ GHIHFWR HQ HO
PRGHORORJtVWLFR &RQVLGHUHTXHDKRUDHVWHHVXQmodeloFXDQGRVyORSUHVHQWDXQDUHODFLyQ
HQWUHGRVYDULDEOHVdN冫dt y NHVVyORXQDHFXDFLyQ&XDQGRXWLOL]DPRVHVWDHFXDFLyQSDUD
SUREDU\DQDOL]DUFyPRSRGUtDQIXQFLRQDUODVSREODFLRQHVVHFRQYLHUWHHQXQPRGHOR
/DVXSRVLFLyQGHWUiVGHOPRGHORORJtVWLFRHVTXHPLHQWUDVXQDSREODFLyQGLVPLQX\HGH
WDPDxRORVLQGLYLGXRVPHMRUDQ FRQIRUPHVHPLGHODWDVDGHFUHFLPLHQWRGHSREODFLyQper
cápita (QFLHUWDPHGLGDHVWDVXSRVLFLyQVXE\DFHHQWRGDVQXHVWUDVLGHDVVREUHHOPDQHMR
VXVWHQWDEOHGHODSREODFLyQ\GHORVUHFXUVRVQDWXUDOHVXQWLSRGHSH]QRSXHGHSHVFDUVH
LQGH¿QLGDPHQWHDPHQRVTXHVXSRQJDPRVTXHFXDQGRXQDSREODFLyQVHUHGXFHHQWDPDxR
WLHQHODFDSDFLGDGGHFUHFHUDGRQGHHVWDEDDQWHV
(VWDKLSyWHVLVHVPiVRPHQRVUD]RQDEOHSDUDDOJXQDVSREODFLRQHVFRPRHVHOFDVR
GHPXFKDVSREODFLRQHVGHSHFHVREMHWRGHSHVFDFRPHUFLDOTXHVHPDQWLHQHQHQXQR
LQFOXVRHQXQGHK3HURSDUDSREODFLRQHVPX\DJRWDGDVRHQSHOLJURGHH[WLQFLyQOD
LGHDGHTXHORVLQGLYLGXRVVLJDQHVWDQGRPHMRUFRQIRUPHODSREODFLyQVHKDFHPiVSHTXHxD
HVPX\ULHVJRVD/DSREODFLyQGHORVJUDQGHVEDQFRVGHEDFDODRGHODTXHVHOOHJyDSHVFDU
KDVWDHORLQFOXVRHOGHKHVWiSURWHJLGDGHVGHSULQFLSLRVGHODGpFDGDGH\
D~QQRPXHVWUDVLJQRVFRQYLQFHQWHVGHUHFXSHUDFLyQ
:DUGHU&O\GH$OOHH HUDXQHFyORJRHVWDGXQLGHQVHDGVFULWRDOD8QLYHUVLGDG
GH&KLFDJRDSULQFLSLRVGHOVLJORXXTXHH[SHULPHQWyFRQSHFHVGHFRORUHVR¿XUDVHVFDUDEDMRV
WULEROLXP\GHKHFKRFRQFDVLFXDOTXLHUFRVDTXHWXYLHUDODPDODVXHUWHGHFUX]DUVHHQVXFDPLQR$OOHHGHPRVWUyTXHHQUHDOLGDGORVLQGLYLGXRVGHXQDSREODFLyQSXHGHQHVWDUSHRUFXDQGR
ODSREODFLyQOOHJDDVHUPX\SHTXHxDRPX\HVFDVD ([LVWHQQXPHURVDVUD]RQHVHFROyJLFDV
GHSRUTXpSRGUtDVXFHGHUHVWRSRUHMHPSORSXHGHQQRHQFRQWUDUXQFRPSDxHURDGHFXDGRR
SXHGHQQHFHVLWDUJUDQGHVJUXSRVSDUDHQFRQWUDUFRPLGDRH[SUHVDUVXFRPSRUWDPLHQWRVRFLDO
RHQHOFDVRGHORVSHFHVGHFRORUHVORVJUXSRVSXHGHQDOWHUDUODTXtPLFDGHODJXDDVXIDYRU
&RPRUHVXOWDGRGHOWUDEDMRGH$OOHHVHGLFHTXHXQDSREODFLyQHQODFXDOODWDVDGHFUHFLPLHQto per cápitaGLVPLQX\HDUD]yQGHFRQWDUFRQPHQRVLQGLYLGXRVSUHVHQWDXQefecto Allee(O
UHVXOWDGRGHOMXLFLRHVWiWRGDYtDSHQGLHQWHUHVSHFWRGHVLORVJUDQGHVEDQFRVGHEDFDODRVXIUHQ
XQHIHFWR$OOHHSHURKD\DOJXQRVPHFDQLVPRVSRVLEOHVODVKHPEUDVSRGUtDQQRVHUFDSDFHVGH
HQFRQWUDUXQFRPSDxHURRDOPHQRVQRXQFRPSDxHURGHOWDPDxRDGHFXDGRRTXL]iHOEDFDODR
DGXOWRVROtDFRPHUORVSHFHVTXHVHFRPHQDOEDFDODRMRYHQ3RURWURODGRQRKD\QDGDTXH
OHJXVWHPiVDXQEDFDODRDGXOWRTXHXQDSHULWLYRGHEDFDODREHEp QRVRQSHFHVFRQKiELWRV
GHFRPLGDPX\H[LJHQWHV SRUORTXHHVWRVDUJXPHQWRVSRGUtDQQRVHUDFXPXODWLYRV3RUHO
PRPHQWRVDEHPRVPX\SRFRVREUHODVLWXDFLyQH[FHSWRTXHD~QQRKD\EDFDODR
(OHIHFWR$OOHHVHSXHGHPRGHODUGHPXFKDVPDQHUDV8QRGHORVPRGHORVPDWHPiWLFRVPiVVLPSOHVXQDYDULDFLyQGHODHFXDFLyQORJtVWLFDHV
dN
dt
rN 1
N
K
N
A
1
donde A VH FRQRFH FRPR HO umbral de Allee (O YDORU GH N t A es el tamaño de la
SREODFLyQSRUGHEDMRGHOFXDOODWDVDGHFUHFLPLHQWRGHODSREODFLyQOOHJDDVHUQHJDWLYD
GHELGRDXQHIHFWR$OOHHVLWXDGRHQXQYDORUGHNHQDOJ~QOXJDUHQWUHN \N K
HVGHFLU A KGHSHQGLHQGRGHODHVSHFLH SHURSRUVXHUWHSDUDODVHVSHFLHVKD\XQD
EXHQDSDUWHXQSRFRPiVFHUFDGHTXHGHK
(OWDPDxRGHODSREODFLyQ\ODGHQVLGDGGHSREODFLyQVRQPDWHPiWLFDPHQWHLQWHUFDPELDEOHVVXSRQLHQGRXQiUHD
¿MDHQODFXDOYLYDODSREODFLyQ DXQTXHQRQHFHVDULDPHQWHVRQLQWHUFDPELDEOHVSDUDORVLQGLYLGXRVHQFXHVWLyQ
PROYECTO 3.2
EL EFECTO ALLEE
l
P-7
/DHFXDFLyQ QRUHVXOWDWDQVHQFLOODGHUHVROYHUSDUDN t FRPR SHURQRWHQHPRV
TXHUHVROYHUODSDUDHQWHQGHUDOJXQDVSDUWHVGHVXGLQiPLFD6LXVWHGWUDEDMDORVSUREOHPDV
\YHUiTXHODVFRQVHFXHQFLDVGHODHFXDFLyQ SXHGHQVHUGHVDVWURVDVSDUDODVSREODFLRQHVHQSHOLJURGHH[WLQFLyQ
7LEXURQHVFREUL]RV
alimentándose de sardinas en los
PDUHVFHUFDGHODFRVWDRULHQWDO
GH6XGiIULFD
PROBLEMAS RELACIONADOS
1. a) /D HFXDFLyQ ORJtVWLFD VH SXHGH UHVROYHU H[SOtFLWDPHQWH SDUD N t mediante la
WpFQLFDGHIUDFFLRQHVSDUFLDOHV+DJDHVWR\WUDFHODJUi¿FDGHN t FRPRIXQFLyQ
de t SDUD t /RVYDORUHVDGHFXDGRVSDUDrK\N VRQr K
N GLJDPRVSHFHVSRUPHWURF~ELFRGHDJXDGHPDU /DJUi¿FDGHN t se
denomina curva de crecimiento sigmoideo
b) (OYDORUGHrSXHGHGHFLUQRVPXFKRVREUHODHFRORJtDGHXQDHVSHFLHHQHOFDVRGH
ODVVDUGLQDVGRQGHODVKHPEUDVPDGXUDQHQPHQRVGHXQDxR\WLHQHQPLOORQHVGH
KXHYRVVHWLHQHXQrDOWRPLHQWUDVTXHORVWLEXURQHVGRQGHODVKHPEUDVWLHQHXQDV
SRFDVFUtDVFDGDDxRWLHQHQXQrEDMR-XHJXHFRQr\YHDFyPRDIHFWDODIRUPDGHOD
FXUYD3UHJXQWD6LXQiUHDPDULQDSURWHJLGDGHWLHQHODVREUHSHVFD¢TXpHVSHFLHVVH
UHFXSHUDUiQPiVUiSLGRODVVDUGLQDVRORVWLEXURQHV"
2. (QFXHQWUHORVHTXLOLEULRVGHSREODFLyQSDUDHOPRGHORHQ >Sugerencia:/DSREODFLyQ
HVWiHQHTXLOLEULRFXDQGRdN冫dt HVGHFLUODSREODFLyQQRHVWiFUHFLHQGRQLGLVPLQX\HQGR(QFXHQWUHWUHVYDORUHVGHNSDUDORVTXHODSREODFLyQHVWpHQHTXLOLEULR@
3. /RVHTXLOLEULRVGHSREODFLyQSXHGHQVHUHVWDEOHVRLQHVWDEOHV6LFXDQGRXQDSREODFLyQVH
GHVYtDXQSRFRGHOYDORUGHHTXLOLEULR FRPRODVSREODFLRQHVLQHYLWDEOHPHQWHORKDFHQ
WLHQGHDYROYHUDpOHVWHHVXQHTXLOLEULRHVWDEOHVLQHPEDUJRVLFXDQGRODSREODFLyQ
VHGHVYtDGHOHTXLOLEULRWLHQGHDDSDUWDUVHGHpOD~QPiVHVWHHVXQHTXLOLEULRLQHVWDEOH
3LHQVHHQXQDSHORWDHQODEXFKDFDGHXQDPHVDGHELOODUFRQWUDXQDSHORWDHQHTXLOLEULR
VREUHODSXQWDGHXQWDFRGHELOODU(OHTXLOLEULRLQHVWDEOHHVXQDFDUDFWHUtVWLFDGHORV
PRGHORVGHOHIHFWR$OOHHFRPRORVGHODHFXDFLyQ 8WLOLFHXQHVTXHPDGHIDVHGHOD
HFXDFLyQDXWyQRPD SDUDGHWHUPLQDUVLORVHTXLOLEULRVGLVWLQWRVGHFHURTXHHQFRQWUy
HQHOSUREOHPDVRQHVWDEOHVRLQHVWDEOHV>Sugerencia:9HDODVHFFLyQGHOOLEUR@
4. $QDOLFHODVFRQVHFXHQFLDVGHOUHVXOWDGRDQWHULRUGHODSREODFLyQN t ÀXFWXDQGRDOUHGHGRUGHOXPEUDOGH$OOHH$
REFERENCIAS
1. &RXUFKDPS)%HUHF/\*DVFRLJQH-Allee Effects in Ecology and Conservation2[IRUG
8QLYHUVLW\3UHVV
2. +DVWLQJV$Population Biology. Concepts and Models1XHYD<RUN6SULQJHU
ACERCA DE LA AUTORA
'HVSXpVGHFXUVDUODOLFHQFLDWXUDHQ]RRORJtDJo GascoigneSHQVyTXHHQVXSULPHUWUDEDMR
TXHIXHGHFRQVHUYDFLyQHQHOÈIULFDRULHQWDOHVWXGLDUtDOHRQHV\HOHIDQWHVSHURHOREMHWR
GHHVWXGLRUHVXOWDURQVHUSHFHV$SHVDUGHVXIULUXQDDSODVWDQWHGHFHSFLyQLQLFLDOWHUPLQy
DPDQGRDORVDQLPDOHVPDULQRVGHKHFKRFXOPLQyXQGRFWRUDGRHQELRORJtDGHFRQVHUYDFLyQ
PDULQDHQHO&ROOHJHRI:LOOLDPDQG0DU\HQ:LOOLDPVEXUJ9LUJLQLDGRQGHHVWXGLyDOD
ODQJRVWD\DOFDUDFROGHO&DULEH\WDPELpQSDVyGLH]GtDVYLYLHQGREDMRHODJXDHQHODFXDULR
+iELWDWHQ)ORULGD'HVSXpVGHJUDGXDUVHUHJUHVyDVXQDWLYD*UDQ%UHWDxDGRQGHHVWXGLyODV
PDWHPiWLFDVGHORVEDQFRVGHPHMLOORQHVHQOD8QLYHUVLGDGGH%DQJRUHQ*DOHVDQWHVGH
FRQYHUWLUVHHQXQDFRQVXOWRUDLQGHSHQGLHQWHVREUHJHVWLyQSHVTXHUD$KRUDWUDEDMDSDUDSURPRYHUODSHVFDVXVWHQWDEOHFRQHOPHGLRDPELHQWH&XDQGRFRPSUHPDULVFRV£WRPHEXHQDV
GHFLVLRQHV\D\XGHDOPDU
PROYECTO
PARA LA SECCIÓN 3.3
Dinámica de población de lobos
por C. J. Knickerbocker
8QORERJULVHQHVWDGRVDOYDMH
$SULQFLSLRVGHGHVSXpVGHPXFKDFRQWURYHUVLDGHEDWHS~EOLFR\XQDDXVHQFLDGH
DxRVVHLQWURGXMHURQGHQXHYRORVORERVJULVHVHQHOSDUTXHGH,GDKR&HQWUDO\HQHO3DUTXH
1DFLRQDOGH<HOORZVWRQH'XUDQWHHVWDODUJDDXVHQFLDVHUHJLVWUDURQFDPELRVVLJQL¿FDWLYRVHQ
ODVSREODFLRQHVGHRWURVDQLPDOHVTXHYLYHQHQHOSDUTXH3RUHMHPSORKDEtDQDXPHQWDGRODV
SREODFLRQHVGHDOFH\FR\RWHGXUDQWHHVWHWLHPSR&RQODUHLQWURGXFFLyQGHOORERHQDQWLFLSDPRVFDPELRVHQODVSREODFLRQHVDQLPDOHVWDQWRGHSUHGDGRUHVFRPRSUHVDVHQHOHFRVLVWHPD
GHO3DUTXH<HOORZVWRQH\DTXHHOp[LWRGHODSREODFLyQGHORERGHSHQGHGHFyPRLQÀX\H\HV
LQÀXHQFLDGDSRUODVRWUDVHVSHFLHVGHOHFRVLVWHPD
3DUD HVWH HVWXGLR H[DPLQDUHPRV FyPR OD SREODFLyQ GH DOFHV SUHVD KD VLGR LQÀXHQFLDGDSRUORVORERV GHSUHGDGRU (VWXGLRVUHFLHQWHVKDQGHPRVWUDGRTXHODSREODFLyQGHDOFHVKD
VLGRLPSDFWDGDQHJDWLYDPHQWHSRUODUHLQWURGXFFLyQGHORVORERV/DSREODFLyQGHDOFHVFD\y
GHDSUR[LPDGDPHQWHHQDDSUR[LPDGDPHQWHHQ(VWHDUWtFXORSODQWHD
ODSUHJXQWDGHVLORVORERVSRGUtDQWHQHUWDOHIHFWR\VLHVDVt¢SRGUtDQKDFHUTXHGHVDSDUH]FDOD
SREODFLyQGHDOFHV"
&RPHQFHPRVSRUUHYLVDUFRQPiVGHWDOOHORVFDPELRVHQODSREODFLyQGHDOFHVLQGHSHQGLHQWHPHQWHGHORVORERV(QORVDxRVDQWHULRUHVDODLQWURGXFFLyQGHORERVGH
DXQHVWXGLRLQGLFyTXHODSREODFLyQGHDOFHVDXPHQWyHQXQGH
HQDHQ8VDQGRHOPRGHORPiVVLPSOHGHODHFXDFLyQGLIHUHQFLDOSDUD
ODGLQiPLFDGHSREODFLRQHVSRGHPRVGHWHUPLQDUODWDVDGHFUHFLPLHQWRGHORVDOFHV UHSUHVHQWDGDSRUODYDULDEOHr DQWHVGHODUHLQWURGXFFLyQGHORVORERV
dE
dt
rE, E(0)
13.0, E(10)
18.0
(QHVWDHFXDFLyQE t UHSUHVHQWDODSREODFLyQGHDOFHV HQPLOHV GRQGHt se mide en
DxRVGHVGH/DVROXFLyQTXHVHGHMDFRPRHMHUFLFLRDOOHFWRUHQFXHQWUDTXHODWDVDGH
FUHFLPLHQWRFRPELQDGDQDFLPLHQWRVPXHUWHVrHVDSUR[LPDGDPHQWHSURGXFLHQGR
E(t)
13.0 e0.0325t
$OLQLFLRHQORERVIXHURQSXHVWRVHQOLEHUWDG\KDQDXPHQWDGRVXVQ~PHURV
(QORVELyORJRVHVWLPDURQTXHHOQ~PHURGHORERVHUDGHDSUR[LPDGDPHQWH
3DUDHVWXGLDUODLQWHUDFFLyQHQWUHHODOFH\ODSREODFLyQGHORERVFRQVLGHUHPRVHOVLJXLHQWHPRGHORSUHVDGHSUHGDGRUSDUDODLQWHUDFFLyQHQWUHDOFHV\ORERVGHQWURGHOHFRVLVWHPD
GH<HOORZVWRQH
dE
0.0325E 0.8EW
dt
dW
0.6W 0.05EW
dt
E(0) 18.0, W(0) 0.021
donde E t HVODSREODFLyQGHDOFHV\W t HVODSREODFLyQGHORERV7RGDVODVSREODFLRQHVVH
PLGHQHQPLOHVGHDQLPDOHV/DYDULDEOHtUHSUHVHQWDHOWLHPSRPHGLGRHQDxRVGHVGH
$VtDSDUWLUGHODVFRQGLFLRQHVLQLFLDOHVWHQHPRVDOFHV\ORERVHQHODxR(O
OHFWRUVHGDUiFXHQWDTXHVHHVWLPyODWDVDGHFUHFLPLHQWRSDUDHODOFHLJXDOTXHODHVWLPDGD
antes r
$QWHVGHTXHLQWHQWHPRVVROXFLRQDUHOPRGHOR XQDQiOLVLVFXDOLWDWLYRGHOVLVWHPD
SXHGHSURGXFLUXQDVHULHGHLQWHUHVDQWHVSURSLHGDGHVGHODVVROXFLRQHV/DSULPHUDHFXDFLyQ
P-8
PROYECTO 3.3
DINÁMICA DE POBLACIÓN DE LOBOS
l
P-9
PXHVWUDTXHODWDVDGHFUHFLPLHQWRGHORVDOFHV dE冫dt VHYHDIHFWDGDSRVLWLYDPHQWHSRU
HOWDPDxRGHODPDQDGD E (VWRVHSXHGHLQWHUSUHWDUFRPRTXHODSUREDELOLGDGGH
UHSURGXFFLyQDXPHQWDFRQHOQ~PHURGHDOFHV3RURWUDSDUWHHOWpUPLQRQROLQHDO EW
WLHQHXQLPSDFWRQHJDWLYRHQODWDVDGHFUHFLPLHQWRGHORVDOFHV\DTXHPLGHODLQWHUDFFLyQ
HQWUHGHSUHGDGRUHV\SUHVDV/DVHJXQGDHFXDFLyQdW冫dt W EWPXHVWUDTXH
ODSREODFLyQGHORERVWLHQHXQHIHFWRQHJDWLYRVREUHVXSURSLRFUHFLPLHQWRORTXHVHSXHGH
LQWHUSUHWDUFRPRODUD]yQGHTXHDPiVORERVVHFUHDPiVFRPSHWHQFLDSRUHODOLPHQWR6LQ
HPEDUJRODLQWHUDFFLyQHQWUHHODOFH\ORVORERV EW WLHQHXQLPSDFWRSRVLWLYR\DTXH
ORVORERVHVWiQHQFRQWUDQGRPiVFRPLGD
3XHVWRTXHQRVHSXHGHHQFRQWUDUXQDVROXFLyQDQDOtWLFDDOSUREOHPDGHYDORUHVLQLFLDOHV WHQHPRV TXH FRQ¿DU HQ OD WHFQRORJtD SDUD HQFRQWUDU VROXFLRQHV DSUR[LPDGDV
3RUHMHPSORDFRQWLQXDFLyQVHSUHVHQWDXQFRQMXQWRGHLQVWUXFFLRQHVSDUDGHWHUPLQDUXQD
VROXFLyQQXPpULFDGHOSUREOHPDGHYDORUHVLQLFLDOHVSDUDHOVLVWHPDGHiOJHEUDFRPSXWDFLRQDOMaple
e1 := diff(e(t),t)-0.0325*e(t) + 0.8*e(t)*w(t) :
e2 := diff(w(t),t)+0.6*w(t) - 0.05*e(t)*w(t) :
sys := {e1,e2} :
ic := {e(0)=18.0,w(0)=0.021} :
ivp := sys union ic :
H:= dsolve(ivp,{e(t),w(t)},numeric) :
20000
200
18000
180
16000
160
Población de lobos
Población de alces
/DV JUi¿FDV GH ODV ¿JXUDV O \ PXHVWUDQ ODV SREODFLRQHV GH DPEDV HVSHFLHV HQWUH
\&RPRVHSUHGLMRSRUQXPHURVRVHVWXGLRVODUHLQWURGXFFLyQGHORVORERVHQ
<HOORZVWRQHKDEtDFRQGXFLGRDXQDGLVPLQXFLyQHQODSREODFLyQGHDOFHV(QHVWHPRGHOR
SRGHPRVYHUODGLVPLQXFLyQGHODSREODFLyQGHHQDDSUR[LPDGDPHQWH
HQ(QFDPELRODSREODFLyQGHORERVDXPHQWyGHXQDFRQGLFLyQLQLFLDOGHHQ
DXQPi[LPRGHDSUR[LPDGDPHQWHHQ
14000
12000
10000
8000
6000
140
120
100
80
60
4000
40
2000
20
0
1995 1997 1999 2001 2003 2005 2007 2009
Año
0
1995 1997 1999 2001 2003 2005 2007 2009
Año
FIGURA 1 3REODFLyQGHDOFHV
FIGURA 2 3REODFLyQGHORERV
(O OHFWRU REVHUYDGRU QRWDUi TXH HO PRGHOR WDPELpQ PXHVWUD XQ GHVFHQVR HQ OD SREODFLyQGHORERVGHVSXpVGH¢&yPRSRGUtDPRVLQWHUSUHWDUHVWR"&RQODGLVPLQXFLyQ
HQODSREODFLyQGHDOFHVHQORVSULPHURVDxRVKXERPHQRVFRPLGDSDUDORVORERV\SRU
ORWDQWRVXSREODFLyQHPSH]yDGHFOLQDU
/D¿JXUDTXHVHPXHVWUDDFRQWLQXDFLyQSUHVHQWDHOFRPSRUWDPLHQWRDODUJRSOD]RGH
DPEDVSREODFLRQHV/DLQWHUSUHWDFLyQGHHVWDJUi¿FDVHGHMDFRPRHMHUFLFLRSDUDHOOHFWRU
(Q,QWHUQHWVHSXHGHHQFRQWUDULQIRUPDFLyQDFHUFDGHODUHLQWURGXFFLyQGHORVORERVHQ
HOSDUTXHGH,GDKR&HQWUDO\HQ<HOORZVWRQH3RUHMHPSOROHDODVQRWLFLDVGHO86)LVKDQG
:LOGOLIH6HUYLFHGHOGHQRYLHPEUHGHVREUHODOLEHUDFLyQGHORVORERVHQHO3DUTXH
1DFLRQDOGH<HOORZVWRQH
l
PROYECTO 3.3
DINÁMICA DE POBLACIÓN DE LOBOS
200
20000
Alces
18000
Poblaciones de alces y lobos
P-10
180
Lobos
16000
160
14000
140
12000
120
10000
100
8000
80
6000
60
4000
40
2000
20
0
1990
2000
2010
2020
2030
2040
2050
2060
2070
0
2080
Año
FIGURA 3 &RPSRUWDPLHQWRDODUJRSOD]RGHODVSREODFLRQHV
PROBLEMAS RELACIONADOS
1. 5HVXHOYDHOSUREOHPDFRQYDORUHVLQLFLDOHVGHDQWHVGHODUHLQWURGXFFLyQGHORVORERV
VROXFLRQDQGR SULPHUR OD HFXDFLyQ GLIHUHQFLDO \ DSOLFDQGR OD FRQGLFLyQ LQLFLDO
/XHJRDSOLTXHODFRQGLFLyQWHUPLQDOSDUDHQFRQWUDUODWDVDGHFUHFLPLHQWR
2. /RVELyORJRVKDQDQDOL]DGRVLODUD]yQGHODGLVPLQXFLyQGHORVDOFHVGHHQD
HQVHHQFXHQWUDHQODUHLQWURGXFFLyQGHORVORERV¢4XpRWURVIDFWRUHVSXGLHUDQ
H[SOLFDUODGLVPLQXFLyQGHODSREODFLyQGHDOFHV"
3. &RQVLGHUHORVFDPELRVDODUJRSOD]RGHODVSREODFLRQHVGHDOFHV\ORERV¢(VWRVFDPELRV
FtFOLFRVVRQUD]RQDEOHV"¢3RUTXpKD\XQGHVIDVHHQWUHHO PRPHQWR HQ TXH FRPLHQ]D
ODGHFOLQDFLyQGHORVDOFHV\FXDQGRODSREODFLyQGHORVORERVHPSLH]DDGHFDHU"¢6RQ
UHDOLVWDVORVYDORUHVPtQLPRVSDUDODSREODFLyQGHORERV"7UDFHODSREODFLyQGHORVDOFHV
IUHQWHDODSREODFLyQGHORERVHLQWHUSUHWHORVUHVXOWDGRV
4. ¢4XpQRVGLFHHOSUREOHPDFRQYDORULQLFLDO VREUHHOFUHFLPLHQWRGHODSREODFLyQGH
DOFHVVLQODLQÀXHQFLDGHORVORERV"(QFXHQWUHXQPRGHORVLPLODUSDUDODLQWURGXFFLyQ
GHFRQHMRVHQ$XVWUDOLDHQ\HOLPSDFWRGHLQWURGXFLUXQDSREODFLyQSUHVDHQXQ
DPELHQWHVLQXQDSREODFLyQGHXQGHSUHGDGRUQDWXUDOSDUDGLFKDSUHVD
ACERCA DEL AUTOR
C. J. Knickerbocker
3URIHVRUGH0DWHPiWLFDV\&LHQFLDVGHOD&RPSXWDFLyQ UHWLUDGR
8QLYHUVLGDGGH6W/DZUHQFH
'LUHFWRUGH,QYHVWLJDFLyQGH,QJHQLHUtD
&RUSRUDFLyQ6HQVLV
&-.QLFNHUERFNHUREWXYRVXGRFWRUDGRHQPDWHPiWLFDVHQOD8QLYHUVLGDGGH&ODUNVRQHQ
+DVWDIXHSURIHVRUGHPDWHPiWLFDV\FLHQFLDVGHODFRPSXWDFLyQHQOD8QLYHUVLGDGGH6W/DZUHQFHGRQGHHVFULELyQXPHURVRVDUWtFXORVVREUHGLIHUHQWHVWHPDVLQFOX\HQGR
HFXDFLRQHVGLIHUHQFLDOHVSDUFLDOHVQROLQHDOHVWHRUtDGHJUDIRVItVLFDDSOLFDGD\SVLFRORJtD
7DPELpQWUDEDMyFRPRFRQVXOWRUSDUDHGLWRULDOHVHPSUHVDVGHVRIWZDUH\DJHQFLDVGHJRELHUQR$FWXDOPHQWHHO'U.QLFNHUERFNHUHV'LUHFWRUGH,QYHVWLJDFLyQGH,QJHQLHUtDGHOD
&RUSRUDFLyQ6HQVLVGRQGHKDFHHVWXGLRVVREUHH¿FLHQFLD\VHJXULGDGGHDHURSXHUWRV
PROYECTO
PARA LA SECCIÓN 5.1
Salto en bungee
por Kevin Cooper
6DOWRHQEXQJHHGHVGHXQSXHQWH
Puente
x = −100
Bungee
100 pies
174 pies
x=0
x = 74
Agua
FIGURA 1 &RQ¿JXUDFLyQ
del bungee
6XSRQJDTXHQRWLHQHVHQWLGRFRP~Q(VWiHQXQSXHQWHVREUHHOFDxyQGHOUtR0DODG\GHVHD
VDOWDUGHOSXHQWH1RWLHQHQLQJ~QGHVHRGHVXLFLGDUVHDOFRQWUDULRSLHQVDDPDUUDUVXVSLHVDOD
FXHUGDGHOEXQJHHSDUDVXPHUJLUVHFRQJUDFLDHQHOYDFtR\OXHJRVHUMDODGRKDFLDDWUiVVXDYHPHQWHSRUODFXHUGDDQWHVGHOOHJDUDOUtRTXHHVWiSLHVPiVDEDMR+DWUDtGRYDULDVFXHUGDV
GLIHUHQWHVSDUDDPDUUDUVXVSLHVLQFOX\HQGRYDULDVFXHUGDVHVWiQGDUXQDFXHUGDSDUDHVFDODU
\XQFDEOHGHDFHUR7LHQHTXHHOHJLUODULJLGH]\ODORQJLWXGGHODFXHUGDSDUDHYLWDUXQGHVDJUDGDEOHDWHUUL]DMHLQHVSHUDGRHQHODJXD3HURHVWRQRORHVSDQWD£SRUTXHVDEHPDWHPiWLFDV
&DGDXQDGHODVFXHUGDVTXHKDWUDtGRWLHQHOSLHVGHODUJRFXDQGRFXHOJDGHOSXHQWH
/ODPHDODSRVLFLyQHQODSDUWHLQIHULRUGHODFXHUGD\PLGDODSRVLFLyQGHORVSLHVSRUGHEDMR
GHHVD³ORQJLWXGQDWXUDO´FRPRx t GRQGHxDXPHQWDFRQIRUPHGHVFLHQGH\HVXQDIXQFLyQGHO
tiempo t9HDOD¿JXUD(QWRQFHVDOWLHPSRTXHVDOWDx PLHQWUDVTXHVLVXFXHUSR GHSLHV SHJDSULPHURFRQODFDEH]DHQHODJXDHQHVHPRPHQWRx t
$GYLHUWDTXHODGLVWDQFLDDXPHQWDFRQIRUPHFDH\VXYHORFLGDGHVQHJDWLYDFXDQGRFDH
\SRVLWLYDFXDQGRYXHOYH KDFLDDUULED 2EVHUYHWDPELpQTXHSODQHDDYHQWDUVHGHWDOIRUPD
TXHVXFDEH]DHVWDUiVHLVSLHVSRUGHEDMRGHOH[WUHPRGHODFXHUGDFXDQGRVHGHWHQJD
8VWHGVDEHTXHODDFHOHUDFLyQGHELGDDODJUDYHGDGHVXQDFRQVWDQWHOODPDGDgSRUOR
TXHODIXHU]DTXHMDODVXFXHUSRKDFLDDEDMRHVmg6DEHTXHDOVDOWDUGHOSXHQWHODUHVLVWHQFLD
GHODLUHDXPHQWDUiSURSRUFLRQDOPHQWHDVXYHORFLGDGSURSRUFLRQDQGRXQDIXHU]DHQVHQWLGR
FRQWUDULRDVXPRYLPLHQWRGHXQRVȕYGRQGHȕHVXQDFRQVWDQWH\vHVVXYHORFLGDG3RU~OWLPRVDEHTXHODOH\GH+RRNHTXHGHVFULEHODDFFLyQGHORVUHVRUWHVGLFHTXHODFXHUGDHYHQWXDOPHQWHHMHUFHUiVREUHXVWHGXQDIXHU]DSURSRUFLRQDODVXGLVWDQFLDPiVDOOiGHVXORQJLWXG
QDWXUDO3RUORWDQWRXVWHGVDEHTXHODIXHU]DGHODFXHUGDTXHORVDOYDGHODGHVWUXFFLyQVH
SXHGHH[SUHVDUFRPR
0
x 0
b(x)
kx x 0
(OQ~PHURk se llama constante elástica\HVGRQGHLQÀX\HODULJLGH]GHODFXHUGDTXHVHXWLOL]DHQODHFXDFLyQ3RUHMHPSORVLXVWHGXWLOL]DHOFDEOHGHDFHURHQWRQFHVkVHUtDPX\JUDQGH
GDQGRXQDWUHPHQGDIXHU]DGHIUHQDGRPX\UHSHQWLQDPHQWHFRQIRUPHSDVHGHODORQJLWXG
QDWXUDOGHOFDEOH(VWRSRGUtDSURGXFLUPROHVWLDVXQDOHVLyQRLQFOXVRXQSUHPLR³'DUZLQ´
/RTXHKD\TXHKDFHUHVHOHJLUHOFDEOHFRQXQYDORUGHkVX¿FLHQWHPHQWHJUDQGHFRPRSDUD
TXHVHGHWHQJDMXVWRDUULEDRVRODPHQWHUR]DQGRHODJXDSHURQRGHPDVLDGRSURQWR(QFRQVHFXHQFLDOHLQWHUHVDHQFRQWUDUODGLVWDQFLDTXHFDHSRUGHEDMRGHODORQJLWXGQDWXUDOGHOFDEOH
HQIXQFLyQGHODFRQVWDQWHHOiVWLFD3DUDHOORGHEHUHVROYHUODHFXDFLyQGLIHUHQFLDOTXHKHPRV
GHGXFLGRFRQODVSDODEUDVDQWHULRUHV/DIXHU]DP[࣠HQVXFXHUSRHVWiGDGDSRU
mx
mg + b(x) - E x
$TXtmgHVVXSHVROLEUDV\xHVODUD]yQGHFDPELRGHVXSRVLFLyQGHEDMRGHOHTXLOLEULR
FRQUHVSHFWRDOWLHPSRHVGHFLUVXYHORFLGDG/DFRQVWDQWHȕSDUDODUHVLVWHQFLDGHODLUHGHSHQGHGHPXFKDVFRVDVHQWUHHOODVGHVLXVDVXVSDQGH[URVDTXHOHDSULHWDODSLHORVXVVKRUWVGH
SDWLQDGRU\FDPLVHWDXXLVDEHTXHHOYDORUDOPRPHQWRGHODSUXHEDHVDSUR[LPDGDPHQWH
eVWDHVXQDHFXDFLyQGLIHUHQFLDOQROLQHDOSHURGHQWURKD\GRVHFXDFLRQHVGLIHUHQFLDOHV
OLQHDOHVOXFKDQGRSRUVDOLU9DPRVDWUDEDMDUFRQHVWDVHFXDFLRQHVGHIRUPDPiVDPSOLDHQ
FDStWXORVSRVWHULRUHVSHUR\DDSUHQGLPRVFyPRUHVROYHUHVWDVHFXDFLRQHV&XDQGRx OD
HFXDFLyQHVP[࣠ mg ȕ[PLHQWUDVTXHGHVSXpVGHSDVDUODORQJLWXGQDWXUDOGHOFRUGyQ
es P[࣠ mg kx ȕ[/DVUHVROYHUHPRVSRUVHSDUDGR\OXHJRMXQWDUHPRVODVVROXFLRQHV
FXDQGRx t
P-11
P-12
l
PROYECTO 5.1
60
[ (W)
40
20
_100 _80
_60
_40
[(W)
_20
0
20
_20
_40
FIGURA 2 8QHMHPSORGH
JUi¿FDGHx t FRQWUDx’ t SDUDXQ
salto de bungee
40
SALTO EN BUNGEE
(QHOSUREOHPDHQFRQWUDPRVXQDH[SUHVLyQSDUDVXSRVLFLyQtVHJXQGRVGHVSXpVGH
TXHVDOWyGHOSXHQWHDQWHVGHTXHODFXHUGDHPSLHFHDMDODUORKDFLDDUULED2EVHUYHTXH
QRGHSHQGHGHOYDORUGHkSRUTXHODFXHUGDHVWiFD\HQGRFRQXVWHGFXDQGRHVWiDUULEDGH
x t &XDQGRSDVDODORQJLWXGQDWXUDOGHODFXHUGDGHOEXQJHHHQWRQFHVHVFXDQGRpVWD
FRPLHQ]DDMDODUSRUORTXHODHFXDFLyQGLIHUHQFLDOFDPELD6HDTXHt denote la primera
YH]TXHORKDFHHQx t \TXHvGHQRWHVXYHORFLGDGHQHVHWLHPSR$VtSRGHPRVGHVFULELUHOPRYLPLHQWRSDUDx t XWLOL]DQGRHOSUREOHPD[࣠ g kx ȕ[x t
x t v(QOD¿JXUDVHVHHQFXHQWUDODLOXVWUDFLyQGHXQDVROXFLyQDHVWHSUREOHPDHQ
ODIDVHHVSDFLDO
(VWRSURGXFLUiXQDH[SUHVLyQSDUDVXSRVLFLyQFXDQGRHOFDEOHHVWiMDOiQGROR7HQHPRV
TXHKDFHUHVWRSDUDHQFRQWUDUHOWLHPSRtHOPRPHQWRHQTXHSDUDGHEDMDU&XDQGRGHMDGH
EDMDUVXYHORFLGDGHVFHURHVGHFLUx t
&RPRSXHGHYHUVDEHUXQSRFRGHPDWHPiWLFDVHVDOJRSHOLJURVR/HUHFRUGDPRVTXHOD
VXSRVLFLyQGHTXHODIXHU]DGHDUUDVWUHGHELGDDODUHVLVWHQFLDGHODLUHHVOLQHDOVyORVHDSOLFDD
YHORFLGDGHVEDMDV(QHOLQVWDQWHHQTXHODFDLGDOROOHYDPiVDOOiGHODORQJLWXGQDWXUDOGHOD
FXHUGDHVWDDSUR[LPDFLyQVHFRQYLHUWHHQXQDLOXVLyQSRUORTXHVXUHFRUULGRUHDOSXHGHYDULDU
$GHPiVORVUHVRUWHVQRVHFRPSRUWDQOLQHDOPHQWHDJUDQGHVRVFLODFLRQHVSRUORTXHODOH\GH
+RRNHHVWDPELpQVyORXQDDSUR[LPDFLyQ1RFRQItHVXYLGDDXQDDSUR[LPDFLyQKHFKDSRU
XQKRPEUHTXHIDOOHFLyKDFHDxRV'HMHHOVDOWRHQEXQJHHSDUDORVSURIHVLRQDOHV
PROBLEMAS RELACIONADOS
1. 5HVXHOYDODHFXDFLyQm[࣠ ȕ[ mg para x t SDUDHOFDVRHQTXHVHEDMDGHOSXHQWHVLQ
VDOWDU%DMDUVHVLJQL¿FDx x 3XHGHXVDUmg ȕ \g
2. 8WLOLFHODVROXFLyQGHOSUREOHPDSDUDFDOFXODUHOWLHPSRtHQFDtGDOLEUH HOWLHPSRTXH
WDUGDHQOOHJDUODORQJLWXGQDWXUDOGHOFDEOHSLHV
3. &DOFXOHODGHULYDGDGHODVROXFLyQHQFRQWUDGDHQHOSUREOHPD\HYDO~HHOWLHPSRTXH
HQFRQWUyHQHOSUREOHPD/ODPHDOUHVXOWDGRv+DKDOODGRVXYHORFLGDGKDFLDDEDMR
FXDQGRSDVDSRUHOSXQWRGRQGHHOFDEOHHPSLH]DDMDODU
4. 5HVXHOYDHOSUREOHPDFRQYDORUHVLQLFLDOHVm[࣠ ȕ[ kx mgx t x t v
3RUDKRUDSXHGHXWLOL]DUHOYDORUk SHURWDUGHRWHPSUDQRWHQGUiTXHVXVWLWXLUORV
YDORUHVUHDOHVGHODVFXHUGDVTXHWUDMR/DVROXFLyQx t UHSUHVHQWDODSRVLFLyQGHVXVSLHV
SRUGHEDMRGHODORQJLWXGQDWXUDOGHODFXHUGDGHVSXpVGHTXHpVWDHPSLH]DDMDODUOR
5. &DOFXOHODGHULYDGDGHODH[SUHVLyQTXHHQFRQWUyHQHOSUREOHPD\HQFXHQWUHHOYDORU
tWDOTXHVHDFHUR(VWHWLHPSRHVt7HQJDFXLGDGRFRQTXHHOWLHPSRTXHFDOFXOHVHD
PD\RUTXHt£KD\YDULRVPRPHQWRVHQTXHVXPRYLPLHQWRVHGHWLHQHHQODSDUWHVXSHULRU
HLQIHULRUGHODVFDtGDV'HVSXpVGHHQFRQWUDUtVXVWLWX\DODVROXFLyQTXHHQFRQWUyHQHO
SUREOHPDSDUDHQFRQWUDUODSRVLFLyQPiVEDMDDOFDQ]DGD
6. +D WUDtGR XQD FXHUGD VXDYH SDUD HO EXQJHH FRQ k XQD FXHUGD PiV UtJLGD FRQ
k \XQDFXHUGDSDUDHVFDODUSDUDODFXDOk ¢&XiOVLODKXELHUDGHpVWDVVH
SXHGHXVDUFRQVHJXULGDGHQODVFRQGLFLRQHVGDGDV"
7. 7LHQHXQDFXHUGDGHEXQJHHSDUDODTXHQRKDGHWHUPLQDGRODFRQVWDQWHHOiVWLFD3DUD
KDFHUORVXVSHQGHXQSHVRGHOLEUDVGHVGHHOH[WUHPRGHODFXHUGDGHSLHVFDXVDQGRTXHODFXHUGDVHHVWLUHSLHV¢&XiOHVHOYDORUGHkSDUDHVWDFXHUGD"3XHGH
GHVSUHFLDUODPDVDGHODFXHUGD
ACERCA DEL AUTOR
Kevin Cooper,GRFWRUSRUOD8QLYHUVLGDG(VWDWDOGH&RORUDGRHVHO&RRUGLQDGRUGH,QIRUPiWLFDSDUD0DWHPiWLFDVHQOD8QLYHUVLGDG(VWDWDOGH:DVKLQJWRQHQ3XOOPDQ:DVKLQJWRQ6X
LQWHUpVSULQFLSDOHVHODQiOLVLVQXPpULFR\KDHVFULWRDUWtFXORV\XQOLEURGHWH[WRHQHVDiUHD
(O'U&RRSHUWDPELpQGHGLFDEDVWDQWHWLHPSRDODFUHDFLyQGHFRPSRQHQWHVGHVRIWZDUH
FRPRDynaSysXQSURJUDPDPDWHPiWLFRSDUDDQDOL]DUVLVWHPDVGLQiPLFRVQXPpULFDPHQWH
PROYECTO
PARA LA SECCIÓN 5.3
El colapso del puente colgante
de Tacoma Narrows
FIGURA 1 Colapso del
SXHQWHGH7DFRPD1DUURZV
3XHQWH7DFRPD1DUURZV
UHFRQVWUXLGR \HO
QXHYRSXHQWHSDUDOHOR
por Gilbert N. Lewis
(Q HO YHUDQR GH VH WHUPLQy HO SXHQWH FROJDQWH GH7DFRPD 1DUURZV HQ HO HVWDGR GH
:DVKLQJWRQ\VHDEULyDOWUi¿FR&DVLGHLQPHGLDWRORVREVHUYDGRUHVDGYLUWLHURQTXHHOYLHQWR
TXHVRSODEDDWUDYpVGHODFDUUHWHUDDYHFHVSRGtDRFDVLRQDUJUDQGHVYLEUDFLRQHVYHUWLFDOHV
HQODFDSDGHDVIDOWR(OSXHQWHVHFRQYLUWLyHQXQDDWUDFFLyQWXUtVWLFDODJHQWHLEDDYHUOR
\WDOYH]DSDVHDUHQHOSXHQWHRQGXODQWH)LQDOPHQWHHOGHQRYLHPEUHGHGXUDQWH
XQDJUDQWRUPHQWDODVRVFLODFLRQHVDXPHQWDURQPiVTXHFXDOTXLHUDGHODVTXHVHREVHUYDURQ
SUHYLDPHQWH\HOSXHQWHIXHHYDFXDGR3URQWRODVRVFLODFLRQHVYHUWLFDOHVVHFRQYLUWLHURQHQ
URWDFLRQDOHV)LQDOPHQWHVHVDFXGLyWRGRHODUFRVHVHSDUySRUODVJUDQGHVYLEUDFLRQHV\HO
SXHQWHVHGHUUXPEy/D¿JXUDPXHVWUDXQDLPDJHQGHOSXHQWHGXUDQWHHOFRODSVR9HD>1]
y [2@SDUDDQpFGRWDVLQWHUHVDQWHV\DYHFHVKXPRUtVWLFDVDVRFLDGDVFRQHOSXHQWH2KDJDXQD
E~VTXHGDHQLQWHUQHWFRQODVSDODEUDVFODYH³GHVDVWUHGHOSXHQWHGH7DFRPD´SDUDHQFRQWUDU\
YHUDOJXQRVYLGHRVLQWHUHVDQWHVGHOFRODSVRGHOSXHQWH
6HOHSLGLyDOQRWDEOHLQJHQLHUR9RQ.iUPiQTXHGHWHUPLQDUDODFDXVDGHOFRODSVReO
\VXVFRODERUDGRUHV>3@D¿UPDURQTXHHOYLHQWRVRSODSHUSHQGLFXODUDWUDYpVGHODFDUUHWHUD
VHSDUDGRHQYyUWLFHV UHPROLQRVGHYLHQWR DOWHUQDWLYDPHQWHSRUHQFLPD\SRUGHEDMRGHOD
FDSDGHDVIDOWRFRQ¿JXUDQGRXQDIXHU]DYHUWLFDOSHULyGLFDTXHDFW~DVREUHHOSXHQWH)XH
HVWDIXHU]DODTXHFDXVyODVRVFLODFLRQHV2WURVDGHPiVKLFLHURQODKLSyWHVLVGHTXHODIUHFXHQFLDGHHVWDIXQFLyQGHIRU]DPLHQWRHVH[DFWDPHQWHLJXDODODIUHFXHQFLDQDWXUDOGHOSXHQWHORTXHFRQGXFLUtDDRVFLODFLRQHVJUDQGHV\UHVRQDQFLDVKDVWDVXGHVWUXFFLyQ'XUDQWH
FDVLDxRVVHFXOSyDODUHVRQDQFLDFRPRODFDXVDGHOFRODSVRGHOSXHQWHDXQTXHHOJUXSR
GH9RQ.iUPiQORQHJyD¿UPDQGRTXH³HVPX\LPSUREDEOHTXHODUHVRQDQFLDFRQDOWHUQDQFLDGHYyUWLFHVGHVHPSHxHXQSDSHOLPSRUWDQWHHQODVRVFLODFLRQHVGHSXHQWHVFROJDQWHV´>3@
&RPRSRGHPRVYHUHQODHFXDFLyQ HQODVHFFLyQODUHVRQDQFLDHVXQIHQyPHQR OLQHDO$GHPiV SDUD TXH VH SUHVHQWH UHVRQDQFLD GHEH KDEHU XQD FRLQFLGHQFLD H[DFWD
HQWUHODIUHFXHQFLDGHODIXQFLyQGHIRU]DPLHQWR\ODIUHFXHQFLDQDWXUDOGHOSXHQWH7DPELpQ
HOVLVWHPDGHEHHVWDUDEVROXWDPHQWHVLQDPRUWLJXDFLyQ1RGHEHVRUSUHQGHUHQWRQFHVTXH
HVDUHVRQDQFLDQRIXHUDODFXOSDEOHGHOFRODSVR
6LODUHVRQDQFLDQRFDXVyHOFRODSVRGHOSXHQWH¢TXpORRFDVLRQy"8QDLQYHVWLJDFLyQ
UHFLHQWHRIUHFHXQDH[SOLFDFLyQDOWHUQDWLYDSDUDHOFRODSVRGHOSXHQWHGH7DFRPD1DUURZV
/D]HU\0F.HQQD>4@D¿UPDQTXHORVHIHFWRVQROLQHDOHV\ODUHVRQDQFLDQROLQHDOIXHURQORV
SULQFLSDOHVIDFWRUHVTXHSURYRFDURQODVJUDQGHVRVFLODFLRQHVGHOSXHQWH YHD>5@XQUHVXPHQ
GHODUWtFXOR /DWHRUtDLPSOLFDHFXDFLRQHVGLIHUHQFLDOHVSDUFLDOHV6LQHPEDUJRVHSXHGH
FRQVWUXLUXQPRGHORVLPSOL¿FDGRTXHFRQGXFHDXQDHFXDFLyQGLIHUHQFLDORUGLQDULDQROLQHDO
(OGHVDUUROORGHOPRGHORTXHVHSUHVHQWDDFRQWLQXDFLyQQRHVH[DFWDPHQWHLJXDODOGH
/D]HU\0F.HQQDSHURGDFRPRUHVXOWDGRXQDHFXDFLyQGLIHUHQFLDOVLPLODU(VWHHMHPSOR
PXHVWUDRWUDIRUPDHQODTXHVHSXHGHQDXPHQWDUODVDPSOLWXGHVGHODRVFLODFLyQ
&RQVLGHUHXQVRORFDEOHYHUWLFDOGHOSXHQWHFROJDQWH6XSRQHPRVTXHpVWHDFW~DFRPR
XQUHVRUWHSHURFRQFDUDFWHUtVWLFDVGLIHUHQWHVHQWHQVLyQ\FRPSUHVLyQ\VLQDPRUWLJXDFLyQ
&XDQGR VH HVWLUD HO FDEOH DFW~D FRPR XQ UHVRUWH FRQ OD FRQVWDQWH GH +RRNH b PLHQWUDV
TXHFXDQGRVHFRPSULPHDFW~DFRPRXQUHVRUWHFRQXQDFRQVWDQWHGH+RRNHGLIHUHQWHa
6XSRQHPRVTXHHOFDEOHHQFRPSUHVLyQHMHUFHXQDIXHU]DPiVSHTXHxDHQODFDUUHWHUDTXH
FXDQGRVHHVWLUDODPLVPDGLVWDQFLDGHIRUPDTXH a b/DGHÀH[LyQYHUWLFDO GLUHFFLyQ
SRVLWLYDKDFLDDEDMR GHODSDUWHGHODFDSDGHDVIDOWRXQLGDDHVWHFDEOHVHGHQRWDFRQy t
donde t UHSUHVHQWDHOWLHPSR\y UHSUHVHQWDODSRVLFLyQGHHTXLOLEULRGHODFDUUHWHUD
&RPRODFDSDGHDVIDOWRRVFLODEDMRODLQÀXHQFLDGHXQDIXHU]DYHUWLFDODSOLFDGD GHELGRD
ORVYyUWLFHVGH9RQ.iUPiQ HOFDEOHSURSRUFLRQDXQDIXHU]DUHVWDXUDGRUDDVFHQGHQWHLJXDO
P-13
P-14
l
PROYECTO 5.3
EL COLAPSO DEL PUENTE COLGANTE DE TACOMA NARROWS
a byFXDQGRy \XQDIXHU]DUHVWDXUDGRUDGHVFHQGHQWHLJXDODayFXDQGRy (VWHFDPELRHQODFRQVWDQWHGHODOH\GH+RRNHHQy SURSRUFLRQDODQROLQHDOLGDGGHODHFXDFLyQ
GLIHUHQFLDO3RUORTXHGHEHPRVFRQVLGHUDUODHFXDFLyQGLIHUHQFLDOGHGXFLGDGHODVHJXQGD
OH\GHPRYLPLHQWRGH1HZWRQ
m\࣠ f y g t
donde f y HVODIXQFLyQQROLQHDOGDGDSRU
by si y
ay si y
f(y)
0
,
0
g t HV OD IXHU]D DSOLFDGD \ m HV OD PDVD GH OD VHFFLyQ GH OD FDUUHWHUD 2EVHUYH TXH OD
HFXDFLyQGLIHUHQFLDOHVOLQHDOHQFXDOTXLHULQWHUYDORHQHOFXDOyQRFDPELDGHVLJQR
$KRUDYHDPRVORTXHSDUHFHUtDXQDWtSLFDVROXFLyQGHHVWHSUREOHPD6XSRQGUHPRV
TXHm NJb 1Pa O1P\g t VHQ t 12EVHUYHTXHODIUHFXHQFLDGHOD
IXQFLyQGHIRU]DPLHQWRHVPiVJUDQGHTXHODVIUHFXHQFLDVQDWXUDOHVGHOFDEOHHQWHQVLyQ
\FRPSUHVLyQSRUORTXHQRHVSHUDPRVTXHVHSUHVHQWHUHVRQDQFLD7DPELpQDVLJQDPRV
ORVVLJXLHQWHVYDORUHVLQLFLDOHVDy: y y GHPRGRTXHODFDSDGHDVIDOWR
HPSLH]DHQODSRVLFLyQGHHTXLOLEULRFRQXQDSHTXHxDYHORFLGDGKDFLDDEDMR
'HELGRDODYHORFLGDGLQLFLDOKDFLDDEDMR\ODIXHU]DSRVLWLYDDSOLFDGDy t LQLFLDOPHQWH
DXPHQWDUi \ VHUi SRVLWLYD 3RU OR WDQWR SULPHUR UHVROYHPRV HVWH SUREOHPD FRQ YDORUHV
LQLFLDOHV
\࣠ y VHQ t y y
/DVROXFLyQGHODHFXDFLyQ GHDFXHUGRFRQHOWHRUHPDHVODVXPDGHODVROXFLyQFRPSOHPHQWDULDyc t \GHODVROXFLyQSDUWLFXODUyp t (VIiFLOYHUTXHyc t cFRV t cVHQ t
HFXDFLyQ VHFFLyQ \yp t 冫VHQ t WDEODVHFFLyQ 3RUORWDQWR
1
sen(4t)
y(t) c1cos(2t) c2 sen(2t
12
/DVFRQGLFLRQHVLQLFLDOHVGDQ
y(0) 0 c1
1
y (0) 0.01 2c2
3
SRUORTXHc O冫 冫3RUORWDQWR VHFRQYLHUWHHQ
1
1
1
y(t)
0.01
sen(2t)
sen(4t)
2
3
12
sen(2t)
1
0.01
2
1
3
1
cos(2t)
6
$GYHUWLPRVTXHHOSULPHUYDORUSRVLWLYRGHtSDUDTXHy t VHDLJXDODFHURRWUDYH]HVt ʌ冫
(QHVHPRPHQWRy ʌ冫 冫3RUORWDQWRODHFXDFLyQ HVYiOLGDHQ>ʌ冫@
'HVSXpVGHt ʌ冫yVHWRUQDQHJDWLYDDVtTXHGHEHPRVUHVROYHUHOQXHYRSUREOHPD
y
y
sen(4t), y
S
2
0, y
3URFHGLHQGRFRPRDQWHVODVROXFLyQGH HV
2
y(t)
0.01
cost
5
cos t
0.01
2
5
S
2
0.01
2
3
1
sen (4t)
15
4
sen t cos(2t)
15
(OVLJXLHQWHYDORUSRVLWLYRGHtGHVSXpVGHt ʌ冫SDUDHOFXDOy t HVt 3ʌ冫HQHVWH
punto y ʌ冫 冫SDUDODTXHODHFXDFLyQ HVYiOLGDHQ>ʌ冫ʌ冫@
(QHVWHSXQWRODVROXFLyQKDSDVDGRSRUXQFLFORHQHOLQWHUYDORGHWLHPSR>ʌ冫@'XUDQWHHVWHFLFORODVHFFLyQGHODFDUUHWHUDFRPHQ]yHQHTXLOLEULRFRQXQDYHORFLGDGSRVLWLYDVH
YROYLySRVLWLYDUHJUHVyDODSRVLFLyQGHHTXLOLEULRFRQYHORFLGDGQHJDWLYDVHKL]RQHJDWLYD\
¿QDOPHQWHYROYLyDODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGSRVLWLYD(VWHSDWUyQFRQWLQ~D
PROYECTO 5.3
EL COLAPSO DEL PUENTE COLGANTE DE TACOMA NARROWS
l
P-15
LQGH¿QLGDPHQWHFRQFDGDFLFORGHʌ冫XQLGDGHVGHWLHPSR/DVROXFLyQSDUDHOVLJXLHQWH
FLFORHV
1
7
1
y(t)
sen(2t)
0.01
cos(2t) en [3S 冫2, 2S ]
2
15
6
8
4
sen t
0.01
cos t cos(2t) en [2S , 3S ]
y(t)
15
15
(VLQVWUXFWLYRREVHUYDUTXHDOSULQFLSLRGHOVHJXQGRFLFORODYHORFLGDGHV 冫
PLHQWUDV TXH DO SULQFLSLR GHO WHUFHU FLFOR HV 冫 'H KHFKR OD YHORFLGDG DO
FRPLHQ]RGHFDGDFLFORHV冫PD\RUTXHDOSULQFLSLRGHOFLFORDQWHULRU1RHVGHH[WUDxDU
HQWRQFHVTXHODDPSOLWXGGHODVRVFLODFLRQHVVHLQFUHPHQWDUDFRQHOWLHPSRGDGRTXHOD
DPSOLWXGGH XQWpUPLQRHQ ODVROXFLyQGXUDQWHFXDOTXLHUFLFORHVWiGLUHFWDPHQWHUHODFLRQDGDFRQODYHORFLGDGDOSULQFLSLRGHOFLFOR9HDOD¿JXUDSDUDXQDJUi¿FDGHODfunción
GHGHÀH[LyQHQHOLQWHUYDOR>ʌ@$GYLHUWDTXHODGHÀH[LyQPi[LPD>ʌ冫ʌ] es mayor
TXHODGHVYLDFLyQPi[LPDHQ>ʌ冫@PLHQWUDVTXHODGHÀH[LyQPi[LPDHQ>ʌʌ] es más
JUDQGHTXHODGHÀH[LyQPi[LPDHQ>ʌ冫ʌ冫@
'HEHUHFRUGDUTXHHOPRGHORTXHDTXtVHSUHVHQWDHVXQPRGHORXQLGLPHQVLRQDOPX\
VLPSOL¿FDGR TXH QR FRQVLGHUD WRGDV ODV LQWHUDFFLRQHV FRPSOHMDV GH ORV SXHQWHV UHDOHV (O
OHFWRUSXHGHWRPDUFRPRUHIHUHQFLDHOUHFXHQWRGH/D]HU\0F.HQQD>4] para un modelo más
FRPSOHWR0iVUHFLHQWHPHQWH0F.HQQD>6@KDSHUIHFFLRQDGRHVHPRGHORSDUDSURSRUFLRQDU
XQSXQWRGHYLVWDGLIHUHQWHGHODWRUVLyQDODVRVFLODFLRQHVREVHUYDGDVHQHOSXHQWHGH7DFRPD
&RQWLQ~DQODVLQYHVWLJDFLRQHVDFHUFDGHOFRPSRUWDPLHQWRGHSXHQWHVVRPHWLGRVDIXHU]DVH[WHUQDV(VSUREDEOHTXHORVPRGHORVVHUH¿QDUiQFRQHOWLHPSR\VHJHQHUDUiQQXHYDV
LGHDVVREUHODLQYHVWLJDFLyQ6LQHPEDUJRGHEHTXHGDUFODURHQHVWHSXQWRTXHODVJUDQGHV
RVFLODFLRQHVTXHFDXVDURQODGHVWUXFFLyQGHOSXHQWHFROJDQWHGH7DFRPD1DUURZVQRHUDQ
HOUHVXOWDGRGHODUHVRQDQFLD
y
0.2
0.0
2
4
6
8
t
0.2
0.4
0.6
FIGURA 2 *Ui¿FDGHODIXQFLyQGHGHÀH[LyQy t
PROBLEMAS RELACIONADOS
1. 5HVXHOYDORVVLJXLHQWHVSUREOHPDV\WUDFHODVJUi¿FDVGHODVVROXFLRQHVSDUD t ʌ
2EVHUYHTXHODUHVRQDQFLDRFXUUHHQHOSULPHUSUREOHPDSHURQRHQHOVHJXQGR
a) y
y
cos t, y(0) 0, y (0) 0.
y cos(2t), y(0) 0, y (0) 0.
b) y
2. 5HVXHOYDHOSUREOHPDFRQYDORUHVLQLFLDOHV\࣠ f y VHQ t y y GRQGH
by si y 0
y
ay si y 0
a) b a FRPSDUHVXUHVSXHVWDFRQHOHMHPSORHQHVWHSUR\HFWR
b) b a
c) b a
2EVHUYHTXHHQHOLQFLVRD ODFRQGLFLyQb a QRVHVDWLVIDFH7UDFHODVJUi¿FDVGH
ODVVROXFLRQHV¢4XpSDVDHQFDGDFDVRFRQIRUPH tDXPHQWD"¢4XpSRGUtDSDVDUHQFDGD
f(y)
P-16
l
PROYECTO 5.3
EL COLAPSO DEL PUENTE COLGANTE DE TACOMA NARROWS
FDVRVLODVHJXQGDFRQGLFLyQLQLFLDOIXHUDUHHPSOD]DGDFRQy "¢3XHGHKDFHU
FRQFOXVLRQHVVLPLODUHVDODVGHOWH[WRFRQVLGHUDQGRODVROXFLyQDODUJRSOD]R"
3. ¢&XiOVHUtDHOHIHFWRGHDJUHJDUDPRUWLJXDPLHQWR cyGRQGHc DOVLVWHPD"¢&yPR
SRGUtDXQLQJHQLHURGHGLVHxRGHSXHQWHVLQFRUSRUDUPiVDPRUWLJXDPLHQWRDOSXHQWH"
5HVXHOYDHOSUREOHPDy࣠ cy f y VHQ t y y OGRQGH
f(y)
4y si y
y si y
0
0
y
a) c
b) c
c) c
REFERENCIAS
1. /HZLV*1³7DFRPD1DUURZV6XVSHQVLRQ%ULGJH&ROODSVH´HQ'HQQLV*=LOOA First Course
in Differential Equations%RVWRQ3:6.HQWSS
2. %UDXQ0Differential Equations and Their ApplicationsSS1XHYD<RUN6SULQJHU
3. $PPDQ2+7YRQ.iUPiQ\*%:RRGUXIIThe Failure of the Tacoma Narrows Bridge
:DVKLQJWRQ'&)HGHUDO:RUNV$JHQF\
4. /D]HU$&\3-0F.HQQD³/DUJHDPSOLWXGHSHULRGLFRVFLOODWLRQVLQVXVSHQVLRQEULGJHV6RPH
QHZFRQQHFWLRQVZLWKQRQOLQHDUDQDO\VLV´HQSIAM ReviewGLFGHSS
5. 3HWHUVRQ,³5RFNDQGUROOEULGJH´HQScience NewsSS
6. 0F.HQQD 3 - ³/DUJH WRUVLRQDO RVFLOODWLRQV LQ VXVSHQVLRQ EULGJHV UHYLVLWHG )L[LQJ DQ ROG
DSSUR[LPDWLRQ´HQAmerican Mathematical MonthlySS
ACERCA DEL AUTOR
El Dr. Gilbert N. LewisHVSURIHVRUHPpULWRHQOD8QLYHUVLGDG7HFQROyJLFDGH0LFKLJDQ
GRQGHKDHQVHxDGR\UHDOL]DGRLQYHVWLJDFLRQHVHQPDWHPiWLFDVDSOLFDGDV\HFXDFLRQHV
GLIHUHQFLDOHV GXUDQWH DxRV 5HFLELy VX OLFHQFLDWXUD GH OD 8QLYHUVLGDG %URZQ \ VXV
JUDGRVGHPDHVWUtD\GRFWRUDGRGHOD8QLYHUVLGDGGH0LOZDXNHH:LVFRQVLQ6XVSDVDWLHPSRVLQFOX\HQYLDMDUFRPHU\FDWDUYLQRVSHVFDU\REVHUYDUDYHVDFWLYLGDGHVTXH
HVSHUDSRGHUVHJXLUUHDOL]DQGRFXDQGRVHUHWLUH
PROYECTO
PARA LA SECCIÓN 7.3
Asesinato en el restaurante Mayfair
por Tom LoFaro
(OUHVWDXUDQWH0D\IDLUHQ
)LODGHO¿D
$PDQHFHHQHOUHVWDXUDQWH0D\IDLUODOX]iPEDUGHODVIDURODVPH]FODGDFRQHOÀDVKURMRYLROHQWRGHODVSDWUXOODVGHSROLFtDFRPLHQ]DDGHVYDQHFHUVHDOOHYDQWDUVHXQVRODQDUDQMDGR/D
GHWHFWLYH'DSKQH0DUORZVDOHGHOUHVWDXUDQWHVRVWHQLHQGRXQDKXPHDQWHWD]DGHFDIpFDOLHQWH
HQXQDPDQR\XQUHVXPHQGHODVSUXHEDVGHODHVFHQDGHOFULPHQHQODRWUD7RPDDVLHQWRHQ
ODGHIHQVDGHODQWHUDGHVXSDWUXOOD\FRPLHQ]DDH[DPLQDUODVSUXHEDV
$ODVDPVHHQFRQWUyHOFXHUSRGH-RH':RRGHQHOSDVLOORTXHYDKDFLDHO
UHIULJHUDGRU HQ HO VyWDQR GH OD FDIHWHUtD$ ODV OOHJy HO IRUHQVH \ GHWHUPLQy TXH OD
WHPSHUDWXUDJHQHUDOGHOFDGiYHUHUDGHJUDGRV)DKUHQKHLW7UHLQWDPLQXWRVGHVSXpVHO
IRUHQVHPLGLyGHQXHYRODWHPSHUDWXUDFRUSRUDO(VWDYH]ODOHFWXUDHUDGHJUDGRV)DKUHQKHLW(OWHUPRVWDWRHQHOLQWHULRUGHOUHIULJHUDGRULQGLFDEDJUDGRV)DKUHQKHLW
'DSKQHVDFDXQEORFGHQRWDVDPDULOOR\XQDFDOFXODGRUDPDQFKDGDFRQFDWVXSGHODVLHQWRGHODQWHURGHVXSDWUXOOD\FRPLHQ]DDFDOFXODU6DEHTXHODOH\GHHQIULDPLHQWRGH1HZWRQ
GLFHTXHODYHORFLGDGDODTXHXQREMHWRVHHQIUtDHVSURSRUFLRQDODODGLIHUHQFLDHQWUHHQOD
temperatura TGHOFXHUSRDOWLHPSRt y la temperatura ambiente TmGHOHQWRUQRTXHURGHDHO
FXHUSR$QRWDODVLJXLHQWHHFXDFLyQ
dT
k(T
Tm), t 0
dt
donde kHVXQDFRQVWDQWHGHODSURSRUFLRQDOLGDGT y TmVHPLGHQHQJUDGRV)DKUHQKHLW\t
HVHOWLHPSRPHGLGRHQKRUDV<DTXH'DSKQHTXLHUHLQYHVWLJDUHOSDVDGRXWLOL]DQGRYDORUHV
SRVLWLYRVGHWLHPSRGHFLGHKDFHUFRUUHVSRQGHUDt FRQODVDP\DVtVXFHVLYDPHQWHSRUHMHPSORt VRQODVDP'HVSXpVGHXQSDUGHDQRWDFLRQHVHQHOEORF
DPDULOOR'DSKQHVHGDFXHQWDGHTXHFRQHVWDFRQYHQFLyQGHOWLHPSRODFRQVWDQWHk en la
HFXDFLyQ VHUipositiva(VFULEHXQUHFRUGDWRULRSDUDVtPLVPDGHTXHODVDPVRQ
ahora las t 冫
&RQIRUPHHODPDQHFHUIUHVFR\WUDQTXLORGDSDVRDODPDxDQDK~PHGDGHYHUDQR'DSKQHFRPLHQ]DDVXGDU\SUHJXQWDHQYR]DOWD
²3HUR¢TXpSDVDVLHOFDGiYHUIXHWUDVODGDGRGHQWURGHOUHIULJHUDGRUHQXQGpELOLQWHQWR
SRURFXOWDUHOFXHUSR"¢&yPRFDPELDHVWRPLFiOFXOR"
(QWUD HQ HO UHVWDXUDQWH \ KDOOD HO JUDVRVR WHUPRVWDWR HQFLPD GH OD FDMD UHJLVWUDGRUD
YDFtD/HHJUDGRV)DKUHQKHLW
²3HUR¢FXiQGRVHWUDVODGyHOFXHUSR"²SUHJXQWD'DSKQH
'HFLGHGHMDUODUHVSXHVWDSHQGLHQWHSRUDKRUDVLPSOHPHQWHKDFHTXHhGHQRWHHOQ~PHURGHKRUDVTXHHOFXHUSRKDHVWDGRHQHOUHIULJHUDGRUDQWHVGHODVDP3RUHMHPSORVL
h HQWRQFHVHOFXHUSRIXHWUDVODGDGRDPHGLDQRFKH
'DSKQHYROWHDXQDSiJLQDGHVXEORF\FRPLHQ]DDFDOFXODU&RQIRUPHVXFDIpVHHQIUtD
UiSLGDPHQWHFRPLHQ]DDKDFHUVXWUDEDMRVHGDFXHQWDTXHODIRUPDGHPRGHODUHOFDPELRGH
WHPSHUDWXUDDPELHQWDOFDXVDGRSRUHOWUDVODGRHVFRQODIXQFLyQHVFDOyQXQLWDULRᐁ t (VFULEH
Tm(t)
50
20 (t
h)
\GHEDMRODHFXDFLyQGLIHUHQFLDO
dT
k(T – Tm(t))
dt
/DEOXVDGHSROLpVWHUGH'DSKQHPDQFKDGDGHPRVWD]DFRPLHQ]DDJRWHDUVXGRUEDMR
HO UHVSODQGRU GHO VRO GH PHGLD PDxDQD 6XGDQGR SRU HO FDORU \ SRU HO HMHUFLFLR PHQWDO
DUUDQFDVXSDWUXOOD\VHGLULJHDO&DIp%RRGOHSRURWUDWD]DGHFDIp\XQSODWRUHERVDQWHGH
P-17
P-18
l
PROYECTO 7.3
ASESINATO EN EL RESTAURANTE MAYFAIR
SDVWHOGHFDUQH\KXHYRVIULWRV6HLQVWDODHQHOJDELQHWHGHSLHOVLQWpWLFD(OLQWHQVRDLUH
DFRQGLFLRQDGRMXQWRFRQVXEOXVDHPSDSDGDHQVXGRUOHSRQHQODSLHOFRPRFDUQHGHJDOOLQDSRUHOUiSLGRHQIULDPLHQWR(OLQWHQVRIUtRVLUYHFRPRXQUHFRUGDWRULRKRUULSLODQWHGHOD
WUDJHGLDTXHDFDEDGHRFXUULUHQHOUHVWDXUDQWH0D\IDLU
0LHQWUDVHVSHUDVXGHVD\XQR'DSKQHWRPDVXEORF\UiSLGDPHQWHUHYLVDVXVFiOFXORV
/XHJRFXLGDGRVDPHQWHFRQVWUX\HXQDWDEODTXHUHODFLRQDHOWLHPSRGHUHIULJHUDFLyQhFRQ
ODKRUDGHODPXHUWHPLHQWUDVFRPHVXSDVWHOGHFDUQH\VXVKXHYRV
$OHMDVXSODWRYDFtR'DSKQHUHFRJHVXWHOpIRQRFHOXODUSDUDKDEODUFRQVXFRPSDxHUD
0DULH'DSKQHSUHJXQWD
²¢+D\DOJ~QVRVSHFKRVR"
²6t²UHVSRQGHHOOD²WHQHPRVWUHV/DSULPHUDHVOD~OWLPDH[HVSRVDGHO6U:RRG
XQDEDLODULQDGHQRPEUH7ZLQNOHV)XHYLVWDHQHO0D\IDLUHQWUHODV\ODVSP'LVFXWLy
FRQ:RRG
²¢$TXpKRUDVHIXH"
²8Q WHVWLJR GLFH TXH VDOLy D WRGD SULVD XQ SRFR GHVSXpV GH ODV VHLV (O VHJXQGR
VRVSHFKRVRHVXQFRUUHGRUGHDSXHVWDVGHOVXUGH)LODGHO¿DTXHOOHYDHOQRPEUHGH6OLP
6OLPHVWXYRDKtDOUHGHGRUGHODVGHODQRFKH\WXYRXQDFRQYHUVDFLyQFXFKLFKHDGDFRQ
-RH1DGLHHVFXFKyODFRQYHUVDFLyQSHURORVWHVWLJRVGLFHQTXHPDQRWHDEDQPXFKRTXH
6OLPHVWDEDPROHVWRRDOJRDVt
²¢$OJXLHQORYLRLUVH"
²6t6DOLyHQVLOHQFLRDODV(OWHUFHUVRVSHFKRVRHVHOFRFLQHUR
²¢(OFRFLQHUR"
²6tHOFRFLQHUR'HQRPEUH6KRUW\/DFDMHUDGLFHTXHHVFXFKyD-RH\D6KRUW\GLVFXWLUVREUHODIRUPDFRUUHFWDGHSUHVHQWDUXQSODWRGHHVFDORSDVGHWHUQHUD'LFHTXH6KRUW\
WRPyXQGHVFDQVRLQXVXDOPHQWHODUJRDODVSP6DOLyLQGLJQDGRFXDQGRHOUHVWDXUDQWHFHUUyDODVVXSRQJRTXHHVRH[SOLFDSRUTXpHOOXJDUHUDXQGHVDVWUH
²*UDQWUDEDMRFRPSDxHUD&UHRTXH\DVpFyPROOHYDUHOLQWHUURJDWRULR
PROBLEMAS RELACIONADOS
1. 5HVXHOYDODHFXDFLyQ TXHPRGHODHOHVFHQDULRHQHOTXH-RH:RRGHVDVHVLQDGRHQ
HOUHIULJHUDGRU8WLOLFHHVWDVROXFLyQSDUDFDOFXODUODKRUDGHODPXHUWH UHFRUGHPRVTXH
ODWHPSHUDWXUDGHOFXHUSRQRUPDOYLYRHVGHJUDGRV)DKUHQKHLW
2. 5HVXHOYDODHFXDFLyQGLIHUHQFLDO PHGLDQWHWUDQVIRUPDGDVGH/DSODFH/DVROXFLyQT t
dependerá tanto de tFRPRGHh XWLOLFHHOYDORUGHkTXHVHKDOOyHQHOSUREOHPD
3. 6$& 7DEODFRPSOHWDGH'DSKQH(QSDUWLFXODUH[SOLTXHSRUTXpJUDQGHVYDORUHVGHh
GDQODPLVPDKRUDGHODPXHUWH
h
12
11
10
9
8
7
6
5
4
3
2
hora en que se
trasladó el cuerpo
6:00 p.m.
hora de la muerte
PROYECTO 7.3
ASESINATO EN EL RESTAURANTE MAYFAIR
l
P-19
4. ¢$TXLpQTXLHUHLQWHUURJDU'DSKQH\SRUTXp"
5. ¿Aún siente curiosidad?(OSURFHVRGHFDPELRGHWHPSHUDWXUDHQXQFXHUSRPXHUWR
se denomina algor mortis rigor mortisHVHOSURFHVRGHHQGXUHFLPLHQWRGHOFXHUSR
\DXQTXHQRHVWiSHUIHFWDPHQWHGHVFULWRSRUOH\GHHQIULDPLHQWRGH1HZWRQHVWHWHPD
HVWiFXELHUWRHQODPD\RUtDGHORVOLEURVGHPHGLFLQDIRUHQVH(QUHDOLGDGHOHQIULDPLHQWRGHXQFXHUSRPXHUWRHVWiGHWHUPLQDGRSRUPiVTXHVyORODOH\GH1HZWRQ(Q
SDUWLFXODUORVSURFHVRVTXtPLFRVTXHWLHQHHOFXHUSRFRQWLQ~DQSRUYDULDVKRUDVGHVSXpVGHODPXHUWH(VWRVSURFHVRVTXtPLFRVJHQHUDQFDORU\DVtSXHGHQPDQWHQHUXQD
WHPSHUDWXUDFDVLFRQVWDQWHGXUDQWHHVWHWLHPSRDQWHVGHTXHFRPLHQFHHOGHFDLPLHQWR
H[SRQHQFLDOGHELGRDODOH\GHHQIULDPLHQWRGH1HZWRQ
$ YHFHV VH XWLOL]D XQD HFXDFLyQ OLQHDO FRQRFLGD FRPR ecuación de Glaister
SDUDGDUXQDHVWLPDFLyQSUHOLPLQDUGHOWLHPSRtDSDUWLUGHODPXHUWH/DHFXDFLyQGH
*ODLVWHUHV
98.4 T0
t
1.5
donde T HV OD WHPSHUDWXUD FRUSRUDO PHGLGD ) VH XWLOL]D DTXt SDUD OD WHPSHUDWXUDFRUSRUDOQRUPDOFRQYLGDHQOXJDUGH) $XQTXHQRWHQHPRVWRGDVODV
KHUUDPLHQWDVSDUDGHGXFLUHVWDHFXDFLyQH[DFWDPHQWH ORVJUDGRVSRUKRUDVHGHWHUPLQDURQH[SHULPHQWDOPHQWH SRGHPRVGHGXFLUXQDHFXDFLyQVLPLODUPHGLDQWHXQD
DSUR[LPDFLyQOLQHDO
8WLOLFHODHFXDFLyQ FRQXQDFRQGLFLyQLQLFLDOT TSDUDFDOFXODUODHFXDFLyQGHODWDQJHQWHDODVROXFLyQDWUDYpVGHOSXQWR T 1RXWLOLFHORVYDORUHVGHTm
o kHQHOSUREOHPD6LPSOHPHQWHGpMHORVFRPRSDUiPHWURV/XHJRKDJDT \
UHVXHOYDtSDUDREWHQHU
98.4 T0
t
k(T0 Tm)
ACERCA DEL AUTOR
Tom LoFaroHVSURIHVRU\GLUHFWRUGHO'HSDUWDPHQWRGH,QIRUPiWLFD\0DWHPiWLFDVHQHO
*XVWDYXV$GROSKXV&ROOHJHHQ6W3HWHU0LQQHVRWD+DHVWDGRLQYROXFUDGRHQHOGHVDUUROORGH
SUR\HFWRVGHPRGHODGRGLIHUHQFLDOGXUDQWHDxRVLQFOX\HQGRXQWLHPSRFRPRLQYHVWLJDGRU
SULQFLSDOGHOSUR\HFWR¿QDQFLDGRSRUODIXQGDFLRQ16),'($ KWWSZZZVFLZVXHGXLGHD
\HVFRODERUDGRUGHOVRIWZDUH2'($UTXLWHFW&2'(( :LOH\DQG6RQV /RV LQWHUHVHVQR
DFDGpPLFRVGHO'U/R)DURLQFOX\HQSHVFDUFRQPRVFD\VHUHQWUHQDGRUGHXQHTXLSRGHI~WERO
GHOLJDVPHQRUHV6XKLMDPD\RU DxRV TXLHUHVHUDQWURSyORJDIRUHQVHFRPRODGHWHFWLYH
'DSKQH0DUORZ
PROYECTO
PARA LA SECCIÓN 8.2
Terremotos que sacuden edificios
de varios pisos
por Gilbert N. Lewis
3RU OR JHQHUDO ORV JUDQGHV WHUUHPRWRV WLHQHQ XQ HIHFWR GHYDVWDGRU HQ ORV HGL¿FLRV 3RU
HMHPSORHOIDPRVRWHUUHPRWRGHHQ6DQ)UDQFLVFRGHVWUX\yJUDQSDUWHGHHVDFLXGDG
0iVUHFLHQWHPHQWHHOiUHDIXHJROSHDGDXQDVHJXQGDYH]SRUHOWHUUHPRWRGH/RPD3ULHWD
PLHQWUDVPXFKDVSHUVRQDVGHORV(VWDGRV8QLGRV\RWURVSDtVHVYHtDQHOMXHJRGHODOLJD
PD\RUGHOD6HULH0XQGLDOGH%pLVEROTXHWXYROXJDUHQ6DQ)UDQFLVFRHQ
(QHVWHSUR\HFWRPRGHODUHPRVHOHIHFWRGHXQWHUUHPRWRHQXQHGL¿FLRGHYDULRVSLVRV
\OXHJRUHVROYHUHPRVHLQWHUSUHWDUHPRVODVPDWHPiWLFDV6HDTXHxi represente el despla]DPLHQWRKRUL]RQWDOGHOipVLPRSLVRDSDUWLUGHVXSRVLFLyQGHHTXLOLEULR$TXtODSRVLFLyQ
(GL¿FLRGHGHSDUWDPHQWRVFRODSVDGR GHHTXLOLEULRVHUiXQSXQWR¿MRHQHOVXHORGHIRUPDTXHx 'XUDQWHXQWHUUHPRWROD
HQ6DQ)UDQFLVFRGHRFWXEUHGH WLHUUDVHPXHYHKRUL]RQWDOPHQWHGHPRGRTXHVHFRQVLGHUDHOGHVSOD]DPLHQWRGHFDGDSLVR
DOGtDVLJXLHQWHGHOWHUUHPRWR FRQUHVSHFWRDOVXHOR6XSRQHPRVTXHHOipVLPRSLVRGHOHGL¿FLRWLHQHXQDPDVDm \TXH
i
PDVLYRGH/RPD3ULHWD
ORVSLVRVVXFHVLYRVHVWiQFRQHFWDGRVSRUXQFRQHFWRUHOiVWLFRFX\RHIHFWRVHDVHPHMDDOGH
XQ UHVRUWH 3RU OR JHQHUDO ORV HOHPHQWRV HVWUXFWXUDOHV HQ HGL¿FLRV JUDQGHV HVWiQ KHFKRV
GH DFHUR XQ PDWHULDO DOWDPHQWH HOiVWLFR GH PDQHUD TXH FDGD FRQHFWRU SURSRUFLRQH XQD
IXHU]D GH UHVWDXUDFLyQ FXDQGR ORV SLVRV VH HQFXHQWUDQ GHVSOD]DGRV FRQ UHVSHFWR D ORV
GHPiV6XSRQHPRVTXHODOH\GH+RRNHHVYiOLGDFRQFRQVWDQWHSURSRUFLRQDOLGDGki entre
el ipVLPR\HO i O pVLPRSLVR(VGHFLUODIXHU]DUHVWDXUDGRUDHQWUHHVRVGRVSLVRVHV
F ki xi xi
donde xi xi HVHOGHVSOD]DPLHQWR FDPELR GHO i O pVLPRSLVRFRQUHVSHFWRDOipVLPR7DPELpQVXSRQHPRVXQDUHDFFLyQVLPLODUHQWUHHOSULPHUSLVR\HOVXHORFRQFRQVWDQWH
GHSURSRUFLRQDOLGDGk/D¿JXUDPXHVWUDXQPRGHORGHOHGL¿FLRPLHQWUDVTXHOD¿JXUD
PXHVWUDODVIXHU]DVTXHDFW~DQHQHOipVLPRSLVR
mn
mn 1
m2
m1
piso
kn
kn
1
2
k1
k0
FIGURA 1 3LVRVGHOHGL¿FLR
ki 1(xi
xi l)
mi 1
mi
mi 1
ki(xi
1
xi)
FIGURA 2 )XHU]DVHQHOipVLPRSLVR
3RGHPRVDSOLFDUODVHJXQGDOH\GHOPRYLPLHQWRGH1HZWRQ VHFFLyQ F maD
FDGDSLVRGHOHGL¿FLRSDUDREWHQHUHOVLJXLHQWHVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHVOLQHDOHV
d 2x
k0 x1 k1(x2 x1)
m1 21
dt
d 2x
m2 22
k1(x2 x1) k2(x3 x2)
dt
⯗
⯗
2
d x
mn 2n
kn 1(xn xn 1).
dt
&RPR XQ HMHPSOR VHQFLOOR FRQVLGHUH XQ HGL¿FLR GH GRV SLVRV FDGD SLVR FRQ PDVD m
NJ\FDGDIXHU]DGHUHVWDXUDFLyQFRQVWDQWHFRQXQYDORUGHk ONJV(QWRQFHV
ODVHFXDFLRQHVGLIHUHQFLDOHVVRQ
P-20
PROYECTO 8.2
TERREMOTOS QUE SACUDEN EDIFICIOS DE VARIOS PISOS
d 2x1
dt 2
d 2x2
dt 2
4x1
2x1
P-21
l
2x2
2x2.
/DVROXFLyQSRUORVPpWRGRVGHODVHFFLRQHV
x1(t)
x2(t)
2c1 cos Ȧ1t
Ȧ21
4
2c2 sen Ȧ1t
c1 cos Ȧ1t
4
2c3 cos Ȧ2t
Ȧ21
c2 sen Ȧ1t
2c4 sen Ȧ2t,
Ȧ22 c3 cos Ȧ2 t
4
Ȧ22 c4 sen Ȧ2t,
4
2.288 y Ȧ2 冪 3 冪5
donde Ȧ1 冪 3 冪 5
0.874. $KRUD VXSRQJD TXH VH DSOLFDQODVVLJXLHQWHVFRQGLFLRQHVLQLFLDOHVx x x x eVWDV
FRUUHVSRQGHQDXQHGL¿FLRHQODSRVLFLyQGHHTXLOLEULRFRQHOSULPHUSLVRFRQXQDUDSLGH]
KRUL]RQWDOGDGDGHPV/DVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHVHV
x1(t)
x2(t)
2c2 sen Ȧ1t
2c4 sen Ȧ2t,
Ȧ21 c2 sen Ȧ1t
4
Ȧ22 c4 sen Ȧ2t
4
4 Ȧ22 0.1冫[ Ȧ21 Ȧ22 Ȧ1] 0.0317 c4. 9HD ODV ¿JXUDV \ SDUD ODV
donde c2
JUi¿FDVGHx t \x t $GYLHUWDTXHxLQLFLDOPHQWHVHGHVSOD]DKDFLDODGHUHFKDSHURHV
IUHQDGRSRUHODUUDVWUHGHxPLHQWUDVTXHxHVWiLQLFLDOPHQWHHQUHSRVRSHURVHDFHOHUD
GHELGRDOMDOyQGHxSDVDQGRDxHQPHQRVGHXQVHJXQGR&RQWLQ~DKDFLDODGHUHFKD
MDODQGR¿QDOPHQWHDxKDVWDODPDUFDGHGRVVHJXQGRV(QHVHPRPHQWRHODUUDVWUHGHx ha
UDOHQWL]DGRDxKDVWDGHWHQHUORGHVSXpVxVHPXHYHKDFLDODL]TXLHUGDSDVDQGRSRUHOSXQWRGHHTXLOLEULRHQVHJXQGRV\FRQWLQ~DPRYLpQGRVHKDFLDODL]TXLHUGDDUUDVWUDQGRDx
MXQWRFRQpO(VWHPRYLPLHQWRKDFLDDWUiV\KDFLDDGHODQWHFRQWLQ~D1RKD\QLQJ~QDPRUWLJXDPLHQWRHQHOVLVWHPDSRUORTXHHOFRPSRUWDPLHQWRRVFLODWRULRFRQWLQ~DSRUVLHPSUH
x2(t)
x1(t)
0.10
0.2
0.05
1
2
3
4
5
t
0.1
0.05
1
0.10
2
3
4
5
t
0.1
FIGURA 3 *Ui¿FDGHx t
FIGURA 4 *Ui¿FDGHx t
6LVHDSOLFDXQDIXHU]DKRUL]RQWDORVFLODWRULDGHIUHFXHQFLDȦ o ȦWHQHPRVXQDVLWXDFLyQ
DQiORJDDODUHVRQDQFLDDQDOL]DGDHQODVHFFLyQO(QHVHFDVRVHHVSHUDTXHVHSURGX]FDQJUDQGHVRVFLODFLRQHVGHOHGL¿FLRSRVLEOHPHQWHFDXVDQGRXQJUDQGDxRVLHOWHUUHPRWR
GXUDXQDFDQWLGDGFRQVLGHUDEOHGHWLHPSR
'H¿QDPRVODVVLJXLHQWHVPDWULFHV\YHFWRUHV
M
m1
0
⯗
1
0
m2
0
0
...
...
0
0
...
0
0
⯗
mn
P-22
l
PROYECTO 8.2
TERREMOTOS QUE SACUDEN EDIFICIOS DE VARIOS PISOS
K
X(t)
(k0 k1)
k1
0
⯗
0
0
0 ...
0 ...
k3) k3 . . .
0
k2
k1
(k1 k2)
k2
(k2
0 . . . kn
0 ... 0
0
0
0
0
0
0
0
0
0
0
2
(kn
2
kn
0
0
0
⯗
kn 1) kn 1
kn 1
1
x1(t)
x2(t)
⯗
xn(t)
(QWRQFHVHOVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHVVHSXHGHHVFULELUHQIRUPDPDWULFLDO
d 2X
KX o MX
KX
M 2
dt
$GYLHUWDTXHODPDWUL]MHVXQDPDWUL]GLDJRQDOFRQODPDVDGHOipVLPRSLVRHQHOipVLPR
HOHPHQWRGLDJRQDO/DPDWUL]MWLHQHXQDLQYHUVDGDGDSRU
M
1
m1 1
0
⯗
0
0
m2 1
0
0
...
...
0
0
...
0
0
⯗
mn 1
3RUORWDQWRSRGHPRVUHSUHVHQWDUODHFXDFLyQGLIHUHQFLDOPDWULFLDOSRU
X
(M 1K)X o X
AX
'RQGHA M KODPDWUL]M se denomina la matriz de masa\ODPDWUL]K es la matriz
de rigidez
/RVYDORUHVSURSLRVGHODPDWUL]AUHYHODQODHVWDELOLGDGGHOHGL¿FLRGXUDQWHXQ
WHUUHPRWR/RVYDORUHVSURSLRVGHAVRQQHJDWLYRV\GLVWLQWRV(QHOSULPHUHMHPSORORV
YDORUHVSURSLRVVRQ3 冪5 \3 冪5 /DVIUHFXHQFLDVQDWXUDOHV
GHOHGL¿FLRVRQODVUDtFHVFXDGUDGDVGHORVQHJDWLYRVGHORVYDORUHVSURSLRV6LȜi es el ipVLPR
YDORUSURSLRHQWRQFHVȦi 冪 Oi es la ipVLPDIUHFXHQFLDSDUDi n'XUDQWH
XQWHUUHPRWRVHDSOLFDXQDJUDQIXHU]DKRUL]RQWDODOSULPHUSLVR6LpVWDHVGHQDWXUDOH]D
RVFLODWRULDGLJDPRVGHODIRUPDF t GFRVȖWHQWRQFHVVHSXHGHQGHVDUUROODUJUDQGHV
GHVSOD]DPLHQWRVHQHOHGL¿FLRHVSHFLDOPHQWHVLODIUHFXHQFLDGHOWpUPLQRGHIRU]DPLHQWR
HVFHUFDQDDXQDGHODVIUHFXHQFLDVQDWXUDOHVGHOHGL¿FLR(VWRHVXQDUHPLQLVFHQFLDGHO
IHQyPHQRGHUHVRQDQFLDTXHVHHVWXGLyHQODVHFFLyQ
$QDOLFHPRV RWUR HMHPSOR VXSRQJDPRV TXH WHQHPRV XQ HGL¿FLR GH SLVRV GRQGH
FDGDSLVRWLHQHXQDPDVDNJ\FDGDYDORUkiHVGHNJV(QWRQFHV
A
M 1K
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
1
0.5
0
0
0
0
0
0
0
0
0.5
0.5
PROYECTO 8.2
TERREMOTOS QUE SACUDEN EDIFICIOS DE VARIOS PISOS
l
P-23
/RV YDORUHV SURSLRV GH A VH SXHGHQ KDOODU IiFLOPHQWH XWLOL]DQGR Mathematica u otro
SDTXHWH VLPLODU (VWRV YDORUHV VRQ O O
\ FRQ ODV IUHFXHQFLDV FRUUHVSRQGLHQWHV
O\\SHULRGRVGHRVFLODFLyQ ʌȦ
\'XUDQWHXQWHUUHPRWRWtSLFRFX\RSHULRGRSRGUtDHVWDUHQHOUDQJRGHDVHJXQGRVHVWHHGL¿FLRQRSDUHFH
HVWDUHQSHOLJURGHGHVDUUROODUUHVRQDQFLD6LQHPEDUJRVLORVYDORUHVkIXHUDQYHFHV
PiVJUDQGHV PXOWLSOLTXHASRU HQWRQFHVSRUHMHPSORHOVH[WRSHULRGRSRGUtDVHUGH
VHJXQGRVPLHQWUDVTXHGHOTXLQWRDOVpSWLPRVRQWRGRVGHORUGHQGHDVHJXQGRV
(VHHGL¿FLRVHUtDPiVSURSHQVRDVXIULUGDxRVHQXQWHUUHPRWRWtSLFRGHXQSHULRGRGHD
VHJXQGRV
PROBLEMAS RELACIONADOS
1. &RQVLGHUHXQHGL¿FLRGHWUHVSLVRVFRQORVPLVPRVYDORUHVGHm y kDOLJXDOTXHHQHOprimerHMHPSOR(VFULEDHOVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHVFRUUHVSRQGLHQWH¢&XiOHVVRQ
ODVPDWULFHVMK y A"(QFXHQWUHORVYDORUHVSURSLRVGHA¢4XpUDQJRGHIUHFXHQFLDVGH
XQWHUUHPRWRSRQGUtDHOHGL¿FLRHQSHOLJURGHGHVWUXFFLyQ"
2. &RQVLGHUHXQHGL¿FLRGHWUHVSLVRVFRQORVPLVPRVYDORUHVGHm y kDOLJXDOTXHHQHOsegundoHMHPSOR(VFULEDHOFRUUHVSRQGLHQWHVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHV¢&XiOHV
VRQODVPDWULFHVMK y A"(QFXHQWUHORVYDORUHVSURSLRVSDUDA¢4XpUDQJRGHIUHFXHQFLDVGHXQWHUUHPRWRWHQGUtDOXJDUHQXQHGL¿FLRHQSHOLJURGHGHVWUXFFLyQ"
3. &RQVLGHUHHOHGL¿FLRPiVDOWRGHVXFDPSXV6XSRQJDYDORUHVUD]RQDEOHVSDUDODPDVD
GHFDGDSLVR\SDUDODVFRQVWDQWHVGHSURSRUFLRQDOLGDGHQWUHORVSLVRV6LWLHQHSUREOHPDV
FRQGLFKRVYDORUHVXWLOLFHORVGHORVSUREOHPDVGHHMHPSOR(QFXHQWUHODVPDWULFHVMK
y A\HQFXHQWUHORVYDORUHVSURSLRVGHA\ODVIUHFXHQFLDV\SHULRGRVGHRVFLODFLyQ¢6X
HGL¿FLRHVWiDVDOYRGHXQPRGHVWRWHUUHPRWRGHOWLSRGHORVGHOSHULRGR"¢4XpSDVDVL
XVWHGPXOWLSOLFDODPDWUL]KSRU HVGHFLUKDFHDOHGL¿FLRPiVUtJLGR "¢3RUFXiQWR
WHQGUtDTXHPXOWLSOLFDUODPDWUL]KSDUDSRQHUDVXHGL¿FLRHQOD]RQDGHSHOLJUR"
4. 5HVXHOYDHOSUREOHPDGHOWHUUHPRWRSDUDHOHGL¿FLRGHWUHVSLVRVGHOSUREOHPD
MX'' KX F t
donde F t GFRVȖW G EB B > @TE OLEUDVHVODDPSOLWXGGHOD
IXHU]DGHOWHUUHPRWRTXHDFW~DDOQLYHOGHOVXHOR\Ȗ HVODIUHFXHQFLDGHOWHUUHPRWR
XQDIUHFXHQFLDWtSLFDGHWHUUHPRWR 9HDODVHFFLyQSDUDHOPpWRGRPDWULFLDOGHUHVROXFLyQGHHFXDFLRQHVGLIHUHQFLDOHVQRKRPRJpQHDV8WLOLFHFRQGLFLRQHVLQLFLDOHVSDUDXQ
HGL¿FLRHQUHSRVR
PROYECTO
PARA LA SECCIÓN 8.3
Modelado de carreras armamentistas
por Michael Olinick
(Q ORV ~OWLPRV FLHQ DxRV VH KDQ YLVWR QXPHURVDV FDUUHUDV DUPDPHQWLVWDV SHOLJURVDV
GHVHVWDELOL]DGRUDV\FRVWRVDV(OHVWDOOLGRGHOD3ULPHUD*XHUUD0XQGLDOFXOPLQyFRQXQD
UiSLGDDFXPXODFLyQGHDUPDPHQWRVHQWUHODVSRWHQFLDVHXURSHDVULYDOHV+XERXQDDFXPXODFLyQVLPLODUPXWXDGHDUPDVFRQYHQFLRQDOHVMXVWRDQWHVGHOD6HJXQGD*XHUUD0XQGLDO/RV(VWDGRV8QLGRV\OD8QLyQ6RYLpWLFDHQWDEODURQXQDFRVWRVDFDUUHUDDUPDPHQWLVWD
QXFOHDUGXUDQWHORVFXDUHQWDDxRVGHOD*XHUUD)UtD(ODFRSLRGHDUPDVPRUWDOHVHVFDGD
YH]PiVFRP~QKR\HQGtDHQPXFKDVSDUWHVGHOPXQGRLQFOX\HQGRHO0HGLR2ULHQWHHO
VXEFRQWLQHQWHLQGLR\ODSHQtQVXODGH&RUHD
$UPDV\PXQLFLRQHVUHFXSHUDGDV
(OPHWHRUyORJR\HGXFDGRUEULWiQLFR/HZLV)5LFKDUGVRQ GHVDUUROOyYDULGXUDQWHODVRSHUDFLRQHVPLOLWDUHVFRQWUD RVPRGHORVPDWHPiWLFRVSDUDDQDOL]DUODGLQiPLFDGHODVFDUUHUDVDUPDPHQWLVWDVODHYRORVPLOLWDQWHVWDOLEDQHVHQ:D]LULVWiQ OXFLyQHQHOWLHPSRGHOSURFHVRGHLQWHUDFFLyQHQWUHORVSDtVHVHQVXDGTXLVLFLyQGHDUPDV
GHO6XUHQRFWXEUHGH
/RVPRGHORVGHODVFDUUHUDVDUPDPHQWLVWDVJHQHUDOPHQWHVXSRQHQTXHFDGDQDFLyQDMXVWD
VXDFXPXODFLyQGHDUPDVGHDOJXQDPDQHUDTXHGHSHQGHGHOWDPDxRGHVXVSURSLDVUHVHUYDV
\GHOQLYHOGHDUPDPHQWRGHODVRWUDVQDFLRQHV
(OPRGHORSULPDULRGH5LFKDUGVRQGHXQDFDUUHUDDUPDPHQWLVWDGHGRVSDtVHVVHEDVD
en el miedo mutuoXQDQDFLyQHVHVWLPXODGDDDXPHQWDUVXDUPDPHQWRFRQXQDYHORFLGDG
SURSRUFLRQDODOQLYHOGHJDVWRVHQDUPDPHQWRGHVXULYDO(OPRGHORGH5LFKDUGVRQWRPDHQ
FXHQWDODVUHVWULFFLRQHVLQWHUQDVGHQWURGHXQDQDFLyQTXHIUHQDQODDFXPXODFLyQGHDUPDPHQWRV(QWUHPiVJDVWHXQDQDFLyQHQDUPDVPiVGLItFLOHVKDFHULQFUHPHQWRVPD\RUHVSRUTXH
VH YXHOYH FDGD YH] PiV GLItFLO GHVYLDU UHFXUVRV GH ODV QHFHVLGDGHV EiVLFDV GH OD VRFLHGDG
FRPR DOLPHQWDFLyQ \ YLYLHQGD D ODV DUPDV 5LFKDUGVRQ WDPELpQ FRQWHPSOy HQ VX PRGHOR
RWURVIDFWRUHVTXHFRQGXFHQRIUHQDQXQDFDUUHUDDUPDPHQWLVWDTXHVRQLQGHSHQGLHQWHVGHORV
QLYHOHVGHJDVWRVHQDUPDPHQWRV/DHVWUXFWXUDPDWHPiWLFDGHHVWHPRGHORHVXQVLVWHPDGH
HFXDFLRQHVGLIHUHQFLDOHVGHSULPHURUGHQHQOD]DGDV6Lx y yUHSUHVHQWDQODFDQWLGDGGHULTXH]DTXHVHJDVWDHQDUPDVSRUODVGRVQDFLRQHVDOWLHPSRtHQWRQFHVHOPRGHORWRPDODIRUPD
dx
dt
dy
dt
ay
mx
r
bx
ny
s
donde abm y nVRQFRQVWDQWHVSRVLWLYDVPLHQWUDVTXHr y sVRQFRQVWDQWHVTXHSXHGHQVHU
SRVLWLYDVRQHJDWLYDV/DVFRQVWDQWHVa y bPLGHQHOPLHGRPXWXRODVFRQVWDQWHVm y n repreVHQWDQIDFWRUHVGHSURSRUFLRQDOLGDGSDUDORV³IUHQRVLQWHUQRV´DQXHYRVDXPHQWRVGHDUPDV
9DORUHVSRVLWLYRVGHr y sFRUUHVSRQGHQDIDFWRUHVVXE\DFHQWHVGHPDODYROXQWDGRGHVFRQ¿DQ]DTXHSHUVLVWLUtDQDXQVLORVJDVWRVHQDUPDVVHUHGXMHUDQDFHUR/RVYDORUHVQHJDWLYRVSDUDr
y sLQGLFDQXQDFRQWULEXFLyQEDVDGDHQODEXHQDYROXQWDG
(OFRPSRUWDPLHQWRGLQiPLFRGHHVWHVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHVGHSHQGHGHORV
WDPDxRVUHODWLYRVGHab y mnMXQWRFRQORVVLJQRVGHr y s$XQTXHHOPRGHORHVUHODWLYDPHQWH
VLPSOHSHUPLWHFRQVLGHUDUGLIHUHQWHVUHVXOWDGRVDODUJRSOD]R(VSRVLEOHTXHGRVQDFLRQHVVH
SXGLHUDQPRYHUVLPXOWiQHDPHQWHKDFLDHOGHVDUPHPXWXRFRQx y yDFHUFiQGRVHDFHUR8Q
FtUFXORYLFLRVRHVDXPHQWDULOLPLWDGDPHQWHDx y yHVRWURHVFHQDULRSRVLEOH8QDWHUFHUD
SRVLELOLGDG HV TXH ORV JDVWRV HQ DUPDV VH DFHUTXHQ DVLQWyWLFDPHQWH D XQ SXQWR HVWDEOH
x*y* LQGHSHQGLHQWHPHQWHGHOQLYHOLQLFLDOGHJDVWRVGHDUPDPHQWRV(QRWURVFDVRVHO
UHVXOWDGR¿QDOGHSHQGHGHOSXQWRGHSDUWLGD/D¿JXUDPXHVWUDXQDSRVLEOHVLWXDFLyQFRQ
FXDWURGLIHUHQWHVQLYHOHVLQLFLDOHVFDGDXQRGHHOORVFRQGXFHDXQ³UHVXOWDGRHVWDEOH´OD
LQWHUFHVLyQGHODVFHURFOLQDVdx冫dt \dy冫dt
P-24
PROYECTO 8.3
y
dx/dt = 0
6
5
4
3
2
1
0
1
2
3
FIGURA 1 *DVWRV
4
DFHUFiQGRVHDXQSXQWRHVWDEOH
MODELADO DE CARRERAS ARMAMENTISTAS
l
P-25
$XQTXHODVFDUUHUDVDUPDPHQWLVWDVGHO³PXQGRUHDO´UDUDYH]FRLQFLGHQH[DFWDPHQWH FRQ HO PRGHOR GH 5LFKDUGVRQ VX SULPHU WUDEDMR KD FRQGXFLGR
DPXFKDVDSOLFDFLRQHVIUXFWtIHUDVGHPRGHORVGHHFXDFLRQHVGLIHUHQFLDOHVD
dy/dt = 0
SUREOHPDVHQUHODFLRQHVLQWHUQDFLRQDOHV\FLHQFLDVSROtWLFDV&RPRDQRWDQORV
GRVLQYHVWLJDGRUHVSULQFLSDOHVHQODUHIHUHQFLD>3@³HOPRGHORGHFDUUHUDDUPDPHQWLVWDGH5LFKDUGVRQFRQVWLWX\HXQRGHORVPRGHORVPiVLPSRUWDQWHVGH
ORVIHQyPHQRVGHFDUUHUDDUPDPHQWLVWD\DOPLVPRWLHPSRXQRGHORVPRGHORV
IRUPDOHVTXHPiVLQÀX\HQHQODVSXEOLFDFLRQHVGHUHODFLRQHVLQWHUQDFLRQDOHV´
/DV FDUUHUDV DUPDPHQWLVWDV QR VH OLPLWDQ D OD LQWHUDFFLyQ GH SDtVHV
3XHGHQWHQHUOXJDUHQWUHXQJRELHUQR\XQJUXSRWHUURULVWDGHSDUDPLOLWDUHV
GHQWURGHVXVIURQWHUDVFRPRSRUHMHPSORORVWLJUHVWDPLOHVHQ6UL/DQND6HQGHUR/XPLQRVRHQ3HU~RHOWDOLEiQHQ$IJDQLVWiQ7DPELpQVHKDQ
REVHUYDGRIHQyPHQRVDUPDPHQWLVWDVHQWUHEDQGDVULYDOHVXUEDQDV\HQWUH
RUJDQLVPRVGHUHSUHVLyQ\FULPHQRUJDQL]DGR
x
5
6
/DV³DUPDV´QRVRQQHFHVDULDPHQWHDUPDV/DVXQLYHUVLGDGHVKDQSDUWLFLSDGRHQ³VHUYLFLRVDUPDPHQWLVWDV´DPHQXGRGHGLFDQGRPLOORQHVGHGyODUHVHQGRUPLWRULRV
PiVOXMRVRVLQVWDODFLRQHVGHSRUWLYDVGHYDQJXDUGLDRSFLRQHVJDVWURQyPLFDVVLEDULWDV\VLPLODUHV
SDUDVHUPiVFRPSHWLWLYRV\DWUDHUDVtLQVFULSFLRQHVGHHVWXGLDQWHV/RVELyORJRVKDQLGHQWL¿FDGR
ODSRVLELOLGDGGHTXHH[LVWDQFDUUHUDVDUPDPHQWLVWDVHYROXFLRQDULDVHQWUH\GHQWURGHDOJXQDVHVSHFLHVGHWDOPRGRTXHXQDGDSWDFLyQGHQWURGHXQOLQDMHSXHGHRFXUULUSRUODSUHVLyQVHOHFWLYDGH
RWUROLQDMHGDQGROXJDUDXQDFRQWUDDGDSWDFLyQ'HPDQHUDPiVJHQHUDOODVVXSRVLFLRQHVSUHVHQWDQXQWLSRGHPRGHORGH5LFKDUGVRQTXHWDPELpQFDUDFWHUL]DPXFKDVFRPSHWLFLRQHVHQODVTXH
FDGDODGRSHUFLEHODQHFHVLGDGGHDGHODQWDUVHDRWURPXWXDPHQWHHQDOJXQDPHGLGDLPSRUWDQWH
PROBLEMAS RELACIONADOS
1. a) 0HGLDQWHODVXVWLWXFLyQGHODVVROXFLRQHVSURSXHVWDVDODVHFXDFLRQHVGLIHUHQFLDOHV
GHPXHVWUHTXHODVROXFLyQGHOPRGHORSDUWLFXODUDUPDPHQWLVWDGH5LFKDUGVRQ
dx
dt
y
3x
3
dy
dt
2x
4y
8
FRQODFRQGLFLyQLQLFLDOx y HV
32 2t 2 5t
x(t)
e
e
2
3
3
32 2t 4 5t
y(t)
e
e
3
3
3
¢&XiOHVHOFRPSRUWDPLHQWRDODUJRSOD]RGHHVWDFDUUHUDDUPDPHQWLVWD"
b) 3
DUDHOPRGHORGHFDUUHUDDUPDPHQWLVWDGH5LFKDUGVRQVLD FRQFRQGLFLRQHVLQLFLDOHV
arbitrarias x Ay BGHPXHVWUHTXHODVROXFLyQHVWiGDGDSRU
x(t)
y(t)
Ce 5t
2Ce
De
5t
2t
De
2
2t
3
donde
C
D
(A B 1) 3
(2 A B 7) 3
'HPXHVWUHTXHHVWHUHVXOWDGRLPSOLFDTXHHOFRPSRUWDPLHQWRFXDOLWDWLYRDODUJR
SOD]RGHHVWDFDUUHUDDUPDPHQWLVWDHVHOPLVPR x t →y t → VLQLPSRUWDU
FXiOHVVRQORVYDORUHVLQLFLDOHVGHx y y
2. (OFRPSRUWDPLHQWRFXDOLWDWLYRDODUJRSOD]RGHXQPRGHORGHFDUUHUDDUPDPHQWLVWDGH
5LFKDUGVRQSXHGHHQDOJXQRVFDVRVGHSHQGHUGHODVFRQGLFLRQHVLQLFLDOHV&RQVLGHUHPRV
SRUHMHPSORHOVLVWHPD
dx
3y 2x 10
dt
dy
4x 3y 10
dt
P-26
l
PROYECTO 8.3
MODELADO DE CARRERAS ARMAMENTISTAS
3.
3DUDFDGDXQDGHODVFRQGLFLRQHVLQLFLDOHVGDGDVDFRQWLQXDFLyQFRPSUXHEHTXHODVROXFLyQSURSXHVWDIXQFLRQD\DQDOLFHHOFRPSRUWDPLHQWRDODUJRSOD]R
a) x(0) 1, y(0) 1 : x(t) 10 9et, y(t) 10 9et
b) x(0) 1, y(0) 22 : x(t) 10 9e 6t, y(t) 10 12e 6t
12e 6t 3et 10, y(t) 16e 6t 3et 10
c) x(0) 1, y(0) 29 : x(t)
d) x(0) 10, y(0) 10 : x(t) 10, y(t) 10 para todo t
a) &RPR XQD SRVLEOH DOWHUQDWLYD DO PRGHOR GH 5LFKDUGVRQ FRQVLGHUH XQ PRGHOR GH
ajuste de inventarios/DVXSRVLFLyQDTXtHVTXHFDGDSDtVHVWDEOHFHSRUVtPLVPRXQ
QLYHOGHVHDGRGHJDVWRVHQDUPDPHQWR\OXHJRFDPELDVXLQYHQWDULRGHDUPDVSURSRUFLRQDOPHQWHDODGLIHUHQFLDHQWUHVXQLYHODFWXDO\VXQLYHOGHVHDGR'HPXHVWUH
TXHHVWDKLSyWHVLVVHSXHGHUHSUHVHQWDUSRUHOVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHV
dx
a(x* x)
dt
dx
dt
b(y*
y)
donde x* y y*VRQORVQLYHOHVGHVHDGRVGHFRQVWDQWHV\abVRQFRQVWDQWHVSRVLWLYDV¢&yPRHYROXFLRQDQx y yFRQHOWLHPSREDMRHVHPRGHOR"
b) *HQHUDOLFHHOPRGHORGHDMXVWHGHH[LVWHQFLDGHOLQFLVRD DXQQLYHOPiVUHDOLVWD
GRQGHHOQLYHOGHVHDGRSDUDFDGDSDtVGHSHQGDGHORVQLYHOHVGHDPERVSDtVHV(Q
SDUWLFXODUVXSRQJDPRVTXHx*WLHQHODIRUPDx* c dy donde c y dVRQFRQVWDQWHV
SRVLWLYDV\TXHy*WLHQHXQDIRUPDVLPLODU'HPXHVWUHTXHEDMRHVWDVVXSRVLFLRQHV
HOPRGHORGHDMXVWHGHH[LVWHQFLDHVHTXLYDOHQWHDXQPRGHORGH5LFKDUGVRQ
4. ([WLHQGDHOPRGHORGH5LFKDUGVRQDWUHVQDFLRQHVGHGXFLHQGRXQVLVWHPDGHHFXDFLRQHV
GLIHUHQFLDOHVOLQHDOHVVLORVWUHVVRQPXWXDPHQWHWHPHURVRVFDGDXQRHVHVWLPXODGRSDUD
DUPDUVHSRUORVJDVWRVGHORVRWURVGRV¢&yPRFDPELDUtDQODVHFXDFLRQHVVLGRVGHODVQDFLRQHVVRQDOLDGDVFHUFDQDVQRDPHQD]DGDVSRUODDFXPXODFLyQGHODVDUPDVGHORWURSHUR
WHPHURVDVGHORVDUPDPHQWRVGHODWHUFHUD",QYHVWLJXHHOFRPSRUWDPLHQWRDODUJRSOD]RGH
HVWDVFDUUHUDVDUPDPHQWLVWDV
5. (QHOPXQGRUHDOXQDFDUUHUDGHDUPDPHQWRVQRDFRWDGDHVLPSRVLEOH\DTXHKD\XQOtPLWH
DODFDQWLGDGTXHFXDOTXLHUSDtVSXHGHJDVWDUHQDUPDVSRUHMHPSORHOSURGXFWRQDFLRQDO
EUXWRPHQRVFLHUWDFDQWLGDGSDUDODVXSHUYLYHQFLD0RGL¿TXHHOPRGHORGH5LFKDUGVRQ
SDUDLQFRUSRUDUHVWDLGHD\DQDOLFHODGLQiPLFDGHXQDFDUUHUDDUPDPHQWLVWDTXHVHULJHSRU
HVWDVQXHYDVHFXDFLRQHVGLIHUHQFLDOHV
REFERENCIAS
1. 5LFKDUGVRQ/HZLV)Arms and Insecurity: A Mathematical Study of the Cause and Origins of
War3LWWVEXUJK%R[ZRRG3UHVV
2. 2OLQLFN 0LFKDHO An Introduction to Mathematical Models in the Social and Life Sciences
5HDGLQJ$GGLVRQ:HVOH\
3. ,QWULOLJDWRU0LFKDHO'\'DJREHUW/%ULWR³5LFKDUGVRQLDQ$UPV5DFH0RGHOV´HQ0DQXV,
0LGODUVN\ HG Handbook of War Studies%RVWRQ8QZLQ+\PDQ
ACERCA DEL AUTOR
'HVSXpVGHREWHQHUODOLFHQFLDWXUDHQPDWHPiWLFDV\¿ORVRItDHQOD8QLYHUVLGDGGH0LFKLJDQ
\ODPDHVWUtD\HOGRFWRUDGRHQOD8QLYHUVLGDGGH:LVFRQVLQ 0DGLVRQ Michael Olinick se
PXGyGHOPHGLRRHVWHGH(VWDGRV8QLGRVD1XHYD,QJODWHUUD$KtVHXQLyDODIDFXOWDGGHO
0LGGOHEXU\&ROOHJHHQFRPRSURIHVRUGHPDWHPiWLFDV(O'U2OLQLFNWLHQHSXHVWRV
GHSURIHVRUYLVLWDQWHHQOD8QLYHUVLW\&ROOHJH1DLURELOD:HVOH\DQ8QLYHUVLW\OD8QLYHUVLGDGGH&DOLIRUQLDHQ%HUNHOH\\OD8QLYHUVLGDGGH/DQFDVWHUHQ*UDQ%UHWDxD(VDXWRU
RFRDXWRUGHYDULRVOLEURVGHFiOFXORGHXQD\PXFKDVYDULDEOHVGHPRGHODGRPDWHPiWLFR
SUREDELOLGDG\WRSRORJtD$FWXDOPHQWHHVWiGHVDUUROODQGRXQQXHYROLEURVREUHPRGHORV
PDWHPiWLFRVHQKXPDQLGDGHVFLHQFLDVVRFLDOHV\FLHQFLDVGHODYLGD
1
INTRODUCCIÓN A LAS
ECUACIONES DIFERENCIALES
1.1 'H¿QLFLRQHV\WHUPLQRORJtD
1.2 3UREOHPDVFRQYDORUHVLQLFLDOHV
1.3 (FXDFLRQHVGLIHUHQFLDOHVFRPRPRGHORVPDWHPiWLFRV
REPASO DEL CAPÍTULO 1
(VFLHUWRTXHODVSDODEUDVecuaciones\diferencialesVXJLHUHQDOJXQDFODVHGH
HFXDFLyQTXHFRQWLHQHGHULYDGDVy, y$OLJXDOTXHHQXQFXUVRGHiOJHEUD\
WULJRQRPHWUtDHQORVTXHVHLQYLHUWHEDVWDQWHWLHPSRHQODVROXFLyQGHHFXDFLRQHV
WDOHVFRPRx2 5x 4 SDUDODLQFyJQLWDxHQHVWHFXUVRunaGHODVWDUHDV
VHUiUHVROYHUHFXDFLRQHVGLIHUHQFLDOHVGHOWLSRy 2y y SDUDODIXQFLyQ
LQFyJQLWDy (x).
(OSiUUDIRDQWHULRUQRVGLFHDOJRSHURQRODKLVWRULDFRPSOHWDVREUHHOFXUVR
TXHHVWiSRULQLFLDU&RQIRUPHHOFXUVRVHGHVDUUROOHYHUiTXHKD\PiVHQHOHVWXGLR
GHODVHFXDFLRQHVGLIHUHQFLDOHVTXHVRODPHQWHGRPLQDUORVPpWRGRVTXHDOJXLHQKD
LQYHQWDGRSDUDUHVROYHUODV
3HURYDPRVHQRUGHQ3DUDOHHUHVWXGLDU\SODWLFDUVREUHXQWHPDHVSHFLDOL]DGR
HVQHFHVDULRDSUHQGHUODWHUPLQRORJtDGHHVWDGLVFLSOLQD(VDHVODLQWHQFLyQGHODVGRV
SULPHUDVVHFFLRQHVGHHVWHFDStWXOR(QOD~OWLPDVHFFLyQH[DPLQDUHPRVEUHYHPHQWH
HOYtQFXORHQWUHODVHFXDFLRQHVGLIHUHQFLDOHV\HOPXQGRUHDO/DVSUHJXQWDVSUiFWLFDV
FRPR¿qué tan rápido se propaga una enfermedad? \ ¿qué tan rápido cambia una
población?LPSOLFDQUD]RQHVGHFDPELRRGHULYDGDV$VtODGHVFULSFLyQPDWHPiWLFD
²RPRGHORPDWHPiWLFR²GHH[SHULPHQWRVREVHUYDFLRQHVRWHRUtDVSXHGHVHUXQD
HFXDFLyQGLIHUHQFLDO
1
2
l
CAPÍTULO 1
1.1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
DEFINICIONES Y TERMINOLOGÍA
REPASO DE MATERIAL
l 'H¿QLFLyQGHGHULYDGD
l 5HJODVGHGHULYDFLyQ
l 'HULYDGDFRPRXQDUD]yQGHFDPELR
l &RQH[LyQHQWUHODSULPHUDGHULYDGD\FUHFLPLHQWRGHFUHFLPLHQWR
l &RQH[LyQHQWUHODVHJXQGDGHULYDGD\FRQFDYLGDG
INTRODUCCIÓN /DGHULYDGDdy兾dxGHXQDIXQFLyQy (x HVRWUDIXQFLyQ (x TXHVHHQFXHQWUDFRQXQDUHJODDSURSLDGD/DIXQFLyQy e0.1x2HVGHULYDEOHHQHOLQWHUYDOR , \XVDQGR
2
ODUHJODGHODFDGHQDVXGHULYDGDHVdy兾dx 0.2xe0.1x 6LVXVWLWXLPRVe0.1x2HQHOODGRGHUHFKRGHOD
~OWLPDHFXDFLyQSRUyODGHULYDGDVHUi
dy
dx
(1)
0.2xy
$KRUD LPDJLQHPRV TXH XQ DPLJRFRQVWUX\y VX HFXDFLyQ XVWHGQR WLHQHLGHDGH FyPR OD KL]R
\VHSUHJXQWD¿cuál es la función representada con el símbolo y?6HHQIUHQWDHQWRQFHVDXQRGHORV
SUREOHPDVEiVLFRVGHHVWHFXUVR
¿Cómo resolver una ecuación para la función desconocida y (x)?
UNA DEFINICIÓN $ODHFXDFLyQ VHOHGHQRPLQDecuación diferencial$QWHV
GHSURVHJXLUFRQVLGHUHPRVXQDGH¿QLFLyQPiVH[DFWDGHHVWHFRQFHSWR
DEFINICIÓN 1.1.1 Ecuación diferencial
6HGHQRPLQDecuación diferencial (ED)DODHFXDFLyQTXHFRQWLHQHGHULYDGDV
GHXQDRPiVYDULDEOHVUHVSHFWRDXQDRPiVYDULDEOHVLQGHSHQGLHQWHV
3DUD KDEODU DFHUFD GH HOODV FODVL¿FDUHPRV D ODV HFXDFLRQHV GLIHUHQFLDOHV SRU tipo,
orden\linealidad.
CLASIFICACIÓN POR TIPO 6LXQDHFXDFLyQFRQWLHQHVyORGHULYDGDVGHXQDRPiV
YDULDEOHVGHSHQGLHQWHVUHVSHFWRDXQDVRODYDULDEOHLQGHSHQGLHQWHVHGLFHTXHHVXQD
ecuación diferencial ordinaria (EDO)8QDHFXDFLyQTXHLQYROXFUDGHULYDGDVSDUFLDOHVGHXQDRPiVYDULDEOHVGHSHQGLHQWHVGHGRVRPiVYDULDEOHVLQGHSHQGLHQWHVVHOODPD
ecuación diferencial parcial (EDP)1XHVWURSULPHUHMHPSORLOXVWUDYDULDVHFXDFLRQHV
GLIHUHQFLDOHVGHFDGDWLSR
EJEMPLO 1
Tipos de ecuaciones diferenciales
a)/DVHFXDFLRQHV
8QD('2SXHGHFRQWHQHU
PiVGHXQDYDULDEOHGHSHQGLHQWH
o
2
d y dy
dx
dy
5y ex, 2
6y 0, y
dx
dx
dx
dt
VRQHMHPSORVGHHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDV
o
dy
dt
2x
y
(2)
b)/DVVLJXLHQWHVVRQHFXDFLRQHVGLIHUHQFLDOHVSDUFLDOHV
2
u
x2
2
u
y2
0,
2
u
x2
2
u
t2
2
u
u
, y
t
y
v
x
(3)
2EVHUYHTXHHQODWHUFHUDHFXDFLyQKD\GRVYDULDEOHVGHSHQGLHQWHV\GRVYDULDEOHVLQGHSHQGLHQWHVHQOD('3(VWRVLJQL¿FDTXHu\vGHEHQVHUIXQFLRQHVGHGRVRPiVYDULDEOHV
LQGHSHQGLHQWHV
1.1
DEFINICIONES Y TERMINOLOGÍA
l
3
NOTACIÓN $ORODUJRGHOOLEURODVGHULYDGDVRUGLQDULDVVHHVFULELUiQXVDQGRODnotación de Leibniz dy兾dx, d 2y兾dx 2, d 3y兾dx 3RODnotación prima y, y, y 8VDQGR
HVWD~OWLPDQRWDFLyQODVSULPHUDVGRVHFXDFLRQHVGLIHUHQFLDOHVHQ VHSXHGHQHVFULELUHQ
XQDIRUPDXQSRFRPiVFRPSDFWDFRPRy 5y ex\y y 6y (QUHDOLGDGOD
QRWDFLyQSULPDVHXVDSDUDGHQRWDUVyORODVSULPHUDVWUHVGHULYDGDVODFXDUWDGHULYDGDVH
GHQRWDy(4)HQOXJDUGHy(QJHQHUDOODnpVLPDGHULYDGDGHyVHHVFULEHFRPRdny兾dxnR
\(n)$XQTXHHVPHQRVFRQYHQLHQWHSDUDHVFULELURFRPSRQHUWLSRJUi¿FDPHQWHODQRWDFLyQ
GH/HLEQL]WLHQHXQDYHQWDMDVREUHODQRWDFLyQSULPDPXHVWUDFODUDPHQWHDPEDVYDULDEOHV
ODVGHSHQGLHQWHV\ODVLQGHSHQGLHQWHV3RUHMHPSORHQODHFXDFLyQ
función incógnita
o variable dependiente
d 2x
–––2 16x 0
dt
variable independiente
VHDSUHFLDGHLQPHGLDWRTXHDKRUDHOVtPERORxUHSUHVHQWDXQDYDULDEOHGHSHQGLHQWH
PLHQWUDVTXHODYDULDEOHLQGHSHQGLHQWHHVt7DPELpQVHGHEHFRQVLGHUDUTXHHQLQJHQLH
UtD\HQFLHQFLDVItVLFDVODnotación de puntoGH1HZWRQ QRPEUDGDGHVSHFWLYDPHQWH
QRWDFLyQGH³SXQWLWR´ DOJXQDVYHFHVVHXVDSDUDGHQRWDUGHULYDGDVUHVSHFWRDOWLHP
SRt$VtODHFXDFLyQGLIHUHQFLDOd 2s兾dt 2 VHUis̈ &RQIUHFXHQFLDODVGHULYDGDVSDUFLDOHVVHGHQRWDQPHGLDQWHXQDnotación de subíndiceTXHLQGLFDODVYDULDEOHV
LQGHSHQGLHQWHV3RUHMHPSORFRQODQRWDFLyQGHVXEtQGLFHVODVHJXQGDHFXDFLyQHQ
VHUiu xx u tt 2u t.
CLASIFICACIÓN POR ORDEN (O orden de una ecuación diferencial \D VHD
('2R('3 HVHORUGHQGHODPD\RUGHULYDGDHQODHFXDFLyQ3RUHMHPSOR
segundo orden
primer orden
d 2y
( )
dy 3
––––2 5 ––– 4y ex
dx
dx
HVXQDHFXDFLyQGLIHUHQFLDORUGLQDULDGHVHJXQGRRUGHQ(QHOHMHPSORODSULPHUD\OD
WHUFHUDHFXDFLyQHQ VRQ('2GHSULPHURUGHQPLHQWUDVTXHHQ ODVSULPHUDVGRV
HFXDFLRQHVVRQ('3GHVHJXQGRRUGHQ$YHFHVODVHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDV
GHSULPHURUGHQVHHVFULEHQHQODIRUPDGLIHUHQFLDOM(x, y) dx N(x, y) dy 3RU
HMHPSORVLVXSRQHPRVTXHyGHQRWDODYDULDEOHGHSHQGLHQWHHQ(y x) dx 4xdy 0,
HQWRQFHVy dy兾dxSRUORTXHDOGLYLGLUHQWUHODGLIHUHQFLDOdxREWHQHPRVODIRUPD
DOWHUQD4xy y x.
6LPEyOLFDPHQWHSRGHPRVH[SUHVDUXQDHFXDFLyQGLIHUHQFLDORUGLQDULDGHnpVLPR
RUGHQFRQXQDYDULDEOHGHSHQGLHQWHSRUODIRUPDJHQHUDO
F(x, y, y , . . . , y(n))
(4)
GRQGHFHVXQDIXQFLyQFRQYDORUHVUHDOHVGHn YDULDEOHVx, y, y, …, y(n)3RUUD]RQHVWDQWRSUiFWLFDVFRPRWHyULFDVGHDKRUDHQDGHODQWHVXSRQGUHPRVTXHHVSRVLEOH
UHVROYHUXQDHFXDFLyQGLIHUHQFLDORUGLQDULDHQODIRUPDGHODHFXDFLyQ ~QLFDPHQWH
SDUDODPD\RUGHULYDGDy(n)HQWpUPLQRVGHODVn YDULDEOHVUHVWDQWHV/DHFXDFLyQ
GLIHUHQFLDO
d ny
f (x, y, y , . . . , y(n 1)),
(5)
dxn
0,
GRQGHfHVXQDIXQFLyQFRQWLQXDFRQYDORUHVUHDOHVVHFRQRFHFRPRODforma normalGH
ODHFXDFLyQ $VtTXHSDUDQXHVWURVSURSyVLWRVXVDUHPRVODVIRUPDVQRUPDOHVFXDQGR
VHDDGHFXDGR
dy
d 2y
f (x, y) y 2 f (x, y, y )
dx
dx
([FHSWRHVWDVHFFLyQGHLQWURGXFFLyQHQEcuaciones diferenciales con aplicaciones de modeladoGpFLPD
HGLFLyQVyORVHFRQVLGHUDQHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDV(QHVHOLEURODSDODEUDecuación\OD
DEUHYLDWXUD('VHUH¿HUHQVyORDODV('2/DVHFXDFLRQHVGLIHUHQFLDOHVSDUFLDOHVR('3VHFRQVLGHUDQHQHO
YROXPHQDPSOLDGREcuaciones diferenciales con problemas con valores en la fronteraRFWDYDHGLFLyQ
4
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
SDUDUHSUHVHQWDUHQJHQHUDOODVHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDVGHSULPHU\VHJXQGR
RUGHQ3RUHMHPSORODIRUPDQRUPDOGHODHFXDFLyQGHSULPHURUGHQxy y xHV
y (x y)兾4xODIRUPDQRUPDOGHODHFXDFLyQGHVHJXQGRRUGHQy y 6y 0
HVy y 6y9HDHOLQFLVRiv)HQORVComentarios.
CLASIFICACIÓN POR LINEALIDAD 6H GLFH TXH XQD HFXDFLyQ GLIHUHQFLDO GH
n-pVLPRRUGHQ HVlinealVLFHVOLQHDOHQy, y, . . . , y (n)(VWRVLJQL¿FDTXHXQD('2
GHn-pVLPRRUGHQHVOLQHDOFXDQGRODHFXDFLyQ HVa n(x)y (n) a n1(x)y (n1)
a1
(x)y a 0(x)y g(x) R
dy
d n 1y
dny
(6)
an 1(x) n 1
a1(x)
a0(x)y g(x).
n
dx
dx
dx
'RV FDVRV HVSHFLDOHV LPSRUWDQWHV GH OD HFXDFLyQ VRQ ODV (' OLQHDOHV GH SULPHU
RUGHQ n \GHVHJXQGRRUGHQ n
dy
d 2y
dy
a1(x)
a0 (x)y g(x) y a2 (x) 2 a1(x)
a0 (x)y g(x). (7)
dx
dx
dx
(QODFRPELQDFLyQGHODVXPDGHOODGRL]TXLHUGRGHODHFXDFLyQ YHPRVTXHODVGRV
SURSLHGDGHVFDUDFWHUtVWLFDVGHXQD('2VRQODVVLJXLHQWHV
• /DYDULDEOHGHSHQGLHQWHy\WRGDVVXVGHULYDGDVy, y, . . . , y (n)VRQGHSULPHU
JUDGRHVGHFLUODSRWHQFLDGHFDGDWpUPLQRTXHFRQWLHQHyHVLJXDOD
• /RV FRH¿FLHQWHV GH a0, a1, . . . , an GH y, y, . . . , y(n) GHSHQGHQ GH OD YDULDEOH
LQGHSHQGLHQWHx.
8QDHFXDFLyQGLIHUHQFLDORUGLQDULDno linealHVVLPSOHPHQWHXQDTXHQRHVOLQHDO/DV
IXQFLRQHVQROLQHDOHVGHODYDULDEOHGHSHQGLHQWHRGHVXVGHULYDGDVWDOHVFRPRVHQyRe y’,
QRSXHGHQDSDUHFHUHQXQDHFXDFLyQOLQHDO
an(x)
EJEMPLO 2
EDO lineal y no lineal
a)/DVHFXDFLRQHV
3
dy
3d y
5y ex
x 3 x
dx
dx
VRQUHVSHFWLYDPHQWHHFXDFLRQHVGLIHUHQFLDOHVlinealesGHSULPHUVHJXQGR\WHUFHURUGHQ
$FDEDPRVGHPRVWUDUTXHODSULPHUDHFXDFLyQHVOLQHDOHQODYDULDEOHyFXDQGRVHHVFULEHHQ
ODIRUPDDOWHUQDWLYDxy y x.
(y
x)dx
4xy dy
0, y
2y
y
0, y
b)/DVHFXDFLRQHV
término no lineal:
coeficiente depende de y
término no lineal:
función no lineal de y
(1 y)y 2y e x,
d 2y
––––2 sen y 0,
dx
término no lineal:
el exponente es diferente de 1
y
d 4y
––––4 y 2 0
dx
VRQHMHPSORVGHHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDVno linealesGHSULPHUVHJXQGR\
FXDUWRRUGHQUHVSHFWLYDPHQWH
SOLUCIONES &RPR \D VH KD HVWDEOHFLGR XQR GH ORV REMHWLYRV GH HVWH FXUVR HV
UHVROYHURHQFRQWUDUVROXFLRQHVGHHFXDFLRQHVGLIHUHQFLDOHV(QODVLJXLHQWHGH¿QLFLyQ
FRQVLGHUDPRVHOFRQFHSWRGHVROXFLyQGHXQDHFXDFLyQGLIHUHQFLDORUGLQDULD
DEFINICIÓN 1.1.2
Solución de una EDO
6HGHQRPLQDXQDsoluciónGHODHFXDFLyQHQHOLQWHUYDORDFXDOTXLHUIXQFLyQ ,
GH¿QLGDHQXQLQWHUYDORI\TXHWLHQHDOPHQRVnGHULYDGDVFRQWLQXDVHQIODV
FXDOHVFXDQGRVHVXVWLWX\HQHQXQDHFXDFLyQGLIHUHQFLDORUGLQDULDGHnpVLPR
RUGHQUHGXFHQODHFXDFLyQDXQDLGHQWLGDG
(QRWUDVSDODEUDVXQDVROXFLyQGHXQDHFXDFLyQGLIHUHQFLDORUGLQDULDGHnpVLPRRUGHQ
HVXQDIXQFLyQ TXHSRVHHDOPHQRVnGHULYDGDVSDUDODVTXH
1.1
F(x, (x),
DEFINICIONES Y TERMINOLOGÍA
(n)
(x))
(x), . . . ,
l
5
0 para
toda x en I.
'HFLPRVTXH satisfaceODHFXDFLyQGLIHUHQFLDOHQI3DUDQXHVWURVSURSyVLWRVVXSRQGUHPRVTXHXQDVROXFLyQ HVXQDIXQFLyQFRQYDORUHVUHDOHV(QQXHVWURDQiOLVLVGHLQWURGXFFLyQYLPRVTXHy e0.1x 2HVXQDVROXFLyQGHdy兾dx 0.2xyHQHOLQWHUYDOR , ).
2FDVLRQDOPHQWHVHUiFRQYHQLHQWHGHQRWDUXQDVROXFLyQFRQHOVtPERORDOWHUQDWLYR\࣠(x).
INTERVALO DE DEFINICIÓN 1RSRGHPRVSHQVDUHQODsoluciónGHXQDHFXDFLyQ
GLIHUHQFLDORUGLQDULDVLQSHQVDUVLPXOWiQHDPHQWHHQXQintervalo(OLQWHUYDORIHQODGH¿QLFLyQWDPELpQVHFRQRFHFRQRWURVQRPEUHVFRPRVRQLQWHUYDORGHGH¿QLFLyQ,
intervalo de existencia, intervalo de validezRdominio de la solución\SXHGHVHU
XQLQWHUYDORDELHUWR a, b XQLQWHUYDORFHUUDGR>a, b@XQLQWHUYDORLQ¿QLWR a, HWFpWHUD
EJEMPLO 3
9HUL¿FDFLyQGHXQDVROXFLyQ
9HUL¿TXHTXHODIXQFLyQLQGLFDGDHVXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDOGDGDHQ
HOLQWHUYDOR , ).
a) dy
dx
1
xy 2 ;
y
b) y
1 4
16 x
2y
y
0; y
xex
8QDIRUPDGHYHUL¿FDUTXHODIXQFLyQGDGDHVXQDVROXFLyQFRQVLVWHHQ
REVHUYDUXQDYH]TXHVHKDVXVWLWXLGRVLFDGDODGRGHODHFXDFLyQHVHOPLVPRSDUD
WRGDxHQHOLQWHUYDOR
SOLUCIÓN
a) (Q
lado izquierdo:
dy
dx
lado derecho:
xy1/2
1
1 3
(4 x 3)
x,
16
4
1 4 1/2
x
x
x
16
1 2
x
4
1 3
x,
4
YHPRVTXHFDGDODGRGHODHFXDFLyQHVHOPLVPRSDUDWRGRQ~PHURUHDOx2EVHUYH
1 4
TXHy1/2 14 x 2HVSRUGH¿QLFLyQODUDt]FXDGUDGDQRQHJDWLYDGH 16
x.
b) (Q ODV GHULYDGDV y xe x e x \ y xe x 2e x WHQHPRV TXH SDUD WRGR Q~PHUR
UHDOx,
lado izquierdo:
lado derecho:
y
0.
2y
y
(xe x
2e x )
2(xe x
e x)
xe x
0,
(QHOHMHPSORREVHUYHWDPELpQTXHFDGDHFXDFLyQGLIHUHQFLDOWLHQHODVROXFLyQ
FRQVWDQWHy 0, x $ODVROXFLyQGHXQDHFXDFLyQGLIHUHQFLDOTXHHVLJXDO
DFHURHQXQLQWHUYDORIVHOHFRQRFHFRPRODsolución trivial.
CURVA SOLUCIÓN /D JUi¿FD GH XQD VROXFLyQ GH XQD ('2 VH OODPD curva
solución. 3XHVWRTXH HVXQDIXQFLyQGHULYDEOHHVFRQWLQXDHQVXLQWHUYDORGHGH¿QLFLyQ I3XHGHKDEHUGLIHUHQFLDHQWUHODJUi¿FDGHODfunción \ODJUi¿FDGHODsolución
(VGHFLUHOGRPLQLRGHODIXQFLyQ QRQHFHVLWDVHULJXDODOLQWHUYDORGHGH¿QLFLyQ
I RGRPLQLR GHODVROXFLyQ (OHMHPSORPXHVWUDODGLIHUHQFLD
EJEMPLO 4
Función contra solución
(OGRPLQLRGHy 1兾xFRQVLGHUDGRVLPSOHPHQWHFRPRXQDfunciónHVHOFRQMXQWRGH
WRGRVORVQ~PHURVUHDOHVxH[FHSWRHO&XDQGRWUD]DPRVODJUi¿FDGHy 1兾xGLEXMDPRVORVSXQWRVHQHOSODQRxyFRUUHVSRQGLHQWHVDXQMXLFLRVRPXHVWUHRGHQ~PHURVWRPDGRVGHOGRPLQLR/DIXQFLyQUDFLRQDOy 1兾xHVGLVFRQWLQXDHQHQOD¿JXUD D VH
6
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
PXHVWUDVXJUi¿FDHQXQDYHFLQGDGGHORULJHQ/DIXQFLyQy 1兾xQRHVGHULYDEOHHQx
\DTXHHOHMHy FX\DHFXDFLyQHVx HVXQDDVtQWRWDYHUWLFDOGHODJUi¿FD
$KRUDy 1兾xHVWDPELpQXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDOOLQHDOGHSULPHU
RUGHQxy y FRPSUXHEH 3HURFXDQGRGHFLPRVTXHy 1兾xHVXQDsoluciónGH
HVWD('VLJQL¿FDTXHHVXQDIXQFLyQGH¿QLGDHQXQLQWHUYDORIHQHOTXHHVGHULYDEOH\
VDWLVIDFHODHFXDFLyQ(QRWUDVSDODEUDVy 1兾xHVXQDVROXFLyQGHOD('HQcualquier
LQWHUYDORTXHQRFRQWHQJDWDOFRPR 3, 1), (21, 10), ( R 3RUTXHODV
FXUYDVVROXFLyQGH¿QLGDVSRUy 1兾xSDUD3 x \ 21 x VRQVLPSOHPHQWHWUDPRVRSDUWHVGHODVFXUYDVVROXFLyQGH¿QLGDVSRUy 1兾xSDUD x 0
\ x UHVSHFWLYDPHQWHHVWR KDFH TXH WHQJD VHQWLGR WRPDU HO LQWHUYDOR I WDQ
JUDQGHFRPRVHDSRVLEOH$VtWRPDPRVI\DVHDFRPR R /DFXUYDVROXFLyQHQ HVFRPRVHPXHVWUDHQOD¿JXUD E
y
1
1
x
a) función y 1/x, x
0
y
1
1
x
b) solución y 1/x, (0, ∞ )
FIGURA 1.1.1 /DIXQFLyQy 1兾xQR
HVODPLVPDTXHODVROXFLyQy 1兾x.
SOLUCIONES EXPLÍCITAS E IMPLÍCITAS 'HEHHVWDUIDPLOLDUL]DGRFRQORVWpUPLQRVfunciones explícitas\funciones implícitasGHVXFXUVRGHFiOFXOR$XQDVROXFLyQHQODFXDOODYDULDEOHGHSHQGLHQWHVHH[SUHVDVyORHQWpUPLQRVGHODYDULDEOH
LQGHSHQGLHQWH\ODVFRQVWDQWHVVHOHFRQRFHFRPRsolución explícita3DUDQXHVWURV
SURSyVLWRVFRQVLGHUHPRVXQDVROXFLyQH[SOtFLWDFRPRXQDIyUPXODH[SOtFLWDy (x)
TXHSRGDPRVPDQHMDUHYDOXDU\GHULYDUXVDQGRODVUHJODVXVXDOHV$FDEDPRVGHYHU
HQORVGRV~OWLPRVHMHPSORVTXH y 161 x4 , y xe x\y 1兾xVRQVROXFLRQHVH[SOtFLWDVUHVSHFWLYDPHQWHGHdy兾dx xy , y 2y y \xy y $GHPiVOD
VROXFLyQWULYLDOy HVXQDVROXFLyQH[SOtFLWDGHFDGDXQDGHHVWDVWUHVHFXDFLRQHV
&XDQGROOHJXHPRVDOSXQWRGHUHDOPHQWHUHVROYHUODVHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDVYHUHPRVTXHORVPpWRGRVGHVROXFLyQQRVLHPSUHFRQGXFHQGLUHFWDPHQWHDXQDVROXFLyQH[SOtFLWDy (x (VWRHVSDUWLFXODUPHQWHFLHUWRFXDQGRLQWHQWDPRVUHVROYHU
HFXDFLRQHVGLIHUHQFLDOHVGHSULPHURUGHQ&RQIUHFXHQFLDWHQHPRVTXHFRQIRUPDUQRV
FRQXQDUHODFLyQRH[SUHVLyQG(x, y) TXHGH¿QHXQDVROXFLyQ LPSOtFLWDPHQWH
DEFINICIÓN 1.1.3 Solución implícita de una EDO
6HGLFHTXHXQDUHODFLyQG(x, y) HVXQDsolución implícita GHXQDHFXDFLyQ
GLIHUHQFLDORUGLQDULD HQXQLQWHUYDORIVXSRQLHQGRTXHH[LVWHDOPHQRVXQD
IXQFLyQ TXHVDWLVIDFHODUHODFLyQDVtFRPRODHFXDFLyQGLIHUHQFLDOHQI.
(VWiIXHUDGHODOFDQFHGHHVWHFXUVRLQYHVWLJDUODFRQGLFLyQEDMRODFXDOODUHODFLyQ
G(x, y) GH¿QHXQDIXQFLyQGHULYDEOH 3RUORTXHVXSRQGUHPRVTXHVLLPSOHPHQWDU
IRUPDOPHQWHXQPpWRGRGHVROXFLyQQRVFRQGXFHDXQDUHODFLyQG(x, y) HQWRQFHV
H[LVWHDOPHQRVXQDIXQFLyQ TXHVDWLVIDFHWDQWRODUHODFLyQ TXHHVG(x, (x)) 0)
FRPRODHFXDFLyQGLIHUHQFLDOHQHOLQWHUYDORI6LODVROXFLyQLPSOtFLWDG(x, y) HV
EDVWDQWHVLPSOHSRGHPRVVHUFDSDFHVGHGHVSHMDUDyHQWpUPLQRVGHx\REWHQHUXQDR
PiVVROXFLRQHVH[SOtFLWDV9HDHQLQFLVRi)HQORVComentarios.
EJEMPLO 5 Comprobación de una solución implícita
/DUHODFLyQx 2 y 2 HVXQDVROXFLyQLPSOtFLWDGHODHFXDFLyQGLIHUHQFLDO
dy
dx
x
y
(8)
HQHOLQWHUYDORDELHUWR 'HULYDQGRLPSOtFLWDPHQWHREWHQHPRV
d 2
x
dx
d 2
y
dx
d
25 o
dx
2x
2y
dy
dx
0.
5HVROYLHQGR OD ~OWLPD HFXDFLyQ SDUD dy兾dx VH REWLHQH $GHPiV UHVROYLHQGR
x 2 y 2 SDUDyHQWpUPLQRVGHxVHREWLHQH y 225 x2 /DVGRVIXQFLRQHV
y 1(x) 125 x2 y y 2(x) 125 x2 VDWLVIDFHQ OD UHODFLyQ TXH HV
1.1
y
l
7
x 2 12 \x 2 22 \VRQODVVROXFLRQHVH[SOtFLWDVGH¿QLGDVHQHOLQWHUYDOR /DVFXUYDVVROXFLyQGDGDVHQODV¿JXUDV E \ F VRQWUDPRVGH
ODJUi¿FDGHODVROXFLyQLPSOtFLWDGHOD¿JXUD D
5
5
&XDOTXLHUUHODFLyQGHOWLSRx2 y2 – c HV formalmente VDWLVIDFWRULD SDUDFXDOTXLHUFRQVWDQWHc6LQHPEDUJRVHVREUHQWLHQGHTXHODUHODFLyQVLHPSUHWHQGUiVHQWLGR
HQHOVLVWHPDGHORVQ~PHURVUHDOHVDVtSRUHMHPSORVLc QRSRGHPRVGHFLU
TXHx2 y2 25 HVXQDVROXFLyQLPSOtFLWDGHODHFXDFLyQ ¢3RUTXpQR"
'HELGRDTXHODGLIHUHQFLDHQWUHXQDVROXFLyQH[SOtFLWD\XQDVROXFLyQLPSOtFLWD
GHEHUtDVHULQWXLWLYDPHQWHFODUDQRGLVFXWLUHPRVHOWHPDGLFLHQGRVLHPSUH³$TXtHVWi
XQDVROXFLyQH[SOtFLWD LPSOtFLWD ´
x
a) solución implícita
x 2 y 2 25
y
DEFINICIONES Y TERMINOLOGÍA
FAMILIAS DE SOLUCIONES (OHVWXGLRGHHFXDFLRQHVGLIHUHQFLDOHVHVVLPLODUDO
GHOFiOFXORLQWHJUDO(QDOJXQRVOLEURVDXQDVROXFLyQ HVHOHOODPDDYHFHVintegral
de la ecuación\DVXJUi¿FDVHOHOODPDcurva integral&XDQGRREWHQHPRVXQDDQWLGHULYDGDRXQDLQWHJUDOLQGH¿QLGDHQFiOFXORXVDPRVXQDVRODFRQVWDQWHcGHLQWHJUDFLyQ'HPRGRVLPLODUFXDQGRUHVROYHPRVXQDHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQ
F(x, y, y) 0, normalmenteREWHQHPRVXQDVROXFLyQTXHFRQWLHQHXQDVRODFRQVWDQWH
DUELWUDULDRSDUiPHWURc8QDVROXFLyQTXHFRQWLHQHXQDFRQVWDQWHDUELWUDULDUHSUHVHQWD
XQFRQMXQWRG(x, y, c) GHVROXFLRQHVOODPDGRfamilia de soluciones uniparamétrica&XDQGRUHVROYHPRVXQDHFXDFLyQGLIHUHQFLDOGHRUGHQn, F(x, y, y, . . . , y (n)) 0,
EXVFDPRVXQDfamilia de soluciones n-paramétrica G(x, y, c1, c 2, . . . , cn) (VWR
VLJQL¿FDTXHXQDVRODHFXDFLyQGLIHUHQFLDOSXHGHWHQHUXQQ~PHURLQ¿QLWRGHVROXcionesTXHFRUUHVSRQGHQDXQQ~PHURLOLPLWDGRGHHOHFFLRQHVGHORVSDUiPHWURV8QD
VROXFLyQ GH XQD HFXDFLyQ GLIHUHQFLDO TXH HVWi OLEUH GH OD HOHFFLyQ GH SDUiPHWURV VH
OODPDsolución particular.
5
5
x
b) solución explícita
y1 兹25 x 2, 5 x 5
y
5
EJEMPLO 6 Soluciones particulares
5
x
−5
c) solución explícita
y2 兹25 x 2, 5 x 5
FIGURA 1.1.2 8QDVROXFLyQLPSOtFLWD
\GRVVROXFLRQHVH[SOtFLWDVGH HQHO
HMHPSOR
y
c>0
c=0
a)/DIDPLOLDXQLSDUDPpWULFDy cx xFRVxHVXQDVROXFLyQH[SOtFLWDGHODHFXDFLyQ
OLQHDOGHSULPHURUGHQ
xy y x 2VHQx
HQHOLQWHUYDOR , FRPSUXHEH /D¿JXUDPXHVWUDODVJUi¿FDVGHDOJXQDV
GHODVVROXFLRQHVHQHVWDIDPLOLDSDUDGLIHUHQWHVHOHFFLRQHVGHc/DVROXFLyQy x
FRVxODFXUYDD]XOHQOD¿JXUDHVXQDVROXFLyQSDUWLFXODUFRUUHVSRQGLHQWHDc 0.
b)/DIDPLOLDGHVROXFLRQHVGHGRVSDUiPHWURVy c1e x c 2xe xHVXQDVROXFLyQH[SOtFLWDGHODHFXDFLyQOLQHDOGHVHJXQGRRUGHQ
y 2y y 0
GHOLQFLVRE GHOHMHPSOR FRPSUXHEH (QOD¿JXUDKHPRVPRVWUDGRVLHWHGHODV
³GREOHPHQWHLQ¿QLWDV´VROXFLRQHVGHODIDPLOLD/DVFXUYDVVROXFLyQHQURMRYHUGH\
D]XOVRQODVJUi¿FDVGHODVVROXFLRQHVSDUWLFXODUHVy 5[H࣠x (c1 0, c 2 5), y 3xe x
(c1 3, c 2 \y 5e x 2xe x (c1 5, c2 UHVSHFWLYDPHQWH
$OJXQDV YHFHV XQD HFXDFLyQ GLIHUHQFLDO WLHQH XQD VROXFLyQ TXH QR HV PLHPEUR GH XQD
IDPLOLD GH VROXFLRQHV GH OD HFXDFLyQ HV GHFLU XQD VROXFLyQ TXH QR VH SXHGH REWHQHU
XVDQGRXQSDUiPHWURHVSHFt¿FRGHODIDPLOLDGHVROXFLRQHV(VDVROXFLyQH[WUDVHOODPD
solución singular3RUHMHPSORYHPRVTXHy 161 x4 \y VRQVROXFLRQHVGHODHFXDFLyQ GLIHUHQFLDO dy兾dx xy HQ , (Q OD VHFFLyQ GHPRVWUDUHPRV DO UHVROYHUOD UHDOPHQWH TXH OD HFXDFLyQ GLIHUHQFLDO dy兾dx xy WLHQH OD IDPLOLD GH VROXFLRFIGURA 1.1.3 $OJXQDVVROXFLRQHVGH QHV XQLSDUDPpWULFD y 1 x2 c 2 &XDQGR c OD VROXFLyQ SDUWLFXODU UHVXOWDQWH HV
4
OD('GHOLQFLVRD GHOHMHPSOR
y 161 x4 3HUR REVHUYH TXH OD VROXFLyQ WULYLDO y HV XQD VROXFLyQ VLQJXODU \D TXH
QRHVXQPLHPEURGHODIDPLOLDy 14 x2 c 2 SRUTXHQRKD\PDQHUDGHDVLJQDUOHXQ
YDORUDODFRQVWDQWHcSDUDREWHQHUy 0.
c<0
x
(
)
(
)
8
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
(QWRGRVORVHMHPSORVDQWHULRUHVKHPRVXVDGRx\ySDUDGHQRWDUODVYDULDEOHV
LQGHSHQGLHQWH\GHSHQGLHQWHUHVSHFWLYDPHQWH3HURGHEHUtDDFRVWXPEUDUVHDYHU\WUDEDMDUFRQRWURVVtPERORVTXHGHQRWDQHVWDVYDULDEOHV3RUHMHPSORSRGUtDPRVGHQRWDU
ODYDULDEOHLQGHSHQGLHQWHSRUt\ODYDULDEOHGHSHQGLHQWHSRUx.
y
x
FIGURA 1.1.4
$OJXQDVVROXFLRQHVGH
OD('GHOLQFLVRE GHOHMHPSOR
EJEMPLO 7
Usando diferentes símbolos
/DVIXQFLRQHVx c1 FRVt\x c2 VHQtGRQGHc1\c2VRQFRQVWDQWHVDUELWUDULDVR
SDUiPHWURVVRQDPEDVVROXFLRQHVGHODHFXDFLyQGLIHUHQFLDOOLQHDO
x
16x
0.
3DUDx c1FRVtODVGRVSULPHUDVGHULYDGDVUHVSHFWRDtVRQx 4c1VHQt\
x 16c1FRVt.6XVWLWX\HQGRHQWRQFHVDx\xVHREWLHQH
x
16x
16c1 cos 4t
16(c1 cos 4t)
0.
'HPDQHUDSDUHFLGDSDUDx c2VHQtWHQHPRVx 16c 2VHQt\DVt
x
16x
16c2 sen 4t
16(c2 sen 4t)
0.
)LQDOPHQWHHVVHQFLOORFRPSUREDUGLUHFWDPHQWHTXHODFRPELQDFLyQOLQHDOGHVROXFLRQHVRODIDPLOLDGHGRVSDUiPHWURVx c1FRVt c2VHQtHVWDPELpQXQDVROXFLyQ
GHODHFXDFLyQGLIHUHQFLDO
(OVLJXLHQWHHMHPSORPXHVWUDTXHODVROXFLyQGHXQDHFXDFLyQGLIHUHQFLDOSXHGH
VHUXQDIXQFLyQGH¿QLGDSRUSDUWHV
EJEMPLO 8
8QDVROXFLyQGH¿QLGDSRUSDUWHV
/DIDPLOLDXQLSDUDPpWULFDGHIXQFLRQHVPRQRPLDOHVFXiUWLFDVy cx4HVXQDVROXFLyQ
H[SOtFLWDGHODHFXDFLyQOLQHDOGHSULPHURUGHQ
xy 4y 0
HQHOLQWHUYDOR , &RPSUXHEH /DVFXUYDVVROXFLyQD]XO\URMDTXHVHPXHVWUDQ
HQOD¿JXUD D VRQODVJUi¿FDVGHy = x4\y = x4\FRUUHVSRQGHQDODVHOHFFLRQHV
GHc \c = UHVSHFWLYDPHQWH
y
/DIXQFLyQGHULYDEOHGH¿QLGDSRUWUDPRV
c 1
x4,
x4,
y
x
c 1
a) dos soluciones explicitas
y
c 1,
x d0
x
c 1,
x0
b) solución definida en partes
FIGURA 1.1.5
$OJXQDVVROXFLRQHVGH
OD('GHOHMHPSOR
x
x
0
0
HVWDPELpQXQDVROXFLyQSDUWLFXODUGHODHFXDFLyQSHURQRVHSXHGHREWHQHUGHODIDPLOLDy cx4SRUXQDVRODHOHFFLyQGHcODVROXFLyQVHFRQVWUX\HDSDUWLUGHODIDPLOLD
HOLJLHQGRc SDUDx \c SDUDx 9HDOD¿JXUD E
SISTEMAS DE ECUACIONES DIFERENCIALES +DVWDHVWHPRPHQWRKHPRVDQDOL]DGR VyOR HFXDFLRQHV GLIHUHQFLDOHV TXH FRQWLHQHQ XQD IXQFLyQ LQFyJQLWD 3HUR FRQ
IUHFXHQFLDHQODWHRUtDDVtFRPRHQPXFKDVDSOLFDFLRQHVGHEHPRVWUDWDUFRQVLVWHPDV
GHHFXDFLRQHVGLIHUHQFLDOHV8Qsistema de ecuaciones diferenciales ordinariasWLHQH
GRVRPiVHFXDFLRQHVTXHLPSOLFDQGHULYDGDVGHGRVRPiVIXQFLRQHVLQFyJQLWDVGHXQD
VRODYDULDEOHLQGHSHQGLHQWH3RUHMHPSORVLx\yGHQRWDQDODVYDULDEOHVGHSHQGLHQWHV
\t GHQRWDDODYDULDEOHLQGHSHQGLHQWHHQWRQFHVXQVLVWHPDGHGRVHFXDFLRQHVGLIHUHQFLDOHVGHSULPHURUGHQHVWiGDGRSRU
dx
dt
f(t, x, y)
dy
dt
g(t, x, y).
(9)
1.1
DEFINICIONES Y TERMINOLOGÍA
l
9
8QD solución GH XQ VLVWHPD WDO FRPR HO GH OD HFXDFLyQ HV XQ SDU GH IXQFLRQHV
GHULYDEOHVx 1(t), y 2(t GH¿QLGDVHQXQLQWHUYDORFRP~QITXHVDWLVIDFHFDGD
HFXDFLyQGHOVLVWHPDHQHVWHLQWHUYDOR
COMENTARIOS
i) $OJXQRVFRPHQWDULRV¿QDOHVUHVSHFWRDODVVROXFLRQHVLPSOtFLWDVGHODVHFXDFLRQHVGLIHUHQFLDOHV(QHOHMHPSORSXGLPRVGHVSHMDUIiFLOPHQWHDyGHODUHODFLyQx 2 y 2 HQWpUPLQRVGHxSDUDREWHQHUODVGRVVROXFLRQHVH[SOtFLWDV
2
2
1(x) 125 x \ 2(x) 125 x GHODHFXDFLyQGLIHUHQFLDO 3HUR
QRGHEHPRVHQJDxDUQRVFRQHVWH~QLFRHMHPSOR$PHQRVTXHVHDIiFLORLPSRUWDQWHRTXHVHOHLQGLTXHHQJHQHUDOQRHVQHFHVDULRWUDWDUGHGHVSHMDUyH[SOt
FLWDPHQWHHQWpUPLQRVGHxGHXQDVROXFLyQLPSOtFLWDG(x, y) 7DPSRFRGHEHPRVPDOLQWHUSUHWDUHOHQXQFLDGRSRVWHULRUDODGH¿QLFLyQ8QDVROXFLyQ
LPSOtFLWDG(x, y) SXHGHGH¿QLUSHUIHFWDPHQWHELHQDXQDIXQFLyQGHULYDEOH
TXHHVXQDVROXFLyQGHXQDHFXDFLyQGLIHUHQFLDODXQTXHQRVHSXHGDGHVSHMDUD
yGHG(x, y) FRQPpWRGRVDQDOtWLFRVFRPRORVDOJHEUDLFRV/DFXUYDVROXFLyQ
GH SXHGHVHUXQWUDPRRSDUWHGHODJUi¿FDGHG(x, y) 9pDQVHORVSUREOHPDV\HQORVHMHUFLFLRV7DPELpQOHDHODQiOLVLVVLJXLHQWHDOHMHPSOR
GHODVHFFLyQ
ii $XQTXHVHKDHQIDWL]DGRHOFRQFHSWRGHXQDVROXFLyQHQHVWDVHFFLyQWDPELpQ
GHEHUtDFRQVLGHUDUTXHXQD('QRQHFHVDULDPHQWHWLHQHXQDVROXFLyQ9HDHOSUREOHPDGHORVHMHUFLFLRV(OWHPDGHVLH[LVWHXQDVROXFLyQVHWUDWDUiHQOD
VLJXLHQWHVHFFLyQ
iii 3RGUtDQRVHUHYLGHQWHVLXQD('2GHSULPHURUGHQHVFULWDHQVXIRUPDGLIHUHQFLDOM(x, y)dx N(x, y)dy HVOLQHDORQROLQHDOSRUTXHQRKD\QDGD
HQHVWDIRUPDTXHQRVPXHVWUHTXpVtPERORVGHQRWDQDODYDULDEOHGHSHQGLHQWH
9pDQVHORVSUREOHPDV\GHORVHMHUFLFLRV
iv 3RGUtDSDUHFHUSRFRLPSRUWDQWHVXSRQHUTXHF(x, y, y, . . . , y (n)) SXHGH
UHVROYHUSDUDy(n)SHURKD\TXHVHUFXLGDGRVRFRQHVWR([LVWHQH[FHSFLRQHV\
KD\UHDOPHQWHDOJXQRVSUREOHPDVFRQHFWDGRVFRQHVWDVXSRVLFLyQ9pDQVHORV
SUREOHPDV\GHORVHMHUFLFLRV
v 3XHGHHQFRQWUDUHOWpUPLQRsoluciones de forma cerradaHQOLEURVGH('R
HQFODVHVGHHFXDFLRQHVGLIHUHQFLDOHV/DWUDGXFFLyQGHHVWDIUDVHQRUPDOPHQWH
VHUH¿HUHDODVVROXFLRQHVH[SOtFLWDVTXHVRQH[SUHVDEOHVHQWpUPLQRVGHfunciones elementales RFRQRFLGDV FRPELQDFLRQHV¿QLWDVGHSRWHQFLDVHQWHUDVGHx,
UDtFHV IXQFLRQHV H[SRQHQFLDOHV \ ORJDUtWPLFDV \ IXQFLRQHV WULJRQRPpWULFDV \
IXQFLRQHVWULJRQRPpWULFDVLQYHUVDV
vi) 6LWRGDVROXFLyQGHXQD('2GHnpVLPRRUGHQF(x, y, y’,…, y(n)) HQXQLQWHUYDORIVHSXHGHREWHQHUDSDUWLUGHXQDIDPLOLDnSDUiPHWURVG(x, y, c1, c2,…, cn) = 0
HOLJLHQGRDSURSLDGDPHQWHORVSDUiPHWURV ci, i = 1, 2, …, n HQWRQFHVGLUHPRV
TXH OD IDPLOLD HV OD solución general GH OD ('$O UHVROYHU ('2 OLQHDOHV LPSRQHPRV DOJXQDV UHVWULFFLRQHV UHODWLYDPHQWH VLPSOHV HQ ORV FRH¿FLHQWHV GH OD
HFXDFLyQFRQHVWDVUHVWULFFLRQHVSRGHPRVDVHJXUDUQRVyORTXHH[LVWHXQDVROXFLyQHQXQLQWHUYDORVLQRWDPELpQTXHXQDIDPLOLDGHVROXFLRQHVSURGXFHWRGDVODV
SRVLEOHVVROXFLRQHV/DV('2QROLQHDOHVFRQH[FHSFLyQGHDOJXQDVHFXDFLRQHV
GHSULPHURUGHQVRQQRUPDOPHQWHGLItFLOHVRLPSRVLEOHVGHUHVROYHUHQWpUPLQRV
GHIXQFLRQHVHOHPHQWDOHV$GHPiVVLREWHQHPRVXQDIDPLOLDGHVROXFLRQHVSDUD
XQD HFXDFLyQ QR OLQHDO QR HV REYLR VL OD IDPLOLD FRQWLHQH WRGDV ODV VROXFLRQHV
(QWRQFHVDQLYHOSUiFWLFRODGHVLJQDFLyQGH³VROXFLyQJHQHUDO´VHDSOLFDVyORD
ODV('2OLQHDOHV(VWHFRQFHSWRVHUiUHWRPDGRHQODVHFFLyQ\HQHOFDStWXOR
10
CAPÍTULO 1
l
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
EJERCICIOS 1.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-1.
(QORVSUREOHPDVDHVWDEOH]FDHORUGHQGHODHFXDFLyQGLIHUHQFLDORUGLQDULDGDGD'HWHUPLQHVLODHFXDFLyQHVOLQHDORQR
OLQHDOFRPSDUDQGRFRQODHFXDFLyQ
1. (1
2. x
x)y
d3y
dx3
dy
dx
4.
d 2u
dr 2
5.
d 2y
dx 2
u
0
cos(r
19.
u)
2
x
uv
P(1
P); P
22. dy
dx
2xy
1; y
0
9. (y 2 1) dx x dy HQyHQx
(v
u
ue ) du
2
23. d y
dx2
4
3
24. x3 d y
dx3
0; en v; en u
(QORVSUREOHPDVGHODOFRPSUXHEHTXHODIXQFLyQLQGLFDGDHVXQDVROXFLyQH[SOtFLWDGHODHFXDFLyQGLIHUHQFLDOGDGD
7RPHXQLQWHUYDORIGHGH¿QLFLyQDSURSLDGRSDUDFDGDVROXFLyQ
dy
dt
24; y
20y
6
5
6
e
5
y
c1x
dy
dx
2x2
1
(QORVSUREOHPDVDFRPSUXHEHTXHODIXQFLyQLQGLFDGD
y (x HVXQDVROXFLyQH[SOtFLWDGHODHFXDFLyQGLIHUHQFLDO
GDGDGHSULPHURUGHQ3URFHGDFRPRHQHOHMHPSORFRQVLGHUDGRD VLPSOHPHQWHFRPRXQDfunción\GpVXGRPLQLR
/XHJRFRQVLGHUHD FRPRXQDsoluciónGHODHFXDFLyQGLIHUHQFLDO\GpDOPHQRVXQLQWHUYDORIGHGH¿QLFLyQ
y
x
8; y
16. y 25 y y WDQx
2
x
2
x2
et dt
c1e
x2
0
4y
c1e2x
0; y
d 2y
dx2
x
c2 x
dy
dx
c2 xe2x
12x2;
y
4x2
c3 x ln x
25. &RPSUXHEHTXHODIXQFLyQGH¿QLGDHQSDUWHV
x2, x
x2, x
0
0
HVXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDOxy 2y 0
HQ , ).
20t
14. y y WDQx y FRVx OQ VHFx WDQx)
x)y
t
x
e
y
13. y 6y 13y y e 3xFRVx
15. (y
1
1
c1et
1 c1et
11. 2y y y e x
12.
2X
X
2X); ln
1)(1
dP
dt
21.
(QORVSUREOHPDV\GHWHUPLQHVLODHFXDFLyQGLIHUHQFLDO
GDGDGHSULPHURUGHQHVOLQHDOHQODYDULDEOHGHSHQGLHQWHLQGLFDGDDODMXVWDUpVWDFRQODSULPHUDHFXDFLyQGLIHUHQFLDOGDGD
HQ
10. u dv
(X
(QORVSUREOHPDVDFRPSUXHEHTXHODIDPLOLDGHIXQFLRQHV LQGLFDGD HV XQD VROXFLyQ GH OD HFXDFLyQ GLIHUHQFLDO GDGD
6XSRQJDXQLQWHUYDORIGHGH¿QLFLyQDGHFXDGRSDUDFDGDVROXFLyQ
(cos )y
.
x2 .
x
3
1
dX
dt
20. 2xy dx (x 2 y) dy 2x 2y y 2 1
2
k
R2
7. (sen )y
18. 2y y 3FRVx y (1 VHQx)
(QORVSUREOHPDV\FRPSUXHEHTXHODH[SUHVLyQLQGLFDGDHVXQDVROXFLyQLPSOtFLWDGHODHFXDFLyQGLIHUHQFLDOGDGD
GH SULPHU RUGHQ (QFXHQWUH DO PHQRV XQD VROXFLyQ H[SOtFLWD
y (x HQFDGDFDVR8WLOLFHDOJXQDDSOLFDFLyQSDUDWUD]DU
JUi¿FDVSDUDREWHQHUODJUi¿FDGHXQDVROXFLyQH[SOtFLWD'p
XQLQWHUYDORIGHGH¿QLFLyQGHFDGDVROXFLyQ .
cos x
0
dy
dx
1
d R
dt 2
8. ẍ
y
6y
du
dr
2
5y
4
t 3y
3. t 5y(4)
6.
4xy
17. y 2xy 2 y 1兾(4 x 2)
4 x
2
26. (Q HO HMHPSOR YLPRV TXH y 1(x) 125 x2
\ y 2(x) 125 x2 VRQVROXFLRQHVGHdy兾dx
x兾yHQHOLQWHUYDOR ([SOLTXHSRUTXpODIXQFLyQ
GH¿QLGDHQSDUWHV
y
25
25
x2 ,
x2,
5
0
x
x
0
5
noHVXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDOHQHOLQWHUYDOR 5, 5).
(QORVSUREOHPDVDGHWHUPLQHORVYDORUHVGHmSDUDTXHOD
IXQFLyQy emxVHDXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDOGDGD
1.1 DEFINICIONES Y TERMINOLOGÍA
27. y 2y 0
28. 5y 2y
29. y 5y 6y 0
30. 2y 7y 4y 0
(QORVSUREOHPDV\GHWHUPLQHORVYDORUHVGHmSDUDTXH
ODIXQFLyQy xmVHDXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDO
GDGD
31. xy 2y 0
32. x2y 7xy 15y 0
(QORVSUREOHPDVGHODOHPSOHHHOFRQFHSWRGHTXHy c,
x HVXQDIXQFLyQFRQVWDQWHVL\VyORVLy SDUD
GHWHUPLQDUVLODHFXDFLyQGLIHUHQFLDOGDGDWLHQHVROXFLRQHVFRQVWDQWHV
33. 3xy 5y 10
34. y y 2 2y 3
35. (y 1)y 1
36. y 4y 6y 10
(QORVSUREOHPDV\FRPSUXHEHTXHHOSDUGHIXQFLRQHV
TXHVHLQGLFDHVXQDVROXFLyQGHOVLVWHPDGDGRGHHFXDFLRQHV
GLIHUHQFLDOHVHQHOLQWHUYDOR , ).
37. dx
dt
x
dy
dt
x
y
e
2
38. d x
dt 2
3y
5x
3y;
2t
3e6t,
e
2t
5e6t
4y
d 2y
4x
dt 2
x cos 2t
y
cos 2t
l
11
43. 'DGRTXHy VHQxHVXQDVROXFLyQH[SOtFLWDGHODHFXDFLyQ
dy
GLIHUHQFLDO GH SULPHU RUGHQ
11 y2 HQFXHQWUH
dx
XQLQWHUYDORGHGH¿QLFLyQI>Sugerencia: I noHVHOLQWHUYDOR , ).]
44. $QDOLFHSRUTXpLQWXLWLYDPHQWHVHVXSRQHTXHODHFXDFLyQ
GLIHUHQFLDOOLQHDOy 2y 4y VHQtWLHQHXQDVROXFLyQGHODIRUPDy AVHQt BFRVtGRQGHA\BVRQ
FRQVWDQWHV'HVSXpVGHWHUPLQHODVFRQVWDQWHVHVSHFt¿FDV
A\BWDOHVTXHy AVHQt BFRVtHVXQDVROXFLyQSDUWLFXODUGHOD('
(QORVSUREOHPDV\OD¿JXUDGDGDUHSUHVHQWDODJUi¿FDGH
XQDVROXFLyQLPSOtFLWDG(x, y) GHXQDHFXDFLyQGLIHUHQFLDO
dy兾dx f (x, y (QFDGDFDVRODUHODFLyQG(x, y) GH¿QH
LPSOtFLWDPHQWHYDULDVVROXFLRQHVGHOD('5HSURGX]FDFXLGDGRVDPHQWHFDGD¿JXUDHQXQDKRMD8VHOiSLFHVGHGLIHUHQWHV
FRORUHV SDUD VHxDODU ORV VHJPHQWRV R SDUWHV GH FDGD JUi¿FD
TXHFRUUHVSRQGDDODVJUi¿FDVGHODVVROXFLRQHV5HFXHUGHTXH
XQDVROXFLyQ GHEHVHUXQDIXQFLyQ\VHUGHULYDEOH8WLOLFH
OD FXUYD VROXFLyQ SDUD HVWLPDU XQ LQWHUYDOR GH GH¿QLFLyQ I
GHFDGDVROXFLyQ .
45.
y
et
1
et;
sen 2 t
sen 2 t
1
5
1
5
FIGURA 1.1.6 *Ui¿FDSDUDHOSUREOHPD
et
Problemas para analizar
y
46.
39. &RQVWUX\DXQDHFXDFLyQGLIHUHQFLDOTXHQRWHQJDDOJXQD
VROXFLyQUHDO
1
40. &RQVWUX\DXQDHFXDFLyQGLIHUHQFLDOTXHHVWpVHJXURTXHVRODPHQWHWLHQHODVROXFLyQWULYLDOy ([SOLTXHVXUD]RQDPLHQWR
41. ¢4Xp IXQFLyQ FRQRFH GH FiOFXOR FX\D SULPHUD GHULYDGD
VHD HOOD PLVPD" ¢6X SULPHUD GHULYDGD HV XQ P~OWLSOR
FRQVWDQWHkGHVtPLVPD"(VFULEDFDGDUHVSXHVWDHQIRUPD
GHXQDHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQFRQXQDVROXFLyQ
42. ¢4XpIXQFLyQ RIXQFLRQHV GHFiOFXORFRQRFHFX\DVHJXQGDGHULYDGDVHDHOODPLVPD"¢6XVHJXQGDGHULYDGDHV
ODQHJDWLYDGHVtPLVPD"(VFULEDFDGDUHVSXHVWDHQIRUPD
GHXQDHFXDFLyQGLIHUHQFLDOGHVHJXQGRRUGHQFRQXQDVROXFLyQ
x
1
et,
1
x
FIGURA 1.1.7 *Ui¿FDSDUDHOSUREOHPD
47. /DVJUi¿FDVGHORVPLHPEURVGHXQDIDPLOLDXQLSDUDPpWULFD x3 y3 3cxy VH OODPDQ folium de Descartes.
&RPSUXHEHTXHHVWDIDPLOLDHVXQDVROXFLyQLPSOtFLWDGH
ODHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQ
dy
dx
y(y3 2x3)
x(2y3 x3)
12
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
48. /DJUi¿FDGHOD¿JXUDHVHOPLHPEURGHODIDPLOLDGHO
IROLXPGHOSUREOHPDFRUUHVSRQGLHQWHDc $QDOLFH
¢FyPRSXHGHOD('GHOSUREOHPDD\XGDUDGHWHUPLQDU
ORVSXQWRVGHODJUi¿FDGHx3 y3 3xyGRQGHODUHFWD
WDQJHQWHHVYHUWLFDO"¢&yPRVDEHUGyQGHXQDUHFWDWDQJHQWHTXHHVYHUWLFDOD\XGDDGHWHUPLQDUXQLQWHUYDORI GH
GH¿QLFLyQGHXQDVROXFLyQ GHOD('"(ODERUHVXVLGHDV
\ FRPSDUH FRQ VXV HVWLPDFLRQHV GH ORV LQWHUYDORV HQ HO
SUREOHPD
49. (QHOHMHPSORHOLQWHUYDORIPiVJUDQGHVREUHHOFXDOODV
VROXFLRQHVH[SOtFLWDVy 1(x \y 2(x VHHQFXHQWUDQ
GH¿QLGDV HV HO LQWHUYDOR DELHUWR ¢3RU TXp I QR
SXHGHVHUHOLQWHUYDORFHUUDGRI GH¿QLGRSRU>@"
50. (Q HO SUREOHPD VH GD XQD IDPLOLD XQLSDUDPpWULFD GH
VROXFLRQHVGHOD('P P(1P ¢&XDOTXLHUFXUYDVROXFLyQSDVDSRUHOSXQWR "¢<SRUHOSXQWR "
51. $QDOLFH\PXHVWUHFRQHMHPSORVFyPRUHVROYHUHFXDFLRQHV
GLIHUHQFLDOHVGHODVIRUPDVdy兾dx f (x \G࣠2y兾dx 2 f (x).
52. /DHFXDFLyQGLIHUHQFLDOx(y)2 4y 12x3 WLHQHOD
IRUPDGDGDHQODHFXDFLyQ 'HWHUPLQHVLODHFXDFLyQ
VHSXHGHSRQHUHQVXIRUPDQRUPDOdy兾dx f (x, y).
53. /D IRUPD QRUPDO GH XQD HFXDFLyQ GLIHUHQFLDO GH
npVLPRRUGHQHVHTXLYDOHQWHDODHFXDFLyQ VLODVGRV
IRUPDVWLHQHQH[DFWDPHQWHODVPLVPDVVROXFLRQHV)RUPH
XQDHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQSDUDODTXHF(x,
y, y) QRVHDHTXLYDOHQWHDODIRUPDQRUPDOdy兾dx
f (x, y).
54. 'HWHUPLQH XQD HFXDFLyQ GLIHUHQFLDO GH VHJXQGR RUGHQ
F(x, y, y, y) SDUDODFXDOy c1x c 2x 2HVXQDIDPLOLDGHVROXFLRQHVGHGRVSDUiPHWURV$VHJ~UHVHGHTXHVX
HFXDFLyQHVWpOLEUHGHORVSDUiPHWURVc1\c2.
$PHQXGRVHSXHGHREWHQHULQIRUPDFLyQFXDOLWDWLYDVREUH
XQDVROXFLyQy (x GHXQDHFXDFLyQGLIHUHQFLDOGHOD
HFXDFLyQPLVPD$QWHVGHWUDEDMDUFRQORVSUREOHPDV±
UHFXHUGH HO VLJQL¿FDGR JHRPpWULFR GH ODV GHULYDGDV
dy兾dx\d 2y兾dx 2.
dy
2
55. &RQVLGHUHODHFXDFLyQGLIHUHQFLDO e[࣠ .
dx
a) ([SOLTXHSRUTXpXQDVROXFLyQGHOD('GHEHVHUXQD
IXQFLyQFUHFLHQWHHQFXDOTXLHULQWHUYDORGHOHMHGHODVx.
b) ¢$TXpVRQLJXDOHV lím dy dx y lím dy dx "¢4Xp
x
x
OH VXJLHUH HVWR UHVSHFWR D XQD FXUYD VROXFLyQ FRQIRUPHx : "
c) 'HWHUPLQH XQ LQWHUYDOR VREUH HO FXDO XQD VROXFLyQ
FXUYDHVFyQFDYDKDFLDDEDMR\VREUHHOFXDOODFXUYD
HVFyQFDYDHQXQLQWHUYDOR
d) %RVTXHMHODJUi¿FDGHXQDVROXFLyQy (x GHOD
HFXDFLyQGLIHUHQFLDOFX\DIRUPDVHVXJLHUHHQORVLQFLVRVD DOF
56. &RQVLGHUHODHFXDFLyQGLIHUHQFLDOdy兾dx 5 – y.
a) <DVHDSRULQVSHFFLyQRDWUDYpVGHOPpWRGRTXHVH
VXJLHUHHQORVSUREOHPDVDHQFXHQWUHXQDVROXFLyQFRQVWDQWHGHOD('
b) 8WLOL]DQGRVyORODHFXDFLyQGLIHUHQFLDOGHWHUPLQHORV
LQWHUYDORVHQHOHMHyHQORVTXHXQDVROXFLyQQRFRQVWDQWHy (x VHDFUHFLHQWH'HWHUPLQHORVLQWHUYDORV
HQHOHMHyHQORVFXDOHVy (x HVGHFUHFLHQWH
57. &RQVLGHUH OD HFXDFLyQ GLIHUHQFLDO dy兾dx y(a – by),
GRQGHa\bVRQFRQVWDQWHVSRVLWLYDV
a) <DVHDSRULQVSHFFLyQRDWUDYpVGHOPpWRGRTXHVH
VXJLHUHHQORVSUREOHPDVDGHWHUPLQHGRVVROXFLRQHVFRQVWDQWHVGHOD('
b) 8VDQGRVyORODHFXDFLyQGLIHUHQFLDOGHWHUPLQHORVLQWHUYDORVHQHOHMHyHQORVTXHXQDVROXFLyQQRFRQVWDQWH
y (x HVFUHFLHQWH'HWHUPLQHORVLQWHUYDORVHQORV
TXHy (x HVGHFUHFLHQWH
c) 8WLOL]DQGRVyORODHFXDFLyQGLIHUHQFLDOH[SOLTXHSRUTXp
y a兾2bHVODFRRUGHQDGDyGHXQSXQWRGHLQÀH[LyQGH
ODJUi¿FDGHXQDVROXFLyQQRFRQVWDQWHy (x).
d) (Q ORV PLVPRV HMHV FRRUGHQDGRV WUDFH ODV JUi¿FDV
GHODVGRVVROXFLRQHVFRQVWDQWHVHQHOLQFLVRD (VWDV
VROXFLRQHVFRQVWDQWHVSDUWHQHOSODQRxyHQWUHVUHJLRQHV(QFDGDUHJLyQWUDFHODJUi¿FDGHXQDVROXFLyQ
QRFRQVWDQWHy (x FX\DIRUPDVHVXJLHUHSRUORV
UHVXOWDGRVGHORVLQFLVRVE \F
58. &RQVLGHUHODHFXDFLyQGLIHUHQFLDOy y2 4.
a) ([SOLTXHSRUTXpQRH[LVWHQVROXFLRQHVFRQVWDQWHVGH
ODHFXDFLyQGLIHUHQFLDO
b) 'HVFULED OD JUi¿FD GH XQD VROXFLyQ y (x 3RU
HMHPSOR¢SXHGHXQDFXUYDVROXFLyQWHQHUXQH[WUHPR
UHODWLYR"
c) ([SOLTXH SRU TXp y HV OD FRRUGHQDGD y GH XQ
SXQWRGHLQÀH[LyQGHXQDFXUYDVROXFLyQ
d) 7UDFHODJUi¿FDGHXQDVROXFLyQy (x GHODHFXDFLyQGLIHUHQFLDOFX\DIRUPDVHVXJLHUHHQORVLQFLVRV
D DOF
Tarea para el laboratorio de computación
(QORVSUREOHPDV\XVHXQ&$6 SRUVXVVLJODVHQLQJOpV
6LVWHPD$OJHEUDLFR&RPSXWDFLRQDO SDUDFDOFXODUWRGDVODV
GHULYDGDV\UHDOLFHODVVLPSOL¿FDFLRQHVQHFHVDULDVSDUDFRPSUREDUTXHODIXQFLyQLQGLFDGDHVXQDVROXFLyQSDUWLFXODUGH
ODHFXDFLyQGLIHUHQFLDO
59. y (4) 20y 158y 580y 841y
y xe 5xFRVx
60. x3y 2x2y 20xy 78y 0;
sen(5 ln x)
cos(5 ln x)
3
y 20
x
x
1.2
1.2
PROBLEMAS CON VALORES INICIALES
l
13
PROBLEMAS CON VALORES INICIALES
REPASO DE MATERIAL
l )RUPDQRUPDOGHXQD('
l 6ROXFLyQGHXQD('
l )DPLOLDGHVROXFLRQHV
INTRODUCCIÓN &RQIUHFXHQFLDQRVLQWHUHVDQSUREOHPDVHQORVTXHEXVFDPRVXQDVROXFLyQy(x)
GHXQDHFXDFLyQGLIHUHQFLDOHQODTXHTXHy(x VDWLVIDFHFRQGLFLRQHVSUHVFULWDVHVGHFLUFRQGLFLRQHV
LPSXHVWDVVREUHXQDy(x GHVFRQRFLGDRVXVGHULYDGDV(QDOJ~QLQWHUYDORITXHFRQWLHQHDx0HOSUREOHPD
GHUHVROYHUXQDHFXDFLyQGLIHUHQFLDOGHnpVLPRRUGHQVXMHWRDODVnFRQGLFLRQHVTXHORDFRPSDxDQ
HVSHFL¿FDGDVHQx0
Resolver:
d ny
f 冢x, y, y, . . . , y(n1)冣
dxn
Sujeto a:
y(x0) y0, y(x0) y1, . . . , y(n1)(x0) yn1,
(1)
GRQGHy 0, y1, . . . , yn1VRQFRQVWDQWHVUHDOHVDUELWUDULDVGDGDVVHOODPDproblema con valores iniciales
(PVI) en n-ésimo orden/RVYDORUHVGHy(x \GHVXVSULPHUDVn±GHULYDGDVHQXQVRORSXQWRx 0,
y(x 0) y 0, y(x 0) y1, . . . , y (n1)(x 0) yn1VHOODPDQcondiciones iniciales (CI).
5HVROYHUXQSUREOHPDGHYDORULQLFLDOGHnpVLPRRUGHQWDOFRPR FRQIUHFXHQFLDLPSOLFDHQFRQWUDUSULPHURXQDIDPLOLDnSDUDPpWULFDGHVROXFLRQHVGHODHFXDFLyQGLIHUHQFLDOGDGD\OXHJRXVDU
ODVFRQGLFLRQHVLQLFLDOHVHQx0SDUDGHWHUPLQDUODVnFRQVWDQWHVHQHVWDIDPLOLD/DVROXFLyQSDUWLFXODU
UHVXOWDQWHHVWiGH¿QLGDHQDOJ~QLQWHUYDORITXHFRQWLHQHHOSULPHUSXQWRx0.
y
INTERPRETACIÓN GEOMÉTRICA DE LOS PVI /RVFDVRVn \n HQ
dy
f (x, y)
Resolver:
dx
(2)
y(x0) y0
Sujeto a:
soluciones de la ED
\
(x0, y0)
I
FIGURA 1.2.1
SULPHURUGHQ
y
x
soluciones de la ED
m = y1
(x0, y0)
x
FIGURA 1.2.2 6ROXFLyQGHO39,GH
VHJXQGRRUGHQ
Resolver:
Sujeto a:
6ROXFLyQGHO39,GH
I
d 2y
dx 2
y(x0)
f (x, y, y )
y0, y (x0)
(3)
y1
VRQSUREOHPDVFRQYDORUHVLQLFLDOHVGHSULPHU\VHJXQGRRUGHQUHVSHFWLYDPHQWH(VWRV
GRVSUREOHPDVVRQIiFLOHVGHLQWHUSUHWDUHQWpUPLQRVJHRPpWULFRV3DUDODHFXDFLyQ
HVWDPRVEXVFDQGRXQDVROXFLyQy(x GHODHFXDFLyQGLIHUHQFLDOy f(x, y HQXQLQWHUYDOR
ITXHFRQWHQJDDx0GHIRUPDTXHVXJUi¿FDSDVHSRUHOSXQWRGDGR x0, y0 (QOD¿JXUD
VHPXHVWUDHQD]XOXQDFXUYDVROXFLyQ3DUDODHFXDFLyQ TXHUHPRVGHWHUPLQDU
XQDVROXFLyQy(x GHODHFXDFLyQGLIHUHQFLDOy f (x, y, y HQXQLQWHUYDORITXHFRQWHQJD
Dx0GHWDOPDQHUDTXHVXJUi¿FDQRVyORSDVHSRUHOSXQWRGDGR x0, y0 VLQRTXHWDPELpQ
ODSHQGLHQWHDODFXUYDHQHVHSXQWRVHDHOQ~PHURy1(QOD¿JXUDVHPXHVWUDHQ
D]XOXQDFXUYDVROXFLyQ/DVSDODEUDVcondiciones inicialesVXUJHQGHORVVLVWHPDVItVLFRV
GRQGHODYDULDEOHLQGHSHQGLHQWHHVHOWLHPSRt\GRQGHy(t0) y0\y(t0) y1UHSUHVHQWDQ
ODSRVLFLyQ\ODYHORFLGDGUHVSHFWLYDPHQWHGHXQREMHWRDOFRPLHQ]RRDOWLHPSRLQLFLDOt0.
EJEMPLO 1 Dos PVI de primer orden
a) (QHOSUREOHPDGHORVHMHUFLFLRVVHOHSLGLyTXHGHGXMHUDTXHy cexHVXQD
IDPLOLDXQLSDUDPpWULFDGHVROXFLRQHVGHODHFXDFLyQGHSULPHURUGHQy y7RGDVODV
VROXFLRQHVHQHVWDIDPLOLDHVWiQGH¿QLGDVHQHOLQWHUYDOR , 6LLPSRQHPRVXQD
FRQGLFLyQLQLFLDOGLJDPRVy(0) HQWRQFHVDOVXVWLWXLUx 0, y HQODIDPLOLDVH
GHWHUPLQDODFRQVWDQWH ce0 cSRUORTXHy 3e xHVXQDVROXFLyQGHO39,
y y, y(0) 3.
14
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
b)$KRUDVLKDFHPRVTXHODFXUYDVROXFLyQSDVHSRUHOSXQWR HQOXJDUGH
HQWRQFHVy(1) VHREWHQGUi2 ceRc 2e1(QHVWHFDVRy 2e x1HV
XQDVROXFLyQGHO39,
y y, y(1) 2.
y
(0, 3)
(QOD¿JXUDVHPXHVWUDQHQD]XORVFXUR\HQURMRRVFXURODVGRVFXUYDVVROXFLyQ
x
(1, −2)
FIGURA 1.2.3 6ROXFLRQHVGHORVGRV
39,
y
−1
x
1
a) función definida para toda x excepto
en x = ±1
y
(OVLJXLHQWHHMHPSORPXHVWUDRWURSUREOHPDFRQYDORUHVLQLFLDOHVGHSULPHURUGHQ(Q
HVWHHMHPSORREVHUYHFyPRHOLQWHUYDORGHGH¿QLFLyQIGHODVROXFLyQy(x GHSHQGHGH
ODFRQGLFLyQLQLFLDOy(x0) y0.
EJEMPLO 2 Intervalo I GHGH¿QLFLyQGHXQDVROXFLyQ
(QHOSUREOHPDGHORVHMHUFLFLRVVHOHSHGLUiPRVWUDUTXHXQDIDPLOLDXQLSDUDPpWULFDGHVROXFLRQHVGHODHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQy 2xy2 HVy
1兾(x2 c 6LHVWDEOHFHPRVODFRQGLFLyQLQLFLDOy(0) HQWRQFHVDOVXVWLWXLUx \
y HQODIDPLOLDGHVROXFLRQHVVHREWLHQH1 1兾cRc $Vty 1兾(x21).
$KRUDHQIDWL]DPRVODVVLJXLHQWHVWUHVGLIHUHQFLDV
• &RQVLGHUDGDFRPRXQDfunciónHOGRPLQLRGHy 1兾(x2 HVHOFRQMXQWRGH
WRGRVORVQ~PHURVUHDOHVxSDUDORVFXDOHVy(x HVWiGH¿QLGDH[FHSWRHQx \
HQx 9HDOD¿JXUD D
• &RQVLGHUDGD FRPR XQD solución de la ecuación diferencial y 2xy2 0,
HOLQWHUYDORIGHGH¿QLFLyQGHy 1兾(x2 SRGUtDWRPDUVHFRPRFXDOTXLHU
LQWHUYDORHQHOFXDOy(x HVWiGH¿QLGD\HVGHULYDEOH&RPRVHSXHGHYHUHQ
OD¿JXUD D ORVLQWHUYDORVPiVODUJRVHQORVTXHy 1兾(x2 HVXQD
VROXFLyQVRQ , 1), ( \ ).
• &RQVLGHUDGDFRPRuna solución del problema con valores iniciales y 2xy2
0, y(0) HO LQWHUYDOR I GH GH¿QLFLyQ GH y 1兾(x2 SRGUtD VHU
FXDOTXLHU LQWHUYDOR HQ HO FXDO y(x HVWi GH¿QLGD HV GHULYDEOH \ FRQWLHQH DO
SXQWRLQLFLDOx HOLQWHUYDORPiVODUJRSDUDHOFXDOHVWRHVYiOLGRHV 1, 1).
9HDODFXUYDURMDHQOD¿JXUD E
9pDQVHORVSUREOHPDVDHQORVHMHUFLFLRVSDUDFRQWLQXDUFRQHOHMHPSOR
EJEMPLO 3 PVI de segundo orden
−1
1 x
(QHOHMHPSORGHODVHFFLyQYLPRVTXHx c1FRVt c2VHQtHVXQDIDPLOLDGH
VROXFLRQHVGHGRVSDUiPHWURVGHx 16x 'HWHUPLQHXQDVROXFLyQGHOSUREOHPD
FRQYDORUHVLQLFLDOHV
(0, −1)
x 16x 0, x
冢2 冣 2, x冢2 冣 1.
(4)
SOLUCIÓN 3ULPHUR DSOLFDPRV x(ʌ兾2) HQ OD IDPLOLD GH VROXFLRQHV
b) solución definida en el intervalo que
contiene x = 0
FIGURA 1.2.4 *Ui¿FDVGHODIXQFLyQ
\GHODVROXFLyQGHO39,GHOHMHPSOR
c1 FRVʌ c2VHQʌ 3XHVWRTXHFRVʌ \VHQʌ HQFRQWUDPRVTXH
c1 'HVSXpVDSOLFDPRVx(ʌ兾2) HQODIDPLOLDXQLSDUDPpWULFDGHVROXFLRQHV
x(t) FRVt c2VHQt'HULYDQGR\GHVSXpVKDFLHQGRt ʌ兾\x VHRE1
WLHQHVHQʌ 4c2FRVʌ DSDUWLUGHORFXDOYHPRVTXH c2 4 3RUORWDQWR
1
x 2 cos 4t 4 sen 4t HVXQDVROXFLyQGH
EXISTENCIA Y UNICIDAD $OFRQVLGHUDUXQSUREOHPDFRQYDORUHVLQLFLDOHVVXUJHQGRVLPSRUWDQWHVSUHJXQWDV
¿Existe la solución del problema?
Si existe la solución, ¿es única?
3DUDHOSUREOHPDFRQYDORUHVLQLFLDOHVGHODHFXDFLyQ SHGLPRV
Existencia
ecuación diferencial dy兾dx f (x, y) tiene soluciones?
{¿La
¿Alguna de las curvas solución pasa por el punto (x , y "
0
0
1.2
Unicidad
PROBLEMAS CON VALORES INICIALES
l
15
podemos estar seguros de que hay precisamente una
{¿Cuándo
curva solución que pasa a través del punto (x , y "
0
0
2EVHUYHTXHHQORVHMHPSORV\VHXVDODIUDVH³unaVROXFLyQ´HQOXJDUGH³laVROXFLyQ´GHOSUREOHPD(ODUWtFXORLQGH¿QLGR³XQD´VHXVDGHOLEHUDGDPHQWHSDUDVXJHULUOD
SRVLELOLGDGGHTXHSXHGHQH[LVWLURWUDVVROXFLRQHV+DVWDHOPRPHQWRQRVHKDGHPRVWUDGRTXHH[LVWHXQD~QLFDVROXFLyQGHFDGDSUREOHPD(OHMHPSORVLJXLHQWHPXHVWUDXQ
SUREOHPDFRQYDORUHVLQLFLDOHVFRQGRVVROXFLRQHV
EJEMPLO 4 Un PVI puede tener varias soluciones
&DGDXQDGHODVIXQFLRQHVy 0\y 161 x4 VDWLVIDFHODHFXDFLyQGLIHUHQFLDOdy兾dx xy
\ODFRQGLFLyQLQLFLDOy(0) SRUORTXHHOSUREOHPDFRQYDORUHVLQLFLDOHV
dy
xy1/2,
dx
y y = x 4/16
WLHQHDOPHQRVGRVVROXFLRQHV&RPRVHPXHVWUDHQOD¿JXUDODVJUi¿FDVGHODV
GRVVROXFLRQHVSDVDQSRUHOPLVPRSXQWR
1
y=0
x
(0, 0)
y(0) 0
FIGURA 1.2.5 'RVVROXFLRQHVGHO
PLVPR39,HQHOHMHPSOR
'HQWURGHORVOtPLWHVGHVHJXULGDGGHXQFXUVRIRUPDOGHHFXDFLRQHVGLIHUHQFLDOHVXQR
SXHGHFRQ¿DUHQTXHODmayoríaGHODVHFXDFLRQHVGLIHUHQFLDOHVWHQGUiQVROXFLRQHV\TXH
ODVVROXFLRQHVGHORVSUREOHPDVFRQYDORUHVLQLFLDOHVprobablementeVHUiQ~QLFDV6LQ
HPEDUJRHQODYLGDUHDOQRHVDVt3RUORWDQWRDQWHVGHWUDWDUGHUHVROYHUXQSUREOHPD
FRQYDORUHVLQLFLDOHVHVGHVHDEOHVDEHUVLH[LVWHXQDVROXFLyQ\FXDQGRDVtVHDVLpVWDHV
OD~QLFDVROXFLyQGHOSUREOHPD3XHVWRTXHYDPRVDFRQVLGHUDUHFXDFLRQHVGLIHUHQFLDOHV
GHSULPHURUGHQHQORVGRVFDStWXORVVLJXLHQWHVHVWDEOHFHUHPRVDTXtVLQGHPRVWUDUORXQ
WHRUHPDGLUHFWRTXHGDODVFRQGLFLRQHVVX¿FLHQWHVSDUDJDUDQWL]DUODH[LVWHQFLD\XQLFLGDG
GHXQDVROXFLyQGHXQSUREOHPDFRQYDORUHVLQLFLDOHVGHSULPHURUGHQGHODIRUPDGDGDHQ
ODHFXDFLyQ (VSHUDUHPRVKDVWDHOFDStWXORSDUDUHWRPDUODSUHJXQWDGHODH[LVWHQFLD
\XQLFLGDGGHXQSUREOHPDFRQYDORUHVLQLFLDOHVGHVHJXQGRRUGHQ
TEOREMA 1.2.1 Existencia de una solución única
3HQVHPRV HQ R FRPR XQD UHJLyQ UHFWDQJXODU HQ HO SODQR xy GH¿QLGD SRU
a x b, c y dTXHFRQWLHQHDOSXQWR x0, y0 HQVXLQWHULRU6Lf (x, y \
wf兾wyVRQFRQWLQXDVHQRHQWRQFHVH[LVWHDOJ~QLQWHUYDORI 0 x 0 h, x 0 h),
h FRQWHQLGRHQ>a, b@\XQDIXQFLyQ~QLFDy(x GH¿QLGDHQI0TXHHVXQD
VROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHV
y
d
(OUHVXOWDGRDQWHULRUHVXQRGHORVWHRUHPDVGHH[LVWHQFLD\XQLFLGDGPiVSRSXODUHVSDUDHFXDFLRQHVGLIHUHQFLDOHVGHSULPHURUGHQ\DTXHHOFULWHULRGHFRQWLQXLGDGGH
f (x, y \GHwf兾wyHVUHODWLYDPHQWHIiFLOGHFRPSUREDU(QOD¿JXUDVHPXHVWUDOD
JHRPHWUtDGHOWHRUHPD
R
(x0 , y0)
c
EJEMPLO 5 Revisión del ejemplo 4
a
I0
b x
FIGURA 1.2.6 5HJLyQUHFWDQJXODUR.
&RPRYLPRVHQHOHMHPSORODHFXDFLyQGLIHUHQFLDOdy兾dx xy WLHQHDOPHQRVGRV
VROXFLRQHVFX\DVJUi¿FDVSDVDQSRUHOSXQWR $QDOL]DQGRODVIXQFLRQHV
f
x
f (x, y) xy1/2
y
y 2y1/2
YHPRVTXHVRQFRQWLQXDVHQODPLWDGVXSHULRUGHOSODQRGH¿QLGRSRUy 3RUWDQWR
HOWHRUHPDQRVSHUPLWHFRQFOXLUTXHDWUDYpVGHFXDOTXLHUSXQWR x0, y0), y0 HQ
ODPLWDGVXSHULRUGHOSODQRH[LVWHDOJ~QLQWHUYDORFHQWUDGRHQx0HQHOFXDOODHFXDFLyQ
GLIHUHQFLDOGDGDWLHQHXQDVROXFLyQ~QLFD$VtSRUHMHPSORD~QVLQUHVROYHUODVDEHPRVTXHH[LVWHDOJ~QLQWHUYDORFHQWUDGRHQHQHOFXDOHOSUREOHPDFRQYDORUHVLQLFLDOHVdy兾dx xy, y(2) WLHQHXQDVROXFLyQ~QLFD
16
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
(QHOHMHPSORHOWHRUHPDJDUDQWL]DTXHQRKD\RWUDVVROXFLRQHVGHORVSUREOHPDVFRQYDORUHVLQLFLDOHVy y, y(0) \y y, y(1) GLVWLQWDVDy 3ex
\ y 2ex1 UHVSHFWLYDPHQWH (VWR HV FRQVHFXHQFLD GHO KHFKR GH TXH f(x, y) y
\wf兾wy VRQFRQWLQXDVHQWRGRHOSODQRxy$GHPiVSRGHPRVPRVWUDUTXHHOLQWHUYDORIHQHOFXDOFDGDVROXFLyQHVWiGH¿QLGDHV , ).
INTERVALO DE EXISTENCIA Y UNICIDAD 6XSRQJD TXH y(x UHSUHVHQWD XQD
VROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHV /RVVLJXLHQWHVWUHVFRQMXQWRVGHQ~PHURVUHDOHVHQHOHMHxSXHGHQQRVHULJXDOHVHOGRPLQLRGHODIXQFLyQy(x HOLQWHUYDORIHQHOFXDOODVROXFLyQy(x HVWiGH¿QLGDRH[LVWH\HOLQWHUYDORI0GHH[LVWHQFLD
yXQLFLGDG(OHMHPSORGHODVHFFLyQPXHVWUDODGLIHUHQFLDHQWUHHOGRPLQLRGH
XQDIXQFLyQ\HOLQWHUYDORIGHGH¿QLFLyQ$KRUDVXSRQJDTXH x0, y0 HVXQSXQWR
HQHOLQWHULRUGHODUHJLyQUHFWDQJXODURHQHOWHRUHPD(VWRGDFRPRUHVXOWDGR
TXHODFRQWLQXLGDGGHODIXQFLyQf (x, y HQRSRUVtPLVPDHVVX¿FLHQWHSDUDJDUDQWL]DUODH[LVWHQFLDGHDOPHQRVXQDVROXFLyQGHdy兾dx f (x, y), y(x0) y0GH¿QLGD
HQDOJ~QLQWHUYDORI(OLQWHUYDORIGHGH¿QLFLyQSDUDHVWHSUREOHPDFRQYDORUHVLQLFLDOHVQRUPDOPHQWHVHWRPDFRPRHOLQWHUYDORPiVJUDQGHTXHFRQWLHQHx0HQHOFXDO
ODVROXFLyQy(x HVWiGH¿QLGD\HVGHULYDEOH(OLQWHUYDORIGHSHQGHWDQWRGHf (x, y)
FRPRGHODFRQGLFLyQLQLFLDOy(x0) y09HDORVSUREOHPDVDHQORVHMHUFLFLRV
/DFRQGLFLyQH[WUDGHFRQWLQXLGDGGHODSULPHUDGHULYDGDSDUFLDOwf兾wyHQRQRV
SHUPLWHGHFLUTXHQRVyORH[LVWHXQDVROXFLyQHQDOJ~QLQWHUYDORI0TXHFRQWLHQHx0,
VLQRTXHpVWDHVODúnicaVROXFLyQTXHVDWLVIDFHy(x0) y06LQHPEDUJRHOWHRUHPD
QRGDQLQJXQDLQGLFDFLyQGHORVWDPDxRVGHORVLQWHUYDORVI e I0el intervalo de
GH¿QLFLyQ,QRQHFHVLWDVHUWDQDPSOLRFRPRODUHJLyQ5\HOLQWHUYDORGHH[LVWHQFLD\
unicidad I0 puede no ser tan amplio como I. (OQ~PHUR h 0 TXHGH¿QHHOLQWHUYDOR
I0: (x0 h, x0 h SRGUtDVHUPX\SHTXHxRSRUORTXHHVPHMRUFRQVLGHUDUTXHOD
VROXFLyQy(x HVúnica en un sentido localHVWRHVXQDVROXFLyQGH¿QLGDFHUFDGHO
SXQWR x0, y0 9HDHOSUREOHPDHQORVHMHUFLFLRV
COMENTARIOS
i /DVFRQGLFLRQHVGHOWHRUHPDVRQVX¿FLHQWHVSHURQRQHFHVDULDV(VWRVLJQL¿FDTXHFXDQGRf (x, y \wf兾wyVRQFRQWLQXDVHQXQDUHJLyQUHFWDQJXODURVHGHEH
GHGXFLUTXHH[LVWHXQDVROXFLyQGHODHFXDFLyQ \HV~QLFDVLHPSUHTXH x0, y0 VHD
XQSXQWRLQWHULRUDR6LQHPEDUJRVLODVFRQGLFLRQHVHVWDEOHFLGDVHQODKLSyWHVLVGHO
WHRUHPDQRVRQYiOLGDVHQWRQFHVSXHGHRFXUULUFXDOTXLHUFRVDHOSUREOHPDGH
ODHFXDFLyQ puedeWHQHUXQDVROXFLyQ\HVWDVROXFLyQSXHGHVHU~QLFDRODHFXDFLyQ puedeWHQHUYDULDVVROXFLRQHVRpuedeQRWHQHUQLQJXQDVROXFLyQ$OOHHU
QXHYDPHQWHHOHMHPSORYHPRVTXHODKLSyWHVLVGHOWHRUHPDQRHVYiOLGDHQOD
UHFWDy SDUDODHFXDFLyQGLIHUHQFLDOdy兾dx xySHURHVWRQRHVVRUSUHQGHQWH
\DTXHFRPRYLPRVHQHOHMHPSORGHHVWDVHFFLyQKD\GRVVROXFLRQHVGH¿QLGDV
HQXQLQWHUYDORFRP~Q±h x hTXHVDWLVIDFHy(0) 3RURWUDSDUWHODKLSyWHVLVGHOWHRUHPDQRHVYiOLGDHQODUHFWDy SDUDODHFXDFLyQGLIHUHQFLDO
dy兾dx |y _1RREVWDQWHVHSXHGHSUREDUTXHODVROXFLyQGHOSUREOHPDFRQ
YDORUHVLQLFLDOHVdy兾dx |y 1|, y(0) HV~QLFD¢3XHGHLQWXLUODVROXFLyQ"
ii (VUHFRPHQGDEOHSHQVDUWUDEDMDU\UHFRUGDUHOSUREOHPDGHORVHMHUFLFLRV
iii /DVFRQGLFLRQHVLQLFLDOHVVHSUHVFULEHQHQXQVRORSXQWRx03HURWDPELpQ
QRVLQWHUHVDODVROXFLyQGHHFXDFLRQHVGLIHUHQFLDOHVTXHHVWiQVXMHWDVDODVFRQGLFLRQHV HVSHFL¿FDGDV HQ y(x R VX GHULYDGD HQ GRV SXQWRV GLIHUHQWHV x0 \ x1.
&RQGLFLRQHVWDOHVFRPRy(1) = 0, y Ry(ʌ冫2) = 0, y(ʌ OODPDGDVcondiciones frontera8QDHFXDFLyQGLIHUHQFLDOFRQFRQGLFLRQHVIURQWHUDVHFRQRFHFRPR
XQproblema de valor a la frontera (PVF)3RUHMHPSORy Ȝy = 0, y(0) = 0,
y(ʌ HVXQSUREOHPDGHYDORUOtPLWH9HDORVSUREOHPDVDHQORVHMHUFLFLRV&XDQGRHPSHFHPRVDUHVROYHUHFXDFLRQHVGLIHUHQFLDOHVHQHOFDStWXOROR
KDUHPRVVyORFRQHFXDFLRQHVOLQHDOHVGHSULPHURUGHQ/DVGHVFULSFLRQHVPDWHPiWLFDVGHPXFKRVSUREOHPDVDSOLFDGRVUHTXLHUHQGHHFXDFLRQHVGHVHJXQGRRUGHQ
([DPLQDUHPRVDOJXQRVGHHVWRVSUREOHPDVHQORVFDStWXORV\
1.2 PROBLEMAS CON VALORES INICIALES
EJERCICIOS 1.2
2. y(1) 2
(QORVSUREOHPDVDy 1兾(x2 c HVXQDIDPLOLDXQLSDUDPpWULFDGHVROXFLRQHVGHOD('GHSULPHURUGHQy 2xy2
'HWHUPLQHXQDVROXFLyQGHO39,GHSULPHURUGHQTXHFRQVLVWH HQ HVWD HFXDFLyQ GLIHUHQFLDO \ OD FRQGLFLyQ LQLFLDO GDGD
'pHOLQWHUYDORIPiVODUJRHQHOFXDOHVWiGH¿QLGDODVROXFLyQ
3. y(2) 31
4. y(2) 21
5. y(0) 1
6. y
(12) 4
(QORVSUREOHPDVDx c1FRVt c2VHQtHVXQDIDPLOLD
GHVROXFLRQHVGHGRVSDUiPHWURVGHOD('GHVHJXQGRRUGHQ
x x 'HWHUPLQHXQDVROXFLyQGHO39,GHVHJXQGRRU
GHQTXHFRQVLVWHHQHVWDHFXDFLyQGLIHUHQFLDO\ODVFRQGLFLRQHVLQLFLDOHVGDGDV
7. x(0) 1,
x(0) 8
8. x(ʌ兾2) 0,
x(ʌ兾2) 1
9. x( 6)
10. x( 4)
1
2,
x ( 6)
0
2, x ( 4)
22
(QORVSUREOHPDVDy c1ex c2exHVXQDIDPLOLDGH
GRVSDUiPHWURVGHVROXFLRQHVGHVHJXQGRRUGHQ('y – y 0.
(QFXHQWUHXQDVROXFLyQGHO39,GHVHJXQGRRUGHQTXHFRQVLVWH
HQHVWDHFXDFLyQGLIHUHQFLDO\ODVFRQGLFLRQHVLQLFLDOHVGDGDV
11. y(0) 1, y(0) 2
12. y(1) 0,
13. y(1) 5,
14. y(0) 0,
y(1) e
y(1) 5
y(0) 0
(QORVSUREOHPDV\GHWHUPLQHSRULQVSHFFLyQDOPHQRV
GRVVROXFLRQHVGHO39,GHSULPHURUGHQGDGR
15. y 3y ,
16. xy 2y,
y(0) 0
y(0) 0
(QORVSUREOHPDVDGHWHUPLQHXQDUHJLyQGHOSODQRxy
GRQGHODHFXDFLyQGLIHUHQFLDOGDGDWHQGUtDXQDVROXFLyQ~QLFD
FX\DJUi¿FDSDVHSRUXQSXQWR x0, y0 HQODUHJLyQ
17.
dy
y2/3
dx
18.
dy
y
dx
20.
19. x
17
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-1
(QORVSUREOHPDV\y 1兾(1 c1ex HVXQDIDPLOLDXQLSDUDPpWULFDGHVROXFLRQHVGHOD('GHSULPHURUGHQy y y2.
(QFXHQWUHXQDVROXFLyQGHO39,GHSULPHURUGHQTXHFRQVLVWHHQ
HVWDHFXDFLyQGLIHUHQFLDO\ODFRQGLFLyQLQLFLDOGDGD
1. y(0) 13
l
dy
1xy
dx
dy
yx
dx
21. (4 y 2)y x 2
22. (1 y 3)y x 2
23. (x 2 y 2)y y 2
24. (y x)y y x
(QORVSUREOHPDVDGHWHUPLQHVLHOWHRUHPDJDUDQWL]DTXHODHFXDFLyQGLIHUHQFLDO y 1y2 9 WHQJDXQD
VROXFLyQ~QLFDTXHSDVDSRUHOSXQWRGDGR
25. (1, 4)
26. (5, 3)
27. (2, 3)
28. (1, 1)
29. a) 3RULQVSHFFLyQGHWHUPLQHXQDIDPLOLDXQLSDUDPpWULFD
GHVROXFLRQHVGHODHFXDFLyQGLIHUHQFLDOxy y&RP
SUXHEHTXHFDGDPLHPEURGHODIDPLOLDHVXQDVROXFLyQ
GHOSUREOHPDFRQYDORUHVLQLFLDOHVxy y, y(0) 0.
b) ([SOLTXHHOLQFLVRD GHWHUPLQDQGRXQDUHJLyQRHQHO
SODQR xy SDUD HO TXH OD HFXDFLyQ GLIHUHQFLDO xy y
WHQGUtD XQD VROXFLyQ ~QLFD TXH SDVH SRU HO SXQWR
(x0, y0 HQR.
c) &RPSUXHEHTXHODIXQFLyQGH¿QLGDSRUSDUWHV
冦0,x,
x0
x0
VDWLVIDFHODFRQGLFLyQy(0)'HWHUPLQHVLHVWDIXQFLyQHVWDPELpQXQDVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHVGHOLQFLVRD
30. a) &RPSUXHEHTXHy WDQ x c HVXQDIDPLOLDXQLSDUDPpWULFD GH VROXFLRQHV GH OD HFXDFLyQ GLIHUHQFLDO
y 1 y2.
b) 3XHVWRTXHf (x, y) 1 y2\wf兾wy 2yVRQFRQWLQXDVHQGRQGHTXLHUDODUHJLyQRHQHOWHRUHPD
VH SXHGH FRQVLGHUDU FRPR WRGR HO SODQR xy 8WLOLFH
OD IDPLOLD GH VROXFLRQHV GHO LQFLVR D SDUD GHWHUPLQDUXQDVROXFLyQH[SOtFLWDGHOSUREOHPDFRQYDORUHV
LQLFLDOHVGHSULPHURUGHQy 1 y2, y(0) $XQ
FXDQGRx0 HVWpHQHOLQWHUYDOR H[SOLTXH
SRUTXpODVROXFLyQQRHVWiGH¿QLGDHQHVWHLQWHUYDOR
y
c) '
HWHUPLQHHOLQWHUYDORIGHGH¿QLFLyQPiVODUJRSDUDOD
VROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHVGHOLQFLVRE
31. a) &RPSUXHEH TXH y 1兾(x c HV XQD IDPLOLD GH
VROXFLRQHVXQLSDUDPpWULFDGHODHFXDFLyQGLIHUHQFLDO
y y2.
b) 3XHVWRTXHf (x, y) y2\wf兾wy 2yVRQFRQWLQXDV
GRQGH VHD OD UHJLyQ R GHO WHRUHPD VH SXHGH
WRPDUFRPRWRGRHOSODQRxy'HWHUPLQHXQDVROXFLyQ
GHODIDPLOLDGHOLQFLVRD TXHVDWLVIDJDTXHy(0) 1.
'HVSXpVGHWHUPLQHXQDVROXFLyQGHODIDPLOLDGHOLQFLVR D TXH VDWLVIDJD TXH y(0) 'HWHUPLQH HO
LQWHUYDORIGHGH¿QLFLyQPiVODUJRSDUDODVROXFLyQGH
FDGDSUREOHPDFRQYDORUHVLQLFLDOHV
c) 'HWHUPLQHHOLQWHUYDORGHGH¿QLFLyQIPiVODUJRSDUD
ODVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHVy y2,
y(0) >Sugerencia/DVROXFLyQQRHVXQPLHPEUR
GHODIDPLOLDGHVROXFLRQHVGHOLQFLVRD @
18
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
32. a) 'HPXHVWUHTXHXQDVROXFLyQGHODIDPLOLDGHOLQFLVR
D GHOSUREOHPDTXHVDWLVIDFHy y2, y(1) HV
y 1兾(2 x).
b) 'HVSXpV GHPXHVWUH TXH XQD VROXFLyQ GH OD IDPLOLD
GHOLQFLVRD GHOSUREOHPDTXHVDWLVIDFHy y2,
y(3) HVy 1兾(2 x).
c) ¢6RQLJXDOHVODVVROXFLRQHVGHORVLQFLVRVD \E "
33. a) 9HUL¿TXH TXH x2 – y2 c HV XQD IDPLOLD GH VROXFLRQHV XQLSDUDPpWULFDV GH OD HFXDFLyQ GLIHUHQFLDO
y dy兾dx 3x.
b) %RVTXHMHDPDQRODJUi¿FDGHODVROXFLyQLPSOtFLWD
3x2 – y2 'HWHUPLQHWRGDVODVVROXFLRQHVH[SOtFLWDVy (x GHOD('GHOLQFLVRD GH¿QLGDVSRUHVWD
UHODFLyQ'pXQLQWHUYDORIGHGH¿QLFLyQGHFDGDXQD
GHODVVROXFLRQHVH[SOtFLWDV
c) (OSXQWR HVWiHQODJUi¿FDGHx2 – y2 SHUR
¢FXiOGHODVVROXFLRQHVH[SOtFLWDVGHOLQFLVRE VDWLVIDFHTXHy(2) "
34. a) 8WLOLFHODIDPLOLDGHVROXFLRQHVGHOLQFLVRD GHOSUREOHPD
SDUD GHWHUPLQDU XQD VROXFLyQ LPSOtFLWD GHO SUREOH
PDFRQYDORUHVLQLFLDOHVy dy兾dx 3x, y(2) 'HV
SXpVERVTXHMHDPDQRODJUi¿FDGHODVROXFLyQH[SOtFLWD
GHHVWHSUREOHPD\GpVXLQWHUYDORIGHGH¿QLFLyQ
b) ¢([LVWHQDOJXQDVVROXFLRQHVH[SOtFLWDVGHy dy兾dx
3xTXHSDVHQSRUHORULJHQ"
(QORVSUREOHPDVDVHSUHVHQWDODJUi¿FDGHXQPLHPEUR
GHODIDPLOLDGHVROXFLRQHVGHXQDHFXDFLyQGLIHUHQFLDOGHVHJXQGRRUGHQd 2y兾dx 2 f (x, y, y 5HODFLRQHODFXUYDVROXFLyQ
FRQDOPHQRVXQSDUGHODVVLJXLHQWHVFRQGLFLRQHVLQLFLDOHV
a) y(1) 1, y(1) 2 b) y(1) 0, y(1) 4
c) y(1) 1, y(1) 2
d) y(0) 1, y(0) 2
e) y(0) 1, y(0) 0 f) y(0) 4, y(0) 2
35.
y
5
37.
y
5
x
5
−5
FIGURA 1.2.9 *Ui¿FDGHOSUREOHPD
38.
y
5
5
x
−5
FIGURA 1.2.10 *Ui¿FDGHOSUREOHPD
(QORVSUREOHPDVDy = c1FRVx c2VHQxHVXQD
IDPLOLDGHVROXFLRQHVGHGRVSDUiPHWURVGHOD('GHVHJXQGR
RUGHQy 4y 6LHVSRVLEOHGHWHUPLQHXQDVROXFLyQGHOD
HFXDFLyQGLIHUHQFLDOTXHVDWLVIDFHODVFRQGLFLRQHVGDGDV/DV
FRQGLFLRQHVHVSHFL¿FDGDVHQGRVSXQWRVGLIHUHQWHVVHGHQRPLQDQFRQGLFLRQHVIURQWHUD
39. y(0) 0, y(ʌ冫4) 3
42. y(0) 0, y(ʌ) 0
40. y(0) 0, y(ʌ冫6) 0 43. y(0) 1, y(ʌ) 5
41. y(0) 0, y(ʌ) 2
44. y(ʌ冫2) 1, y(ʌ) 0
Problemas de análisis
(QORVSUREOHPDV\XWLOLFHHOSUREOHPDGHORVHMHUFLFLRV\ \ GHHVWDVHFFLyQ
5
x
46. 'HWHUPLQHXQDIXQFLyQy f (x FX\DVHJXQGDGHULYDGDHVy
12x HQFDGDSXQWR x, y GHVXJUi¿FD\y x 5
HVWDQJHQWHDODJUi¿FDHQHOSXQWRFRUUHVSRQGLHQWHDx 1.
−5
FIGURA 1.2.7 *Ui¿FDGHOSUREOHPD
36.
45. (QFXHQWUHXQDIXQFLyQy f (x) FX\DJUi¿FDHQFDGDSXQWR
(x, y WLHQHXQDSHQGLHQWHGDGDSRUe2x 6x\ODLQWHUVHFFLyQFRQHOHMHyHQ
47. &RQVLGHUHHOSUREOHPDFRQYDORUHVLQLFLDOHVy x 2y,
y(0) 21 'HWHUPLQHFXiOGHODVGRVFXUYDVTXHVHPXHVWUDQHQOD¿JXUDHVOD~QLFDFXUYDVROXFLyQSRVLEOH
([SOLTXHVXUD]RQDPLHQWR
y
5
5
−5
FIGURA 1.2.8 *Ui¿FDGHOSUREOHPD
x
48. 'HWHUPLQHXQYDORUSRVLEOHSDUDx0SDUDHOTXHODJUi¿FD
GHODVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHVy 2y
3x – 6, y(x0) HVWDQJHQWHDOHMHxHQ x0 ([SOLTXH
VXUD]RQDPLHQWR
49. 6XSRQJDPRVTXHODHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQ
dy兾dx f (x, y WWLHQH XQ SDUiPHWUR GH XQD IDPLOLD GH
1.3
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
y
y
l
19
y
1
(2, 1)
1
0,
2
( )
x
1
FIGURA 1.2.11
a)
x
VROXFLRQHV \ TXH f (x, y VDWLVIDFH ODV KLSyWHVLV GHO WHRUHPDHQDOJXQDUHJLyQUHFWDQJXODURGHOSODQRxy.
([SOLTXH SRU TXp GRV FXUYDV VROXFLyQ GLIHUHQWHV QR VH
SXHGHQ LQWHUFHSWDU R VHU WDQJHQWHV HQWUH Vt HQ XQ SXQWR
(x0, y0 HQR.
y(x)
冦
0,
1 4
16 x ,
x
\
x0
x0
WLHQHQHOPLVPRGRPLQLRSHURVRQREYLDPHQWHGLIHUHQWHV
9pDQVHODV¿JXUDV D \ E UHVSHFWLYDPHQWH
'HPXHVWUHTXHDPEDVIXQFLRQHVVRQVROXFLRQHVGHOSUREOHPDFRQYDORUHVLQLFLDOHVdy兾dx xy, y(2) HQHO
LQWHUYDOR , 5HVXHOYD OD FRQWUDGLFFLyQ DSDUHQWH
HQWUHHVWHKHFKR\OD~OWLPDRUDFLyQGHOHMHPSOR
1.3
x
b)
FIGURA 1.2.12 'RVVROXFLRQHVGHORV39,GHOSUREOHPD
*Ui¿FDGHOSUREOHPD
50. /DVIXQFLRQHV y(x) 161 x 4,
(2, 1)
Modelo matemático
51. Crecimiento de la población $O SULQFLSLR GH OD VLJXLHQWHVHFFLyQYHUHPRVTXHODVHFXDFLRQHVGLIHUHQFLDOHV
VHSXHGHQXWLOL]DUSDUDGHVFULELURPRGHODUPXFKRVVLVWHPDV ItVLFRV GLIHUHQWHV (Q HVWH SUREOHPD VH VXSRQH TXH
XQPRGHORGHFUHFLPLHQWRGHSREODFLyQGHXQDSHTXHxD
FRPXQLGDGHVWiGDGRSRUHOSUREOHPDGHYDORULQLFLDO
dP
0.15P(t) 20,
dt
P(0) 100,
GRQGH P HV HO Q~PHUR GH SHUVRQDV HQ OD FRPXQLGDG \ HO
WLHPSR t VH PLGH HQ DxRV ¢4Xp WDQ UiSLGR HV GHFLU FRQ
TXprazónHVWiDXPHQWDQGRODSREODFLyQHQt "¢4XpWDQ
UiSLGRHVWiFUHFLHQGRODSREODFLyQFXDQGRODSREODFLyQHV
GH"
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
REPASO DE MATERIAL
l 8QLGDGHVGHPHGLGDSDUDSHVRPDVD\GHQVLGDG
l 6HJXQGDOH\GH1HZWRQ
l /H\GH+RRNH
l /H\HVGH.LUFKKRII
l 3ULQFLSLRGH$UTXtPHGHV
INTRODUCCIÓN (QHVWDVHFFLyQLQWURGXFLUHPRVODLGHDGHXQDHFXDFLyQGLIHUHQFLDOFRPRXQ
PRGHORPDWHPiWLFR\DQDOL]DUHPRVDOJXQRVPRGHORVHVSHFt¿FRVHQELRORJtDTXtPLFD\ItVLFD8QD
YH]TXHKD\DPRVHVWXGLDGRDOJXQRVGHORVPpWRGRVGHVROXFLyQGHODV('HQORVFDStWXORV\UHWRPDUHPRV\UHVROYHUHPRVDOJXQRVGHHVWRVPRGHORVHQORVFDStWXORV\
MODELOS MATEMÁTICOS &RQIUHFXHQFLDHVGHVHDEOHGHVFULELUHQWpUPLQRVPDWHPiWLFRVHOFRPSRUWDPLHQWRGHDOJXQRVVLVWHPDVRIHQyPHQRVGHODYLGDUHDO\DVHDQItVLFRVVRFLROyJLFRVRLQFOXVRHFRQyPLFRV/DGHVFULSFLyQPDWHPiWLFDGHXQVLVWHPDGHIHQyPHQRVVHOODPDmodelo matemático\VHFRQVWUX\HFRQFLHUWRVREMHWLYRV3RUHMHPSOR
SRGHPRVGHVHDUHQWHQGHUORVPHFDQLVPRVGHFLHUWRHFRVLVWHPDDOHVWXGLDUHOFUHFLPLHQWR
GHODSREODFLyQDQLPDOHQpORSRGHPRVGHVHDUGDWDUIyVLOHV\DQDOL]DUHOGHFDLPLHQWRGH
XQDVXVWDQFLDUDGLDFWLYD\DVHDHQHOIyVLORHQHOHVWUDWRHQHOTXHpVWHIXHGHVFXELHUWR
/DIRUPXODFLyQGHXQPRGHORPDWHPiWLFRGHXQVLVWHPDVHLQLFLDFRQ
i
LGHQWL¿FDFLyQGHODVYDULDEOHVTXHRFDVLRQDQHOFDPELRGHOVLVWHPD3RGUHPRV
HOHJLUQRLQFRUSRUDUWRGDVHVWDVYDULDEOHVHQHOPRGHORGHVGHHOFRPLHQ]R(Q
HVWHSDVRHVSHFL¿FDPRVHOnivel de resoluciónGHOPRGHOR
20
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
'HVSXpV
ii
VHHVWDEOHFHXQFRQMXQWRGHVXSRVLFLRQHVUD]RQDEOHVRKLSyWHVLVDFHUFDGHO
VLVWHPDTXHHVWDPRVWUDWDQGRGHGHVFULELU(VDVKLSyWHVLVWDPELpQLQFOX\HQ
WRGDVODVOH\HVHPStULFDVTXHVHSXHGHQDSOLFDUDOVLVWHPD
3DUDDOJXQRVREMHWLYRVTXL]iEDVWHFRQFRQIRUPDUVHFRQPRGHORVGHEDMDUHVROXFLyQ
3RUHMHPSORXVWHG\DHVFRQVFLHQWHGHTXHHQORVFXUVRVEiVLFRVGHItVLFDDOJXQDVYHFHV
VHGHVSUHFLDODIXHU]DUHWDUGDGRUDGHODIULFFLyQGHODLUHDOPRGHODUHOPRYLPLHQWRGHXQ
FXHUSRTXHFDHFHUFDGHODVXSHU¿FLHGHOD7LHUUD3HURVLXVWHGHVXQFLHQWt¿FRFX\RWUDEDMR
HVSUHGHFLUFRQH[DFWLWXGODWUD\HFWRULDGHYXHORGHXQSUR\HFWLOGHODUJRDOFDQFHGHEHUi
FRQVLGHUDUODUHVLVWHQFLDGHODLUH\RWURVIDFWRUHVWDOHVFRPRODFXUYDWXUDGHOD7LHUUD
&RPRODVKLSyWHVLVDFHUFDGHXQVLVWHPDLPSOLFDQFRQIUHFXHQFLDXQDrazón de
cambioGHXQDRPiVGHODVYDULDEOHVHOHQXQFLDGRPDWHPiWLFRGHWRGDVHVDVKLSyWHVLVSXHGHVHUXQDRPiVHFXDFLRQHVTXHFRQWHQJDQderivadas(QRWUDVSDODEUDVHO
PRGHOR PDWHPiWLFR SXHGH VHU XQD HFXDFLyQ GLIHUHQFLDO R XQ VLVWHPD GH HFXDFLRQHV
GLIHUHQFLDOHV
8QDYH]TXHVHKDIRUPXODGRXQPRGHORPDWHPiWLFR\DVHDXQDHFXDFLyQGLIHUHQFLDORXQVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHVQRVHQIUHQWDPRVDOSUREOHPDQRIiFLOGH
WUDWDUGHUHVROYHUOR6LSRGHPRVUHVROYHUORHQWRQFHVFRQVLGHUDPRVTXHHOPRGHORHV
UD]RQDEOHVLVXVROXFLyQHVFRQVLVWHQWHFRQORVGDWRVH[SHULPHQWDOHVRFRQORVKHFKRV
FRQRFLGRVDFHUFDGHOFRPSRUWDPLHQWRGHOVLVWHPD6LODVSUHGLFFLRQHVTXHVHREWLHQHQ
VRQGH¿FLHQWHVSRGHPRVDXPHQWDUHOQLYHOGHUHVROXFLyQGHOPRGHORRKDFHUKLSyWHVLV
DOWHUQDWLYDVDFHUFDGHORVPHFDQLVPRVGHFDPELRGHOVLVWHPD(QWRQFHVVHUHSLWHQORV
SDVRVGHOSURFHVRGHPRGHODGRFRPRVHPXHVWUDHQHOVLJXLHQWHGLDJUDPD
Hipótesis
Expresar las hipótesis en
términos de las ecuaciones
diferenciales
Si es necesario, modificar
las hipótesis o aumentar
la resolución del modelo
Comprobar las
predicciones
del modelo con
hechos conocidos
Formulación
matemática
Resolver las ED
Presentar las predicciones
del modelo (por ejemplo,
en forma gráfica)
Obtener
soluciones
3RUVXSXHVWRDODXPHQWDUODUHVROXFLyQDXPHQWDPRVODFRPSOHMLGDGGHOPRGHORPDWHPiWLFR\ODSUREDELOLGDGGHTXHQRSRGDPRVREWHQHUXQDVROXFLyQH[SOtFLWD
&RQIUHFXHQFLDHOPRGHORPDWHPiWLFRGHXQVLVWHPDItVLFRLQGXFLUiODYDULDEOH
WLHPSRt8QDVROXFLyQGHOPRGHORH[SUHVDHOestado del sistemaHQRWUDVSDODEUDV
ORVYDORUHVGHODYDULDEOHGHSHQGLHQWH RYDULDEOHV SDUDORVYDORUHVDGHFXDGRVGHtTXH
GHVFULEHQHOVLVWHPDHQHOSDVDGRSUHVHQWH\IXWXUR
DINÁMICA POBLACIONAL 8QR GH ORV SULPHURV LQWHQWRV SDUD PRGHODU HO crecimiento de la poblaciónKXPDQDSRUPHGLRGHODVPDWHPiWLFDVVHOOHYyDFDERHQ
SRUHOHFRQRPLVWDLQJOpV7KRPDV0DOWKXV%iVLFDPHQWHODLGHDGHWUiVGHOPRGHORGH0DOWKXVHVODVXSRVLFLyQGHTXHODUD]yQFRQODTXHODSREODFLyQGHXQSDtV
FUHFHHQXQFLHUWRWLHPSRHVSURSRUFLRQDO DODSREODFLyQWRWDOGHOSDtVHQHVHWLHPSR
(QRWUDVSDODEUDVHQWUHPiVSHUVRQDVHVWpQSUHVHQWHVDOWLHPSRtKDEUiPiVHQHOIX
WXUR(QWpUPLQRVPDWHPiWLFRVVLP(t GHQRWDODSREODFLyQDOWLHPSRtHQWRQFHVHVWD
VXSRVLFLyQVHSXHGHH[SUHVDUFRPR
dP
dP
P
o
kP,
(1)
dt
dt
GRQGH k HV XQD FRQVWDQWH GH SURSRUFLRQDOLGDG (VWH PRGHOR VLPSOH TXH IDOOD VL VH
FRQVLGHUDQPXFKRVRWURVIDFWRUHVTXHSXHGHQLQÀXLUHQHOFUHFLPLHQWRRGHFUHFLPLHQWR
6LGRVFDQWLGDGHVu\vVRQSURSRUFLRQDOHVVHHVFULEHu v.(VWRVLJQL¿FDTXHXQDFDQWLGDGHVXQ
P~OWLSORFRQVWDQWHGHRWUDu kv.
1.3
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
l
21
SRUHMHPSORLQPLJUDFLyQ\HPLJUDFLyQ UHVXOWyVLQHPEDUJREDVWDQWHH[DFWRSDUD
SUHGHFLUODSREODFLyQGH(VWDGRV8QLGRVHQWUH\/DVSREODFLRQHVTXHFUHFHQFRQXQDUD]yQGHVFULWDSRUODHFXDFLyQ VRQUDUDVVLQHPEDUJR D~QVHXVD
SDUDPRGHODUHOcrecimiento de pequeñas poblaciones en intervalos de tiempo cortos
SRUHMHPSORFUHFLPLHQWRGHEDFWHULDVHQXQDFDMDGH3HWUL
DECAIMIENTO RADIACTIVO (OQ~FOHRGHXQiWRPRHVWiIRUPDGRSRUFRPELQDFLRQHVGHSURWRQHV\QHXWURQHV0XFKDVGHHVDVFRPELQDFLRQHVVRQLQHVWDEOHVHVGHFLU
ORViWRPRVVHGHVLQWHJUDQRVHFRQYLHUWHQHQiWRPRVGHRWUDVVXVWDQFLDV6HGLFHTXH
HVWRVQ~FOHRVVRQUDGLDFWLYRV3RUHMHPSORFRQHOWLHPSRHOUDGLR5DLQWHQVDPHQWH
UDGLDFWLYRVHWUDQVIRUPDHQHOUDGLDFWLYRJDVUDGyQ5Q3DUDPRGHODUHOIHQyPHQR
GHOdecaimiento radiactivoVHVXSRQHTXHODUD]yQdA兾dtFRQODTXHORVQ~FOHRVGH
XQDVXVWDQFLDVHGHVLQWHJUDQHVSURSRUFLRQDODODFDQWLGDG SDUDVHUPiVSUHFLVRVHO
Q~PHURGHQ~FOHRV A(t)GHODVXVWDQFLDTXHTXHGDDOWLHPSRt
dA
dA
(2)
A
o
kA.
dt
dt
3RUVXSXHVWRTXHODVHFXDFLRQHV \ VRQH[DFWDPHQWHLJXDOHVODGLIHUHQFLDUDGLFD
VyORHQODLQWHUSUHWDFLyQGHORVVtPERORV\GHODVFRQVWDQWHVGHSURSRUFLRQDOLGDG(QHO
FDVRGHOFUHFLPLHQWRFRPRHVSHUDPRVHQODHFXDFLyQ O k \SDUDODGHVLQWHJUDFLyQFRPRHQODHFXDFLyQ k 0.
(O PRGHOR GH OD HFXDFLyQ SDUD FUHFLPLHQWR WDPELpQ VH SXHGH YHU FRPR OD
HFXDFLyQdS兾dt rSTXHGHVFULEHHOFUHFLPLHQWRGHOFDSLWDOSFXDQGRHVWiDXQDWDVD
DQXDOGHLQWHUpVrFRPSXHVWRFRQWLQXDPHQWH(OPRGHORGHGHVLQWHJUDFLyQGHODHFXDFLyQ WDPELpQVHDSOLFDDVLVWHPDVELROyJLFRVWDOHVFRPRODGHWHUPLQDFLyQGHODYLGD
PLWDGGHXQPHGLFDPHQWRHVGHFLUHOWLHPSRTXHOHWRPDDGHOPHGLFDPHQWR
VHUHOLPLQDGRGHOFXHUSRSRUH[FUHFLyQRPHWDEROL]DFLyQ(QTXtPLFDHOPRGHORGHO
GHFDLPLHQWRHFXDFLyQ VHSUHVHQWDHQODGHVFULSFLyQPDWHPiWLFDGHXQDUHDFFLyQ
TXtPLFDGHSULPHURUGHQ/RLPSRUWDQWHDTXtHV
Una sola ecuación diferencial puede servir como modelo matemático de muchos
fenómenos distintos.
&RQIUHFXHQFLDORVPRGHORVPDWHPiWLFRVVHDFRPSDxDQGHFRQGLFLRQHVTXHORVGH¿QHQ3RUHMHPSORHQODVHFXDFLRQHV O \ HVSHUDUtDPRVFRQRFHUXQDSREODFLyQLQLFLDO
P0\SRURWUDSDUWHODFDQWLGDGLQLFLDOGHVXVWDQFLDUDGLRDFWLYDA06LHOWLHPSRLQLFLDOVH
WRPDHQt VDEHPRVTXHP(0) P0\TXHA(0) A0(QRWUDVSDODEUDVXQPRGHOR
PDWHPiWLFRSXHGHFRQVLVWLUHQXQSUREOHPDFRQYDORUHVLQLFLDOHVRFRPRYHUHPRVPiV
DGHODQWHHQODVHFFLyQHQXQSUREOHPDFRQYDORUHVHQODIURQWHUD
LEY DE ENFRIAMIENTO/CALENTAMIENTO DE NEWTON 'HDFXHUGRFRQOD
OH\HPStULFDGHHQIULDPLHQWRFDOHQWDPLHQWRGH1HZWRQODUDSLGH]FRQODTXHFDPELD
ODWHPSHUDWXUDGHXQFXHUSRHVSURSRUFLRQDODODGLIHUHQFLDHQWUHODWHPSHUDWXUDGHO
FXHUSR\ODGHOPHGLRTXHORURGHDTXHVHOODPDWHPSHUDWXUDDPELHQWH6L T(t UHSUHVHQWDODWHPSHUDWXUDGHOFXHUSRDOWLHPSRt, Tm HVODWHPSHUDWXUDGHOPHGLRTXHOR
URGHD\dT兾dtHVODUDSLGH]FRQTXHFDPELDODWHPSHUDWXUDGHOFXHUSRHQWRQFHVODOH\GH
1HZWRQGHHQIULDPLHQWRFDOHQWDPLHQWRWUDGXFLGDHQXQDH[SUHVLyQPDWHPiWLFDHV
dT
dt
T
Tm
o
dT
dt
k(T
Tm ),
(3)
GRQGHkHVXQDFRQVWDQWHGHSURSRUFLRQDOLGDG(QDPERVFDVRVHQIULDPLHQWRRFDOHQWDPLHQWRVLTmHVXQDFRQVWDQWHVHHVWDEOHFHTXHk 0.
PROPAGACIÓN DE UNA ENFERMEDAD 8QDHQIHUPHGDGFRQWDJLRVDSRUHMHPSORXQYLUXVGHJULSHVHSURSDJDDWUDYpVGHXQDFRPXQLGDGSRUSHUVRQDVTXHKDQHVWDGR
HQFRQWDFWRFRQRWUDVSHUVRQDVHQIHUPDV6HDTXHx(t GHQRWHHOQ~PHURGHSHUVRQDVTXH
KDQFRQWUDtGRODHQIHUPHGDG\VHDTXHy(t GHQRWHHOQ~PHURGHSHUVRQDVTXHD~QQRKDQ
VLGRH[SXHVWDVDOFRQWDJLR(VOyJLFRVXSRQHUTXHODUD]yQdx兾dtFRQODTXHVHSURSDJD
ODHQIHUPHGDGHVSURSRUFLRQDODOQ~PHURGHHQFXHQWURVRinteraccionesHQWUHHVWRVGRV
22
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
JUXSRV GH SHUVRQDV 6L VXSRQHPRV TXH HO Q~PHUR GH LQWHUDFFLRQHV HV FRQMXQWDPHQWH
SURSRUFLRQDODx(t \y(t HVWRHVSURSRUFLRQDODOSURGXFWRxyHQWRQFHV
dx
(4)
kxy,
dt
GRQGHkHVODFRQVWDQWHXVXDOGHSURSRUFLRQDOLGDG6XSRQJDTXHXQDSHTXHxDFRPXQLGDGWLHQHXQDSREODFLyQ¿MDGHnSHUVRQDV6LVHLQWURGXFHXQDSHUVRQDLQIHFWDGDGHQWURGHHVWDFRPXQLGDGHQWRQFHVVHSRGUtDDUJXPHQWDUTXHx(t \y(t HVWiQUHODFLRQDGDV
SRUx y n 8WLOL]DQGRHVWD~OWLPDHFXDFLyQSDUDHOLPLQDUyHQODHFXDFLyQ
VHREWLHQHHOPRGHOR
dx
(5)
kx(n 1 x).
dt
8QDFRQGLFLyQLQLFLDOREYLDTXHDFRPSDxDDODHFXDFLyQ HVx(0) 1.
REACCIONES QUÍMICAS 6H GLFH TXH OD GHVLQWHJUDFLyQ GH XQD VXVWDQFLD UDGLDFWLYDFDUDFWHUL]DGDSRUODHFXDFLyQGLIHUHQFLDO HVXQDreacción de primer orden(Q
TXtPLFDKD\DOJXQDVUHDFFLRQHVTXHVLJXHQHVWDPLVPDOH\HPStULFDVLODVPROpFXODVGH
OD VXVWDQFLD A VH GHVFRPSRQHQ \ IRUPDQ PROpFXODV PiV SHTXHxDV HV QDWXUDO VXSRQHU
TXHODUDSLGH]FRQODTXHVHOOHYDDFDERHVDGHVFRPSRVLFLyQHVSURSRUFLRQDODODFDQWLGDGGH
ODSULPHUDVXVWDQFLDTXHQRKDH[SHULPHQWDGRODFRQYHUVLyQHVWRHVVLX(t HVODFDQWLGDG
GHODVXVWDQFLDATXHSHUPDQHFHHQFXDOTXLHUPRPHQWRHQWRQFHVdX兾dt kXGRQGHk
HVXQDFRQVWDQWHQHJDWLYD\DTXHXHVGHFUHFLHQWH8QHMHPSORGHXQDUHDFFLyQTXtPLFD
GHSULPHURUGHQHVODFRQYHUVLyQGHOFORUXURGHWHUEXWLOR &+3)3&&OHQDOFRKROtEXWtOLFR
&+3)3&2+
(CH3)3CCl NaOH : (CH3)3COH NaCl.
6yORODFRQFHQWUDFLyQGHOFORUXURGHWHUEXWLORFRQWURODODUDSLGH]GHODUHDFFLyQ3HUR
HQODUHDFFLyQ
CH3Cl NaOH : CH3OH NaCl
VHFRQVXPHXQDPROpFXODGHKLGUy[LGRGHVRGLR1D2+SRUFDGDPROpFXODGHFORUXUR
GHPHWLOR&+3&OSRUORTXHVHIRUPDXQDPROpFXODGHDOFRKROPHWtOLFR&+32+\XQD
PROpFXODGHFORUXURGHVRGLR1D&O(QHVWHFDVRODUD]yQFRQTXHDYDQ]DODUHDFFLyQ
HVSURSRUFLRQDODOSURGXFWRGHODVFRQFHQWUDFLRQHVGH&+3&O\1D2+TXHTXHGDQ3DUD
GHVFULELUHQJHQHUDOHVWDVHJXQGDUHDFFLyQVXSRQJDPRVunaPROpFXODGHXQDVXVWDQFLD
ATXHVHFRPELQDFRQunaPROpFXODGHXQDVXVWDQFLDBSDUDIRUPDUunaPROpFXODGHXQD
VXVWDQFLDC6LXGHQRWDODFDQWLGDGGHXQTXtPLFRCIRUPDGRDOWLHPSRt\VL\VRQ
UHVSHFWLYDPHQWHODVFDQWLGDGHVGHORVGRVTXtPLFRVA\BHQt FDQWLGDGHVLQLFLDOHV
HQWRQFHVODVFDQWLGDGHVLQVWDQWiQHDVQRFRQYHUWLGDVGHA\BDOTXtPLFRCVRQ X\
XUHVSHFWLYDPHQWH3RUORTXHODUD]yQGHIRUPDFLyQGHCHVWiGDGDSRU
dX
(6)
k( X)( X),
dt
GRQGHkHVXQDFRQVWDQWHGHSURSRUFLRQDOLGDG$XQDUHDFFLyQFX\RPRGHORHVODHFXDFLyQ VHOHFRQRFHFRPRXQDreacción de segundo orden.
MEZCLAS $O PH]FODU GRV VROXFLRQHV VDOLQDV GH GLVWLQWDV FRQFHQWUDFLRQHV VXUJH
XQDHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQTXHGH¿QHODFDQWLGDGGHVDOFRQWHQLGDHQ
ODPH]FOD6XSRQJDPRVTXHXQWDQTXHPH]FODGRUJUDQGHFRQWLHQHLQLFLDOPHQWH
JDORQHVGHVDOPXHUD HVGHFLUDJXDHQODTXHVHKDGLVXHOWRXQDFDQWLGDGGHVDO 2WUD
VROXFLyQGHVDOPXHUDHQWUDDOWDQTXHFRQXQDUD]yQGHJDORQHVSRUPLQXWRODFRQFHQWUDFLyQGHVDOTXHHQWUDHVGHOLEUDVJDOyQ&XDQGRODVROXFLyQHQHOWDQTXHHVWi
ELHQPH]FODGDVDOHFRQODPLVPDUDSLGH]FRQODTXHHQWUD9HDOD¿JXUD6LA(t)
GHQRWDODFDQWLGDGGHVDO PHGLGDHQOLEUDV HQHOWDQTXHDOWLHPSRtHQWRQFHVODUD]yQ
FRQODTXHA(t FDPELDHVXQDUD]yQQHWD
dA
dt
razón de
entrada
de la sal
razón de
salida
de la sal
Rentra Rsale.
(7)
1.3
razón de entrada de la salmuera
3 gal/min
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
l
23
/DUD]yQGHHQWUDGDRentraFRQODTXHODVDOHQWUDHQHOWDQTXHHVHOSURGXFWRGHODFRQFHQWUDFLyQGHODDÀXHQFLDGHVDO\ODWDVDGHÀXMRGHÀXLGR$GYLHUWDTXHRentraVHPLGH
HQOLEUDVSRUPLQXWR
concentración
de sal en razón de entrada
razón de
el fluido,
de la salmuera, entrada de la sal
Rentra (2 lb/gal) (3 gal/min) (6 lb/min).
constante
300 gal
$KRUD \D TXH OD VROXFLyQ VDOH GHO WDQTXH FRQ OD PLVPD UD]yQ FRQ OD TXH HQWUD HO
Q~PHURGHJDORQHVGHODVDOPXHUDHQHOWDQTXHDOWLHPSRtHVXQDFRQVWDQWHGH
JDORQHV3RUORTXHODFRQFHQWUDFLyQGHODVDOHQHOWDQTXHDVtFRPRHQHOÀXMRGHVDOLGD
HVc(t) A(t)兾OEJDO\SRUORWDQWRODUD]yQGHVDOLGDRsaleGHVDOHV
razón de salida de la
salmuera 3 gal/min
FIGURA 1.3.1 7DQTXHGHPH]FODGR
concentración de
sal en el flujo razón de salida
de salida
de la salmuera
(
A(t)
Rsale –––– lb/gal
300
)
razón de
salida
de la sal
A(t)
(3 gal/min) –––– lb/min.
100
/DUD]yQQHWDHFXDFLyQ HQWRQFHVVHUi
dA
A
6
dt
100
o
dA
1
A 6.
dt
100
(8)
6Lrentra\rsaleTXHGHQRWDQUD]RQHVGHHQWUDGD\GHVDOLGDGHODVVROXFLRQHVGHVDOPXHUD HQWRQFHVKD\WUHVSRVLELOLGDGHVrentra rsale, rentra rsale\rentra rsale(QHODQiOLVLVTXHFRQGXFHD KHPRVWRPDGRrentra rsale(QHVWRVGRV~OWLPRVFDVRVHOQ~PHUR
GHJDORQHVGHVDOPXHUDHQHOWDQTXHHVFUHFLHQWH rentra rsale RGLVPLQX\H rentra rsale D
ODUD]yQQHWDrentra rsale9pDQVHORVSUREOHPDVDHQORVHMHUFLFLRV
Aw
h
Ah
FIGURA 1.3.2 'UHQDGRGHXQWDQTXH
DRENADO DE UN TANQUE (QKLGURGLQiPLFDODley de TorricelliHVWDEOHFHTXH
ODUDSLGH]vGHVDOLGDGHODJXDDWUDYpVGHXQDJXMHURGHERUGHVD¿ODGRVHQHOIRQGRGH
XQWDQTXHOOHQRFRQDJXDKDVWDXQDSURIXQGLGDGhHVLJXDODODYHORFLGDGGHXQFXHUSR
HQHVWHFDVRXQDJRWDGHDJXD TXHHVWiFD\HQGROLEUHPHQWHGHVGHXQDDOWXUDhHVWR
HVv 12gh GRQGHgHVODDFHOHUDFLyQGHODJUDYHGDG(VWD~OWLPDH[SUHVLyQVXUJHDO
LJXDODUODHQHUJtDFLQpWLFD 12 mv2 FRQODHQHUJtDSRWHQFLDOmgh, \ VHGHVSHMDv6XSRQJD
TXHXQWDQTXHOOHQRGHDJXDVHYDFtDDWUDYpVGHXQDJXMHUREDMRODLQÀXHQFLDGHODJUDYHGDG4XHUHPRVHQFRQWUDUODSURIXQGLGDGh, GHODJXDTXHTXHGDHQHOWDQTXHDOWLHPSR
t&RQVLGHUHHOWDQTXHTXHVHPXHVWUDHQOD¿JXUD6LHOiUHDGHODJXMHURHVAh HQ
SLHV2 \ODUDSLGH]GHODJXDTXHVDOHGHOWDQTXHHVv 12gh HQSLHVV HQWRQFHVHO
YROXPHQGHDJXDTXHVDOHGHOWDQTXHSRUVHJXQGRHV Ah 12gh HQSLHV3V $VtVL
V(t GHQRWDDOYROXPHQGHDJXDHQHOWDQTXHDOWLHPSRtHQWRQFHV
dV
Ah 2gh,
(9)
dt
GRQGHHOVLJQRPHQRVLQGLFDTXHVHVWiGLVPLQX\HQGR2EVHUYHTXHDTXtHVWDPRVGHVSUHFLDQGRODSRVLELOLGDGGHIULFFLyQHQHODJXMHURTXHSRGUtDFDXVDUXQDUHGXFFLyQGHOD
UD]yQGHÀXMR6LHOWDQTXHHVWDOTXHHOYROXPHQGHODJXDDOWLHPSRtVHH[SUHVDFRPR
V(t) Awh, GRQGHAw HQSLHV2 HVHOiUHDconstante GHODVXSHU¿FLHVXSHULRUGHODJXD
YHDOD¿JXUD HQWRQFHVdV兾dt Aw dh兾dt. 6XVWLWX\HQGRHVWD~OWLPDH[SUHVLyQ
HQODHFXDFLyQ REWHQHPRVODHFXDFLyQGLIHUHQFLDOTXHGHVHiEDPRVSDUDH[SUHVDUOD
DOWXUDGHODJXDDOWLHPSRt
dh
Ah
(10)
2gh.
dt
Aw
(VLQWHUHVDQWHREVHUYDUTXHODHFXDFLyQ HVYiOLGDDXQFXDQGRAwQRVHDFRQVWDQWH
(QHVWHFDVRGHEHPRVH[SUHVDUHOiUHDGHODVXSHU¿FLHVXSHULRUGHODJXDHQIXQFLyQGH
h, HVWRHV Aw A(h)9HDHOSUREOHPDGHORVHMHUFLFLRV
1RFRQIXQGDHVWRVVtPERORVFRQR entra\R saleTXHVRQODVUD]RQHVGHHQWUDGD\VDOLGDGHsal.
24
CAPÍTULO 1
l
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
L
R
E(t)
C
a) Circuito(a)
en serie- LRC
Inductor
inductancia L: henrys (h)
di
caída de voltaje: L
dt
i
L
Resistor
resistencia R: ohms (Ω)
caída de voltaje: iR
i
R
Capacitor
capacitancia C: farads (f)
1
caída de voltaje: q
C
i
C
b)
(b)
FIGURA 1.3.3 6tPERORVXQLGDGHV\
YROWDMHV&RUULHQWHi(t \FDUJDq(t HVWiQ
PHGLGDVHQDPSHUHV $ \HQFRXORPEV
& UHVSHFWLYDPHQWH
v0
piedra
s0
s(t)
edificio
suelo
FIGURA 1.3.4 3RVLFLyQGHODSLHGUD
PHGLGDGHVGHHOQLYHOGHOVXHOR
CIRCUITOS EN SERIE &RQVLGHUHHOFLUFXLWRHQVHULHVLPSOHTXHWLHQHXQLQGXFWRU
XQUHVLVWRU\XQFDSDFLWRUTXHVHPXHVWUDHQOD¿JXUD D (QXQFLUFXLWRFRQHO
LQWHUUXSWRUFHUUDGRODFRUULHQWHVHGHQRWDSRUi(t \ODFDUJDHQHOFDSDFLWRUDOWLHPSR
tVHGHQRWDSRUq(t). /DVOHWUDVL, R\CVRQFRQRFLGDVFRPRLQGXFWDQFLDUHVLVWHQFLD\
FDSDFLWDQFLDUHVSHFWLYDPHQWH\HQJHQHUDOVRQFRQVWDQWHV$KRUDGHDFXHUGRFRQOD
segunda ley de KirchhoffHOYROWDMHDSOLFDGRE(t DXQFLUFXLWRFHUUDGRGHEHVHULJXDO
DODVXPDGHODVFDtGDVGHYROWDMHHQHOFLUFXLWR/D¿JXUD E PXHVWUDORVVtPERORV
\IyUPXODVGHODVFDtGDVUHVSHFWLYDVGHYROWDMHDWUDYpVGHXQLQGXFWRUXQFDSDFLWRU\
XQUHVLVWRU&RPRODFRUULHQWHi(t HVWiUHODFLRQDGDFRQODFDUJDq(t) HQHOFDSDFLWRU
PHGLDQWHi dq兾dt, VXPDPRVORVWUHVYROWDMHV
LQGXFWRU
UHVLVWRU
FDSDFLWRU
d 2q
dq
1
di
L 2,
iR R ,
y
q
L
dt
dt
dt
C
HLJXDODQGRODVXPDGHORVYROWDMHVFRQHOYROWDMHDSOLFDGRVHREWLHQHODHFXDFLyQGLIHUHQFLDOGHVHJXQGRRUGHQ
d 2q
dq
1
L 2 R
q E(t).
(11)
dt
dt
C
(QODVHFFLyQH[DPLQDUHPRVFRQGHWDOOHXQDHFXDFLyQGLIHUHQFLDODQiORJDD
(11).
CUERPOS EN CAÍDA 3DUDHVWDEOHFHUXQPRGHORPDWHPiWLFRGHOPRYLPLHQWRGHXQ
FXHUSRTXHVHPXHYHHQXQFDPSRGHIXHU]DVFRQIUHFXHQFLDVHFRPLHQ]DFRQODVHJXQGD
OH\GH1HZWRQ5HFRUGHPRVGHODItVLFDHOHPHQWDOTXHODprimera ley del movimiento
de NewtonHVWDEOHFHTXHXQFXHUSRSHUPDQHFHUiHQUHSRVRRFRQWLQXDUiPRYLpQGRVH
FRQXQDYHORFLGDGFRQVWDQWHDPHQRVTXHVHDVRPHWLGRDXQDIXHU]DH[WHUQD(QORV
GRVFDVRVHVWRHTXLYDOHDGHFLUTXHFXDQGRODVXPDGHODVIXHU]DV F 兺 Fk , HVWRHV
ODIXHU]Dneta RIXHU]DUHVXOWDQWHTXHDFW~DVREUHHOFXHUSRHVFHURODDFHOHUDFLyQa
GHOFXHUSRHV FHUR/Dsegunda ley del movimiento de NewtonLQGLFDTXHFXDQGROD
IXHU]DQHWDTXHDFW~DVREUHXQFXHUSRQRHVFHURHQWRQFHVODIXHU]DQHWDHVSURSRUFLRQDODVXDFHOHUDFLyQa R PiVH[DFWDPHQWHF ma, GRQGHm HVODPDVDGHOFXHUSR
6XSRQJDPRVDKRUDTXHVHDUURMDXQDSLHGUDKDFLDDUULEDGHVGHHOWHFKRGHXQHGL¿FLRFRPRVHPXHVWUDHQOD¿JXUD¢&XiOHVODSRVLFLyQs(t GHODSLHGUDUHVSHFWR
DOVXHORDOWLHPSRt"/DDFHOHUDFLyQGHODSLHGUDHVODVHJXQGDGHULYDGDd 2s兾dt 2. 6L
VXSRQHPRVTXHODGLUHFFLyQKDFLDDUULEDHVSRVLWLYD\TXHQRKD\RWUDIXHU]DDGHPiV
GHODIXHU]DGHODJUDYHGDGTXHDFW~HVREUHODSLHGUDHQWRQFHVXWLOL]DQGRODVHJXQGD
OH\GH1HZWRQVHWLHQHTXH
d 2s
d 2s
(12)
m 2
mg o 2
g.
dt
dt
(QRWUDVSDODEUDVODIXHU]DQHWDHVVLPSOHPHQWHHOSHVRF F1 WGHODSLHGUDFHUFD
GHODVXSHU¿FLHGHOD7LHUUD5HFXHUGHTXHODPDJQLWXGGHOSHVRHVW mgGRQGHmHVOD
PDVDGHOFXHUSR\gHVODDFHOHUDFLyQGHELGDDODJUDYHGDG(OVLJQRPHQRVHQODHFXDFLyQ
VHXVDSRUTXHHOSHVRGHODSLHGUDHVXQDIXHU]DGLULJLGDKDFLDDEDMRTXHHVRSXHVWD
DODGLUHFFLyQSRVLWLYD6LODDOWXUDGHOHGL¿FLRHVs0\ODYHORFLGDGLQLFLDOGHODURFDHVv0,
HQWRQFHVsVHGHWHUPLQDDSDUWLUGHOSUREOHPDFRQYDORUHVLQLFLDOHVGHVHJXQGRRUGHQ
d 2s
g, s(0) s0, s(0) v0.
(13)
dt 2
$XQTXHQRKHPRVLQGLFDGRVROXFLRQHVGHODVHFXDFLRQHVTXHVHKDQIRUPXODGRREVHUYHTXHODHFXDFLyQVHSXHGHUHVROYHULQWHJUDQGRGRVYHFHVUHVSHFWRDtODFRQVWDQWH±g/DVFRQGLFLRQHVLQLFLDOHVGHWHUPLQDQODVGRVFRQVWDQWHVGHLQWHJUDFLyQ'H
ODItVLFDHOHPHQWDOSRGUtDUHFRQRFHUODVROXFLyQGHODHFXDFLyQ FRPRODIyUPXOD
1 2
v0 t s0.
s(t)
2 gt
CUERPOS EN CAÍDA Y RESISTENCIA DEL AIRE $QWHV GHO IDPRVR H[SHULPHQWRGHOItVLFR\PDWHPiWLFRLWDOLDQR*DOLOHR*DOLOHL GHODWRUUHLQFOLQDGD
GH3LVDJHQHUDOPHQWHVHFUHtDTXHORVREMHWRVPiVSHVDGRVHQFDtGDOLEUHFRPR XQD
1.3
kv
dirección
positiva
resistencia
del aire
gravedad
mg
FIGURA 1.3.5 &XHUSRGHPDVDm
FD\HQGR
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
l
25
EDOD GH FDxyQ FDtDQ FRQ XQD DFHOHUDFLyQ PD\RU TXH ORV REMHWRV OLJHURV FRPR XQD
SOXPD 2EYLDPHQWH XQD EDOD GH FDxyQ \ XQD SOXPD FXDQGR VH GHMDQ FDHU VLPXOWiQHDPHQWHGHVGHODPLVPDDOWXUDUHDOPHQWHcaenHQWLHPSRVGLIHUHQWHVSHURHVWRQR
HV SRUTXH XQD EDOD GH FDxyQ VHD PiV SHVDGD /D GLIHUHQFLDHQ ORV WLHPSRVVH GHEH
DODUHVLVWHQFLDGHODLUH(QHOPRGHORTXHVHSUHVHQWyHQODHFXDFLyQ VHGHVSUHFLyODIXHU]DGHODUHVLVWHQFLDGHODLUH%DMRFLHUWDVFLUFXQVWDQFLDVXQFXHUSRGHPDVD
m TXHFDHWDOFRPRXQDSOXPDFRQGHQVLGDGSHTXHxD\IRUPDLUUHJXODUHQFXHQWUD
XQDUHVLVWHQFLDGHODLUHTXHHVSURSRUFLRQDODVXYHORFLGDGLQVWDQWiQHDv6LHQHVWH
FDVRWRPDPRVODGLUHFFLyQSRVLWLYDGLULJLGDKDFLDDEDMRHQWRQFHVODIXHU]DQHWDTXH
HVWiDFWXDQGRVREUHODPDVDHVWiGDGDSRUF F1 F2 mg kv, GRQGHHOSHVR
F1 mg GHOFXHUSRHVXQDIXHU]DTXHDFW~DHQODGLUHFFLyQSRVLWLYD\ODUHVLVWHQFLD
GHO DLUH F2 kv HV XQD IXHU]D TXH VH OODPD GH amortiguamiento viscoso, TXH
DFW~DHQODGLUHFFLyQFRQWUDULDRKDFLDDUULED9HDOD¿JXUD$KRUDSXHVWRTXHv
HVWiUHODFLRQDGDFRQODDFHOHUDFLyQaPHGLDQWHa dv兾dtODVHJXQGDOH\GH1HZWRQ
VHUiF ma m dv兾dt. $OLJXDODUODIXHU]DQHWDFRQHVWDIRUPDGHODVHJXQGDOH\
REWHQHPRVXQDHFXDFLyQGLIHUHQFLDOSDUDODYHORFLGDGv(t GHOFXHUSRDOWLHPSRt,
dv
mg kv.
(14)
dt
$TXt k HV XQD FRQVWDQWH SRVLWLYD GH SURSRUFLRQDOLGDG 6L s(t HV OD GLVWDQFLD TXH HO
FXHUSRKDFDtGRDOWLHPSRtGHVGHVXSXQWRLQLFLDORGHOLEHUDFLyQHQWRQFHVv ds兾dt
\a dv兾dt d 2s兾dt 2(QWpUPLQRVGHsODHFXDFLyQ HVXQDHFXDFLyQGLIHUHQFLDO
GHVHJXQGRRUGHQ
m
m
a) cable de suspensión de un puente
b) alambres de teléfonos
FIGURA 1.3.6 &DEOHVVXVSHQGLGRV
HQWUHVRSRUWHVYHUWLFDOHV
d 2s
dt 2
mg
k
ds
dt
o
m
d 2s
dt 2
k
ds
dt
mg.
(15)
CABLES SUSPENDIDOS ,PDJLQHTXHXQFDEOHÀH[LEOHXQDODPEUHRXQDFXHUGD
SHVDGDTXHHVWiVXVSHQGLGDHQWUHGRVVRSRUWHVYHUWLFDOHV(MHPSORItVLFRVGHHVWRSRGUtDQVHUXQRGHORVGRVFDEOHVTXHVRSRUWDQHO¿UPHGHXQSXHQWHGHVXVSHQVLyQFRPR
HO TXH VH PXHVWUD HQ OD ¿JXUD D R XQ FDEOH WHOHIyQLFR ODUJR HQWUH GRV SRVWHV
FRPRHOTXHVHPXHVWUDHQOD¿JXUD E 1XHVWURREMHWLYRHVFRQVWUXLUXQPRGHOR
PDWHPiWLFRTXHGHVFULEDODIRUPDTXHWLHQHHOFDEOH
3DUDFRPHQ]DUH[DPLQDUHPRVVyORXQDSDUWHRHOHPHQWRGHOFDEOHHQWUHVXSXQWR
PiVEDMR P1\FXDOTXLHUSXQWRDUELWUDULRP26HxDODGRHQFRORUD]XOHQOD¿JXUD
HVWHHOHPHQWRGHFDEOHHVODFXUYDHQXQVLVWHPDGHFRRUGHQDGDUHFWDQJXODUHOLJLHQGR
DOHMHySDUDTXHSDVHDWUDYpVGHOSXQWRPiVEDMRP1GHODFXUYD\HOLJLHQGRDOHMH
x SDUD TXH SDVH D a XQLGDGHV GHEDMR GH P1 6REUH HO FDEOH DFW~DQ WUHV IXHU]DV ODV
WHQVLRQHVT1\T2HQHOFDEOHTXHVRQWDQJHQWHVDOFDEOHHQP1\P2UHVSHFWLYDPHQWH
\ OD SDUWH W GH OD FDUJD WRWDO YHUWLFDO HQWUH ORV SXQWRV P1 \ P2 6HD TXH T1 兩T1兩,
T2 兩T2兩\W 兩W兩GHQRWHQODVPDJQLWXGHVGHHVWRVYHFWRUHV$KRUDODWHQVLyQT2VH
GHVFRPSRQHHQVXVFRPSRQHQWHVKRUL]RQWDO\YHUWLFDO FDQWLGDGHVHVFDODUHV T2FRV
\T2VHQ'HELGRDOHTXLOLEULRHVWiWLFRSRGHPRVHVFULELU
T1
T2cos y
W
T2sen .
$O GLYLGLU OD XOWLPD HFXDFLyQ HQWUH OD SULPHUD HOLPLQDPRV T2 \ REWHQHPRV WDQ
W兾T13HURSXHVWRTXHdy兾dx WDQOOHJDPRVD
y
T2
T2 sen θ
P2
alambre
T1
P1
(0, a)
W
(x, 0)
θ
T2 cos θ
x
FIGURA 1.3.7 (OHPHQWRGHOFDEOH
dy
dx
W
.
T1
(16)
(VWDVHQFLOODHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQVLUYHFRPRPRGHORWDQWRSDUDPRGHODU
ODIRUPDGHXQDODPEUHÀH[LEOHFRPRHOFDEOHWHOHIyQLFRFROJDGREDMRVXSURSLRSHVR
RSDUDPRGHODUODIRUPDGHORVFDEOHVTXHVRSRUWDQHO¿UPHGHXQSXHQWHVXVSHQGLGR
5HJUHVDUHPRVDODHFXDFLyQ HQORVHMHUFLFLRV\HQODVHFFLyQ
LO QUE NOS ESPERA (QHVWHOLEURYHUHPRVWUHVWLSRVGHPpWRGRVSDUDHODQiOLVLVGH
ODVHFXDFLRQHVGLIHUHQFLDOHV3RUVLJORVODVHFXDFLRQHVGLIHUHQFLDOHVKDQVXUJLGRGHORVHVIXHU]RVGHFLHQWt¿FRVRLQJHQLHURVSDUDGHVFULELUDOJ~QIHQyPHQRItVLFRRSDUDWUDGXFLUXQD
26
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
OH\HPStULFDRH[SHULPHQWDOHQWpUPLQRVPDWHPiWLFRV&RPRFRQVHFXHQFLDHOFLHQWt¿FR
LQJHQLHURRPDWHPiWLFRIUHFXHQWHPHQWHSDVDUtDPXFKRVDxRVGHVXYLGDWUDWDQGRGHHQFRQWUDUODVVROXFLRQHVGHXQD('&RQXQDVROXFLyQHQODPDQRVHSURVLJXHFRQHOHVWXGLR
GHVXVSURSLHGDGHV$HVWDE~VTXHGDGHVROXFLRQHVVHOHOODPDmétodo analíticoSDUDODV
HFXDFLRQHVGLIHUHQFLDOHV8QDYH]TXHFRPSUHQGLHURQTXHODVVROXFLRQHVH[SOtFLWDVHUDQ
PX\GLItFLOHVGHREWHQHU\HQHOSHRUGHORVFDVRVLPSRVLEOHVGHREWHQHUORVPDWHPiWLFRV
DSUHQGLHURQTXHODVHFXDFLRQHVGLIHUHQFLDOHVSRGUtDQVHUXQDIXHQWHGHLQIRUPDFLyQYDOLRVDHQVtPLVPDV(VSRVLEOHHQDOJXQRVFDVRVFRQWHVWDUSUHJXQWDVFRPRODVVLJXLHQWHV
GLUHFWDPHQWH GH ODV HFXDFLRQHV GLIHUHQFLDOHV ¿en realidad la ED tiene soluciones? Si
una solución de la ED existe y satisface una condición inicial, ¿es única esa solución?
¿Cuáles son algunas propiedades de las soluciones desconocidas? ¿Qué podemos decir
acerca de la geometría de las curvas de solución?(VWHPpWRGRHVDQiOLVLVFXDOLWDWLYR
3RU~OWLPRVLXQDHFXDFLyQGLIHUHQFLDOQRVHSXHGHUHVROYHUSRUPpWRGRVDQDOtWLFRVD~Q
DVtSRGHPRVGHPRVWUDUTXHXQDVROXFLyQH[LVWHODVLJXLHQWHSUHJXQWDOyJLFDHV¢de qué
modo podemos aproximarnos a los valores de una solución desconocida?$TXtHQWUDPRV
DOUHLQRGHOanálisis numérico8QDUHVSXHVWDD¿UPDWLYDDOD~OWLPDSUHJXQWDVHEDVDHQ
HOKHFKRGHTXHXQDHFXDFLyQGLIHUHQFLDOVHSXHGHXVDUFRPRXQSULQFLSLREiVLFRSDUDOD
FRQVWUXFFLyQGHDOJRULWPRVGHDSUR[LPDFLyQPX\H[DFWRV(QHOFDStWXORFRPHQ]DUHPRV
FRQFRQVLGHUDFLRQHVFXDOLWDWLYDVGHODV('2GHSULPHURUGHQGHVSXpVDQDOL]DUHPRVORV
DUWL¿FLRVDQDOtWLFRVSDUDUHVROYHUDOJXQDVHFXDFLRQHVHVSHFLDOHVGHSULPHURUGHQ\FRQFOXLUHPRVFRQXQDLQWURGXFFLyQDXQPpWRGRQXPpULFRHOHPHQWDO9HDOD¿JXUD
COMENTARIOS
&DGD HMHPSOR GH HVWD VHFFLyQ KD GHVFULWR XQ VLVWHPD GLQiPLFR XQ VLVWHPD TXH
FDPELDRHYROXFLRQDFRQHOSDVRGHOWLHPSRt3XHVWRTXHHQODDFWXDOLGDGHOHVWXGLR GH ORV VLVWHPDV GLQiPLFRV HV XQD UDPD GH ODV PDWHPiWLFDV TXH HVWi GH
PRGD D YHFHV XWLOL]DUHPRV OD WHUPLQRORJtD GH HVD UDPD HQ QXHVWURV DQiOLVLV
(QWpUPLQRVPiVSUHFLVRVXQ sistema dinámico FRQVLVWHHQXQFRQMXQWRGH
YDULDEOHVGHSHQGLHQWHVGHOWLHPSRTXHVHOODPDQ YDULDEOHVGHHVWDGRMXQWRFRQXQD
UHJODTXHSHUPLWDGHWHUPLQDU VLQDPELJHGDGHV HOHVWDGRGHOVLVWHPD TXHSXHGH
VHUSDVDGRSUHVHQWHRIXWXUR HQWpUPLQRVGHXQHVWDGRSUHVFULWRDOWLHPSR t0/RV
VLVWHPDVGLQiPLFRVVHFODVL¿FDQ\DVHDFRPRVLVWHPDVGLVFUHWRVRFRQWLQXRVHQHO
WLHPSRRGHWLHPSRVGLVFUHWRVRFRQWLQXRV(QHVWHFXUVRVyORQRVRFXSDUHPRVGH
ORVVLVWHPDVGLQiPLFRVFRQWLQXRVHQHOWLHPSRVLVWHPDVHQORVTXHtodasODVYDULDEOHVHVWiQGH¿QLGDVGHQWURGHXQLQWHUYDORFRQWLQXRGHWLHPSR/DUHJODRPRGHOR
PDWHPiWLFRHQXQVLVWHPDGLQiPLFRFRQWLQXRHQHOWLHPSRHVXQDHFXDFLyQGLIHUHQFLDORVLVWHPDGHHFXDFLRQHVGLIHUHQFLDOHV(Oestado del sistemaDOWLHPSRtHVHO
YDORUGHODVYDULDEOHVGHHVWDGRHQHVHLQVWDQWHHOHVWDGRHVSHFL¿FDGRGHOVLVWHPDDO
WLHPSRt0VRQVLPSOHPHQWHODVFRQGLFLRQHVLQLFLDOHVTXHDFRPSDxDQDOPRGHORPD-
¡HÁBLAME!
y'=f(y)
a) analítico
b) cualitativo
FIGURA 1.3.8 'LIHUHQWHVPpWRGRVSDUDHOHVWXGLRGHHFXDFLRQHVGLIHUHQFLDOHV
c) numérico
1.3
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
l
27
WHPiWLFR/DVROXFLyQGHXQSUREOHPDFRQYDORUHVLQLFLDOHVVHOODPDrespuesta del
sistema3RUHMHPSORHQHOFDVRGHOGHFDLPLHQWRUDGLDFWLYRODUHJODHVdA兾dt
kA$KRUDVLVHFRQRFHODFDQWLGDGGHVXVWDQFLDUDGLDFWLYDDOWLHPSRt0GLJDPRV
A(t0) A0HQWRQFHVDOUHVROYHUODUHJODVHHQFXHQWUDTXHODUHVSXHVWDGHOVLVWHPD
SDUDt t0HVA(t) A0 e (t t0) YHDODVHFFLyQ /DUHVSXHVWDA(t HVOD~QLFD
YDULDEOHGHHVWDGRSDUDHVWHVLVWHPD(QHOFDVRGHODSLHGUDDUURMDGDGHVGHHOWHFKR
GHXQHGL¿FLRODUHVSXHVWDGHOVLVWHPDHVGHFLUODVROXFLyQDODHFXDFLyQGLIHUHQFLDOd 2s兾dt 2 gVXMHWDDOHVWDGRLQLFLDOs(0) s0, s(0) v0HVODIXQFLyQ
1 2
s(t)
v0 t s0; 0 t T,GRQGHTUHSUHVHQWDHOYDORUGHOWLHPSRHQ
2 gt
TXHODSLHGUDJROSHDHQHOVXHOR/DVYDULDEOHVGHHVWDGRVRQs(t \s(t ODSRVLFLyQ\ODYHORFLGDGYHUWLFDOHVGHODSLHGUDUHVSHFWLYDPHQWH/DDFHOHUDFLyQ
s(t), noHVXQDYDULDEOHGHHVWDGR\DTXHVyORVHFRQRFHQODSRVLFLyQ\ODYHORFLGDGLQLFLDOHVDOWLHPSRt0SDUDGHWHUPLQDUHQIRUPD~QLFDODSRVLFLyQs(t \OD
YHORFLGDGs(t) v(t GHODSLHGUDHQFXDOTXLHUPRPHQWRGHOLQWHUYDORt0 t T.
/DDFHOHUDFLyQs(t) a(t HVWiSRUVXSXHVWRGDGDSRUODHFXDFLyQGLIHUHQFLDO
s(t) g, 0 t T.
8Q~OWLPRSXQWR1RWRGRVORVVLVWHPDVTXHVHHVWXGLDQHQHVWHOLEURVRQ
VLVWHPDVGLQiPLFRV([DPLQDUHPRVDOJXQRVVLVWHPDVHVWiWLFRVHQTXHHOPRGHOR
HVXQDHFXDFLyQGLIHUHQFLDO
EJERCICIOS 1.3
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-1.
Dinámica poblacional
1. &RQEDVHHQODVPLVPDVKLSyWHVLVGHWUiVGHOPRGHORGH
ODHFXDFLyQ GHWHUPLQHXQDHFXDFLyQGLIHUHQFLDOSDUDOD
SREODFLyQ P(t GH XQ SDtV FXDQGR VH OHV SHUPLWH D ODV
SHUVRQDV LQPLJUDU D XQ SDtV FRQ XQD UD]yQ FRQVWDQWH
r ¢&XiOHVODHFXDFLyQGLIHUHQFLDOSDUDODSREODFLyQ
P(t GHOSDtVFXDQGRVHOHVSHUPLWHDODVSHUVRQDVHPLJUDU
GHOSDtVFRQXQDUD]yQFRQVWDQWHr "
2. (OPRGHORGHSREODFLyQGDGRHQODHFXDFLyQ IDOODDO
QRFRQVLGHUDUODWDVDGHPRUWDOLGDGODUD]yQGHFUHFLPLHQWR
HVLJXDODODWDVDGHQDWDOLGDG(QRWURPRGHORGHOFDPELR
GHSREODFLyQGHXQDFRPXQLGDGVHVXSRQHTXHODUD]yQGH
FDPELRGHODSREODFLyQHVXQDUD]yQnetaHVGHFLUODGLIHUHQFLDHQWUHODWDVDGHQDWDOLGDG\ODGHPRUWDOLGDGHQOD
FRPXQLGDG'HWHUPLQHXQPRGHORSDUDODSREODFLyQP(t)
VLWDQWRODWDVDGHQDWDOLGDG\ODPRUWDOLGDGVRQSURSRUFLRQDOHVDODSREODFLyQSUHVHQWHDOWLHPSRt 0.
3. 8WLOLFH HO FRQFHSWR GH UD]yQ QHWD LQWURGXFLGR HQ HO SUREOHPDSDUDGHWHUPLQDUXQPRGHORSDUDXQDSREODFLyQP(t)
VLODWDVDGHQDWDOLGDGHVSURSRUFLRQDODODSREODFLyQSUHVHQ
WHDOWLHPSRtSHURODWDVDGHPRUWDOLGDGHVSURSRUFLRQDODO
FXDGUDGRGHODSREODFLyQSUHVHQWHDOWLHPSRt.
4. 0RGL¿TXHHOSUREOHPDSDUDODUD]yQQHWDFRQODTXHOD
SREODFLyQP(t GHXQDFLHUWDFODVHGHSH]FDPELDDOVXSRQHUTXHHOSH]HVWiVLHQGRSHVFDGRFRQXQDUD]yQFRQVWDQWHh 0.
Ley de enfriamiento/calentamiento de Newton
5. 8QDWD]DGHFDIpVHHQIUtDGHDFXHUGRFRQODOH\GHHQIULDPLHQWRGH1HZWRQHFXDFLyQ 8WLOLFHORVGDWRVGHOD
JUi¿FDGHODWHPSHUDWXUDT(t HQOD¿JXUDSDUDHVWLPDU
ODVFRQVWDQWHVTm, T0\kHQXQPRGHORGHODIRUPDGHXQ
SUREOHPDFRQYDORUHVLQLFLDOHVGHSULPHURUGHQdT兾dt k
(T Tm), T(0) T0.
T
200
150
100
50
0
25
50
75
minutos
100
t
FIGURA 1.3.9 &XUYDGHHQIULDPLHQWRHQHOSUREOHPD
6. /DWHPSHUDWXUDDPELHQWHTmHQODHFXDFLyQ SRGUtDVHU
XQDIXQFLyQGHOWLHPSRt6XSRQJDTXHHQXQPHGLRDPELHQWH FRQWURODGR Tm(t HV SHULyGLFD FRQ XQ SHULRGR GH
KRUDVFRPRVHPXHVWUDHQOD¿JXUD'LVHxHXQ
PRGHORPDWHPiWLFRSDUDODWHPSHUDWXUDT(t GHXQFXHUSR
GHQWURGHHVWHPHGLRDPELHQWH
Propagación de una enfermedad/tecnología
7. 6XSRQJDTXHXQDOXPQRHVSRUWDGRUGHOYLUXVGHODJULSH\
UHJUHVDDODSDUWDGRFDPSXVGHVXXQLYHUVLGDGGHHVWXGLDQWHV'HWHUPLQHXQDHFXDFLyQGLIHUHQFLDOSDUDHOQ~PHUR
GHSHUVRQDVx(t TXHFRQWUDHUiQODJULSHVLODUD]yQFRQOD
TXHODHQIHUPHGDGVHSURSDJDHVSURSRUFLRQDODOQ~PHURGH
LQWHUDFFLRQHVHQWUHHOQ~PHURGHHVWXGLDQWHVTXHWLHQHJULSH
\HOQ~PHURGHHVWXGLDQWHVTXHD~QQRVHKDQH[SXHVWRDHOOD
28
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
HODJXDVDOHDWUDYpVGHODJXMHURODIULFFLyQ\ODFRQWUDFFLyQGHODFRUULHQWHFHUFDGHODJXMHURUHGXFHQHOYROXPHQ
GH DJXD TXH VDOH GHO WDQTXH SRU VHJXQGR D cAh 12gh ,
GRQGHc (0 c HVXQDFRQVWDQWHHPStULFD'HWHUPLQH
XQDHFXDFLyQGLIHUHQFLDOSDUDODDOWXUDhGHODJXDDOWLHPSR
tSDUDHOWDQTXHF~ELFRTXHVHPXHVWUDHQOD¿JXUD
(OUDGLRGHODJXMHURHVGHSXOJ\g SLHVV2.
Tm (t)
120
100
80
60
40
Aw
20
10 pies
0
12
24
36
48
media medio media medio media
noche día
noche día
noche
t
h
FIGURA 1.3.10 7HPSHUDWXUDDPELHQWHHQHOSUREOHPD
8. $OWLHPSRGHQRWDGRSRUt VHLQWURGXFHXQDLQQRYDFLyQWHFQROyJLFDHQXQDFRPXQLGDGTXHWLHQHXQDFDQWLGDG¿MDGHnSHUVRQDV'HWHUPLQHXQDHFXDFLyQGLIHUHQFLDOSDUDHOQ~PHURGHSHUVRQDVx(t TXHKD\DQDGRSWDGR
ODLQQRYDFLyQDOWLHPSRtVLVHVXSRQHTXHODUD]yQFRQOD
TXHVHSURSDJDODLQQRYDFLyQHVFRQMXQWDPHQWHSURSRUFLRQDODOQ~PHURGHSHUVRQDVTXH\DODKDQDGRSWDGR\DO
Q~PHURGHSHUVRQDVTXHQRODKDQDGRSWDGR
Mezclas
9. 6XSRQJDTXHXQWDQTXHJUDQGHGHPH]FODGRFRQWLHQHLQLFLDOPHQWHJDORQHVGHDJXDHQORVTXHVHGLVROYLHURQ
OLEUDVGHVDO(QWUDDJXDSXUDDXQDUD]yQGHJDOPLQ
\FXDQGRODVROXFLyQHVWiELHQUHYXHOWDVDOHDODPLVPD
UD]yQ 'HWHUPLQH XQD HFXDFLyQ GLIHUHQFLDO TXH H[SUHVH
ODFDQWLGDGA(t GHVDOTXHKD\HQHOWDQTXHDOWLHPSRt.
¢&XiQWRYDOHA "
10. 6XSRQJDTXHXQWDQTXHJUDQGHGHPH]FODGRFRQWLHQHLQLFLDOPHQWHJDORQHVGHDJXDHQORVTXHVHKDQGLVXHOWR
OLEUDV GH VDO 2WUD VDOPXHUD LQWURGXFLGD DO WDQTXH D
XQD UD]yQ GH JDOPLQ \ FXDQGR OD VROXFLyQ HVWi ELHQ
PH]FODGDVDOHDXQDUD]yQlentaGHJDOPLQ6LODFRQFHQWUDFLyQGHODVROXFLyQTXHHQWUDHVOEJDOGHWHUPLQH
XQD HFXDFLyQ GLIHUHQFLDO TXH H[SUHVH OD FDQWLGDG GH VDO
A(t TXHKD\HQHOWDQTXHDOWLHPSRt.
11. ¢&XiO HV OD HFXDFLyQ GLIHUHQFLDO GHO SUREOHPD VL OD
VROXFLyQELHQPH]FODGDVDOHDXQDUD]yQmás rápidaGH
JDOPLQ"
12. *HQHUDOLFHHOPRGHORGDGRHQODHFXDFLyQ GHODSiJLQD
VXSRQLHQGRTXHHOJUDQWDQTXHFRQWLHQHLQLFLDOPHQWH
N0Q~PHURGHJDORQHVGHVDOPXHUDrentra\rsaleVRQODVUD]RQHVGHHQWUDGD\VDOLGDGHODVDOPXHUDUHVSHFWLYDPHQWH
PHGLGDV HQ JDORQHV SRU PLQXWR centra HV OD FRQFHQWUDFLyQGHVDOHQHOÀXMRTXHHQWUDc(t HVODFRQFHQWUDFLyQ
GHVDOHQHOWDQTXHDVtFRPRHQHOÀXMRTXHVDOHDOWLHPSR
t PHGLGDHQOLEUDVGHVDOSRUJDOyQ \A(t HVODFDQWLGDG
GHVDOHQHOWDQTXHDOWLHPSRt 0.
agujero
circular
FIGURA 1.3.11 7DQTXHF~ELFRGHOSUREOHPD
14. 'HOWDQTXHFyQLFRUHFWDQJXODUUHFWRTXHVHPXHVWUDHQOD
¿JXUDVDOHDJXDSRUXQDJXMHURFLUFXODUTXHHVWi
HQHOIRQGR'HWHUPLQHXQDHFXDFLyQGLIHUHQFLDOSDUDOD
DOWXUDhGHODJXDDOWLHPSRt (OUDGLRGHODJXMHURHV
SXOJg SLHVV2\HOIDFWRUGHIULFFLyQFRQWUDFFLyQ
LQWURGXFLGRHQHOSUREOHPDHVc 0.6.
8 pies
Aw
h
20 pies
agujero circular
FIGURA 1.3.12 7DQTXHFyQLFRGHOSUREOHPD
Circuitos en serie
15. 8QFLUFXLWRHQVHULHWLHQHXQUHVLVWRU\XQLQGXFWRUFRPR
VH PXHVWUD HQ OD ¿JXUD 'HWHUPLQH XQD HFXDFLyQ
GLIHUHQFLDOSDUDODFRUULHQWHi(t VLODUHVLVWHQFLDHVROD
LQGXFWDQFLDHVL\HOYROWDMHDSOLFDGRHVE(t).
16. 8QFLUFXLWRHQVHULHFRQWLHQHXQUHVLVWRU\XQFDSDFLWRUFRPR
VHPXHVWUDHQOD¿JXUD'HWHUPLQHXQDHFXDFLyQGLIHUHQFLDOTXHH[SUHVHODFDUJDq(t HQHOFDSDFLWRUVLODUHVLVWHQFLDHVRODFDSDFLWDQFLDHVC\HOYROWDMHDSOLFDGRHVE(t).
L
E
R
FIGURA 1.3.13 &LUFXLWRHQVHULH LR GHOSUREOHPD
R
E
Drenado de un tanque
13. 6XSRQJDTXHHVWiVDOLHQGRDJXDGHXQWDQTXHDWUDYpVGH
XQDJXMHURFLUFXODUGHiUHDAhTXHHVWiHQHOIRQGR&XDQGR
C
FIGURA 1.3.14 &LUFXLWRRCHQVHULHGHOSUREOHPD
1.3
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
l
29
s/2
s/2
0
kv2
SKYD IVING
MADE
EASY
mg
a)
superficie
0
y(t)
b)
FIGURA 1.3.16 0RYLPLHQWRRVFLODWRULRGHOEDUULO
ÀRWDQGRGHOSUREOHPD
FIGURA 1.3.15 5HVLVWHQFLDGHODLUHSURSRUFLRQDODO
FXDGUDGRGHODYHORFLGDGGHOSUREOHPD
Caida libre y resistencia del aire
17. 3DUDPRYLPLHQWRVGHJUDQUDSLGH]HQHODLUHFRPRHOGHO
SDUDFDLGLVWDTXHVHPXHVWUDHQOD¿JXUDTXHHVWiFD\HQGRDQWHVGHTXHVHDEUDHOSDUDFDtGDVODUHVLVWHQFLDGHO
DLUHHVFHUFDQDDXQDSRWHQFLDGHODYHORFLGDGLQVWDQWiQHDv(t 'HWHUPLQHXQDHFXDFLyQGLIHUHQFLDOSDUDODYHORFLGDGv(t GHXQFXHUSRGHPDVDmTXHFDHVLODUHVLVWHQFLDGHO
DLUHHVSURSRUFLRQDODOFXDGUDGRGHODYHORFLGDGLQVWDQWiQHD
Segunda ley de Newton y Principio de Arquímedes
18. 8QEDUULOFLOtQGULFRGHsSLHVGHGLiPHWUR\wOEGHSHVRHVWi
ÀRWDQGR HQ DJXD FRPR VH PXHVWUD HQ OD ¿JXUD D
'HVSXpV GH XQ KXQGLPLHQWR LQLFLDO HO EDUULO SUHVHQWD XQ
PRYLPLHQWR RVFLODWRULR KDFLD DUULED \ KDFLD DEDMR D OR
ODUJR GH OD YHUWLFDO 8WLOL]DQGR OD ¿JXUD E GH¿QD
XQDHFXDFLyQGLIHUHQFLDOSDUDHVWDEOHFHUHOGHVSOD]DPLHQWR
YHUWLFDOy(t VLVHVXSRQHTXHHORULJHQHVWiHQHOHMHYHUWLFDO
\HQODVXSHU¿FLHGHODJXDFXDQGRHOEDUULOHVWiHQUHSRVR
8VH HO Principio de Arquímedes OD IXHU]D GH ÀRWDFLyQ
RKDFLDDUULEDTXHHMHUFHHODJXDVREUHHOEDUULOHVLJXDODO
SHVRGHODJXDGHVSOD]DGD6XSRQJDTXHODGLUHFFLyQKDFLD
DEDMRHVSRVLWLYDTXHODGHQVLGDGGHPDVDGHODJXDHV
OESLHV3\TXHQRKD\UHVLVWHQFLDHQWUHHOEDUULO\HODJXD
Segunda ley de Newton y ley de Hooke
19. 'HVSXpVGHTXHVH¿MDXQDPDVDmDXQUHVRUWHpVWHVHHVWLUD
sXQLGDGHV\FXHOJDHQUHSRVRHQODSRVLFLyQGHHTXLOLEULR
FRPRVHPXHVWUDHQOD¿JXUD E 'HVSXpVHOVLVWHPD
UHVRUWHPDVDVHSRQHHQPRYLPLHQWRVHDTXHx(t GHQRWHOD
GLVWDQFLDGLULJLGDGHOSXQWRGHHTXLOLEULRDODPDVD&RPRVH
LQGLFDHQOD¿JXUD F VXSRQJDTXHODGLUHFFLyQKDFLD
DEDMRHVSRVLWLYD\TXHHOPRYLPLHQWRVHHIHFW~DHQXQDUHFWD
YHUWLFDOTXHSDVDSRUHOFHQWURGHJUDYHGDGGHODPDVD\TXH
ODV~QLFDVIXHU]DVTXHDFW~DQVREUHHOVLVWHPDVRQHOSHVR
GHODPDVD\ODIXHU]DGHUHVWDXUDFLyQGHOUHVRUWHHVWLUDGR
8WLOLFH OD ley de Hooke OD IXHU]D GH UHVWDXUDFLyQ GH XQ
UHVRUWHHVSURSRUFLRQDODVXHORQJDFLyQWRWDO'HWHUPLQHXQD
HFXDFLyQGLIHUHQFLDOGHOGHVSOD]DPLHQWRx(t DOWLHPSRt 0.
20. (Q HO SUREOHPD ¢FXiO HV OD HFXDFLyQ GLIHUHQFLDO SDUD
HO GHVSOD]DPLHQWR x(t VL HO PRYLPLHQWR WLHQH OXJDU HQ XQ
PHGLRTXHHMHUFHXQDIXHU]DGHDPRUWLJXDPLHQWRVREUHHO
VLVWHPDUHVRUWHPDVDTXHHVSURSRUFLRQDODODYHORFLGDGLQVWDQWiQHDGHODPDVD\DFW~DHQGLUHFFLyQFRQWUDULDDOPRYLPLHQWR"
x(t) < 0
s
resorte sin
x=0
m
deformar
x(t)
>
0
posición de
equilibrio
m
a)
b)
c)
FIGURA 1.3.17 6LVWHPDUHVRUWHPDVDGHOSUREOHPD
Segunda ley de Newton y el movimiento
de un cohete
&XDQGRODPDVDmGHXQFXHUSRFDPELDFRQHOWLHPSRODVHJXQGDOH\GH1HZWRQGHOPRYLPLHQWRVHFRQYLHUWHHQ
F ddt (mv)
(17)
GRQGHFHVODIXHU]DQHWDDFWXDQGRVREUHHOFXHUSR\mvHVVX
FDQWLGDGGHPRYLPLHQWR8WLOLFH SUREOHPDVHQ\
21. 8QSHTXHxRFRKHWHPRQRHWDSDVHODQ]DYHUWLFDOPHQWHFRPR
VHPXHVWUDHQOD¿JXUD8QDYH]ODQ]DGRHOFRKHWH
FRQVXPHVXFRPEXVWLEOH\DVtVXPDVDWRWDOm(t YDUtDFRQ
HOWLHPSR t!6LVHVXSRQHTXHODGLUHFFLyQSRVLWLYDHV
KDFLDDUULEDODUHVLVWHQFLDGHODLUHHVSURSRUFLRQDODODYHORFLGDGLQVWDQWiQHDvGHOFRKHWH\RHVHOHPSXMHDVFHQGHQWH
R IXHU]D JHQHUDGD SRU HO VLVWHPD GH SURSXOVLyQ HQWRQFHV
FRQVWUX\DXQPRGHORPDWHPiWLFRSDUDODYHORFLGDGv(t GHO
FRKHWH>Sugerencia: YHDODHFXDFLyQ HQODVHFFLyQ@
FIGURA 1.3.18 &RKHWHPRQRHWDSDGHOSUREOHPD
30
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
22. (QHOSUREOHPDODPDVDm(t HVODVXPDGHWUHVPDVDV
GLIHUHQWHVm(t) mp mv mf (t GRQGHmpHVODPDVD
FRQVWDQWHGHODFDUJD~WLOmvHVODPDVDFRQVWDQWHGHOYHKtFXOR\mf (t HVODFDQWLGDGYDULDEOHGHFRPEXVWLEOH
a) 'HPXHVWUHTXHODUDSLGH]FRQODFXDOODPDVDWRWDOm(t)
GHOFRKHWHFDPELDHVLJXDODODUDSLGH]FRQODFXDOFDPELDODPDVDGHOFRPEXVWLEOHmf (t).
b) 6LHOFRKHWHFRQVXPHVXFRPEXVWLEOHDXQULWPRFRQVWDQWH Ȝ GHWHUPLQH m(t) /XHJR UHHVFULED OD HFXDFLyQ
GLIHUHQFLDOGHOSUREOHPDHQWpUPLQRVGHȜ\GHOD
PDVDWRWDOLQLFLDOm(0) = m0.
c) %DMR OD VXSRVLFLyQ GHO LQFLVR E GHPXHVWUH TXH HO
WLHPSRGHDJRWDPLHQWRGHOFRKHWHtb!RHOPRPHQWR
HQTXHWRGRHOFRPEXVWLEOHVHFRQVXPHHVtb mf (0) Ȝ
GRQGHmf (0)HVODPDVDLQLFLDOGHOFRPEXVWLEOH
Segunda ley de Newton y la ley
de la gravitación universal
23. 'H DFXHUGR FRQ OD ley de la gravitación universal de
NewtonODDFHOHUDFLyQGHFDtGDOLEUHaGHXQFXHUSRWDO
FRPRHOVDWpOLWHTXHVHPXHVWUDHQOD¿JXUDTXHHVWi
FD\HQGRGHVGHXQDJUDQGLVWDQFLDKDFLDODVXSHU¿FLHQRHV
ODFRQVWDQWHg0iVELHQODDFHOHUDFLyQaHVLQYHUVDPHQWH
SURSRUFLRQDO DO FXDGUDGR GH OD GLVWDQFLD GHVGH HO FHQWUR
GHOD7LHUUDa k兾r2GRQGHkHVODFRQVWDQWHGHSURSRUFLRQDOLGDG 3DUD GHWHUPLQDU k XWLOLFH HO KHFKR GH TXH HQ
ODVXSHU¿FLHGHOD7LHUUDr R\a g6LODGLUHFFLyQ
SRVLWLYDVHFRQVLGHUDKDFLDDUULEDXWLOLFHODVHJXQGDOH\GH
1HZWRQ\ODOH\GHODJUDYLWDFLyQXQLYHUVDOSDUDHQFRQWUDU
XQDHFXDFLyQGLIHUHQFLDOSDUDODGLVWDQFLDr.
24. 6XSRQJDTXHVHKDFHXQDJXMHURTXHSDVDSRUHOFHQWURGHOD
7LHUUD\TXHSRUpOVHGHMDFDHUXQDERODGHPDVDmFRPRVH
PXHVWUDHQOD¿JXUD&RQVWUX\DXQPRGHORPDWHPi
WLFRTXHGHVFULEDHOSRVLEOHPRYLPLHQWRGHODEROD$OWLHPSR
tVHDTXHrGHQRWHODGLVWDQFLDGHVGHHOFHQWURGHOD7LHUUDDOD
PDVDmTXHMGHQRWHODPDVDGHOD7LHUUDTXHMrGHQRWH
ODPDVDGHODSDUWHGHOD7LHUUDTXHHVWiGHQWURGHXQDHVIHUD
GHUDGLRr\TXHGHQRWHODGHQVLGDGFRQVWDQWHGHOD7LHUUD
Más modelos matemáticos
25. Teoría del aprendizaje (QODWHRUtDGHODSUHQGL]DMHVHVXSRQHTXHODUDSLGH]FRQTXHVHPHPRUL]DDOJRHVSURSRUFLRQDO
DODFDQWLGDGTXHTXHGDSRUPHPRUL]DU6XSRQJDTXHMGHQRWDODFDQWLGDGWRWDOGHXQWHPDTXHVHGHEHPHPRUL]DU\TXH
A(t HVODFDQWLGDGPHPRUL]DGDDOWLHPSRt 0'HWHUPLQH
XQDHFXDFLyQGLIHUHQFLDOSDUDGHWHUPLQDUODFDQWLGDGA(t).
26. Falta de memoria (QHOSUREOHPDVXSRQJDTXHOD
UD]yQ FRQ OD FXDO HO PDWHULDO HV olvidado HV SURSRUFLRQDODODFDQWLGDGPHPRUL]DGDDOWLHPSRt 0'HWHUPLQH
XQDHFXDFLyQGLIHUHQFLDOSDUDA(t FXDQGRVHFRQVLGHUDOD
IDOWDGHPHPRULD
27. Suministro de un medicamento 6HLQ\HFWDXQPHGLFDPHQWRHQHOWRUUHQWHVDQJXtQHRGHXQSDFLHQWHDXQDUD]yQ
FRQVWDQWHGHrJUDPRVSRUVHJXQGR6LPXOWiQHDPHQWHVH
HOLPLQDHOPHGLFDPHQWRDXQDUD]yQSURSRUFLRQDODODFDQWLGDG x(t SUHVHQWH DO WLHPSR t 'HWHUPLQH XQD HFXDFLyQ
GLIHUHQFLDOTXHGHVFULEDODFDQWLGDGx(t).
28. Tractriz 8QDSHUVRQDPTXHSDUWHGHORULJHQVHPXHYHHQ
ODGLUHFFLyQSRVLWLYDGHOHMHxMDODQGRXQSHVRDORODUJRGHOD
FXUYD C OODPDGD tractriz FRPR VH PXHVWUD HQ OD ¿JXUD
,QLFLDOPHQWHHOSHVRVHHQFRQWUDEDHQHOHMHyHQ
(0, s \VHMDODFRQXQDFXHUGDGHORQJLWXGFRQVWDQWHsTXH
VHPDQWLHQHWHQVDGXUDQWHHOPRYLPLHQWR'HWHUPLQHXQD
HFXDFLyQGLIHUHQFLDOSDUDODWUD\HFWRULDCGHPRYLPLHQWR
6XSRQJDTXHODFXHUGDVLHPSUHHVWDQJHQWHDC.
y
(0, s)
(x, y)
y
s
C
θ
tangente
y
satélite de
satellite
of
mass m
masa
C
P (x, y)
cie
erfi
su p
r
θ
φ
O
GHOSUREOHPD
6DWpOLWH
Tierra de masa M
m
r
TXHSDVDDWUDYpVGHOD7LHUUDGHO
SUREOHPD
x
FIGURA 1.3.22 6XSHU¿FLHUHÀHFWRUDGHOSUREOHPD
superficie
FIGURA 1.3.20 $JXMHUR
L
θ
R
FIGURA 1.3.19
x
P
FIGURA 1.3.21 &XUYDWUDFWUL]GHOSUREOHPD
R
29. 6XSHU¿FLH UHÀHFWRUD 6XSRQJD TXH FXDQGR OD FXUYD
SODQDCTXHVHPXHVWUDHQOD¿JXUDVHJLUDUHVSHFWR
DOHMHxJHQHUDXQDVXSHU¿FLHGHUHYROXFLyQFRQODSURSLHGDGGHTXHWRGRVORVUD\RVGHOX]L SDUDOHORVDOHMHxTXH
LQFLGHQHQODVXSHU¿FLHVRQUHÀHMDGRVDXQVRORSXQWRO HO
RULJHQ 8WLOLFHHOKHFKRGHTXHHOiQJXORGHLQFLGHQFLDHV
LJXDODOiQJXORGHUHÀH[LyQSDUDGHWHUPLQDUXQDHFXDFLyQ
GLIHUHQFLDOTXHGHVFULEDODIRUPDGHODFXUYDC(VWDFXUYD
1.3
ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS
CHVLPSRUWDQWHHQDSOLFDFLRQHVFRPRFRQVWUXFFLyQGHWHOHVFRSLRVRDQWHQDVGHVDWpOLWHVIDURVGHODQWHURVGHDXWRPyYLOHV \ FROHFWRUHV VRODUHV >Sugerencia: /D LQVSHFFLyQ GH
OD¿JXUDPXHVWUDTXHSRGHPRVHVFULELU 2¢3RUTXp"
$KRUDXWLOLFHXQDLGHQWLGDGWULJRQRPpWULFDDGHFXDGD@
31
y
ω
Problemas de análisis
P
30. 5HSLWD HO SUREOHPD GH ORV HMHUFLFLRV \ GHVSXpV
SURSRUFLRQHXQDVROXFLyQH[SOLFtWDP(t SDUDODHFXDFLyQ
'HWHUPLQHXQDIDPLOLDXQLSDUDPpWULFDGHVROXFLRQHV
GH
31. /HDQXHYDPHQWHODRUDFLyQTXHVHHQFXHQWUDDFRQWLQXDFLyQ
GHODHFXDFLyQ \VXSRQJDTXHTmHVXQDFRQVWDQWHSRVLWLYD
$QDOLFHSRUTXpVHSRGUtDHVSHUDUTXHk HQ HQDPERV
FDVRV GH HQIULDPLHQWR \ GH FDOHQWDPLHQWR 3RGUtD HPSH]DU
SRULQWHUSUHWDUGLJDPRVT(t) TmHQXQDIRUPDJUi¿FD
32. /HDQXHYDPHQWHHODQiOLVLVTXHFRQGXMRDODHFXDFLyQ
6LVXSRQHPRVTXHLQLFLDOPHQWHHOWDQTXHFRQVHUYDGLJDPRVOLEUDVGHVDOHVSRUTXHVHOHHVWiDJUHJDQGRVDO
FRQWLQXDPHQWHDOWDQTXHSDUDt 0, A(t VHUiXQDIXQFLyQ
FUHFLHQWH$QDOLFHFyPRSRGUtDGHWHUPLQDUDSDUWLUGHOD
('VLQUHDOPHQWHUHVROYHUODHOQ~PHURGHOLEUDVGHVDO
HQHOWDQTXHGHVSXpVGHXQSHULRGRODUJR
33. Modelo de población /D HFXDFLyQ GLIHUHQFLDO
dP
(k cos t)P, GRQGH k HV XQD FRQVWDQWH SRVLWLYD
dt
PRGHODODSREODFLyQKXPDQDP(t GHFLHUWDFRPXQLGDG
$QDOLFHHLQWHUSUHWHODVROXFLyQGHHVWDHFXDFLyQ(QRWUDV
SDODEUDV¢TXpWLSRGHSREODFLyQSLHQVDTXHGHVFULEHHVWD
HFXDFLyQGLIHUHQFLDO"
34. Fluido girando &RPRVHPXHVWUDHQOD¿JXUD D XQ
FLOLQGURFLUFXODUUHFWRSDUFLDOPHQWHOOHQRFRQXQÀXLGRHVWi
JLUDQGRFRQXQDYHORFLGDGDQJXODUFRQVWDQWH UHVSHFWRDO
HMHYHUWLFDOTXHSDVDSRUVXFHQWUR(OÀXLGRJLUDQGRIRUPD
XQD VXSHU¿FLH GH UHYROXFLyQ S 3DUD LGHQWL¿FDU S SULPHUR
HVWDEOHFHPRV XQ VLVWHPD FRRUGHQDGR TXH FRQVLVWH HQ XQ
SODQRYHUWLFDOGHWHUPLQDGRSRUHOHMHy\HOHMHxGLEXMDGR
HQIRUPDSHUSHQGLFXODUDOHMHyGHWDOIRUPDTXHHOSXQWRGH
LQWHUVHFFLyQGHORVHMHV HORULJHQ HVWiORFDOL]DGRHQHOSXQWR
LQIHULRUGHODVXSHU¿FLHS(QWRQFHVEXVFDPRVXQDIXQFLyQ
y f (x TXHUHSUHVHQWHODFXUYDCGHLQWHUVHFFLyQGHODVXSHU¿FLHS\GHOSODQRFRRUGHQDGRYHUWLFDO6HDTXHHOSXQWR
P(x, y GHQRWHODSRVLFLyQGHXQDSDUWtFXODGHOÀXLGRJLUDQGR
GHPDVDmHQHOSODQRFRRUGHQDGR9HDOD¿JXUD E
a) (
QPKD\XQDIXHU]DGHUHDFFLyQGHPDJQLWXGFGHELGD D ODV RWUDV SDUWtFXODV GHO ÀXLGR TXH HV SHUSHQGLFXODU D OD VXSHU¿FLH S 8VDQGR OD VHJXQGD OH\ GH
1HZWRQODPDJQLWXGGHODIXHU]DQHWDTXHDFW~DVREUH
ODSDUWtFXODHVm2x¢&XiOHVHVWDIXHU]D"8WLOLFHOD
¿JXUD E SDUDDQDOL]DUODQDWXUDOH]D\HORULJHQ
GHODVHFXDFLRQHV
F FRV mg,
l
F VHQ m2x
a)
curva C de intersección
del plano xy y la
superficie de
y
revolución
mω 2x
F
θ
P(x, y)
mg
θ
recta tangente
a la curva C en P
x
b)
FIGURA 1.3.23 )OXLGRJLUDQGRGHOSUREOHPD
b) 8
VHHOLQFLVRD SDUDHQFRQWUDUXQDHFXDFLyQGLIHUHQFLDOTXHGH¿QDODIXQFLyQy f(x).
35. Cuerpo en caída (Q HO SUREOHPD VXSRQJD TXH r
R s GRQGH s HV OD GLVWDQFLD GHVGH OD VXSHU¿FLH GH OD
7LHUUDDOFXHUSRTXHFDH¢&yPRHVODHFXDFLyQGLIHUHQFLDO
TXHVHREWXYRHQHOSUREOHPDFXDQGRsHVPX\SHTXHxD
HQ FRPSDUDFLyQ FRQ R" >Sugerencia: &RQVLGHUH OD VHULH
ELQRPLDOSDUD
(R s)2 R2 (1 s兾R)2.]
36. Gotas de lluvia cayendo (Q PHWHRURORJtD HO WpUPLQR
virgaVHUH¿HUHDODVJRWDVGHOOXYLDTXHFDHQRDSDUWtFXODV
GHKLHORTXHVHHYDSRUDQDQWHVGHOOHJDUDOVXHOR6XSRQJD
TXHHQDOJ~QWLHPSRTXHVHSXHGHGHQRWDUSRUt ODV
JRWDVGHOOXYLDGHUDGLRr0FDHQGHVGHHOUHSRVRGHXQDQXEH
\VHFRPLHQ]DQDHYDSRUDU
a) 6LVHVXSRQHTXHXQDJRWDVHHYDSRUDGHWDOPDQHUD
TXHVXIRUPDSHUPDQHFHHVIpULFDHQWRQFHVWDPELpQ
WLHQHVHQWLGRVXSRQHUTXHODUD]yQDODFXDOVHHYDSRUD
OD JRWD GH OOXYLD HVWR HV OD UD]yQ FRQ OD FXDO pVWD
SLHUGH PDVD HV SURSRUFLRQDO D VX iUHD VXSHU¿FLDO
0XHVWUH TXH HVWD ~OWLPD VXSRVLFLyQ LPSOLFD TXH OD
UD]yQFRQODTXHHOUDGLRrGHODJRWDGHOOXYLDGLVPLQX\HHVXQDFRQVWDQWH(QFXHQWUHr (t >Sugerencia:
9HDHOSUREOHPDHQORVHMHUFLFLRV@
b) 6L OD GLUHFFLyQ SRVLWLYD HV KDFLD DEDMR FRQVWUX\D XQ
PRGHOR PDWHPiWLFR SDUD OD YHORFLGDG v GH OD JRWD
GH OOXYLD TXH FDH DO WLHPSR t
0 'HVSUHFLH OD UHVLVWHQFLD GHO DLUH >Sugerencia: 8WLOLFH OD IRUPD GH
OD VHJXQGD OH\ GH 1HZWRQ GDGD HQ OD HFXDFLyQ ]
32
l
CAPÍTULO 1
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES
37. Deja que nieve (O ³SUREOHPD GHO TXLWDQLHYHV´ HV XQ FOiVLFRTXHDSDUHFHHQPXFKRVOLEURVGHHFXDFLRQHVGLIHUHQFLDOHV
\TXHIXHSUREDEOHPHQWHLQYHQWDGRSRU5DOSK3DOPHU$JQHZ
“Un día comenzó a nevar en forma intensa y constante. Un quitanieve comenzó a medio día, y avanzó
2 millas la primera hora y una milla la segunda. ¿A
qué hora comenzó a nevar?”
REPASO DEL CAPÍTULO 1
(QORVSUREOHPDV\OOHQHHOHVSDFLRHQEODQFR\GHVSXpV
HVFULEDHVWHUHVXOWDGRFRPRXQDHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQTXHQRFRQWLHQHDOVtPERORc1\TXHWLHQHODIRUPD
dy兾dx f(x, y (OVtPERORc1UHSUHVHQWDXQDFRQVWDQWH
d
c1e10x
dx
d
2.
(5 c1e
dx
1.
)
(QORVSUREOHPDV\OOHQHHOHVSDFLRHQEODQFR\GHVSXpV
HVFULEDHVWHUHVXOWDGRFRPRXQDHFXDFLyQGLIHUHQFLDOOLQHDOGH
VHJXQGRRUGHQTXHQRFRQWLHQHDODVFRQVWDQWHVc1\c2\TXH
WLHQHODIRUPDF(y, y) /RVVtPERORVc1, c2\kUHSUHVHQWDQ
FRQVWDQWHV
d2
(c1 cos kx c2 sen kx)
dx2
d2
4.
(c1 cosh kx c2 senh kx)
dx2
3.
(Q ORV SUREOHPDV \ FDOFXOH y \ y \ GHVSXpV FRPELQH
HVWDVGHULYDGDVFRQyFRPRXQDHFXDFLyQGLIHUHQFLDOOLQHDOGH
VHJXQGRRUGHQTXHQRFRQWLHQHORVVtPERORVc1\c2\TXHWLHQH
ODIRUPDF(y, y, y) (VWRVVtPERORVc1\c2UHSUHVHQWDQ
FRQVWDQWHV
6. y c1e x FRVx c2e x VHQx
(QORVSUREOHPDVDUHODFLRQHFDGDXQDGHODVVLJXLHQWHV
HFXDFLRQHVGLIHUHQFLDOHVFRQXQDRPiVGHHVWDVVROXFLRQHV
a) y 0,
b) y 2,
c) y 2x,
d) y 2x 2.
7. xy 2y
9. y 2y 4
11. y 9y 18
8. y 2
10. xy y
12. xy y 0
(QORVSUREOHPDV\GHWHUPLQHSRULQVSHFFLyQDOPHQRV
XQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDOGDGD
13. y y
38. /HD QXHYDPHQWH HVWD VHFFLyQ \ FODVL¿TXH FDGD PRGHOR
PDWHPiWLFRFRPROLQHDORQROLQHDO
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-1.
15. (QODJUi¿FDGHy (x ODSHQGLHQWHGHODUHFWDWDQJHQWH
HQHOSXQWRP(x, y HVHOFXDGUDGRGHODGLVWDQFLDGHP(x, y)
DORULJHQ
16. (QODJUi¿FDGHy (x ODUD]yQFRQODTXHODSHQGLHQWH
FDPELDUHVSHFWRDxHQXQSXQWRP(x, y HVHOQHJDWLYRGH
ODSHQGLHQWHGHODUHFWDWDQJHQWHHQP(x, y).
17. a) 'pHOGRPLQLRGHODIXQFLyQy x .
2x
5. y c1e x c 2xe x
6H HQFXHQWUD HQ HO OLEUR Differential Equations GH 5DOSK
3DOPHU$JQHZ0F*UDZ+LOO%RRN&RE~VTXHOR\GHVSXpV
DQDOLFHODFRQVWUXFFLyQ\VROXFLyQGHOPRGHORPDWHPiWLFR
14. y y(y 3)
(QORVSUREOHPDV\LQWHUSUHWHFDGDHQXQFLDGRFRPRXQD
HFXDFLyQGLIHUHQFLDO
b) '
pHOLQWHUYDORI GHGH¿QLFLyQPiVODUJRHQHOFXDO
y x 23 HVVROXFLyQGHODHFXDFLyQGLIHUHQFLDOxy
2y 0.
18. a) &
RPSUXHEH TXH OD IDPLOLD XQLSDUDPpWULFD y2 2y
x2 – x cHVXQDVROXFLyQLPSOtFLWDGHODHFXDFLyQ
GLIHUHQFLDO y 2)y 2x 1.
b) (
QFXHQWUHXQPLHPEURGHODIDPLOLDXQLSDUDPpWULFDHQ
HOLQFLVRD TXHVDWLVIDJDODFRQGLFLyQLQLFLDOy(0) 1.
c) 8
WLOLFHVXUHVXOWDGRGHOLQFLVRE SDUDGHWHUPLQDUXQD
funciónH[SOtFLWDy (x TXHVDWLVIDJDy(0) 'p
HOGRPLQLRGHODIXQFLyQ ¢(Vy (x XQDsolución
GHOSUREOHPDFRQYDORUHVLQLFLDOHV"6LHVDVtGpVXLQWHUYDORI GHGH¿QLFLyQVLQRH[SOLTXHSRUTXp
19. 'DGRTXHy x – 2兾xHVXQDVROXFLyQGHOD('xy y
2x'HWHUPLQHx0\HOLQWHUYDORI PiVODUJRSDUDHOFXDO
y(x HVXQDVROXFLyQGHO39,GHSULPHURUGHQxy y
2x, y(x0) 1.
20. 6XSRQJDTXHy(x GHQRWDXQDVROXFLyQGHO39,GHSULPHU
RUGHQy x2 y2, y(1) \TXHy(x WLHQHDOPHQRV
XQDVHJXQGDGHULYDGDHQx (QDOJXQDYHFLQGDGGHx
XWLOLFHOD('SDUDGHWHUPLQDUVLy(x HVWiFUHFLHQGRR
GHFUHFLHQGR \ VL OD JUi¿FD y(x HV FyQFDYD KDFLD DUULED
RKDFLDDEDMR
21. 8QDHFXDFLyQGLIHUHQFLDOSXHGHWHQHUPiVGHXQDIDPLOLD
GHVROXFLRQHV
a) '
LEXMHGLIHUHQWHVPLHPEURVGHODVIDPLOLDVy 1(x)
x2 c1\y 2(x) x2 c2.
b) &
RPSUXHEHTXHy 1(x \y 2(x VRQGRVVROXFLRQHVGHODHFXDFLyQGLIHUHQFLDOQROLQHDOGHSULPHU
RUGHQ y)2 4x2.
REPASO DEL CAPÍTULO
c) &
RQVWUX\DXQDIXQFLyQGH¿QLGDHQWUDPRVTXHVHDXQD
VROXFLyQGHOD('QROLQHDOGHOLQFLVRE SHURTXHQRVHD
PLHPEURGHODIDPLOLDGHVROXFLRQHVGHOLQFLVRD
22. ¢&XiOHVODSHQGLHQWHGHODUHFWDWDQJHQWHDODJUi¿FDGH
XQDVROXFLyQGH y
61y 5x3 TXHSDVDSRU "
(QORVSUREOHPDVDYHUL¿TXHTXHODIXQFLyQLQGLFDGDHV
XQDVROXFLyQSDUWLFXODUGHODHFXDFLyQGLIHUHQFLDOGDGD'pXQ
LQWHUYDORI GHGH¿QLFLyQSDUDFDGDVROXFLyQ
23. y y FRVx VHQx y xVHQx xFRVx
24. y y VHFx y xVHQx FRVx OQ FRVx)
25. x 2y xy y y VHQ OQx)
26. x 2y xy y VHF OQx
y FRV OQx OQ FRV OQx)) OQx VHQ OQx)
(QORVSUREOHPDVDFRPSUXHEHTXHODH[SUHVLyQLQGLFDGDHVXQDVROXFLyQLPSOtFLWDGHODHFXDFLyQGLIHUHQFLDOGDGD
27. x(dy冫dx) y 1冫y2 x3 y3 x3 1
28. (dy冫dx)2 1 1冫y2 x 5)2 y2 1
29. y 2y(y)3 y3 3y O 3x
30. (1 xy)y y2 y exy
(QORVSUREOHPDVDy c1e3x c2ex 2xHVXQDIDPLOLDGHVROXFLRQHVGHGRVSDUiPHWURVGHOD('GHVHJXQGR
RUGHQy – 2y 3y 6x 'HWHUPLQHXQDVROXFLyQGHO
39,GHVHJXQGRRUGHQTXHFRQVLVWHHQHVWDHFXDFLyQGLIHUHQFLDO\HQODVFRQGLFLRQHVLQLFLDOHVGDGDV
31. y (0) 0, y(0) 0
32. y (0) 1, y(0) 3
33. y (1) 4, y(1) 2
34. y (1) 0, y(1) 1
35. (QOD¿JXUD5VHSUHVHQWDODJUi¿FDGHXQDVROXFLyQ
GH XQ SUREOHPD FRQ YDORUHV LQLFLDOHV GH VHJXQGR RUGHQ
d 2y兾dx 2 f (x, y, y), y(2) y0, y(2) y1 8WLOLFH OD
JUi¿FDSDUDHVWLPDUORVYDORUHVGHy0\y1.
l
33
36. 8QWDQTXHTXHWLHQHODIRUPDGHFLOLQGURFLUFXODUUHFWR
GHSLHVGHUDGLR\SLHVGHDOWXUDHVWiSDUDGRVREUH
VXEDVH,QLFLDOPHQWHHOWDQTXHHVWiOOHQRGHDJXD\pVWD
VDOHSRUXQDJXMHURFLUFXODUGH12SXOJGHUDGLRHQHOIRQGR
'HWHUPLQH XQD HFXDFLyQ GLIHUHQFLDO SDUD OD DOWXUD h GHO
DJXDDOWLHPSRt 'HVSUHFLHODIULFFLyQ\FRQWUDFFLyQ
GHODJXDHQHODJXMHUR
37. (OQ~PHURGHUDWRQHVGHFDPSRHQXQDSDVWXUDHVWiGDGR
SRUODIXQFLyQ 10tGRQGHHOWLHPSRtVHPLGHHQ
DxRV 'HWHUPLQH XQD HFXDFLyQ GLIHUHQFLDO TXH JRELHUQH
XQD SREODFLyQ GH E~KRV TXH VH DOLPHQWDQ GH UDWRQHV VL
ODUD]yQDODTXHODSREODFLyQGHE~KRVFUHFHHVSURSRUFLRQDODODGLIHUHQFLDHQWUHHOQ~PHURGHE~KRVDOWLHPSR
t \HOQ~PHURGHUDWRQHVDOPLVPRWLHPSRt.
38. 6XSRQJD TXH dA兾dt 0.0004332 A(t UHSUHVHQWD XQ
PRGHOR PDWHPiWLFR SDUD HO GHFDLPLHQWR UDGLDFWLYR GHO
UDGLR 5D GRQGH A(t HV OD FDQWLGDG GH UDGLR PHGLGDHQJUDPRV TXHTXHGDDOWLHPSRt PHGLGRHQDxRV
¢&XiQWRGHODPXHVWUDGHUDGLRTXHGDDOWLHPSRtFXDQGR
ODPXHVWUDHVWiGHFD\HQGRFRQXQDUD]yQGHJUDPRV
SRUDxR"
y
5
5
x
−5
FIGURA 1.R.1 *Ui¿FDSDUDHOSUREOHPD
2
ECUACIONES DIFERENCIALES
DE PRIMER ORDEN
2.1 Curvas solución sin una solución
2.1.1 Campos direccionales
2.1.2 ED autónomas de primer orden
2.2 Variables separables
2.3 Ecuaciones lineales
2.4 Ecuaciones exactas
2.5 Soluciones por sustitución
2.6 Un método numérico
REPASO DEL CAPÍTULO 2
La historia de las matemáticas tiene muchos relatos de personas que han dedicado
gran parte de sus vidas a la solución de ecuaciones: al principio de ecuaciones
algebraicas y, después, de ecuaciones diferenciales. En las secciones 2.2 a 2.5
estudiaremos algunos de los métodos analíticos más importantes para resolver
ED de primer orden. Sin embargo, antes de que empecemos a resolverlas,
debemos considerar dos hechos: Es posible que una ecuación diferencial no tenga
soluciones y una ecuación diferencial puede tener una solución que no se pueda
determinar con los métodos que existen en la actualidad. En la sección 2.1 veremos
FyPRODV('SURGXFHQLQIRUPDFLyQFXDQWLWDWLYDUHVSHFWRDJUi¿FDVORTXHQRV
permite inferir conclusiones de las curvas solución. En la sección 2.6 usamos
ecuaciones diferenciales para construir un procedimiento numérico para soluciones
aproximadas.
34
2.1
2.1
CURVAS SOLUCIÓN SIN UNA SOLUCIÓN
l
35
CURVAS SOLUCIÓN SIN UNA SOLUCIÓN
REPASO DE MATERIAL
l La primera derivada como pendiente de una recta tangente
l El signo algebraico de la primera derivada indica crecimiento o decrecimiento
INTRODUCCIÓN Imaginemos por un momento que nos enfrentamos con una ecuación diferencial
de primer orden dy兾dx f (x, y), y que además no podemos encontrar ni inventar un método para
resolverla analíticamente. Esto no es tan malo como se podría pensar, ya que la ecuación diferencial
en sí misma a veces puede “decirnos” concretamente cómo se “comportan” sus soluciones.
Iniciaremos nuestro estudio de las ecuaciones diferenciales de primer orden con dos formas
cualitativas de analizar una ED. Estas dos formas nos permiten determinar, de una manera aproximada,
cómo es una curva solución sin resolver realmente la ecuación.
2.1.1
CAMPOS DIRECCIONALES
ALGUNAS PREGUNTAS FUNDAMENTALES En la sección 1.2 vimos que si
f (x, y) y f兾y satisfacen algunas condiciones de continuidad, se pueden responder preguntas cualitativas acerca de la existencia y unicidad de las soluciones. En esta sección
veremos otras preguntas cualitativas acerca de las propiedades de las soluciones: ¿Cómo
se comporta una solución cerca de un punto dado? ¿Cómo se comporta una solución
cuando x → ? Con frecuencia se pueden responder cuando la función f depende sólo de
la variable y. Sin embargo, comenzaremos con un simple concepto de cálculo:
Una derivada dy兾dx de una función derivable y y(x) da las pendientes de las
UHFWDVWDQJHQWHVHQSXQWRVGHVXJUi¿FD
y
pendiente = 1.2
(2, 3)
x
a) elemento lineal en un punto.
y
curva
solución
(2, 3)
tangente
x
b) el elemento lineal es tangente
a la curva solución que
pasa por el punto.
FIGURA 2.1.1 El elemento lineal es
tangente a la curva solución en (2, 3).
PENDIENTE Debido a que una solución y y(x) de una ecuación diferencial de
primer orden
dy
(1)
f (x, y)
dx
HVQHFHVDULDPHQWHXQDIXQFLyQGHULYDEOHHQVXLQWHUYDORGHGH¿QLFLyQ I, debe también ser
continua en I. Por lo tanto, la curva solución correspondiente en I no tiene cortes y debe
tener una recta tangente en cada punto (x, y(x)). La función f en la forma normal (1) se
llama función pendiente o función razón. La pendiente de la recta tangente en (x, y(x))
en una curva solución es el valor de la primera derivada dy兾dx en este punto y sabemos
de la ecuación (1) que es el valor de la función pendiente f (x, y(x)). Ahora supongamos que (x, y) representa cualquier punto de una región del plano xy en la que está
GH¿QLGDODIXQFLyQf. El valor f (x, y) que la función f le asigna al punto representa la pendiente de una recta o, como veremos, un segmento de recta llamado elemento lineal. Por
ejemplo, considere la ecuación dy兾dx 0.2xy, donde f (x, y) 0.2xy. En donde consideramos al punto (2, 3), la pendiente de un elemento lineal es f (2, 3) 0.2(2)(3) 1.2.
/D¿JXUD D PXHVWUDXQVHJPHQWRGHUHFWDFRQSHQGLHQWHTXHSDVDSRU
&RPRVHPXHVWUDHQOD¿JXUD E VLXQDFXUYDVROXFLyQWDPELpQSDVDSRUHOSXQWR
(2, 3), lo hace de tal forma que el segmento de recta es tangente a la curva; en otras palabras, el elemento lineal es una recta tangente miniatura en ese punto.
CAMPO DIRECCIONAL Si evaluamos sistemáticamente a f en una cuadrícula rectangular de puntos en el plano xy y se dibuja un elemento lineal en cada punto (x, y)
de la cuadrícula con pendiente f (x, y), entonces al conjunto de todos estos elementos
lineales se le llama campo direccional o campo de pendientes de la ecuación diferencial dy兾dx f (x, y). Visualmente, la dirección del campo indica el aspecto o forma
de una familia de curvas solución de la ecuación diferencial dada y, en consecuencia,
se pueden ver a simple vista aspectos cualitativos de la solución, por ejemplo, regiones
en el plano, en los que una solución presenta un comportamiento poco común. Una
VRODFXUYDVROXFLyQTXHSDVDSRUXQFDPSRGLUHFFLRQDOGHEHVHJXLUHOSDWUyQGHÀXMR
36
CAPÍTULO 2
l
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
del campo: el elemento lineal es tangente a la curva cuando intercepta un punto de la
FXDGUtFXOD/D¿JXUDPXHVWUDXQFDPSRGLUHFFLRQDOJHQHUDGRSRUFRPSXWDGRUD
de la ecuación diferencial dy兾dx sen(x y) en una región del plano xy. Observe
FyPRODVWUHVFXUYDVVROXFLyQTXHVHPXHVWUDQDFRORUVLJXHQHOÀXMRGHOFDPSR
EJEMPLO 1 Campo direccional
FIGURA 2.1.2 Las curvas solución
VLJXHQHOÀXMRGHXQFDPSRGLUHFFLRQDO
y
4
2
x
_2
_4
_4
_2
2
4
a) Campo direccional para
dy/dx 0.2xy.
y
4
c>0
2
c=0 x
c<0
_2
_4
_4
_2
2
4
b) Algunas curvas solución
2
en la familia y ce 0.1x .
FIGURA 2.1.3 Campo direccional y
curvas solución.
El campo direccional para la ecuación diferencial dy兾dx 0.2xyTXHVHPXHVWUDHQOD¿JXUD
D VHREWXYRXVDQGRXQSDTXHWHFRPSXWDFLRQDOHQHOTXHVHGH¿QLyXQDPDOOD 5
(mh, nh) con m y n enteros, haciendo – 5 m 5, 5 n 5, y h 1. Observe en la
¿JXUD D TXHHQFXDOTXLHUSXQWRGHOHMHGHODVx (y 0) y del eje y (x 0), las pendientes son f (x, 0) 0 y f (0, y) 0, respectivamente, por lo que los elementos lineales son
KRUL]RQWDOHV$GHPiVREVHUYHTXHHQHOSULPHUFXDGUDQWHSDUDXQYDORU¿MRGHx los valores
de f (x, y) 0.2xy aumentan conforme crece y, análogamente, para una y los valores de
f (x, y) 0.2xy aumentan conforme crece x(VWRVLJQL¿FDTXHFRQIRUPHx y y crecen, los
elementos lineales serán casi verticales y tendrán pendiente positiva ( f (x, y) 0.2xy 0
para x 0, y 0). En el segundo cuadrante, 兩 f (x, y)兩 aumenta conforme crecen 兩x兩 y y, por
lo que nuevamente los elementos lineales serán casi verticales pero esta vez tendrán pendiente negativa ( f (x, y) 0.2xy 0 para x 0, y 0). Leyendo de izquierda a derecha,
imaginemos una curva solución que inicia en un punto del segundo cuadrante, se mueve
abruptamente hacia abajo, se hace plana conforme pasa por el eje y, y después, conforme
entra al primer cuadrante, se mueve abruptamente hacia arriba; en otras palabras, su
forma sería cóncava hacia arriba y similar a herradura. A partir de esto se podría inferir
que y → conforme x → . Ahora en los cuadrantes tercero y cuarto, puesto que f (x, y)
0.2xy 0 y f (x, y) 0.2xy 0, respectivamente, la situación se invierte: Una curva
solución crece y después decrece conforme nos movamos de izquierda a derecha. Vimos
2
en la ecuación (1) de la sección 1.1 que y e0.1x es una solución explícita de dy兾dx 0.2xy;
usted debería comprobar que una familia uniparamétrica de soluciones de la misma ecua2
ción está dada por: y ce0.1x &RQREMHWRGHFRPSDUDUFRQOD¿JXUD D HQOD¿JXUD
2.1.3(b) se muestran algunos miembros representativos de esta familia.
EJEMPLO 2 Campo direccional
Utilice un campo direccional para dibujar una curva solución aproximada para el problema con valores iniciales dy兾dx sen y, y(0) 23.
SOLUCIÓN Antes de proceder, recuerde que a partir de la continuidad de f (x, y) sen y
y f兾y cos y el teorema 1.2.1 garantiza la existencia de una curva solución única que
pase por un punto dado (x0, y0) en el plano. Ahora, preparamos de nuevo nuestro paquete
computacional para una región rectangular 5 \HVSHFL¿FDPRVSXQWRV GHELGRVDOD
condición inicial) en la región con separación vertical y horizontal de 21 unidad, es decir, en
puntos (mh, nh), h 21 , m y n enteros tales como 10 m 10, 10 n 10. El resulWDGRVHSUHVHQWDHQOD¿JXUD3XHVWRTXHHOODGRGHUHFKRGHdy兾dx sen y es 0 en y
0, y en y ʌ, los elementos lineales son horizontales en todos los puntos cuyas segundas coordenadas son y 0 o y ʌ. Entonces tiene sentido que una curva solución que
pasa por el punto inicial (0, 23)WHQJDODIRUPDTXHVHPXHVWUDHQOD¿JXUD
CRECIMIENTO/DECRECIMIENTO La interpretación de la derivada dy兾dx como
una función que da la pendiente desempeña el papel principal en la construcción de un
campo direccional. A continuación, se usará otra propiedad contundente de la primera
derivada, es decir, si dy兾dx 0 (o dy兾dx 0) para toda x en un intervalo I, entonces
una función derivable y y(x) es creciente (o decreciente) en I.
COMENTARIOS
Dibujar a mano un campo direccional es sencillo pero toma tiempo; por eso es
probable que esta tarea se realice sólo una o dos veces en la vida, generalmente
2.1
y
2
x
_2
_4
_2
2
4
FIGURA 2.1.4 Campo direccional
del ejemplo 2.
l
37
HVPiVH¿FLHQWHUHDOL]DUODHPSOHDQGRXQSDTXHWHFRPSXWDFLRQDO$QWHVGHODV
calculadoras, de las computadoras personales y de los programas se utilizaba
el método de las isoclinas para facilitar el dibujo, a mano, de un campo direccional. Para la ED dy兾dx f (x, y), cualquier miembro de la familia de curvas
f (x, y) c, con c una constante, se llama una isoclina. Se dibujan elementos
lineales que pasen por los puntos en una isoclina dada, digamos f (x, y) c1
todos con la misma pendiente c1. En el problema 15 de los ejercicios 2.1 tiene
dos oportunidades para dibujar un campo direccional a mano.
4
_4
CURVAS SOLUCIÓN SIN UNA SOLUCIÓN
2.1.2
ED AUTÓNOMAS DE PRIMER ORDEN
ED AUTÓNOMAS DE PRIMER ORDEN En la sección 1.1 dividimos las ecuaciones diferenciales ordinarias en dos tipos: lineales y no lineales. Ahora consideraremos
EUHYHPHQWHRWUDFODVHGHFODVL¿FDFLyQGHODVHFXDFLRQHVGLIHUHQFLDOHVRUGLQDULDVXQD
FODVL¿FDFLyQ TXH HV GH SDUWLFXODU LPSRUWDQFLD HQ OD LQYHVWLJDFLyQ FXDOLWDWLYD GH ODV
ecuaciones diferenciales. Una ecuación diferencial ordinaria en la que la variable independiente no aparece explícitamente se llama autónoma. Si el símbolo x denota a la
variable independiente, entonces se puede escribir una ecuación diferencial autónoma
de primer orden como f (y, y) 0 o en la forma normal como
dy
(2)
f (y).
dx
Supondremos que la función f en la ecuación (2) y su derivada f son funciones continuas de y en algún intervalo I. Las ecuaciones de primer orden
f ( y)
S
f (x, y)
S
dy
dy
1 y2
0.2xy
y
dx
dx
son respectivamente autónoma y no autónoma.
Muchas ecuaciones diferenciales que se encuentran en aplicaciones o ecuaciones
que modelan leyes físicas que no cambian en el tiempo son autónomas. Como ya
hemos visto en la sección 1.3, en un contexto aplicado, se usan comúnmente otros
símbolos diferentes de y y de x para representar las variables dependientes e independientes. Por ejemplo, si t representa el tiempo entonces al examinar
dA
kA,
dt
dx
kx(n 1 x),
dt
dT
k(T Tm),
dt
dA
1
6
A,
dt
100
donde k, n y Tm son constantes, se encuentra que cada ecuación es independiente del
tiempo. Realmente, todas las ecuaciones diferenciales de primer orden introducidas en
la sección 1.3 son independientes del tiempo y por lo tanto, son autónomas.
PUNTOS CRÍTICOS Las raíces de la función f en la ecuación (2) son de especial
importancia. Decimos que un número real c es un punto crítico de la ecuación diferencial autónoma (2) si es una raíz de f, es decir, f (c) 0. Un punto crítico también
se llama punto de equilibrio o punto estacionario. Ahora observe que si sustituimos
la función constante y(x) c en la ecuación (2), entonces ambos lados de la ecuación
VRQLJXDOHVDFHUR(VWRVLJQL¿FDTXH
Si c es un punto crítico de la ecuación (2), entonces y(x) c es una solución
FRQVWDQWHGHODHFXDFLyQGLIHUHQFLDODXWyQRPD
Una solución constante y(x) c se llama solución de equilibrio; las soluciones de
equilibrio son las únicas soluciones constantes de la ecuación (2).
&RPR \D OR KHPRV PHQFLRQDGR SRGHPRV LGHQWL¿FDU FXDQGR XQD VROXFLyQ QR
constante y y(x) de la ecuación (2) está creciendo o decreciendo determinando el
signo algebraico de la derivada dy兾dx; en el caso de la ecuación (2) hacemos esto
LGHQWL¿FDQGRORVLQWHUYDORVGHOHMH\HQORVTXHODIXQFLyQf (y) es positiva o negativa.
38
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJEMPLO 3 Una ED autónoma
La ecuación diferencial
dP
P(a bP),
dt
donde a y b son constantes positivas, tiene la forma normal dP兾dt f (P), la de la ecuación (2) con t y P jugando los papeles de x y y respectivamente y por tanto es autónoma.
De f (P) P(a – bP) 0 vemos que 0 y a兾b son puntos críticos de la ecuación, así que
las soluciones de equilibrio son P(t) 0 y P(t) a兾b. Poniendo los puntos críticos en
XQDUHFWDYHUWLFDOGLYLGLPRVHVWDUHFWDHQWUHVLQWHUYDORVGH¿QLGRVSRU P 0, 0
P a兾b, a兾b P /DVÀHFKDVHQODUHFWDTXHVHSUHVHQWDHQOD¿JXUDLQGLFDQ
el signo algebraico de f (P) P(a – bP) en estos intervalos y si una solución constante
P(t HVWiFUHFLHQGRRGHFUHFLHQGRHQXQLQWHUYDOR/DWDEODVLJXLHQWHH[SOLFDOD¿JXUD
eje P
a
b
Intervalo
( , 0)
(0, a 兾b)
(a兾b, )
0
(x0, y0)
x
a) región R.
y
R3
y(x) = c2
y(x) = c1
(x0, y0)
R2
R1
decreciente
creciente
decreciente
Flecha
apunta hacia abajo
apunta hacia arriba
apunta hacia abajo
CURVAS SOLUCIÓN Sin resolver una ecuación diferencial autónoma, normalmente podemos decir mucho respecto a su curva solución. Puesto que la función f en la ecuación (2) es independiente de la variable x, podemos suponer
que fHVWiGH¿QLGDSDUD x o para 0 x . También, ya que f y su derivada
f son funciones continuas de y en algún intervalo I del eje y, los resultados principales
del teorema 1.2.1 valen en alguna franja o región R en el plano xy correspondiente
a I, y así pasa por algún punto (x0, y0) en R por el que pasa una curva solución de la
HFXDFLyQ 9HDOD¿JXUD D 3DUDUHDOL]DUQXHVWURDQiOLVLVVXSRQJDPRVTXHOD
ecuación (2) tiene exactamente dos puntos críticos c1 y c2 y que c1 c2/DVJUi¿FDV
de las soluciones y(x) c1 y y(x) c2 son rectas horizontales y estas rectas dividen la
región R en tres subregiones R1, R2 y R3FRPRVHPXHVWUDHQOD¿JXUD E $TXtVH
presentan sin comprobación algunas de las conclusiones que podemos extraer de una
solución no constante y(x) de la ecuación (2):
y
I
menos
más
menos
P(t)
/D¿JXUDHVXQdiagrama fase unidimensional, o simplemente diagrama fase, de la
ecuación diferencial dP兾dt P(a bP). La recta vertical se llama recta de fase.
FIGURA 2.1.5 Diagrama fase de
dP兾dt P(a bP).
R
Signo de f (P)
x
b) subregiones R1, R2, y R3 de R.
FIGURA 2.1.6 Las rectas y(x) c1 y
y(x) c2 dividen a R en tres subregiones
horizontales.
• Si (x0, y0) es una subregión Ri , i 1, 2, 3, y y(x HVXQDVROXFLyQFX\DJUi¿FD
pasa a través de este punto, por lo que y(x) permanece en la subregión Ri para
toda x&RPRVHPXHVWUDHQOD¿JXUD E ODVROXFLyQy(x) en R2 está acotada
por debajo con c1 y por arriba con c2, es decir, c1 y(x) c2 para toda x.
La curva solución está dentro de R2 para toda xSRUTXHODJUi¿FDGHXQDVROXFLyQ
QRFRQVWDQWHGHODHFXDFLyQ QRSXHGHFUX]DUODJUi¿FDGHFXDOTXLHUVROXFLyQ
de equilibrio y(x) c1 o y(x) c2. Vea el problema 33 de los ejercicios 2.1.
• Por continuidad de f debe ser f (y) 0 o f (y) 0 para toda x en una subregión
Ri , i 1, 2, 3. En otras palabras, f (y) no puede cambiar de signo en una
subregión. Vea el problema 33 de los ejercicios 2.1.
• Puesto que dy兾dx f (y(x)) es ya sea positiva o negativa en una subregión Ri ,
i 1, 2, 3, una solución y(x) es estrictamente monótona, es decir, y(x) está
creciendo o decreciendo en la subregión Ri. Por tanto y(x) no puede oscilar, ni
puede tener un extremo relativo (máximo o mínimo). Vea el problema 33 de
los ejercicios 2.1.
• Si y(x) está acotada por arriba con un punto crítico c1 (como en la subregión
R1 donde y(x) c1 para toda x HQWRQFHVODJUi¿FDGHy(x) debe tender a la
JUi¿FDGHODVROXFLyQGHHTXLOLEULRy(x) c1 conforme x → o x → . Si
y(x) está acotada, es decir, acotada por arriba y por debajo por dos puntos
críticos consecutivos (como en la subregión R2 donde c1 y(x) c2 para
toda x HQWRQFHVODJUi¿FDGHy(x GHEHWHQGHUDODVJUi¿FDVGHODVVROXFLRQHV
2.1
CURVAS SOLUCIÓN SIN UNA SOLUCIÓN
l
39
de equilibrio y(x) c1 y y(x) c2, conforme x → en una y x → en
la otra. Si y(x) está acotada por debajo por un punto crítico (como en la
subregión R3 donde c2 y(x) para toda x HQWRQFHV OD JUi¿FD GHy(x) debe
WHQGHU D OD JUi¿FD GH OD VROXFLyQ GH HTXLOLEULR y(x) c2 conforme ya sea
x → o x → 9HDHOSUREOHPDGHORVHMHUFLFLRV
Considerando estos hechos, analicemos la ecuación diferencial del ejemplo 3.
EJEMPLO 4
P
P
R3
decreciente P
0
a
b
creciente
P0
R2
0
t
decreciente P0
recta de fase
R1
Plano tP
FIGURA 2.1.7 Diagrama fase y curvas
VROXFLyQGHOHMHPSOR
Vuelta al ejemplo 3
Los tres intervalos determinados en el eje P o recta de fase con los puntos críticos P
0 y P a兾b ahora corresponden en el plano tPDWUHVVXEUHJLRQHVGH¿QLGDVSRU
R1: P 0,
R 2: 0 P a 兾b,
y
R 3: a兾b P ,
donde t (OHVTXHPDGHIDVHGHOD¿JXUDQRVGLFHTXHP(t) está decreciendo en R1, creciendo en R2 y decreciendo en R3. Si P(0) P0 es un valor inicial,
entonces en R1, R2 y R3 tenemos, respectivamente, que:
i)
Para P0 0, P(t) está acotada por arriba. Puesto que P(t) está decreciendo
sin límite conforme aumenta t, y así P(t) → 0 conforme t → . Lo que
VLJQL¿FD TXH HQ HO HMH t QHJDWLYR OD JUi¿FD GH OD VROXFLyQ GH HTXLOLEULR
P(t) 0, es una asíntota horizontal para una curva solución.
ii)
Para 0 P0 a兾b, P(t) está acotada. Puesto que P(t) está creciendo, P(t)
→ a兾b conforme t → y P(t) → 0 conforme t → /DVJUi¿FDVGHODV
dos soluciones de equilibrio, P(t) 0 y P(t) a兾b, son rectas horizontales
que son asíntotas horizontales para cualquier curva solución que comienza
en esta subregión.
iii) Para P0
a兾b, P(t) está acotada por debajo. Puesto que P(t) está
decreciendo, P(t) → a兾b conforme t → /D JUi¿FD GH OD VROXFLyQ GH
equilibrio P(t) a兾b es una asíntota horizontal para una curva solución.
(QOD¿JXUDODUHFWDGHIDVHHVHOHMHP en el plano tP. Por claridad la recta de fase
RULJLQDOGHOD¿JXUDVHKDUHSURGXFLGRDODL]TXLHUGDGHOSODQRHQHOFXDOVHKDQVRPbreado las regiones R1, R2 y R3(QOD¿JXUDVHPXHVWUDQODVJUi¿FDVGHODVVROXFLRQHVGH
equilibrio P(t) a兾b y P(t) 0 (el eje t FRQODVUHFWDVSXQWHDGDVD]XOHVODVJUi¿FDVVyOLGDV
UHSUHVHQWDQODVJUi¿FDVWtSLFDVGHP(t) mostrando los tres casos que acabamos de analizar.
En una subregión tal como R1 HQ HO HMHPSOR GRQGH P(t) está decreciendo y no está
acotada por debajo, no se debe tener necesariamente que P(t) → . No interprete que
HVWH ~OWLPR HQXQFLDGR VLJQL¿FD TXH P(t) → conforme t → ; podríamos tener
que P(t) → conforme t → T, donde T HVXQQ~PHUR¿QLWRTXHGHSHQGHGHODFRQdición inicial P(t0) P0. Considerando términos dinámicos, P(t) “explota” en un tiempo
¿QLWRFRQVLGHUDQGRODJUi¿FDP(t) podría tener una asíntota vertical en t T 0. Para
la subregión R3 vale una observación similar.
La ecuación diferencial dy兾dx sen y en el ejemplo 2 es autónoma y tiene un núPHURLQ¿QLWRGHSXQWRVFUtWLFRV\DTXHVHQy 0 en y Qʌ, con n entero. Además,
sabemos que debido a que la solución y(x) pasa por (0, 23) está acotada por arriba y por
debajo por dos puntos críticos consecutivos (ʌ y(x) 0) y decrece (sen y 0 para
ʌ y ODJUi¿FDGHy(x GHEHWHQGHUDODVJUi¿FDVGHODVVROXFLRQHVGHHTXLOLEULR
como asíntotas horizontales: y(x) → ʌ conforme x → y y(x) → 0 conforme x → .
EJEMPLO 5
Curvas solución de una ED autónoma
La ecuación autónoma dy兾dx (y 1)2 tiene un solo punto crítico 1. Del esquema
GHIDVHGHOD¿JXUD D FRQFOXLPRVTXHXQDVROXFLyQy(x) es una función creciente
HQODVVXEUHJLRQHVGH¿QLGDVSRU y 1 y 1 y , donde x . Para
una condición inicial y(0) y0 1, una solución y(x) está creciendo y está acotada
por arriba por 1 y así y(x) → 1 conforme x → ; para y(0) y0 1, una solución y(x)
está creciendo y está acotada.
40
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Ahora y(x) 1 1兾(x c) es una familia uniparamétrica de soluciones de la
HFXDFLyQ GLIHUHQFLDO YHD HO SUREOHPD GH ORV HMHUFLFLRV 8QD FRQGLFLyQ LQLcial dada determina un valor para c. Para las condiciones iniciales, y(0) 1 1
y y(0) 2
1, encontramos, respectivamente, que y(x) 1 1/(x 21), y(x)
1 1兾(x &RPRVHPXHVWUDHQODV¿JXUDV E \ F ODJUi¿FDGHFDGD
una de estas funciones racionales tienen una asíntota vertical. Pero recuerde que las
soluciones de los problemas con valores iniciales
dy
dy
( y 1) 2, y(0) 1
y
( y 1) 2, y(0) 2
dx
dx
HVWiQGH¿QLGDVHQLQWHUYDORVHVSHFLDOHV4XHVRQUHVSHFWLYDPHQWH
1
1
,
x 1.
x
y y(x) 1
, 21
y(x) 1
1
x 1
x 2
/DVFXUYDVVROXFLyQVRQODVSDUWHVGHODVJUi¿FDVGHODV¿JXUDV E \ F
que se muestran en azul. Como lo indica el diagrama fase, para la curva solución de la
¿JXUD E y(x) → 1 conforme x → SDUDODFXUYDVROXFLyQGHOD¿JXUD F
y(x) → conforme x → 1 por la izquierda.
y
y
y
x =1
creciente
(0, 2)
y=1
1
y =1
x
x
(0, −1)
creciente
x= −
1
2
a) recta de fase
b) plano xy
c) plano xy
y(0) 1
y(0) 1
FIGURA 2.1.8 Comportamiento de las soluciones cerca de y 1.
c
y0
y0
c
c
c
y0
a)
y0
b)
c)
d)
FIGURA 2.1.9 El punto crítico c es un
atractor en a) y un repulsor en b) y semiestable en c) y d).
ATRACTORES Y REPULSORES Suponga que y(x) es una solución no constante de
la ecuación diferencial autónoma dada en (1) y que c es un punto crítico de la ED.
Básicamente hay tres tipos de comportamiento que y(x) puede presentar cerca de c. En
OD¿JXUDKHPRVSXHVWRDc en las cuatro rectas verticales. Cuando ambas puntas
GHÀHFKDHQFXDOTXLHUODGRGHOSXQWRc, apuntan hacia cFRPRVHPXHVWUDHQOD¿JXUD
D WRGDVODVVROXFLRQHVy(x) de la ecuación (1) que comienzan en el punto inicial
(x0, y0 VX¿FLHQWHPHQWHFHUFDGHc presentan comportamiento asintótico límxo y(x) c.
Por esta razón se dice que el punto crítico c es asintóticamente estable. Utilizando una
analogía física, una solución que comienza en c se parece a una partícula cargada que,
que con el tiempo, se transforma en una partícula de carga contraria y así c también se
conoce como un atractor&XDQGRDPEDVSXQWDVGHÀHFKDDORVODGRVGHODÀHFKDGHO
punto c apuntan alejándose de cFRPRVHPXHVWUDHQOD¿JXUD E WRGDVODVVROXciones y(x) de la ecuación (1) que comienzan en un punto inicial (x0, y0) se alejan de c
conforme crece x. En este caso se dice que el punto crítico c es inestable. Un punto crítico inestable se conoce como un repulsorSRUUD]RQHVREYLDV(QODV¿JXUDV F \
G VHPXHVWUDHOSXQWRFUtWLFRc que no es ni un atractor ni un repulsor. Pero puesto
que c presenta características tanto de atractor como de repulsor, es decir, una solución
que comienza desde un punto inicial (x0, y0 TXHHVWiVX¿FLHQWHPHQWHFHUFDGHc es atraída
hacia c por un lado y repelida por el otro, este punto crítico se conoce como semiestable.
En el ejemplo 3 el punto crítico a兾b es asintóticamente estable (un atractor) y el punto
crítico 0 es inestable (un repulsor). El punto crítico 1 del ejemplo 5 es semiestable.
ED AUTÓNOMAS Y CAMPOS DIRECCIONALES Si una ecuación diferencial de
primer orden es autónoma, entonces en la forma normal vemos en el miembro derecho
dy兾dx f (y) que las pendientes de los elementos lineales que pasan por los puntos en la
2.1
las pendientes de los
elementos lineales
sobre una recta
horizontal son
todas iguales.
41
por supuesto, pendientes de elementos lineales a lo largo de cualquier recta vertical, variarán. Estos hechos se muestran examinando la banda horizontal dorada y la banda vertical
D]XOGHOD¿JXUD/D¿JXUDSUHVHQWDXQFDPSRGLUHFFLRQDOSDUDODHFXDFLyQDXWyQRPD
dy兾dx 2y±/RVHOHPHQWRVOLQHDOHVURMRVHQOD¿JXUDWLHQHQSHQGLHQWHFHURSRUTXHVHHQFXHQWUDQDORODUJRGHODJUi¿FDGHODVROXFLyQGHHTXLOLEULRy 1.
y
x
FIGURA 2.1.10 Campo direccional
para una ED autónoma.
y
y=3
x
y=0
FIGURA 2.1.11 Curvas solución
trasladas de una ED autónoma.
EJERCICIOS 2.1
PROPIEDAD DE TRASLACIÓN Recordará del curso de matemáticas de precálculo
TXHODJUi¿FDGHXQDIXQFLyQy f (x – k) donde kHVXQDFRQVWDQWHHVODJUi¿FDGHXQD
función y f (x) rígidamente trasladada o desplazada horizontalmente a lo largo del eje
x por una cantidad 兩k兩; la traslación es hacia la derecha si k 0 y hacia la izquierda si
k 0. Resulta que bajo las condiciones establecidas para (2), las curvas solución están
relacionadas con las curvas de una ED autónoma de primer orden por el concepto de
traslación. Para ver esto, consideremos la ecuación diferencial dy兾dx y(3– y) que es un
FDVRHVSHFLDOGHODHFXDFLyQDXWyQRPDFRQVLGHUDGDHQORVHMHPSORV\3XHVWRTXHy
0 y y VRQVROXFLRQHVGHHTXLOLEULRGHOD('VXVJUi¿FDVGLYLGHQHOSODQRxy en tres
subregiones R1, R2 y R3:
R1 : y 0
R2 : 0 y 3 y R3 : 3 y
(QOD¿JXUDKHPRVVREUHSXHVWRXQFDPSRGLUHFFLRQDOGHODVFXUYDVGHVHLVVROXFLRQHVGHOD('/D¿JXUDPXHVWUDWRGDVODVFXUYDVVROXFLyQGHOPLVPRFRORUHVGHFLUODV
curvas solución se encuentran dentro de una subregión particular Ri, todas lucen iguales.
Esto no es una coincidencia, ya que es una consecuencia natural del hecho de que los elementos lineales que pasan a través de cualquier recta horizontal son paralelos. Por lo que
la siguiente propiedad de translación de una ED autónoma debe tener sentido:
Si y(x) es una solución de una ecuación diferencial autónoma dy/dx f (y), entonces
y1(x) y(x k)NXQDFRQVWDQWHWDPELpQHVXQDVROXFLyQ
Por lo tanto, si y(x) es una solución del problema con valores iniciales dy兾dx f(y),
y(0) y0, luego y1(x) y(x x0) es una solución del PVI dy兾dx f(y), y(x0) y0. Por
ejemplo, es fácil de comprobar que y(x) ex, x , es una solución del PVI,
dy兾dx y, y(0) 1 y así una solución y1(x) de, digamos, dy兾dx y, y(5) 1 es y(x)
ex trasladado 5 unidades a la derecha:
y1(x) y(x 5) ex5, x .
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-1
CAMPOS DIRECCIONALES
(QORVSUREOHPDVDUHSURGX]FDHOFDPSRGLUHFFLRQDOGDGR
generado por computadora. Después dibuje, a mano, una curva
solución aproximada que pase por cada uno de los puntos indicados. Utilice lápices de colores diferentes para cada curva solución.
1.
l
varían las pendientes cuadrícula rectangular que se usa para construir un campo direccional para la ED, sólo dede los elementos sobre penden de la coordenada y de los puntos. Expresado de otra manera, los elementos lineales
una recta vertical.
que pasan por puntos de cualquier recta horizontal deben tener todos la misma pendiente;
y
2.1.1
CURVAS SOLUCIÓN SIN UNA SOLUCIÓN
dy
x2 y2
dx
a) y(2) 1
c) y(0) 2
dy
2
2.
e0.01x y
dx
a) y(6) 0
c) y(0)
y
3
2
1
x
b) y(3) 0
d) y(0) 0
_1
_2
_3
_3 _2 _1
b) y(0) 1
d) y
1
2
3
FIGURA 2.1.12 Campo direccional del problema 1.
42
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
a) y(0) 0
b) y(0) 3
y
8
dy
x
dx
a) y(1) 1
b) y(0)
7. y
4
x
_4
9.
_8
_8
_4
4
8
a) y(2) 2
b) y(1) 3
dy 1
dx y
a) y(0) 1
b) y(2) 1
8.
dy
0.2x 2 y
dx
a) y(0) 21
dy
xey
dx
a) y(0) 2
10.
b) y(1) 2.5
b) y(2) 1
FIGURA 2.1.13 Campo direccional del problema 2.
y
4
2
x
_2
x
2
a) y(2) 2
y
dy
1
dx
x
a) y 12 2
b) y(1) 0
b)
11. y y cos
12.
(QORVSUREOHPDV\OD¿JXUDGDGDUHSUHVHQWDODJUi¿FD
de f (y) y de f (x), respectivamente. Dibuje a mano un campo
direccional sobre una malla adecuada para dy兾dx f (y) (problema 13) y después para dy兾dx f (x SUREOHPD
13.
_4
_4
_2
f
4
2
( )
y (32) 0
1
FIGURA 2.1.14 Campo direccional del problema 3.
y
1
y
4
2
FIGURA 2.1.16 *Ui¿FDGHOSUREOHPD
x
14.
f
_2
_4
_4
_2
2
4
FIGURA 2.1.15 &DPSRGLUHFFLRQDOGHOSUREOHPD
3.
dy
1 xy
dx
a) y(0) 0
c) y(2) 2
dy
4.
(sen x) cos y
dx
a) y(0) 1
c) y(3) 3
1
1
b) y(1) 0
d) y(0)
b) y(1) 0
d) y(0) 25
En los problemas 5 a 12 use un paquete computacional para
obtener un campo direccional para la ecuación diferencial
dada. Dibuje a mano una curva solución aproximada que pase
por los puntos dados.
5. y x
6. y x y
x
FIGURA 2.1.17 *Ui¿FDGHOSUREOHPD
15. En los incisos a) y b) dibuje isoclinas f (x, y) c (vea los
Comentarios de la página 36) para la ecuación diferencial
dada usando los valores de c indicados. Construya un campo
direccional sobre una cuadrícula dibujando con cuidado
elementos lineales con la pendiente adecuada en los puntos
elegidos de cada isoclina. En cada caso, utilice esta dirección para dibujar una curva solución aproximada para el
PVI que consiste de la ED y de la condición inicial y (0) 1.
a) dy兾dx x y; c un entero que satisface 5 c 5
b) dy兾dx x 2 y 2; c 41, c 1, c 94, c 4
2.1
Problemas para analizar
16. a) Considere el campo direccional de la ecuación diferencial dy兾dx x(y± 2 – 2, pero no use tecnología
para obtenerlo. Describa las pendientes de los elementos lineales en las rectas x 0, y 3, y \y 5.
b) Considere el PVI dy兾dx x \± 2 – 2, y(0) y0, donde
y0 $QDOLFHEDViQGRVHHQODLQIRUPDFLyQGHOLQFLVR
a), ¿sí puede una solución y(x) → conforme x → ?
17. Para la ED de primer orden dy兾dx f (x, y) una curva en
HOSODQRGH¿QLGRSRUf (x, y) 0 se llama ceroclina de la
ecuación, ya que un elemento lineal en un punto de la curva
tiene pendiente cero. Use un paquete computacional para
obtener un campo direccional en una cuadrícula rectangular de puntos dy兾dx x2 2y y después superponga la
JUi¿FDGHODFHURFOLQDy 12 x 2 sobre el campo direccional.
Analice el campo direccional. Analice el comportamiento
GHODVFXUYDVVROXFLyQHQUHJLRQHVGHOSODQRGH¿QLGDVSRU
y 21 x 2 y por y 12 x 2. Dibuje algunas curvas solución
aproximadas. Trate de generalizar sus observaciones.
18. a) ,GHQWL¿TXHODVFHURFOLQDV YHDHOSUREOHPD HQORV
SUREOHPDV \ &RQ XQ OiSL] GH FRORU FLUFXOH
WRGRV ORV HOHPHQWRV OLQHDOHV GH ODV ¿JXUDV
\TXHXVWHGFUHDTXHSXHGHQVHUXQHOHmento lineal en un punto de la ceroclina.
b) ¢4XpVRQODVFHURFOLQDVGHXQD('DXWyQRPDGHSULmer orden?
CURVAS SOLUCIÓN SIN UNA SOLUCIÓN
l
43
(Q ORV SUREOHPDV \ FRQVLGHUH OD HFXDFLyQ GLIHUHQFLDO
autónoma dy兾dx f (y GRQGH VH SUHVHQWD OD JUi¿FD GH f.
8WLOLFHODJUi¿FDSDUDXELFDUORVSXQWRVFUtWLFRVGHFDGDXQDGH
las ecuaciones diferenciales. Dibuje un diagrama fase de cada
ecuación diferencial. Dibuje a mano curvas solución típicas en
las subregiones del plano xyGHWHUPLQDGDVSRUODVJUi¿FDVGHODV
soluciones de equilibrio.
f
29.
c
y
FIGURA 2.1.18 *Ui¿FDGHOSUREOHPD
f
30.
1
1
y
FIGURA 2.1.19 *Ui¿FDGHOSUREOHPD
2.1.2 ED DE PRIMER ORDEN AUTÓNOMAS
Problemas para analizar
19. Considere la ecuación diferencial de primer orden dy兾dx y
– y3 y la condición inicial y(0) y0$PDQRGLEXMHODJUi¿FD
de una solución típica y(x) cuando y0 tiene los valores dados.
a) y 0 1
b) 0 y 0 1
c) 1 y 0 0
d) y 0 1
20. Considere la ecuación diferencial autónoma de primer
orden dy兾dx y2 – y y la condición inicial y(0) y0. A
PDQRGLEXMHODJUi¿FDGHXQDVROXFLyQWtSLFDy(x) cuando
y0 tiene los valores dados.
a) y 0 1
b) 0 y 0 1
c) 1 y 0 0
d) y 0 1
31. Considere la ED autónoma dy兾dx (2兾ʌ)y – sen y.
Determine los puntos críticos de la ecuación. Proponga
un procedimiento para obtener un diagrama fase de la
HFXDFLyQ&ODVL¿TXHORVSXQWRVFUtWLFRVFRPRDVLQWyWLFDmente estables, inestables o semiestables.
32. Se dice que un punto crítico c de una ED de primer orden
autónoma está aislado si existe algún intervalo abierto
que contenga a c pero no a otro punto crítico. ¿Puede
existir una ED autónoma de la forma dada en la ecuación (2) para la cual todo punto crítico no esté aislado?
Analice; no considere ideas complicadas.
33. Suponga que y(x) es una solución no constante de la ecuación diferencial autónoma dy兾dx f (y) y que c es un punto
FUtWLFRGHOD('$QDOLFH¢3RUTXpQRSXHGHODJUi¿FDGH
y(x FUX]DU OD JUi¿FD GH OD VROXFLyQ GH HTXLOLEULR y c?
¿Por qué no puede f (y) cambiar de signo en una de las reJLRQHVDQDOL]DGDVGHODSiJLQD"¢3RUTXpQRSXHGHy(x)
oscilar o tener un extremo relativo (máximo o mínimo)?
34. Suponga que y(x) es una solución de la ecuación autónoma dy兾dx f (y) y está acotada por arriba y por debajo
por dos puntos críticos consecutivos c1 c2, como una
subregión R2GHOD¿JXUD E 6Lf (y) 0 en la región,
entonces límxo y(x) c 2. Analice por qué no puede existir un número L c2 tal que límxo y(x) L. Como parte
de su análisis, considere qué pasa con y (x) conforme
x→ .
(Q ORV SUREOHPDV D GHWHUPLQH ORV SXQWRV FUtWLFRV \ HO
diagrama fase de la ecuación diferencial autónoma de primer
RUGHQGDGD&ODVL¿TXHFDGDSXQWRFUtWLFRFRPRDVLQWyWLFDPHQWH
estable, inestable, o semiestable. Dibuje, a mano, curvas solución típicas en las regiones del plano xy determinadas por las
JUi¿FDVGHODVVROXFLRQHVGHHTXLOLEULR
dy
21.
22. dy y 2 y 3
y 2 3y
dx
dx
dy
23.
24. dy 10 3y y 2
( y 2)4
dx
dx
25.
dy
y 2(4 y 2)
dx
26. dy y(2 y)(4 y)
dx
27.
dy
y ln( y 2)
dx
y
28. dy ye 9y
dx
ey
44
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
35. Utilizando la ecuación autónoma (2), analice cómo se
puede obtener información con respecto a la ubicación de
SXQWRVGHLQÀH[LyQGHXQDFXUYDVROXFLyQ
36. Considere la ED dy兾dx y2 – y – 6. Utilice sus ideas en torno
al problema 35 para encontrar los intervalos en el eje y para
los que las curvas solución son cóncavas hacia arriba y en los
que las curvas solución son cóncavas hacia abajo. Analice
por qué cada curva solución de un problema con valores iniciales dy兾dx y2 y – 6, y(0) y0, donde 2 y0 3,
WLHQHXQSXQWRGHLQÀH[LyQFRQODPLVPDFRRUGHQDGDy. ¿Cuál
es la coordenada y? Con cuidado dibuje la curva solución
para la que y(0) 1. Repita para y(2) 2.
37. Suponga que la ED autónoma en la ecuación (1) no tiene
puntos críticos. Analice el comportamiento de las soluciones.
Modelos matemáticos
38. Modelo de población La ecuación diferencial en el
ejemplo 3 es un modelo muy conocido de población.
Suponga que la ED se cambia por
dP
P(aP b),
dt
donde a y b son constantes positivas. Analice qué le pasa
a la población P conforme avanza el tiempo t.
39. Modelo de población Otro modelo de población está
dado por
dP
kP h,
dt
donde h y k son constantes positivas. ¿Para qué valor inicial P(0) P0 este modelo predice que la población desaparecerá?
40. Velocidad terminal En la sección 1.3 vimos que la
ecuación diferencial autónoma
dv
m
mg kv.
dt
donde k es una constante positiva y g es la aceleración
de la gravedad, es un modelo para la velocidad v de un
2.2
cuerpo de masa mTXHHVWiFD\HQGREDMRODLQÀXHQFLDGH
la gravedad. Debido a que el término –kv representa la
resistencia del aire, la velocidad de un cuerpo que cae de
una gran altura no aumenta sin límite conforme pasa el
tiempo t. Utilice un diagrama fase de la ecuación diferencial para encontrar la velocidad límite o terminal del
cuerpo. Explique su razonamiento.
41. 6XSRQJDTXHHOPRGHORGHOSUREOHPDVHPRGL¿FDGHWDO
manera que la resistencia del aire es proporcional a v2, es
decir
dv
m
mg kv2 .
dt
9HDHOSUREOHPDGHORVHMHUFLFLRV8WLOLFHXQHVquema de fase para determinar la velocidad terminal del
cuerpo. Explique su razonamiento.
42. Reacciones químicas Cuando se combinan ciertas clases de reacciones químicas, la razón con la que se forman
los nuevos componentes se modela por la ecuación diferencial autónoma
dX
k( X)( X),
dt
donde k 0 es una constante de proporcionalidad y ȕ
Į 0. Aquí X(t) denota el número de gramos del nuevo
componente al tiempo t.
a) Utilice un esquema de fase de la ecuación diferencial
para predecir el comportamiento de X(t) conforme
t→ .
b) Considere el caso en que ȕ. Utilice un esquema
de fase de la ecuación diferencial para predecir el
comportamiento de X(t) conforme t → cuando X(0)
Į. Cuando X(0) Į.
c) Compruebe que una solución explícita de la ED en
el caso en que k 1 y Į ȕ es X(t) Į 1兾(t
c). Determine una solución que satisfaga que X(0)
Į兾2. Después determine una solución que satisfaga
que X(0) 2Į7UDFHODJUi¿FDGHHVWDVGRVVROXFLRnes. ¿El comportamiento de las soluciones conforme
t → concuerdan con sus respuestas del inciso b)?
VARIABLES SEPARABLES
REPASO DE MATERIAL
l )yUPXODVEiVLFDVGHLQWHJUDFLyQ YHDWDPELpQDO¿QDOGHOOLEUR
l Técnicas de integración: integración por partes y por descomposición de fracciones parciales
INTRODUCCIÓN Comenzaremos nuestro estudio de cómo resolver las ecuaciones diferenciales
con la más simple de todas las ecuaciones diferenciales: ecuaciones diferenciales de primer orden con
variables separables. Debido a que el método que se presenta en esta sección y que muchas de las técnicas para la solución de ecuaciones diferenciales implican integración, consulte su libro de cálculo
para recordar las fórmulas importantes (como 兰 du兾u) y las técnicas (como la integración por partes).
2.2
VARIABLES SEPARABLES
l
45
SOLUCIÓN POR INTEGRACIÓN Considere la ecuación diferencial de primer
orden dy兾dx f (x, y). Cuando f no depende de la variable y, es decir, f (x, y) g(x),
la ecuación diferencial
dy
g(x)
(1)
dx
se puede resolver por integración. Si g(x) es una función continua, al integrar ambos
lados de la ecuación (1) se obtiene y 兰g(x) dx = G(x) c, donde G(x) es una antiGHULYDGD LQWHJUDOLQGH¿QLGD GHg(x). Por ejemplo, si dy兾dx 1 e2x, entonces su
solución es y
(1 e 2x ) dx o y x 12 e2x c.
UNA DEFINICIÓN La ecuación (l) así como su método de solución no son más que
un caso especial en el que f, en la forma normal dy兾dx f (x, y) se puede factorizar
como el producto de una función de x por una función de y.
DEFINICIÓN 2.2.1 Ecuación separable
Una ecuación diferencial de primer orden de la forma
dy
g(x)h(y)
dx
se dice que es separable o que tiene variables separables.
Por ejemplo, las ecuaciones
dy
dy
y 2xe3x4y
y
y sen x
dx
dx
son, respectivamente, separable y no separable. En la primera ecuación podemos facg(x)
h(y)
torizar f (x, y) y 2xe 3xy como
p
p
f (x, y) y2xe3x4y (xe3x )( y2e4y ),
pero en la segunda ecuación no hay forma de expresar a y sen x como un producto
de una función de x por una función de y.
Observe que al dividir entre la función h(y), podemos escribir una ecuación separable dy兾dx g(x)h(y) como
dy
p( y)
g(x),
(2)
dx
donde, por conveniencia p(y) representa a l兾h(y). Podemos ver inmediatamente que la
ecuación (2) se reduce a la ecuación (1) cuando h(y) 1.
Ahora, si y (x) representa una solución de la ecuación (2), se tiene que p( (x))
(x) g(x), y por tanto
冕
Pero dy
p( (x)) (x) dx
冕
(3)
g(x) dx.
(x)dx, y así la ecuación (3) es la misma que
p( y) dy
g(x) dx o H(y)
G(x)
c,
donde H(y) y G(x) son antiderivadas de p(y) 1兾h(y) y g(x), respectivamente.
MÉTODO DE SOLUCIÓN /DHFXDFLyQ LQGLFDHOSURFHGLPLHQWRSDUDUHVROYHU
ecuaciones separables. Al integrar ambos lados de p(y) dy g(x) dx, se obtiene una
familia uniparamétrica de soluciones, que usualmente se expresa de manera implícita.
NOTA No hay necesidad de emplear dos constantes cuando se integra una ecuación separable, porque si escribimos H(y) c1 G(x) c2, entonces la diferencia c2 – c1 se puede
reemplazar con una sola constante cFRPRHQODHFXDFLyQ (QPXFKRVFDVRVGHORVVLguientes capítulos, sustituiremos las constantes en la forma más conveniente para una ecuación dada. Por ejemplo, a veces se pueden reemplazar los múltiplos o las combinaciones de
constantes con una sola constante.
46
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJEMPLO 1 Solución de una ED separable
Resuelva (1 x) dy y dx 0.
SOLUCIÓN Dividiendo entre (1 x)y, podemos escribir dy兾y dx兾(1 x), de
donde tenemos que
冕 冕
dy
y
dx
1x
ln兩 y 兩 ln兩 1 x 兩 c1
y eln兩1x兩c1 eln兩1x兩 ⴢ ec1
; leyes de exponentes
兩 1 x 兩 ec1
冦兩兩 11 xx 兩兩 1(1 x, x),
;
ec1(1 x).
x 1
x <1
Haciendo c igual a ec1 se obtiene y c(1 x).
SOLUCIÓN ALTERNATIVA Como cada integral da como resultado un logaritmo, la
elección más prudente para la constante de integración es ln兩c兩, en lugar de c. Reescribir
el segundo renglón de la solución como ln兩y兩 ln兩1 x兩 ln兩c兩 nos permite combinar
los términos del lado derecho usando las propiedades de los logaritmos. De ln兩y兩
ln兩c(1 x)兩 obtenemos inmediatamente que y c(1 x). Aun cuando no todas las
LQWHJUDOHVLQGH¿QLGDVVHDQORJDULWPRVSRGUtDVHJXLUVLHQGRPiVFRQYHQLHQWHXVDUOQ兩c兩.
6LQHPEDUJRQRVHSXHGHHVWDEOHFHUXQDUHJOD¿UPH
En la sección 1.1 vimos que una curva solución puede ser sólo un segmento o un arco
GHODJUi¿FDGHXQDVROXFLyQLPSOtFLWDG(x, y) 0.
EJEMPLO 2
Curva solución
Resuelva el problema con valores iniciales
dy
x
,
dx
y
y(4) 3.
SOLUCIÓN Si reescribe la ecuación como y dy x dx, obtiene
冕
y
x
(4, −3)
FIGURA 2.2.1 Curvas solución para
el PVI del ejemplo 2.
冕
x2
y2
c1.
2
2
2
Podemos escribir el resultado de la integración como x y 2 c 2, sustituyendo a la
constante 2c1 por c2. Esta solución de la ecuación diferencial representa una familia de
circunferencias concéntricas centradas en el origen.
Ahora cuando x y 3, se tiene 16 25 c2. Así, el problema con
valores iniciales determina la circunferencia x 2 y 2 25 de radio 5. Debido a su
sencillez podemos despejar de esta solución implícita a una solución explícita que satisfaga la condición inicial. En el ejemplo 3 de la sección 1.1, vimos esta solución
como y 2(x) o y 125 x2, 5 x 58QDFXUYDVROXFLyQHVODJUi¿FDGH
la función derivable. En este caso la curva solución es el semicírculo inferior que se
PXHVWUDHQD]XORVFXURHQOD¿JXUDTXHFRQWLHQHDOSXQWR 3).
y dy x dx
y
PÉRDIDA DE UNA SOLUCIÓN Se debe tener cuidado al separar las variables. Ya que las variables que sean divisores podrían ser cero en un punto.
Concretamente, si r es una raíz de la función h(y), entonces sustituyendo y r en
dy兾dx g(x)h(y) se encuentra que ambos lados son iguales a cero; es decir, y r es
una solución constante de la ecuación diferencial. Pero después de que las variables
dy
se separan, el lado izquierdo de
g (x) dx HVWi LQGH¿QLGR HQ r. Por tanto, y r
h( y)
podría no representar a la familia de soluciones que se ha obtenido después de la integración
\VLPSOL¿FDFLyQ5HFXHUGHTXHXQDVROXFLyQGHHVWHWLSRVHGHQRPLQDVROXFLyQVLQJXODU
2.2
EJEMPLO 3
Resuelva
VARIABLES SEPARABLES
47
l
Pérdida de una solución
dy
y 2 4.
dx
SOLUCIÓN Poniendo la ecuación en la forma
dy
dx
y2 4
冤 y 2 y 2 冥 dy dx.
1
4
o
1
4
(5)
La segunda ecuación en la ecuación (5) es el resultado de utilizar fracciones parciales
en el lado izquierdo de la primera ecuación. Integrando y utilizando las leyes de los
logaritmos se obtiene
1
1
ln y 2
ln y 2
x c1
4
4
o ln
y
y
2
2
4x
c2 o
y
y
2
2
e4x
c2
.
$TXtKHPRVVXVWLWXLGRc1 por c2. Por último, después de sustituir ec2 por c y despejando y de la última ecuación, obtenemos una familia uniparamétrica de soluciones
y2
1 ce4x
.
1 ce4x
(6)
Ahora, si factorizamos el lado derecho de la ecuación diferencial como dy兾dx (y 2)
(y 2), sabemos del análisis de puntos críticos de la sección 2.1 que y 2 y y 2 son
dos soluciones constantes (de equilibrio). La solución y 2 es un miembro de la familia
GHVROXFLRQHVGH¿QLGDSRUODHFXDFLyQ FRUUHVSRQGLHQGRDOYDORUc 0. Sin embargo,
y 2 es una solución singular; ésta no se puede obtener de la ecuación (6) para cualquier elección del parámetro c. La última solución se perdió al inicio del proceso de solución. El examen de la ecuación (5) indica claramente que debemos excluir a y 2
en estos pasos.
EJEMPLO 4 Un problema con valores iniciales
Resuelva (e2y y) cos x
dy
ey sen 2x, y(0) 0.
dx
SOLUCIÓN Dividiendo la ecuación entre ey cos x se obtiene
sen 2x
e2y y
dx.
dy
ey
cos x
Antes de integrar, se realiza la división del lado izquierdo y utilizamos la identidad
trigonométrica sen 2x 2 sen x cos x en el lado derecho. Entonces tenemos que
integración de partes
se obtiene
(ey
ye y) dy
2
sen x dx
e y yey ey 2 cos x F
La condición inicial y 0 cuando x 0 implica que c 3RUWDQWRXQDVROXFLyQGHO
problema con valores iniciales es
e y yey ey 2 cos x
USO DE COMPUTADORA Los ComentariosDO¿QDOGHODVHFFLyQPHQFLRQDQ
que puede ser difícil utilizar una solución implícita G(x, y) 0 para encontrar una solución explícita y (x /DHFXDFLyQ PXHVWUDTXHODWDUHDGHGHVSHMDUDy en términos
de x puede presentar más problemas que solamente el aburrido trabajo de presionar
símbolos, ¡en algunos casos simplemente no se puede hacer! Las soluciones implícitas
48
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
y
2
1
x
_1
_2
_2
_1
1
2
FIGURA 2.2.2 Curvas de nivel
G(x, y) c, donde
G(x, y) ey yey ey 2 cos [
WDOHVFRPRODHFXDFLyQ VRQXQSRFRIUXVWUDQWHV\DTXHQRVHDSUHFLDHQODJUi¿FD
GHODHFXDFLyQQLHQHOLQWHUYDORXQDVROXFLyQGH¿QLGDTXHVDWLVIDJDTXHy(0) 0. El
problema de “percibir” cuál es la solución implícita en algunos casos se puede resolver
mediante la tecnología. Una manera* de proceder es utilizar la aplicación contour plot
de un sistema algebraico de computación (SAC). Recuerde del cálculo de varias variables que para una función de dos variables z G(x, y) las curvas bi-dimensionalesGH¿nidas por G(x, y) c, donde c es una constante, se llaman curvas de nivel de la función.
(QOD¿JXUDVHSUHVHQWDQDOJXQDVGHODVFXUYDVGHQLYHOGHODIXQFLyQG(x, y) ey
yey ey 2 cos x que se han reproducido con la ayuda de un SAC. La familia de
VROXFLRQHVGH¿QLGDVSRUODHFXDFLyQ VRQODVFXUYDVGHQLYHOG(x, y) c(QOD¿JXUD
2.2.3 se muestra en color azul la curva de nivel G(x, y) TXHHVODVROXFLyQSDUWLFXODU
GHODHFXDFLyQ /DRWUDFXUYDGHOD¿JXUDHVODFXUYDGHQLYHOG(x, y) 2, que
es miembro de la familia G(x, y) c que satisface que y(ʌ兾2) 0.
6LDOGHWHUPLQDUXQYDORUHVSHFt¿FRGHOSDUiPHWURc en una familia de soluciones
de una ecuación diferencial de primer orden llegamos a una solución particular, hay una
inclinación natural de la mayoría de los estudiantes (y de los profesores) a relajarse y estar
satisfechos. Sin embargo, una solución de un problema con valores iniciales podría no
VHU~QLFD9LPRVHQHOHMHPSORGHODVHFFLyQTXHHOSUREOHPDFRQYDORUHVLQLFLDOHV
dy
xy1/2,
dx
y
2
1
_2
_2
1
x . Ahora ya podemos resolver esa ecuatiene al menos dos soluciones, y 0 y y 16
ción. Separando las variables e integrando y1兾2 dy x dx obtenemos
c=4
(0, 0)
_1
y(0) 0
(π /2,0)
c =2
_1
2y1/2
x
2
1
x2
2
c1 o y
x2
4
2
c , c0
1
Cuando x 0, entonces y 0, así que necesariamente, c 0. Por tanto y 16
x . Se
perdió la solución trivial y 0 al dividir entre y1兾2. Además, el problema con valores
LQLFLDOHVHFXDFLyQ WLHQHXQDFDQWLGDGLQ¿QLWDPHQWHPD\RUGHVROXFLRQHVSRUTXH
para cualquier elección del parámetro a ODIXQFLyQGH¿QLGDHQSDUWHV
FIGURA 2.2.3 Curvas de nivel
y
c 2 y c
冦0, (x a ) ,
1
16
2
2 2
xa
xa
VDWLVIDFHWDQWRDODHFXDFLyQGLIHUHQFLDOFRPRDODFRQGLFLyQLQLFLDO9HDOD¿JXUD
SOLUCIONES DEFINIDAS POR INTEGRALES Si g es una función continua en
un intervalo abierto I que contiene a a, entonces para toda x en I,
冕
y
a=0
a>0
d x
g(t) dt g(x).
dx a
Usted podría recordar que el resultado anterior es una de las dos formas del teorema
fundamental del cálculo. Es decir, 兰ax g(t) dt es una antiderivada de la función g. En
ocasiones esta forma es conveniente en la solución de ED. Por ejemplo, si g es continua
en un intervalo I que contiene a x0 y a x, entonces una solución del sencillo problema
con valores iniciales dy兾dx g(x), y(x0) y0TXHHVWiGH¿QLGRHQI está dado por
冕
x
y(x) y0
(0, 0)
FIGURA 2.2.4 Soluciones de la
HFXDFLyQ GH¿QLGDHQWUDPRV
g(t) dt
x0
x
Usted debería comprobar que y(x GH¿QLGDGHHVWDIRUPDVDWLVIDFHODFRQGLFLyQLQLFLDO
Puesto que una antiderivada de una función continua g no siempre puede expresarse
en términos de las funciones elementales, esto podría ser lo mejor que podemos hacer
para obtener una solución explícita de un PVI. El ejemplo siguiente ilustra esta idea.
En la sección 2.6 analizaremos algunas otras maneras de proceder que están basadas en el concepto de un
solucionador numérico.
*
2.2
EJEMPLO 5
Resuelva
dy
2
ex ,
dx
VARIABLES SEPARABLES
l
49
Un problema con valores iniciales
y(3) 5.
La función g(x) ex2 es continua en ( , ), pero su antiderivada
no es una función elemental. Utilizando a t como una variable muda de integración,
podemos escribir
SOLUCIÓN
冕
x
3
dy
dt
dt
]x
y(t)
3
冕
冕
冕
x
2
et dt
3
x
2
et dt
3
x
y(x) y(3)
2
et dt
3
冕
x
y(x) y(3)
2
et dt.
3
Utilizando la condición inicial y(3) 5, obtenemos la solución
冕
x
y(x) 5
2
et dt.
3
El procedimiento que se mostró en el ejemplo 5 también funciona bien en las ecuaciones
separables dy兾dx g(x) f (y) donde f (y) tiene una antiderivada elemental pero g(x) no
WLHQHXQDDQWLGHULYDGDHOHPHQWDO9pDQVHORVSUREOHPDV\GHORVHMHUFLFLRV
COMENTARIOS
i) Como acabamos de ver en el ejemplo 5, algunas funciones simples no tienen
una antiderivada que es una función elemental. Las integrales de estas clases de
2
funciones se llaman no elementales. Por ejemplo 兰3x et dt y 兰sen x2 dx son integrales no elementales. Retomaremos nuevamente este concepto en la sección 2.3.
ii) En algunos de los ejemplos anteriores vimos que la constante de la familia uniparamétrica de soluciones de una ecuación diferencial de primer orden se puede
UHGH¿QLU FXDQGR VHD FRQYHQLHQWH 7DPELpQ VH SXHGH SUHVHQWDU FRQ IDFLOLGDG HO
caso de que dos personas obtengan distintas expresiones de las mismas respuestas resolviendo correctamente la misma ecuación. Por ejemplo, separando variables se puede demostrar que familias uniparamétricas de soluciones de la ED
(l y2) dx (1 x2) dy 0 son
arctan x arctan y c
o
xy
c.
1 xy
Conforme avance en las siguientes secciones, considere que las familias de soluciones pueden ser equivalentes, en el sentido de que una se puede obtener de
RWUD\DVHDSRUUHGH¿QLFLyQGHODFRQVWDQWHRXWLOL]DQGRiOJHEUDRWULJRQRPHWUtD
9HDORVSUREOHPDV\GHORVHMHUFLFLRV
50
CAPÍTULO 2
l
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJERCICIOS 2.2
/DVUHVSXHVWDVDORVSUREOHPDVVHOHFFLRQDGRVFRQQ~PHURLPSDUFRPLHQ]DQHQODSiJLQD5(6
En los problemas 1 a 22 resuelva la ecuación diferencial dada
por separación de variables.
dy
dy
1.
2.
sen 5x
(x 1)2
dx
dx
3. dx e 3xdy 0
5. x
dy
dx
4. dy (y 1) 2dx 0
6.
4y
dy
7.
dx
e
9. y ln x
dx
dy
3x
dy
dx
2xy 2
1
y
2
10.
x
32. (2y 2) dy冫dx 3x2 x 2,
0
33. e ydx exdy 0,
dy
8. e x y
dx
2y
e
2y
4x
dy
dx
y
e
2x
y
12. sen 3x dx 2y cos 33x dy 0
13. (e y 1) 2ey dx (e x 1) 3ex dy 0
14. x(1 y 2) 1兾2 dx y(1 x 2) 1兾2 dy
19.
dy
dx
dQ
dt
dN
18.
dt
kS
16.
2
P
P
xy
xy
3x
2x
y
4y
dy
3
20.
dx
8
k(Q
70)
a) (0, 1)
t 2
N
Nte
xy
xy
2y
3y
x
x
2
3
dy
dy
21.
22. (ex ex )
x 11 y2
y2
dx
dx
(QORVSUREOHPDVDHQFXHQWUHXQDVROXFLyQH[SOtFLWDGHO
problema con valores iniciales dados.
dx
4(x2 1), x(>4) 1
23.
dt
24.
dy y2 1
, y(2) 2
dx x2 1
25. x2
dy
y xy, y(1) 1
dx
dy
2y 1, y(0) 25
26.
dt
13
27. 11 y dx 11 x dy 0, y(0)
2
2
28. (1 x ) dy x(1 y ) dx 0, y(1) 0
(Q ORV SUREOHPDV \ SURFHGD FRPR HQ HO HMHPSOR \
determine una solución explícita del problema con valores
iniciales dado.
dy
2
29.
yex , y(4) 1
dx
2
30.
dy
y 2 sen x 2,
dx
y(0) 0
y(0) 1
()
11. csc y dx sec x dy 0
dS
dr
dP
17.
dt
34. sin x dx y dy 0,
y(1) 2
35. a) Encuentre una solución del problema con valores iniciales que consiste en la ecuación diferencial del ejemplo
3 y de las condiciones iniciales y(0) 2, y(0) 2, y
y 14 1.
b) Encuentre la solución de la ecuación diferencial en el
HMHPSORFXDQGRVHXWLOL]DOQc1 como la constante de
integración del lado izquierdoHQODVROXFLyQ\OQc1
se sustituye por ln F Después resuelva los mismos problemas con valores iniciales que en el inciso a).
dy
y2 y que pase por
36. Encuentre una solución de x
dx
los puntos indicados.
2
3
5
2
15.
(QORVSUREOHPDVGHODOGHWHUPLQHXQDVROXFLyQH[SOtcita del problema con valores iniciales dados. Determine el
LQWHUYDORH[DFWRGHGH¿QLFLyQSRUPpWRGRVDQDOtWLFRV8VHXQD
FDOFXODGRUDJUD¿FDGRUDSDUDWUD]DUODJUi¿FDGHODVROXFLyQ
31. dy冫dx (2x 1)冫2y, y(2) 1
2
y(2) 31
b) (0, 0)
c)
(12, 12)
d)
(2, 41)
37. Encuentre una solución singular del problema 21 y del
problema 22.
38. Muestre que una solución implícita de
2x sen 2 y dx (x2 10) cos y dy 0
está dada por ln(x2 10) csc y c. Determine las soluciones constantes, si se perdieron cuando se resolvió la
ecuación diferencial.
Con frecuencia, un cambio radical en la forma de la solución
de una ecuación diferencial corresponde a un cambio muy
pequeño en la condición inicial o en la ecuación misma. En
ORV SUREOHPDV D GHWHUPLQH XQD VROXFLyQ H[SOtFLWD GHO
problema con valores iniciales dado. Utilice un programa de
JUD¿FDFLyQSDUDGLEXMDUODJUi¿FDGHFDGDVROXFLyQ&RPSDUH
cada curva solución en una vecindad de (0,1).
39.
dy
(y 1)2,
dx
y(0) 1
dy
(y 1)2, y(0) 1.01
dx
dy
41.
(y 1)2 0.01, y(0) 1
dx
40.
dy
(y 1)2 0.01, y(0) 1
dx
43. Toda ecuación autónoma de primer orden dy兾dx f (y) es separable. Encuentre las soluciones explícitas y1(x), y2(x), y3(x)
y y(x) de la ecuación diferencial dy兾dx y – y3, que satisfagan, respectivamente, las condiciones iniciales y1(0) 2,
42.
2.2
y2(0) 12 , y3(0) 12 y y(0) 2. Utilice un programa de
JUD¿FDFLyQSDUDFDGDVROXFLyQ&RPSDUHHVWDVJUi¿FDVFRQ
ODVERVTXHMDGDVHQHOSUREOHPDGHORVHMHUFLFLRV'pHO
LQWHUYDORGHGH¿QLFLyQH[DFWRSDUDFDGDVROXFLyQ
44. a) La ecuación diferencial autónoma de primer orden
dy兾dx 1兾(y 3) no tiene puntos críticos. No obstante,
coloque 3 en la recta de fase y obtenga un diagrama fase
de la ecuación. Calcule d2y兾dx2 para determinar dónde
las curvas solución son cóncavas hacia arriba y cóncavas hacia abajo (vea los problemas 35 y 36 de los ejercicios 2.1). Utilice el diagrama fase y la concavidad para
que, a mano, dibuje algunas curvas solución típicas.
b) Encuentre las soluciones explícitas y1(x), y2(x), y3(x)
y y(x) de la ecuación diferencial del inciso a) que satisfagan, respectivamente, las condiciones iniciales
y1(0) y2(0) 2, y3(1) 2 y y(1) 7UDFH
ODJUi¿FDGHFDGDVROXFLyQ\FRPSDUHFRQVXVGLEXMRV GHO LQFLVR D ,QGLTXH HO LQWHUYDOR GH GH¿QLFLyQ
exacto de cada solución.
(QORVSUREOHPDV±XWLOLFHXQDWpFQLFDGHLQWHJUDFLyQRXQD
sustitución para encontrar una solución explícita de la ecuación
diferencial dada o del problema con valores iniciales.
45.
dy
dx
1
1
sen x
46. dy
dx
47. ( 冪x
dy
x)
dx
49. dy
e 冪x
, y(1)
y
dx
冪y
y
4
48.
dy
dx
50. dy
dx
sen 冪x
冪y
y2/3
x tan
y
y
1
x
VARIABLES SEPARABLES
51
l
54. a) Resuelva los dos problemas con valores iniciales
dy
dx
y,
1
y(0)
y
dy
dx
y
,
x ln x
y
y(e)
1.
b) Demuestre que hay más de 1.65 millones de dígitos
de la coordenada y del punto de intersección de las dos
curvas solución en el inciso a).
55. Determine una función cuyo cuadrado más el cuadrado
de su derivada sea igual a 1.
56. a) /DHFXDFLyQGLIHUHQFLDOGHOSUREOHPDHVHTXLYDlente a la forma normal
1 y2
dy
dx
B1 x 2
en la región cuadrada del plano xy GH¿QLGD SRU
兩x兩 1, 兩y兩 1. Pero la cantidad dentro del radical es
QRQHJDWLYDWDPELpQHQODVUHJLRQHVGH¿QLGDVSRU兩x兩
1, 兩y兩 1. Dibuje todas las regiones del plano xy
para las que esta ecuación diferencial tiene soluciones reales.
b) 5HVXHOYDOD('GHOLQFLVRD HQODVUHJLRQHVGH¿QLGDV
por 兩x兩 1, 兩y兩 1. Después determine una solución
implícita y una explícita de la ecuación diferencial sujeta a y(2) 2.
Modelo matemático
, y(0)
3
Problemas para analizar
51. a) (
[SOLTXHSRUTXpHOLQWHUYDORGHGH¿QLFLyQGHODVROXción explícita y 2(x) del problema con valores iniciales en el ejemplo 2 es el intervalo abierto (5, 5).
b) ¿Alguna solución de la ecuación diferencial puede
cruzar el eje x? ¿Cree usted que x2 y2 1 es una
solución implícita del problema con valores iniciales
dy兾dx x兾y, y(1) 0?
52. a) Si a 0 analice las diferencias, si existen, entre las
soluciones de los problemas con valores iniciales
que consisten en la ecuación diferencial dy兾dx x兾y
y de cada una de las condiciones iniciales y(a) a,
y(a) a, y(a) a y y(a) a.
b) ¿Tiene una solución el problema con valores iniciales
dy兾dx x兾y, y(0) 0?
c) Resuelva dy兾dx x兾y, y(1) 2 e indique el intervalo I GHGH¿QLFLyQH[DFWRGHHVWDVROXFLyQ
53. (QORVSUREOHPDV\YLPRVTXHWRGDHFXDFLyQGLferencial autónoma de primer orden dy兾dx f(y) es separable. ¿Ayuda este hecho en la solución del problema
dy
con valores iniciales
11 y2 sen2 y, y(0) 21?
dx
Analice. A mano, dibuje una posible curva solución del problema.
57. Puente suspendido En la ecuación (16) de la sección
1.3 vimos que un modelo matemático para la forma de un
FDEOHÀH[LEOHFROJDGRGHGRVSRVWHVHV
dy W
,
dx T1
(10)
donde W denota la porción de la carga vertical total entre
los puntos P1 y P2TXHVHPXHVWUDQHQOD¿JXUD/D
ED (10) es separable bajo las siguientes condiciones que
describen un puente suspendido.
y
cable
h (pandeo)
(0, a)
L/2
x
L/2
L longitud
superficie de la carretera (carga)
FIGURA 2.2.5 )RUPDGHXQFDEOHGHOSUREOHPD
52
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Supongamos que los ejes x y y están como se muesWUDHQOD¿JXUDHVGHFLUHOHMHx va a lo largo de la
VXSHU¿FLH GH OD FDUUHWHUD \ HO HMH y pasa por (0, a), que
es el punto más bajo de un cable en la región que abarca
el puente, que coincide con el intervalo [L兾2, L兾2]. En el
caso de un puente suspendido, la suposición usual es que la
carga vertical en (10) es sólo una distribución uniforme de
ODVXSHU¿FLHGHODFDUUHWHUDDORODUJRGHOHMHKRUL]RQWDO(Q
otras palabras, se supone que el peso de todos los cables es
LQVLJQL¿FDQWHHQFRPSDUDFLyQFRQHOSHVRGHODVXSHU¿FLH
de la carretera y que el peso por unidad de longitud de la suSHU¿FLHGHODFDUUHWHUD GLJDPRVOLEUDVSRUSLHKRUL]RQWDO
es una constante . Utilice esta información para establecer
y resolver el problema indicado con valores iniciales a partir del cual se determine la forma (una curva con ecuación y
(x)) de cada uno de los dos cables en un puente suspendido. Exprese su solución del PVI en términos del pandeo h
y de la longitud L9HDOD¿JXUD
Tarea del laboratorio de computación
58. a) Utilice un SAC y el concepto de curvas de nivel para
GLEXMDUODVJUi¿FDVUHSUHVHQWDWLYDVGHORVPLHPEURV
de la familia de soluciones de la ecuación diferencial
dy
8x 5
.
dx
3y 2 1
Experimente con diferentes números de las curvas de
nivel así como con diferentes regiones rectangulares
GH¿QLGDVSRU
a x b, c y d.
b) (
Q GLIHUHQWHV HMHV FRRUGHQDGRV GLEXMH ODV JUi¿FDV
de las soluciones particulares correspondientes a las
condiciones iniciales: y(0) 1; y(0) 2; y(1)
y(1) 3.
c) Considere su respuesta del inciso b) como una sola
función8VHXQSURJUDPDGHJUD¿FDFLyQRXQ6$&
SDUDWUD]DUODJUi¿FDGHHVWDIXQFLyQ\GHVSXpVXWLOLFH
ODJUi¿FDSDUDHVWLPDUVXGRPLQLR
d) Con la ayuda de una aplicación para determinar raíces de un SAC, determine la longitud aproximada del
LQWHUYDORGHGH¿QLFLyQI más grande posible de la solución y (x) del inciso b). Utilice un programa de
JUD¿FDFLyQRXQ6$&SDUDWUD]DUODJUi¿FDGHODFXUYD
solución para el PVI en este intervalo.
60. a) Utilice un SAC y el concepto de curvas de nivel para
GLEXMDUODVJUi¿FDVUHSUHVHQWDWLYDVGHORVPLHPEURV
de la familia de soluciones de la ecuación diferencial
dy
x(1 x)
. Experimente con diferentes númedx y(2 y)
ros de curvas de nivel así como en diferentes regiones
rectangulares del plano xy hasta que su resultado se
SDUH]FDDOD¿JXUD
b) (Q GLIHUHQWHV HMHV FRRUGHQDGRV GLEXMH OD JUi¿FD GH
la solución implícita correspondiente a la condición
inicial y(0) 23. Utilice un lápiz de color para indicar
HOVHJPHQWRGHODJUi¿FDTXHFRUUHVSRQGHDODFXUYD
solución de una solución que satisface la condición
inicial. Con ayuda de un programa para determinar raíces de un SAC, determine el intervalo IGHGH¿QLFLyQ
aproximado más largo de la solución [Sugerencia:
Primero encuentre los puntos en la curva del inciso a)
donde la recta tangente es vertical.]
c) Repita el inciso b) para la condición inicial y(0) 2.
y
x
59. a) Determine una solución implícita del PVI
(2y 2) dy (4x3 6x) dx 0, y(0) 3.
b) Utilice el inciso a) para encontrar una solución explícita y (x) del PVI.
2.3
FIGURA 2.2.6 Curvas de nivel del problema 60.
ECUACIONES LINEALES
REPASO DE MATERIAL
l 5HSDVHODGH¿QLFLyQGHODV('HQODVHFXDFLRQHV \ GHODVHFFLyQ
INTRODUCCIÓN Continuamos con nuestra búsqueda de las soluciones de las ED de primer orden
examinando ecuaciones lineales. Las ecuaciones diferenciales lineales son una familia especialmente
“amigable” de ecuaciones diferenciales en las que, dada una ecuación lineal, ya sea de primer orden
o de un miembro de orden superior, siempre hay una buena posibilidad de que logremos encontrar
alguna clase de solución de la ecuación que podamos examinar.
2.3
ECUACIONES LINEALES
53
l
UNA DEFINICIÓN (QODHFXDFLyQ GHODVHFFLyQVHSUHVHQWDODIRUPDGH
una ED lineal de primer orden. Aquí, por conveniencia, se reproduce esta forma en la
ecuación (6) de la sección 1.1, para el caso cuando n 1.
DEFINICIÓN 2.3.1 Ecuación lineal
Una ecuación diferencial de primer orden de la forma
a1(x)
dy
a0(x)y g(x)
dx
(1)
se dice que es una ecuación lineal en la variable dependiente y.
FORMA ESTÁNDAR Al dividir ambos lados de la ecuación (1) entre el primer coe¿FLHQWHa1(x), se obtiene una forma más útil, la forma estándar de una ecuación lineal:
dy
P(x)y f (x).
(2)
dx
Buscamos una solución de la ecuación (2) en un intervalo I, en el cual las dos funciones P y f sean continuas.
Antes de examinar un procedimiento general para la solución de las ecuaciones de
la forma (2) observamos que en algunos casos (2) se puede resolver por separación de
variables. Por ejemplo, se deberá comprobar que las ecuaciones
Hacemos coincidir cada ecuación con (2).
En la primera ecuación P(x) = 2x, f(x) = 0
y en la segunda P(x) = –1, f(x) = 5.
dy
dx
2xy
dy
dx
y
0
y
5
son separables, pero que la ecuación lineal
dy
dx
y
x
no es separable.
MÉTODO DE SOLUCIÓN El método para resolver (2) depende del hecho notable de
que el lado izquierdo de la ecuación se puede reformular en forma de la derivada exacta
de un producto multiplicando los dos miembros de (2) por una función especial ȝ(x). Es
relativamente fácil encontrar la función ȝ(x) porque queremos
producto
d
[ (x)y]
dx
regla del producto
dy
dx
d
y
dx
el miembro izquierdo de (2)
se multiplica por ȝ(x)
dy
dx
Py
estos deben ser iguales
La igualdad es verdadera siempre que
d
dx
P.
La última ecuación se puede resolver por separación de variables. Integrando
d
Vea el problema 50
en los ejercicios 2.3
Pdx y resolviendo
ln (x)
P(x)dx
c1
se obtiene ȝ(x) c2e 兰P(x)dx$XQTXHH[LVWHXQDLQ¿QLGDGGHRSFLRQHVGHȝ(x) (todos los
múltiplos constantes de e 兰P(x)dx), todas producen el mismo resultado deseado. Por lo
WDQWRQRVSRGHPRVVLPSOL¿FDUODYLGD\HOHJLU c2 1La función
(x)
e
P(x)dx
(3)
se llama un factor integrante para la ecuación (2).
Aquí está lo que tenemos hasta ahora: Multiplicamos ambos lados de (2) por (3) y,
por construcción, el lado izquierdo es la derivada de un producto del factor integrante y y:
54
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
e
P(x)dx
dy
dx
P(x)e
d
e
dx
[
P(x)dx
P(x)dx
y
e
P(x)dx
f(x)
]
e
P(x)dx
f(x).
y
Por último, descubrimos por qué (3) se denomina factor integrante. Podemos integrar
ambos lados de la última ecuación,
e
P(x)dx
y
e
P(x)dx
f(x)
c
y resolvemos para y. El resultado es una familia uniparamétrica de soluciones de la
ecuación (2):
e
y
P(x)dx
e
P(x)dx
f(x)dx
ce
.
P(x)dx
Hacemos énfasis en que no debe memorizarODIyUPXOD VLQRVHJXLUHOVLJXLente procedimiento cada vez.
SOLUCIÓN DE UNA ECUACIÓN LINEAL DE PRIMER ORDEN
i) Recuerde poner la ecuación lineal en la forma estándar (2).
ii ,GHQWL¿TXHGHODLGHQWLGDGGHODIRUPDHVWiQGDUP(x) y después determine
el factor integrante e 兰P(x)dx. No se necesita utilizar una constante para
HYDOXDUODLQWHJUDOLQGH¿QLGD兰P(x)dx
iii) Multiplique la forma estándar de la ecuación por el factor integrante. El
lado izquierdo de la ecuación resultante es automáticamente la derivada
del factor integrante y y:
d 兰P(x)dx
e
y e 兰P(x)dx f (x).
dx
iv) Integre ambos lados de esta última ecuación y resuelva para y.
[
EJEMPLO 1
Resuelva
]
Solución de una ED lineal homogénea
dy
3y 0.
dx
SOLUCIÓN Esta ecuación lineal se puede resolver por separación de variables.
En otro caso, puesto que la ecuación ya está en la forma estándar (2), vemos que
P(x) 3 y por tanto el factor integrante es e 兰(3)dx e3x. Multiplicando la ecuación
por este factor y reconocemos que
e
3x
dy
dx
3e
3x
y
Integrando la última ecuación,
e
3x
0 es la misma que
d
[e
dx
3x
y] dx
d
[e
dx
3x
y]
0.
0 dx
Entonces e3xy c o y ce 3x, x .
EJEMPLO 2
Resuelva
Solución de una ED lineal no homogénea
dy
3y 6.
dx
SOLUCIÓN Esta ecuación lineal, como la del ejemplo 1, ya está en la forma estándar
P(x) 3 y por tanto el factor integrante es de nuevo e3x Ahora al multiplicar la
ecuación dada por este factor se obtiene
2.3
y
dy
d
3e 3x y 6e 3x, que es la misma que
[e 3x y]
dx
dx
Integrando la última ecuación,
d
e 3x
[e 3x y] dx 6 e 3x dx nos da e 3x y
6
dx
3
e
1
x
_1
y =_2
_2
_3
ECUACIONES LINEALES
3x
55
l
6e
3x
.
c
o y 2 ce 3x, x .
_1
1
2
3
4
FIGURA 2.3.1 Algunas soluciones de
y 3y 6 de la ED en el ejemplo 2.
Cuando a1, a0 y g son constantes en la ecuación (1), la ecuación diferencial es autónoma. En el ejemplo 2 podemos comprobar de la forma normal dy兾dx 3(y 2) que
2 es un punto crítico y que es inestable (un repulsor). De este modo, una curva soluFLyQFRQXQSXQWRLQLFLDO\DVHDDUULEDRGHEDMRGHODJUi¿FDGHODVROXFLyQGHHTXLOLEULR
y 2 se aleja de esta recta horizontal conforme aumenta x/D¿JXUDREWHQLGD
FRQODD\XGDGHXQSURJUDPDGHJUD¿FDFLyQPXHVWUDODJUi¿FDGHy 2 junto con
otras curvas solución.
SOLUCIÓN GENERAL Suponga que las funciones P y f en la ecuación (2) son
continuas en un intervalo I(QORVSDVRVTXHFRQGXFHQDODHFXDFLyQ PRVWUDPRV
que si la ecuación (2) tiene una solución en I, entonces debe estar en la forma dada en
ODHFXDFLyQ 5HFtSURFDPHQWHHVXQHMHUFLFLRGLUHFWRGHGHULYDFLyQFRPSUREDUTXH
FXDOTXLHUIXQFLyQGHODIRUPDGDGDHQ HVXQDVROXFLyQGHODHFXDFLyQGLIHUHQFLDO
en I(QRWUDVSDODEUDV HVXQDIDPLOLDXQLSDUDPpWULFDGHVROXFLRQHVGHODHFXDFLyQ
(2) y toda solución de la ecuación (2)GH¿QLGDHQIHVXQPLHPEURGHHVWDIDPLOLDPor
WDQWR OODPDPRV D OD HFXDFLyQ OD solución general de la ecuación diferencial en
el intervalo I. (Vea los Comentarios DO¿QDOGHODVHFFLyQ $OHVFULELUODHFXDFLyQ
(2) en la forma normal y F(x, y SRGHPRVLGHQWL¿FDUF(x, y) P(x)y f (x) y
F兾y P(x). De la continuidad de P y f en el intervalo I vemos que F y F兾y son
también continuas en I&RQHOWHRUHPDFRPRQXHVWUDMXVWL¿FDFLyQFRQFOXLPRV
que existe una y sólo una solución del problema con valores iniciales
dy
(5)
P(x)y f (x), y(x0) y0
dx
GH¿QLGDHQalgún intervalo I0 que contiene a x0. Pero cuando x0 está en I, encontrar una
solución de (5) es exactamente lo mismo que encontrar un valor adecuado de c en la
HFXDFLyQ HVGHFLUDWRGDx0 en I le corresponde un distinto c. En otras palabras,
el intervalo de existencia y unicidad I0 del teorema 1.2.1 para el problema con valores
iniciales (5) es el intervalo completo I.
EJEMPLO 3
Resuelva x
SOLUCIÓN
Solución general
dy
4y x 6e x.
dx
Dividiendo entre x, obtenemos la forma estándar
dy 4
(6)
y x5e x.
dx x
(QHVWDIRUPDLGHQWL¿FDPRVDP(x) 兾x y f (x) x5ex y además vemos que P y f son
continuas en (0, ). Por tanto el factor integrante es
podemos utilizar ln x en lugar de ln 冟x冟 ya que x
0
e4兰dx/x e4ln x eln x4 x4.
Aquí hemos utilizado la identidad básica blogbN N, N
ecuación (6) por x y reescribimos
x
4
dy
dx
4x 5y
xex como
0. Ahora multiplicamos la
d
[x 4y]
dx
xex.
56
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
'HODLQWHJUDFLyQSRUSDUWHVVHWLHQHTXHODVROXFLyQJHQHUDOGH¿QLGDHQHOLQWHUYDOR
(0, ) es xy xe x e x c o y x 5e x x e x cx .
En caso de que se pregunte por qué es importante el intervalo (0, ) en el ejemplo
3, lea este párrafo y el párrafo que sigue
DOHMHPSOR
([FHSWRHQHOFDVRHQHOTXHHOFRH¿FLHQWHSULQFLSDOHVODUHIRUPXODFLyQGHODHFXDción (1) en la forma estándar (2) requiere que se divida entre a1(x). Los valores de x
para los que a1(x) 0 se llaman puntos singulares de la ecuación. Los puntos singulares son potencialmente problemáticos. En concreto, en la ecuación (2), si P(x) (que se
forma al dividir a0(x) entre a1(x)) es discontinua en un punto, la discontinuidad puede
conducir a soluciones de la ecuación diferencial.
EJEMPLO 4
Solución general
Determine la solución general de (x 2 9)
dy
xy 0.
dx
SOLUCIÓN Escribimos la ecuación diferencial en la forma estándar
x
dy
y 0
dx x 2 9
HLGHQWL¿FDQGRP(x) x兾(x2± $XQTXHP es continua en ( , 3), (3, 3) y (3, ),
resolveremos la ecuación en el primer y tercer intervalos. En estos intervalos el factor
integrante es
1
1
2
2
2
e兰x d x/(x 9) e2 兰2x d x/(x 9) e2 ln兩x 9兩 1x2 9 .
'HVSXpVPXOWLSOLFDQGRODIRUPDHVWiQGDU SRUHVWHIDFWRUREWHQHPRV
d
1x2 9 y 0.
dx
冤
冥
2
Integrando ambos lados de la última ecuación se obtiene 1x 9 y c. De este
modo, ya sea para x 3 o x 3 la solución general de la ecuación es
c
y
.
2
1x 9
2EVHUYHHQHOHMHPSORTXHx 3 y x 3 son puntos singulares de la ecuación y que
toda función en la solución general y c兾1x 2 9 es discontinua en estos puntos. Por
otra parte, x 0 es un punto singular de la ecuación diferencial en el ejemplo 3, pero
en la solución general y x5ex – xex cx es notable que cada función de esta familia
uniparamétrica es continua en x \HVWiGH¿QLGDHQHOLQWHUYDOR , ) y no sólo
en (0, ), como se indica en la solución. Sin embargo, la familia y x5ex – xex cx
GH¿QLGDHQ , ) no se puede considerar la solución general de la ED, ya que el punto
singular x D~QFDXVDXQSUREOHPD9HDORVSUREOHPDV\HQORVHMHUFLFLRV
EJEMPLO 5
Resuelva
Un problema con valores iniciales
dy
y x, y(0) 4.
dx
SOLUCIÓN La ecuación está en forma estándar y P(x) 1 y f(x) x son continuas
en ( , ). El factor integrante es e 兰dx e x, entonces al integrar
d x
[e y] xex
dx
se tiene que exy xex – ex c. Al despejar y de esta última ecuación se obtiene la
solución general y x 1 ce x. Pero de la condición general sabemos que y
cuando x 0. El sustituir estos valores en la solución general implica que c 5. Por
tanto la solución del problema es
y x 1 5ex, x .
2.3
y
4
c>0
2
c5
x
_2
c<0
_4 c=0
_4
_2
2
4
FIGURA 2.3.2 Curvas solución de la
ED en el ejemplo 5
l
57
/D¿JXUDTXHVHREWXYRFRQODD\XGDGHXQSURJUDPDGHJUD¿FDFLyQPXHVWUDOD
JUi¿FDGHODVROXFLyQ HQD]XORVFXURMXQWRFRQODVJUi¿FDVGHODVRWUDVVROXFLRQHV
de la familia uniparamétrica y x – 1 cex. Es interesante observar que conforme x
DXPHQWDODVJUi¿FDVGHtodosORVPLHPEURVGHODIDPLOLDHVWiQFHUFDGHODJUi¿FDGHOD
solución y x – 1. Esta última solución corresponde a c 0 en la familia y se muestra
HQYHUGHRVFXURHQOD¿JXUD(VWHFRPSRUWDPLHQWRDVLQWyWLFRGHVROXFLRQHVHV
debido al hecho de que la contribución de cex, c ⬆ 0 será despreciable para valores
crecientes de x. Decimos que cex es un término transitorio, ya que e–x → 0 conforme
x → . Mientras que este comportamiento no es característico de todas las soluciones
generales de las ecuaciones lineales (vea el ejemplo 2), el concepto de un transitorio es
frecuentemente importante en problemas de aplicación.
COEFICIENTES DISCONTINUOS (Q DSOLFDFLRQHV ORV FRH¿FLHQWHV P(x) y f(x)
en la ecuación (2) pueden ser continuos en partes. En el siguiente ejemplo f(x) es continua
por tramos en [0, FRQXQDVRODGLVFRQWLQXLGDGHQSDUWLFXODUXQVDOWR ¿QLWR GLVFRQWLnuo en x 1. Resolvemos el problema en dos partes correspondientes a los dos intervalos en los que fHVWiGH¿QLGD(VHQWRQFHVSRVLEOHMXQWDUODVSDUWHVGHODVGRVVROXFLRQHV
en x 1 así que y(x) es continua en [0, ).
EJEMPLO 6
y
ECUACIONES LINEALES
Resuelva dy
dx
y
Un problema con valores iniciales
f (x), y(0)
0 donde f (x)
1, 0
0,
x
x
1,
1.
(Q OD ¿JXUD VH PXHVWUD OD JUi¿FD GH OD IXQFLyQ GLVFRQWLQXD f.
Resolvemos la ED para y(x) primero en el intervalo [0, 1] y después en el intervalo
(1, ). Para 0 x 1 se tiene que
SOLUCIÓN
x
FIGURA 2.3.3 f(x) discontinua en el
ejemplo 6.
d x
dy
[e y] ex.
y 1
o, el equivalente,
dx
dx
Integrando esta última ecuación y despejando y se obtiene y 1 c1ex. Puesto que
y(0) 0, debemos tener que c1 1 y por tanto y 1 ex, 0 x 1. Entonces
para x 1 la ecuación
dy
y0
dx
conduce a y c2ex. Por tanto podemos escribir
y
冦
1 ex,
c2ex,
0 x 1,
x 1.
5HFXUULHQGRDODGH¿QLFLyQGHFRQWLQXLGDGHQXQSXQWRHVSRVLEOHGHWHUPLQDUc2, así
que la última función es continua en x 1. El requisito de límxo1 y(x) y(1) implica
que c2e1 1 – e1 o c2 e&RPRVHPXHVWUDHQOD¿JXUDODIXQFLyQ
冦1(ee1)e,
x
y
y
x
,
0 x 1,
x 1
es continua en (0, ).
6HUiLPSRUWDQWHWRPDUHQFXHQWDXQSRFRPiVODHFXDFLyQ \OD¿JXUDSRU
IDYRUOHD\FRQWHVWHHOSUREOHPDGHORVHMHUFLFLRV
1
x
FIGURA 2.3.4 *Ui¿FDGHODIXQFLyQ
HQHOHMHPSOR
FUNCIONES DEFINIDAS POR INTEGRALES $O¿QDOGHODVHFFLyQDQDOLzamos el hecho de que algunas funciones continuas simples no tienen antiderivadas
que sean funciones elementales y que las integrales de esa clase de funciones se
2
llaman no elementales. Por ejemplo, usted puede haber visto en cálculo que 兰ex dx y
兰sen x 2 dx no son integrales elementales. En matemáticas aplicadas algunas funciones
58
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
importantes están GH¿QLGDV en términos de las integrales no elementales. Dos de esas
funciones especiales son la función error y la función error complementario:
erf(x)
1
2
冕
x
2
et dt
y
erfc(x)
2
1
冕
(10)
2
et dt.
Del conocido resultado 兰0 et dt 1兾2* podemos escribir (2兾1 ) 兰0 et dt 1.
Entonces de la forma 兰0 兰0x 兰x se ve en la ecuación (10) que la función error
complementario, erfc(x), se relaciona con erf(x) por erf(x) erfc(x) 1. Debido a
su importancia en probabilidad, en estadística y en ecuaciones diferenciales parciales
aplicadas, se cuenta con extensas tablas de la función de error. Observe que erf(0) 0
es un valor obvio de la función. Los valores de erf(x) se pueden determinar con un
sistema algebraico de computación (SAC).
0
x
2
EJEMPLO 7
2
La función de error
Resuelva el problema con valores iniciales
y
x
dy
2xy 2,
dx
y(0) 1.
SOLUCIÓN Puesto que la ecuación ya se encuentra en la forma normal, el factor
2
integrante es ex , y así de
x
d
2
2
2
2
2
y 2ex e t dt cex .
[e x y] 2e x obtenemos
(11)
dx
0
Aplicando y(0) 1 en la última expresión obtenemos c 1. Por lo tanto, la solución
del problema es
冕
x
FIGURA 2.3.5 Curvas solución de la
y 2ex
('GHOHMHPSOR
2
et dt ex o y ex [1 1 erf(x)].
2
2
2
0
(QOD¿JXUDVHPXHVWUDHQD]XORVFXURODJUi¿FDGHHVWDVROXFLyQHQHOLQWHUYDOR
( , MXQWRFRQRWURVPLHPEURVGHODIDPLOLDGH¿QLGDHQODHFXDFLyQ REWHQLGD
con la ayuda de un sistema algebraico de computación.
USO DE COMPUTADORAS Algunos sistemas algebraicos de computación como
Mathematica y Maple permiten obtener soluciones implícitas o explícitas para algunos
tipos de ecuaciones diferenciales, usando la instrucción dsolve.†
COMENTARIOS
i) Una ED lineal de primer orden
a1(x) dy冫dx a0(x)y 0
se dice que es homogénea, mientras que una ecuación
a1(x) dy冫dx a0(x)y g(x)
con g(x) no exactamente igual a cero, se dice que es no homogénea. Por ejemplo, las ecuaciones lineales xy’ y 0 y xy’ y ex son, a su vez, homogéneas y no homogéneas. Como se puede ver en este ejemplo, la solución trivial
y 0 es siempre una solución de la ED homogénea. Recuerde esta terminología
\DTXHVHUiLPSRUWDQWHFXDQGRHVWXGLHPRVHQHOFDStWXORODVHFXDFLRQHVGLIHrenciales ordinarias lineales de orden superior.
Este resultado normalmente se presenta en el tercer semestre de cálculo.
Ciertas instrucciones se escriben igual, pero los comandos de Mathematica comienzan con una letra mayúscula
(DSolve) mientras que en Maple la misma instrucción comienza con una letra minúscula (dsolve). Cuando analizamos estas sintaxis comunes escribimos, como en el ejemplo, dsolve.
*
†
2.3
ECUACIONES LINEALES
l
59
ii) A veces, una ecuación diferencial de primer orden es no lineal en una variable
pero es lineal en la otra variable. Por ejemplo, la ecuación diferencial
dy
1
dx x y 2
es no lineal en la variable y. Pero su recíproca
dx
x y2
dy
dx
x y2
dy
o
se reconoce como lineal en la variable x. Usted debería comprobar que el factor
integrante es e 兰(1)dy ey e integrando por partes se obtiene la solución explícita x y2 2y 2 ce y para la segunda ecuación. Esta expresión es,
entonces, una solución implícita de la primera ecuación.
iii) Los matemáticos han adoptado como propias algunas palabras de ingeniería
que consideran adecuadas para ciertas descripciones. La palabra transitorio, que
ya hemos usado, es uno de estos términos. En futuros análisis a veces se presentarán las palabras entrada y salida. La función f en la ecuación (2) es la función
de entrada o de conducción; una solución y(x) de la ecuación diferencial para
una entrada dada se llama salida o respuesta.
iv) El término funciones especiales mencionado en relación con la función
de error también se aplica a la función seno integral y a la integral seno de
Fresnel, introducidas en los problemas 55 y 56 de los ejercicios 2.3. “Funciones
HVSHFLDOHV´HVXQDUDPDGHODVPDWHPiWLFDVUHDOPHQWHELHQGH¿QLGD(QODVHFFLyQVHHVWXGLDQIXQFLRQHVPiVHVSHFLDOHV
EJERCICIOS 2.3
Las respuestas a los problemas seleccionados FRQQ~PHURLPSDUFRPLHQ]DQHQODSiJLQD5(6
(QORVSUREOHPDVDGHWHUPLQHODVROXFLyQJHQHUDOGHOD
ecuación diferencial dada. Indique el intervalo I más largo en
HOTXHHVWiGH¿QLGDODVROXFLyQJHQHUDO'HWHUPLQHVLKD\DOgunos términos transitorios en la solución general.
1.
dy
dx
5y
3.
dy
dx
y
2.
e3x
dy
dx
4. 3
2y
dy
dx
12y
4
6. y 2xy x 3
7. x 2y xy 1
8. y 2y x 2 5
dy
dx
y
11. x
dy
dx
4y
x 2 senx
x3
x
10. x
12. (1
13. x 2y x(x 2)y e x
14. xy (1 x)y ex sen 2x
15. y dx x y 6) dy 0
16. y dx ( ye y 2x) dy
dy
dx
x)
dy
(x 2)y 2xex
dx
dy
5 8y 4xy
20. (x 2)2
dx
dr
r sec cos
21.
d
19. (x 1)
0
5. y 3x 2y x 2
9. x
dy
(sen x)y 1
dx
dy
18. cos2x sen x (cos3x)y 1
dx
17. cos x
2y
3
dy
dx
xy
dP
2tP P 4t 2
dt
dy
(3x 1)y e3x
23. x
dx
22.
x
x2
24. (x 2 1)
dy
2y (x 1)2
dx
En los problemas 25 a 36 resuelva el problema con valores iniciales. Indique el intervalo I PiVODUJRHQHOTXHHVWiGH¿QLGD
la solución.
25.
dy
dx
x
5y,
y(0)
3
60
26.
l
dy
dx
CAPÍTULO 2
2x
3y,
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
27. xy y ex,
42. Considere el problema con valores iniciales y exy
f (x), y(0) 1. Exprese la solución del PVI para x
0
como una integral no elemental cuando f (x) 1. ¿Cuál
es la solución cuando f (x) 0? ¿Y cuándo f (x) ex?
1
3
y(0)
y(1) 2
28. y
dx
x 2y2,
dy
29. L
di
Ri E, i(0) i0,
dt
y(1) 5
43. Exprese la solución del problema con valores iniciales
y – 2xy 1, y(1) 1, en términos de erf(x).
Problemas para analizar
L, R, E e i 0 constantes
44. Lea nuevamente el análisis posterior al ejemplo 2.
Construya una ecuación diferencial lineal de primer
orden para la que todas las soluciones no constantes tiendan a la asíntota horizontal y FRQIRUPHx → .
45. Lea nuevamente el ejemplo 3 y después analice, usando
el teorema 1.2.1, la existencia y unicidad de una solución del problema con valores iniciales que consiste de
xy ±y x6ex y de la condición inicial dada.
a) y(0) 0
b) y(0) y 0, y 0 0
c) y(x 0) y 0, x 0 0, y 0 0
dT
k(T Tm ); T(0) T0,
30.
dt
k, T m y T 0 constantes
31. x
dy
dx
32. y
4x
y
1,
2
x3ex ,
4xy
8
y(1)
1
y(0)
dy
33. (x 1) y ln x, y(1) 10
dx
34. x(x
35. y
1)
dy
dx
1,
xy
2 sen x, y( 兾2)
(sen x)y
36. y (tan x)y cos x,
46. /HDQXHYDPHQWHHOHMHPSOR\GHVSXpVGHWHUPLQHODVROXFLyQ
general de la ecuación diferencial en el intervalo (3, 3).
1
y(e)
1
y(0) 1
2
(QORVSUREOHPDVDSURFHGDFRPRHQHOHMHPSORSDUDUHVROver el problema con valores iniciales dados. Utilice un programa
GHJUD¿FDFLyQSDUDWUD]DUODJUi¿FDGHODIXQFLyQFRQWLQXDy(x).
37.
dy
dx
2y
f (x), y(0)
1, 0
0,
f (x)
38.
dy
dx
f (x), y(0)
y
dy
dx
2xy
40. (1
x 2)
f (x), y(0)
dy
dx
f (x)
0
x,
0,
2xy
2, donde
0
1
1
x
x
f (x), y(0)
x,
1
1
x
x
1,
f (x)
3
3
x
x
1, donde
1,
f (x)
39.
0, donde
x,
0
x
x
0, donde
1
1
41. Proceda en una forma similar al ejemplo 6 para resolver el problema con valores iniciales y P(x)y x, y(0) 3, donde
冦
0 x 1,
P(x) 2,
2>x, x 1.
Utilice un SURJUDPDGHJUD¿FDFLyQ para para trazar la grá¿FDGH la función continua y(x).
47. Lea nuevamente el análisis posterior al ejemplo 5.
Construya una ecuación diferencial lineal de primer orden
para la que todas las soluciones son asintóticas a la recta
y 3x 5 conforme x → .
48. Lea nuevamente el ejemplo 6 y después analice por qué
HVWpFQLFDPHQWHLQFRUUHFWRGHFLUTXHODIXQFLyQHQ HV
una “solución” del PVI en el intervalo [0, ).
49. a) Construya una ecuación diferencial lineal de primer orden de la forma xy + 3y = g(x) para la cual
y = 3 + c/x3 sea su solución general. Dé un intervalo
GHGH¿QLFLyQI de esta solución.
b) Dé una condición inicial y(x0) y0 para la ED que
se determinó en el inciso a) de modo que la solución
del PVI sea y x3 1兾x3. Repita si la solución es
y x3 2兾x3'pXQLQWHUYDORGHGH¿QLFLyQI de cada
XQDGHHVWDVVROXFLRQHV7UDFHODJUi¿FDGHODVFXUvas solución. ¿Hay un problema con valores iniciales
FX\DVROXFLyQHVWpGH¿QLGDHQ , )?
c) ¿Es único cada PVI encontrado en el inciso b)? Es decir,
puede haber más de un solo PVI para el cual, digamos,
y x3 1兾x3, x en algún intervalo I, sea la solución?
50. Al determinar el factor integrante (3), no usamos una
constante de integración en la evaluación de 兰P(x) dx.
Explique por qué usar 兰P(x) dx c1 no tiene efecto en la
solución de (2).
51. Suponga que P(x) es continua en algún intervalo I y a es un
número en I¢4XpVHSXHGHGHFLUDFHUFDGHODVROXFLyQGHO
problema con valores iniciales y P(x)y 0, y(a) 0?
Modelos matemáticos
52. Serie de decaimiento radiactivo Los siguientes sistemas de ecuaciones diferenciales se encuentran en el estudio del decaimiento de un tipo especial de series de decaimiento radiactivo de elementos:
2.4
53. Marcapasos de corazón Un marcapasos de corazón
consiste en un interruptor, una batería de voltaje constante E0, un capacitor con capacitancia constante C y
un corazón como un resistor con resistencia constante
R. Cuando se cierra el interruptor, el capacitor se carga;
cuando el interruptor se abre, el capacitor se descarga,
enviando estímulos eléctricos al corazón. Todo el tiempo
el corazón se está estimulando, el voltaje E a través del
corazón satisface la ecuación diferencial lineal
dE
1
E.
dt
RC
Resuelva la ED sujeta a E E0.
Tarea para el laboratorio de computación
54. a) Exprese la solución del problema con valores inicia1 2, en términos de
les y 2xy 1, y(0)
erfc(x).
2.4
l
61
b) Utilice las tablas de un SAC para determinar el valor
de y 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHODFXUYD
solución para el PVI en ( , ).
dx
1x
dt
dy
1x 2 y,
dt
donde 1 y 2 son constantes. Analice cómo resolver este
sistema sujeto a x(0) x0, y(0) y0. Desarrolle sus ideas.
ECUACIONES EXACTAS
55. a) La función seno integral HVWi GH¿QLGD SRU
x
GRQGHHOLQWHJUDQGRHVWiGH¿Si(x)
0 (sent>t) dt
nido igual a 1 en t 0. Exprese la solución y(x) del
problema con valores iniciales x3y 2x2y 10 sen
x, y(1) 0 en términos de Si(x).
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHODFXUYDVROXción para el PVI para x 0.
c) Use un SAC para encontrar el valor del máximo absoluto de la solución y(x) para x 0.
56. a) La integral seno de Fresnel HVWi GH¿QLGD SRU
x
2
S(x)
. Exprese la solución y(x) del
0 sen(pt >2) dt.
problema con valores iniciales y – (sen x2)y 0,
y(0) 5, en términos de S(x).
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHODFXUYDVROXción para el PVI en ( , ).
c) Se sabe que S(x) → 12 conforme x → y S(x) → 12
conforme x → . ¿A dónde tiende la solución y(x)
cuando x → ? ¿Y cuando x → ?
d) Use un SAC para encontrar los valores del máximo
absoluto y del mínimo absoluto de la solución y(x).
ECUACIONES EXACTAS
REPASO DE MATERIAL
l Cálculo de varias variables
l Derivación parcial e integración parcial
l Diferencial de una función de dos variables
INTRODUCCIÓN
Aunque la sencilla ecuación diferencial de primer orden
y dx x dy 0
es separable, podemos resolver la ecuación en una forma alterna al reconocer que la expresión del
lado izquierdo de la ecuación es la diferencial de la función f (x, y) xy, es decir
d(xy) y dx [G\
En esta sección analizamos ecuaciones de primer orden en la forma diferencial M(x, y) dx N(x, y) dy 0.
Aplicando una prueba simple a M y a N, podemos determinar si M(x, y) dx N(x, y) dy es una diferencial de una función f (x, y). Si la respuesta es sí, construimos f integrando parcialmente.
DIFERENCIAL DE UNA FUNCIÓN DE DOS VARIABLES Si z f (x, y) es una
función de dos variables con primeras derivadas parciales continuas en una región R
del plano xy, entonces su diferencial es
dz
f
f
dx dy.
x
y
(1)
En el caso especial cuando f (x, y) c, donde c es una constante, entonces la ecuación
(1) implica que
f
f
(2)
dx dy 0.
x
y
62
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
En otras palabras, dada una familia de curvas f (x, y) c, podemos generar una ecuación diferencial de primer orden si calculamos la diferencial de ambos lados de la
igualdad. Por ejemplo, si x2 5xy y3 c, entonces la ecuación (2) da la ED de
primer orden
(2x 5y) dx (5x 3y 2 ) dy 0.
(3)
UNA DEFINICIÓN Por supuesto que no todas las ED de primer orden escritas en
la forma M(x, y) dx N(x, y) dy 0 corresponden a una diferencial de f (x, y) c. Por
lo tanto, para nuestros objetivos es muy importante regresar al problema anterior; en particular, si nos dan una ED de primer orden tal como la ecuación (3), ¿hay alguna forma
de reconocer que la expresión diferencial (2x 5y) dx (5x 3y 2) dy es la diferencial d(x 2 5xy y 3)? Si la hay, entonces una solución implícita de la ecuación (3) es
x 2 5xy y 3 F3RGHPRVFRQWHVWDUHVWDSUHJXQWDGHVSXpVGHODVLJXLHQWHGH¿QLFLyQ
DEFINICIÓN 2.4.1
Ecuación exacta
Una expresión diferencial M(x, y) dx N(x, y) dy es una diferencial exacta en
una región R del plano xy si ésta corresponde a la diferencial de alguna función
f (x, y GH¿QLGDHQR. Una ecuación diferencial de primer orden de la forma
M(x, y) dx N(x, y) dy 0
se conoce como una ecuación exacta si la expresión del lado izquierdo es una
diferencial exacta.
Por ejemplo x 2y 3 dx x 3y 2 dy 0 es una ecuación exacta, ya que su lado izquierdo
es una diferencial exacta:
d 冢13 x3 y3冣 x2 y3 dx x3y2 dy.
2EVHUYHTXHVLKDFHPRVODVLGHQWL¿FDFLRQHVM(x, y) x 2y 3 y N(x, y) x 3y 2, entonces
M兾y 3x 2y 2 N兾[(OWHRUHPDTXHVHSUHVHQWDDFRQWLQXDFLyQPXHVWUD
que la igualdad de las derivadas parciales M兾y y N兾x no es una coincidencia.
TEOREMA 2.4.1
Criterio para una diferencial exacta
Si M(x, y) y N(x, y) son continuas y tienen primeras derivadas parciales continuas en una región rectangular RGH¿QLGDSRUa x b, c y d, entonces
XQDFRQGLFLyQQHFHVDULD\VX¿FLHQWHSDUDTXHM(x, y) dx N(x, y) dy sea una
diferencial exacta es
M N
.
y
x
PRUEBA DE LA NECESIDAD Por simplicidad suponemos que M(x, y) y N(x, y) tienen primeras derivadas parciales continuas para todo (x, y). Ahora, si la expresión
M(x, y) dx N(x, y) dy es exacta, existe alguna función f tal que para toda x en R,
M(x, y) dx N(x, y) dy
Por tanto
y
M(x, y)
冢 冣
f
,
x
f
f
dx dy.
x
y
N(x, y)
f
,
y
冢 冣
M
f
2 f
f
N
.
y
y x
y x x y
x
La igualdad de las parciales mixtas es una consecuencia de la continuidad de las primeras derivadas parciales de M(x, y) y N(x, y).
2.4
ECUACIONES EXACTAS
l
63
/DSDUWHGHVX¿FLHQFLDGHOWHRUHPDFRQVLVWHHQPRVWUDUTXHH[LVWHXQDIXQFLyQf
para la que f兾x M(x, y) y f兾y N(x, y VLHPSUHTXHODHFXDFLyQ VHDYiOLGD
La construcción de la función f en realidad muestra un procedimiento básico para resolver ecuaciones exactas.
MÉTODO DE SOLUCIÓN Dada una ecuación en la forma diferencial M(x, y) dx
N(x, y) dy GHWHUPLQHVLODLJXDOGDGGHODHFXDFLyQ HVYiOLGD6LHVDVtHQWRQFHV
existe una función f para la que
f
M(x, y).
x
Podemos determinar f integrando M(x, y) respecto a x mientras y se conserva constante:
f (x, y)
冕
(5)
M(x, y) dx g( y),
donde la función arbitraria g(y) es la “constante” de integración. Ahora derivando a
(5) con respecto a y y suponiendo que f兾y N(x, y):
f
y y
Se obtiene
冕
M(x, y) dx g( y) N(x, y).
g( y) N(x, y)
y
冕
(6)
M(x, y) dx.
Por último, se integra la ecuación (6) respecto a y y se sustituye el resultado en la ecuación (5). La solución implícita de la ecuación es f (x, y) c.
Hacen falta algunas observaciones. Primero, es importante darse cuenta de que la
expresión N(x, y) (兾y) 兰 M(x, y) dx en (6) es independiente de x, ya que
冤
N(x, y)
x
y
冕
M(x, y) dx
冥 Nx y 冢x 冕 M(x, y) dx冣 Nx My 0.
En segundo lugar, pudimos iniciar bien el procedimiento anterior con la suposición de
que f兾y N(x, y). Después, integrando N respecto a y y derivando este resultado, encontraríamos las ecuaciones que, respectivamente, son análogas a las ecuaciones (5) y (6),
冕
冕
N(x, y) dy.
x
En cualquier caso no se debe memorizar ninguna de estas fórmulas.
f (x, y)
N(x, y) dy h(x)
y
h(x) M(x, y)
EJEMPLO 1 Resolviendo una ED exacta
Resuelva 2xy dx (x 2 1) dy 0.
SOLUCIÓN
Con M(x, y) 2xy y N(x, y) x 2 1 tenemos que
N
M
2x
.
y
x
$VtODHFXDFLyQHVH[DFWD\SRUHOWHRUHPDH[LVWHXQDIXQFLyQf (x, y) tal que
f
2xy
x
y
f
x2 1.
y
A partir de estas ecuaciones obtenemos, después de integrar:
f (x, y) x 2y g(y).
Tomando la derivada parcial de la última expresión con respecto a y y haciendo el
resultado igual a N(x, y) se obtiene
f
x2 g(y) x2 1.
y
; N(x, y)
64
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Sigue que g(y) 1 y g(y) \ Por lo tanto f (x, y) x 2y y, así la solución de la
ecuación en la forma implícita es x 2y y c La forma explícita de la solución se puede
ver fácilmente como y c兾(1 x 2)\HVWiGH¿QLGDHQFXDOTXLHULQWHUYDORTXHQRFRQtenga ni a x 1 ni a x 1.
NOTA La solución de la ED en el ejemplo 1 no es f (x, y) x 2y \ Más bien es
f (x, y) c; si se usa una constante en la integración de g (y), podemos escribir la
solución como f (x, y) 0. Observe que la ecuación también se podría haber resuelto
por separación de variables.
EJEMPLO 2 Solución de una ED exacta
Resuelva (e 2y y cos xy) dx (2xe 2y x cos xy 2y) dy 0.
SOLUCIÓN
La ecuación es exacta ya que
N
M
2e 2y xy sen xy cos xy .
y
x
Por tanto existe una función f (x, y) para la cual
M(x, y)
f
x
N(x, y)
y
f
.
y
Ahora, para variar, comenzaremos con la suposición de que f 兾y N(x, y); es decir
f
2xe2y x cos xy 2y
y
f (x, y) 2x
冕
e2y dy x
冕
cos xy dy 2
冕
y dy h(x).
Recuerde que la razón por la que x sale del símbolo 兰 es que en la integración respecto
a y se considera que x es una constante ordinaria. Entonces se tiene que
f (x, y) xe 2y sen xy y 2 h(x)
f
e2y y cos xy h(x) e 2y y cos xy,
x
y así h (x) 0 o h(x) c. Por tanto una familia de soluciones es
xe 2y sen xy y 2 c 0.
EJEMPLO 3 Problema con valores iniciales
Resuelva
dy xy2 cos x sen x
, y(0) 2.
dx
y(1 x2)
Al escribir la ecuación diferencial en la forma
(cos x sen x xy 2) dx y(1 x 2) dy 0,
reconocemos que la ecuación es exacta porque
N
M
2xy .
y
x
SOLUCIÓN
Ahora
f
y(1 x2)
y
f (x, y)
y2
(1 x 2 ) h(x)
2
f
xy2 h(x) cos x sen x xy 2.
x
; M(x, y)
2.4
ECUACIONES EXACTAS
l
65
La última ecuación implica que h (x) cos x sen x. Integrando se obtiene
h(x)
y
(cos x)( sen x dx)
1
cos 2 x.
2
1
y2
(1 x2)
cos2 x c1 o y2 (1 x2) cos2 x c,
2
2
donde se sustituye 2c1 por c. La condición inicial y 2 cuando x 0 exige que
cos 2 (0) c, y por tanto c 3. Una solución implícita del problema es entonces y 2(1 x 2) cos 2 x 3.
(QOD¿JXUDODFXUYDVROXFLyQGHO39,HVODFXUYDGLEXMDGDHQD]XORVFXUR
IRUPDSDUWHGHXQDLQWHUHVDQWHIDPLOLDGHFXUYDV/DVJUi¿FDVGHORVPLHPEURVGHODIDPLOLDXQLSDUDPpWULFDGHVROXFLRQHVGDGDVHQODHFXDFLyQ VHSXHGHQREWHQHUGHGLIHUHQtes maneras, dos de las cuales son utilizando un paquete de computación para trazar grá¿FDVGHFXUYDVGHQLYHO FRPRVHDQDOL]yHQODVHFFLyQ \HPSOHDQGRXQSURJUDPDGH
JUD¿FDFLyQSDUDWUD]DUFXLGDGRVDPHQWHODJUi¿FDGHODVIXQFLRQHVH[SOtFLWDVREWHQLGDV
para diferentes valores de c resolviendo y 2 (c cos 2 x)兾(1 x 2) para \
Por tanto
x
FIGURA 2.4.1 Curvas solución de la
ED del ejemplo 3.
FACTORES INTEGRANTES Recuerde de la sección 2.3 que el lado izquierdo de la
ecuación lineal y P(x)y f (x) se puede transformar en una derivada cuando multiplicamos la ecuación por el factor integrante. Esta misma idea básica algunas veces
funciona bien para una ecuación diferencial no exacta M(x, y) dx N(x, y) dy 0.
Es decir, algunas veces es posible encontrar un factor integrante (x, y) así que, después de multiplicar, el lado izquierdo de
(x, y)M(x, y) dx (x, y)N(x, y) dy
es una diferencial exacta. En un intento por encontrar a , regresamos a la ecuación
GHOFULWHULRGHH[DFWLWXG/DHFXDFLyQ HVH[DFWDVL\VyORVL M)y ( N)x,
donde los subíndices denotan derivadas parciales. Por la regla del producto de la derivación, la última ecuación es la misma que My y M Nx x N o
x N y M (My Nx)
Aunque M, N, My y Nx son funciones conocidas de x y yODGL¿FXOWDGDTXtDOGHWHUPLQDU
la incógnita (x, y) GHODHFXDFLyQ HVTXHGHEHPRVUHVROYHUXQDHFXDFLyQGLIHUHQFLDO
parcial. Como no estamos preparados para hacerlo, haremos una hipótesis para simpli¿FDU6XSRQJDTXH es una función de una variable; por ejemplo, depende sólo de x.
En este caso, x d 兾dx y y DVtODHFXDFLyQ VHSXHGHHVFULELUFRPR
d My Nx
.
(10)
dx
N
Estamos aún en un callejón sin salida si el cociente (My Nx )兾N depende tanto de x
como de y6LQHPEDUJRVLGHVSXpVGHTXHVHKDFHQWRGDVODVVLPSOL¿FDFLRQHVDOJHbraicas resulta que el cociente (My Nx )兾N depende sólo de la variable x, entonces la
ecuación (10) es separable así como lineal. Entonces, de la sección 2.2 o de la sección
2.3 tenemos que (x) e 兰((MyNx)N)dx.'HPDQHUDVLPLODUGHODHFXDFLyQ WHQHPRVTXH
si depende sólo de la variable y, entonces
d Nx My
(11)
.
dy
M
En este caso, si (N x My)兾M es una función sólo de y, podemos despejar de la
ecuación (11).
Resumiendo estos resultados para la ecuación diferencial.
M(x, y) dx N(x, y) dy 0.
(12)
• Si (My Nx)兾N es sólo una función de x, entonces un factor integrante para
la ecuación (12) es
(x) e
冕
MyNx
dx
N
.
(13)
66
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
• Si (Nx My)兾M es una función sólo de y, entonces un factor integrante de (12) es
(y) e
冕
NxMy
dy
M
.
EJEMPLO 4 Una ED no exacta convertida en exacta
La ecuación diferencial no lineal de primer orden
xy dx (2x 2 3y 2 20) dy 0
HVQRH[DFWD,GHQWL¿FDQGRM xy, N 2x 2 3y 2 20, encontramos que las derivadas parciales My x y Nx [ El primer cociente de la ecuación (13) no nos conduce
a nada, ya que
x 4x
3x
My Nx
2
N
2x 3y 2 20 2x 2 3y 2 20
depende de x y de y6LQHPEDUJRODHFXDFLyQ SURGXFHXQFRFLHQWHTXHGHSHQGH
sólo de y:
Nx My 4x x 3x 3
.
M
xy
xy y
3
Entonces el factor integrante es e 兰3dy兾y e 3lny e lny y 3. Después de multiplicar la
ED dada por (y) y3, la ecuación resultante es
xy dx (2x 2y 3 3y 5 20y 3) dy 0.
Usted debería comprobar que la última ecuación es ahora exacta así como mostrar,
usando el método que se presentó en esta sección, que una familia de soluciones es
1 2 4
2x y
12 y 6 5y 4 c.
COMENTARIOS
i) Cuando pruebe la exactitud de una ecuación se debe asegurar que tiene exactamente la forma M(x, y) dx N(x, y) dy 0. A veces una ecuación diferencial se escribe como G(x, y) dx H(x, y) dy. En este caso, primero reescriba
como G(x, y) dx H(x, y) dy \GHVSXpVLGHQWL¿TXHM(x, y) G(x, y) y
N(x, y) H(x, y) DQWHVGHXWLOL]DUODHFXDFLyQ
ii) En algunos libros de ecuaciones diferenciales el estudio de las ecuaciones
exactas precede al de las ED lineales. Entonces el método que acabamos de
describir para encontrar los factores integrantes se puede utilizar para deducir
un factor integrante para y P(x) y f (x). Al escribir la última ecuación en
la forma diferencial (P(x)y f (x)) dx dy 0, vemos que
M y Nx
P(x).
N
A partir de la ecuación (13) hemos obtenido el conocido factor integrante e 兰P(x) dx,
utilizado en la sección 2.3.
2.4
EJERCICIOS 2.4
ECUACIONES EXACTAS
l
67
Las respuestas a los problemas seleccionadosFRQQ~PHURLPSDUFRPLHQ]DQHQODSiJLQD5(6
En los problemas 1 a 20 determine si la ecuación diferencial
exacta dada es exacta. Si es exacta, resuélvala.
1. (2x 1) dx (3y dy 0
26.
冢1 1 y cos x 2xy冣 dxdy y(y sen x), y(0) 1
2
2. (2x y) dx (x 6y) dy 0
(QORVSUREOHPDV\GHWHUPLQHHOYDORUGHk para el que
la ecuación diferencial es exacta.
3. (5x y) dx x y 3) dy 0
27. ( y 3 kxy 2x) dx (3xy 2 20x 2y 3) dy 0
4. (sen y y sen x) dx (cos x x cos y y) dy 0
28. (6xy 3 cos y) dx (2kx 2y 2 x sen y) dy 0
5. (2xy 2 3) dx (2x 2y dy 0
(Q ORV SUREOHPDV \ FRPSUXHEH TXH OD HFXDFLyQ GLIHrencial dada es no exacta. Multiplique la ecuación diferencial
dada por el factor integrante indicado (x, y) y compruebe que
la nueva ecuación es exacta. Resuelva.
6.
冢2y 1x cos 3x冣 dxdy xy 4x 3y sen 3x 0
3
2
7. (x 2 y 2) dx (x 2 2xy) dy 0
8.
冢
29. (xy sen x 2y cos x) dx 2x cos x dy 0;
(x, y) xy
冣
y
1 ln x
dx (1 ln x) dy
x
9. (x y 3 y 2 sen x) dx (3xy 2 2y cos x) dy
10. (x 3 y 3) dx 3xy 2 dy 0
冢
En los problemas 31 a 36 resuelva la ecuación diferencial
GDGD GHWHUPLQDQGR FRPR HQ HO HMHPSOR XQ IDFWRU LQWHgrante adecuado.
冣
1
11. ( y ln y e xy) dx
x ln y dy 0
y
12. (3x 2y e y ) dx (x 3 xe y 2y) dy 0
13. x
31. (2y 2 3x) dx 2xy dy 0
dy
2xe x y 6x 2
dx
14.
冢
15.
冢x y
32. y(x y 1) dx (x 2y) dy 0
33. 6xy dx y x 2) dy 0
2
34. cos x dx 1
sen x dy 0
y
35. (10 6y e3x ) dx 2 dy 0
冣
冢
3
dy
3
1 x
y 1
y
dx
x
2 3
冣
1
dx
x 3y 2 0
1 9x 2 dy
(QORVSUREOHPDV\UHVXHOYDHOSUREOHPDFRQYDORUHV
iniciales determinando, como en el ejemplo 5, un factor integrante adecuado.
17. (tan x sen x sen y) dx cos x cos y dy 0
2
18. (2y sen x cos x y 2y 2e xy ) dx
2
(x sen2 x 4xye xy ) dy
19. t 3y 15t 2 y) dt (t 3y 2 t) dy 0
冢
冣
冢
冣
1
1
y
t
2 2
dt ye y 2
dy 0
2
t
t
t y
t y2
En los problemas 21 a 26 resuelva el problema con valores
iniciales.
21. (x y)2 dx (2xy x 2 1) dy 0,
22. (e x y) dx (2 x ye y) dy 0,
y(1) 1
y(0) 1
23. y 2t 5) dt (6y t 1) dy 0, y(1) 2
冢3y y t 冣 dydt 2yt
2
24.
2
5
4
0, y(1) 1
25. ( y 2 cos x 3x 2y 2x) dx
(2y sen x x 3 ln y) dy 0,
冣
36. (y 2 xy 3) dx (5y 2 xy y 3 sen y) dy 0
16. (5y 2x)y 2y 0
20.
30. (x 2 2xy y 2) dx ( y 2 2xy x 2) dy 0;
(x, y) (x y)2
y(0) e
37. x dx (x 2y y) dy 0,
y( 0
38. (x y 5) dx ( y xy) dy,
2
2
y(0) 1
39. a) Muestre que una familia de soluciones uniparamétrica
de la ecuación
xy 3x 2) dx (2y 2x 2) dy 0
es x 3 2x 2y y 2 F
b) Demuestre que las condiciones iniciales y(0) 2 y
y(1) 1 determinan la misma solución implícita.
c) Encuentre las soluciones explícitas y1(x) y y2(x) de la
ecuación diferencial del inciso a) tal que y1(0) 2
y y2(1) 8WLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUD
WUD]DUODJUi¿FDGHy1(x) y y2(x).
Problemas para analizar
40. Considere el concepto de factor integrante utilizado en
ORVSUREOHPDVD¢6RQODVGRVHFXDFLRQHVMdx N
68
CAPÍTULO 2
l
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
dy 0 y M dx N dy 0 necesariamente equivalentes en el sentido de que la solución de una es también una
solución de la otra? Analice.
41. Lea nuevamente el ejemplo 3 y después analice por qué poGHPRVFRQFOXLUTXHHOLQWHUYDORGHGH¿QLFLyQGHODVROXFLyQ
H[SOtFLWDGHO39, FXUYDD]XOGHOD¿JXUD HV 1, 1).
42. Analice cómo se pueden encontrar las funciones M(x, y) y
N(x, y) de modo que cada ecuación diferencial sea exacta.
Desarrolle sus ideas.
冢
a) M(x, y) dx xe x y 2xy
b)
冢x
1/2 1/2
y
冣
1
dy 0
x
冣
x
dx N(x, y) dy 0
x y
2
43. Algunas veces las ecuaciones diferenciales se resuelven con una idea brillante. Este es un pequeño ejercicio de inteligencia: Aunque la ecuación
(x 1x2 y2) dx y dy 0 no es exacta, demuestre
cómo el reacomodo (x dx y dy) 兾1x2 y2 dx y la
observación 21 d(x 2 y 2) x dx y dy puede conducir a
una solución.
44. Verdadero o falso: toda ecuación de primer orden separable dy兾dx g(x)h( y) es exacta.
Modelos matemáticos
45. Cadena cayendo 8QDSDUWHGHXQDFDGHQDGHSLHVGH
longitud está enrollada sin apretar alrededor de una clavija
en el borde de una plataforma horizontal, y la parte restante de la cadena cuelga sobre el borde de la plataforma.
9HDOD¿JXUD6XSRQJDTXHODORQJLWXGGHODFDGHQD
que cuelga es de 3 pies, que la cadena pesa 2 lb/pie y que
la dirección positiva es hacia abajo. Comenzando en t
0 segundos, el peso de la cadena que cuelga causa que
la cadena sobre la plataforma se desenrolle suavemente y
caiga al piso. Si x(t) denota la longitud de la cadena que
cuelga de la mesa al tiempo t 0, entonces v dx兾dt es
su velocidad. Cuando se desprecian todas las fuerzas de
2.5
resistencia se puede demostrar que un modelo matemático
que relaciona a v con x está dado por
dv
xv
v2 32x.
dx
a) Rescriba este modelo en forma diferencial. Proceda
como en los problemas 31 a 36 y resuelva la ED para
v en términos de x determinando un factor integrante
adecuado. Determine una solución explícita v(x).
b) Determine la velocidad con que la cadena deja la plataforma.
Tarea para el laboratorio de computación
/tQHDVGHÀXMR
a) La solución de la ecuación diferencial
冤
冥
y2 x2
2xy
dx
1
dy 0
(x2 y2 ) 2
(x2 y2) 2
es una familia de curvas que se pueden interpretar
FRPROtQHDVGHÀXMRGHXQÀXLGRTXHGLVFXUUHDOUHGHdor de un objeto circular cuya frontera está descrita
por la ecuación x2 y2 1. Resuelva esta ED y observe que la solución f (x, y) c para c 0.
b) 8VHXQ6$&SDUDGLEXMDUODVOtQHDVGHÀXMRSDUDc 0,
0.2, 0.6 y GHWUHVPDQHUDVGLIHUHQWHV
Primero, utilice el contourplot de un SAC. Segundo,
despeje x en términos de la variable y. Dibuje las dos
funciones resultantes de y para los valores dados de
c\GHVSXpVFRPELQHODVJUi¿FDV7HUFHURXWLOLFHHO
SAC para despejar y de una ecuación cúbica en términos de x.
clavija
borde de la
plataforma
x(t)
FIGURA 2.4.2 &DGHQDGHVHQUROODGDGHOSUREOHPD
SOLUCIONES POR SUSTITUCIÓN
REPASO DE MATERIAL
l Técnicas de integración.
l Separación de variables.
l Solución de ED lineales.
INTRODUCCIÓN Normalmente resolvemos una ecuación diferencial reconociéndola dentro de
cierta clase de ecuación (digamos, separables, lineales o exactas) y después aplicamos un procedimiento que consiste en SDVRVPDWHPiWLFRVHVSHFt¿FRVSDUDHOWLSRGHHFXDFLyQ que nos conducen a
la solución de la ecuación. Pero no es poco común que nos sorprenda el hecho de que se tenga una
ecuación diferencial que no pertenece a alguna de las clases de ecuaciones que sabemos cómo resolver. Los procedimientos que se han analizado en esta sección pueden ser útiles en este caso.
2.5
SOLUCIONES POR SUSTITUCIÓN
l
69
SUSTITUCIONES Con frecuencia, el primer paso para resolver una ecuación diferencial es transformarla en otra ecuación diferencial mediante una sustitución. Por
ejemplo, suponga que se quiere transformar la ecuación diferencial de primer orden
dy兾dx f (x, y) sustituyendo y g(x, u), donde u se considera una función de la variable x. Si g tiene primeras derivadas parciales, entonces, usando la regla de la cadena
dy
g dx
g du
du
dy
gx (x, u) gu(x, u) .
obtenemos
dx
x dx
u dx
dx
dx
Al sustituir dy兾dx por la derivada anterior y sustituyendo y en f(x, y) por g (x, u), obtedu
f (x, g (x, u)), la
nemos la ED dy兾dx f (x, y) que se convierten en g x (x, u) gu(x, u)
dx
du
du
cual, resuelta para
, tiene la forma
F(x, u). Si podemos determinar una soludx
dx
ción u (x) de esta última ecuación, entonces una solución de la ecuación diferencial original es y(x) g(x, (x)).
En el siguiente análisis examinaremos tres clases diferentes de ecuaciones diferenciales de primer orden que se pueden resolver mediante una sustitución.
ECUACIONES HOMÓGENEAS Si una función f tiene la propiedad f (tx, ty)
t f (x, y) para algún número real , entonces se dice que es una función homogénea
de grado . Por ejemplo f (x, y) x 3 y 3 es una función homogénea de grado 3, ya que
f (tx, ty) (tx) 3 (ty) 3 t 3(x 3 y 3) t 3f (x, y),
mientras que f (x, y) x 3 y 3 1 es no homogénea. Una ED de primer orden en
forma diferencial
M(x, y) dx N(x, y) dy 0
(1)
se dice que es homogénea* VL DPEDV IXQFLRQHV FRH¿FLHQWHV M y N son ecuaciones
homogéneas del mismo grado. En otras palabras, la ecuación (1) es homogénea si
M(tx, ty) tM(x, y)
y
N(tx, ty) = tN(x, y).
Además, si M y N son funciones homogéneas de grado , podemos escribir
M(x, y) xM(1, u)
y
N(x, y) xN(1, u)
donde u yx,
(2)
M(x, y) yM(v, 1)
y
N(x, y) yN(v, 1)
donde v x\
(3)
y
Vea el problema 31 de los ejercicios 2.5. Las propiedades (2) y (3) sugieren las sustituciones que se pueden usar para resolver una ecuación diferencial homogénea. En
concreto, cualquiera de las sustituciones y ux o x vy, donde u y v son las nuevas
variables dependientes, reducirá una ecuación homogénea a una ecuación diferencial
de primer orden separable. Para mostrar esto, observe que como consecuencia de (2)
una ecuación homogénea M(x, y) dx N(x, y) dy 0 se puede reescribir como
xM(1, u) dx xN(1, u) dy 0
o bien
M(1, u) dx N(1, u) dy 0,
donde u y兾x o y ux. Sustituyendo la diferencial dy u dx x du en la última
ecuación y agrupando términos, obtenemos una ED separable en las variables u y x:
M(1, u) dx N(1, u)[u dx x du] 0
[M(1, u) uN(1, u)] dx xN(1, u) du 0
o
N(1, u) du
dx
0.
x
M(1, u) uN(1, u)
Aquí le damos el mismo consejo que en las secciones anteriores: No memorice nada
de esto (en particular la última fórmula); más bien,VLJDHOSURFHGLPLHQWRFDGDYH]
Aquí la palabra homogéneaQRVLJQL¿FDORPLVPRTXHHQORVComentariosDO¿QDOGHODVHFFLyQ
Recuerde que una ecuación lineal de primer orden a1(x)y
a 0 (x)y g(x) es homogénea cuando g(x) 0.
*
70
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Pruebe a partir de la ecuación (3) que las sustituciones x vy y dx v dy y dv también conducen a una ecuación separable siguiendo un procedimiento similar.
EJEMPLO 1
Solución de una ED homogénea
Resuelva (x 2 y 2) dx (x 2 xy) dy 0.
SOLUCIÓN Examinando a M(x, y) x 2 y 2 y a N(x, y) x 2 xy se muestra que estas
IXQFLRQHVFRH¿FLHQWHVVRQGHJUDGR6LKDFHPRVy ux, entonces dy u dx x du,
de modo que después de sustituir, la ecuación dada se convierte en
(x2
u2x2) dx
(x2
2
x (1
ux2)[u dx
0
u) du
0
u
du
u
dx
x
0
du
dx
x
0.
x (1
u) dx
1
1
1
x du]
3
2
1
u
división larga
Después de integrar la última ecuación se obtiene
u 2 ln兩 1 u 兩 ln兩 x 兩 ln兩 c 兩
兩
兩
y
y
2 ln 1 ln兩 x 兩 ln兩c 兩.
x
x
; sustituyendo de nuevo u y兾x
Utilizando las propiedades de los logaritmos, podemos escribir la solución anterior como
ln
y) 2
(x
y
o (x
x
cx
y) 2
cxey/x.
Aunque cualquiera de las soluciones indicadas se pueden usar en toda ecuación diferencial homogénea, en la práctica se intenta con x vy cuando la función M(x, y) sea
más fácil que N(x, y). También podría ocurrir que después de utilizar una sustitución,
podemos encontrar integrales que son difíciles o imposibles de evaluar en forma cerrada; y el cambiar las sustituciones puede facilitar la solución del problema.
ECUACIÓN DE BERNOULLI
La ecuación diferencial
dy
P(x)y f (x)y n,
dx
donde n es cualquier número real, se denomina ecuación de Bernoulli. Observe que
para n 0 y n ODHFXDFLyQ HVOLQHDO3DUDn ⬆ 0 y n ⬆ 1 la sustitución u y 1n
UHGXFHFXDOTXLHUHFXDFLyQGHODIRUPD DXQDHFXDFLyQOLQHDO
EJEMPLO 2
Resuelva x
Solución de una ED de Bernoulli
dy
y x 2 y 2.
dx
SOLUCIÓN Primero reescribimos la ecuación como
dy 1
y xy 2
dx x
al dividir entre x. Con n 2 tenemos u y1 o y u1. Entonces sustituimos
du
dy dy du
u2
dx du dx
dx
; Regla de la cadena
2.5
SOLUCIONES POR SUSTITUCIÓN
l
71
HQODHFXDFLyQGDGD\VLPSOL¿FDQGR(OUHVXOWDGRHV
du 1
u x.
dx x
El factor integrante para esta ecuación lineal en, digamos, (0, ) es
1
e兰d x/x eln x eln x x1.
d 1
[x u] 1
dx
Al integrar
se obtiene x1u x c o u x 2 F[ Puesto que u y1, tenemos que y 1兾u,
así, una solución de la ecuación dada es y 1兾(x 2 cx)
Observe que no hemos obtenido una solución general de la ecuación diferencial no
lineal original del ejemplo 2 ya que y 0 es una solución singular de la ecuación.
REDUCCIÓN A SEPARACIÓN DE VARIABLES Una ecuación diferencial de la
forma
dy
(5)
f (Ax By C)
dx
siempre se puede reducir a una ecuación con variables separables por medio de la
sustitución u Ax By C, B ⬆ 0. El ejemplo 3 muestra la técnica.
y
EJEMPLO 3
x
Resuelva
Un problema con valores iniciales
dy
(2x y) 2 7,
dx
y(0) 0.
SOLUCIÓN Si hacemos u 2x y, entonces du兾dx 2 dy兾dx, por lo que la
ecuación diferencial se expresa como
du
2 u2 7
dx
FIGURA 2.5.1 Soluciones de la ED
en el ejemplo 3.
du
u 2 9.
dx
o
La última ecuación es separable. Utilizando fracciones parciales
du
dx
(u 3)(u 3)
冤
冥
1
1
1
du dx
6 u3 u3
o
y después de integrar se obtiene
1 u
ln
6 u
3
3
x
c1 o
3
3
u
u
e6x
6c1
6c
ce6x. sustitu yendo e por c
1
Despejando u de la última ecuación y resustituyendo a u en términos de x y y, se obtiene la solución
u
3(1 ce6x )
1 ce6x
o
y 2x
3(1 ce6x)
.
1 ce6x
(6)
Por último, aplicando la condición inicial y(0) 0 a la última ecuación en (6) se obtiene c /D¿JXUDREWHQLGDFRQODD\XGDGHXQSURJUDPDGHJUD¿FDFLyQ
3(1 e6x)
PXHVWUDHQD]XORVFXURODJUi¿FDGHODVROXFLyQSDUWLFXODU y 2x
junto
1 e6x
FRQODVJUi¿FDVGHDOJXQRVRWURVPLHPEURVGHODIDPLOLDGHVROXFLRQHV
72
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJERCICIOS 2.5
Las respuestas a los problemas seleccionados FRQQ~PHURLPSDUFRPLHQ]DQHQODSiJLQD5(6
&DGDXQDGHODV('GHORVSUREOHPDVHVKRPRJpQHD
En los problemas 1 a 10 resuelva la ecuación diferencial dada
usando las sustituciones adecuadas.
Cada una de las ED de los problemas 23 a 30 es de la forma
GDGDHQODHFXDFLyQ
1. (x y) dx x dy 0
2. (x y) dx x dy 0
(Q ORV SUREOHPDV D UHVXHOYD OD HFXDFLyQ GLIHUHQFLDO
dada usando una sustitución adecuada.
3. x dx ( y 2x) dy 0
4. y dx 2( x y) dy
23.
dy
(x y 1) 2
dx
24.
dy 1 x y
dx
xy
25.
dy
tan2 (x y)
dx
26.
dy
sen(x y)
dx
28.
dy
1 eyx5
dx
5. ( y 2 yx) dx x 2 dy 0
6. (y 2 yx) dx x 2 dy 0
7.
8.
dy y x
dx y x
27.
dy x 3y
dx 3x y
(QORVSUREOHPDV\UHVXHOYDHOSUREOHPDTXHVHSUHVHQWD
con valores iniciales.
dy
cos(x y), y(0) >4
29.
dx
9. y dx x 1xy dy 0
(
10. x
)
dy
y 1x2 y2,
dx
0
x
(QORVSUREOHPDVDUHVXHOYDHOSUREOHPDTXHVHSUHVHQWD
con valores iniciales.
2
11. xy
dy
y3 x3,
dx
2
2
12. (x 2y )
y(1) 2
y(1) 0
14. y dx x(ln x ln y 1) dy 0,
y(1) e
Cada una de las ED de los problemas 15 a 22 es una ecuación
GH%HUQRXOOL
En los problemas 15 a 20 resuelva cada ecuación diferencial
usando una sustitución adecuada.
dy
1
dy
15. x
16.
y 2
y ex y2
dx
y
dx
dy
y (xy 3 1)
dx
19. t2
dy
y2 ty
dt
18. x
dy
(1 x)y xy2
dx
20. 3(1 t2)
dy
2ty( y3 1)
dt
En los problemas 21 y 22 resuelva el problema que se presenta
con valores iniciales.
21. x2
dy
2xy 3y4,
dx
22. y1/2
y(1) 12
dy
y3/2 1, y(0) 4
dx
30.
dy
3x 2y
, y(1) 1
dx 3x 2y 2
Problemas para analizar
31. Explique por qué es posible expresar cualquier ecuación diferencial homogénea M(x, y) dx N(x, y) dy 0 en la forma
dx
xy, y(1) 1
dy
13. (x ye y兾x) dx xe y兾x dy 0,
17.
dy
2 1y 2x 3
dx
冢冣
dy
y
F
.
dx
x
Podría comenzar por demostrar que
M(x, y) xM(1, yx)
y
N(x, y) xN(1, yx).
32. Ponga la ecuación diferencial homogénea
(5x 2 2y 2) dx xy dy 0
en la forma dada en el problema 31.
33. a) Determine dos soluciones singulares de la ED en el
problema 10.
b) Si la condición inicial y(5) 0 es como se indicó para
el problema 10, entonces, ¿cuál es el intervalo más
ODUJRGHGH¿QLFLyQIHQHOFXDOHVWiGH¿QLGDODVROXFLyQ"8WLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DU
ODJUi¿FDGHODFXUYDVROXFLyQSDUDHO39,
34. En el ejemplo 3, la solución y(x) es ilimitada conforme
x → . Sin embargo, y(x) es asintótica a una curva conforme x → y a una curva diferente conforme x → .
¿Cuáles son las ecuaciones de estas curvas?
35. La ecuación diferencial dy兾dx P(x) Q(x)y R(x)y2
se conoce como la ecuación de Riccati.
a) Una ecuación de Riccati se puede resolver por dos
sustituciones consecutivas, siempre y cuando conozcamos una solución particular, y1, de la ecuación.
Muestre que la sustitución y y1 u reduce la ecua-
2.6
FLyQ GH 5LFFDWL D XQD HFXDFLyQ GH %HUQRXOOL FRQ
n 2. La ecuación de Bernoulli se puede entonces
reducir a una ecuación lineal sustituyendo w u1.
b) Determine una familia uniparamétrica de soluciones
de la ecuación diferencial
xv
36. Determine una sustitución adecuada para resolver
xy y ln(xy).
73
dv
v 2 32x.
dx
38. Crecimiento de la población En el estudio de la población dinámica uno de los más famosos modelos para un
crecimiento poblacional limitado es la ecuación logística
dP
P(a bP),
dt
Modelos matemáticos
37. Cadena cayendo (Q HO SUREOHPD GH ORV HMHUFLFLRV
YLPRVTXHXQPRGHORPDWHPiWLFRSDUDODYHORFLGDGv
de una cadena que se desliza por el borde de una plataforma horizontal es
2.6
l
En ese problema se le pidió que resolviera la ED convirtiéndola en una ecuación exacta usando un factor integrante. Esta vez resuelva la ED usando el hecho de que es
una ecuación de Bernoulli.
4
1
dy
2 y y2
dx
x
x
donde y1 2兾x es una solución conocida de la ecuación.
UN MÉTODO NUMÉRICO
donde a y b son constantes positivas. Aunque retomaremos
esta ecuación y la resolveremos utilizando un método alternativo en la sección 3.2, resuelva la ED por esta primera
vez usando el hecho de que es una ecuación de Bernoulli.
UN MÉTODO NUMÉRICO
INTRODUCCIÓN Una ecuación diferencial dy兾dx f (x, y) es una fuente de información.
Comenzaremos este capítulo observando que podríamos recolectar información cualitativa de una ED
de primer orden con respecto a sus soluciones aún antes de intentar resolver la ecuación. Entonces en
las secciones 2.2 a 2.5 examinamos a las ED de primer orden analíticamente, es decir, desarrollamos
algunos procedimientos para obtener soluciones explícitas e implícitas. Pero una ecuación diferencial
puede tener una solución aún cuando no podamos obtenerla analíticamente. Así que para redondear los
diferentes tipos de análisis de las ecuaciones diferenciales, concluimos este capítulo con un método con
el cual podemos “resolver” la ecuación diferencial numéricamenteHVWRVLJQL¿FDTXHOD('VHXWLOL]D
como el principio básico de un algoritmo para aproximarnos a la solución desconocida.
En esta sección vamos a desarrollar únicamente el más sencillo de los métodos numéricos, un
método que utiliza la idea de que se puede usar una recta tangente para aproximar los valores de una
IXQFLyQHQXQDSHTXHxDYHFLQGDGGHOSXQWRGHWDQJHQFLD(QHOFDStWXORVHSUHVHQWDXQWUDWDPLHQWR
más extenso de los métodos numéricos.
USANDO LA RECTA TANGENTE Suponemos que el problema con valores iniciales
yc f (x, y),
y(x0) y0
(1)
tiene una solución. Una manera de aproximarse a esta solución es emplear rectas tangentes. Por ejemplo, digamos que y(x) denota la solución incógnita para el problema
con valores iniciales y
0.11y 0.4x2, y(2) 4. La ecuación diferencial no lineal en este PVI no se puede resolver directamente por cualquiera de los métodos conVLGHUDGRVHQODVVHFFLRQHV\QRREVWDQWHD~QSRGHPRVHQFRQWUDUYDORUHV
numéricos aproximados de la incógnita y(x). En concreto, supongamos que deseamos
conocer el valor de y (O 39, WLHQH XQD VROXFLyQ \ FRPR VXJLHUH HO ÀXMR GHO
FDPSRGLUHFFLRQDOGHOD('HQOD¿JXUD D XQDFXUYDVROXFLyQTXHGHEHWHQHU
una forma similar a la curva que se muestra en azul.
(OFDPSRGLUHFFLRQDOGHOD¿JXUD D VHJHQHUyFRQHOHPHQWRVOLQHDOHVTXH
pasan por puntos de una cuadrícula de coordenadas enteras. Puesto que la curva soluFLyQSDVDSRUHOSXQWRLQLFLDO HOHOHPHQWROLQHDOHQHVWHSXQWRHVXQDUHFWDWDQJHQWH
2
1.8. Como se muestra en la
con una pendiente dada por f (2, 4) 0.114 0.4(2)
74
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
y
curva
solución
4
(2, 4)
2
pendiente
m = 1.8
x
_2
2
a) campo direccional para y 0.
b) elemento lineal
en (2, 4).
FIGURA 2.6.1 $PSOL¿FDFLyQGHXQDYHFLQGDGGHOSXQWR
¿JXUD D \HO³]RRPLQ´ DFHUFDPLHQWR GHOD¿JXUD E FXDQGRx está cerca
de 2, los puntos en la curva solución están cerca de los puntos de la recta tangente (el
HOHPHQWROLQHDO 8WLOL]DQGRHOSXQWR ODSHQGLHQWHf \ODIRUPDSXQWR
pendiente de una recta, encontramos que una ecuación de la recta tangente es y L(x),
donde L(x) x . Esta última ecuación se llama linealización de y(x) en x 2
que se puede utilizar para aproximar los valores dentro de una pequeña vecindad de x
2. Si y1 L(x1) denota la coordenada y en la recta tangente y y(x1) es la coordenada y de
la curva solución correspondiente a una coordenada x, x1 que está cerca de x 2, entonces y(x1) 艐 y1. Si elegimos x1 2.1, entonces y1 L(2.1)
entonces y(2.1) 艐
MÉTODO DE EULER Para generalizar el procedimiento que acabamos de ilustrar,
usamos la linealización de una solución incógnita y(x) de (1) en x x0:
L(x) y0 f (x0 , y0)(x x0).
(2)
/DJUi¿FDGHHVWDOLQHDOL]DFLyQHVXQDUHFWDWDQJHQWHDODJUi¿FDGHy y (x) en el punto
(x0, y0). Ahora hacemos que h sea un incremento positivo del eje x, como se muestra en
OD¿JXUD(QWRQFHVVXVWLWX\HQGRx por x1 x0 h en la ecuación (2), obtenemos
L(x1) y0 f (x0, y0)(x0 h x0)
y
curva solución
(x1, y(x1))
error
(x0, y0)
(x1, y1)
pendiente = f(x0, y0)
x0
y 1 y0 hf (x1, y1),
donde y1 L(x1). El punto (x1, y1) en la recta tangente es una aproximación del
punto (x1, y(x1)) sobre la curva solución. Por supuesto, la precisión de la aproximación L(x1) 艐 y(x1) o y1 艐 y(x1) depende fuertemente del tamaño del incremento h.
Normalmente debemos elegir este tamaño de paso para que sea “razonablemente pequeño”. Ahora repetimos el proceso usando una segunda “recta tangente” en (x1, y1).*
,GHQWL¿FDQGRHOQXHYRSXQWRLQLFLDOFRPR x1, y1) en lugar de (x0, y0) del análisis anterior, obtenemos una aproximación y2 艐 y(x 2) correspondiendo a dos pasos de longitud
h a partir de x0, es decir, x 2 x1 h x 0 2h, y
y(x2) y(x0 2h) y(x1 h) ⬇ y2 y1 hf (x1, y1).
h
L(x)
o
x1 = x 0 + h
x
FIGURA 2.6.2 Aproximación de y(x1)
usando una recta tangente.
Si continuamos de esta manera, vemos que y1, y2, y3VHSXHGHGH¿QLUUHFXUVLYDmente mediante la fórmula general
(3)
yn1 yn hf (xn, yn),
donde x n x 0 nh, n 0, 1, 2, . . . Este procedimiento de uso sucesivo de las “rectas
tangentes” se conoce como método de Euler.
*
Esta no es una recta tangente real, ya que (x1, y1) está sobre la primera tangente y no sobre la curva solución.
2.6
EJEMPLO 1
TABLA 2.1
h 0.1
xn
yn
UN MÉTODO NUMÉRICO
l
75
Método de Euler
Considere el problema con valores iniciales y 0.1 1y 0.4x2, y(2) 4 Utilice
el método de Euler para obtener una aproximación de y(2.5) usando primero h 0.1
y después h 0.05.
SOLUCIÓN &RQODLGHQWL¿FDFLyQ f (x, y) 0.11y 0.4x2 la ecuación (3) se con-
vierte en
(
)
yn1 yn h 0.11yn 0.4x2n .
Entonces para h 0.1, x0 2, y0 \n 0 encontramos
(
)
(
)
y1 y0 h 0.11y0 0.4x20 4 0.1 0.114 0.4(2) 2 4.18,
TABLA 2.2
que, como ya hemos visto, es una estimación del valor y(2.1). Sin embargo, si usamos el
paso de tamaño más pequeño h 0.05, le toma dos pasos alcanzar x 2.1. A partir de
h 0.05
xn
(
yn
)
y1 4 0.05 0.114 0.4(2)2 4.09
(
)
y2 4.09 0.05 0.114.09 0.4(2.05)2 4.18416187
tenemos y1 艐 y(2.05) y y 2 艐 y(2.1). El resto de los cálculos se realizó usando un paquete
computacional. En las tablas 2.1 y 2.2 se resumen los resultados, donde cada entrada se
ha redondeado a cuatro lugares decimales. Vemos en las tablas 2.1 y 2.2 que le toma
cinco pasos con h 0.1 y 10 pasos con h 0.05, respectivamente, para llegar a x 2.5.
Intuitivamente, esperaríamos que y10 FRUUHVSRQGLHQWHDh 0.05 sea la mejor
aproximación de y(2.5) que el valor y5 FRUUHVSRQGLHQWHDh 0.1.
En el ejemplo 2 aplicamos el método de Euler para una ecuación diferencial para la
que ya hemos encontrado una solución. Hacemos esto para comparar los valores de las
aproximaciones yn en cada caso con los valores verdaderos o reales de la solución y(xn)
del problema con valores iniciales.
EJEMPLO 2
Comparación de los valores aproximados y reales
Considere el problema con valores iniciales y 0.2xy, y(1) 1. Utilice el método de
Euler para obtener una aproximación de y (1.5) usando primero h 0.1 y después h 0.05.
SOLUCIÓN &RQODLGHQWL¿FDFLyQf (x, y) 0.2xy, la ecuación (3) se convierte en
yn1 yn h(0.2xnyn)
donde x 0 1 y y 0 1. 1. De nuevo con la ayuda de un paquete computacional obWHQJDORVYDORUHVGHODVWDEODV\
TABLA 2.4
xn
TABLA 2.3 h 0.1
xn
1.00
1.10
yn
Valor real
Error absoluto
% Error relativo
1.0000
1.0200
1.0000
1.0212
0.0000
0.0012
0.00
0.12
1.00
1.05
1.10
h 0.05
yn
Valor real
Error absoluto
1.0000
1.0100
1.0206
1.0000
1.0103
1.0212
0.0000
0.0003
0.0006
% Error relativo
0.00
0.03
0.06
76
CAPÍTULO 2
l
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
En el ejemplo 1 se calcularon los valores verdaderos o reales de la solución conocida
2
y e0.1(x í . (Compruebe.) El error absolutoVHGH¿QHFRPR
冷 valor real – aproximado 冷.
El error relativo y el error relativo porcentual son, respectivamente,
error absoluto
冷 valor real 冷
y
error absoluto
冷 valor real 冷
u
(VHYLGHQWHHQODVWDEODV\TXHODSUHFLVLyQGHODVDSUR[LPDFLRQHVPHMRUDFRQforme disminuye el tamaño del paso h. También vemos que aún cuando el error relativo porcentual esté creciendo en cada paso, no parece estar mal. Pero no se debe dejar
HQJDxDUSRUXQHMHPSOR6LVLPSOHPHQWHFDPELDPRVHOFRH¿FLHQWHGHOODGRGHUHFKRGH
la ED del ejemplo 2 de 0.2 a 2, entonces en xn 1.5 los errores relativos porcentuales
FUHFHQGUDPiWLFDPHQWH9HDHOSUREOHPDGHOHMHUFLFLR
UNA ADVERTENCIA El método de Euler sólo es uno de los diferentes métodos en
los que se puede aproximar una solución de una ecuación diferencial. Aunque por su
sencillez es atractivo, el método de Euler rara vez se usa en cálculos serios. Aquí se ha
SUHVHQWDGRVyORSDUDGDUXQSULPHUHVER]RGHORVPpWRGRVQXPpULFRV(QHOFDStWXOR
trataremos en detalle el análisis de los métodos numéricos que tienen mucha precisión,
en especial el método de Runge-Kutta conocido como el método RK4.
y
5
método
RK4
4
3
solución
exacta
2
1
(0,1)
método
Euler
x
_1
_1
1
2
3
4
5
FIGURA 2.6.3 Comparación de los
PpWRGRVGH5XQJH.XWWD 5. \GH
Euler.
SOLUCIONADORES NUMÉRICOS Independientemente de si se puede realmente
encontrar una solución explícita o implícita, si existe una solución de una ecuación
diferencial, ésta se representa por una curva suave en el plano cartesiano. La idea básica detrás de cualquier método numérico para las ecuaciones diferenciales ordinarias
de primer orden es de alguna manera aproximar los valores de y de una solución para
valores de x preseleccionados. Comenzamos con un punto inicial dado (x0, y0) de una
curva solución y procedemos a calcular en un modelo paso por paso una secuencia
de puntos (x1, y1), (x2, y2),…, (xn, yn) cuyas coordenadas y, yi se aproximan a las coordenadas y, y(xi) de los puntos (x1, y(x1)), (x2, y(x2)), …, (xn, y(xn)) que yacen sobre la
JUi¿FDGHODVROXFLyQQRUPDOPHQWHGHVFRQRFLGDy(x). Tomando las coordenadas x más
cercanas (es decir, para valores pequeños de h) y uniendo los puntos (x1, y1), (x2, y2),…,
(xn, yn) con segmentos de recta cortos, obtenemos una curva poligonal cuyas características cualitativas esperamos sean cercanas a las de una curva solución real. El dibujo
de curvas es algo que bien se puede hacer en una computadora. A un programa de cómputo escrito para implementar un método numérico o para presentar una representación
visual de una solución aproximada que ajusta los datos numéricos producidos por este
segundo método se le conoce como un solucionador numérico. Comercialmente, hay
muchos solucionadores numéricos disponibles ya sea integrados en un gran paquete
computacional, como en un sistema algebraico computacional, o en un paquete autónomo. Algunos paquetes computacionales simplemente dibujan las aproximaciones
numéricas generadas, mientras que otros generan pesados datos numéricos así como
la correspondiente aproximación o curvas solución numéricas(QOD¿JXUDVH
SUHVHQWDDPDQHUDGHLOXVWUDFLyQODFRQH[LyQQDWXUDOHQWUHORVSXQWRVGHODVJUi¿FDV
SURGXFLGDVSRUXQVROXFLRQDGRUQXPpULFRODVJUi¿FDVSROLJRQDOHVSLQWDGDVFRQGRV
colores son las curvas solución numéricas para el problema con valores iniciales y
0.2xy, y(0) HQHOLQWHUYDOR>@REWHQLGDVGHORVPpWRGRVGH(XOHU\5.XVDQGR
el tamaño de paso h /DFXUYDVXDYHHQD]XOHVODJUi¿FDGHODVROXFLyQH[DFWD y
2
e0.1x GHO39,2EVHUYHHQOD¿JXUDTXHDXQFRQHOULGtFXORWDPDxRGHSDVR
de h HOPpWRGR5.SURGXFHOD³FXUYDVROXFLyQ´PiVFUHtEOH/DFXUYDVROXFLyQ
QXPpULFDREWHQLGDGHOPpWRGR5.HVLQGLVWLQJXLEOHGHODFXUYDVROXFLyQUHDOHQHO
LQWHUYDOR>@FXDQGRVHXVDHOWDPDxRGHSDVRXVXDOGHh 0.1.
USANDO UN SOLUCIONADOR NUMÉRICO No es necesario conocer los diferentes métodos numéricos para utilizar un solucionador numérico. Un solucionador
usualmente requiere que la ecuación diferencial se pueda expresar en la forma normal
2.6
6
5
4
3
2
1
x
1
2
3
4
5
FIGURA 2.6.4 Una curva solución
que no ayuda mucho.
EJERCICIOS 2.6
1. y 2x 3y 1, y(1) 5; y(1.2)
2. y x y 2, y(0) 0; y(0.2)
(Q ORV SUREOHPDV \ XVH HO PpWRGR GH (XOHU SDUD REWHner una aproximación a cuatro decimales del valor indicado.
Primero, utilice h 0.1 y después utilice h 0.05. Determine
una solución explícita para cada problema con valores iniciaOHV\GHVSXpVFRQVWUX\DWDEODVVLPLODUHVDODVWDEODV\
3. y y, y(0) 1; y(1.0)
4. y 2xy, y(1) 1; y(1.5)
En los problemas 5 a 10 use un solucionador numérico y el
método de Euler para obtener una aproximación a cuatro decimales del valor indicado. Primero, utilice h 0.1 y después
utilice h 0.05.
6. y x 2 y 2, y(0) 1;
y(0.5)
7. y (x y) 2, y(0) 0.5; y(0.5)
8. y xy 1y, y(0) 1; y(0.5)
y
9. y xy 2 , y(1) 1; y(1.5)
x
10. y y y 2, y(0) 0.5; y(0.5)
77
Las respuestas a los problemas seleccionadosFRQQ~PHURLPSDUFRPLHQ]DQHQODSiJLQD5(6
En los problemas 1 y 2 use el método de Euler para obtener
una aproximación a cuatro decimales del valor indicado,
ejecute a mano la ecuación de recursión (3), usando primero
h 0.1 y después usando h 0.05.
5. y ey, y(0) 0; y(0.5)
l
dy兾dx f (x, y). Los solucionadores numéricos que sólo generan curvas requieren que se
les proporcione f (x, y) y los datos iniciales x0 y y0 y que se indique el método numérico
deseado. Si la idea es aproximarse al valor numérico de y(a), entonces un solucionador
numérico podría requerir de manera adicional que usted establezca un valor de h o, del
mismo modo, dar el número de pasos que quiere tomar para llegar de x x0 a x D
Por ejemplo, si queremos aproximar y SDUDHO39,TXHVHPXHVWUDHQOD¿JXUD
entonces, comenzando en x 0 le tomaría cuatro pasos llegar a x FRQXQWDPDxR
de paso de h SDVRVVRQHTXLYDOHQWHVDXQWDPDxRGHSDVRGHh 0.1. Aunque
aquí no investigaremos todos los problemas que se pueden encontrar cuando se intenta
aproximar cantidades matemáticas, al menos debe estar consciente del hecho de que
el solucionador numérico puede dejar de funcionar cerca de ciertos puntos o dar una
imagen incompleta o engañosa cuando se aplica a ciertas ecuaciones diferenciales en
ODIRUPDQRUPDO/D¿JXUDPXHVWUDODJUi¿FDTXHVHREWXYRDODSOLFDUHOPpWRGR
de Euler a un problema con valores iniciales de primer orden dy兾dx f (x, y), y(0) 1.
Se obtuvieron resultados equivalentes utilizando tres solucionadores numéricos, sin emEDUJRODJUi¿FDGLItFLOPHQWHHVXQDSRVLEOHFXUYDVROXFLyQ ¢3RUTXp" +D\GLIHUHQWHV
FDPLQRVGHVROXFLyQFXDQGRXQVROXFLRQDGRUQXPpULFRWLHQHGL¿FXOWDGHVODVWUHVPiV
obvias son disminuir el tamaño del paso, usar otro método numérico e intentar con un
solucionador diferente.
y
_1
_2 _1
UN MÉTODO NUMÉRICO
En los problemas 11 y 12 utilice un solucionador para obtener
una curva solución numérica para el problema dado con valores iniciales. Primero, utilice el método de Euler y después, el
PpWRGR5.8WLOLFHh 0.25 en cada caso. Superponga ambas
curvas solución en los mismos ejes coordenados. Si es posible, utilice un color diferente para cada curva. Repita, usando h 0.1 y
h 0.05.
11. y 2(cos x)y,
12. y y(10 2y),
y(0) 1
y(0) 1
Problemas para analizar
13. Use un solucionador numérico y el método de Euler para
aproximar y(1.0), donde y(x) es la solución de y 2xy 2,
y(0) 1. Primero use h 0.1 y después use h 0.05.
5HSLWDXVDQGRHOPpWRGR5.$QDOLFHTXpSRGUtDFDXsar que las aproximaciones a y GL¿HUDQPXFKR
Tarea para el laboratorio de computación
14. a) 8
WLOLFHXQVROXFLRQDGRUQXPpULFR\HOPpWRGR5.
SDUDWUD]DUODJUi¿FDGHODVROXFLyQGHOSUREOHPDFRQ
valores iniciales y 2xy 1, y(0) 0.
b) Resuelva el problema con valores iniciales con uno
de los procedimientos analíticos desarrollados en
las secciones anteriores de este capítulo.
c) Use la solución analítica y(x) que encontró en el inciso b) y un SAC para determinar las coordenadas de
todos los extremos relativos.
78
l
CAPÍTULO 2
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Las respuestas a los problemas con número impar
comienzan en la página 5(6
REPASO DEL CAPÍTULO 2
Responda los problemas 1 al 12 sin consultar las respuestas
del libro. Llene los espacios en blanco o responda si es verdadero o falso.
14.
y
4
1. La ED lineal, y ky A, donde k y A son constantes,
es autónomo. El punto crítico
de la ecuación
es un
(atractor o repulsor) para k
0 y un
(atractor o repulsor) para k 0.
dy
4y 0, y(0) k , tiene un número
dx
y no tiene soLQ¿QLWRGHVROXFLRQHVSDUDk
lución para k
.
2. El problema x
3. La ED lineal, y k1 y k2, donde k1 y k2 son constantes
distintas de cero, siempre tiene una solución constante.
4. La ED lineal, a1(x)y a2(x)y 0 es también separable.
5. Un ejemplo de una ecuación diferencial no lineal de tercer orden en forma normal es
dr
6. La ED de primer orden
Uș r ș 1 no es sed
parable
2
0
FIGURA 2.R.2 *Ui¿FDGHOSUREOHPD
15. El número 0 es un punto crítico de la ecuación diferencial autónoma dx兾dt xn, donde n es un entero positivo.
¿Para qué valores de n es 0 asintóticamente estable?
¿Semiestable? ¿Inestable? Repita para la ecuación diferencial dx兾dt xn.
16. Considere la ecuación diferencial dP dt f (P), donde
f (P) 0.5P3 P
La función f (P) tiene una raíz real, como se muestra en la
¿JXUD56LQLQWHQWDUUHVROYHUODHFXDFLyQGLIHUHQFLDO
estime el valor de límto P(t).
f
7. Cada ED autónoma dy冫dx f(y) es separable.
8. Por inspección, dos soluciones de la ecuación diferencial
y |y| 2 son
1
1
P
9. Si y e xy, entonces y
10. Si una función diferencial y(x) satisface y |x|, y(1) 2,
entonces y(x)
11. y
ecos x
x
te
cos t
FIGURA 2.R.3 *Ui¿FDGHOSUREOHPD
dt es una solución de la ecuación
0
diferencial lineal de primer orden
12. Un ejemplo de una ED lineal de primer orden autónoma
con un solo punto crítico 3 es
mientras
que una ED de primer orden no lineal autónoma con un
solo punto crítico 3 es
17. /D¿JXUD5HVXQDSDUWHGHXQFDPSRGLUHFFLRQDOGH
una ecuación diferencial dy兾dx f (x, y). Dibuje a mano
dos diferentes curvas solución, una que sea tangente al
elemento lineal que se muestra en negro y la otra que sea
tangente al elemento lineal que se muestra de color rojo.
(QORVSUREOHPDV\FRQVWUX\DXQDHFXDFLyQGLIHUHQFLDO
de primer orden autónoma dy兾dx f (y) cuyo diagrama fase
VHDFRQVLVWHQWHFRQOD¿JXUDGDGD
13.
y
3
1
FIGURA 2.R.1 *Ui¿FDGHOSUREOHPD
FIGURA 2.R.4 3DUWHGHXQFDPSRGLUHFFLRQDOGHOSUREOHPD
REPASO DEL CAPÍTULO 2
18. &ODVL¿TXH FDGD HFXDFLyQ GLIHUHQFLDO FRPR VHSDUDEOH
exacta, lineal, homogénea o Bernoulli. Algunas ecuaciones pueden ser de más de una clase. No las resuelva.
a)
dy x y
dx
x
c)
(x 1)
e)
dy y 2 y
dx x 2 x
g)
y dx ( y xy 2) dy
i)
xy y y 2 2x
k)
y dx x dy 0
l)
冢x
2
b)
dy
1
dx y x
dy
1
dy
y 10 d)
dx
dx x(x y)
2y
x
dy
5y y 2
dx
dy
ye x/y x
h) x
dx
f)
j) 2xy y y 2 2x 2
冣 dx (3 ln x ) dy
2
dy x y
m) dx y x 1
n)
y dy
3
2
e 2x y 0
2
x dx
(Q ORV SUREOHPDV D UHVXHOYD OD HFXDFLyQ GLIHUHQFLDO
dada.
19. ( y 2 1) dx y sec2 x dy
20. y(ln x ln y) dx (x ln x x ln y y) dy
21. (6x 1)y2
l
79
dy
1y, y(x0) y0
dx
no tiene solución para y0 0.
b) Resuelva el problema con valores iniciales del inciso
a) para y0 0 y determine el intervalo I más largo en
HOTXHODVROXFLyQHVWiGH¿QLGD
30. a) Encuentre una solución implícita del problema con
valores iniciales
dy y 2 x 2
,
dx
xy
y(1) 12.
b) Encuentre una solución explícita del problema del inciso a) e indique el intervalo de solución más largo de
IHQHOTXHODVROXFLyQHVWiGH¿QLGD$TXtSXHGHVHU
~WLOXQSURJUDPDGHJUD¿FDFLyQ
31 (QOD¿JXUD5VHSUHVHQWDQODVJUi¿FDVGHDOJXQRVPLHPbros de una familia de soluciones para una ecuación diferencial de primer orden dy兾dx f (x, y /DVJUi¿FDVGHGRV
soluciones implícitas, una que pasa por el punto (1, 1) y la
otra que pasa por (1, 3) se muestran en rojo. Reproduzca
OD¿JXUDHQXQDKRMD&RQOiSLFHVGHFRORUHVWUDFHODVFXUYDV
solución para las soluciones y y1(x) y y y2(x GH¿QLGDV
por las soluciones implícitas tales como y1(1) 1 y y2(1)
3, respectivamente. Estime los intervalos en los que las
soluciones y y1(x) y y y2(x HVWiQGH¿QLGDV
y
dy
3x2 2y3 0
dx
dx
4y2 6xy
2
dy
3y 2x
dQ
23. t
Q t 4 ln t
dt
24. (2x y 1)y 1
22.
x
25. (x 2 dy (2x xy) dx
26. (2r 2 cos sen r cos ) d
r sen 2r cos2 ) dr 0
(QORVSUREOHPDV\UHVXHOYDHOSUREOHPDFRQYDORUHV
iniciales dado e indique el intervalo I más largo en el que la
VROXFLyQHVWiGH¿QLGD
27. senx
28.
dy
dt
dy
dx
2(t
(cos x)y
1)y 2
0, y
0, y(0)
7
6
2
1
8
29. a) Sin resolver, explique por qué el problema con valores
iniciales
FIGURA 2.R.5 *Ui¿FDSDUDHOSUREOHPD
32. Utilice el método de Euler con tamaño de paso h 0.1
para aproximar y(1.2), donde y(x) es una solución del problema con valores iniciales y
1 x 1y , y(1) 9.
(QORVSUREOHPDV\FDGD¿JXUDUHSUHVHQWDXQDSDUWHGH
un campo direccional de una ecuación diferencial de primer
orden dy兾dx f (y 5HSURGX]FD HVWD ¿JXUD HQ XQD KRMD \
después termine el campo direccional sobre la malla. Los
puntos de la malla son (mh, nh) donde h 21, m y n son enteros, m n (QFDGDFDPSRGLUHFFLRQDO
dibuje a mano una curva solución aproximada que pase por
cada uno de los puntos sólidos mostrados en rojo. Analice:
¿parece que la ED tiene puntos críticos en el intervalo 3.5
y "6LHVDVtFODVL¿TXHORVSXQWRVFUtWLFRVFRPRDVLQtóticamente estables, inestables o semiestables.
80
l
CAPÍTULO 2
33.
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
34.
y
y
3
3
2
2
1
1
x
x
_1
_1
_2
_2
_3
_3
_3 _2 _1
1
2
3
FIGURA 2.R.6 Parte de un campo direccional del problema 33.
_3 _2 _1
1
2
3
FIGURA 2.R.7 3DUWHGHXQFDPSRGLUHFFLRQDOGHOSUREOHPD
3
MODELADO CON ECUACIONES
DIFERENCIALES DE PRIMER ORDEN
3.1 Modelos lineales
3.2 Modelos no lineales
3.3 Modelado con sistemas de ED de primer orden
REPASO DEL CAPÍTULO 3
En la sección 1.3 vimos como se podría utilizar una ecuación diferencial de primer
orden como modelo matemático en el estudio del crecimiento poblacional, el
decaimiento radiactivo, el interés compuesto continuo, el enfriamiento de cuerpos
PH]FODVODVUHDFFLRQHVTXtPLFDVHOGUHQDGRGHOÀXLGRGHXQWDQTXHODYHORFLGDG
de un cuerpo que cae y la corriente en un circuito en serie. Utilizando los métodos
del capítulo 2, ahora podemos resolver algunas de las ED lineales (sección 3.1)
y ED no lineales (sección 3.2) que aparecen comúnmente en las aplicaciones. El
capítulo concluye con el siguiente paso natural: En la sección 3.3 examinamos
cómo surgen sistemas de ED como modelos matemáticos en sistemas físicos
acoplados (por ejemplo, una población de depredadores como los zorros que
interactúan con una población de presas como los conejos).
81
82
CAPÍTULO 3
l
3.1
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
MODELOS LINEALES
REPASO DE MATERIAL
l Ecuación diferencial como modelo matemático en la sección 1.3.
l Leer nuevamente “solución de una ecuación diferencial lineal de primer orden”, en la sección 2.3.
INTRODUCCIÓN En esta sección resolvemos algunos de los modelos lineales de primer orden
que se presentaron en la sección 1.3.
CRECIMIENTO Y DECAIMIENTO El problema con valores iniciales
dx
(1)
kx, x(t0) x0,
dt
donde k es una constante de proporcionalidad, sirve como modelo para diferentes fenómenos que tienen que ver con el crecimiento o el decaimiento. En la sección 1.3
vimos que en las aplicaciones biológicas la razón de crecimiento de ciertas poblaciones (bacterias, pequeños animales) en cortos periodos de tiempo es proporcional
a la población presente al tiempo t. Si se conoce la población en algún tiempo inicial
arbitrario t0, la solución de la ecuación (1) se puede utilizar para predecir la población en el futuro, es decir, a tiempos t t0. La constante de proporcionalidad k en la
ecuación (1) se determina a partir de la solución del problema con valores iniciales,
usando una medida posterior de x al tiempo t1 t0. En física y química la ecuación (1)
se ve en la forma de una reacción de primer orden, es decir, una reacción cuya razón,
o velocidad, dx兾dt es directamente proporcional a la cantidad x de sustancia que no se
ha convertido o que queda al tiempo t. La descomposición, o decaimiento, de U-238
(uranio) por radiactividad en Th-234 (torio) es una reacción de primer orden.
EJEMPLO 1
Crecimiento de bacterias
Inicialmente un cultivo tiene un número P0 de bacterias. En t 1 h se determina que
el número de bacterias es 32P0. Si la razón de crecimiento es proporcional al número
de bacterias P(t) presentes en el tiempo t, determine el tiempo necesario para que se
triplique el número de bacterias.
P(t) = P0 e 0.4055t
P
3P0
P0
t = 2.71
t
FIGURA 3.1.1 Tiempo en que se
triplica la población en el ejemplo 1.
SOLUCIÓN Primero se resuelve la ecuación diferencial (1), sustituyendo el símbolo
x por P. Con t0 0 la condición inicial es P(0) P0. Entonces se usa la observación
empírica de que P(1) 32P0 para determinar la constante de proporcionalidad k.
Observe que la ecuación diferencial dP兾dt kP es separable y lineal. Cuando se
pone en la forma estándar de una ED lineal de primer orden,
dP
kP 0,
dt
se ve por inspección que el factor integrante es ekt. Al multiplicar ambos lados de la
ecuación e integrar, se obtiene, respectivamente,
d kt
[e P] 0
y
e ktP c.
dt
De este modo, P(t) cekt. En t 0 se tiene que P0 ce0 c, por tanto P(t) P0ekt. En
t 1 se tiene que 32P0 P0ek, o ek 32. De la última ecuación se obtiene k 1n 32
0.4055, por tanto P(t) P0e0.4055t. Para determinar el tiempo en que se ha triplicado el
número de bacterias, resolvemos 3P0 P0e0.4055t para t. Entonces 0.4055t 1n 3, o
ln 3
⬇ 2.71 h.
t
0.4055
9HDOD¿JXUD
Observe en el ejemplo 1 que el número real P0 de bacterias presentes en el tiempo
t 0 no tiene que ver con el cálculo del tiempo que se requirió para que el número de
3.1
y
e kt, k < 0
crecimiento
t
decaimiento (k 0).
l
83
bacterias en el cultivo se triplique. El tiempo necesario para que se triplique una población inicial de, digamos, 100 o 1 000 000 de bacterias es de aproximadamente 2.71 horas.
&RPR VH PXHVWUD HQ OD ¿JXUD OD IXQFLyQ H[SRQHQFLDO ekt aumenta conforme
crece t para k 0 y disminuye conforme crece t para k 0. Así los problemas que describen el crecimiento (ya sea de poblaciones, bacterias o aún de capital) se caracterizan por
un valor positivo de k, en tanto que los problemas relacionados con el decaimiento (como
en la desintegración radiactiva) tienen un valor k negativo. De acuerdo con esto, decimos
que k es una constante de crecimiento (k 0) o una constante de decaimiento (k 0).
e kt, k > 0
crecimiento
FIGURA 3.1.2 Crecimiento (k
MODELOS LINEALES
0) y
VIDA MEDIA En física la vida media es una medida de la estabilidad de una sustancia
radiactiva. La vida media es simplemente, el tiempo que tarda en desintegrarse o transmutarse en otro elemento la mitad de los átomos en una muestra inicial A0. Mientras mayor
sea la vida media de una sustancia, más estable es la sustancia. Por ejemplo, la vida media
del radio altamente radiactivo Ra-226 es de aproximadamente 1 700 años. En 1 700 años
la mitad de una cantidad dada de Ra-226 se transmuta en radón, Rn-222. El isótopo más
común del uranio, U-238, tiene una vida media de 4 500 000 000 años. En aproximadamente
4.5 miles de millones de años, la mitad de una cantidad de U-238 se transmuta en plomo 206.
EJEMPLO 2
Vida media del plutonio
Un reactor de cría convierte uranio 238 relativamente estable en el isótopo plutonio
239. Después de 15 años, se ha determinado que el 0.043% de la cantidad inicial A0
de plutonio se ha desintegrado. Determine la vida media de ese isótopo, si la razón de
desintegración es proporcional a la cantidad que queda.
SOLUCIÓN Sea A(t) la cantidad de plutonio que queda al tiempo t. Como en el ejem-
plo 1, la solución del problema con valores iniciales
dA
kA,
dt
A(0) A0
es A(t) A0ekt. Si se ha desintegrado 0.043% de los átomos de A0, queda
99.957%. Para encontrar la constante k, usamos 0.99957A0 A(15), es decir,
0.99957A0 A0e15k. Despejando k se obtiene k 151 ln 0.99957 0.00002867. Por
tanto A(t) A0eít. Ahora la vida media es el valor del tiempo que le corresponde
a A(t) 12 A0. Despejando t se obtiene 12 A0 A0eít o 12 eít. De la última
ecuación se obtiene
ln 2
t
24 180 años .
0.00002867
FIGURA 3.1.3 Una página del
evangelio gnóstico de Judas.
DATADO CON CARBONO Alrededor de 1950, el químico Willard Libby inventó
un método que utiliza carbono radiactivo para determinar las edades aproximadas de
los fósiles. La teoría del datado con carbono se basa en que el isótopo carbono 14 se
produce en la atmósfera por acción de la radiación cósmica sobre el nitrógeno. La razón
de la cantidad de C-l4 con el carbono ordinario en la atmósfera parece ser constante y,
en consecuencia, la cantidad proporcional del isótopo presente en todos los organismos
vivos es igual que la de la atmósfera. Cuando muere un organismo cesa la absorción
del C-l4 ya sea por respiración o por alimentación. Así, al comparar la cantidad proporcional de C-14 presente, por ejemplo, en un fósil con la razón constante que hay en la
atmósfera, es posible obtener una estimación razonable de la edad del fósil. El método
se basa en que se sabe la vida media del C-l4. Libby calculó el valor de la vida media
de aproximadamente 5 600 años, pero actualmente el valor aceptado comúnmente para
la vida media es aproximadamente 5 730 años. Por este trabajo, Libby obtuvo el Premio
Nobel de química en 1960. El método de Libby se ha utilizado para fechar los muebles
de madera en las tumbas egipcias, las envolturas de lino de los rollos del Mar Muerto y
la tela del enigmático sudario de Torino.
84
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJEMPLO 3
Edad de un fósil
Se encuentra que un hueso fosilizado contiene 0.1% de su cantidad original de C-14.
Determine la edad del fósil.
El punto de partida es A(t) A0e kt. Para determinar el valor de la constante de
decaimiento k, partimos del hecho de que 12 A 0 A(5730) o 12 A 0 A 0e 5730k . Esta ecuación implica que 5730k ln 21 ln2 y obtenemos k (1n2)5730 0.00012097,
por tanto A(t) A0e0.00012097t. Con A(t) 0.001A0 tenemos que 0.001A0 A0e0.00012097t y
0.00012097t ln(0.001) ln 1000. Así
SOLUCIÓN
t
ln 1000
0.00012097
57 100 años
La fecha determinada en el ejemplo 3 está en el límite de exactitud del método.
Normalmente esta técnica se limita a aproximadamente 10 vidas medias del isótopo, que
son aproximadamente 60,000 años. Una razón para esta limitante es que el análisis químico necesario para una determinación exacta del C-l4 que queda presenta obstáculos
formidables cuando se alcanza el punto de 0.001A0. También, en este método se necesita
destruir una gran parte de la muestra. Si la medición se realiza indirectamente, basándose
en la radiactividad existente en la muestra, es muy difícil distinguir la radiación que procede del fósil de la radiación de fondo normal.* Pero recientemente, con los aceleradores
GHSDUWtFXODVORVFLHQWt¿FRVKDQSRGLGRVHSDUDUDO&OGHOHVWDEOH&&XDQGRVHFDOcula la relación exacta de C-l4 a C-12, la exactitud de este método se puede ampliar de
70 000 a 100 000 años. Hay otras técnicas isotópicas, como la que usa potasio 40 y argón
40, adecuadas para establecer edades de varios millones de años. A veces, también es
posible aplicar métodos que se basan en el empleo de aminoácidos.
LEY DE NEWTON DEL ENFRIAMIENTO/CALENTAMIENTO En la ecuación
(3) de la sección 1.3 vimos que la formulación matemática de la ley empírica de
Newton del enfriamiento/calentamiento de un objeto, se expresa con la ecuación diferencial lineal de primer orden
dT
k(T Tm),
(2)
dt
donde k es una constante de proporcionalidad, T(t) es la temperatura del objeto para
t 0, y Tm es la temperatura ambiente, es decir, la temperatura del medio que rodea al
objeto. En el ejemplo 4 suponemos que Tm es constante.
EJEMPLO 4
Enfriamiento de un pastel
Al sacar un pastel del horno, su temperatura es 300° F. Tres minutos después su temperatura es de 200° F. ¿Cuánto tiempo le tomará al pastel enfriarse hasta la temperatura
ambiente de 70º F?
(QODHFXDFLyQ LGHQWL¿FDPRVTm 70. Debemos resolver el problema
con valores iniciales
dT
(3)
k(T 70), T(0) 300
dt
y determinar el valor de k tal que T(3) 200.
La ecuación (3) es tanto lineal como separable. Si separamos las variables
dT
k dt,
T 70
SOLUCIÓN
El número de desintegraciones por minuto por gramo de carbono se registra usando un contador Geiger.
El nivel mínimo de detección es de aproximadamente 0.1 desintegraciones por minuto por gramo.
*
3.1
MODELOS LINEALES
l
85
se obtiene ln|T – 70| kt c1, y así T 70 c2ekt. Cuando t 0, T 300, así
300 70 c2 da c2 230. Por tanto T 70 230 ekt. Por último, la medición de
13
1
T(3) 200 conduce a e3k 13
23 , o k 3 ln 23 0.19018. Así
T
300
150
T = 70
15
t
30
a)
T(t)
t (min)
75
74
73
72
71
70.5
20.1
21.3
22.8
24.9
28.6
32.3
(4)
T (t) 70 230e0.19018t.
2EVHUYDPRV TXH OD HFXDFLyQ QR WLHQH XQD VROXFLyQ ¿QLWD D T(t) 70 porque
lím to T(t) 70. No obstante, en forma intuitiva esperamos que el pastel se enfríe al
transcurrir un intervalo razonablemente largo. ¿Qué tan largo es “largo”? Por supuesto,
no nos debe inquietar el hecho de que el modelo (3) no se apegue mucho a nuestra
LQWXLFLyQItVLFD/RVLQFLVRVD \E GHOD¿JXUDPXHVWUDQFODUDPHQWHTXHHOSDVWHO
estará a temperatura ambiente en aproximadamente media hora.
La temperatura ambiente en la ecuación (2) no necesariamente es una constante pero
podría ser una función Tm(t) del tiempo t. Vea el problema 18 de los ejercicios 3.1.
b)
FIGURA 3.1.4 La temperatura de
enfriamiento del pastel tdel ejemplo 4.
MEZCLAS $OPH]FODUGRVÀXLGRVDYHFHVVXUJHQHFXDFLRQHVGLIHUHQFLDOHVOLQHDOHV
de primer orden. Cuando describimos la mezcla de dos salmueras en la sección 1.3,
supusimos que la razón con que cambia la cantidad de sal A(t) en el tanque de mezcla
es una razón neta
dA
´
´
Rentra Rsale .
(5)
dt
En el ejemplo 5 resolveremos la ecuación (8) de la sección 1.3.
EJEMPLO 5
A
A = 600
Mezcla de dos soluciones de sal
Recordemos que el tanque grande de la sección 1.3 contenía inicialmente 300 galones
de una solución de salmuera. En el tanque entraba y salía sal porque se bombeaba
XQDVROXFLyQDXQÀXMRGHJDOPLQVHPH]FODEDFRQODVROXFLyQRULJLQDO\VDOtDGHO
WDQTXHFRQXQÀXMRGHJDOPLQ/DFRQFHQWUDFLyQGHODVROXFLyQHQWUDQWHHUDGHOE
gal, por consiguiente, la entrada de sal era Rentra (2 lb/gal) ⴢ (3 gal/min) 6 lb/min
y salía del tanque con una razón Rsale (A兾300 lb/gal) ⴢ (3 gal/min) A兾l00 lb/min.
A partir de esos datos y de la ecuación (5), obtuvimos la ecuación (8) de la sección
1.3. Permítanos preguntar: si había 50 lb de sal disueltas en los 300 galones iniciales,
¿cuánta sal habrá en el tanque después de un periodo largo?
SOLUCIÓN Para encontrar la cantidad de sal A(t) en el tanque al tiempo t, resolve-
500
t
a)
t (min)
A (lb)
50
100
150
200
300
400
266.41
397.67
477.27
525.57
572.62
589.93
b)
FIGURA 3.1.5 Libras de sal en el
tanque del ejemplo 5.
mos el problema con valores iniciales
1
dA
A 6, A(0) 50.
dt
100
Aquí observamos que la condición adjunta es la cantidad inicial de sal A(0) 50 en
el tanque y no la cantidad inicial de líquido. Ahora, como el factor integrante de esta
ecuación diferencial lineal es et/100, podemos escribir la ecuación como
d t/100
[e A] 6et/100.
dt
Integrando la última ecuación y despejando A se obtiene la solución general
A(t) 600 ce t/100. Conforme t 0, A 50, de modo que c 550. Entonces, la
cantidad de sal en el tanque al tiempo t está dada por
A(t) 600 550et/100.
(6)
/DVROXFLyQ VHXVySDUDFRQVWUXLUODWDEODGHOD¿JXUD E (QODHFXDFLyQ \HQ
OD¿JXUD D WDPELpQVHSXHGHYHUTXHA(t) → 600 conforme t → . Por supuesto,
esto es lo que se esperaría intuitivamente en este caso; cuando ha pasado un gran tiempo
la cantidad de libras de sal en la solución debe ser (300 ga1)(2 lb/gal) = 600 lb.
En el ejemplo 5 supusimos que la razón con que entra la solución al tanque es la misma
que la razón con la que sale. Sin embargo, el caso no necesita ser siempre el mismo; la
86
CAPÍTULO 3
l
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
salmuera mezclada se puede sacar con una razón rsale que es mayor o menor que la razón
rentra con la que entra la otra salmuera. El siguiente ejemplo presenta un caso cuando la
mezcla se bombea a una razón menor que la razón con la que se bombea dentro del tanque.
EJEMPLO 6
A
500
250
50
100
t
FIGURA 3.1.6 *Ui¿FDGHA(t) del
ejemplo 6.
Vuelta al ejemplo 5
Si la solución bien mezclada del ejemplo 5 se bombea hacia afuera con una razón más
lenta, digamos rsale 2 gal/min, eentonces se acumulará en el tanque con la razón
rentra rsale (3 2) gal/min 1 gal/min. Después de t minutos
(1 gal/min) ⴢ (t min) t gal
se acumularán, por lo que en el tanque habrá 300 t galones de salmuera. La concenWUDFLyQGHOÀXMRGHVDOLGDHVHQWRQFHVc(t) A兾(300 t) y la razón con que sale la sal
es Rsale c(t) rsale, o
A
2A
lb/gal ⴢ (2 gal/min)
lb/min.
Rsale
300 t
300 t
Por tanto, la ecuación (5) se convierte en
dA
2A
dA
2
6
o
A 6.
dt
300 t
dt
300 t
El factor integrante para la última ecuación es
冢
e
2dt>(300
冣
t)
e 2 ln(300
eln(300
t)
t)2
(300
t)2
Y así después de multiplicar por el factor, la ecuación se reescribe en la forma
d
(300
dt
[
]
t)2 A
6(300
t)2.
Al integrar la última ecuación se obtiene (300 + t)2A 2(300 t)3 c. Si aplicamos la
condición inicial A(0) 50, y despejamos A se obtiene la solución A(t)
600 2t (4.95 107)(300 t)2&RPRHUDGHHVSHUDUHQOD¿JXUDVHPXHVWUDTXH
con el tiempo se acumula la sal en el tanque, es decir, A → conforme t → .
L
E
R
FIGURA 3.1.7 Circuito en serie LR.
R
E
C
FIGURA 3.1.8 Circuito en serie RC.
CIRCUITOS EN SERIE Para un circuito en serie que sólo contiene un resistor y un
inductor, la segunda ley de Kirchhoff establece que la suma de la caída de voltaje a
través del inductor (L(di兾dt)) más la caída de voltaje a través del resistor (iR) es igual
al voltaje aplicado (E(t DOFLUFXLWR9HDOD¿JXUD
Por lo tanto, obtenemos la ecuación diferencial lineal que para la corriente i(t),
di
L Ri E(t),
(7)
dt
donde L y R son constantes conocidas como la inductancia y la resistencia, respectivamente. La corriente i(t) se llama, también respuesta del sistema.
La caída de voltaje a través de un capacitor de capacitancia C es q(t)兾C, donde q
HVODFDUJDGHOFDSDFLWRU3RUWDQWRSDUDHOFLUFXLWRHQVHULHTXHVHPXHVWUDHQOD¿JXUD
3.1.8, la segunda ley de Kirchhoff da
1
Ri q E(t).
(8)
C
Pero la corriente i y la carga q están relacionadas por i dq兾dt, así, la ecuación (8) se
convierte en la ecuación diferencial lineal
dq
1
(9)
R
q E(t).
dt
C
EJEMPLO 7
Circuito en serie
Una batería de 12 volts se conecta a un circuito en serie en el que el inductor es de 12 henry
y la resistencia es de 10 ohms. Determine la corriente i, si la corriente inicial es cero.
3.1
MODELOS LINEALES
l
87
SOLUCIÓN De la ecuación (7) debemos resolver
1 di
2 dt
10i
12,
sujeta a i(0) 0. Primero multiplicamos la ecuación diferencial por 2, y vemos que el
factor integrante es e20t. Entonces sustituyendo
d 20t
[e i]
dt
24e20t.
Integrando cada lado de la última ecuación y despejando i se obtiene i(t) 65 ce 20t.
6
6
Ahora i(0) 0 implica que 0 5 c o c 5. . Por tanto la respuesta es
6
6 20t
i(t) 5 5 e
.
De la ecuación (4) de la sección 2.3, podemos escribir una solución general de (7):
P
i(t)
P0
e(R/L)t
L
冕
e(R/L)tE(t) dt ce(R/L)t.
(10)
En particular, cuando E(t) E0 es una constante, la ecuación (l0) se convierte en
i(t)
t1
1 t
t2
E0
ce(R/L)t.
R
(11)
Observamos que conforme t → , el segundo término de la ecuación (11) tiende a
cero. A ese término usualmente se le llama término transitorio; los demás términos
se llaman parte de estado estable de la solución. En este caso, E0兾R también se llama
corriente de estado estable; para valores grandes de tiempo resulta que la corriente
está determinada tan sólo por la ley de Ohm (E iR).
a)
P
COMENTARIOS
P0
1
t
b)
P
P0
1
t
c)
FIGURA 3.1.9 El crecimiento
poblacional es un proceso discreto.
La solución P(t) P0 e 0.4055t del problema con valores iniciales del ejemplo 1
describe la población de una colonia de bacterias a cualquier tiempo t
0.
Por supuesto, P(t) es una función continua que toma todos los números reales
del intervalo P0 P . Pero como estamos hablando de una población, el
sentido común indica que P puede tomar sólo valores positivos. Además, no
esperaríamos que la población crezca continuamente, es decir, cada segundo,
cada microsegundo, etc., como lo predice nuestra solución; puede haber intervalos de tiempo [t1, t2], en los que no haya crecimiento alguno. Quizá, entonces,
ODJUi¿FDTXHVHPXHVWUDHQOD¿JXUD D VHDXQDGHVFULSFLyQPiVUHDOGH
PTXHODJUi¿FDGHXQDIXQFLyQH[SRQHQFLDO&RQIUHFXHQFLDXVDUXQDIXQFLyQ
continua para describir un fenómeno discreto es más conveniente que exacto.
6LQ HPEDUJR SDUD FLHUWRV ¿QHV QRV SRGHPRV VHQWLU VDWLVIHFKRV VL HO PRGHOR
describe con gran exactitud el sistema, considerado macroscópicamente en el
WLHPSRFRPRVHPXHVWUDHQODV¿JXUDV E \ F PiVTXHPLFURVFySLFDPHQWHFRPRVHPXHVWUDHQOD¿JXUD D
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJERCICIOS 3.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-3.
la cantidad presente S al tiempo t, es decir, dS兾dt rS,
donde r es la razón de interés anual.
a) &DOFXOHODFDQWLGDGUHXQLGDDO¿QDOGHDxRVFXDQGR
se depositan $5 000 en una cuenta de ahorro que rinde
el 5.75% de interés anual compuesto continuamente.
b) ¿En cuántos años se habrá duplicado el capital inicial?
c) Utilice una calculadora para comparar la cantidad obtenida en el inciso a) con la cantidad S 5 000(1
1
(0.0575))5(4) que se reúne cuando el interés se com4
pone trimestralmente.
Crecimiento y decrecimiento
1. Se sabe que la población de una comunidad crece con una
razón proporcional al número de personas presentes en el
tiempo t. Si la población inicial P0 se duplicó en 5 años,
¿En cuánto tiempo se triplicará y cuadruplicará?
2. Suponga que se sabe que la población de la comunidad del
problema 1 es de 10 000 después de tres años. ¿Cuál era la
población inicial P0? ¿Cuál será la población en 10 años?
¿Qué tan rápido está creciendo la población en t 10?
5. El isótopo radiactivo del plomo Pb-209, decae con una
razón proporcional a la cantidad presente al tiempo t y
tiene un vida media de 3.3 horas. Si al principio había
1 gramo de plomo, ¿cuánto tiempo debe transcurrir para
que decaiga 90%?
6. Inicialmente había 100 miligramos de una sustancia radiactiva. Después de 6 horas la masa disminuyó 3%. Si la
razón de decaimiento, en cualquier momento, es proporcional a la cantidad de la sustancia presente al tiempo t,
determine la cantidad que queda después de 24 horas.
7. Calcule la vida media de la sustancia radiactiva del problema 6.
8. a) El problema con valores iniciales dA兾dt kA, A(0)
A0 es el modelo de decaimiento de una sustancia
radiactiva. Demuestre que, en general, la vida media T
de la sustancia es T (ln 2)兾k.
b) Demuestre que la solución del problema con valores
iniciales del inciso a) se puede escribir como A(t)
A02t/T.
c) Si una sustancia radiactiva tiene la vida media T dada
en el inciso a), ¿cuánto tiempo le tomará a una cantidad inicial A0 de sustancia decaer a 18 A0?
9. Cuando pasa un rayo vertical de luz por un medio transparente, la razón con que decrece su intensidad I es proporcional a I(t), donde t representa el espesor, en pies, del
medio. En agua limpia de mar, la intensidad a 3 pies deEDMR GH OD VXSHU¿FLH HV GH OD LQWHQVLGDG LQLFLDO I0
del rayo incidente. ¿Cuál es la intensidad del rayo a 15
SLHVGHEDMRGHODVXSHU¿FLH"
10. Cuando el interés es compuesto continuamente, la cantidad de dinero aumenta con una razón proporcional a
11. Los arqueólogos utilizan piezas de madera quemada o
carbón vegetal, encontradas en el lugar para datar pinturas prehistóricas de paredes y techos de una caverna en
/DVFDX[)UDQFLD9HDOD¿JXUD8WLOLFHODLQIRUPDción de la página 84 para precisar la edad aproximada de
una pieza de madera quemada, si se determinó que 85.5%
de su C-l4 encontrado en los árboles vivos del mismo tipo
se había desintegrado.
© Prehistoric/The Bridgeman Art
4. La población de bacterias en un cultivo crece a una
razón proporcional a la cantidad de bacterias presentes al
tiempo t. Después de tres horas se observa que hay 400
bacterias presentes. Después de 10 horas hay 2 000 bacterias presentes. ¿Cuál era la cantidad inicial de bacterias?
Datado con carbono
FIGURA 3.1.10 Pintura en una caverna del problema 11.
12. El sudario de Turín muestra el negativo de la imagen del
FXHUSRGHXQKRPEUHTXHSDUHFHTXHIXHFUXFL¿FDGRPXchas personas creen que es el sudario del entierro de Jesús
GH1D]DUHW9HDOD¿JXUD(QHO9DWLFDQRFRQcedió permiso para datar con carbono el sudario. Tres laERUDWRULRVFLHQWt¿FRVLQGHSHQGLHQWHVDQDOL]DURQHOSDxR\
concluyeron que el sudario tenía una antigüedad de 660
años,* una antigüedad consistente con su aparición histó-
© Bettmann/Corbis
3. La población de un pueblo crece con una razón proporcional a la población en el tiempo t. La población inicial
de 500 aumenta 15% en 10 años. ¿Cuál será la población
pasados 30 años? ¿Qué tan rápido está creciendo la población en t 30?
Library/Getty Images
88
FIGURA 3.1.11 Imagen del sudario del problema 12.
Algunos eruditos no están de acuerdo con este hallazgo. Para más
información de este fascinante misterio vea la página del Sudario de Turín
en la página http://www.shroud.com
*
3.1
rica. Usando esta antigüedad determine qué porcentaje de
la cantidad original de C-14 quedaba en el paño en 1988.
Ley de Newton enfriamiento/calentamiento
13. Un termómetro se cambia de una habitación cuya temperatura es de 70° F al exterior, donde la temperatura del aire es
de 10° F. Después de medio minuto el termómetro indica
50° F. ¿Cuál es la lectura del termómetro en t 1 min?
¿Cuánto tiempo le tomará al termómetro alcanzar los 15° F?
14. Un termómetro se lleva de una habitación hasta el ambiente exterior, donde la temperatura del aire es 5° F.
Después de 1 minuto, el termómetro indica 55° F y después de 5 minutos indica 30° F. ¿Cuál era la temperatura
inicial de la habitación?
15. Una pequeña barra de metal, cuya temperatura inicial era
de 20° C, se deja caer en un gran tanque de agua hirviendo. ¿Cuánto tiempo tardará la barra en alcanzar los
90° C si se sabe que su temperatura aumentó 2° en 1 segundo? ¿Cuánto tiempo tardará en alcanzar los 98° C?
16. Dos grandes tanques A y B del mismo tamaño se llenan con
ÀXLGRVGLIHUHQWHV/RVÀXLGRVHQORVWDQTXHVA y B se mantienen a 0° C y a 100° C, respectivamente. Una pequeña
barra de metal, cuya temperatura inicial es 100° C, se sumerge dentro del tanque A. Después de 1 minuto la temperatura de la barra es de 90° C. Después de 2 minutos se
VDFDODEDUUDHLQPHGLDWDPHQWHVHWUDQV¿HUHDORWURWDQTXH
Después de 1 minuto en el tanque B la temperatura se eleva
10° C. ¿Cuánto tiempo, medido desde el comienzo de todo
el proceso, le tomará a la barra alcanzar los 99.9° C?
17. Un termómetro que indica 70° F se coloca en un horno precalentado a una temperatura constante. A través de una ventana de vidrio en la puerta del horno, un observador registra
que el termómetro lee 110° F después de 21 minuto y 145° F
después de 1 minuto. ¿Cuál es la temperatura del horno?
18. Al tiempo t 0 un tubo de ensayo sellado que contiene
una sustancia química está inmerso en un baño líquido. La
temperatura inicial de la sustancia química en el tubo de
ensayo es de 80° F. El baño líquido tiene una temperatura
controlada (medida en grados Fahrenheit) dada por Tm(t)
100 – 40e0.1t, t 0, donde t se mide en minutos.
a) Suponga que k 0.1 en la ecuación (2). Antes de
resolver el PVI, describa con palabras cómo espera
que sea la temperatura T(t) de la sustancia química a
corto plazo, y también a largo plazo.
b) Resuelva el problema con valores iniciales. Use un
SURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODJUi¿FDGHT(t)
HQGLIHUHQWHVLQWHUYDORVGHWLHPSR¢/DVJUi¿FDVFRQcuerdan con sus predicciones del inciso a)?
19. Un cadáver se encontró dentro de un cuarto cerrado en una
casa donde la temperatura era constante a 70° F. Al tiempo
del descubrimiento la temperatura del corazón del cadáver
se determinó de 85° F. Una hora después una segunda me-
MODELOS LINEALES
l
89
dición mostró que la temperatura del corazón era de 80° F.
Suponga que el tiempo de la muerte corresponde a t 0
y que la temperatura del corazón en ese momento era
de 98.6° F. Determine cuántas horas pasaron antes de que
se encontrara el cadáver. [Sugerencia: Sea que t1 0 denote el tiempo en que se encontró el cadáver.]
20. La razón con la que un cuerpo se enfría también depende
GHVXiUHDVXSHU¿FLDOH[SXHVWDS. Si S es una constante,
HQWRQFHVXQDPRGL¿FDFLyQGHODHFXDFLyQ HV
dT
kS(T Tm),
dt
donde k 0 y Tm es una constante. Suponga que dos tazas
A y B están llenas de café al mismo tiempo. Inicialmente
ODWHPSHUDWXUDGHOFDIpHVGH)(OiUHDVXSHU¿FLDOGHO
café en la taza BHVGHOGREOHGHOiUHDVXSHU¿FLDOGHOFDIp
en la taza A. Después de 30 min la temperatura del café en
la taza A es de 100° F. Si Tm 70° F, entonces ¿cuál es la
temperatura del café de la taza B después de 30 min?
Mezclas
21. Un tanque contiene 200 litros de un líquido en el que se
han disuelto 30 g de sal. Salmuera que tiene 1 g de sal
por litro entra al tanque con una razón de 4 L/min; la solución bien mezclada sale del tanque con la misma razón.
Encuentre la cantidad A(t) de gramos de sal que hay en el
tanque al tiempo t.
22. Resuelva el problema 21 suponiendo que al tanque entra
agua pura.
23. Un gran tanque de 500 galones está lleno de agua pura.
Le entra salmuera que tiene 2 lb de sal por galón a razón
de 5 gal/min. La solución bien mezclada sale del tanque
con la misma razón. Determine la cantidad A(t) de libras
de sal que hay en el tanque al tiempo t.
24. En el problema 23, ¿cuál es la concentración c(t) de sal en el
tanque al tiempo t? ¿Y al tiempo t 5 min? ¿Cuál es la concentración en el tanque después de un largo tiempo, es decir,
conforme t → ? ¿Para qué tiempo la concentración de sal
en el tanque es igual a la mitad de este valor límite?
25. Resuelva el problema 23 suponiendo que la solución sale
con una razón de 10 gal/min. ¿Cuándo se vacía el tanque?
26. Determine la cantidad de sal en el tanque al tiempo t en el
ejemplo 5 si la concentración de sal que entra es variable
y está dada por centra(t) 2 sen(t兾4) lb/gal. Sin trazar la
JUi¿FDLQ¿HUDDTXpFXUYDVROXFLyQGHO39,VHSDUHFHUtD
'HVSXpVXWLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUOD
JUi¿FDGHODVROXFLyQHQHOLQWHUYDOR>@5HSLWDSDUD
HOLQWHUYDOR>@\FRPSDUHVXJUi¿FDFRQODTXHVH
PXHVWUDHQOD¿JXUD D
27. Un gran tanque está parcialmente lleno con 100 galones de
ÀXLGRHQORVTXHVHGLVROYLHURQOLEUDVGHVDO/DVDOmuera
90
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
tiene 21 de sal por galón que entra al tanque a razón de
6 gal/min. La solución bien mezclada sale del tanque a
razón de 4 gal/min. Determine la cantidad de libras de sal
que hay en el tanque después de 30 minutos.
28. En el ejemplo 5, no se dio el tamaño del tanque que tiene
la solución salina. Suponga, como en el análisis siguiente
al ejemplo 5, que la razón con que entra la solución al tanque es de 3 gal/min pero que la solución bien mezclada
sale del tanque a razón de 2 gal/min. Esta es la razón por
la cual dado que la salmuera se está acumulando en el
tanque a razón de 1 gal/min, cualquier tanque de tamaño
¿QLWRWHUPLQDUiGHUUDPiQGRVH$KRUDVXSRQJDTXHHOWDQque está destapado y tiene una capacidad de 400 galones.
a) ¿Cuándo se derramará el tanque?
b) ¿Cuántas libras de sal habrá en el tanque cuando comience a derramarse?
c) Suponga que el tanque se derrama, que la salmuera
continúa entrando a razón de 3 gal/min, que la solución está bien mezclada y que la solución sigue saliendo a razón de 2 gal/min. Determine un método
para encontrar la cantidad de libras de sal que hay en
el tanque al tiempo t 150 min.
d) Calcule la cantidad de libras de sal en el tanque conforme t → . ¿Su respuesta coincide con su intuición?
e) 8
WLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODJUi¿FDGHA(t) en el intervalo [0, 500).
Circuitos en serie
29. Se aplica una fuerza electromotriz de 30 volts a un circuito en serie LR con 0.1 henrys de inductancia y 50
ohms de resistencia. Determine la corriente i(t), si i(0)
0. Determine la corriente conforme t → .
30. Resuelva la ecuación (7) suponiendo que E(t) E0 sen
Zt y que i(0) i0.
31. Se aplica una fuerza electromotriz de 100 volts a un circuito en serie RC, en el que la resistencia es de 200 ohms
y la capacitancia es de l04 farads. Determine la carga q(t)
del capacitor, si q(0) 0. Encuentre la corriente i(t).
32. Se aplica una fuerza electromotriz de 200 volts a un circuito en serie RC, en el que la resistencia es de 1000 ohms
y la capacitancia es de 5 106 farads. Determine la carga
q(t) en el capacitor, si i(0) 0.4 amperes. Determine la
carga y la corriente en t 0.005 s. Encuentre la carga
conforme t → .
34. Suponga que un circuito en serie RC tiene un resistor variable. Si la resistencia al tiempo t está dada por R k1
k2t, donde k1 y k2 son constantes positivas, entonces la
ecuación (9) se convierte en
(k1 k2 t)
dq
1
q E(t).
dt
C
Si E(t) E0 y q(0) q0, donde E0 y q0 son constantes,
muestre que
冢k k k t冣
1/Ck2
1
q(t) E0C (q0 E0C)
1
Modelos lineales adicionales
35. Resistencia del aire En la ecuación (14) de la sección
1.3 vimos que una ecuación diferencial que describe la
velocidad v de una masa que cae sujeta a una resistencia
del aire proporcional a la velocidad instantánea es
m
dv
mg kv,
dt
donde k
0 es una constante de proporcionalidad. La
dirección positiva se toma hacia abajo.
a) Resuelva la ecuación sujeta a la condición inicial
v(0) v0.
b) Utilice la solución del inciso a) para determinar la
velocidad límite o terminal de la masa. Vimos cómo
determinar la velocidad terminal sin resolver la ED
del problema 40 en los ejercicios 2.1.
c) Si la distancia s, medida desde el punto en el que se
suelta la masa se relaciona con la velocidad v por
ds兾dt v(t), determine una expresión explícita para
s(t), si s(0) 0.
36. ¿Qué tan alto? (Sin resistencia del aire) Suponga que
una pequeña bala de cañón que pesa 16 libras se dispara
YHUWLFDOPHQWH KDFLD DUULED FRPR VH PXHVWUD HQ OD ¿JXUD
3.1.12, con una velocidad inicial de v0 300 pies/s. La respuesta a la pregunta “¿Qué tanto sube la bala de cañón?”,
depende de si se considera la resistencia del aire.
a) Suponga que se desprecia la resistencia del aire. Si
la dirección es positiva hacia arriba, entonces un
modelo para la bala del cañón está dado por d 2s兾dt 2
g (ecuación (12) de la sección 1.3). Puesto que
ds兾dt v(t) la última ecuación diferencial es la
−mg
33. Se aplica una fuerza electromotriz
E(t)
冦120,
0,
nivel del
suelo
0 t 20
t 20
a un circuito en serie LR en el que la inductancia es de
20 henrys y la resistencia es de 2 ohms. Determine la corriente i(t), si i(0) 0.
.
2
FIGURA 3.1.12
Determinación
de la altura máxima de la bala de
cañón del problema 36.
3.1
misma que la ecuación dv兾dt g, donde se toma
g 32 pies/s2. Encuentre la velocidad v(t) de la bala
de cañón al tiempo t.
b) Utilice el resultado que se obtuvo en el inciso a)
para determinar la altura s(t) de la bala de cañón
medida desde el nivel del suelo. Determine la altura
máxima que alcanza la bala.
37. ¿Qué tan alto? (Resistencia lineal del aire) Repita
el problema 36, pero esta vez suponga que la resistencia
del aire es proporcional a la velocidad instantánea. Esta es
la razón por la que la altura máxima que alcanza la bala
del cañón debe ser menor que la del inciso b) del problema 36. Demuestre esto suponiendo que la constante de
proporcionalidad es k 0.0025. [Sugerencia:0RGL¿TXH
ligeramente la ED del problema 35.]
38. Paracaidismo Una paracaidista pesa 125 libras y su
paracaídas y equipo juntos pesan otras 35 libras. Después
de saltar del avión desde una altura de 15 000 pies, la
paracaidista espera 15 segundos y abre su paracaídas.
Suponga que la constante de proporcionalidad del modelo del problema 35 tiene el valor k 0.5 durante la
caída libre y k 10 después de que se abrió el paracaídas. Suponga que su velocidad inicial al saltar del avión
es igual a cero. ¿Cuál es la velocidad de la paracaidista
y qué distancia ha recorrido después de 20 segundos de
TXHVDOWyGHODYLyQ"9HDOD¿JXUD¢&yPRVHFRPpara la velocidad de la paracaidista a los 20 segundos con
su velocidad terminal? ¿Cuánto tarda en llegar al suelo?
[Sugerencia: Piense en función de dos diferentes PVI.]
caída libre
la resistencia del
aire es 0.5 v
la resistencia del
aire es 10 v
FIGURA 3.1.13
el paracaídas
se abre
t = 20 s
Cálculo del tiempo
que tarda en llegar al
suelo del problema 38.
39. Evaporación de una gota de lluvia Cuando cae una gota
de lluvia, ésta se evapora mientras conserva su forma esférica. Si se hacen suposiciones adicionales de que la rapidez
a la que se evapora la gota de lluvia es proporcional a su área
VXSHU¿FLDO\TXHVHGHVSUHFLDODUHVLVWHQFLDGHODLUHHQWRQces un modelo para la velocidad v(t) de la gota de lluvia es
dv
3(k/)
v g.
dt
(k/)t r0
Aquí U es la densidad del agua, r0 es el radio de la gota de
lluvia en t 0, k 0 es la constante de proporcionalidad
y la dirección hacia abajo se considera positiva.
MODELOS LINEALES
l
91
a) Determine v(t) si la gota de lluvia cae a partir del reposo.
b) Vuelva a leer el problema 36 de los ejercicios 1.3
y demuestre que el radio de la gota de lluvia en el
tiempo t es r(t) (k兾U)t r0.
c) Si r0 0.01 pies y r 0.007 pies, 10 segundos después de que la gota cae desde una nube, determine el
tiempo en el que la gota de lluvia se ha evaporado por
completo.
40. 3REODFLyQÀXFWXDQWH La ecuación diferencial dP兾dt
(k cos t)P, donde k es una constante positiva, es un modelo
matemático para una población P(t TXHH[SHULPHQWDÀXFtuaciones anuales. Resuelva la ecuación sujeta a P(0) P0.
8WLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODJUi¿FDGH
la solución para diferentes elecciones de P0.
41. Modelo poblacional En un modelo del cambio de población de P(t) de una comunidad, se supone que
dP dB dD
,
dt
dt
dt
donde dB兾dt y dD兾dt son las tasas de natalidad y mortandad, respectivamente.
a) Determine P(t) si dB兾dt k1P y dD兾dt k2P.
b) Analice los casos k1 k2, k1 k2 y k1 k2.
42. Modelo de cosecha constante Un modelo que describe
la población de una pesquería en la que se cosecha con
una razón constante está dada por
dP
kP h,
dt
donde k y h son constantes positivas.
a) Resuelva la ED sujeta a P(0) P0.
b) Describa el comportamiento de la población P(t)
conforme pasa el tiempo en los tres casos P0 h兾k,
P0 h兾k y 0 P0 h兾k.
c) Utilice los resultados del inciso b) para determinar
si la población de peces desaparecerá en un tiempo
¿QLWRHVGHFLUVLH[LVWHXQWLHPSRT 0 tal que P(T)
0. Si la población desaparecerá, entonces determine en qué tiempo T.
43. Propagación de una medicina Un modelo matemático
para la razón con la que se propaga una medicina en el
torrente sanguíneo está dado por
dx
r kx,
dt
donde r y k son constantes positivas. Sea x(t) la función
que describe la concentración de la medicina en el torrente sanguíneo al tiempo t.
a) Ya que la ED es autónoma, utilice el concepto de
esquema de fase de la sección 2.1 para determinar el
valor de x(t) conforme t → .
92
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
b) Resuelva la ED sujeta a x(0) 'LEXMHODJUi¿FD
de x(t) y compruebe su predicción del inciso a). ¿En
cuánto tiempo la concentración es la mitad del valor
límite?
44. Memorización Cuando se considera la falta de memoria, la razón de memorización de un tema está dada por
dA
k1(M A) k2 A,
dt
donde k1 0, k2 0, A(t) es la cantidad memorizada al
tiempo t, M es la cantidad total a memorizarse y M A
es la cantidad que falta por memorizar.
a) Puesto que la ED es autónoma, utilice el concepto de esquema de fase de la sección 2.1 para determinar el valor
límite de A(t) conforme t → ,QWHUSUHWHHOUHVXOWDGR
b) Resuelva la ED sujeta a A(0) 'LEXMHODJUi¿FDGH
A(t) y compruebe su predicción del inciso a).
45. Marcapasos de corazón (QOD¿JXUDVHPXHVWUD
un marcapasos de corazón, que consiste en un interruptor,
una batería, un capacitor y el corazón como un resistor.
Cuando el interruptor S está en P, el capacitor se carga;
cuando S está en Q el capacitor se descarga, enviando
estímulos eléctricos al corazón. En el problema 53 de los
ejercicios 2.3 vimos que durante este tiempo en que se
están aplicado estímulos eléctricos al corazón, el voltaje
E a través del corazón satisface la ED lineal
1
dE
E.
dt
RC
a) Suponga que en el intervalo de tiempo de duración t1,
0 t t1, el interruptor S está en la posición P como
VH PXHVWUD HQ OD ¿JXUD \ HO FDSDFLWRU VH HVWi
cargando. Cuando el interruptor se mueve a la posición Q al tiempo t1 el capacitor se descarga, enviando
un impulso al corazón durante el intervalo de tiempo
de duración t2: t1 t t1 t2. Por lo que el intervalo
inicial de carga descarga 0 t t1 t2 el voltaje en
el corazón se modela realmente por la ecuación difeUHQFLDOGH¿QLGDHQSDUWHV
冦
0,
Al moverse S entre P y Q, los intervalos de carga y
descarga de duraciones t1 y t2 VH UHSLWHQ LQGH¿QLGDmente. Suponga que t1 4 s, t2 2 s, E0 12 V, E(0)
0, E(4) 12, E(6) 0, E(10) 12, E(12) 0,
etc. Determine E(t) para 0 t 24.
b) Suponga para ilustrar que R C 1. Utilice un proJUDPDGHJUD¿FDFLyQSDUDWUD]DUODJUi¿FDGHODVROXción del PVI del inciso a) para 0 t 24.
46. Caja deslizándose a) Una caja de masa m se desliza
hacia abajo por un plano inclinado que forma un ángulo TFRQODKRUL]RQWDOFRPRVHPXHVWUDHQOD¿JXUD
3.1.15. Determine una ecuación diferencial para la
velocidad v(t) de la caja al tiempo t para cada uno de
los casos siguientes:
No hay fricción cinética y no hay resistencia del aire.
ii) Hay fricción cinética y no hay resistencia
del aire.
iii) Hay fricción cinética y hay resistencia del
aire.
i)
En los casos ii) y iii) utilice el hecho de que la fuerza
de fricción que se opone al movimiento es PN, donde
PHVHOFRH¿FLHQWHGHIULFFLyQFLQpWLFD\N es la componente normal del peso de la caja. En el caso iii)
suponga que la resistencia del aire es proporcional a
la velocidad instantánea.
b) En el inciso a), suponga que la caja pesa 96 libras, que
el ángulo de inclinación del plano es T 30°, que el
FRH¿FLHQWHGHIULFFLyQFLQpWLFDHV
13 4, y que
la fuerza de retardo debida a la resistencia del aire es
numéricamente igual a 41v. Resuelva la ecuación diferencial para cada uno de los tres casos, suponiendo
que la caja inicia desde el reposo desde el punto más
alto a 50 pies por encima del suelo.
fricción
movimiento
0 t t1
dE
1
dt
E, t1 t t1 t2.
RC
corazón
R
Q
interruptor
P
S
C
E0
FIGURA 3.1.14 Modelo de un marcapasos del problema 45.
W = mg
50 pies
θ
FIGURA 3.1.15 Caja deslizándose hacia abajo del plano
inclinado del problema 46.
47. Continuación de caja deslizándose a) En el problema
46 sea s(t) la distancia medida hacia abajo del plano
inclinado desde el punto más alto. Utilice ds兾dt
v(t) y la solución de cada uno de los tres casos del
inciso b) del problema 46 para determinar el tiempo
que le toma a la caja deslizarse completamente hacia
abajo del plano inclinado. Aquí puede ser útil un programa para determinar raíces con un SAC.
3.2
b) En el caso en que hay fricción (P 0) pero no hay resistencia del aire, explique por qué la caja no se desliza hacia abajo comenzando desde el reposo desde el
punto más alto arriba del suelo cuando el ángulo de
inclinación ș satisface a tan T P.
c) La caja se deslizará hacia abajo del plano conforme tan T P si a ésta se le proporciona una
velocidad inicial v(0) v0
0. Suponga que
13 4 y ș 23°. Compruebe que tan ș P.
¿Qué distancia se deslizará hacia abajo del plano
si v0 1 pie/s?
13 4 y T 23° para
d) Utilice los valores
aproximar la menor velocidad inicial v0 que puede
tener la caja, para que a partir del reposo a 50 pies
arriba del suelo, se deslice por todo el plano incli-
3.2
MODELOS NO LINEALES
l
93
nado. Después encuentre el tiempo que tarda en deslizarse el plano.
48. Todo lo que sube . . . a) Es bien conocido que el modelo que desprecia la resistencia del aire, inciso a) del
problema 36, predice que el tiempo ta que tarda la bala
de cañón en alcanzar su altura máxima es el mismo
tiempo td que tarda la bala de cañón en llegar al suelo.
Además la magnitud de la velocidad de impacto vi
es igual a la velocidad inicial v0 de la bala de cañón.
Compruebe ambos resultados.
b) Después, utilizando el modelo del problema 37 que
considera la resistencia del aire, compare el valor de
ta con td y el valor de la magnitud de vi con v0. Aquí
puede ser útil un programa para determinar raíces
FRQXQ6$& RXQDFDOFXODGRUDJUD¿FDGRUD
MODELOS NO LINEALES
REPASO DE MATERIAL
l Ecuaciones (5), (6) y (10) de la sección 1.3 y problemas 7, 8, 13, 14 y 17 de los ejercicios 1.3.
l Separación de variables de la sección 2.2.
INTRODUCCIÓN Terminamos nuestro estudio de ecuaciones diferenciales de primer orden simples con el análisis de algunos modelos no lineales.
DINÁMICA POBLACIONAL Si P(t) es el tamaño de una población al tiempo t, el
modelo del crecimiento exponencial comienza suponiendo que dP兾dt kP para cierta
k 0. En este modelo, la WDVDHVSHFt¿FDo relativa de crecimiento,GH¿QLGDSRU
dP>dt
(1)
P
es una constante k. Es difícil encontrar casos reales de un crecimiento exponencial durante
largos periodos, porque en cierto momento los recursos limitados del ambiente ejercerán
restricciones sobre el crecimiento de la población. Por lo que para otros modelos, se puede
esperar que la razón (1) decrezca conforme la población P aumenta de tamaño.
La hipótesis de que la tasa con que crece (o decrece) una población sólo depende del
número presente P y no de mecanismos dependientes del tiempo, tales como los fenómenos estacionales (vea el problema 33, en los ejercicios 1.3), se puede enunciar como:
dP>dt
dP
f (P)
o
Pf (P).
(2)
P
dt
Esta ecuación diferencial, que se adopta en muchos modelos de población de animales, se denomina hipótesis de dependencia de densidad.
f(P)
r
K
P
FIGURA 3.2.1 La suposición más
simple para f (P) es una recta (color azul).
ECUACIÓN LOGÍSTICA Supóngase que un medio es capaz de sostener, como
máximo, una cantidad K determinada de individuos en una población. La cantidad K
se llama capacidad de sustento del ambiente. Así para la función f en la ecuación (2) se
tiene que f (K) 0 y simplemente hacemos f (0) r(QOD¿JXUDYHPRVWUHVIXQFLRnes que satisfacen estas dos condiciones. La hipótesis más sencilla es que f (P) es lineal,
es decir, f (P) c1P c2. Si aplicamos las condiciones f (0) r y f (K) 0, tenemos
que c2 r y c1 r兾K, respectivamente, y así f adopta la forma f (P) r (r兾K)P.
Entonces la ecuación (2) se convierte en
dP
r
P r P .
(3)
dt
K
5HGH¿QLHQGRODVFRQVWDQWHVODHFXDFLyQQROLQHDO HVLJXDOD
冢
冣
94
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
dP
P(a bP).
(4)
dt
Alrededor de 1840, P. F. Verhulst, matemático y biólogo belga, investigó modelos matemáticos para predecir la población humana en varios países. Una de las
ecuaciones que estudió fue la (4), con a 0 y b 0. Esa ecuación se llegó a conocer
como ecuación logística y su solución se denomina función logística/DJUi¿FDGH
una función logística es la curva logística.
La ecuación diferencial dP兾dt kP QR HV XQ PRGHOR PX\ ¿HO GH OD SREODFLyQ
cuando ésta es muy grande. Cuando las condiciones son de sobrepoblación, se presentan efectos negativos sobre el ambiente como contaminación y exceso de demanda de
alimentos y combustible, esto puede tener un efecto inhibidor en el crecimiento para la
población. Como veremos a continuación, la solución de la ecuación (4) está acotada
conforme t → . Si se rescribe (4) como dP兾dt aP bP2, el término no lineal bP2,
b 0 se puede interpretar como un término de “inhibición” o “competencia”. También,
en la mayoría de las aplicaciones la constante positiva a es mucho mayor que b.
Se ha comprobado que las curvas logísticas predicen con bastante exactitud el crecimiento de ciertos tipos de bacterias, protozoarios, pulgas de agua (Dafnia) y moscas
de la fruta ('URVy¿OD) en un espacio limitado.
SOLUCIÓN DE LA ECUACIÓN LOGÍSTICA Uno de los métodos para resolver
la ecuación (4) es por separación de variables. Al descomponer el lado izquierdo de
dP兾P(a bP) dt en fracciones parciales e integrar, se obtiene
冢1>aP a b>abP冣 dP dt
1
1
ln兩 P 兩 ln兩 a bP 兩 t c
a
a
ln
兩a P bP 兩 at ac
P
c1eat.
a bP
ac1eat
ac1
De la última ecuación se tiene que P(t) 1 bc eat bc eat .
1
1
Si P(0) P0, P0 a兾b, encontramos que c1 P0b(a bP0) y así, sustituyendo y
VLPSOL¿FDQGRODVROXFLyQVHFRQYLHUWHHQ
aP0
(5)
P(t)
.
bP0 (a bP0)eat
GRÁFICAS DE P(t ) La forma básica de la función logística P(t) se puede obtener
sin mucho esfuerzo. Aunque la variable t usualmente representa el tiempo y raras veces
se consideran aplicaciones en las que t 0, tiene cierto interés incluir este intervalo al
PRVWUDUODVGLIHUHQWHVJUi¿FDVGHP. De la ecuación (5) vemos que
aP
a
P(t) 0
.
conforme t y P(t) 0 conforme t
bP0 b
La línea punteada P a兾2bGHOD¿JXUDFRUUHVSRQGHDODRUGHQDGDGHXQSXQWR
GHLQÀH[LyQGHODFXUYDORJtVWLFD3DUDPRVWUDUHVWRGHULYDPRVODHFXDFLyQ XVDQGR
la regla del producto:
d 2P
dP
dP dP
P b
(a bP)
(a 2bP)
dt2
dt
dt
dt
冢
冣
P(a bP)(a 2bP)
冢
2b2P P
冣冢P 2ba 冣.
a
b
3.2
P
a/b
a/2b
P0
t
a)
P
a/b
P0
a/2b
t
b)
FIGURA 3.2.2 Curvas logísticas para
diferentes condiciones iniciales.
x = 1000
x
500
5
10
t
(a)
a)
t (días)
4
5
6
7
8
9
10
x (número de infectados)
50 (observados)
124
276
507
735
882
953
b)
FIGURA 3.2.3 El número de
estudiantes infectados en en elejmplo 1.
MODELOS NO LINEALES
l
95
Recuerde, de cálculo, que los puntos donde d 2P兾dt 2 0 son posibles puntos de inÀH[LyQSHURREYLDPHQWHVHSXHGHQH[FOXLUP 0 y P a兾b. Por tanto P a兾2b es
el único valor posible para la ordenada en la cual puede cambiar la concavidad de la
JUi¿FD3DUD P a兾2b se tiene que P 0, y a兾2b P a兾b implica que P
$VtFXDQGRVHOHHGHL]TXLHUGDDGHUHFKDODJUi¿FDFDPELDGHFyQFDYDKDFLDDUULEDD
cóncava hacia abajo, en el punto que corresponde a P a兾2b. Cuando el valor inicial
satisface a 0 P0 a兾2bODJUi¿FDGHP(t) adopta la forma de una S, como se ve en la
¿JXUD D 3DUDa兾2b P0 a兾bODJUi¿FDD~QWLHQHODIRUPDGH6SHURHOSXQWR
GHLQÀH[LyQRFXUUHHQXQYDORUQHJDWLYRGHtFRPRVHPXHVWUDHQOD¿JXUD E
En la ecuación (5) de la sección 1.3 ya hemos visto a la ecuación (4) en la forma
dx兾dt kx(n 1 – x), k 0. Esta ecuación diferencial presenta un modelo razonable
para describir la propagación de una epidemia que comienza cuando se introduce una
persona infectada en una población estática. La solución x(t) representa la cantidad
de personas que contraen la enfermedad al tiempo t.
EJEMPLO 1
Crecimiento logístico
Suponga que un estudiante es portador del virus de la gripe y regresa a un campus
aislado de 1 000 estudiantes. Si se supone que la razón con que se propaga el virus no
sólo a la cantidad x de estudiantes infectados sino también a la cantidad de estudiantes
no infectados, determine la cantidad de estudiantes infectados después de 6 días si
además se observa que después de cuatro días x(4) 50.
SOLUCIÓN Suponiendo que nadie deja el campus mientras dura la enfermedad, debemos resolver el problema con valores iniciales
dx
kx(1000 x), x(0) 1.
dt
,GHQWL¿FDQGRa 1000k y b k, vemos de inmediato en la ecuación (5) que
1000k
1000
.
x(t)
k 999ke1000kt 1 999e1000kt
Ahora, usamos la información x(4) 50 y calculamos k con
1000
.
50
1 999e4000k
19
Encontramos 1000k 14 1n 999
0.9906. Por tanto
1000
.
x(t)
1 999e 0.9906t
Finalmente,
x(6)
1000
276 estudiantes.
1 999e5.9436
(QODWDEODGHOD¿JXUD E VHGDQRWURVYDORUHVFDOFXODGRVGHx(t). Note que el
número de estudiantes infectados x(t) se acerca a 1 000 conforme crece t.
MODIFICACIONES DE LA ECUACIÓN LOGÍSTICA Hay muchas variaciones de
la ecuación logística. Por ejemplo, las ecuaciones diferenciales
dP
dP
(6)
P(a bP) h
P(a bP) h
y
dt
dt
podrían servir, a su vez, como modelos para la población de una pesquería donde el
pez se pesca o se reabastece con una razón h. Cuando h 0 es una constante, las ED
en las ecuaciones (6) se analizan cualitativamente de manera fácil o se resuelven analíticamente por separación de variables. Las ecuaciones en (6) también podrían servir
como modelos de poblaciones humanas que decrecen por emigración o que crecen
por inmigración, respectivamente. La razón h en las ecuaciones (6) podría ser función
del tiempo t o depender de la población; por ejemplo, se podría pescar periódicamente
o con una razón proporcional a la población P al tiempo t. En el último caso, el modelo
sería P P(a – bP) – cP, c 0. La población humana de una comunidad podría cam-
96
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
biar debido a la inmigración de manera que la contribución debida a la inmigración
sea grande cuando la población P de la comunidad era pequeña pero pequeña cuando
P es grande; entonces un modelo razonable para la población de la comunidad sería
Pc P(a bP) cekP, c 0, k 0. Vea el problema 24 de los ejercicios 3.2. Otra
ecuación de la forma dada en (2),
dP
P(a b ln P),
(7)
dt
HVXQDPRGL¿FDFLyQGHODHFXDFLyQORJtVWLFDFRQRFLGDFRPRODecuación diferencial
de Gompertz, llamada así por el matemático inglés Benjamin Gompertz (1779-1865).
Esta ED algunas veces se usa como un modelo en el estudio del crecimiento o decrecimiento de poblaciones, el crecimiento de tumores sólidos y cierta clase de predicciones actuariales. Vea el problema 8 de los ejercicios 3.2.
REACCIONES QUÍMICAS Suponga que a gramos de una sustancia química A se
combinan con b gramos de una sustancia química B. Si hay M partes de A y N partes
de B formadas en el compuesto y X(t) es el número de gramos de la sustancia química
C formada, entonces el número de gramos de la sustancia química A y el número de
gramos de la sustancia química B que quedan al tiempo t son, respectivamente,
M
N
X
b
X.
y
MN
MN
La ley de acción de masas establece que cuando no hay ningún cambio de temperatura,
la razón con la que reaccionan las dos sustancias es proporcional al producto de las
cantidades de A y B que aún no se han transformado al tiempo t :
a
冢
冣冢b M N N X冣.
dX
M
a
X
dt
MN
(8)
Si se saca el factor M兾(M N) del primer factor y N兾(M N) del segundo y se introduce una constante de proporcionalidad k 0, la expresión (8) toma la forma
dX
(9)
k( X)( X),
dt
donde D a(M N )兾M y E b(M N )兾N. Recuerde de (6) en la sección 1.3
que una reacción química gobernada por la ecuación diferencial no lineal (9) se
conoce como una reacción de segundo orden.
EJEMPLO 2
Reacción química de segundo orden
Cuando se combinan dos sustancias químicas A y B se forma un compuesto C. La
reacción resultante entre las dos sustancias químicas es tal que por cada gramo de A
se usan 4 gramos de B. Se observa que a los 10 minutos se han formado 30 gramos
del producto C. Determine la cantidad de C en el tiempo t si la razón de la reacción es
proporcional a las cantidades de A y B que quedan y si inicialmente hay 50 gramos de
A y 32 gramos de B. ¿Qué cantidad de compuesto C hay a los 15 minutos? Interprete
la solución conforme t → .
SOLUCIÓN Sea X(t) la cantidad de gramos del compuesto C presentes en el tiempo
t. Es obvio que X(0) 0 g y X(10) 30 g.
Si, por ejemplo, hay 2 gramos del producto C, hemos debido usar, digamos, a
gramos de A y b gramos de B, así a b 2 y b 4a. Por tanto, debemos usar
a 25 2 15 de la sustancia química A y b 85 2 45 g de B. En general, para obtener
X gramos de C debemos usar
1
4
X gramos de A
X gramos de .B.
y
5
5
Entonces las cantidades de A y B que quedan al tiempo t son respectivamente
()
()
50
1
X
5
y
32
4
X,
5
3.2
MODELOS NO LINEALES
97
l
Sabemos que la razón con la que se forma el compuesto C satisface que
冢
冣冢32 54 X冣.
1
dX
50 X
dt
5
3DUDVLPSOL¿FDUODVRSHUDFLRQHVDOJHEUDLFDVVXEVHFXHQWHVIDFWRUL]DPRV 15 del primer
término y 45 del segundo y después introducimos la constante de proporcionalidad:
dX
k(250 X)(40 X).
dt
Separamos variables y por fracciones parciales podemos escribir que
1
210
250 X
dX
1
210
40 X
dX k dt.
Al integrar se obtiene
In
250
40
X
X
210kt
c1 o
250
40
X
X
c2e210kt.
(10)
Cuando t 0, X 0, se tiene que en este punto c2 254. Usando X 30 g en t 10
88
0.1258. Con esta información se despeja X de la
encontramos que 210 k 101 ln 25
última ecuación (10):
X(t) 1000
X
X = 40
1 e0.1258t .
25 4e0.1258t
De (11) encontramos X(15) 34.78 gramos(QOD¿JXUDVHSUHVHQWDHOFRPportamiento de X como una función del tiempo. Es claro de la tabla adjunta y de la
ecuación (11) que X → 40 conforme t → (VWRVLJQL¿FDTXHVHIRUPDQJUDPRV
del compuesto C, quedando
1
50 (40) 42 g de A
5
10 20 30 40
10
15
20
25
30
35
4
32 (40) 0 g de B.
5
y
t
a)
t (min)
(11)
X (g)
30 (medido)
34.78
37.25
38.54
39.22
39.59
b)
FIGURA 3.2.4 Número de gramos del
compuesto C en el ejemplo 2.
COMENTARIOS
/DLQWHJUDOLQGH¿QLGD兰 du兾(a 2 u 2) se puede evaluar en términos de logaritmos tangente hiperbólica inversa, o de la cotangente hiperbólica inversa. Por
ejemplo, de los dos resultados
du
a
2
u
2
du
a2
u2
1
tanh
a
1
2a
1
In
u
a
a
a
c,
u
u
u
(12)
a
c,
u
a,
(13)
la ecuación (12) puede ser conveniente en los problemas 15 y 26 de los ejercicios 3.2, mientras que la ecuación (13) puede ser preferible en el problema 27.
98
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJERCICIOS 3.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-3.
Ecuación logística
1. La cantidad N(t) de supermercados del país que están
usando sistemas de revisión computarizados se describe
por el problema con valores iniciales
dN
N(1 0.0005N), N(0) 1.
dt
a) Use el concepto de esquema de fase de la sección 2.1
para predecir cuántos supermercados se espera que
adopten el nuevo procedimiento en un periodo prolongado. A mano, dibuje una curva solución del problema
con valores iniciales dados.
b) Resuelva el problema con valores iniciales y después
XWLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUDFRPSUREDU\
trazar la curva solución del inciso a). ¿Cuántas compañías se espera que adopten la nueva tecnología
cuando t 10?
2. La cantidad N(t) de personas en una comunidad bajo la
LQÀXHQFLD GH GHWHUPLQDGR DQXQFLR HVWi JREHUQDGD SRU
la ecuación logística. Inicialmente N(0) 500 y se observa que N(1) 1 000. Determine N(t) si se predice que
habrá un límite de 50 000 personas en la comunidad
que verán el anuncio.
3. Un modelo para la población P(t) en un suburbio de una
gran ciudad está descrito por el problema con valores iniciales
dP
P(10 1 10 7 P), P(0) 5000,
dt
donde t se expresa en meses. ¿Cuál es el valor límite de
la población? ¿Cuánto tardará la población en alcanzar la
mitad de ese valor límite?
4. a) En la tabla 3.1 se presentan los datos del censo de los
Estados Unidos entre 1790 y 1950. Construya un modelo de población logístico usando los datos de 1790,
1850 y 1910.
TABLA 3.1
Año
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
Población (en millones)
3.929
5.308
7.240
9.638
12.866
17.069
23.192
31.433
38.558
50.156
62.948
75.996
91.972
105.711
122.775
131.669
150.697
b) Construya una tabla en la que se compare la población real del censo con la población predicha por el
modelo del inciso a). Calcule el error y el error porcentual para cada par de datos.
Modificaciones del modelo logístico
5. a) Si se pesca un número constante h de peces de una pesquería por unidad de tiempo, entonces un modelo para la
población P(t) de una pesquería al tiempo t está dado por
dP
P(a bP) h, P(0) P0,
dt
donde a, b, h y P0 son constantes positivas. Suponga
que a 5, b 1 y h 4. Puesto que la ED es autónoma, utilice el concepto de esquema de fase de la
sección 2.1 para dibujar curvas solución representativas que corresponden a los casos P0 4, 1 P0
4 y 0 P0 1. Determine el comportamiento de la
población a largo plazo en cada caso.
b) Resuelva el PVI del inciso a). Compruebe los resultados de su esquema de fase del inciso a) utilizando
XQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODJUi¿FDGH
P(t) con una condición inicial tomada de cada uno
de los tres intervalos dados.
c) Utilice la información de los incisos a) y b) para determinar si la población de la pesquería desaparecerá en
XQWLHPSR¿QLWR'HVHUDVtGHWHUPLQHHVHWLHPSR
6. Investigue el modelo de pesca del problema 5 tanto cualitativa como analíticamente en el caso en que a 5, b
1, h 254 . Determine si la población desaparecerá en un
WLHPSR¿QLWR'HVHUDVtGHWHUPLQHHVHWLHPSR
7. Repita el problema 6 en el caso a 5, b 1, h 7.
8. a) Suponga a b 1 en la ecuación diferencial de
Gompertz, ecuación (7). Puesto que la ED es autónoma, utilice el concepto de esquema de fase de la
sección 2.1 para dibujar curvas solución representativas correspondientes a los casos P0 e y 0 P0 e.
b) Suponga que a 1, b 1 en la ecuación (7).
Utilice un nuevo esquema de fase para dibujar las
curvas solución representativas correspondientes a
los casos P0 e1 y 0 P0 e1.
c) Encuentre una solución explícita de la ecuación (7)
sujeta a P(0) P0.
Reacciones químicas
9. Dos sustancias químicas A y B se combinan para formar la
sustancia química C. La razón de reacción es proporcional
al producto de las cantidades instantáneas de A y B que no
se han convertido en C. Al principio hay 40 gramos de A y
50 gramos de B, y por cada gramo de B se consumen 2 de
A. Se observa que a los cinco minutos se han formado 10
gramos de C. ¿Cuánto se forma en 20 minutos de C? ¿Cuál
3.2
es la cantidad límite de C a largo plazo? ¿Cuánto de las
sustancias A y B queda después de mucho tiempo?
10. Resuelva el problema 9 si hay al principio 100 gramos
de la sustancia química A. ¿Cuándo se formará la mitad de
la cantidad límite de C?
MODELOS NO LINEALES
l
99
Aw
20 pies
h
Modelos no lineales adicionales
11. Tanque cilíndrico con gotera Un tanque en forma
de un cilindro recto circular en posición vertical está sacando agua por un agujero circular en su fondo. Como
se vio en (10) de la sección 1.3, cuando se desprecia la
fricción y la contracción del agujero, la altura h del agua
en el tanque está descrita por
A
dh
h 12gh,
dt
Aw
donde Aa y Ah son las áreas de sección transversal del
agua y del agujero, respectivamente.
a) Resuelva la ED si la altura inicial del agua es H. A
PDQR GLEXMH OD JUi¿FD GH h(t) y de su intervalo de
GH¿QLFLyQI en términos de los símbolos Aw, Ah y H.
Utilice g 32 pies/s2.
b) Suponga que el tanque tiene 10 pies de altura y un
radio de 2 pies y el agujero circular tiene un radio de
1
pulg. Si el tanque está inicialmente lleno, ¿cuánto
2
tarda en vaciarse?
12. Tanque cilíndrico con gotera, continuación Cuando
se considera la fricción y contracción del agua en el agujero, el modelo del problema 11 se convierte en
dh
A
c h 12gh,
dt
Aw
donde 0 c 1. ¿Cuánto tarda el tanque del problema
11b en vaciarse si c 0.6? Vea el problema 13 de los
ejercicios 1.3.
13. Tanque cónico con gotera Un tanque con forma de
cono recto con el vértice hacia abajo, está sacando agua
por un agujero circular en su fondo.
a) Suponga que el tanque tiene 20 pies de altura y tiene
un radio de 8 pies y el agujero circular mide dos pulgadas de radio. En el problema 14 de los ejercicios
1.3 se le pidió mostrar que la ecuación diferencial que
gobierna la altura h del agua que sale del tanque es
dh
5
3/2.
dt
6h
En este modelo, se consideró la fricción y la contracción del agua en el agujero con c 0.6 y el valor de g
se tomó de 32 pies/s29HDOD¿JXUD6LDOSULQFLpio el tanque está lleno, ¿cuánto tarda en vaciarse?
b) Suponga que el tanque tiene un ángulo de vértice de
60° y el agujero circular mide dos pulgadas de radio.
Determine la ecuación diferencial que gobierna la altura h del agua. Utilice c 0.6 y g 32 pies/s2. Si al
principio la altura del agua es de 9 pies, ¿cuánto tarda
en vaciarse el tanque?
8 pies
FIGURA 3.2.5 Tanque cónico invertido del problema 14.
14. Tanque cónico invertido Suponga que se invierte el tanTXHFyQLFRGHOSUREOHPD D FRPRVHPXHVWUDHQOD¿JXUD
3.2.5 y que sale agua por un agujero circular con un radio de
dos pulgadas en el centro de su base circular. ¿El tiempo en
que se vacía el tanque lleno es el mismo que para el tanque
FRQHOYpUWLFHKDFLDDEDMRGHOSUREOHPD"7RPHHOFRH¿ciente de fricción/contracción de c 0.6 y g 32 pies/s2.
15. Resistencia del aire Una ecuación diferencial para la velocidad v de una masa m que cae sujeta a la resistencia del
aire proporcional al cuadrado de la velocidad instantánea es
dv
m mg kv 2,
dt
donde k
0 es una constante de proporcionalidad. La
dirección positiva es hacia abajo.
a) Resuelva la ecuación sujeta a la condición inicial
v(0) v0.
b) Utilice la solución del inciso a) para determinar la velocidad límite, o terminal de la masa. En el problema
41 de los ejercicios 2.1 vimos cómo determinar la velocidad terminal sin resolver la ED.
c) Si la distancia s, medida desde el punto donde se
suelta la masa sobre el suelo, está relacionada con la
velocidad v por ds兾dt v(t), encuentre una expresión
explícita para s(t) si s(0) 0.
16. ¿Qué tan alto? Resistencia del aire no lineal Considere
la bala de cañón de 16 libras que se dispara verticalmente
hacia arriba en los problemas 36 y 37 en los ejercicios
3.1 con una velocidad inicial v0 300 pies/s. Determine
la altura máxima que alcanza la bala si se supone que la
resistencia del aire es proporcional al cuadrado de la velocidad instantánea. Suponga que la dirección positiva es
hacia arriba y tome k 0.0003. [Sugerencia0RGL¿TXH
un poco la ED del problema 15.]
17. Esa sensación de hundimiento a) Determine una ecuación diferencial para la velocidad v(t) de una masa m que
se hunde en agua que le da una resistencia proporcional
al cuadrado de la velocidad instantánea y también ejerce
una fuerza boyante hacia arriba cuya magnitud está dada
por el principio de Arquímedes. Vea el problema 18 de
los ejercicios 1.3. Suponga que la dirección positiva es
hacia abajo.
b) Resuelva la ecuación diferencial del inciso a).
c) Determine la velocidad límite, o terminal, de la masa
hundida.
100
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
18. Colector solar La ecuación diferencial
dy x 1x y
dx
y
describe la forma de una curva plana C TXH UHÀHMD ORV
haces de luz entrantes al mismo punto y podría ser un moGHORSDUDHOHVSHMRGHXQWHOHVFRSLRUHÀHFWRUXQDDQWHQD
de satélite o un colector solar. Vea el problema 29 de los
ejercicios 1.3. Hay varias formas de resolver esta ED.
a) Compruebe que la ecuación diferencial es homogénea (vea la sección 2.5). Demuestre que la sustitución
y ux produce
2
2
11 u 1 11 u
u du
2
(
2
)
dx
x
.
Utilice un SAC (u otra sustitución adecuada) para integrar el lado izquierdo de la ecuación. Muestre que
la curva C debe ser una parábola con foco en el origen
y simétrica respecto al eje x.
b) Demuestre que la ecuación diferencial puede también
resolverse por medio de la sustitución u x2 y2.
19. Tsunami a) Un modelo simple para la forma de un
tsunami o maremoto, está dado por
dW
W 14 2W,
dx
donde W(x) 0 es la altura de la ola expresada como
una función de su posición respecto a un punto en
altamar. Examinando, encuentre todas las soluciones
constantes de la ED.
b) Resuelva la ecuación diferencial del inciso a). Un
SAC puede ser útil para la integración.
c) 8
VHXQSURJUDPDGHJUD¿FDFLyQSDUDREWHQHUODVJUi¿FDVGHODVVROXFLRQHVTXHVDWLVIDFHQODFRQGLFLyQLQLcial W(0) 2.
20. Evaporación Un estanque decorativo exterior con forma de tanque semiesférico se llenará con agua bombeada
hacia el tanque por una entrada en su fondo. Suponga que
el radio del tanque es R 10 pies, que el agua se bombea
a una rapidez de S pies3/minuto y que al inicio el tanque
HVWiYDFtR9HDOD¿JXUD&RQIRUPHVHOOHQDHOWDQTXH
éste pierde agua por evaporación. Suponga que la rapidez
de evaporación es proporcional al área AGHODVXSHU¿FLHVREUH
el agua y que la constante de proporcionalidad es k 0.01.
a) La rapidez de cambio dV兾dt del volumen del agua
al tiempo t es una rapidez neta. Utilice esta rapidez
neta para determinar una ecuación diferencial para la
altura h del agua al tiempo t. El volumen de agua que
VHPXHVWUDHQOD¿JXUDHVV pRh 2 13ph 3, donde R
([SUHVHHOiUHDGHODVXSHU¿FLHGHODJXDA
Sr2 en términos de h.
b) Resuelva la ecuación diferencial del inciso a). Trace
ODJUi¿FDGHODVROXFLyQ
c) Si no hubiera evaporación, ¿cuánto tardaría en llenarse el tanque?
d) Con evaporación, ¿cuál es la profundidad del agua en
el tiempo que se determinó en el inciso c)? ¿Alguna
YH]VHOOHQDUiHOWDQTXH"'HPXHVWUHVXD¿UPDFLyQ
21. (TXDFLyQGHO¿QGHOPXQGR Considere la ecuación diferencial
dP
kP1 c
dt
donde k 0 y c 0. En la sección 3.1 vimos que cuando
c 0 la ecuación diferencial lineal dP兾dt kP es un modelo matemático de una población P(t) que presenta un creFLPLHQWRQRDFRWDGRVREUHXQLQWHUYDORGHWLHPSRLQ¿QLWR>
), es decir P(t) → conforme t → . Vea el ejemplo 1 de
la sección 3.1.
a) Suponga para c 0.01 que la ecuación diferencial no
lineal
dP
kP1.01, k 0
dt
es un modelo matemático para una población de pequeños animales, donde el tiempo t se mide en meses.
Resuelva la ecuación diferencial sujeta a la condición
inicial P(0) 10 y al hecho de que la población de
animales se ha duplicado en 5 meses.
b) La ecuación diferencial del inciso a) se denomina
HFXDFLyQGHO¿QGHOPXQGR porque la población P(t)
presenta un crecimiento no acotado sobre un intervalo
GHWLHPSR¿QLWR T), es decir, hay algún tiempo T tal
que P(t) → conforme t → T. Encuentre T.
c) A partir del inciso a), ¿qué es P(50)? ¿P(100)?
22. Fin del mundo o extinción Suponga que el modelo poEODFLRQDO VHPRGL¿FDDVt
dP
dt
P(bP
a)
a) Si a
0, b
0, demuestre mediante un diagrama
fase (vea 2.1.2) que, dependiendo de las condiciones
iniciales P(0) P0, el modelo matemático podría inFOXLUXQHVFHQDULRGH¿QGHOPXQGR P(t) → ) o un
escenario de extinción (P(t) → 0).
b) Resuelva el problema con valores iniciales
dP兾dt P(0.0005P 0.1), P(0) 300
'HPXHVWUHTXHHVWHPRGHORSUHGLFHXQ¿QGHOPXQGR
SDUDODSREODFLyQHQXQWLHPSR¿QLWRT.
c) Resuelva la ecuación diferencial del inciso b) sujeta a la
condición inicial P(0) 100. Demuestre que este modelo
predice la extinción de la población conforme t → .
Salida: el agua se evapora con una razón
proporcional al área A de la superficie
R
h
A
V
r
Entrada: el agua se bombea con
una razón de π pies 3/min
a) tanque semiesférico
b) sección transversal del tanque
FIGURA 3.2.6 Estanque decorativo del problema 20.
3.2
Problemas de proyecto
23. Recta de regresión Lea en el manual de su SAC acerca
de JUi¿FDV GH GLVSHUVLyQ (o diagramas de dispersión)
y ajuste de rectas por mínimos cuadrados. La recta que
mejor se ajusta a un conjunto de datos se llama recta de
regresión o recta de mínimos cuadrados. Su tarea
es construir un modelo logístico para la población de
(VWDGRV8QLGRVGH¿QLHQGRf (P) en (2) como una ecuación de una recta de regresión que se basa en los datos
de población que aparecen en la tabla del problema 4.
Una manera de hacer esto es aproximar el lado izquierdo
1 dP
de la primera ecuación en (2), utilizando el coP dt
ciente de diferencias hacia adelante en lugar de dP兾dt:
1 P(t h) P(t)
.
P(t)
h
a) Haga una tabla de los valores t, P(t) y Q(t) usando t
0, 10, 20, . . . , 160 y h 10. Por ejemplo, el primer renglón de la tabla debería contener t 0, P(0) y
Q(0). Con P(0) 3.929 y P(10) 5.308,
Q(t)
1 P(10) P(0)
0.035.
P(0)
10
Observe que Q(160) depende de la población del
censo de 1960 P(l70). Busque este valor.
Use un SAC para obtener el diagrama de dispersión
de los datos (P(t), Q(t)) que se calculó en el inciso a).
También utilice un SAC para encontrar una ecuación
GHODUHFWDGHUHJUHVLyQ\VXSHUSRQHUVXJUi¿FDHQHO
diagrama de dispersión.
Construya un modelo logístico dP兾dt Pf (P), donde
f (P) es la ecuación de la recta de regresión que se
encontró en el inciso b).
Resuelva el modelo del inciso c) usando la condición
inicial P(0) 3.929.
Utilice un SAC para obtener un diagrama de dispersión,
esta vez de los pares ordenados (t, P(t)) de su tabla del
LQFLVRD 8WLOLFHXQ6$&SDUDVXSHUSRQHUODJUi¿FDGH
la solución del inciso d) en el diagrama de dispersión.
Busque los datos del censo de Estados Unidos para
1970, 1980 y 1990. ¿Qué población predice el modelo logístico del inciso c) para estos años? ¿Qué
predice el modelo para la población P(t) de Estados
Unidos conforme t → ?
Q(0)
b)
c)
d)
e)
f)
24. Modelo de inmigración a) En los ejemplos 3 y 4 de
la sección 2.1 vimos que cualquier solución P(t) de (4)
tiene el comportamiento asintótico P(t) → a兾b conforme
t → para P0 a兾b y para 0 P0 a兾b; como consecuencia, la solución de equilibrio P a兾b se llama un
atractor. Utilice un programa para determinar raíces de
XQ6$& RXQDFDOFXODGRUDJUD¿FDGRUD SDUDDSUR[LPDU
la solución de equilibrio del modelo de inmigración
dP
P(1 P) 0.3eP.
dt
MODELOS NO LINEALES
l
101
b) 8
WLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODJUi¿FD
de la función F(P) P(1 P) 0.3e P. Explique
FyPR VH SXHGH XWLOL]DU HVWD JUi¿FD SDUD GHWHUPLQDU
si el número que se encontró en el inciso a) es un
atractor.
c) Use un programa de solución numérica para comparar las curvas solución de los PVI
dP
P(1 P), P(0) P0
dt
Para P0 0.2 y P0 1.2 con las curvas solución para
los PVI.
dP
P(1 P) 0.3eP, P(0) P0
dt
para P0 0.2 y P0 1.2. Superponga todas las curvas en
los mismos ejes de coordenadas pero, si es posible, utilice un color diferente para las curvas del segundo problema con valores iniciales. En un periodo largo, ¿qué
incremento porcentual predice el modelo de inmigración
en la población comparado con el modelo logístico?
25. Todo lo que sube . . . En el problema 16 sea ta el tiempo
que tarda la bala de cañón en alcanzar su altura máxima y
sea td el tiempo que tarda en caer desde la altura máxima
hasta el suelo. Compare el valor ta con el valor de td y
compare la magnitud de la velocidad de impacto vi con
la velocidad inicial v0. Vea el problema 48 de los ejercicios 3.1. Aquí puede ser útil un programa para determinar
raíces de un SAC. [Sugerencia: Utilice el modelo del problema 15 cuando la bala de cañón va cayendo.]
26. Paracaidismo Un paracaidista está equipado con un
FURQyPHWUR\XQDOWtPHWUR&RPRVHPXHVWUDHQOD¿JXUD
3.2.7, el paracaidista abre su paracaídas 25 segundos después de saltar del avión que vuela a una altitud de 20 000
pies, y observa que su altitud es de 14 800 pies. Suponga
que la resistencia del aire es proporcional al cuadrado
de la velocidad instantánea, la velocidad inicial del paracaidista al saltar del avión es cero y g 32 pies/s2.
a) Encuentre la distancia s(t), medida desde el avión, que
ha recorrido el paracaidista durante la caída libre en el
tiempo t. [Sugerencia: 1R VH HVSHFL¿FD OD FRQVWDQWH
de proporcionalidad k en el modelo del problema 15.
Use la expresión para la velocidad terminal vt que se
obtuvo en el inciso b) del problema 15 para eliminar k
GHO39,/XHJR¿QDOPHQWHHQFXHQWUHvt.]
b) ¿Qué distancia descendió el paracaidista y cuál es su
velocidad cuando t 15 s?
s(t)
14 800 pies
25 s
FIGURA 3.2.7 Paracaidista del problema 26.
102
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
27. Tocando fondo Un helicóptero sobrevuela 500 pies por
arriba de un gran tanque abierto lleno de líquido (no agua).
Se deja caer un objeto compacto y denso que pesa 160 libras
(liberado desde el reposo) desde el helicóptero en el líquido.
Suponga que la resistencia del aire es proporcional a la velocidad instantánea v en tanto el objeto está en el aire y que
el amortiguamiento viscoso es proporcional a v2 después de
que el objeto ha entrado al líquido. Para el aire, tome k
1
, y para el líquido tome k 0.1. Suponga que la dirección
4
positiva es hacia abajo. Si el tanque mide 75 pies de alto, determine el tiempo y la velocidad de impacto cuando el objeto
golpea el fondo del tanque. [Sugerencia: Piense en términos
de dos PVI distintos. Si se utiliza la ecuación (13), tenga
cuidado de eliminar el signo de valor absoluto. Se podría
comparar la velocidad cuando el objeto golpea el líquido, la
velocidad inicial para el segundo problema, con la velocidad
terminal vt del objeto cuando cae a través del líquido.]
28. Hombre en el río . . . (QOD¿JXUD D VXSRQJDTXH
el eje y y la recta vertical x 1 representan, respectivamente, las playas oeste y este de un río que tiene 1 milla
GHDQFKR(OUtRÀX\HKDFLDHOQRUWHFRQXQDYHORFLGDGvr,
donde |vr| vr mi/h es una constante. Un hombre entra a
la corriente en el punto (1, 0) en la costa este y nada en
una dirección y razón respecto al río dada por el vector vs,
donde la velocidad |vs| vs mi/h es una constante. El hombre quiere alcanzar la costa oeste exactamente en (1, 0) y
así nadar de tal forma que conserve su vector velocidad vs
VLHPSUHFRQGLUHFFLyQKDFLD 8WLOLFHOD¿JXUDE
como una ayuda para mostrar que un modelo matemático
para la trayectoria del nadador en el río es
dy vsy vr 1x2 y2
.
dx
vs x
[Sugerencia: La velocidad v del nadador a lo largo de la
WUD\HFWRULDRFXUYDTXHVHPXHVWUDHQOD¿JXUDHV
la resultante v vs vr. Determine vs y vr en componentes en las direcciones x y y. Si x x(t), y y(t) son
ecuaciones paramétricas de la trayectoria del nadador, entonces v (dx兾dt, dy兾dt)].
y
nadador
playa
oeste
playa
este
corriente
vr
(1, 0) x
(0, 0)
a)
y
vr
(x(t), y(t))
vs
y(t)
θ
(0, 0)
(1, 0) x
x(t)
b)
FIGURA 3.2.8 Trayectoria del nadador del problema 28.
29. a) Resuelva la ED del problema 28 sujeto a y(1) 0. Por
conveniencia haga k vr兾vs.
b) Determine los valores de vs, para los que el nadador
alcanzará el punto (0, 0) examinando lím y(x) en los
x:0
casos k 1, k 1 y 0 k 1.
30. Hombre en el río se sigue moviendo . . . Suponga
que el hombre del problema 28 de nuevo entra a la corriente en (1, 0) pero esta vez decide nadar de tal forma
que su vector velocidad vs está siempre dirigido hacia
la playa oeste. Suponga que la rapidez |vs| vs mi/h
es una constante. Muestre que un modelo matemático
para la trayectoria del nadador en el río es ahora
v
dy
r.
dx
vs
31. La rapidez de la corriente vr de un río recto tal como el del
problema 28 usualmente no es una constante. Más bien,
una aproximación a la rapidez de la corriente (medida en
millas por hora) podría ser una función tal como vr(x)
30x(1 x), 0 x 1, cuyos valores son pequeños en las
costas (en este caso, vr(0) 0 y vr(1) 0 y más grande
en la mitad de río. Resuelva la ED del problema 28 sujeto
a y(1) 0, donde vs 2 mi/h y vr(x) está dado. Cuando el
nadador hace esto a través del río, ¿qué tanto tendrá que
caminar en la playa para llegar al punto (0, 0)?
32. Las gotas de lluvia siguen cayendo . . . Cuando hace
poco se abrió una botella de refresco se encontró que dentro de la tapa decía:
La velocidad promedio de una gota de lluvia cayendo es
de 7 millas/hora.
En una búsqueda rápida por la internet se encontró que el
meteorólogo Jeff Haby ofrecía información adicional de
que una gota de lluvia esférica en “promedio” tenía un radio
de 0.04 pulg. y un volumen aproximado de 0.000000155
pies3. Utilice estos datos, y si se necesita investigue más, y
haga otras suposiciones razonables para determinar si “la
velocidad promedio de . . . 7 millas por hora” es consistente
con los modelos de los problemas 35 y 36 de los ejercicios 3.1 y con el problema 15 de este conjunto de ejercicios.
También vea el problema 36 de los ejercicios 1.3.
33. El tiempo gotea La clepsidra, o reloj de agua, fue un
dispositivo que los antiguos egipcios, griegos, romanos y
chinos usaban para medir el paso del tiempo al observar el
cambio en la altura del agua a la que se le permitía salir por
un agujero pequeño en el fondo de un tanque.
a) Suponga que se ha hecho un tanque de vidrio y que
tiene la forma de un cilindro circular recto de radio 1
pie. Suponga que h(0) 2 pies corresponde a agua
llena hasta la tapa del tanque, un agujero en el fondo
es circular con radio 321 pulg, g 32 pies/s2 y c 0.6.
Utilice la ecuación diferencial del problema 12 para
encontrar la altura h(t) del agua.
b) Para el tanque del inciso a), ¿a qué altura desde su
fondo se debería marcar ese lado, como se muestra en
OD¿JXUDTXHFRUUHVSRQGHDOSDVRGHXQDKRUD"
Después determine dónde colocaría las marcas correspondientes al paso de 2 h, 3 h, . . . , 12 h. Explique por
qué estas marcas no están espaciadas uniformemente.
3.3
MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN
l
103
b) ¿Puede este reloj de agua medir 12 intervalos de tiempo
de duración de 1 hora? Explique matemáticamente.
35. Suponga que r f (h GH¿QHODIRUPDGHXQUHORMGHDJXD
en el que las marcas del tiempo están igualmente espaciadas. Utilice la ecuación diferencial del problema 12 para
encontrar f (h \GLEXMHXQDJUi¿FDWtSLFDGHh como una
función de r. Suponga que el área de sección transversal
Ah del agujero es constante. [Sugerencia: En este caso
dh兾dt a donde a 0 es una constante.]
1
1 hora
2
2 horas
FIGURA 3.2.9 Clepsidra del problema 33.
1
34. a) Suponga que un tanque de vidrio tiene la forma de un
cono con sección transversal circular como se muestra
HQOD¿JXUD&RPRHQHOLQFLVRD GHOSUREOHPD
33, suponga que h(0) 2 pies corresponde a agua
llena hasta la parte superior del tanque, un agujero
circular en el fondo de radio 321 pulg, g 32 pies/s2 y
c 0.6. Utilice la ecuación diferencial del problema
12 para encontrar la altura h(t) del agua.
3.3
2
FIGURA 3.2.10 Clepsidra del problema 34.
MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN
REPASO DE MATERIAL
l Sección 1.3.
INTRODUCCIÓN Esta sección es similar a la sección 1.3 ya que se van a analizar ciertos modelos
matemáticos, pero en lugar de una sola ecuación diferencial los modelos serán sistemas de ecuaciones
diferenciales de primer orden. Aunque algunos de los modelos se basan en temas que se analizaron
en las dos secciones anteriores, no se desarrollan métodos generales para resolver estos sistemas. Hay
razones para esto: Primero, hasta el momento no se tienen las herramientas matemáticas necesarias
para resolver sistemas. Segundo, algunos de los sistemas que se analizan, sobre todo los sistemas de
ED no lineales de primer orden, simplemente no se pueden resolver de forma analítica. Los capítulos
4, 7 y 8 tratan métodos de solución para sistemas de ED lineales.
SISTEMAS LINEALES Y NO LINEALES Hemos visto que una sola ecuación diferencial puede servir como modelo matemático para una sola población en un medio
ambiente. Pero si hay, por ejemplo, dos especies que interactúan, y quizá compiten,
viviendo en el mismo medio ambiente (por ejemplo, conejos y zorros), entonces un
modelo para sus poblaciones x(t) y y(t) podría ser un sistema de dos ecuaciones diferenciales de primer orden como
dx
g1(t, x, y)
dt
(1)
dy
g2(t, x, y).
dt
Cuando g1 y g2 son lineales en las variables x y y, es decir, g1 y g2 tienen las formas
g1(t, x, y)
c1 x
c2 y
f1(t) y g2 (t, x, y)
c3 x
c4 y
f2(t),
GRQGHORVFRH¿FLHQWHVci podrían depender de t, entonces se dice que es un sistema
lineal. Un sistema de ecuaciones diferenciales que no es lineal se llama no lineal.
104
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
SERIES RADIACTIVAS En el análisis del decaimiento radiactivo en las secciones 1.3
y 3.1 se supuso que la razón de decaimiento era proporcional a la cantidad A(t) de núcleos de la sustancia presentes en el tiempo t. Cuando una sustancia se desintegra por
radiactividad, usualmente no transmuta en un solo paso a una sustancia estable, sino que
la primera sustancia se transforma en otra sustancia radiactiva, que a su vez forma una
tercera sustancia, etc. Este proceso, que se conoce como serie de decaimiento radiactivo continúa hasta que llega a un elemento estable. Por ejemplo, la serie de decaimiento
del uranio es U-238 → Th-234 →
→ Pb-206, donde Pb-206 es un isótopo estable
del plomo. La vida media de los distintos elementos de una serie radiactiva pueden variar
de miles de millones de años (4.5 109 años para U-238) a una fracción de segundo.
1
2
Suponga que una serie radiactiva se describe en forma esquemática por X :
Y : Z,
donde k1 O1 0 y k2 O2 0 son las constantes de desintegración para las sustancias X y Y, respectivamente, y Z es un elemento estable. Suponga, también, que x(t),
y(t) y z(t) denotan las cantidades de sustancias X, Y y Z, respectivamente, que quedan al
tiempo t. La desintegración del elemento X se describe por
dx
1x,
dt
mientras que la razón a la que se desintegra el segundo elemento Y es la razón neta
dy
1 x 2 y,
dt
porque Y está ganando átomos de la desintegración de X y al mismo tiempo perdiendo
átomos como resultado de su propia desintegración. Como Z es un elemento estable,
simplemente está ganando átomos de la desintegración del elemento Y:
dz
2 y.
dt
En otras palabras, un modelo de la serie de decaimiento radiactivo para los tres elementos es el sistema lineal de tres ecuaciones diferenciales de primer orden
dx
1 x
dt
dy
1 x 2 y
dt
(2)
dz
2 y.
dt
MEZCLAS &RQVLGHUH ORV GRV WDQTXHV TXH VH LOXVWUDQ HQ OD ¿JXUD 6XSRQJD
que el tanque A contiene 50 galones de agua en los que hay disueltas 25 libras de sal.
Suponga que el tanque B contiene 50 galones de agua pura. A los tanques entra y sale
OtTXLGRFRPRVHLQGLFDHQOD¿JXUDVHVXSRQHTXHWDQWRODPH]FODLQWHUFDPELDGDHQWUH
los dos tanques como el líquido bombeado hacia fuera del tanque B están bien mezclados. Se desea construir un modelo matemático que describa la cantidad de libras x1(t)
y x2(t) de sal en los tanques A y B, respectivamente, en el tiempo t.
agua pura
3 gal/min
mezcla
1 gal/min
A
B
mezcla
4 gal/min
FIGURA 3.3.1 Tanques mezclados conectados.
mezcla
3 gal/min
3.3
MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN
l
105
Con un análisis similar al de la página 23 en la sección 1.3 y del ejemplo 5 de la
sección 3.1 vemos que la razón de cambio neta de x1(t) para el tanque A es
razón de entrada
de la sal
dx1
––– (3 gal/min) (0 lb/gal) (1 gal/min)
dt
razón de salida
de la sal
(
)
x
–––2 lb/gal (4 gal/min)
50
(
)
x
–––1 lb/gal
50
2
1
––– x1 ––– x2.
25
50
De manera similar, para el tanque B la razón de cambio neta de x2(t) es
dx2
x
x
x
4ⴢ 1 3ⴢ 2 1ⴢ 2
dt
50
50
50
2
2
x1 x2.
25
25
Así obtenemos el sistema lineal
dx1
2
1
x1
x
dt
25
50 2
(3)
2
2
dx2
x
x.
dt
25 1 25 2
Observe que el sistema anterior va acompañado de las condiciones iniciales x1(0) 25,
x2(0) 0.
MODELO PRESA-DEPREDADOR Suponga que dos especies de animales interactúan dentro del mismo medio ambiente o ecosistema, y suponga además que
la primera especie se alimenta sólo de vegetación y la segunda se alimenta sólo de la
primera especie. En otras palabras, una especie es un depredador y la otra es una presa.
Por ejemplo, los lobos cazan caribúes que se alimentan de pasto, los tiburones devoran
peces pequeños y el búho nival persigue a un roedor del Ártico llamado lemming. Por
razones de análisis, imagínese que los depredadores son zorros y las presas, conejos.
Sea x(t) y y(t) las poblaciones de zorros y conejos, respectivamente, en el tiempo t.
Si no hubiera conejos, entonces se podría esperar que los zorros, sin un suministro
adecuado de alimento, disminuyeran en número de acuerdo con
dx
(4)
ax,
a 0.
dt
Sin embargo, cuando hay conejos en el medio, parece razonable que el número de
encuentros o interacciones entre estas dos especies por unidad de tiempo sea conjuntamente proporcional a sus poblaciones x y y, es decir, proporcional al producto xy. Así,
cuando están presentes los conejos hay un suministro de alimento y, en consecuencia,
los zorros se agregan al sistema en una proporción bxy, b 0. Sumando esta última
proporción a (4) se obtiene un modelo para la población de zorros:
dx
(5)
ax bxy.
dt
Por otro lado, si no hay zorros, entonces la población de conejos, con una suposición
adicional de suministro ilimitado de alimento, crecería con una razón proporcional al
número de conejos presentes al tiempo t :
dy
dy,
d 0.
(6)
dt
Pero cuando están presentes los zorros, un modelo para la población de conejos es
la ecuación (6) disminuida por cxy, c 0; es decir, la razón a la que los conejos son
comidos durante sus encuentros con los zorros:
dy
dy cxy.
dt
(7)
106
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
Las ecuaciones (5) y (7) constituyen un sistema de ecuaciones diferenciales no lineales
dx
ax bxy x(a by)
dt
(8)
dy
dy cxy y(d cx),
dt
donde a, b, c y d son constantes positivas. Este famoso sistema de ecuaciones se conoce como modelo presa-depredador de Lotka-Volterra.
Excepto por dos soluciones constantes, x(t) 0, y(t) 0 y x(t) d兾c, y(t) a兾b,
el sistema no lineal (8) no se puede resolver en términos de funciones elementales. Sin
embargo, es posible analizar estos sistemas en forma cuantitativa y cualitativa. Vea el
capítulo 9, “Soluciones numéricas de ecuaciones diferenciales ordinarias”, y el capítulo 10 “Sistemas autónomos planos”. *
EJEMPLO 1
Suponga que
Modelo presa-depredador
dx
0.16x 0.08xy
dt
dy
4.5y 0.9xy
dt
población
x, y
predadores
presa
tiempo
t
FIGURA 3.3.2 Las poblaciones de
depredadores (rojo) y presa (azul) del
ejemplo 1.
representa un modelo presa-depredador. Debido a que se está tratando con poblaciones, se
tiene x(t) 0, y(t) (QOD¿JXUDTXHVHREWXYRFRQODD\XGDGHXQSURJUDPDGH
solución numérica, se ilustran las curvas de población características de los depredadores
y la presa, superpuestas en los mismos ejes de coordenadas para este modelo. Las condiciones iniciales que se utilizaron fueron x(0) 4, y(0) 4. La curva en color rojo representa la población x(t) de los depredadores (zorros) y la curva en color azul es la población
y(t) de la presa (conejos). Observe que el modelo al parecer predice que ambas poblaciones x(t) y y(t) son periódicas en el tiempo. Esto tiene sentido desde el punto de vista intuitivo porque conforme decrece el número de presas, la población de depredadores decrece
en algún momento como resultado de un menor suministro de alimento; pero junto con un
decrecimiento en el número de depredadores hay un incremento en el número de presas;
esto, a su vez, da lugar a un mayor número de depredadores, que en última instancia origina otro decrecimiento en el número de presas.
MODELOS DE COMPETENCIA Ahora suponga que dos especies de animales ocupan el mismo ecosistema, no como depredador y presa sino como competidores por los
mismos recursos (como alimento y espacio vital) en el sistema. En ausencia de la otra,
suponga que la razón a la que crece cada población está dada respectivamente por
dx
ax
dt
y
dy
cy,
dt
(9)
Como las dos especies compiten, otra suposición podría ser que cada una de estas
UD]RQHVVHUHGX]FDVLPSOHPHQWHSRUODLQÀXHQFLDRH[LVWHQFLDGHODRWUDSREODFLyQ$Vt
un modelo para las dos poblaciones está dado por el sistema lineal
dx
ax by
dt
dy
cy dx ,
dt
(10)
donde a, b, c y d son constantes positivas.
Los capítulos 10 a 15 están en la versión ampliada de este libro, Ecuaciones diferenciales con problemas
con valores en la frontera.
*
3.3
MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN
l
107
Por otra parte, se podría suponer, como se hizo en (5), que cada razón de crecimiento en (9) debe ser reducida por una razón proporcional al número de interacciones
entra las dos especies:
dx
ax bxy
dt
(11)
dy
cy dxy.
dt
Examinando se encuentra que este sistema no lineal es similar al modelo presadepredador de Lotka-Volterra. Por último, podría ser más real reemplazar las razones
en (9), lo que indica que la población de cada especie en aislamiento crece de forma
exponencial, con tasas que indican que cada población crece en forma logística (es
decir, en un tiempo largo la población se acota):
dy
dx
(12)
a1 x b1 x 2
a 2 y b 2 y 2.
y
dt
dt
Cuando estas nuevas razones decrecen a razones proporcionales al número de interacciones, se obtiene otro modelo no lineal:
dx
a1x b1x 2 c1xy x(a1 b1x c1y)
dt
(13)
dy
a2 y b2 y 2 c2 xy y(a2 b2 y c 2 x),
dt
GRQGHORVFRH¿FLHQWHVVRQSRVLWLYRV3RUVXSXHVWRHOVLVWHPDOLQHDO \ORVVLVWHPDV
no lineales (11) y (13) se llaman modelos de competencia.
A1
i1
B1
REDES Una red eléctrica que tiene más de una malla también da lugar a ecuaciones
GLIHUHQFLDOHVVLPXOWiQHDV&RPRVHPXHVWUDHQOD¿JXUDODFRUULHQWHi1(t) se divide en las direcciones que se muestran en el punto B1 llamado SXQWRGHUDPL¿FDFLyQ
de la red. Por la primera ley de Kirchhoff se puede escribir
C1
i3
R1
i2
i1(t) i2(t) i3(t).
E
L1
L2
R2
A2
B2
C2
FIGURA 3.3.3 Red cuyo modelo está
(14)
Además, también se puede aplicar la segunda ley de Kirchhoff a cada malla. Para la
malla A1B1B 2 A 2 A1, suponiendo una caída de voltaje en cada parte del circuito, se obtiene
di2
(15)
E(t) i1R1 L1 i2R2.
dt
De modo similar, para la malla A1B1C1C 2 B 2 A 2 A1 tenemos que
di3
.
dt
E (t) i1R1 L2
dado en (17).
(16)
Usando (14) para eliminar i1 en (15) y (16) se obtienen dos ecuaciones lineales de
primer orden para las corrientes i2(t) e i3(t):
di 2
(R 1 R 2)i 2 R 1i 3 E (t)
dt
L1
i1 L
E
i3
i2
R
C
FIGURA 3.3.4 Red cuyo modelo son
las ecuaciones (18).
(17)
di 3
R 1i 2 R 1i 3 E(t) .
L2
dt
Dejaremos esto como un ejercicio (vea el problema 14 de esta sección): mostrar que
el sistema de ecuaciones diferenciales que describe las corrientes i1(t) e i2(t) en la red
IRUPDGDSRUXQUHVLVWRUXQLQGXFWRU\XQFDSDFLWRUTXHVHPXHVWUDHQOD¿JXUDHV
L
di1
Ri2
dt
E(t)
di
RC 2 i2 i1 0.
dt
(18)
108
CAPÍTULO 3
l
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
EJERCICIOS 3.3
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-4.
Series radiactivas
1. Hasta el momento no se han analizado métodos mediante los
que se puedan resolver sistemas de ecuaciones diferenciales.
Sin embargo, sistemas como (2) se pueden resolver sin otro
conocimiento que el necesario para resolver una ecuación
diferencial lineal. Encuentre una solución a (2) sujeto a las
condiciones iniciales x(0) x0, y(0) 0, z(0) 0.
2. En el problema 1, suponga que el tiempo se mide en días,
que las constantes de desintegración son k1 0.138629
y k2 0.004951, y que x0 20. Utilice un programa de
JUD¿FDFLyQSDUDWUD]DUODVJUi¿FDVGHODVVROXFLRQHVx(t),
y(t) y z(t) en el mismo conjunto de ejes de coordenadas.
8WLOLFH ODV JUi¿FDV SDUD DSUR[LPDU ODV YLGDV PHGLDV GH
sustancias X y Y.
7. Dos tanques muy grandes A y B están parcialmente llenos con 100 galones de salmuera cada uno. Al inicio, se
disuelven 100 libras de sal en la solución del tanque A y
50 libras de sal en la solución del tanque B. El sistema es
cerrado ya que el líquido bien mezclado se bombea sólo
HQWUHORVWDQTXHVFRPRVHPXHVWUDHQOD¿JXUD
a) 8WLOLFHODLQIRUPDFLyQTXHDSDUHFHHQOD¿JXUDSDUD
construir un modelo matemático para el número de
libras de sal x1(t) y x2(t) al tiempo t en los tanques A y
B, respectivamente.
b) Encuentre una relación entre las variables x1(t) y x2(t)
que se cumpla en el tiempo t. Explique por qué esta
relación tiene sentido desde el punto de vista intuitivo. Use esta relación para ayudar a encontrar la cantidad de sal en el tanque B en t 30 min.
3. 8WLOLFH ODV JUi¿FDV GHO SUREOHPD SDUD DSUR[LPDU ORV
tiempos cuando las cantidades x(t) y y(t) son las mismas,
los tiempos cuando las cantidades x(t) y z(t) son las mismas y los tiempos cuando las cantidades y(t) y z(t) son las
mismas. ¿Por qué tiene sentido, desde el punto de vista
intuitivo, el tiempo determinado cuando las cantidades
y(t) y z(t) son las mismas?
mezcla
3 gal/min
A
100 gal
4. Construya un modelo matemático para una serie radiactiva de cuatro elementos W, X, Y y Z, donde Z es un elemento estable.
mezcla
2 gal/min
FIGURA 3.3.6 Tanques de mezclado del problema 7.
Mezclas
5. Considere dos tanques A y B, en los que se bombea y se
saca líquido en la misma proporción, como se describe
mediante el sistema de ecuaciones (3). ¿Cuál es el sistema
de ecuaciones diferenciales si, en lugar de agua pura, se
bombea al tanque A una solución de salmuera que contiene dos libras de sal por galón?
6. 8WLOLFH OD LQIRUPDFLyQ TXH VH SURSRUFLRQD HQ OD ¿JXUD
3.3.5 para construir un modelo matemático para la cantidad de libras de sal x1(t), x2(t) y x3(t) al tiempo t en los
tanques A, B y C, respectivamente.
agua pura
4 gal/min
B
100 gal
mezcla
2 gal/min
A
100 gal
mezcla
6 gal/min
B
150 gal
mezcla
4 gal/min
C
100 gal
mezcla
4 gal/min
mezcla
4 gal/min
8. Tres tanques grandes contienen salmuera, como se muesWUD HQ OD ¿JXUD &RQ OD LQIRUPDFLyQ GH OD ¿JXUD
construya un modelo matemático para el número de libras
de sal x1(t), x2(t) y x3(t) al tiempo t en los tanques A, B y
C, respectivamente. Sin resolver el sistema, prediga los
valores límite de x1(t), x2(t) y x3(t) conforme t → .
C
100 gal
mezcla
5 gal/min
A
200 gal
FIGURA 3.3.7 Tanques de mezclado del problema 8.
mezcla
1 gal/min
B
100 gal
agua pura
4 gal/min
mezcla
4 gal/min
FIGURA 3.3.5 Tanques de mezclado del problema 6.
Modelos presa-depredador
9. Considere el modelo depredador-presa de Lotka-Volterra
GH¿QLGRSRU
3.3
MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN
dx
0.1x 0.02xy
dt
i1
dy
0.2y 0.025xy,
dt
donde las poblaciones x(t) (depredadores) y y(t) (presa)
se miden en miles. Suponga que x(0) 6 y y(0) 6.
8WLOLFHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDJUD¿FDU
x(t) y y(t 8VHODVJUi¿FDVSDUDDSUR[LPDUHOWLHPSRt 0
cuando las dos poblaciones son al principio iguales. Use
ODVJUi¿FDVSDUDDSUR[LPDUHOSHULRGRGHFDGDSREODFLyQ
11. &RQVLGHUHHOPRGHORGHFRPSHWHQFLDGH¿QLGRSRU
dx
x(1 0.1x 0.05y)
dt
dy
y(1.7 0.1y 0.15x),
dt
donde las poblaciones x(t) y x(t) se miden en miles y t en
años. Utilice un programa de solución numérica para analizar las poblaciones en un periodo largo para cada uno de
los casos siguientes:
a) x(0) 1, y(0) 1
b) x(0) 4, y(0) 10
c) x(0) 9, y(0) 4
d) x(0) 5.5, y(0) 3.5
Redes
12. Demuestre que un sistema de ecuaciones diferenciales
que describa las corrientes i2(t) e i3(t) en la red eléctrica
TXHVHPXHVWUDHQOD¿JXUDHV
L
R1
di2
di
L 3 R1i2 E(t)
dt
dt
di
1
di2
R2 3 i3 0.
dt
dt
C
R1
C
FIGURA 3.3.8 Red del problema 12.
13. Determine un sistema de ecuaciones diferenciales de primer orden que describa las corrientes i2(t) e i3(t) en la red
HOpFWULFDTXHVHPXHVWUDHQOD¿JXUD
R1
10. &RQVLGHUHHOPRGHORGHFRPSHWHQFLDGH¿QLGRSRU
donde las poblaciones x(t) y y(t) se miden en miles y t en
años. Use un programa de solución numérica para analizar las poblaciones en un periodo largo para cada uno de
los casos siguientes:
a) x(0) 1.5, y(0) 3.5
b) x(0) 1, y(0) 1
c) x(0) 2, y(0) 7
d) x(0) 4.5, y(0) 0.5
109
i3 R2
i2
L
E
Modelos de competencia
dx
x(2 0.4x 0.3y)
dt
dy
y(1 0.1y 0.3x),
dt
l
i1
E
i3
i2
L1
R2
L2
R3
FIGURA 3.3.9 Red del problema 13.
14. Demuestre que el sistema lineal que se proporciona en
(18) describe las corrientes i1(t) e i2(t) en la red que se
PXHVWUDHQOD¿JXUD>Sugerencia: dq兾dt i3.]
Modelos no lineales adicionales
15. Modelo SIR Una enfermedad contagiosa se propaga en
XQDSHTXHxDFRPXQLGDGFRQXQDSREODFLyQ¿MDGHn personas, por contacto entre individuos infectados y personas
que son susceptibles a la enfermedad. Suponga al principio que todos son susceptibles a la enfermedad y que nadie
sale de la comunidad mientras se propaga la epidemia. En el
tiempo t, sean s(t), i(t) y r(t), a su vez, el número de personas
en la comunidad (medido en cientos) que son susceptibles a
la enfermedad pero que aún no están infectadas, el número
de personas que están infectadas con la enfermedad y el número de personas que se han recuperado de la enfermedad.
Explique por qué el sistema de ecuaciones diferenciales
ds
k1si
dt
di
k2i k1si
dt
dr
k2i,
dt
donde k1 (llamada la razón de infección) y k2 (llamada
la razón de eliminación) son constantes positivas, es un
modelo matemático razonable, conocido comúnmente
como modelo SIR, para la propagación de la epidemia
en la comunidad. Asigne condiciones iniciales posibles
relacionadas con este sistema de ecuaciones.
110
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
16. a) (QHOSUREOHPDH[SOLTXHSRUTXpHVVX¿FLHQWHDQDlizar sólo
ds
k1si
dt
di
k2i k1si .
dt
b) Suponga que k1 0.2, k2 0.7 y n 10. Elija varios
valores de i(0) i0, 0 i0 10. Use un programa de
solución numérica para determinar lo que predice el
modelo acerca de la epidemia en los dos casos s0
k2兾k1 y s0 k2兾k1. En el caso de una epidemia, estime
HOQ~PHURGHSHUVRQDVTXH¿QDOPHQWHVHLQIHFWDQ
Problemas de proyecto
17. Concentración de un nutriente Suponga que los compartimientos A y BTXHVHPXHVWUDQHQOD¿JXUDVH
llenan con líquidos y se separan mediante una membrana
SHUPHDEOH/D¿JXUDHVXQDUHSUHVHQWDFLyQVHFFLRQDOGHO
exterior y el interior de una célula. Suponga también que
un nutriente necesario para el crecimiento de la célula
pasa por la membrana. Un modelo para las concentraciones x(t) y y(t) del nutriente en los compartimientos A y
B, respectivamente, en el tiempo t se expresa mediante el
siguiente sistema lineal de ecuaciones diferenciales
dx
( y x)
dt
VA
dy
(x y),
dt
VB
donde VA y VB son los volúmenes de los compartimientos,
y N 0 es un factor de permeabilidad. Sean x(0) x0 y
y(0) y0 las concentraciones iniciales del nutriente. Con
líquido a
concentración
x(t)
A
líquido a
concentración
y(t)
B
base únicamente en las ecuaciones del sistema y la suposición x0 y0 0, dibuje, en el mismo conjunto de coordenadas, posibles curvas solución del sistema. Explique
su razonamiento. Analice el comportamiento de las soluciones en un tiempo largo.
18. El sistema del problema 17, al igual que el sistema en
(2), se puede resolver sin un conocimiento avanzado.
Resuelva para x(t) y y(t \FRPSDUHVXVJUi¿FDVFRQVXV
dibujos del problema 17. Determine los valores límite de
x(t) y y(t) conforme t → . Explique por qué la respuesta
de la última pregunta tiene sentido intuitivamente.
19. Con base sólo en la descripción física del problema de
PH]FODGHODSiJLQD\OD¿JXUDDQDOLFHODQDWXraleza de las funciones x1(t) y x2(t). ¿Cuál es el comportamiento de cada función durante un tiempo largo? Dibuje
ODVJUi¿FDVSRVLEOHVGHx1(t) y x2(t). Compruebe sus conjeturas mediante un programa de solución numérica para
obtener las curvas solución de (3) sujetas a las condiciones iniciales x1(0) 25, x2(0) 0.
20. Ley de Newton del enfriamiento/calentamiento Como
VHPXHVWUDHQOD¿JXUDXQDSHTXHxDEDUUDPHWiOLFDVH
coloca dentro del recipiente A y éste se coloca dentro de un
recipiente B mucho más grande. A medida que se enfría la
barra metálica, la temperatura ambiente TA(t) del medio dentro del recipiente A cambia de acuerdo con la ley de Newton
del enfriamiento. Conforme se enfría el recipiente A, la temperatura en la parte media dentro del recipiente B no cambia
de manera importante y se puede considerar una constante
TB. Construya un modelo matemático para las temperaturas
T(t) y TA(t), donde T(t) es la temperatura de la barra metálica dentro del recipiente A. Como en los problemas 1 y
18, este modelo se puede resolver usando los conocimientos
adquiridos. Encuentre una solución del sistema sujeto a las
condiciones iniciales T(0) T0, TA(0) T1.
recipiente B
recipiente A
barra
metálica
TA (t)
membrana
FIGURA 3.3.10 Flujo de nutrientes a través de una
membrana del problema 17.
TB = constante
FIGURA 3.3.11 Recipiente dentro de un recipiente del problema 20.
REPASO DEL CAPÍTULO 3
REPASO DEL CAPÍTULO 3
l
111
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-4.
Responda los problemas 1 y 2 sin consultar las respuestas del
libro. Llene los espacios en blanco y responda verdadero o falso.
concentración
C(t)
1. Si P(t) P0e da la población en un medio ambiente al
tiempo t, entonces una ecuación diferencial que satisface
.
P(t) es
0.15t
2. Si la razón de desintegración de una sustancia radiactiva
es proporcional a la cantidad A(t) que queda en el tiempo
t, entonces la vida media de la sustancia es necesariamente T (ln 2)兾k. La razón de decaimiento de la sustancia en el tiempo t T es un medio de la razón de decaimiento en t 0.
3. En marzo de 1976 la población mundial llegó a cuatro mil
millones. Una popular revista de noticias predijo que con
una razón de crecimiento anual promedio de 1.8%, la población mundial sería de 8 mil millones en 45 años. ¿Cómo
se compara este valor con el que se predice por el modelo
en el que se supone que la razón de crecimiento en la población es proporcional a la población presente en el tiempo t?
4. A una habitación cuyo volumen es 8 000 pies3 se bombea
aire que contiene 0.06% de dióxido de carbono. Se introGXFH D OD KDELWDFLyQ XQ ÀXMR GH DLUH GH SLHV3/min
\VHH[WUDHHOPLVPRÀXMRGHDLUHFLUFXODGR6LKD\XQD
concentración inicial de 0.2% de dióxido de carbono en
la habitación, determine la cantidad posterior en la habitación al tiempo t. ¿Cuál es la concentración a los 10 minutos? ¿Cuál es la concentración de dióxido de carbono
de estado estable o de equilibrio?
5. Resuelva la ecuación diferencial
y
dy
2
dx
1s y2
de la tractriz. Vea el problema 28 de los ejercicios 1.3.
Suponga que el punto inicial en el eje y es (0, 10) y que la
longitud de la cuerda es x 10 pies.
6. Suponga que una célula está suspendida en una solución
que contiene un soluto de concentración constante Cs.
Suponga además que la célula tiene volumen constante V
y que el área de su membrana permeable es la constante
A. Por la ley de Fick, la rapidez de cambio de su masa m
es directamente proporcional al área A y la diferencia Cs
– C(t), donde C(t) es la concentración del soluto dentro de
la célula al tiempo t. Encuentre C(t) si m V C(t) y C(0)
C09HDOD¿JXUD5
concentración
Cs
moléculas de soluto
difundiéndose a través
de la membrana de
la célula
FIGURA 3.R.1 Célula del problema 6.
7. Suponga que conforme se enfría un cuerpo, la temperatura del
medio circundante aumenta debido a que absorbe por completo el calor que pierde el cuerpo. Sean T(t) y Tm(t) las temperaturas del cuerpo y el medio al tiempo t, respectivamente. Si
la temperatura inicial del cuerpo es T1 y la temperatura inicial
del medio de T2, entonces se puede mostrar en este caso que la
ley de Newton del enfriamiento es dT兾dt k(T – Tm), k 0,
donde Tm T2 B(T1 T), B 0 es una constante.
a) La ED anterior es autónoma. Utilice el concepto de
esquema de fase de la sección 2.1 para determinar el
valor límite de la temperatura T(t) conforme t → .
¿Cuál es el valor límite de Tm(t) conforme t → ?
b) Compruebe sus respuestas del inciso a) resolviendo la
ecuación diferencial.
c) Analice una interpretación física de sus respuestas en
el inciso a).
8. De acuerdo con la ley de Stefan de la radiación, la
temperatura absoluta T de un cuerpo que se enfría en
un medio a temperatura absoluta constante Tm está dada
como
dT
k(T 4 T 4m ),
dt
donde k es una constante. La ley de Stefan se puede utilizar en un intervalo de temperatura mayor que la ley de
Newton del enfriamiento.
a) Resuelva la ecuación diferencial.
b) Muestre que cuando T Tm es pequeña comparada
con Tm entonces la ley de Newton del enfriamiento se
aproxima a la ley de Stefan. [Sugerencia: Considere la
serie binomial del lado derecho de la ED.]
9. Un circuito LR en serie tiene un inductor variable con la
LQGXFWDQFLDGH¿QLGDSRU
L(t)
冦
1
0,
1
t,
10
0 t 10
t 10 .
Encuentre la corriente i(t) si la resistencia es 0.2 ohm, el voltaje aplicado es E(t) 4 e i(0) 7UDFHODJUi¿FDGHi(t).
112
l
CAPÍTULO 3
MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN
10. Un problema clásico en el cálculo de variaciones es encontrar la forma de una curva Ꮿ tal que una cuenta, bajo la inÀXHQFLDGHODJUDYHGDGVHGHVOLFHGHOSXQWRA(0, 0) al punto
B(x1, y1 HQHOPHQRUWLHPSR9HDOD¿JXUD56HSXHGH
demostrar que una ecuación no lineal para la forma y(x) de
la trayectoria es y[1 (y)2] k, donde k es una constante.
Primero resuelva para dx en términos de y y dy; y después
utilice la sustitución y k sen2ș para obtener una forma paramétrica de la solución. La curva Ꮿ resulta ser una cicloide.
A(0, 0)
cuenta
H(x, y, c 2 ) = 0
FIGURA 3.R.4 Trayectorias ortogonales.
14. y
B(x1, y1)
y
FIGURA 3.R.2 Cuenta deslizando del problema 10.
11. Un modelo para las poblaciones de dos especies de animales que interactúan es
dx
k1x ( x)
dt
dy
k 2 xy.
dt
Resuelva para x y y en términos de t.
12. En un principio, dos tanques grandes A y B contienen cada
uno 100 galones de salmuera. El líquido bien mezclado se
ERPEHDHQWUHORVUHFLSLHQWHVFRPRVHPXHVWUDHQOD¿JXUD
58WLOLFHODLQIRUPDFLyQGHOD¿JXUDSDUDFRQVWUXLUXQ
modelo matemático para el número de libras de sal x1(t) y
x2(t) al tiempo t en los recipientes A y B, respectivamente.
2 lb/gal
7 gal/min
tangentes
13. y x 1 c 1e x
x
mg
G(x, y, c1) = 0
15. Desintegración del Potasio-40 Uno de los elementos
más abundantes que se encuentran a lo largo de la corteza
terrestre y los océanos es el potasio. Aunque el potasio se
presenta naturalmente en forma de tres isótopos, sólo el
isótopo de potasio-40 (K-40) es radiactivo. Este isótopo
es un poco inusual ya que decae en dos reacciones nucleares diferentes. Con el tiempo, mediante la emisión
de una partícula beta, un gran porcentaje de una cantidad
inicial de K-40 decae en el isótopo estable de calcio-40
(Ca-40), mientras que por captura de electrones un porcentaje más pequeño de K-40 decae en el isótopo estable
argón-40 (Ar-40).* Debido a que la velocidad a la cual
aumentan las cantidades C(t) del Ca-40 y A(t) del Ar-40
es proporcional a la cantidad K(t) de potasio presente, y la
rapidez con que disminuye el potasio también es proporcional a K(t), obtenemos el sistema de ecuaciones lineales de primer orden siguiente donde Ȝ1 y Ȝ2 son constantes
de proporcionalidad positivas
dC
dt
dA
dt
dK
dt
mezcla
5 gal/min
A
100 gal
mezcla
3 gal/min
B
100 gal
mezcla
1 gal/min
1
x c1
O 2K
(O1
O 2)K
a) Del sistema anterior de ecuaciones diferenciales determine K(t) si K(0) K0. Después encuentre C(t) y
A(t) si C(0) 0 y A(0) 0.
b) Si se sabe que Ȝ1 4.7526 1010\Ȝ2 0.5874 1010
determine la vida media de K-40.
c) Utilice sus soluciones para C(t) y A(t) para determinar
el porcentaje de una cantidad inicial K0 de K-40 que
decae en Ca-40 y el porcentaje que decae en Ar-40
durante un periodo prolongado de tiempo.
mezcla
4 gal/min
FIGURA 3.R.3 Recipientes de mezclado del problema 12.
Cuando todas las curvas de una familia G(x, y, c1) 0 intersecan ortogonalmente todas las curvas de otra familia
H(x, y, c2) 0, se dice que las familias son trayectorias
ortogonalesHQWUHVt9HDOD¿JXUD56Ldy兾dx f (x,
y) es la ecuación diferencial de una familia, entonces la
ecuación diferencial para las trayectorias ortogonales de
esta familia es dy兾dx 1兾f (x, y). En los problemas 13 y
14, encuentre la ecuación diferencial de la familia suministrada. Determine las trayectorias de esta familia. Utilice un
SURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODVJUi¿FDVGHDPEDV
familias en el mismo conjunto de ejes coordenados.
O1K
El conocimiento de cómo decae el K-40 es la base del método de
datación de argón potasio. Este método se puede utilizar para encontrar
la edad de rocas ígneas muy antiguas. Los fósiles a veces se pueden datar
indirectamente datando las rocas ígneas en los sustratos en donde se
encuentran los fósiles
*
4
ECUACIONES DIFERENCIALES
DE ORDEN SUPERIOR
4.1 Teoría preliminar: Ecuaciones lineales
4.1.1 Problemas con valores iniciales y con valores en la frontera
4.1.2 Ecuaciones homogéneas
4.1.3 Ecuaciones no homogéneas
4.2 Reducción de orden
4.3 (FXDFLRQHVOLQHDOHVKRPRJpQHDVFRQFRH¿FLHQWHVFRQVWDQWHV
4.4 &RH¿FLHQWHVLQGHWHUPLQDGRV0pWRGRGHVXSHUSRVLFLyQ
4.5 &RH¿FLHQWHVLQGHWHUPLQDGRV0pWRGRGHODQXODGRU
4.6 Variación de parámetros
4.7 Ecuación de Cauchy-Euler
4.8 Funciones de Green
4.8.1 Problemas con valores iniciales
4.8.2 Problemas con valores en la frontera
4.9 Solución de sistemas de ED lineales por eliminación
4.10 Ecuaciones diferenciales no lineales
REPASO DEL CAPÍTULO 4
Ahora abordaremos la solución de ecuaciones diferenciales de segundo orden
o superior. En las primeras siete secciones de este capítulo se analizan la teoría
fundamental y ciertas clases de ecuaciones lineales. Lo nuevo, pero opcional, es
la sección 4.8, donde partimos del material de la sección 4.6 para elaborar las
funciones de Green que nos permiten resolver problemas lineales con valores
iniciales y problemas con valores en la frontera. El método de eliminación para
resolver sistemas de ecuaciones lineales se introduce en la sección 4.9 porque este
método simplemente disuelve un sistema en ecuaciones lineales de cada variable
dependiente. El capítulo concluye con un breve análisis de ecuaciones no lineales
de orden superior en la sección 4.10.
113
114
l
CAPÍTULO 4
4.1
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
TEORÍA PRELIMINAR: ECUACIONES LINEALES
REPASO DE MATERIAL
l Lea nuevamente los ComentariosDO¿QDOGHODVHFFLyQ
l Sección 2.3 (especialmente páginas 54 a 56).
INTRODUCCIÓN En el capítulo 2 vimos que se pueden resolver algunas ecuaciones diferenciales de primer orden si se reconocen como separables, exactas, homogéneas o, quizás, ecuaciones de
Bernoulli. Aunque las soluciones de estas ecuaciones estuvieran en la forma de una familia uniparamétrica, esta familia, con una excepción, no representa la solución de la ecuación diferencial. Sólo en el
caso de las ED lineales de primer orden se pueden obtener soluciones generales considerando ciertas
condiciones iniciales. Recuerde que una solución generalHVXQDIDPLOLDGHVROXFLRQHVGH¿QLGDHQ
algún intervalo I que contiene todasODVVROXFLRQHVGHOD('TXHHVWiQGH¿QLGDVHQI. Como el objetivo principal de este capítulo es encontrar soluciones generales de ED lineales de orden superior,
primero necesitamos examinar un poco de teoría de ecuaciones lineales.
4.1.1 PROBLEMAS CON VALORES INICIALES
Y CON VALORES EN LA FRONTERA
PROBLEMA CON VALORES INICIALES (QODVHFFLyQVHGH¿QLyXQSUREOHPD
con valores iniciales para una ecuación diferencial de n-ésimo orden. Para una ecuación diferencial lineal, un problema con valores iniciales de n-ésimo orden es
Resuelva:
Sujeta a:
an(x)
d ny
dx n
y(x0)
an 1(x)
y0, y (x0)
d n 1y
dx n 1
a1(x)
y1 , . . . ,
dy
dx
(n 1)
y
(x0)
a0(x)y
g(x)
(1)
yn 1.
5HFXHUGHTXHSDUDXQSUREOHPDFRPRpVWHVHEXVFDXQDIXQFLyQGH¿QLGDHQDOJ~QLQtervalo I, que contiene a x0, que satisface la ecuación diferencial y las n condiciones
LQLFLDOHVTXHVHHVSHFL¿FDQHQx0: y(x0) y0, y(x0) y1, . . . , y(n1)(x0) yn1. Ya hemos
visto que en el caso de un problema con valores iniciales de segundo orden, una curva
solución debe pasar por el punto (x0, y0) y tener pendiente y1 en este punto.
EXISTENCIA Y UNICIDAD En la sección 1.2 se expresó un teorema que daba las
condiciones con las que se garantizaba la existencia y unicidad de una solución de un
problema con valores iniciales de primer orden. El teorema que sigue tiene condiciones
VX¿FLHQWHVSDUDODH[LVWHQFLD\XQLFLGDGGHXQDVROXFLyQ~QLFDGHOSUREOHPDHQ
TEOREMA 4.1.1
Existencia de una solución única
Sean an(x), an 1(x), . . . , a1(x), a0(x) y g(x) continuas en un intervalo I, y sea
an(x) 0 para toda x en este intervalo. Si x x0 es cualquier punto en este
intervalo, entonces una solución y(x) del problema con valores iniciales (1)
existe en el intervalo y es única.
EJEMPLO 1
Solución única de un PVI
El problema con valores iniciales
3y
5y
y
7y
0, y(1)
0,
y (1)
0, y (1)
0
tiene la solución trivial y 0. Debido a que la ecuación de tercer orden es lineal con
FRH¿FLHQWHVFRQVWDQWHVVHFXPSOHQODVFRQGLFLRQHVGHOWHRUHPD3RUWDQWRy 0
es la única solución en cualquier intervalo que contiene a x 1.
4.1
EJEMPLO 2
TEORÍA PRELIMINAR: ECUACIONES LINEALES
l
115
Solución única de un PVI
Se debe comprobar que la función y 3e 2x e2x 3x es una solución del problema
con valores iniciales
y
4y 12x, y(0) 4, y (0) 1.
$KRUD OD HFXDFLyQ GLIHUHQFLDO HV OLQHDO ORV FRH¿FLHQWHV DVt FRPR g(x) 12x, son
continuos y a2(x) 1 0 en algún intervalo I que contenga a x 0. Concluimos del
teorema 4.1.1 que la función dada es la única solución en I.
Los requisitos en el teorema 4.1.1 de que ai(x), i 0, 1, 2, . . . , n sean continuas y
an(x) 0 para toda x en I son importantes. En particular, si an(x) 0 para algún x en
el intervalo, entonces la solución de un problema lineal con valores iniciales podría
no ser única o ni siquiera existir. Por ejemplo, se debe comprobar que la función
y cx 2 x 3 es una solución de problema con valores iniciales
x2 y
2xy
2y
6, y(0)
3,
y (0)
1
en el intervalo ( , ) para alguna elección del parámetro c. En otras palabras, no
hay solución única del problema. Aunque se satisface la mayoría de las condiciones
GHOWHRUHPDODVGL¿FXOWDGHVREYLDVVRQTXHa2(x) x2 es cero en x 0 y que las
condiciones iniciales también se imponen en x 0.
y
PROBLEMA CON VALORES EN LA FRONTERA Otro tipo de problema consiste
en resolver una ecuación diferencial lineal de orden dos o mayor en el que la variable
dependiente yRVXVGHULYDGDVVHHVSHFL¿FDQHQdiferentes puntos. Un problema tal como
soluciones de la ED
(b, y1)
(a, y0)
I
x
FIGURA 4.1.1 Curvas solución de un
PVF que pasan a través de dos puntos.
Resuelva:
a2(x)
Sujeto a:
y(a)
d 2y
dx2
a1(x)
y0 ,
dy
dx
y(b)
a0(x)y
g(x)
y1
se conoce como un problema con valores en la frontera (PVF). Los valores prescritos
y(a) y0 y y(b) y1 se denominan condiciones en la frontera. Una solución del problema anterior es una función que satisface la ecuación diferencial en algún intervalo I,
que contiene a a y bFX\DJUi¿FDSDVDSRUORVSXQWRV a, y0) y (b, y1 9HDOD¿JXUD
Para una ecuación diferencial de segundo orden, otros pares de condiciones en la
frontera podrían ser
y (a) y0 ,
y(b) y1
y(a)
y0 ,
y (b)
y1
y (a)
y0 ,
y (b)
y1,
donde y0 y y1 denotan constantes arbitrarias. Estos tres pares de condiciones son sólo
casos especiales de las condiciones generales en la frontera.
1 y(a)
1y
(a)
1
2 y(b)
2y
(b)
2.
En el siguiente ejemplo se muestra que aun cuando se cumplen las condiciones del
teorema 4.1.1, un problema de valores en la frontera puede tener varias soluciones (como
VHVXJLHUHHQOD¿JXUD XQDVROXFLyQ~QLFDRQRWHQHUQLQJXQDVROXFLyQ
EJEMPLO 3
Un PVF puede tener muchas, una o ninguna solución
En el ejemplo 7 de la sección 1.1 vimos que la familia de soluciones de dos parámetros
de la ecuación diferencial x 16x 0 es
(2)
a) Suponga que ahora deseamos determinar la solución de la ecuación que satisface
más condiciones en la frontera x(0) 0, x(ʌ兾2) 0. Observe que la primera
x
c1 cos 4t
c2 sen 4t.
116
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
condición 0 c1 cos 0 c2 sen 0 implica que c1 0, por tanto x c2 sen 4t. Pero
cuando t ʌ兾2, 0 c2 sen 2ʌ se satisface para cualquier elección de c2 ya que sen
2ʌ 0. Por tanto el problema con valores en la frontera
x
1
c2 = 0
c2 = 1
1
c2 = 2
c2 =
(3)
0
2
WLHQHXQQ~PHURLQ¿QLWRGHVROXFLRQHV(QOD¿JXUDVHPXHVWUDQODVJUi¿FDV
de algunos de los miembros de la familia uniparamétrica x c2 sen 4t que pasa
por los dos puntos (0, 0) y (ʌ兾2, 0).
b) Si el problema con valores en la frontera en (3) se cambia a
1
4
t
1
(0, 0)
c2 = −
1
2
(π /2, 0)
FIGURA 4.1.2 Curvas solución para
el PVF del inciso (a) del ejemplo 3
x
16x
0,
x(0)
0,
x
x
16x
0,
x(0)
0,
x
(4)
0,
8
entonces x(0) 0 aún requiere que c1 0 en la solución (2). Pero aplicando
x(ʌ兾8) 0 a x c2 sen 4t requiere que 0 c2 sen (ʌ兾2) c2 ⴢ 1. Por tanto x 0
es una solución de este nuevo problema con valores en la frontera. De hecho, se
puede demostrar que x 0 es la única solución de (4).
c) Por último, si se cambia el problema a
(5)
1,
2
se encuentra de nuevo de x(0) 0 que c1 0, pero al aplicar x(ʌ兾2) 1 a x c2
sen 4t conduce a la contradicción 1 c2 sen 2ʌ c2 ⴢ 0 0. Por tanto el problema
con valores en la frontera (5) no tiene solución.
16x
x
4.1.2
0,
x(0)
0,
x
ECUACIONES HOMOGÉNEAS
Una ecuación diferencial lineal de n-ésimo orden de la forma
dny
d n 1y
dy
a
(x)
a1(x)
n
1
n
n 1
dx
dx
dx
se dice que es homogénea, mientras que una ecuación
an(x)
an(x)
Por favor, recuerde
estas dos suposiciones
dny
dx n
an 1(x)
d n 1y
dx n 1
a1(x)
dy
dx
a0(x)y
a0(x)y
0
(6)
g(x),
(7)
con g(x) no idénticamente igual a cero, es no homogénea. Por ejemplo,
2y 3y 5y 0 es una ecuación diferencial lineal homogénea de segundo orden,
mientras que x3y 6y 10y ex es una ecuación diferencial lineal de tercer orden
no homogénea. La palabra homogéneaHQHVWHFRQWH[WRQRVHUH¿HUHDORVFRH¿FLHQWHV
que son funciones homogéneas, como en la sección 2.5.
Después veremos que para resolver una ecuación lineal no homogénea (7), primero se debe poder resolver la ecuación homogénea asociada (6).
Para evitar la repetición innecesaria en lo que resta de este libro, se harán,
como algo natural, las siguientes suposiciones importantes cuando se establezcan
GH¿QLFLRQHV \ WHRUHPDV DFHUFD GH ODV HFXDFLRQHV OLQHDOHV (Q DOJ~Q LQWHUYDOR
común I,
• ODVIXQFLRQHVFRH¿FLHQWHVai(x), i 0, 1, 2, . . . , n y g(x) son continuas;
• a n(x) 0 para toda x en el intervalo.
OPERADORES DIFERENCIALES En cálculo, la derivación se denota con frecuencia con la letra D mayúscula, es decir, dy兾dx Dy. El símbolo D se conoce como
operador diferencial porque convierte una función derivable en otra función. Por
ejemplo, D(cos 4x) 4 sen 4x y D(5x3 6x2) 15x2 12x. Las derivadas de orden
superior se expresan en términos de D de manera natural:
d dy
dx dx
d 2y
dx2
D(Dy)
D2y
y, en general
dny
dxn
Dn y,
4.1
TEORÍA PRELIMINAR: ECUACIONES LINEALES
l
117
donde y UHSUHVHQWD XQD IXQFLyQ VX¿FLHQWHPHQWH GHULYDEOH /DV H[SUHVLRQHV SROLQRmiales en las que interviene D, tales como D 3, D2 3D 4 y 5x3D3 6x2D2
4xD VRQWDPELpQRSHUDGRUHVGLIHUHQFLDOHV(QJHQHUDOVHGH¿QHXQoperador
diferencial de n-ésimo orden u operador polinomial como
L an(x)D n an1(x)D n1
a1(x)D a 0(x).
(8)
Como una consecuencia de dos propiedades básicas de la derivada, D(cf(x)) cDf(x),
c es una constante y D{f(x) g(x)} Df(x) Dg(x), el operador diferencial L tiene
una propiedad de linealidad; es decir, L operando sobre una combinación lineal de dos
funciones diferenciables es lo mismo que la combinación lineal de L operando en cada
una de las funciones. Simbólicamente esto se expresa como
L{ĮI (x) ȕJ(x)} Į/( f (x)) ȕ/(g(x)),
(9)
donde Į y ȕ son constantes. Como resultado de (9) se dice que el operador diferencial
de n-ésimo orden es un operador lineal.
ECUACIONES DIFERENCIALES Cualquier ecuación diferencial lineal puede expresarse en términos de la notación D. Por ejemplo, la ecuación diferencial y 5y
6y 5x 3 se puede escribir como D2y 5Dy 6y 5x – 3 o (D2 5D 6) y
5x 3. Usando la ecuación (8), se pueden escribir las ecuaciones diferenciales lineales de n-énesimo orden (6) y (7) en forma compacta, respectivamente, como
L( y)
0
y
L( y)
g(x),
PRINCIPIO DE SUPERPOSICIÓN En el siguiente teorema se ve que la suma o
superposición de dos o más soluciones de una ecuación diferencial lineal homogénea
es también una solución.
TEOREMA 4.1.2 Principio de superposición, ecuaciones homogéneas
Sean y1, y2, . . . , yk soluciones de la ecuación homogénea de n-ésimo orden (6)
en un intervalo I. Entonces la combinación lineal
y c1 y1(x) c2 y2(x)
ck yk(x),
donde las ci, i 1, 2, . . . , k son constantes arbitrarias, también es una solución en el intervalo.
DEMOSTRACIÓN Se demuestra el caso k 2. Sea L el operador diferencial que
VHGH¿QLyHQ \VHDQy1(x) y y2(x) soluciones de la ecuación homogénea L(y) 0.
6LVHGH¿QHy cy1(x) cy2(x), entonces por la linealidad de L se tiene que
L( y)
L{c1 y1(x)
c2 y2(x)}
c1 L( y1)
c2 L( y2)
c1 0
c2 0
0.
COROLARIOS DEL TEOREMA 4.1.2
A) Un múltiplo constante y cy1(x) de una solución y1(x) de una ecuación
diferencial lineal homogénea es también una solución.
B) Una ecuación diferencial lineal homogénea tiene siempre la solución trivial y 0.
EJEMPLO 4
Superposición – ED homogénea
Las funciones y1 x2 y y2 x2 ln x son soluciones de la ecuación lineal homogénea
x3y 2xy 4y 0 en el intervalo (0, ). Por el principio de superposición, la
combinación lineal
y c1x2 c2 x2 ln x
es también una solución de la ecuación en el intervalo.
118
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
La función y e7x es una solución de y 9y 14y 0. Debido a que la ecuación diferencial
es lineal y homogénea, el múltiplo constante y ce7x es también una solución. Para varios
valores de c se ve que y 9e7x, y 0, y
15e7x , . . . son todas soluciones de la ecuación.
DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL Los siguientes dos conceptos son básicos para el estudio de ecuaciones diferenciales lineales.
DEFINICIÓN 4.1.1
Dependencia e independencia lineal
Se dice que un conjunto de funciones f1(x), f2(x), . . . , fn(x) es linealmente dependiente en un intervalo I si existen constantes c1, c2, . . . , cn no todas cero, tales que
c1 f1(x)
y
f1 = x
x
a)
y
f2 = |x |
x
b)
FIGURA 4.1.3 El conjunto que consiste
en f1 y f2 es linealmente independiente en
( , ).
c2 f2(x)
cn fn(x)
0
para toda x en el intervalo. Si el conjunto de funciones no es linealmente dependiente en el intervalo, se dice que es linealmente independiente.
En otras palabras, un conjunto de funciones es linealmente independiente en un intervalo I si las únicas constantes para las que
c1 f1(x) c2 f2(x)
cn fn(x) 0
.
.
.
cn 0.
para toda x en el intervalo son c1 c2
(VIiFLOHQWHQGHUHVWDVGH¿QLFLRQHVSDUDXQFRQMXQWRTXHFRQVLVWHHQGRVIXQFLRQHV
f1(x) y f2(x). Si el conjunto de funciones es linealmente dependiente en un intervalo, entonces existen constantes c1 y c2 que no son ambas cero de manera tal que, para toda x en
el intervalo, c1 f1(x) c2 f2(x) 0. Por tanto, si suponemos que c1 0, se deduce que f1(x)
(c2兾c1) f2(x); es decir, si un conjunto de dos funciones es linealmente dependiente,
entonces una función es simplemente un múltiplo constante del otro. A la inversa, si f1(x)
cf2(x) para alguna constante c2, entonces ( 1) ⴢ f1(x) c2 f2(x) 0 para toda x en
el intervalo. Así, el conjunto de funciones es linealmente dependiente porque al menos
una de las constantes (en particular, c1 1) no es cero. Se concluye que un conjunto
de dos funciones f1(x) y f2(x) es linealmente independiente cuando ninguna función es
un múltiplo constante de la otra en el intervalo. Por ejemplo, el conjunto de funciones
f1(x) sen 2x, f2(x) sen x cos x es linealmente dependiente en ( , ) porque f1(x) es
un múltiplo constante de f2(x). Recuerde de la fórmula del seno del doble de un ángulo
que sen 2x 2 sen x cos x. Por otro lado, el conjunto de funciones f1(x) x, f2(x) 兩x兩 es
linealmente independiente en ( , $OH[DPLQDUOD¿JXUDGHEHFRQYHQFHUVHGH
que ninguna función es un múltiplo constante de la otra en el intervalo.
Del análisis anterior se tiene que el cociente f2(x)兾f1(x) no es una constante en un
intervalo en el que el conjunto f1(x), f2(x) es linealmente independiente. Esto se usará
en la siguiente sección.
EJEMPLO 5
Conjunto de funciones linealmente dependiente
El conjunto de funciones f1(x) cos2x, f2(x) sen2x, f3(x) sec2x, f4(x) tan2x es
linealmente dependiente en el intervalo (ʌ兾2, ʌ兾2) porque
c1 cos2x
c2 sen2x
c3 sec2x
c4 tan2x
0
donde c1 c2 1, c3 1, c4 1. Aquí se usa cos x sen x 1 y 1 tan2x sec2x.
2
2
Un conjunto de funciones f1(x), f2(x), . . . , fn(x) es linealmente dependiente en un intervalo si
al menos una función se puede expresar como una combinación lineal de las otras funciones.
EJEMPLO 6
Conjunto de funciones linealmente dependientes
El conjunto de funciones f1(x)
1x 5, f2(x)
1x 5x, f3(x) x 1, f4(x) x 2
es linealmente dependiente en el intervalo (0, ) porque f2 puede escribirse como una
combinación lineal de fl, f3 y f4. Observe que
4.1
f2(x)
TEORÍA PRELIMINAR: ECUACIONES LINEALES
1 f1(x)
5 f3(x)
l
119
0 f4(x)
para toda x en el intervalo (0, ).
SOLUCIONES DE ECUACIONES DIFERENCIALES Estamos interesados principalmente en funciones linealmente independientes o con más precisión, soluciones
linealmente independientes de una ecuación diferencial lineal. Aunque se podría apeODUVLHPSUHHQIRUPDGLUHFWDDODGH¿QLFLyQUHVXOWDTXHODFXHVWLyQGHVLHOFRQjunto de n soluciones yl, y2, . . . , yn de una ecuación diferencial lineal homogénea de
n-ésimo orden (6) es linealmente independiente se puede establecer en una forma un
poco mecánica usando un determinante.
DEFINICIÓN 4.1.2
Wronskiano
Suponga que cada una de las funciones f1(x), f2(x), . . . , fn(x) tiene al menos
n 1 derivadas. El determinante
W( f1, f2, . . . , fn )
f1
f1
f1(n
fn
fn
f2
f2
1)
f2(n
1)
fn(n
,
1)
donde las primas denotan derivadas, se denomina el Wronskiano de las funciones.
TEOREMA 4.1.3 Criterio para soluciones linealmente independientes
Sean yl, y2, . . . , yn n soluciones de la ecuación diferencial lineal homogénea de
n-ésimo orden (6) en el intervalo I. El conjunto de soluciones es linealmente
independiente en I si y sólo si W(yl, y2, . . . , yn) 0 para toda x en el intervalo.
Se tiene, del teorema 4.1.3, que cuando yl, y2, . . . , yn son n soluciones de (6) en un
intervalo I, el Wronskiano W(yl, y2, . . . , yn) es igual a cero o nunca es cero en el intervalo.
Al conjunto de n soluciones linealmente independientes de una ecuación diferencial lineal homogénea de n-ésimo orden se le da un nombre especial.
DEFINICIÓN 4.1.3
Conjunto fundamental de soluciones
Cualquier conjunto yl, y2, . . . , yn de n soluciones linealmente independientes
de la ecuación diferencial lineal homogénea de n-ésimo orden (6) en un intervalo I es un conjunto fundamental de soluciones en el intervalo.
La cuestión básica de si existe un conjunto fundamental de soluciones para una
ecuación lineal se contesta en el siguiente teorema.
TEOREMA 4.1.4 Existencia de un conjunto fundamental
Existe un conjunto fundamental de soluciones para la ecuación diferencial lineal homogénea de n-ésimo orden (6) en un intervalo I.
Similar al hecho de que cualquier vector en tres dimensiones se puede expresar
como una combinación lineal de los vectores linealmente independientes i, j, k, cualquier solución de una ecuación diferencial lineal homogénea de n-ésimo orden en un
intervalo I se expresa como una combinación lineal de n soluciones linealmente independientes en I. En otras palabras, n soluciones linealmente independientes yl, y2, . . . ,
yn son los bloques básicos para la solución general de la ecuación.
120
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
TEOREMA 4.1.5
Solución general: ecuaciones homogéneas
Sea yl, y2, . . . , yn un conjunto fundamental de soluciones de la ecuación diferencial lineal homogénea de n-ésimo orden (6) en el intervalo I. Entonces la
solución general de la ecuación en el intervalo es
y
c1 y1(x)
c2 y2(x)
cn yn(x),
donde ci, i 1, 2, . . . , n son constantes arbitrarias.
El teorema 4.1.5 establece que si Y(x) es alguna solución de (6) en el intervalo,
entonces siempre se pueden encontrar constantes Cl, C2, . . . , Cn tales que
Y(x) C1 y1(x) C2 y2(x)
Demostraremos el caso cuando n 2.
Cn yn(x).
DEMOSTRACIÓN Sea Y una solución y yl y y2 soluciones linealmente independientes
de a2 y al y a0 y 0 en un intervalo I. Suponga que x t es un punto en I para
el cual W(yl(t), y2(t)) 0. Suponga también que Y(t) kl y Y(t) k2. Si examinamos
las ecuaciones
C1 y1(t) C2 y2(t) k1
C1 y 1(t)
C2 y 2(t)
k2,
se tiene que podemos determinar Cl y C2 de manera única, a condición de que el deterPLQDQWHGHORVFRH¿FLHQWHVVDWLVIDJD
y1(t) y2(t)
y1 (t) y2 (t)
0.
Pero este determinante es simplemente el Wronskiano evaluado en x t y por suposición, W 6LVHGH¿QHG(x) Cl yl(x) C2 y2(x), se observa que G(x) satisface
la ecuación diferencial puesto que es una superposición de dos soluciones conocidas;
G(x) satisface las condiciones iniciales
G(t) C1 y1(t) C2 y2(t) k1 y G (t) C1 y 1 (t) C2 y 2(t) k2;
y Y(x) satisface la misma ecuación lineal y las mismas condiciones iniciales. Debido a
que la solución de este problema con valores iniciales lineal es única (teorema 4.1.1),
se tiene Y(x) G(x) o Y(x) COyl(x) Cy2(x).
EJEMPLO 7
Solución general de una ED homogénea
Las funciones yl e3x y y2 e3x son las dos soluciones de la ecuación lineal homogénea y – 9y 0 en el intervalo ( , ). Por inspección, las soluciones son linealmente
independientes en el eje x. Este hecho se corrobora al observar que el Wronskiano
e3x
e 3x
6 0
3e3x
3e 3x
para toda x. Se concluye que yl y y2 forman un conjunto fundamental de soluciones y
por tanto y c1e 3x c2e3x es la solución general de la ecuación en el intervalo.
W(e3x, e
EJEMPLO 8
3x
)
Una solución obtenida de una solución general
La función y 4 senh 3x 5e3x es una solución de la ecuación diferencial del ejemplo 7. (Compruebe esto.) Aplicando el teorema 4.1.5, debe ser posible obtener esta
solución a partir de la solución general y c1e3x c2e3x. Observe que si se elige c1
2 y c2 7, entonces y 2e3x 7e3x puede rescribirse como
y
2e 3x
2e
3x
5e
3x
4
e 3x
e
2
3x
5e
Esta última expresión se reconoce como y 4 senh 3x 5e3x.
3x
.
4.1
EJEMPLO 9
TEORÍA PRELIMINAR: ECUACIONES LINEALES
l
121
Solución general de una ED homogénea
Las funciones y1 ex, y2 e2x y y3 e3x satisfacen la ecuación de tercer orden y
6y 11y 6y 0. Puesto que
ex e2x e3x
x 2x 3x
W(e , e , e )
p ex 2e2x 3e3x p 2e6x 0
ex 4e2x 9e3x
para todo valor real de x, las funciones y1, y2 y y3 forman un conjunto fundamental de
soluciones en ( , ). Se concluye que y c1e x c2e2x c3e3x es la solución general
de la ecuación diferencial en el intervalo.
4.1.3
ECUACIONES NO HOMOGÉNEAS
Cualquier función yp libre de parámetros arbitrarios que satisface (7) se dice que es
una solución particular o integral particular de la ecuación. Por ejemplo, es una
tarea directa demostrar que la función constante yp 3 es una solución particular de la
ecuación no homogénea y 9y 27.
Ahora si yl, y2, . . . , yk son soluciones de (6) en un intervalo I y yp es cualquier
solución particular de (7) en I, entonces la combinación lineal
y
c1 y1 (x)
c2 y2(x)
ck yk(x)
(10)
yp
es también una solución de la ecuación no homogénea (7). Si piensa al respecto, esto tiene
sentido, porque la combinación lineal cl yl(x) c2 y2(x) . . . ck yk(x) se transforma en
0 por el operador L anDn an 1D n 1 . . . a1D a0, mientras que yp se convierte
en g(x). Si se usa k n soluciones linealmente independientes de la ecuación de n-ésimo
orden (6), entonces la expresión en (10) se convierte en la solución general de (7).
TEOREMA 4.1.6 Solución general: ecuaciones no homogéneas
Sea yp cualquier solución particular de la ecuación diferencial lineal no homogénea de n-ésimo orden (7) en un intervalo I, y sea yl, y2, . . . , yn un conjunto
fundamental de soluciones de la ecuación diferencial homogénea asociada (6)
en I. Entonces la solución general de la ecuación en el intervalo es
y
c1 y1(x)
c2 y2(x)
cn yn(x)
yp ,
donde las ci, i 1, 2, . . . , n son constantes arbitrarias.
DEMOSTRACIÓN Sea LHORSHUDGRUGLIHUHQFLDOGH¿QLGRHQ \VHDQY(x) y yp(x)
soluciones particulares de la ecuación no homogénea L(y) g(x 6LVHGH¿QHu(x)
Y(x) – yp(x), entonces por la linealidad de L se tiene
L(u) L{Y(x) yp(x)} L(Y(x)) L(yp(x)) g(x) g(x) 0.
Esto demuestra que u(x) es una solución de la ecuación homogénea L(y) 0. Así
por el teorema 4.1.5, u(x) cl yl(x) c2 y2(x) . . . cnyn(x), y así
Y(x)
o
yp(x)
c1 y1(x)
c2 y2(x)
cn yn(x)
Y(x)
c1 y1(x)
c2 y2(x)
cn yn(x)
yp(x).
FUNCIÓN COMPLEMENTARIA Vemos en el teorema 4.1.6 que la solución general
de una ecuación lineal no homogénea está compuesta por la suma de dos funciones:
y
c1 y1(x)
c2 y2(x)
cn yn(x)
yp(x)
yc(x)
yp(x).
La combinación lineal yc(x) cl yl(x) c2 y2(x) . . . cn yn(x), que es la solución
general de (6), se llama función complementaria para la ecuación (7). En otras pala-
122
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
bras, para resolver una ecuación diferencial lineal no homogénea, primero se resuelve
la ecuación homogénea asociada y luego se encuentra una solución particular de la
ecuación no homogénea. Entonces la solución general de la ecuación no homogénea es
y función complementaria cualquier solución particular
yc yp.
EJEMPLO 10
Solución general de una ED no homogénea
Por sustitución se demuestra con facilidad que la función yp
solución particular de la ecuación no homogénea
6y
y
11y
6y
11
12
es una
1
2x
(11)
3x.
Para escribir la solución general de (11), también se debe poder resolver la ecuación
homogénea asociada
y
6y
11y
6y 0.
Pero en el ejemplo 9 vimos que la solución general de esta última ecuación en el intervalo
( , ) fue yc clex c2e2x c3e3x. Por tanto la solución general de (11) en el intervalo es
y
yc
c1ex
yp
c2e2x
c3e3x
11
12
1
x.
2
OTRO PRINCIPIO DE SUPERPOSICIÓN El último teorema de este análisis se
usará en la sección 4.4, cuando se considere un método para encontrar soluciones particulares de ecuaciones no homogéneas.
TEOREMA 4.1.7
Principio de superposición: ecuaciones
no homogéneas
Sean yp1, yp2, . . . , ypk k soluciones particulares de la ecuación diferencial lineal
no homogénea de n-ésimo orden (7) en un intervalo I que corresponde, a su
vez, a k funciones diferentes g1, g2, . . . , gk. Es decir, se supone que ypi denota
una solución particular de la ecuación diferencial correspondiente
an(x)y(n)
an 1(x)y(n
1)
a1(x)y
a0(x)y
gi (x),
(12)
donde i 1, 2, . . . , k. Entonces
yp
yp1(x)
yp2(x)
(13)
ypk(x)
es una solución particular de
an(x)y(n) an 1(x)y(n
g1(x) g2(x)
1)
a1(x)y
a0(x)y
(14)
gk(x).
DEMOSTRACIÓN Se demuestra el caso k 2. Sea L el operador diferencial de-
¿QLGRHQ \VHDQyp1(x) y yp2(x) soluciones particulares de las ecuaciones no homogéneas L(y) g1(x) y L(y) g2(x UHVSHFWLYDPHQWH6LGH¿QLPRVyp yp1(x)
yp2(x), queremos demostrar que yp es una solución particular de L(y) g1(x)
g2(x). Nuevamente se deduce el resultado por la linealidad del operador L:
L( yp)
L{yp1(x)
yp2(x)}
L( yp1(x))
L( yp2(x))
g1(x)
g2(x).
4.1
EJEMPLO 11
l
123
24x
8,
TEORÍA PRELIMINAR: ECUACIONES LINEALES
Superposición: ED no homogénea
Usted debe comprobar que
4x2
yp1
es una solución particular de
y
3y
16x2
4y
yp2
2x
e
es una solución particular de
y
3y
4y
2e ,
yp3
xex
es una solución particular de
y
3y
4y
2xex
2x
ex.
Se tiene de (13) del teorema 4.1.7 que la superposición de yp1, yp2, y yp3,
y
yp1
es una solución de
yp2
yp3
4x2
e2x
xex,
y 3y 4y 16x2 24x 8 2e2x 2xex ex.
g1(x)
g2(x)
g3(x)
NOTA Si las ypi son soluciones particulares de (12) para i 1, 2, . . . , k, entonces
la combinación lineal
yp c1 yp1 c2 yp2
ck ypk,
donde las ci son constantes, es también una solución particular de (14) cuando el
miembro del lado derecho de la ecuación es la combinación lineal
c1g1(x) c2 g2(x)
ck gk (x).
Antes de que empecemos a resolver realmente ecuaciones diferenciales lineales
homogéneas y no homogéneas, se necesita un poco más de la teoría, que se presenta
en la siguiente sección.
COMENTARIOS
Esta observación es una continuación del breve análisis de sistemas dinámicos
TXHVHSUHVHQWyDO¿QDOGHODVHFFLyQ
Un sistema dinámico cuya regla o modelo matemático es una ecuación diferencial lineal de n-ésimo orden
an(t)y(n)
an 1(t)y(n
1)
a1(t)y
a0(t)y
g(t)
se dice que es un sistema lineal de n-ésimo orden. Las n funciones dependientes del
tiempo y(t), y(t), . . . , y(n1)(t) son las variables de estado del sistema. Recuerde
que sus valores en el tiempo t dan el estado del sistema. La función g tiene varios
nombres: función de entrada, función de fuerza o función de excitación. Una
solución y(t) de la ecuación diferencial se llama salida o respuesta del sistema.
Bajo las condiciones establecidas en el teorema 4.1.1, la salida o respuesta y(t) se
determina de manera única por la entrada y el estado del sistema prescritos en el
tiempo t0; es decir, por las condiciones iniciales y(t0), y(t0), . . . , y(n1)( t0).
Para que un sistema dinámico sea un sistema lineal es necesario que se cumpla
en el sistema el principio de superposición (teorema 4.1.7); es decir, la respuesta
del sistema a una superposición de entradas es una superposición de salidas. Ya se
analizaron algunos de los sistemas lineales simples en la sección 3.1 (ecuaciones
lineales de primer orden); en la sección 5.l se examinan sistemas lineales en los
que los modelos matemáticos son ecuaciones diferenciales de segundo orden.
124
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
EJERCICIOS 4.1
4.1.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-4.
PROBLEMAS CON VALORES INICIALES
Y CON VALORES EN LA FRONTERA
En los problemas 1 a 4 la familia de funciones que se proporciona es la solución general de la ecuación diferencial en el
intervalo que se indica. Encuentre un miembro de la familia
que sea una solución del problema con valores iniciales.
1. y c1e x c2ex, ( , );
y y 0, y(0) 0, y(0) 1
2. y c1e 4x c2ex, ( , );
y 3y 4y 0, y(0) 1,
y(0) 2
3. y c1x c2x ln x, (0, );
x 2y xy y 0, y(1) 3,
y(1) 1
4. y c1 c2 cos x c3 sen x, ( , );
y y 0, y(ʌ) 0, y(ʌ) 2, y(ʌ) 1
5. Dado que y c1 c2x2 es una familia de dos parámetros
de soluciones de xy y 0 en el intervalo ( , ), demuestre que no se pueden encontrar las constantes c1 y c2
tales que un miembro de la familia satisface las condiciones
iniciales y(0) 0, y(0) 1. Explique por qué esto no viola
el teorema 4.1.1.
6. Encuentre dos miembros de la familia de soluciones del
problema 5 que satisfagan las condiciones iniciales y(0)
0, y(0) 0.
7. Como x(t) c1 cos ȦW c2 sen ȦW es la solución general
de x Ȧ2x 0 en el intervalo ( , ), demuestre que
una solución que satisface las condiciones iniciales x(0)
x0, x(0) x1 está dada por
x(t)
x0 cos vt
x1
sen vt.
v
8. Use la solución general de x Ȧ2x 0 que se da en el
problema 7 para demostrar que una solución que satisface
las condiciones iniciales x(t0) x0, x(t0) x1 es la solución dada en el problema 7 cambiada por una cantidad t0:
x1
x(t) x0 cos v (t t0 )
sen v(t t0 ).
v
En los problemas 9 y 10 encuentre un intervalo centrado en x
0 para el cual el problema con valores iniciales dado tiene
una solución única.
9. (x 2)y 3y x,
10. y (tan x)y e x,
y(0) 0,
y(0) 1,
y(0) 1
y(0) 0
11. a) Utilice la familia del problema 1 para encontrar una
solución de y y 0 que satisfaga las condiciones
en la frontera y(0) 0, y(l) 1.
b) La ED del inciso a) tiene la solución general alternativa y c3 cosh x c4 senh x en ( , ). Use esta
familia para encontrar una solución que satisfaga las
condiciones en la frontera del inciso a).
c) Demuestre que las soluciones de los incisos a) y b)
son equivalentes.
12. Use la familia del problema 5 para encontrar una solución
de xy – y 0 que satisfaga las condiciones en la frontera y(0) 1, y(1) 6.
En los problemas 13 y 14 la familia de dos parámetros dada
es una solución de la ecuación diferencial que se indica en el
intervalo ( , ). Determine si se puede encontrar un miembro de la familia que satisfaga las condiciones en la frontera.
13. y c1e x cos x c2e x sen x; y 2y 2y 0
a) y(0) 1, y(ʌ) 0 b) y(0) 1, y(ʌ) 1
c) y(0) 1,
y
d) y(0) 0,
1
2
y(ʌ) 0.
14. y c1x 2 c2x 4 3; x 2y 5xy 8y 24
a) y(1) 0, y(1) 4 b) y(0) 1, y(1) 2
c) y(0) 3,
4.1.2
y(1) 0
d) y(1) 3,
y(2) 15
ECUACIONES HOMOGÉNEAS
En los problemas 15 a 22 determine si el conjunto de funciones es linealmente independiente en el intervalo ( , ).
15. f1(x) x,
f2(x) x 2,
f3(x) 4x 3x 2
16. f1(x) 0,
f2(x) x,
f3(x) e x
17. f1(x) 5,
f2(x) cos2x,
18. f1(x) cos 2x,
19. f1(x) x,
f3(x) sen2x
f2(x) 1,
f2(x) x 1,
f3(x) cos2x
f3(x) x 3
20. f1(x) 2 x,
f2(x) 2 兩x 兩
21. f1(x) 1 x,
f2(x) x,
22. f1(x) e x,
f2(x) ex,
f3(x) x 2
f3(x) senh x
En los problemas 23 a 30 compruebe que las funciones dadas
forman un conjunto fundamental de soluciones de la ecuación diferencial en el intervalo que se indica. Forme la solución general.
23. y y 12y 0; e3x, e4x, ( , )
24. y 4y 0;
cosh 2x, senh 2x, ( , )
25. y 2y 5y 0;
e x cos 2x, e x sen 2x, ( , )
4.1
TEORÍA PRELIMINAR: ECUACIONES LINEALES
l
125
26. 4y 4y y 0; e x/2, xe x/2, ( , )
Problemas para analizar
27. x y 6xy 12y 0; x , x , (0, )
37. Sea n 1, 2, 3, . . . . Analice cómo pueden utilizarse las
observaciones Dnxnl 0 y Dnxn n! para encontrar soluciones generales de las ecuaciones diferenciales dadas.
a) y 0
b) y 0
c) y (4) 0
d) y 2
e) y 6
f) y (4) 24
2
3
28. x 2y xy y 0;
4
cos(ln x), sen(ln x), (0, )
29. x y 6x y 4xy 4y 0; x, x2, x2 ln x, (0, )
3
2
30. y (4) y 0;
1, x, cos x, sen x, ( , )
4.1.3 ECUACIONES NO HOMOGÉNEAS
En los problemas 31 a 34 compruebe que dada la familia de soluciones de dos parámetros, se trata de la solución general de la
ecuación diferencial no homogénea en el intervalo indicado.
31. y 7y 10y 24e x;
y c1e 2x c2e 5x 6e x, ( , )
32. y y sec x;
y c1 cos x c2 sen x x sen x (cos x) ln(cos x),
(ʌ兾2, ʌ兾2)
33. y 4y 4y 2e 2x 4x 12;
y c1e 2x c2xe 2x x 2e 2x x 2, ( , )
34. 2x 2y 5xy y x 2 x;
y
1/2
c1x
c2 x
1 2
15 x
1
1
6 x,
(0, )
35. a) Compruebe que yp1 3e2x y yp2 x2 3x son, respectivamente, soluciones particulares de
y
y
6y
5y
y
6y
5y
9e2x
5x2
3x
16.
b) Use el inciso a) para encontrar soluciones particulares de
y
y
6y
5y
y
6y
5y
5x2
10x 2
3x
16
6x
9e2x
32
e2x.
36. a) Por inspección encuentre una solución particular de
y 2y 10.
b) Por inspección encuentre una solución particular de
y 2y 4x.
c) Encuentre una solución particular de y 2y
4x 10.
d) Determine una solución particular de y 2y
8x 5.
38. Suponga que y1 ex y y2 ex son dos soluciones de una
ecuación diferencial lineal homogénea. Explique por qué
y3 cosh x y y4 senh x son también soluciones de la
ecuación.
39. a) Compruebe que y1 x3 y y2 兩x兩3 son soluciones linealmente independientes de la ecuación diferencial
x2y 4xy 6y 0 en el intervalo ( , ).
b) Demuestre que W(y1, y2) 0 para todo número real x.
¿Este resultado viola el teorema 4.1.3? Explique.
c) Compruebe que Y1 x3 y Y2 x2 son también soluciones linealmente independientes de la ecuación
diferencial del inciso a) en el intervalo ( , ).
d) Determine una solución de la ecuación diferencial
que satisfaga y(0) 0, y(0) 0.
e) Por el principio de superposición, teorema 4.1.2,
ambas combinaciones lineales y c1y1 c2y2 y Y
c1Y1 c2Y2 son soluciones de la ecuación diferencial.
Analice si una, ambas o ninguna de las combinaciones lineales es una solución general de la ecuación
diferencial en el intervalo ( , ).
40. ¿El conjunto de funciones f1(x) ex 2, f2(x) ex 3 es
linealmente dependiente o independiente en ( , )?
Explique.
41. Suponga que yl, y2, . . . , yk son k soluciones linealmente
independientes en ( , ) de una ecuación diferencial
lineal homogénea de npVLPR RUGHQ FRQ FRH¿FLHQWHV
constantes. Por el teorema 4.1.2 se tiene que yk1 0 es
también una solución de la ecuación diferencial. ¿Es el
conjunto de soluciones yl, y2, . . . , yk, yk1 linealmente
dependiente o independiente en ( , )? Explique.
42. Suponga que yl, y2, . . . , yk son k soluciones no triviales
de una ecuación diferencial lineal homogénea de n-ésimo
RUGHQFRQFRH¿FLHQWHVFRQVWDQWHV\TXHk n 1. ¿Es el
conjunto de soluciones yl, y2, . . . , yk linealmente dependiente o independiente en ( , )? Explique.
126
l
CAPÍTULO 4
4.2
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
REDUCCIÓN DE ORDEN
REPASO DE MATERIAL
l Sección 2.5 (utilizando una sustitución).
l Sección 4.1.
INTRODUCCIÓN En la sección anterior vimos que la solución general de una ecuación diferencial lineal homogénea de segundo orden
a1(x)y
a0 (x)y 0
a2(x)y
(1)
es una combinación lineal y c1 y1 cy2, donde y1 y y2 son soluciones que constituyen un conjunto
linealmente independiente en cierto intervalo I. Al inicio de la siguiente sección, se analiza un método
SDUDGHWHUPLQDUHVWDVVROXFLRQHVFXDQGRORVFRH¿FLHQWHVGHOD('HQ VRQFRQVWDQWHV(VWHPpWRGR
que es un ejercicio directo en algebra, falla en algunos casos y sólo produce una solución simple y1 de
la ED. En estos casos se puede construir una segunda solución y2 de una ecuación homogénea (1) (aun
FXDQGRORVFRH¿FLHQWHVHQ VRQYDULDEOHV VLHPSUHTXHVHFRQR]FDXQDVROXFLyQQRWULYLDOy1 de la
ED. La idea básica que se describe en esta sección es que la ecuación (1) se puede reducir a una ED
lineal de primer orden por medio de una sustitución en la que interviene la solución conocida y1. Una
segunda solución y2 de (1) es evidente después de resolver la ED de primer orden.
REDUCCIÓN DE ORDEN Suponga que y1 denota una solución no trivial de (1)
y que y1VHGH¿QHHQXQLQWHUYDORI. Se busca una segunda solución y2 tal que y1 y y2
sean un conjunto linealmente independiente en I. Recuerde de la sección 4.1 que si y1
y y2 son linealmente independientes, entonces su cociente y2兾y1 no es constante en I, es
decir, y2(x)兾 y1(x) u(x) o y2 (x) u(x)y1(x). La función u(x) se determina al sustituir
y2(x) u(x) y1(x) en la ecuación diferencial dada. Este método se llama reducción de
orden porque debemos resolver una ecuación diferencial lineal de primer orden para
encontrar a u.
EJEMPLO 1
Una segunda solución por reducción de orden
Dado que y1 ex es una solución de y y 0 en el intervalo ( , ), use reducción
de orden para determinar una segunda solución y2.
SOLUCIÓN Si y u(x)y1(x) u(x)ex, entonces aplicando la regla del producto se
obtiene
y
por lo tanto
uex
y
exu , y
y
ex (u
uex
2ex u
2u )
ex u ,
0.
Puesto que ex 0, la última ecuación requiere que u 2u 0. Si se hace la sustitución
w u, esta ecuación lineal de segundo orden en u se convierte en w 2w 0, que
es una ecuación lineal de primer orden en w. Si se usa el factor integrante e2x, se puede
d 2x
escribir
[e w] 0 . Después de integrar, se obtiene w c1e2x o u cle2x. Al
dx
1
2x
integrar de nuevo se obtiene u
c2. Así
2 c1 e
y
u(x)ex
c1
e
2
x
c2 e x .
(2)
Haciendo c2 0 y c1 2, se obtiene la segunda solución deseada, y2 ex. Puesto que
W(ex, ex) 0 para toda x, las soluciones son linealmente independientes en ( , ).
Puesto que se ha demostrado que y1 ex y y2 ex son soluciones linealmente independientes de una ecuación lineal de segundo orden, la expresión en (2) es en realidad
la solución general de y y 0 en ( , ).
4.2
REDUCCIÓN DE ORDEN
127
l
CASO GENERAL Suponga que se divide entre a2(x) para escribir la ecuación (1) en
la forma estándar
y
P(x)y
(3)
0,
Q(x)y
donde P(x) y Q(x) son continuas en algún intervalo I. Supongamos además que y1(x)
es una solución conocida de (3) en I y que y1(x) 0 para toda x en el intervalo. Si se
GH¿QHy u(x)y1(x), se tiene que
uy 1 y1u , y
uy 1 2y 1u
y1u
y
y Py Qy u[y1 Py1 Qy1] y1u (2y1 Py1)u 0.
cero
Esto implica que se debe tener
y1u
(2y 1
Py1)u
o
0
(2y 1
y1w
Py1)w
0,
(4)
donde hacemos que w u. Observe que la última ecuación en (4) es tanto lineal como
separable. Separando las variables e integrando, se obtiene
dw
w
ln wy21
2
y1
dx
y1
P dx
0
P dx
o
c
wy21
c1e
P dx
.
Despejamos a w de la última ecuación, usamos w u e integrando nuevamente:
u
c1
P dx
e
c2.
dx
y21
Eligiendo c1 1 y c2 0, se encuentra de y u(x)y1(x) que una segunda solución de
la ecuación (3) es
e P(x) d x
y2 y1(x)
dx.
(5)
y21(x)
Un buen ejercicio de derivación es comprobar que la función y2(x TXHVHGH¿QHHQ
satisface la ecuación (3) y que y1 y y2 son linealmente independientes en algún intervalo en el que y1(x) no es cero.
EJEMPLO 2
Una segunda solución por la fórmula (5)
La función y1 x2 es una solución de x2y 3xy 4y 0. Encuentre la solución
general de la ecuación diferencial en el intervalo (0, ).
SOLUCIÓN De la forma estándar de la ecuación,
encontramos de (5)
y
3
y
x
y2
x2
x2
La solución general en el intervalo (0,
y c1x 2 c2 x 2 ln x.
4
y
x2
e3
0,
d x /x
x4
dx
x
dx
; e3
d x /x
eln x
3
x3
x 2 ln x.
) está dada por y c1 y1 c2 y2; es decir,
128
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
COMENTARIOS
i) La deducción y uso de la fórmula (5) se ha mostrado aquí porque esta fórmula aparece de nuevo en la siguiente sección y en las secciones 4.7 y 6.3. La
ecuación (5) se usa simplemente para ahorrar tiempo en obtener un resultado
deseado. Su profesor le indicará si debe memorizar la ecuación (5) o si debe
conocer los primeros principios de la reducción de orden.
ii) La reducción de orden se puede usar para encontrar la solución general de
una ecuación no homogénea a2(x)y a1(x)y a0(x)y g(x) siempre que se
conozca una solución y1 de la ecuación homogénea asociada. Vea los problemas
17 a 20 en los ejercicios 4.2.
EJERCICIOS 4.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-4.
En los problemas 1 a 16 la función indicada y1(x) es una solución de la ecuación diferencial dada. Use la reducción de
orden o la fórmula (5), como se indica, para encontrar una
segunda solución y2(x).
18. y y 1; y1 1
19. y 3y 2y 5e 3x;
20. y 4y 3y x;
y1 e x
y1 e x
1. y 4y 4y 0; y1 e 2x
Problemas para analizar
2. y 2y y 0; y1 xe
12. 4x 2y y 0; y1 x 1/2 ln x
21. a) Proporcione una demostración convincente de que la
ecuación de segundo orden ay by cy 0, a, b,
y c constantes, tiene siempre cuando menos una solución de la forma y1 em1 x , m1 es una constante.
b) Explique por qué la ecuación diferencial que se proporciona en el inciso a) debe tener una segunda solución de la forma y2 em2 x o de la forma y2 xem1 x ,
m1 y m2 son constantes.
c) Analice de nuevo los problemas 1 al 8. ¿Puede explicar
por qué los enunciados de los incisos a) y b) anteriores no
se contradicen con las respuestas de los problemas 3 al 5?
22. Compruebe que y1(x) x es una solución de xy – xy
y 0. Utilice la reducción de orden para encontrar una
segunda solución y2(x HQODIRUPDGHXQDVHULHLQ¿QLWD
(VWLPHXQLQWHUYDORGHGH¿QLFLyQSDUDy2(x).
13. x 2y xy 2y 0; y1 x sen(ln x)
Tarea para el laboratorio de computación
14. x 2y 3xy 5y 0; y1 x 2 cos(ln x)
23. a) Compruebe que y1(x) ex es una solución de
x
3. y 16y 0;
y1 cos 4x
4. y 9y 0; y1 sen 3x
5. y y 0; y1 cosh x
6. y 25y 0; y1 e 5x
7. 9y 12y 4y 0; y1 e 2x/3
8. 6y y y 0; y1 e x/3
9. x 2y 7xy 16y 0; y1 x 4
10. x 2y 2xy 6y 0; y1 x 2
11. xy y 0; y1 ln x
15. (1 2x x 2)y 2(1 x)y 2y 0; y1 x 1
16. (1 x 2)y 2xy 0; y1 1
En los problemas 17 al 20 la función que se indica y1(x) es una
solución de la ecuación homogénea asociada. Use el método
de reducción de orden para determinar una segunda solución
y2(x) de la ecuación homogénea y una solución particular de la
ecuación no homogénea dada.
17. y 4y 2; y1 e
2x
xy (x 10)y 10y 0.
b) Use la ecuación (5) para determinar una segunda solución y2(x). Usando un SAC realice la integración
que se requiere.
c) Explique, usando el corolario (A) del teorema 4.1.2,
por qué la segunda solución puede escribirse en
forma compacta como
10
y2(x)
n
0
1 n
x.
n!
4.3
4.3
ECUACIONES LINEALES HOMOGÉNEAS CON COEFICIENTES CONSTANTES
l
129
ECUACIONES LINEALES HOMOGÉNEAS
CON COEFICIENTES CONSTANTES
REPASO DE MATERIAL
l Repase los problemas 27 al 30 de los ejercicios 1.1 y del teorema 4.1.5.
l Repase el álgebra de solución de ecuaciones polinomiales.
INTRODUCCIÓN Como un medio para motivar el análisis en esta sección, se tratan nuevamente
ODVHFXDFLRQHVGLIHUHQFLDOHVGHSULPHURUGHQPiVHVSHFt¿FDPHQWHODVHFXDFLRQHVOLQHDOHVhomogéneas ay by GRQGHORVFRH¿FLHQWHVa 0 y b son constantes. Este tipo de ecuación se resuelve
ya sea por variables separables o con ayuda de un factor integrante, pero hay otro método de solución,
uno que sólo utiliza álgebra. Antes de mostrar este método alternativo, hacemos una observación: Al
despejar y de la ecuación ay by 0 se obtiene y ky, donde k es una constante. Esta observación
revela la naturaleza de la solución desconocida y; la única función elemental no trivial cuya derivada
es una constante múltiple de sí misma es una función exponencial emx. Ahora el nuevo método de
solución: Si sustituimos y emx y y memx en ay by 0, se obtiene
amemx bemx 0 o emx (am b) 0.
Como emx nunca es cero para valores reales de x, la última ecuación se satisface sólo cuando m es una
solución o raíz de la ecuación polinomial de primer grado am b 0. Para este único valor de m,
y emxHVXQDVROXFLyQGHOD('3DUDPRVWUDUHVWRFRQVLGHUHODHFXDFLyQGHFRH¿FLHQWHVFRQVWDQWHV
2y 5y 0. No es necesario realizar la derivación y la sustitución de y emx en la ED; sólo se tiene
5
5x/2
que formar la ecuación 2m 5 0 y despejar m. De m
es una so2 se concluye que y e
lución de 2y 5y 0, y su solución general en el intervalo ( , ) es y c1e5x/2.
En esta sección veremos que el procedimiento anterior genera soluciones exponenciales para las
ED lineales homogéneas de orden superior,
(1)
an y(n) an 1 y(n 1)
a2 y
a1 y
a0 y 0,
GRQGHORVFRH¿FLHQWHVai, i 0, 1, . . . , n son constantes reales y an 0.
ECUACIÓN AUXILIAR Se empieza por considerar el caso especial de la ecuación
de segundo orden
ay
by
cy 0,
(2)
donde a, b y c son constantes. Si se intenta encontrar una solución de la forma y e mx,
entonces después de sustituir y me mx y y m 2e mx, la ecuación (2) se convierte en
am2emx bmemx cemx 0 o emx(am2 bm c) 0.
Como en la introducción se argumenta que debido a que emx 0 para toda x, es obvio
que la única forma en que y emx puede satisfacer la ecuación diferencial (2) es cuando
se elige m como una raíz de la ecuación cuadrática
(3)
am2 bm c 0.
Esta última ecuación se llama ecuación auxiliar de la ecuación diferencial (2). Como las
dos raíces de (3) son m1 ( b
1b2 4ac) 2a,
1b2 4ac) 2a y m2 ( b
habrá tres formas de la solución general de (2) que corresponden a los tres casos:
• ml y m2 reales y distintas (b 2 4ac 0),
• ml y m2 reales e iguales (b 2 4ac 0), y
• ml y m2 números conjugados complejos (b 2 4ac 0).
Analicemos cada uno de estos casos.
CASO 1: RAÍCES REALES Y DISTINTAS Bajo la suposición de que la ecuación
auxiliar (3) tiene dos raíces reales desiguales ml y m2, encontramos dos soluciones,
y1 em1x y y2 em 2 x. Vemos que estas funciones son linealmente independientes en
( , ) y, por lo tanto, forman un conjunto fundamental. Se deduce que la solución
general de (2) en este intervalo es
(4)
y c1em1x c2em 2 x.
130
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
CASO II: RAÍCES REALES REPETIDAS Cuando ml m2, necesariamente se obmx
tiene sólo una solución exponencial, y1 e 1 . De la fórmula cuadrática se encuentra
que ml b兾2a puesto que la única forma en que se tiene que ml m2 es tener b2
4ac 0. Tenemos de (5) en la sección 4.2 que una segunda solución de la ecuación es
e2m1x
(5)
dx em1x dx xem1x.
e2m1x
En (5) hemos usado el hecho de que – b兾a 2m1. La solución general es entonces
em1x
y2
c1em1x
y
(6)
c2 xem1x.
CASO III: RAÍCES COMPLEJAS CONJUGADAS Si ml y m2 son complejas, entonces se puede escribir ml Į Lȕ y m2 Į Lȕ, donde Į y ȕ 0 son reales i2 1.
De manera formal, no hay diferencia entre este caso y el caso I y, por lo tanto,
C1e(a
y
i )x
C2e(a
i )x
.
6LQHPEDUJRHQODSUiFWLFDVHSUH¿HUHWUDEDMDUFRQIXQFLRQHVUHDOHVHQOXJDUGHH[SRnenciales complejas. Para esto usamos la fórmula de Euler:
ei
donde ș es cualquier número
real.*
cos
i sen ,
Se tiene de esta fórmula que
i x
(7)
cos x i sen x,
y e
donde se usaron cos(ȕx) cos ȕx y sen(ȕx) sen ȕx. Observe que si primero
se suma y luego se restan las dos ecuaciones en (7), se obtiene, respectivamente,
i x
cos x
e
ei
x
i sen x
i x
2 cos x y ei x e i x 2i sen x.
Puesto que y C1e(ĮLȕ)x C2e(ĮLȕ)x es una solución de (2) para alguna elección de las
constantes C1 y C2, las elecciones C1 C2 1 y C1 1, C2 1 dan, a su vez, dos
soluciones:
y
y1 e(a i )x e(a i )x
y2 e(a i )x e(a i )x.
e
Pero
y1
eax(ei
x
e
i x
)
2eax cos x
y
y2
eax(ei
x
e
i x
)
2ieax sen x.
Por tanto, del corolario A) del teorema 4.1.2, los dos últimos resultados muestran que
eĮ[ cos ȕ[ y eĮ[ sen ȕ[ son soluciones reales de (2). Además, estas soluciones forman
un conjunto fundamental en ( , ). Por tanto, la solución general es
(8)
y c1eax cos x c2eax sen x eax (c1 cos x c2 sen x).
EJEMPLO 1
ED de segundo orden
Resuelva las siguientes ecuaciones diferenciales.
a) 2y 5y 3y 0
b) y 10y 25y 0
c) y 4y 7y 0
SOLUCIÓN Se dan las ecuaciones auxiliares, las raíces y las soluciones generales
correspondientes.
1
3
a) 2m 2 5m 3 (2m 1)(m 3) 0, m1
2 , m2
De (4), y c1ex/2 c2e 3x.
b) m 2 10m 25 (m 5) 2 0,
De (6), y c1e 5x c2xe 5x.
c) m2
4m
De (8) con
7
0, m1
2,
2
23, y
e
m1 m2 5
23i,
2x
m2
(c1 cos 23x
2
23i
c2 sen 23x .
)
xn
n 0 n!
sustituyendo x Lș, con i 2 1, i 3 i, . . . y después separando la serie en las partes real e imaginaria.
Así se establece la plausibilidad, por lo que podemos adoptar a cos ș i sen ș como la GH¿QLFLyQ de eLș.
*
8QDGHGXFFLyQIRUPDOGHODIyUPXODGH(XOHUVHREWLHQHGHODVHULHGH0DFODXULQ e x
4.3
ECUACIONES LINEALES HOMOGÉNEAS CON COEFICIENTES CONSTANTES
EJEMPLO 2
4
Un problema con valores iniciales
SOLUCIÓN Usando la fórmula cuadrática tenemos que las raíces de la ecuación auxiliar
3
2
1
x
_1
_2
_3
1
2
3
4
5
1
1
4m2 4m 17 0 son m1
2i y m2
2i. Por tanto, de la ecuación
2
2
x/2
(8) se tiene que y e (c1 cos 2x c2 sen 2x). Aplicando la condición y(0) 1,
se observa de e0(c1 cos 0 c2 sen 0) 1 que c1 1. Derivando y ex/2( cos
2x c2 sen 2x) y después usando y(0) 2, se obtiene 2c2 12 2 o c2 34. Por tanto,
3
)
la solución del PVI es y e x/2( cos 2x 4 sen 2x)2(QOD¿JXUDYHPRVTXHOD
solución es oscilatoria, pero y → 0 conforme x → .
DOS ECUACIONES QUE VALE LA PENA CONOCER Las dos ecuaciones diferenciales
FIGURA 4.3.1 Curva solución del
PVI del ejemplo 2.
131
Resuelva 4y 4y 17y 0, y(0) 1, y(0) 2.
y
_4
_3 _2 _1
l
k2 y
y
0 y y
k2 y
0,
donde k es real, son importantes en matemáticas aplicadas. Para y k2y 0, la ecuación auxiliar m2 k2 0 tiene raíces imaginarias m1 ki y m2 ki. Con Į 0 y ȕ
k en (8) se ve que la solución general de la ED es
c1 cos kx
y
(9)
c2 senkx.
Por otra parte, la ecuación auxiliar m k 0 para y k y 0 tiene raíces reales
distintas m1 k y m2 k, y así por la ecuación (4) la solución general de la ED es
2
y
2
c1ekx
2
kx
c2e
1
2 2y
kx
(10)
.
1
2 , 1c2
1
22
c1 y
en (l0), se obtienen las
Observe que si se elige c1 c2
1
2
2
12
soluciones particulares y 12 (e kx e ) cosh kx y y 12 (e kx e kx ) senhkx.
Puesto que cosh kx y senh kx son linealmente independientes en algún intervalo del eje
x, una forma alternativa para la solución general de y k2y 0 es
y
c1 cosh kx
(11)
c2 senhkx.
Vea los problemas 41 y 42 de los ejercicios 4.3.
ECUACIONES DE ORDEN SUPERIOR En general, para resolver una ecuación diferencial de n-ésimo orden (1) donde ai, i 0, 1, . . . , n son constantes reales, se debe
resolver una ecuación polinomial de n-ésimo grado
an mn
an 1mn
1
a2m2
a1m
a0
0.
(12)
Si todas las raíces de (12) son reales y distintas, entonces la solución general de (1) es
y
c1em1x
c2em2 x
cnemn x.
Es un poco difícil resumir los análogos de los casos II y III porque las raíces de una ecuación auxiliar de grado mayor que dos ocurren en muchas combinaciones. Por ejemplo,
una ecuación de quinto grado podría tener cinco raíces reales distintas, o tres raíces reales
distintas y dos complejas, o una real y cuatro complejas, o cinco raíces reales pero iguales,
o cinco raíces reales pero dos de ellas iguales, etc. Cuando m1 es una raíz de multiplicidad
k de una ecuación auxiliar de n-ésimo grado (es decir, k raíces son iguales a m1), es posible
demostrar que las soluciones linealmente independientes son
em1x, xem1x, x 2em1 x, . . . , xk 1em1x
y la solución general debe contener la combinación lineal
c1em1x c2 xem1x c3 x 2em1x
ck x k 1em1 x.
3RU~OWLPRVHGHEHUHFRUGDUTXHFXDQGRORVFRH¿FLHQWHVVRQUHDOHVODVUDtFHVFRPplejas de una ecuación auxiliar siempre se presentan en pares conjugados. Así, por
ejemplo, una ecuación polinomial cúbica puede tener a lo más dos raíces complejas.
132
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
EJEMPLO 3
ED de tercer orden
Resuelva y 3y 4y 0.
SOLUCIÓN Debe ser evidente de la inspección de m3 3m2 4 0 que una raíz es
m1 1, por tanto, m 1 es un factor de m3 3m2 4. Dividiendo se encuentra que
m3 3m2 4 (m 1)(m2 4m 4) (m 1)(m 2)2,
así las raíces son m2 m3 2. Así, la solución general de la ED es y
c1e x c2e2x c3xe2x.
EJEMPLO 4
Resuelva
d 4y
dx4
2
ED de cuarto orden
d 2y
dx2
0.
y
SOLUCIÓN La ecuación auxiliar m 4 2m 2 1 (m 2 1) 2 0 tiene raíces m1
m3 i y m2 m4 i. Así, del caso II la solución es
y C1 eix C2 e ix C3 xeix C4 xe ix.
Por la fórmula de Euler el grupo C1e ix C2eix se puede rescribir como
c1 cos x
c2 senx
GHVSXpVGHUHGH¿QLUGHQXHYRODVFRQVWDQWHV'HPDQHUDVLPLODUx(C3e ix C4eix) se
puede expresar como x(c3 cos x c4 sen x). Por tanto, la solución general es
c1 cos x
y
c2 senx
c3 x cos x
c4 x sen x.
El ejemplo 4 ilustra un caso especial cuando la ecuación auxiliar tiene raíces repetidas
complejas. En general, si m1 Į Lȕ, ȕ 0 es una raíz compleja de multiplicidad k
GHXQDHFXDFLyQDX[LOLDUFRQFRH¿FLHQWHVUHDOHVHQWRQFHVVXFRQMXJDGDm 2 Į Lȕ es
también una raíz de multiplicidad k. De las 2k soluciones con valores complejos
e(a
i )x
e(a
i )x
,
xe(a
i )x
xe(a
i )x
,
,
,
x2e(a
i )x
x2e(a
i )x
,
,
...,
xk 1e(a
i )x
...,
xk 1e(a
i )x
,
,
concluimos, con la ayuda de la fórmula de Euler, que la solución general de la ecuación diferencial correspondiente debe tener una combinación lineal de las 2k soluciones reales linealmente independientes.
eax cos b x, xeax cos bx, x2eax cos bx, . . . , xk 1eax cos bx,
eax sen b x,
xeax sen bx,
x2eax sen bx,
. . . , xk 1eax sen bx.
(QHOHMHPSORLGHQWL¿FDPRVk 2, Į 0 y ȕ 1.
Por supuesto, el aspecto más difícil de resolver ecuaciones diferenciales de coe¿FLHQWHVFRQVWDQWHVHVGHWHUPLQDUODVUDtFHVGHHFXDFLRQHVDX[LOLDUHVGHJUDGRPD\RU
que dos. Por ejemplo, para resolver 3y 5y 10y 4y 0, debemos resolver
3m 3 5m 2 10m 4 0. Algo que se puede intentar es probar la ecuación auxiliar
para raíces racionales. Recuerde que si m1 p兾q es una raíz racional (en su mínima
a1m a0 0 FRQFRH¿FLHQWHVHQ
expresión) de una ecuación auxiliar an mn
teros, entonces p es un factor de a0 y q es un factor de an. Para la ecuación auxiliar cúbica
HVSHFt¿FDWRGRVORVIDFWRUHVGHa0 4 y an 3 son p: 1, 2, 4 y q: 1, 3
1
21
42
4
por lo que las posibles raíces racionales son p>q: 1, 2, 4,
3,
3,
3 .Entonces
se puede probar cada uno de estos números, digamos, por división sintética. De esta
1
forma se descubre la raíz m1 3 y la factorización
3m3
5m2
10m
4
(m
1
3
)(3m2
6m
De la fórmula cuadrática se obtienen las otras raíces m 2
5y
13
23i . Por tanto, la solución general de 3 y
y
c1e x/3
e x(c2 cos 23x
c3 sen 23x).
12).
1
10y
23i y m3
4y 0 es
4.3
ECUACIONES LINEALES HOMOGÉNEAS CON COEFICIENTES CONSTANTES
l
133
USO DE COMPUTADORAS Determinar las raíces o aproximar las raíces de ecuaciones auxiliares es un problema de rutina con una calculadora apropiada o con un paquete de
cómputo. Las ecuaciones polinomiales (en una variable) de grado menor que cinco se resuelven por medio de fórmulas algebraicas usando las instrucciones solve en Mathematica
y Maple. Para ecuaciones polinomiales de grado cinco o mayor podría ser necesario recurrir a comandos numéricos tales como NSolve y FindRoot en Mathematica. Debido a su
capacidad para resolver ecuaciones polinomiales, no es sorprendente que estos sistemas
algebraicos para computadora también puedan, usando sus comandos dsolve, dar solucioQHVH[SOtFLWDVGHHFXDFLRQHVGLIHUHQFLDOHVOLQHDOHVKRPRJpQHDVFRQFRH¿FLHQWHVFRQVWDQWHV
En el libro clásico Differential Equations de Ralph Palmer Agnew* (que el autor
usó cuando era estudiante), se expresa el siguiente enunciado:
No es razonable esperar que los alumnos de este curso tengan la capacidad y el
HTXLSRGHFyPSXWRQHFHVDULRSDUDUHVROYHUGHPDQHUDH¿FD]HFXDFLRQHVWDOHVFRPR
4.317
d 4y
dx4
2.179
d 3y
dx3
1.416
d 2y
dx2
1.295
dy
dx
3.169y
0.
(13)
Aunque es debatible si en todos estos años ha mejorado la capacidad para realizar
cálculos, es indiscutible que la tecnología sí lo ha hecho. Si se tiene acceso a un sistema
algebraico para computadora, se podría ahora considerar razonable la ecuación (13).
'HVSXpVGHVLPSOL¿FDU\HIHFWXDUDOJXQDVVXVWLWXFLRQHVHQHOUHVXOWDGRMathematica
genera la solución general (aproximada)
y
c1e
0.728852x
cos(0.618605x)
0.476478x
c3e
0.728852x
sen(0.618605x)
0.476478x
sen(0.759081x).
c2e
cos(0.759081x)
c4e
Por último, si se le presenta un problema con valores iniciales que consiste en,
digamos, una ecuación de cuarto orden, entonces para ajustar la solución general de la
ED a las cuatro condiciones iniciales, se deben resolver cuatro ecuaciones lineales con
las cuatro incógnitas (c1, c2, c3 y c4 en la solución general). Si se emplea un SAC para
resolver el sistema se puede ahorrar mucho tiempo. Véanse los problemas 69 y 70 de los
ejercicios 4.3 y el problema 41 del Repaso del capítulo 4.
*
0F*UDZ+LOO1XHYD<RUN
EJERCICIOS 4.3
Las respuestas a los problemas con número impar comienzan en la página RES-4.
En los problemas 1 a 14, obtenga la solución general de la
ecuación diferencial de segundo orden dada.
1. 4y y 0
19.
d 3u
dt3
d 2u
dt2
2u
0
d 3x
dt3
d 2x
dt2
4x
0
2. y 36y 0
3. y y 6y 0
4. y 3y 2y 0
20.
5. y 8y 16y 0
6. y 10y 25y 0
21. y 3y 3y y 0
7. 12y 5y 2y 0
8. y 4y y 0
22. y 6y 12y 8y 0
10. 3y y 0
23. y (4) y y 0
11. y 4y 5y 0
12. 2y 2y y 0
24. y (4) 2y y 0
13. 3y 2y y 0
14. 2y 3y 4y 0
9. y 9y 0
En los problemas 15 a 28 encuentre la solución general de la
ecuación diferencial de orden superior dada.
15.
16.
17.
18.
y
y
y
y
4y 5y 0
y0
5y 3y 9y 0
3y 4y 12y 0
d 2y
d 4y
24 2 9y 0
4
dx
dx
4
2
d y
d y
7 2 18y 0
26.
dx4
dx
25. 16
27.
d 5u
dr5
28. 2
d 5x
ds5
5
d 4u
dr4
7
d 4x
ds4
2
d 3u
dr3
12
d 3x
ds3
10
d 2u
dr2
8
d 2x
ds2
du
dr
0
5u
0
134
CAPÍTULO 4
l
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
En los problemas 29 a 36 resuelva el problema con valores
iniciales
29. y 16y 0, y(0) 2, y(0) 2
30.
d 2y
d 2
y
31.
d 2y
dt2
4
0,
dy
dt
y
0, y
3
5y
0, y(1)
32. 4y 4y 3y 0,
y
45.
x
2
3
0, y (1)
2
y(0) 1, y(0) 5
33. y y 2y 0,
y(0) y(0) 0
34. y 2y y 0,
y(0) 5, y(0) 10
FIGURA 4.3.4 *Ui¿FDGHOSUREOHPD
y
46.
35. y 12y 36y 0, y(0) 0, y(0) 1, y(0) 7
x
36. y 2y 5y 6y 0, y(0) y(0) 0, y(0) 1
En los problemas 37 a 40 resuelva el problema con valores en
la frontera dado.
37. y 10y 25y 0,
38. y 4y 0,
39. y
y
0,
40. y 2y 2y 0,
0, y
2
y
47.
y(0) 0, y(ʌ) 0
y (0)
FIGURA 4.3.5 *Ui¿FDGHOSUREOHPD
y(0) 1, y(1) 0
0
y(0) 1, y(ʌ) 1
π
x
En los problemas 41 y 42 resuelva el problema dado usando
primero la forma de la solución general dada en (10). Resuelva
de nuevo esta vez usando la fórmula dada en (11).
41. y 3y 0, y(0) 1, y(0) 5
42. y y 0, y(0) 1, y(1) 0
FIGURA 4.3.6 *Ui¿FDGHOSUREOHPD
(QORVSUREOHPDVDFDGD¿JXUDUHSUHVHQWDODJUi¿FDGH
una solución particular de una de las siguientes ecuaciones
diferenciales.
a) y 3y 4y 0
b) y 4y 0
c) y 2y y 0
d) y y 0
y
48.
π
x
e) y 2y 2y 0
f ) y 3y 2y 0
Relacione una curva solución con una de las ecuaciones diferenciales. Explique su razonamiento.
43.
y
FIGURA 4.3.7 *Ui¿FDGHOSUREOHPD
x
FIGURA 4.3.2 *Ui¿FDGHOSUREOHPD
44.
y
x
FIGURA 4.3.3 *Ui¿FDGHOSUREOHPD
En los problemas 49 a 58 encuentre una ecuación diferencial
KRPRJpQHDFRQFRH¿FLHQWHVFRQVWDQWHVFX\DVROXFLyQJHQHUDO
es la dada.
c2e5x
49. y
c1ex
51. y
c1
53. y
c1 cos3x
c2e2x
c2 sen3x
x
4x
50. y
c1e
52. y
c1e10x
54. y
c2e
c2xe10x
c1 cosh7x
x
55. y
c1e cos x
56. y
c1
2x
c2e cos5x
57. y
c1
c2x
58. y
c1 cos x
c2e senx
c3e2x sen5x
c3e8x
c2 senx
c3 cos 2 x
3x
c4 sen 2x
c2 senh7x
4.4
COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN
l
135
Problemas para analizar
Tarea para el laboratorio de computación
59. 'RVUDtFHVGHXQDHFXDFLyQDX[LOLDUF~ELFDFRQFRH¿FLHQ1
tes reales son m1
y m2 3 i. ¿Cuál es la ecua2
ción diferencial lineal homogénea correspondiente?
En los problemas 65 a 68 use una computadora ya sea como
ayuda para resolver la ecuación auxiliar o como un medio para
obtener de forma directa la solución general de la ecuación diferencial dada. Si utiliza un SAC para obtener la solución general,
VLPSOL¿TXHHOUHVXOWDGR\VLHVQHFHVDULRHVFULEDODVROXFLyQHQ
términos de funciones reales.
65. y 6y 2y y 0
60. Determine la solución general de 2y 7y 4y 4y
0 si m1 1冫2 es una raíz de su ecuación auxiliar.
61. Determine la solución general de y 6y y 34y
0 si se sabe que y1 e4x cos x es una solución.
66. 6.11y 8.59y 7.93y 0.778y 0
67. 3.15y (4) 5.34y 6.33y 2.03y 0
62. Para resolver y (4) y 0, es necesario encontrar las raíces
de m4 1 0. Este es un problema trivial si se utiliza un
SAC, pero también se resuelve a mano trabajando con números complejos. Observe que m4 1 (m2 1)2 2m2.
¿Cómo ayuda esto? Resuelva la ecuación diferencial.
68. y (4) 2y y 2y 0
En los problemas 69 y 70 utilice un SAC como ayuda para
resolver la ecuación auxiliar. Forme la solución general de
la ecuación diferencial. Después utilice un SAC como ayuda
SDUD UHVROYHU HO VLVWHPD GH HFXDFLRQHV SDUD ORV FRH¿FLHQWHV
ci, i 1, 2, 3, 4 que resulta cuando se aplican las condiciones
iniciales a la solución general.
63. Compruebe que y senh x 2 cos(x ʌ兾6) es una solución particular de y(4) y 0. Reconcilie esta solución
particular con la solución general de la ED.
69. 2y (4) 3y 16y 15y 4y 0,
y(0) 2, y(0) 6, y(0) 3, y (0)
64. Considere el problema con valores en la frontera y Ȝ\
0, y(0) 0, y(ʌ兾2) 0. Analice: ¿es posible determinar valores de Ȝ tal que el problema tenga a) soluciones
triviales?, b) ¿soluciones no triviales?
4.4
1
2
70. y (4) 3y 3y y 0,
y(0) y(0) 0, y(0) y (0) 1
COEFICIENTES INDETERMINADOS: MÉTODO
DE SUPERPOSICIÓN *
REPASO DE MATERIAL
l Repaso de los teoremas 4.1.6 y 4.1.7 (sección 4.1).
INTRODUCCIÓN
Para resolver una ecuación diferencial lineal no homogénea
a n y (n)
an
1y
(n
1)
a1 y
a0 y
g(x),
(1)
se debe hacer dos cosas:
• encontrar la función complementaria yc y
• encontrar alguna solución particular yp de la ecuación no homogénea (1).
Entonces, como se explicó en la sección 4.1, la solución general de (1) es y yc yp. La función
complementaria yc es la solución general de la ED homogénea asociada de (1), es decir,
an y (n)
an
1y
(n 1)
a1 y
a0 y
0.
(QODVHFFLyQYLPRVFyPRUHVROYHUHVWDFODVHGHHFXDFLRQHVFXDQGRORVFRH¿FLHQWHVHUDQFRQVtantes. Así, el objetivo en esta sección es desarrollar un método para obtener soluciones particulares.
*
Nota para el profesor:(QHVWDVHFFLyQHOPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRVVHGHVDUUROODGHVGH
el punto de vista del principio de superposición para ecuaciones no homogéneas (teorema 4.7.1). En
la sección 4.5 se presentará un método totalmente diferente que utiliza el concepto de operadores
diferenciales anuladores. Elija el que convenga.
136
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
MÉTODO DE COEFICIENTES INDETERMINADOS La primera de las dos formas que se consideran para obtener una solución particular yp de una ED lineal no
homogénea se llama PpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRV. La idea fundamental
detrás de este método es una conjetura acerca de la forma de yp, en realidad una intuición educada, motivada por las clases de funciones que forman la función de entrada
g(x). El método general se limita a ED lineales como (1) donde
• ORVFRH¿FLHQWHVai, i 0, 1, . . . , n son constantes y
• g(x) es una constante k, una función polinomial, una función exponencial eĮ[,
una función seno o coseno sen ȕ[ o cos ȕ[RVXPDV¿QLWDV\SURGXFWRVGH
estas funciones.
NOTA Estrictamente hablando, g(x) k (constante) es una función polinomial.
Puesto que probablemente una función constante no es lo primero en que se piensa
cuando se consideran funciones polinomiales, para enfatizar continuaremos con la redundancia “funciones constantes, polinomios, . . . ”.
Las siguientes funciones son algunos ejemplos de los tipos de entradas g(x) que
son apropiadas para esta descripción:
g(x)
g(x)
10,
sen 3x
g(x)
x2
5x,
5x cos 2x,
g(x)
g(x)
15x
8e x,
6
(3x2
xex senx
1)e
4x
.
Es decir, g(x) es una combinación lineal de funciones de la clase
P(x)
n
an x
an
1
xn
1
a1x
a0,
P(x) eax,
P(x) eax sen x
y
P(x) eax cos x,
donde n es un entero no negativo y Į y ȕVRQQ~PHURVUHDOHV(OPpWRGRGHFRH¿FLHQWHV
indeterminados no es aplicable a ecuaciones de la forma (1) cuando
1
, g(x) tan x, g(x) sen 1x,
g(x) ln x, g(x)
x
etcétera. Las ecuaciones diferenciales en las que la entrada g(x) es una función de esta
última clase se consideran en la sección 4.6.
El conjunto de funciones que consiste en constantes, polinomios, exponenciales eĮ[, senos y cosenos tiene la notable propiedad de que las derivadas de sus
sumas y productos son de nuevo sumas y productos de constantes, polinomios, exponenciales eĮ[, senos y cosenos. Debido a que la combinación lineal de derivadas
1)
an y (n)
a1 yp
a 0 y p debe ser idéntica a g(x), parece razonable
an 1 y (n
p
p
suponer que yp tiene la misma forma que g(x).
En los dos ejemplos siguientes se ilustra el método básico.
EJEMPLO 1
Resuelva y
4y
6ROXFLyQJHQHUDOXVDQGRFRH¿FLHQWHVLQGHWHUPLQDGRV
2y
2x2
3x
(2)
6.
SOLUCIÓN Paso 1. Se resuelve primero la ecuación homogénea asociada y 4y
2y 0. De la fórmula cuadrática se encuentra que las raíces de la ecuación auxiliar
2
16 y m2
2
16 . Por tanto, la función
m2 4m 2 0 son m1
complementaria es
yc c1e (2 16 ) x c2 e( 2 16 ) x.
Paso 2. Ahora, debido a que la función g(x) es un polinomio cuadrático, supongamos
una solución particular que también es de la forma de un polinomio cuadrático:
yp Ax2 Bx C.
6HEXVFDGHWHUPLQDUFRH¿FLHQWHVHVSHFt¿FRV$, B y C para los cuales yp es una solución
de (2). Sustituyendo yp y las derivadas
y p 2Ax B y y p 2A
en la ecuación diferencial (2), se obtiene
yp
4yp
2yp
2A
8Ax
4B
2Ax 2
2Bx
2C
2x 2
3x
6.
4.4
COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN
l
137
&RPRVHVXSRQHTXHOD~OWLPDHFXDFLyQHVXQDLGHQWLGDGORVFRH¿FLHQWHVGHORVH[SRnentes semejantes a x deben ser iguales:
igual
2A x2 8A 2B x
Es decir,
2A
2,
8A
2A 4B 2C
2B
3,
2A
2x2 3x 6
4B
2C
6.
Resolviendo este sistema de ecuaciones se obtienen los valores $ 1, B
C 9. Así, una solución particular es
5
yp
x2
x 9.
2
Paso 3. La solución general de la ecuación dada es
y
yc
yp
EJEMPLO 2
c1e (2
16 x
)
c 2e(
2 16 x
)
x2
5
x
2
5
2
y
9.
6ROXFLyQSDUWLFXODUXVDQGRFRH¿FLHQWHVLQGHWHUPLQDGRV
Encuentre una solución particular de y y y 2 sen 3x.
SOLUCIÓN Una primera suposición natural para una solución particular sería $ sen
3x. Pero debido a que las derivadas sucesivas de sen 3x producen sen 3x y cos 3x, se
puede suponer una solución particular que incluye ambos términos:
A cos 3x
yp
B sen 3x.
Derivando y p y sustituyendo los resultados en la ecuación diferencial, se obtiene,
después de reagrupar,
y p y p yp ( 8A 3B) cos 3x (3A 8B) sen 3x 2 sen 3x
o
igual
cos 3x
8A 3B
3A 8B
Del sistema de ecuaciones resultante,
8A 3B 0,
se obtiene A
6
73
yB
16
73 .
sen 3x 0 cos 3x 2 sen 3x.
3A
8B
2,
Una solución particular de la ecuación es
6
16
cos 3x
sen 3x.
73
73
Como se mencionó, la forma que se supone para la solución particular y p es una intuición educada; no es una intuición a ciegas. Esta intuición educada debe considerar
no sólo los tipos de funciones que forman a g(x) sino también, como se verá en el
ejemplo 4, las funciones que conforman la función complementaria y c .
yp
EJEMPLO 3
Resuelva y
2y
Formando yp por superposición
3y
4x
5
6xe2x.
(3)
SOLUCIÓN Paso 1. Primero, se encuentra que la solución de la ecuación homogénea asociada y 2y 3y 0 es yc c1ex c2e3x.
Paso 2. A continuación, la presencia de 4x 5 en g(x) indica que la solución particular incluye un polinomio lineal. Además, debido a que la derivada del producto xe2x
produce 2xe2x y e2x, se supone también que la solución particular incluye tanto a
xe2x como a e2x. En otras palabras, g es la suma de dos clases básicas de funciones:
138
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
g(x) g1(x) g2(x) polinomio exponenciales.
Por lo que, el principio de superposición para ecuaciones no homogéneas (teorema
4.1.7) indica que se busca una solución particular
yp
donde yp1
B y yp2
Ax
Ee2x. Sustituyendo
Cxe2x
yp
Ax
yp2,
yp1
Cxe2x
B
Ee2x
en la ecuación (3) y agrupando términos semejantes, se obtiene
yp
2yp
3yp
3Ax
2A
3B
3Cxe2x
3E )e2x
(2C
4x
5
6xe2x. (4)
De esta identidad obtenemos las cuatro expresiones
3A
4,
2A
3B
5,
3C
6,
2C
3E
0.
La última ecuación en este sistema es resultado de la interpretación de que el coe¿FLHQWHGHe2x en el miembro derecho de (4) es cero. Resolviendo, se encuentra que
4
23
4
. Por tanto,
A
3, B
9 C, 2 y E
3
4
23
x
2xe2x
3
9
La solución general de la ecuación es
4 2x
e .
3
yp
Paso 3.
y
c1e
x
4
x
3
c2e3x
23
9
4 2x
e .
3
2x
En vista del principio de superposición (teorema 4.1.7) se puede aproximar también
el ejemplo 3 desde el punto de vista de resolver dos problemas más simples. Se debe
comprobar que sustituyendo
en
yp1 Ax B
y
2y
3y 4x 5
y
yp2
Cxe2x
Ee2x
en
2y
y
3y
6xe2x
4
23
y yp2
se obtiene, a su vez, yp1
2x 43 e2x. Entonces, una solución
3x
9
particular de (3) es yp yp1 yp2 .
En el siguiente ejemplo se ilustra que algunas veces la suposición “obvia” para la
forma de yp no es una suposición correcta.
EJEMPLO 4
Una falla imprevista del método
Encuentre una solución particular de y 5y 4y 8e x.
SOLUCIÓN Derivando ex no se obtienen nuevas funciones. Así, si se procede como
se hizo en los ejemplos anteriores, se puede suponer razonablemente que una solución
particular de la forma yp $Hx. Pero sustituir esta expresión en la ecuación diferencial
da como resultado la expresión contradictoria 0 8ex, por lo que claramente se hizo
la conjetura equivocada para yp.
/DGL¿FXOWDGDTXtHVHYLGHQWHDOH[DPLQDUODIXQFLyQFRPSOHPHQWDULDyc c1ex
c2e4x. Observe que la suposición $Hx ya está presente en yc(VWRVLJQL¿FDTXHex es una
solución de la ecuación diferencial homogénea asociada y un múltiplo constante $Hx
cuando se sustituye en la ecuación diferencial necesariamente da cero.
¿Entonces cuál debe ser la forma de yp? Inspirados en el caso II de la sección 4.3,
vemos que sí se puede encontrar una solución particular de la forma
yp Axex.
Ae x y y p
Sustituyendo y p Axe x
VLPSOL¿FDQGRVHREWLHQH
yp
5yp
4yp
Axe x
2Ae x en la ecuación diferencial y
3Ae x
8e x.
4.4
COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN
De la última igualdad se ve que el valor de $ ahora se determina como A
8
x
tanto, una solución particular de la ecuación dada es yp
3 xe .
139
l
8
3.
Por
La diferencia en los procedimientos usados en los ejemplos 1 a 3 y en el ejemplo 4 indica
TXHVHFRQVLGHUDQGRVFDVRV(OSULPHUFDVRUHÀHMDODVLWXDFLyQHQORVHMHPSORVD
CASO I Ninguna función de la solución particular supuesta es una solución de la
ecuación diferencial homogénea asociada.
(QODWDEODVHPXHVWUDQDOJXQRVHMHPSORVHVSHFt¿FRVGHg(x) en (1) junto con
la forma correspondiente de la solución particular. Por supuesto, se da por sentado que
ninguna función de la solución particular supuesta yp se duplica por una función en la
función complementaria yc.
TABLA 4.1
Soluciones particulares de prueba
Forma de y p
g(x)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
$
$[ B
$[ 2 Bx C
$[ 3 Bx 2 Cx E
$ cos 4x B sen 4x
$ cos 4x B sen 4x
$H 5x
($[ B)e 5x
($[ 2 Bx C)e 5x
$H 3x cos 4x Be3x sen 4x
($[ 2 Bx C) cos 4x (Ex 2 Fx G ) sen 4x
($[ B) e 3x cos 4x (Cx E)e 3x sen 4x
1 (cualquier constante)
5x 7
3x 2 2
x3 x 1
sen 4x
cos 4x
e 5x
(9x 2)e 5x
x 2e 5x
e 3x sen 4x
5x 2 sen 4x
x e 3x cos 4x
EJEMPLO 5
Formas de soluciones particulares. Caso I
Determine la forma de una solución particular de
a) y 8y 25y 5x 3ex 7ex
b) y 4y x cos x
SOLUCIÓN a) Se puede escribir g(x) (5x3 7)ex. Usando el elemento 9 de la
tabla 4.1 como modelo, suponemos una solución particular de la forma
(Ax3
yp
Bx2
Cx
E)e x.
Observe que no hay duplicación entre los términos en yp y los términos en la función
complementaria y c e 4x(c1 cos 3x c2 sen 3x).
b) La función g(x) x cos x es similar al elemento 11 de la tabla 4.1 excepto, por
supuesto, que se usa un polinomio lineal en vez de uno cuadrático y cos x y sen x en
lugar de cos 4x y sen 4x en la forma de yp:
yp
(Ax
B) cos x
(Cx
E) sen x.
Observe que no hay duplicación de términos entre y p y y c c1 cos 2x c2 sen 2x.
Si g(x) consiste en una suma de, digamos, m términos de la clase listada en la tabla,
entonces (como en el ejemplo 3) la suposición para una solución particular yp consiste
en la suma de las formas de prueba yp1, yp2 , . . . , ypm correspondientes a estos términos:
yp
yp1
yp2
ypm.
El enunciado anterior se puede escribir de otra forma:
Regla de forma para el caso I La forma de y p es una combinación lineal de las
funciones linealmente independientes que se generan mediante derivadas sucesivas de g(x).
140
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
EJEMPLO 6
Formación de yp por superposición. Caso I
Determine la forma de una solución particular de
y
9y
3x2
14y
7xe6x.
5 sen 2x
SOLUCIÓN
Se supone que a 3x2 le corresponde
yp1
Ax2
Se considera que a 5 sen 2x le corresponde
yp2
E cos 2x
Se supone que a 7xe6x le corresponde
yp3
(Gx
Bx
C.
F sen 2x.
H)e6x.
Entonces la presunción para la solución particular es
yp
yp1
yp2
yp3
Ax2
Bx
C
E cos 2x
F sen 2x
(Gx
H)e6x.
En esta suposición ningún término duplica un término de y c c1e 2x c2 e 7x.
CASO II Una función en la solución particular supuesta también es una solución de
la ecuación diferencial homogénea asociada.
El siguiente ejemplo es similar al ejemplo 4.
EJEMPLO 7
Solución particular. Caso II
Encuentre una solución particular de y 2y y e x.
La función complementaria es y c c1e x c2xe x. Como en el ejemplo
4, la suposición yp $Hx falla, puesto que es evidente de yc que ex es una solución de
la ecuación homogénea asociada y 2y y 0. Además, no es posible encontrar
una solución particular de la forma yp $[Hx, ya que el término xex también se duplica
en yc. A continuación se prueba
yp Ax2 ex.
SOLUCIÓN
Sustituyendo en la ecuación diferencial dada se obtiene 2$Hx ex, así A
solución particular es yp 12 x2ex.
1
2.
Así, una
Nuevamente suponga que g(x) consiste en m términos de la clase que se proporciona en
la tabla 4.1 y suponga además que la presunción usual para una solución particular es
yp yp1 yp2
ypm ,
donde las ypi , i 1, 2, . . . , m son las formas de solución particular de prueba correspondientes a estos términos. Bajo las circunstancias descritas en el caso II, se puede
formar la siguiente regla general.
Regla de multiplicación para el caso II Si alguna ypi contiene términos que
duplican los términos de yc , entonces esa ypi se debe multiplicar por x n, donde n es
el entero positivo más pequeño que elimina esa duplicación.
EJEMPLO 8
Un problema con valores iniciales
Resuelva y y 4x 10 sen x, y(ʌ) 0, y(ʌ) 2.
La solución de la ecuación homogénea asociada y y 0 es y c c1
cos x c2 sen x. Debido a que g(x) 4x 10 sen x es la suma de un polinomio lineal
y una función seno, la suposición normal para yp, de las entradas 2 y 5 de la tabla 4.1,
sería la suma de yp1 Ax B y yp2 C cos x E sen x :
SOLUCIÓN
yp
Ax
B
C cos x
E sen x.
(5)
4.4
COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN
141
l
Pero hay una duplicación obvia de los términos cos x y sen x en esta forma supuesta y
dos términos de la función complementaria. Esta duplicación se elimina simplemente
multiplicando yp2 por x. En lugar de (5) ahora se usa
yp
Ax
Cx cos x
B
Ex sen x.
(6)
Derivando esta expresión y sustituyendo los resultados en la ecuación diferencial,
se obtiene
y p yp Ax B 2C sen x 2E cos x 4x 10 sen x,
y por tanto $ 4, B 0, 2C 10, y 2E 0. Las soluciones del sistema son inmediatas: $ 4, B 0, C 5, y E 0. Por tanto de la ecuación (6) se obtiene yp
4x 5x cos x. La solución general de la ecuación es
y yc yp c1 cos x c2 senx 4x 5x cos x.
Ahora se aplican las condiciones iniciales prescritas a la solución general de la ecuación. Primero, y(ʌ) c1 cos ʌ c2 sen ʌ 4ʌ 5ʌ cos ʌ 0 produce c1 9ʌ puesto
que cos ʌ 1 y sen ʌ 0. Ahora, de la derivada
y
y( )
y
9 senx
c 2 cos x
9 sen
c 2 cos
4
4
5x sen x
5 cos x
5 sen
5 cos
2
encontramos c2 7. La solución del problema con valores iniciales es entonces
y 9 cos x 7 sen x 4x 5x cos x.
EJEMPLO 9
Uso de la regla de multiplicación
Resuelva y 6y 9y 6x 2 2 12e 3x.
SOLUCIÓN La función complementaria es y c c1e 3x c2xe 3x. Y así, con base en los
elementos 3 y 7 de la tabla 4.1, la suposición usual para una solución particular sería
yp Ax2 Bx C Ee3x.
yp1
yp2
La inspección de estas funciones muestra que un término en yp2 se duplica en yc. Si
multiplicamos yp2 por x, se nota que el término xe3x aún es parte de yc. Pero multiplicando yp2 por x2 se eliminan las duplicaciones. Así la forma operativa de una solución
particular es
yp Ax 2 Bx C Ex 2e 3x.
Derivando esta última forma y sustituyendo en la ecuación diferencial, agrupando
términos semejantes se obtiene
yp
6yp
9yp
9Ax2
( 12A
9B)x
2A
6B
9C
De esta identidad se tiene que A 23 , B 89 , C 32 y E
general y yc yp es y c1 e 3x c2 xe 3x 23 x 2 89 x
EJEMPLO 10
2Ee3x
2
3
6x2
2
12e3x.
6 . Por tanto la solución
6x 2 e 3x.
ED de tercer orden. Caso I
Resuelva y y e x cos x.
SOLUCIÓN De la ecuación característica m3 m2 0 encontramos que m1 m2
0 y m3 1. Así la función complementaria de la ecuación es yc c1 c2x c3ex.
Con g(x) ex cos x, se ve de la entrada 10 de la tabla 4.1 que se debe suponer
yp Aex cos x Bex senx.
Debido a que no hay funciones en yp que dupliquen las funciones de la solución complementaria, procedemos de la manera usual. De
142
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
yp
yp
( 2A
4B)ex cos x
( 4A
2B)ex senx
ex cos x
1
se obtiene 2$ 4B 1 y 4$ 2B 0. De este sistema se obtiene A
10 y
1
1 x
1 x
B 5 , así que una solución particular es yp
5 e senx. La solución
10 e cos x
general de la ecuación es
1 x
1 x
e cos x
e senx.
y yc yp c1 c2 x c3e x
10
5
EJEMPLO 11
ED de cuarto orden. Caso II
Determine la forma de una solución particular de y (4) y 1 x 2ex.
SOLUCIÓN Comparando y c c1 c2 x c3 x 2 c4 ex con la suposición normal
para una solución particular
yp A Bx2ex Cxex Eex,
yp1
yp2
vemos que las duplicaciones entre yc y yp se eliminan cuando yp , se multiplica por x3 y
1
yp se multiplica por x. Así la suposición correcta para una solución particular es y p
2
$[ 3 Bx 3 ex Cx 2 ex Ex ex.
COMENTARIOS
i) En los problemas 27 a 36 de los ejercicios 4.4 se pide resolver problemas
con valores iniciales y en los problemas 37 a 40 se pide resolver problemas con
valores en la frontera. Como se muestra en el ejemplo 8, asegúrese de aplicar las
condiciones iniciales o condiciones en la frontera a la solución general y yc
yp. Los estudiantes con frecuencia cometen el error de aplicar estas condiciones
sólo a la función complementaria yc porque ésta es la parte de la solución que
contiene las constantes c1, c2, . . . , cn.
ii) De la “Regla de la forma para el caso I” de esta sección se ve por qué el
PpWRGR GH FRH¿FLHQWHV LQGHWHUPLQDGRV QR HV PX\ DGHFXDGR SDUD (' OLQHDOHV
no homogéneas cuando la función de entrada g(x) es algo distinta de uno de los
cuatro tipos básicos resaltados en color azul antes del ejemplo 1 de esta sección.
Por ejemplo, si P(x) es un polinomio, entonces la derivación continua de P(x)eĮ[
sen ȕ[ genera un conjunto independiente que contiene sólo un número ¿QLWR de
funciones, todas del mismo tipo, en particular, un polinomio multiplicado por eĮ[
sen ȕ[ o un polinomio multiplicado por eĮ[ cos ȕ[. Por otro lado, la derivación
sucesiva de funciones de entrada como g(x) ln x o g(x) tan1x genera un
conjunto independiente que contiene un número LQ¿QLWR de funciones:
1 1 2
derivadas de ln x: , 2 , 3 , . . . ,
x x x
derivadas de tan1 x:
1
1
2x , 2
2
x (1 x2 ) 2 (1
,
6x2 , . . . .
x2 ) 3
4.4
EJERCICIOS 4.4
COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN
l
143
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-5.
En los problemas 1 a 26 resuelva la ecuación diferencial dada
XVDQGRFRH¿FLHQWHVLQGHWHUPLQDGRV
1. y 3y 2y 6
34.
d 2x
dt 2
v 2x
F0 cos t,
x(0) 0, x(0) 0
35. yy 2y
y y
y 2 24e x 40e5x,
5
9
y (0) 2, y (0)
2
2. 4y 9y 15
3. y 10y 25y 30x 3
4. y y 6y 2x
5. 1 y y y x 2 2x
4
6. y 8y 20y 100x 2 26xe x
7. y 3y 48x 2e 3x
36. y 8y 2x 5 8e2x,
y(0) 4
9. y y 3
10. y 2y 2x 5 e2x
1
11. y
y
y 3 e x/2
4
12. y 16y 2e 4x
1
2,
y(0) 5, y(0) 3,
En los problemas 37 a 40 resuelva el problema con valores en
la frontera dado.
37. y y x 2 1,
y(0) 5, y(1) 0
38. y 2y 2y 2x 2,
8. 4y 4y 3y cos 2x
y(0)
y(0) 0, y(ʌ) ʌ
39. y 3y 6x,
y(0) 0, y(1) y(1) 0
40. y 3y 6x,
y(0) y(0) 0, y(1) 0
En los problemas 41 y 42 resuelva el problema con valores iniciales dado en el que la función de entrada g(x) es discontinua.
[Sugerencia: Resuelva cada problema en dos intervalos y después encuentre una solución tal que y y y sean continuas en
x ʌ兾2 (problema 41) y en x ʌ (problema 42).]
13. y 4y 3 sen 2x
14. y 4y (x 2 3) sen 2x
41. y 4y g(x),
15. y y 2x sen x
16. y 5y 2x 3 4x 2 x 6
g(x)
17. y 2y 5y e x cos 2x
y(0) 1, y(0) 2,
sen x, 0
0,
x
x
18. y 2y 2y e 2x(cos x 3 sen x)
19. y 2y y sen x 3 cos 2x
42. y 2y 10y g(x),
>2
donde
>2
y(0) 0, y(0) 0,
donde
20. y 2y 24y 16 (x 2)e 4x
21. y 6y 3 cos x
g(x)
22. y 2y 4y 8y 6xe 2x
23. y 3y 3y y x 4e x
24. y y 4y 4y 5 e x e 2x
25. y (4) 2y y (x 1) 2
26. y (4) y 4x 2xex
En los problemas 27 a 36 resuelva el problema con valores
iniciales dado.
1
,y
2
27. y 4y 2, y
8
2
8
28. 2y 3y 2y 14x2 4x 11, y(0) 0, y(0) 0
29. 5y y 6x,
y(0) 0, y(0) 10
30. y 4y 4y (3 x)e2x,
31. y 4y 5y 35e4x,
32. y y cosh x,
v 2x
y(0) 3, y(0) 1
y(0) 2, y(0) 12
2
d x
33.
dt 2
y(0) 2, y(0) 5
F0 sen t,
x(0) 0, x(0) 0
20, 0
0,
x
x
Problemas para analizar
43. Considere la ecuación diferencial ay by cy ekx,
donde a, b, c y k son constantes. La ecuación auxiliar de
la ecuación homogénea asociada es am2 bm c 0.
a) Si k no es una raíz de la ecuación auxiliar, demuestre
que se puede encontrar una solución particular de la
forma yp $Hkx, donde $ 1兾(ak2 bk c).
b) Si k es una raíz de la ecuación auxiliar de multiplicidad uno, muestre que se puede encontrar una solución particular de la forma yp $[Hkx, donde $
1兾(2ak b). Explique cómo se sabe que k b兾2a.
c) Si k es una raíz de la ecuación auxiliar de multiplicidad
dos, demuestre que podemos encontrar una solución
particular de la forma y $[2ekx, donde $ 1兾(2a).
44. Explique cómo se puede usar el método de esta sección
para encontrar una solución particular de y y sen x
cos 2x. Desarrolle su idea.
144
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
45. Sin resolver, relacione una curva solución de y y
f(x TXHVHPXHVWUDHQOD¿JXUDFRQXQDGHODVVLJXLHQWHV
funciones:
i) f (x) 1,
ii) f (x) ex,
x
iii) f (x) e ,
iv) f (x) sen 2x,
v) f (x) e x sen x,
vi) f (x) sen x.
Analice brevemente su razonamiento.
c)
y
x
FIGURA 4.4.3 Curva solución.
y
a)
d)
y
x
x
FIGURA 4.4.4
FIGURA 4.4.1 Curva solución.
y
b)
Tarea para el laboratorio de computación
En los problemas 46 y 47 determine una solución particular
de la ecuación diferencial dada. Use un SAC como ayuda para
UHDOL]DUODVGHULYDGDVVLPSOL¿FDFLRQHV\iOJHEUD
46. y 4y 8y (2x 2 3x)e 2x cos 2x
(10x 2 x 1)e 2x sen 2x
x
FIGURA 4.4.2
4.5
Curva solución.
47. y (4) 2y y 2 cos x 3x sen x
Curva solución.
COEFICIENTES INDETERMINADOS: MÉTODO DEL ANULADOR
REPASO DE MATERIAL
l Repaso de teoremas 4.1.6 y 4.1.7 (sección 4.1).
INTRODUCCIÓN
puede escribir como
En la sección 4.1 vimos que una ecuación diferencial de n-ésimo orden se
an Dn y
an 1Dn 1 y
a1Dy
a0 y
g(x),
(1)
donde D y d y兾dx , k 0, 1, . . . , n. Cuando es adecuado, la ecuación (1) también se escribe como
L(y) g(x), donde L denota el operador diferencial o polinomial, lineal de n-ésimo orden
k
k
k
an Dn
an 1Dn
1
a1D
a0.
(2)
La notación de operador no sólo es una abreviatura útil, sino que en un nivel muy práctico la aplicación
GHRSHUDGRUHVGLIHUHQFLDOHVSHUPLWHMXVWL¿FDUODVUHJODVXQSRFRDEUXPDGRUDVSDUDGHWHUPLQDUODIRUPDGH
solución particular yp presentada en la sección anterior. En esta sección no hay reglas especiales; la forma
de yp se deduce casi de manera automática una vez que se encuentra un operador diferencial lineal adecuado
que anula a g(x) en (1). Antes de investigar cómo se realiza esto, es necesario analizar dos conceptos.
FACTORIZACIÓN DE OPERADORES &XDQGRORVFRH¿FLHQWHVai, i 0, 1, . . . ,
n son constantes reales, un operador diferencial lineal (1) se puede factorizar siempre
el polinomio característico a nm n a n1m n1
a1m a 0 sea factorizable. En
otras palabras, si r1 es una raíz de la ecuación auxiliar
an mn
a n 1 mn
1
a1m
a0
0,
entonces L (D rl) P(D), donde la expresión polinomial P(D) es un operador diferencial lineal de orden n 1. Por ejemplo, si se trata a D como una cantidad algebraica,
4.5
COEFICIENTES INDETERMINADOS: MÉTODO DEL ANULADOR
145
l
entonces el operador D2 5D 6 se puede factorizar como (D 2)(D 3) o como
(D 3)(D 2). Así si una función y f (x) tiene una segunda derivada, entonces
(D2 5D 6)y (D 2)(D 3)y (D 3)(D 2)y.
Esto muestra una propiedad general:
/RVIDFWRUHVGHXQRSHUDGRUGLIHUHQFLDOFRQFRH¿FLHQWHVFRQVWDQWHVFRQPXWDQ
Una ecuación diferencial tal como y 4y 4y 0 se escribe como
(D 2 4D 4)y 0
o
(D 2)(D 2)y 0
o
(D 2) 2y 0.
OPERADOR ANULADOR Si LHVXQRSHUDGRUGLIHUHQFLDOOLQHDOFRQFRH¿FLHQWHV
constantes y fHVXQDIXQFLyQVX¿FLHQWHPHQWHGHULYDEOHWDOTXH
L( f (x)) 0,
entonces se dice que L es un anulador de la función. Por ejemplo, D anula una función constante y k puesto que Dk 0. El operador diferencial D2 anula la función y
x puesto que la primera y la segunda derivada de x son 1 y 0, respectivamente. De
manera similar, D3x2 0, etcétera.
El operador diferencial Dn anula cada una de las funciones
1,
x 2,
x,
...,
(3)
x n1.
Como una consecuencia inmediata de (3) y el hecho de que la derivación se puede
hacer término a término, un polinomio
c0
c2 x 2
c1x
cn 1x n
(4)
1
se anula al encontrar un operador que aniquile la potencia más alta de x.
Las funciones que se anulan por un operador diferencial lineal de n-ésimo orden
L son simplemente aquellas funciones que se obtienen de la solución general de la
ecuación diferencial homogénea L(y) 0.
El operador diferencial (D Į)n anula cada una de las funciones
e Į[,
xe Į[,
x 2e Į[,
x n1e Į[.
...,
(5)
Para ver esto, observe que la ecuación auxiliar de la ecuación homogénea (D
Į)n y 0 es (m Į)n 0. Puesto que Į es una raíz de multiplicidad n, la solución
general es
(6)
y c1eax c2 xeax
cn xn 1eax.
EJEMPLO 1
Operadores anuladores
Encuentre un operador diferencial que anule la función dada.
a) 1 5x 2 8x 3
b) e3x
c) 4e 2x 10xe 2x
SOLUCIÓN a) De (3) se sabe que D4x3 0, así de (4) se tiene que
D4(1 5x2 8x3)
b) De (5), con Į 3 y n l, vemos que
(D
3)e
3x
0.
0.
c) De (5) y (6), con Į 2 y n 2, se tiene que
(D
2) 2 (4e2x
10xe2x )
0.
Cuando Į y ȕ, ȕ 0 son números reales, la fórmula cuadrática revela que [m2 2ĮP
(Į2 ȕ2)]n 0 tiene raíces complejas Į Lȕ, Į Lȕ, ambas de multiplicidad n. Del
DQiOLVLVDO¿QDOGHODVHFFLyQVHWLHQHHOVLJXLHQWHUHVXOWDGR
146
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
El operador diferencial [D 2 2Į' (Į2 ȕ2)]n anula cada una de las funciones
e x cos x, xe x cos x, x2e x cos x, . . . , xn 1e x cos x,
e x sen x, xe x sen x, x2e x sen x, . . . , xn 1e x sen x.
EJEMPLO 2
(7)
Operador anulador
Encuentre un operador diferencial que anule 5ex cos 2x 9ex sen 2x.
La inspección de las funciones ex cos 2x y ex sen 2x muestra que Į
1 y ȕ 2. Por tanto, de la ecuación (7) se concluye que D2 2D 5 anulará cualquier función que sea combinación lineal de estas funciones tales como 5ex cos 2x
9ex sen 2x.
SOLUCIÓN
Cuando Į 0 y n 1, un caso especial de (7) es
(D2
2
)
cos x
sen x
(8)
0.
Por ejemplo D2 16 anulará cualquier combinación lineal de sen 4x y cos 4x.
Con frecuencia estamos interesados en anular la suma de dos o más funciones.
Como acabamos de ver en los ejemplos 1 y 2, si L es un operador diferencial lineal tal
que L(y1) 0 y L(y2) 0, entonces L anulará la combinación lineal c1 y1(x) c2 y2(x).
Esta es una consecuencia directa del teorema 4.1.2. Supongamos ahora que L1 y L2 son
RSHUDGRUHVGLIHUHQFLDOHVOLQHDOHVFRQFRH¿FLHQWHVFRQVWDQWHVWDOHVTXHL1 anula a y1(x)
y L2 anula a y2(x), pero L1(y2) 0 y L2(y1) 0. Entonces el producto de los operadores
diferenciales L1L2 anula la suma c1 y1(x) c2 y2(x). Esto se puede demostrar fácilmente,
usando la linealidad y el hecho de que L1L2 L2 L1:
L1L2(y1 y2) L1L2(y1) L1L2(y2)
L2L1(y1) L1L2(y2)
L2[L1(y1)] L1[L2(y2)] 0.
cero
cero
Por ejemplo, sabemos de (3) que D anula a 7 x y de (8) que D2 16 anula a sen
4x. Por tanto el producto de operadores D2(D2 16) anulará la combinación lineal
7 x 6 sen 4x.
2
NOTA El operador diferencial que anula una función no es único. Vimos en el inciso b) del ejemplo 1 que D 3 anula a e3x, pero también a los operadores diferenciales de orden superior siempre y cuando D 3 sea uno de los factores del operador.
Por ejemplo (D 3)(D 1), (D 3)2 y D3(D 3) todos anulan a e3x. (Compruebe
esto.) Como algo natural, cuando se busca un anulador diferencial para una función y
f(x), se quiere que el operador de mínimo orden posible haga el trabajo.
COEFICIENTES INDETERMINADOS Lo anterior lleva al punto del análisis previo. Suponga que L(y) g(x HVXQDHFXDFLyQGLIHUHQFLDOOLQHDOFRQFRH¿FLHQWHVFRQVtantes y que la entrada g(x FRQVLVWHHQVXPDV\SURGXFWRV¿QLWRVGHODVIXQFLRQHVOLVWDdas en (3), (5) y (7), es decir, g(x) es una combinación lineal de funciones de la forma
k (constante), x m,
x me x,
x me x cos x,
y
x me x sen x,
donde m es un entero no negativo y Į y ȕ son números reales. Ahora se sabe que una
función tal como g(x) puede ser anulada por un operador diferencial L1 de menor
orden, que es producto de los operadores Dn, (D Į)n y (D2 2Į' Į2 ȕ2)n. Al
aplicar L1 a ambos lados de la ecuación L(y) g(x) se obtiene L1L(y) L1(g(x)) 0.
4.5
COEFICIENTES INDETERMINADOS: MÉTODO DEL ANULADOR
l
147
Al resolver la ecuación homogénea de orden superior L1L(y) 0, se descubre la
forma de una solución particular yp para la ecuación original no homogénea L(y)
g(x). Entonces sustituimos esta forma supuesta en L(y) g(x) para encontrar
una solución particular explícita. Este procedimiento para determinar yp, llamado
PpWRGR GH ORV FRH¿FLHQWHV LQGHWHUPLQDGRV, se ilustra a continuación en varios
ejemplos.
Antes de proceder, recuerde que la solución general de una ecuación diferencial
lineal no homogénea L(y) g(x) es y yc yp donde yc es la función complementaria,
es decir, la solución general de la ecuación homogénea asociada L(y) 0. La solución
general de cada ecuación L(y) g(x VHGH¿QHHQHOLQWHUYDOR , ).
EJEMPLO 3
Resuelva y
3y
6ROXFLyQJHQHUDOXVDQGRFRH¿FLHQWHVLQGHWHUPLQDGRV
2y
(9)
4x 2.
Primero, resolvemos la ecuación homogénea y 3y 2y
0. Entonces, de la ecuación auxiliar m2 3m 2 (m l)(m 2) 0 se encuentra
ml 1 y m2 2 y así la función complementaria es
yc c1ex c2e2x.
SOLUCIÓN Paso 1.
Paso 2. Ahora, puesto que 4x2 se anula con el operador diferencial D3, se ve que
D3(D2 3D 2)y 4D3x2 es lo mismo que
D 3(D 2 3D 2)y 0.
(10)
La ecuación auxiliar de la ecuación de quinto orden en (10),
m3(m2 3m 2) 0
o
m3(m 1)(m 2) 0,
tiene raíces ml m2 m3 0, m4 1, y m5 2. Así que su solución general debe ser
(11)
y c1 c2x c3x 2 c4e x c5e 2x
Los términos del cuadro sombreado en (11) constituyen la función complementaria
de la ecuación original (9). Se puede argumentar que una solución particular yp, de (9)
WDPELpQGHEHVDWLVIDFHUODHFXDFLyQ (VWRVLJQL¿FDTXHORVWpUPLQRVUHVWDQWHVHQ
(11) deben tener la forma básica de yp:
yp
A
(12)
Cx2,
Bx
donde, por conveniencia, hemos remplazado c1, c2 y c3 por $, B y C, respectivamente.
3DUDTXH VHDXQDVROXFLyQSDUWLFXODUGH HVQHFHVDULRHQFRQWUDUFRH¿FLHQWHV
HVSHFt¿FRV $, B y C. Derivando la ecuación (12), se tiene que
yp
2Cx,
B
yp
2C,
y sustituyendo esto en la ecuación (9) se obtiene
yp
3yp
2yp
2C
3B
6Cx
2A
2Bx
2Cx2
4x2.
&RPRVHVXSRQHTXHOD~OWLPDHFXDFLyQHVXQDLGHQWLGDGORVFRH¿FLHQWHVGHSRWHQFLDV
semejantes de x deben ser iguales:
iguales
2C x2 2B 6C x
Es decir
2C
4,
2B
6C
2A 3B 2C
0,
2A
3B
4x2 0x 0.
2C
0.
(13)
Resolviendo las ecuaciones de (13) se obtiene $ 7, B 6 y C 2. Por tanto yp
7 6x 2x2.
Paso 3.
La solución general de la ecuación en (9) es y yc yp o
y c1e x c2e 2x 7 6x 2x2.
148
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
EJEMPLO 4
6ROXFLyQJHQHUDOXVDQGRFRH¿FLHQWHVLQGHWHUPLQDGRV
Resuelva y 3y 8e 3x 4 sen x.
(14)
SOLUCIÓN Paso 1. La ecuación auxiliar para la ecuación homogénea asociada y
3y 0 es m2 3m m(m 3) 0, y por tanto, yc c1 c2e3x.
Paso 2. Ahora, puesto que (D 3)e3x 0 y (D2 1) sen x 0, se aplica el operador
diferencial (D 3)(D2 1) a ambos lados de la ecuación (14):
3)(D2
(D
1)(D2
3D)y
(15)
0.
La ecuación auxiliar de (15) es:
(m
3)(m2
Así
1)(m2
0 o m(m
3m)
y c1 c2e3x
c3 xe3x
3) 2 (m2
c4 cos x
1)
0.
c5 senx.
Una vez que se excluye la combinación lineal de términos dentro del cuadro que corresponde a yc se obtiene la forma de yp:
Axe3x
yp
B cos x
C sen x.
Sustituyendo ypHQ \VLPSOL¿FDQGRVHREWLHQH
yp
3yp
3Ae3x
( B
3C) cos x
(3B
8e3x
C) sen x
4 sen x.
,JXDODQGRORVFRH¿FLHQWHVVHREWLHQHTXH$ 8, B 3C 0 y 3B C 4. Se
2
y por tanto,
encuentra que A 38, B 65 , y C
5
8 3x
xe
3
yp
Paso 3.
6
cos x
5
2
sen x.
5
Entonces la solución general de (14) es
y
EJEMPLO 5
Resuelva y
c1
6
cos x
5
2
sen x.
5
6ROXFLyQJHQHUDOXVDQGRFRH¿FLHQWHVLQGHWHUPLQDGRV
x cos x
y
8 3x
xe
3
c2e3x
(16)
cos x.
La función complementaria es yc c1 cos x c2 sen x. Ahora al comparar cos x y x cos x con las funciones del primer renglón de (7), vemos que Į 0 y
n 1 y así (D2 1)2 es un anulador para el miembro derecho de la ecuación en (16).
Aplicando este operador a la ecuación diferencial se obtiene
SOLUCIÓN
(D2
1)2 (D2
0 o (D2
1)y
1)3 y
0.
Puesto que i y i son raíces complejas de multiplicidad 3 de la última ecuación auxiliar, se concluye que
y c1 cos x c2 sen x
c3 x cos x
c4 x sen x
c5 x2 cos x
c6 x2 sen x.
Sustituyendo
yp
Ax cos x
Bx sen x
Cx2 cos x
Ex2 sen x
HQ \VLPSOL¿FDQGR
yp
yp
4 Ex cos x 4 Cx sen x
x cos x cos x.
(2B
2C ) cos x
( 2A
2E) sen x
4.5
COEFICIENTES INDETERMINADOS: MÉTODO DEL ANULADOR
l
149
,JXDODQGRORVFRH¿FLHQWHVVHREWLHQHQODVHFXDFLRQHVE 1, 4C 0, 2B 2C
1
1
0 y E 14 . Por
1, y 2$ 2E 0, de las que encontramos A 4 B
2, C
tanto la solución general de (16) es
y
c1 cos x
EJEMPLO 6
1
x cos x
4
c2 sen x
1
x sen x
2
1 2
x sen x.
4
Forma de una solución particular
Determine la forma de una solución particular para
y
2y
y 10e 2x cos x.
(17)
La función complementaria de la ecuación dada es yc c1ex c2xex.
Ahora de (7), con Į 2, ȕ 1 y n 1, se sabe que
SOLUCIÓN
(D2
4D
5)e
2x
cos x
0.
Aplicando el operador D2 4D 5 a (17), se obtiene
(D2
4D
5)(D2
2D
1)y
(18)
0.
Puesto que las raíces de la ecuación auxiliar de (18) son 2 –i, 2 i, 1 y 1, vemos de
y c1ex c2xex
c3e
2x
cos x
2x
c4e
sen x
que una solución particular de (17) se puede encontrar con la forma
yp
EJEMPLO 7
Ae
2x
cos x
2x
Be
sen x.
Forma de una solución particular
Determine la forma de una solución particular para
4y
y
4y
5x 2
(D
2)3x2e2x
4x 2e 2x
6x
3e 5x.
(19)
SOLUCIÓN Observe que
D3(5x2
6x)
0,
0
5)e5x
(D
y
0.
Por tanto, D3(D 2)3(D 5) aplicado a (19), se obtiene
D 3(D
2)3(D
5)(D 3
4
o
D (D
4D 2
5
2) (D
4D)y
0
5)y
0.
Las raíces de la ecuación auxiliar para la última ecuación diferencial son 0, 0, 0, 0, 2,
2, 2, 2, 2 y 5. Por tanto,
y c1 c2x c3x 2 c4x 3 c5e2x c6xe2x cx 2e 2x c8x 3e2x c9x 4e2x c10e 5x.
(20)
Debido a que la combinación lineal c1 c5e2x c6xe2x corresponde a la función complementaria de (19), los términos restantes en (20) dan la forma de una solución particular de la ecuación diferencial:
yp
Ax
Bx 2
Cx 3
Ex 2e 2x
Fx 3e 2x
Gx 4e 2x
He 5x.
RESUMEN DEL MÉTODO 3RUFRQYHQLHQFLDVHUHVXPHHOPpWRGRGHFRH¿FLHQWHV
indeterminados como sigue.
150
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
COEFICIENTES INDETERMINADOS: MÉTODO DEL ANULADOR
La ecuación diferencial L(y) g(x WLHQHFRH¿FLHQWHVFRQVWDQWHV\ODIXQFLyQ
g(x FRQVLVWHHQVXPDV\SURGXFWRV¿QLWRVGHFRQVWDQWHVSROLQRPLRVIXQFLRQHV
exponenciales eĮ[, senos y cosenos.
i) Encuentre la función complementaria yc para la ecuación homogénea
L(y) 0.
ii) Opere ambos lados de la ecuación no homogénea L(y) g(x) con un
operador diferencial L1 que anula la función g(x).
iii) Determine la solución general de la ecuación diferencial homogénea de
orden superior L1L(y) 0.
࣠LY) Elimine de la solución del paso iii) los términos que se duplican en
la solución complementaria yc encontrada en el paso i). Forme una
combinación lineal yp de los términos restantes. Esta es la forma de una
solución particular de L(y) g(x).
v) Sustituya yp encontrada en el paso iv) en L(y) g(x). Iguale los
FRH¿FLHQWHVGHODVGLVWLQWDVIXQFLRQHVHQFDGDODGRGHODLJXDOGDG
y resuelva el sistema resultante de ecuaciones para determinar los
FRH¿FLHQWHVGHVFRQRFLGRVGHyp.
vi) Con la solución particular encontrada en el paso v), forme la solución
general y yc yp de la ecuación diferencial dada.
COMENTARIOS
(OPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRVQRHVDSOLFDEOHDHFXDFLRQHVGLIHUHQFLDOHVOLQHDOHVFRQFRH¿FLHQWHVYDULDEOHVQLWDPSRFRHVDSOLFDEOHDHFXDFLRQHV
OLQHDOHVFRQFRH¿FLHQWHVFRQVWDQWHVFXDQGRg(x) es una función tal que
g(x)
ln x,
g(x)
1
,
x
g(x)
tan x,
g(x)
sen 1 x,
etcétera. Las ecuaciones diferenciales en las que la entrada g(x) es una función
de esta última clase se consideran en la siguiente sección.
EJERCICIOS 4.5
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-5.
En los problemas 1 a 10 escriba la ecuación diferencial en la
forma L(y) g(x), donde L es un operador diferencial lineal
FRQFRH¿FLHQWHVFRQVWDQWHV6LHVSRVLEOHIDFWRULFHL.
1.
3.
5.
7.
9y 4y sen x
2. y 5y x2 2x
y 4y 12y x 6
4. 2y 3y 2y 1
x
y 10y 25y e
6. y 4y e x cos 2x
y 2y 13y 10y xex
8. y 4y 3y x 2 cos x 3x
9. y (4) 8y 4
10. y (4) 8y 16y (x 3 2x)e 4x
13. (D 2)(D 5); y e 2x 3e5x
14. D 2 64;
y 2 cos 8x 5 sen 8x
En los problemas 15 a 26 determine el operador diferencial
lineal que anula la función dada.
15. 1 6x 2x 3
16. x 3(1 5x)
17. 1 7e 2x
18. x 3xe 6x
19. cos 2x
20. 1 sen x
21. 13x 9x 2 sen 4x
22. 8x sen x 10 cos 5x
En los problemas 11 a 14 compruebe que el operador diferencial anula las funciones indicadas.
23. ex 2xe x x 2e x
24. (2 e x) 2
11. D 4;
25. 3 e x cos 2x
26. ex sen x e 2x cos x
y 10x 3 2x
12. 2D 1; y 4e x/2
4.6
En los problemas 27 a 34 determine las funciones linealmente
independientes que anulan el operador diferencial dado.
VARIACIÓN DE PARÁMETROS
l
151
55. y 25y 20 sen 5x
56. y y 4 cos x sen x
57. y y y x sen x
58. y 4y cos2x
27. D 5
28. D 2 4D
59. y 8y 6x 2 9x 2
29. (D 6)(2D 3)
30. D 2 9D 36
60. y y y y xe x ex 7
31. D 2 5
32. D 2 6D 10
61. y 3y 3y y e x x 16
33. D 3 10D 2 25D
34. D 2(D 5)(D 7)
62. 2y 3y 3y 2y (e x ex) 2
63. y (4) 2y y e x 1
En los problemas 35 a 64 resuelva la ecuación diferencial dada
XVDQGRFRH¿FLHQWHVLQGHWHUPLQDGRV
64. y (4) 4y 5x 2 e 2x
35. y 9y 54
36. 2y 7y 5y 29
37. y y 3
38. y 2y y 10
En los problemas 65 a 72 resuelva el problema con valores iniciales.
39. y 4y 4y 2x 6
65. y 64y 16,
40. y 3y 4x 5
66. y y x,
y(0) 1, y(0) 0
y(0) 1, y(0) 0
41. y y 8x 2
42. y 2y y x 3 4x
67. y 5y x 2,
43. y y 12y e 4x
44. y 2y 2y 5e 6x
68. y 5y 6y 10e 2x,
45. y 2y 3y 4e x 9
y(0) 0, y(0) 2
y(0) 1, y(0) 1
69. y y 8 cos 2x 4 sen x,
46. y 6y 8y 3e2x 2x
47. y 25y 6 sen x
48. y 4y 4 cos x 3 sen x 8
49. y 6y 9y xe 4x
70. y 2y y xe x 5,
y(0) 1
71. y 4y 8y x 3,
72. y y x e ,
y (0) 0
(4)
50. y 3y 10y x(e x 1)
51. y y x 2e x 5
x
y
2
1, y
2
0
y(0) 2, y(0) 2,
y(0) 2, y(0) 4
y(0) 0, y(0) 0, y(0) 0,
52. y 2y y x 2ex
Problemas para analizar
53. y 2y 5y e sen x
73. Suponga que L es un operador diferencial lineal que se
IDFWRUL]DSHURTXHWLHQHFRH¿FLHQWHVYDULDEOHV¢&RQPXWDQ
los factores de L"'H¿HQGDVXUHVSXHVWD
x
54. y
y
4.6
1
y
4
ex(sen 3x
cos 3x)
VARIACIÓN DE PARÁMETROS
REPASO DE MATERIAL
l Fórmulas de integración y técnicas de cálculo.
l Repaso de la sección 2.3.
INTRODUCCIÓN (QHODQiOLVLVGHODVVHFFLRQHV\VHLQGLFDTXHHOPpWRGRGHFRH¿FLHQWHVLQGHterminados tiene dos debilidades inherentes que limitan una aplicación más amplia a ecuaciones lineales:
/D('GHEHWHQHUFRH¿FLHQWHVFRQVWDQWHV\ODIXQFLyQGHHQWUDGDg(x) debe ser del tipo que se presenta
en la tabla 4.1. En esta sección examinamos un método para determinar una solución yp de una ED lineal
no homogénea que teóricamente no tiene restricciones sobre ésta. Este método, debido al eminente
astrónomo Joseph Louis Lagrange (1736-1813), se conoce como variación de parámetros.
Antes de examinar este poderoso método para ecuaciones de orden superior revisaremos la solución de las ecuaciones diferenciales lineales de primer orden que se han expresado en su forma estándar.
El análisis que sigue al primer encabezado de esta sección es opcional e intenta motivar el análisis principal de esta sección que comienza debajo del segundo encabezado. Si está presionado por el tiempo,
este material motivacional se podría asignar como lectura.
152
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
REVISIÓN DE LAS EDO LINEALES DE PRIMER ORDEN En la sección
2.3 vimos que la solución general de una ecuación diferencial de primer orden
a1(x) y a0(x) y g(x) se puede encontrar escribiéndola en la forma estándar
dy
dx
(1)
f (x)
P(x)y
y suponiendo que P(x) y f(x) son continuas en un intervalo I. Usando el método del
factor de integración, la solución general de (1) en el intervalo I, se encontró
Vea la ecuación (4) de la sección 2.3
y
c1e
P(x)dx
e
P(x)dx
e
P(x)dx
f(x) dx.
La solución anterior tiene la misma forma que el teorema 4.1.6, es decir, y yc yp.
En este caso yc c1e P(x)dx es una solución de la ecuación homogénea asociada
dy
dx
El procedimiento básico es el que se
usó en la sección 4.2
P(x)dx
e
yp
y
0
P(x)y
e
P(x)dx
(2)
f (x) dx
(3)
es una solución particular de la ecuación no homogénea (1). Como un medio de motivación de un método para resolver ecuaciones lineales no homogéneas de orden superior para deducir la solución particular (3) de un método conocido como variación
de parámetros.
Suponiendo que y1 es una solución conocida de la ecuación homogénea (2),
dy1
dx
0
P(x)y1
(4)
Es fácil mostrar que y1 e P(x)dx es una solución de (4) y debido a la ecuación
lineal, c1 y1(x) es su solución general. La variación de parámetros consiste en encontrar
una solución particular de (1) de la forma yp u1 y1(x). En otras palabras, hemos reemplazado el parámetro c1 por una función u1.
Al sustituir yp u1 y1 en (1) y usar la regla del producto se obtiene
d
uy
dx 1 1
dy
du
u1 1 y1 1
dx
dx
[ ]
P(x)u1 y1
f (x)
P(x)u1y1
f (x)
0, por la ecuación (4)
u1
dy1
dx
y1
du1
dx
f (x).
y1
así
du1
dx
P(x)y1
f (x)
Al separar las variables e integrar, encontramos u1:
du1
f(x)
dx se obtiene u1
y1(x)
f (x)
dx.
y1 (x)
Por lo tanto, la solución particular que se busca es
yp
Del hecho de que y1
ecuación (3).
e
P(x)dx
u1y1
y1
f (x)
dx
y1(x)
vemos que el último resultado es idéntico a la
4.6
VARIACIÓN DE PARÁMETROS
l
153
ED LINEALES DE SEGUNDO ORDEN Ahora consideremos el caso de una ecuación lineal de segundo orden
a2(x)y
a1(x)y
a0(x)y
(5)
g(x),
aunque como veremos, la variación de parámetros se extiende a ecuaciones de orden
superior. El método de nuevo empieza por poner a la ecuación (5) en su forma estándar
y
P(x)y
(6)
f (x)
Q(x)y
GLYLGLHQGRHQWUHHOFRH¿FLHQWHSULQFLSDOa2(x). En (6) se supone que P(x), Q(x) y f(x)
son continuas en algún intervalo común I. Como ya hemos visto en la sección 4.3, no
KD\GL¿FXOWDGSDUDREWHQHUODIXQFLyQFRPSOHPHQWDULDyc c1 y1(x) c2 y2(x), la soluFLyQJHQHUDOGHODHFXDFLyQKRPRJpQHDDVRFLDGDGH FXDQGRORVFRH¿FLHQWHVVRQ
constantes. De la misma manera que en el análisis anterior, ahora nos preguntamos si
pueden remplazarse los parámetros c1 y c2 en yc, con funciones u1 y u2 o “parámetros
variables”, así
u1(x)y1(x)
y
(7)
u2(x)y2(x)
¿es la solución particular de (6)? Para responder esta pregunta sustituimos la ecuación (7)
en (6). Usando la regla del producto para derivar dos veces a yp, se obtiene
yp
u 1 y1
y1u 1
u 2 y2
y2u 2
yp
u1y 1
y1u1
y1u 1
u1 y1
u2 y 2
y2 u2
u 2 y 2.
y2 u 2
Al sustituir la ecuación (7) y las derivadas anteriores en (6) y agrupando términos se obtiene
cero
yp
P(x)yp
Q(x)yp
u1[y 1
Qy1]
Py 1
y2 u 2
d
[y u ]
dx 1 1
d
[y u
dx 1 1
cero
u 2 y2
u2[y 2
d
[y u ]
dx 2 2
y2u 2 ]
y2u 2 ]
P[y1u 1
Qy2 ]
Py 2
y 1u 1
y2u 2 ]
P[y1u 1
u1 y1
y2 u2
y2u 2 ]
P[y1u 1
y1u 1
y 1u 1
y 1u 1
y 2u 2
y 2u 2
f (x).
(8)
Como se busca determinar dos funciones desconocidas u1 y u2, la razón impone que son
necesarias dos ecuaciones. Estas ecuaciones se obtienen con la suposición adicional
de que las funciones u1 y u2 satisfacen y1u 1 y2u 2 0. Esta suposición en azul no se
presenta por sorpresa, sino que es resultado de los dos primeros términos de (8) puesto
que si se requiere que y1u 1 y2u 2 0 , entonces (8) se reduce a y 1u 1 y 2u 2 f (x) .
Ahora tenemos nuestras dos ecuaciones deseadas, a pesar de que sean dos ecuaciones
para determinar las derivadas u1 y u2 . Por la regla de Cramer, la solución del sistema
y1u 1
y2u 2
0
y 1u 1
y 2u 2
f (x)
puede expresarse en términos de determinantes:
u1
donde
W
W1
W
y1 y2
,
y1 y2
y2 f (x)
y u2
W
W1
0
y2
,
f (x) y 2
y1 f (x)
,
W
W2
W
W2
y1
0
.
y 1 f (x)
(9)
(10)
Las funciones u1 y u2 se encuentran integrando los resultados de (9). El determinante
W se reconoce como el Wronskiano de y1 y y2. Por la independencia lineal de y1 y y2 en
I, se sabe que W(y1(x), y2(x)) 0 para toda x en el intervalo.
154
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
RESUMEN DEL MÉTODO Normalmente, no es buena idea memorizar fórmulas
en lugar de entender un procedimiento. Sin embargo, el procedimiento anterior es demasiado largo y complicado para usarse cada vez que se desee resolver una ecuación
GLIHUHQFLDO(QHVWHFDVRUHVXOWDPiVH¿FD]XVDUVLPSOHPHQWHODVIyUPXODVGH $Vt
que para resolver a 2 y a1 y a 0 y g(x), primero se encuentra la función complementaria yc c1 y1 c2 y2 y luego se calcula el Wronskiano W(y1(x), y2(x)). Dividiendo
entre a2, se escribe la ecuación en la forma estándar y Py Qy f(x) para determinar f(x). Se encuentra u1 y u2 integrando u1 W1兾W y u2 W2兾W, donde W1 y
W2VHGH¿QHQFRPRHQ 8QDVROXFLyQSDUWLFXODUHVyp u1 y1 u2 y2. Entonces la
solución general de la ecuación es y yc yp.
EJEMPLO 1
Solución general usando variación de parámetros
Resuelva y 4y 4y (x 1)e 2x.
SOLUCIÓN De la ecuación auxiliar m2 4m 4 (m 2)2 0 se tiene yc c1e2x
c2xe2x &RQ ODV LGHQWL¿FDFLRQHVy1 e2x y y2 xe2x, a continuación se calcula el
Wronskiano:
e2x
xe2x
W(e2x, xe2x )
e4x.
2x
2e
2xe2x e2x
3XHVWRTXHODHFXDFLyQGLIHUHQFLDOGDGD\DHVWiHQODIRUPD HVGHFLUHOFRH¿FLHQWH
de yHV LGHQWL¿FDPRVf(x) (x l)e2x. De (10), obtenemos
W1
0
xe2x
2x
1)e
2xe2x
(x
1)xe4x,
(x
2x
e
e2x
2e2x (x
W2
0
1)e2x
(x
1)e4x,
y así de (9)
u1
1)xe4x
e4x
(x
1 3
x
3
yp
y
1 2
2x
1 3
3x
Se tiene que u1
y
y u2
1 2 2x
x e
2
yc
EJEMPLO 2
x2
yp
x,
1 2
2x
x
e4x
1.
x . Por tanto
1 2
x
2
c1e2x
1)e4x
(x
u2
x xe2x
c2 xe2x
1 3 2x
xe
6
1 3 2x
xe
6
1 2 2x
xe
2
1 2 2x
xe .
2
Solución general usando variación de parámetros
Resuelva 4y 36y csc 3x.
SOLUCIÓN Primero se escribe la ecuación en la forma estándar (6) dividiendo entre 4:
9y
y
1
csc 3x.
4
Debido a que las raíces de la ecuación auxiliar m2 9 0 son m1 3i y m2 3i, la
función complementaria es yc c1 cos 3x c2 sen 3x. Usando y1 cos 3x, y2 sen 3x,
y f (x) 14 csc 3x , obtenemos
cos 3x
sen 3x
3 sen 3x 3 cos 3x
W(cos 3x, sen 3x)
W1
1
4
sen 3x
0
csc 3x 3 cos 3x
1
,
4
W1
W
1
12
Integrando
u1
W2
y
u2
cos 3x
3 sen 3x
W2
W
3,
1
4
0
csc 3x
1 cos 3x
12 sen 3x
1 cos 3x
.
4 sen 3x
4.6
Se obtiene u1
1
12 x
1
36
y u2
l
155
ln兩sen 3x兩. Así una solución particular es
1
x cos 3x
12
yp
VARIACIÓN DE PARÁMETROS
1
(sen 3x) ln sen 3x .
36
La solución general de la ecuación es
1
1
x cos 3x
(sen 3x) ln sen 3x . (11)
12
36
La ecuación (11) representa la solución general de la ecuación diferencial en, digamos,
el intervalo (0, ʌ兾6).
y
yc
c1 cos 3x
yp
c2 sen 3x
CONSTANTES DE INTEGRACIÓN &XDQGRVHFDOFXODQODVLQWHJUDOHVLQGH¿QLGDV
de u1 y u2 , no es necesario introducir algunas constantes. Esto es porque
y
yc
yp
c2 y2
(u1
a1)y1
(u2
b1)y2
a1)y1
(c2
b1)y2
u1 y1
u2 y2
c1 y1
(c1
C1 y1
EJEMPLO 3
Resuelva y
C2 y2
u2 y2.
u1 y1
Solución general usando variación de parámetros
1
.
x
y
La ecuación auxiliar m2 1 0 produce m1 1 y m2 1. Por tanto
yc c1e c2ex. Ahora W(ex, ex) 2, y
SOLUCIÓN
x
e x(1>x)
,
2
u1
u1
ex (1> x)
,
2
u2
x
1
2
t
x0
dt,
x
et
dt.
x0 t
1
2
u2
t
e
Puesto que las integrales anteriores son no elementales, nos vemos obligados a escribir
yp
y por tanto
y
yc
yp
1 x
e
2
c1ex
c2e
x
x0
x
e t
dt
t
1 x
e
2
x
1
e
2
x
x0
et
dt,
t
x
e t
dt
x0 t
1
e
2
x
x
et
dt.
x0 t
(12)
En el ejemplo 3 se puede integrar en algún intervalo [x0, x] que no contenga al origen.
Resolveremos la ecuación en el ejemplo 3 por un método alternativo en la sección 4.8.
ECUACIONES DE ORDEN SUPERIOR El método que se describió para ecuaciones diferenciales no homogéneas de segundo orden se puede generalizar a ecuaciones
lineales de n-ésimo orden que se han escrito en forma estándar
(13)
P1(x)y
P0 (x)y f (x).
y (n) Pn 1(x)y (n 1)
Si yc c1y1 c2 y2
cnyn es la función complementaria para (13), entonces una
solución particular es
yp
u1(x)y1(x)
u 2(x)y2 (x)
un (x)yn(x),
donde los uk, k 1, 2, . . . , n se determinan por las n ecuaciones
y1u 1
y2u 2
yn u n
0
y 1u 1
y 2u 2
yn un
0
(14)
y1(n
1)
u1
y2(n
1)
u2
y(n
n
1)
un
f (x).
156
CAPÍTULO 4
l
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
Las primeras n 1 ecuaciones de este sistema, al igual que y1u 1 y2u 2 0 en (8),
VRQVXSRVLFLRQHVTXHVHKDFHQSDUDVLPSOL¿FDUODHFXDFLyQUHVXOWDQWHGHVSXpVGHTXH
yp u1(x)y1(x)
un(x)yn(x) se sustituye en (13). En este caso usando la regla
de Cramer se obtiene
Wk
uk
, k 1, 2, . . . , n,
W
donde W es el Wronskiano de y1, y2, . . . , yn y Wk es el determinante que se obtiene
al remplazar la k-ésima columna del Wronskiano por la columna formada por el lado
derecho de (14), es decir, la columna que consta de (0, 0, . . . , f(x)). Cuando n 2, se
obtiene la ecuación (9). Cuando n 3, la solución particular yp u1 y1 u2 y2 u3 y3 ,
donde y1, y2 y y3 constituyen un conjunto linealmente independiente de soluciones de
la ED homogénea asociada y u1, u2 y u3 se determinan a partir de
u1
W1
0
y2
0
y
p
2
f (x) y 2
y3
y3 p ,
y3
W2
W1
,
W
y1
0
y3
y
0
y
p 1
3p,
y 1 f (x) y 3
W2
,
W
u2
W3
W3
,
W
u3
y1 y2
0
y
y
p 1 2 0 p,
y 1 y 2 f (x)
(15)
W
y1 y2
y
p 1 y2
y1 y2
y3
y3 p .
y3
Véanse los problemas 25 al 28 de los ejercicios 4.6.
COMENTARIOS
i) La variación de parámetros tiene una ventaja particular sobre el método de
FRH¿FLHQWHVLQGHWHUPLQDGRVHQFXDQWRDTXHsiempre produce una solución particular yp , siempre y cuando se pueda resolver la ecuación homogénea asociada.
Este método no se limita a una función f (x) que es una combinación de las cuatro
clases que se listan antes del ejemplo 1 de la sección 4.4. Como se verá en la
VLJXLHQWH VHFFLyQ OD YDULDFLyQ GH SDUiPHWURV D GLIHUHQFLD GH ORV FRH¿FLHQWHV
LQGHWHUPLQDGRVHVDSOLFDEOHD('OLQHDOHVFRQFRH¿FLHQWHVYDULDEOHV
ii (QORVSUREOHPDVVLJXLHQWHVQRGXGHHQVLPSOL¿FDUODIRUPDGHyp. Dependiendo
de cómo se encuentren las antiderivadas de u1 y u2 , es posible que no se obtenga
la misma yp que se da en la sección de respuestas. Por ejemplo, en el problema 3 de
1
1
1
los ejercicios 4.6 tanto yp 12 sen x
2 x cos x como yp
2 x cos x
4 sen x
son respuestas válidas. En cualquier caso la solución general y yc yp se simSOL¿FDD y c1 cos x c2 senx 12 x cos x . ¿Por qué?
EJERCICIOS 4.6
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-5.
En los problemas 1 a 18 resuelva cada ecuación diferencial
por medio de variación de parámetros.
12. y
2y
ex
y
1. y y sec x
2. y y tan x
1 x2
13. y 3y 2y sen e x
3. y y sen x
4. y y sec ș tan ș
14. y 2y y e t arctan t
5. y y cos 2x
6. y y sec 2x
15. y 2y y et ln t
8. y y senh 2x
17. 3y 6y 6y e sec x
7. y y cosh x
9. y
11. y
4y
3y
e2x
x
2y
10. y
1
1
ex
9y
9x
e3x
16. 2y
2y
y
41x
x
18. 4y
4y
y
ex/2 11
x2
En los problemas 19 a 22 resuelva cada ecuación diferencial
mediante variación de parámetros, sujeta a las condiciones
iniciales y(0) 1, y(0) 0.
4.7
ECUACIÓN DE CAUCHY-EULER
19. 4y y xe x/2
27. y
2y
y
20. 2y y y x 1
28. y
3y
2y
21. y 2y 8y 2e2x ex
En los problemas 23 y 24 las funciones que se indican son
soluciones linealmente independientes de la ecuación diferencial homogénea asociada en (0, ). Determine la solución
general de la ecuación homogénea.
23. x y
y1 x
xy
1/2
(x
2
1
4
)y
cos x, y 2 x
1/2
x ;
e2x
1
ex
En los problemas 29 y 30 analice cómo pueden combinarse
ORVPpWRGRVGHFRH¿FLHQWHVLQGHWHUPLQDGRV\YDULDFLyQGHSDrámetros para resolver la ecuación diferencial. Desarrolle sus
ideas.
30. y 2y y 4x 2 3 x 1e x
sen x
En los problemas 25 al 28 resuelva la ecuación diferencial de
tercer orden usando variación de parámetros.
4.7
e4x
2y
29. 3y 6y 30y 15 sen x e x tan 3x
3/2
24. x 2y xy y sec(ln x);
y 1 cos(ln x), y 2 sen(ln x)
25. y y tan x
157
Problemas para analizar
22. y 4y 4y (12x 2 6x)e 2x
2
l
26. y 4y sec 2x
31. ¢&XiOHVVRQORVLQWHUYDORVGHGH¿QLFLyQGHODVVROXFLRQHV
generales en los problemas 1, 7, 9 y 18? Analice por qué
HOLQWHUYDORGHGH¿QLFLyQGHODVROXFLyQGHOSUREOHPD
no es (0, ).
32. Encuentre la solución general de x 4y x 3y 4x 2y 1
dado que y1 x2 es una solución de la ecuación homogénea asociada.
ECUACIÓN DE CAUCHY-EULER
REPASO DE MATERIAL
l Repase el concepto de la ecuación auxiliar en la sección 4.3.
INTRODUCCIÓN La facilidad relativa con que pudimos encontrar soluciones explícitas de
HFXDFLRQHV OLQHDOHV GH RUGHQ VXSHULRU FRQ FRH¿FLHQWHV FRQVWDQWHV HQ ODV VHFFLRQHV DQWHULRUHV HQ
JHQHUDOQRVHUHDOL]DHQHFXDFLRQHVOLQHDOHVFRQFRH¿FLHQWHVYDULDEOHV(QHOFDStWXORYHUHPRVTXH
FXDQGRXQD('OLQHDOWLHQHFRH¿FLHQWHVYDULDEOHVORPHMRUTXHSRGHPRVHVSHUDUusualmente, es
HQFRQWUDUXQDVROXFLyQHQIRUPDGHVHULHLQ¿QLWD6LQHPEDUJRHOWLSRGHHFXDFLyQGLIHUHQFLDOTXH
FRQVLGHUDPRVHQHVWDVHFFLyQHVXQDH[FHSFLyQDHVWDUHJODpVWDHVXQDHFXDFLyQOLQHDOFRQFRH¿cientes variables cuya solución general siempre se puede expresar en términos de potencias de x,
senos, cosenos y funciones logarítmicas. Además este método de solución es bastante similar al de
ODVHFXDFLRQHVFRQFRH¿FLHQWHVFRQVWDQWHVHQORVTXHVHGHEHUHVROYHUXQDHFXDFLyQDX[LOLDU
ECUACIÓN DE CAUCHY-EULER Una ecuación diferencial lineal de la forma
d n 1y
dy
dn y
n 1
a
x
a1 x
a0 y g(x),
n
1
n
n 1
dx
dx
dx
GRQGH ORV FRH¿FLHQWHV an, an1, . . . , a0 son constantes, se conoce como ecuación
de Cauchy-Euler. La ecuación diferencial fue nombrada en honor de los dos matePiWLFRVPiVSUROt¿FRVGHWRGRVORVWLHPSRV$XJXVWLQ/RXLV&DXFK\ IUDQFpV
1857) y Leonhard Euler (suizo, 1707-1783). La característica observable de este tipo
de ecuación es que el grado k n, n GHORVFRH¿FLHQWHVPRQRPLDOHVxk
coincide con el orden k de la derivación dky兾dxk:
an x n
mismo
mismo
dny
dn1y
anxn ––––n an1xn1 ––––––
.. ..
dx
dxn1
Al igual que en la sección 4.3, iniciamos el análisis con un examen detallado de
las formas de las soluciones generales de la ecuación homogénea de segundo orden
d 2y
dy
ax2 2 bx
cy 0.
(1)
dx
dx
158
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
La solución de ecuaciones de orden superior se deduce de manera análoga. También,
podemos resolver la ecuación no homogénea ax 2y bxy cy g(x) por variación
de parámetros, una vez que se ha determinado la función complementaria yc.
NOTA (OFRH¿FLHQWHax2 de y es cero en x 0. Por lo que, para garantizar que los
resultados fundamentales del teorema 4.1.1 sean aplicables a la ecuación de Cauchy(XOHUFHQWUDPRVQXHVWUDDWHQFLyQHQHQFRQWUDUVROXFLRQHVJHQHUDOHVGH¿QLGDVHQHO
intervalo (0, ). Las soluciones en el intervalo ( , 0) se obtienen al sustituir t x
en la ecuación diferencial. Véanse los problemas 37 y 38 de los ejercicios 4.7.
MÉTODO DE SOLUCIÓN Se prueba una solución de la forma y xm, donde m es
un valor que se debe determinar. Análogo a lo que sucede cuando se sustituye emx en una
HFXDFLyQOLQHDOFRQFRH¿FLHQWHVFRQVWDQWHVFXDQGRVHVXVWLWX\Hxm, cada término de
una ecuación de Cauchy-Euler se convierte en un polinomio en m veces xm, puesto que
ak xk
dky
dxk
ak xkm(m
1)(m
2)
(m
1)xm
k
k
1)(m
ak m(m
2)
(m
k
1)xm.
Por ejemplo, cuando sustituimos y xm, la ecuación de segundo orden se transforma en
ax2
d 2y
dy
bx
cy am(m 1)xm bmxm cxm (am(m 1) bm c)xm.
dx2
dx
Así y xm es una solución de la ecuación diferencial siempre que m sea una solución
de la ecuación auxiliar
am(m
1)
bm
0 o am2
c
(b
a)m
(2)
0.
c
Hay tres casos distintos a considerar que dependen de si las raíces de esta ecuación
cuadrática son reales y distintas, reales e iguales o complejas. En el último caso las
raíces aparecen como un par conjugado.
CASO I: RAÍCES REALES Y DISTINTAS Sean m1 y m2 las raíces reales de (2),
tales que m1 m2. Entonces y1 xm1 y y2 xm2 forman un conjunto fundamental de
soluciones. Por tanto, la solución general es
c1 xm1
y
EJEMPLO 1
Resuelva x2
d 2y
dx2
(3)
c2 xm2.
Raíces distintas
2x
dy
dx
4y
0.
SOLUCIÓN En lugar de memorizar la ecuación (2), algunas veces es preferible suponer y xm como la solución para entender el origen y la diferencia entre esta nueva
forma de ecuación auxiliar y la obtenida en la sección 4.3. Derive dos veces,
dy
dx
mxm 1,
d2y
dx2
1)xm 2,
m(m
y sustituyendo esto en la ecuación diferencial
x2
d 2y
dx2
2x
dy
dx
4y
x2 m(m
xm(m(m
1)xm
1)
2
2m
2x mxm
4)
1
xm(m2
4xm
3m
4)
0
si m 3m 4 0. Ahora (m 1)(m 4) 0 implica que m 1 1, m2 4, así
que y c1x 1 c2x 4.
2
CASO II: RAÍCES REALES REPETIDAS Si las raíces de (2) son repetidas (es decir,
m1 m2), entonces se obtiene sólo una solución particular, y xm1. Cuando las raíces
de la ecuación cuadrática am2 (b a)m c 0 son iguales, el discriminante de los
4.7
ECUACIÓN DE CAUCHY-EULER
l
159
FRH¿FLHQWHVQHFHVDULDPHQWHHVFHUR'HODIyUPXODFXDGUiWLFDVHGHGXFHTXHODVUDtFHV
deben ser m1 (b a)兾2a.
Ahora se puede construir una segunda solución y2, con la ecuación (5) de la sección 4.2. Primero se escribe la ecuación de Cauchy-Euler en la forma estándar
d 2y
dx2
b dy
ax dx
c
y
ax2
0
\KDFLHQGRODVLGHQWL¿FDFLRQHVP(x) b兾ax y (b ax) dx
xm1
y2
e
(b a) ln x . Así
(b / a)ln x
dx
x2m1
xm1
x
b/a
x
2m1
xm1
x
b/a
x(b
xm1
dx
x
dx
a)/ a
dx
;e
(b / a)ln x
;
2m1
eln x
(b
b/a
x
b/a
a)/a
xm1 ln x.
La solución general es entonces
y
EJEMPLO 2
c1 xm1
Raíces repetidas
Resuelva 4x2
d 2y
dx2
SOLUCIÓN
Sustituyendo y xm se obtiene
4x2
d2y
dx2
8x
dy
dx
(4)
c2 xm1 ln x.
8x
y
dy
dx
y
0.
xm(4m(m
1)
8m
1)
xm(4m2
donde 4m2 4m 1 0 o (2m 1)2 0. Puesto que m1
se sigue que la solución general es y c1x 1/2 c2x 1/2 ln x.
4m
1
2
1)
0
, de la ecuación (4)
Para ecuaciones de orden superior, si m1 es una raíz de multiplicidad k, entonces se
puede demostrar que
xm1, xm1 ln x, xm1(ln x)2, . . . , xm1(ln x) k 1
son k soluciones linealmente independientes. En correspondencia, la solución general
de la ecuación diferencial debe contener una combinación lineal de estas k soluciones.
CASO III: RAÍCES COMPLEJAS CONJUGADAS Si las raíces de (2) son el par conjugado m1 Į Lȕ, m2 Į Lȕ, donde Į y ȕ 0 son reales, entonces una solución es
y C1x i
C2 x i .
Pero cuando las raíces de la ecuación auxiliar son complejas, como en el caso de las
HFXDFLRQHVFRQFRH¿FLHQWHVFRQVWDQWHVVHGHVHDHVFULELUODVROXFLyQVyORHQWpUPLQRV
de funciones reales. Observemos la identidad
xi
(eln x )i
ei
que, por la fórmula de Euler, es lo mismo que
ln x
,
x Lȕ cos(ȕ ln x) i sen(ȕ ln x).
De forma similar,
x Lȕ cos(ȕ ln x) i sen(ȕ ln x).
Si se suman y restan los dos últimos resultados, se obtiene
x Lȕ x Lȕ 2 cos(ȕ ln x)
y
x Lȕ x Lȕ 2i sen(ȕ ln x),
160
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
respectivamente. Del hecho de que y C1x ĮLȕ C2x ĮLȕ es una solución para cualquier valor de las constantes, note, a su vez, para C1 C2 1 y C1 1, C2 1 que
y
1
o
y1
2x cos( ln x) y y2
)
i
x
)
2ix sen( ln x)
también son soluciones. Como W(x cos(ȕ ln x), x Į sen(ȕ ln x)) ȕ[ 2Į1 0, ȕ
en el intervalo (0, ), se concluye que
Į
x
0
x (xi
x (xi
x
i
y y2
y1
0
y y2 x sen( ln x)
constituyen un conjunto fundamental de soluciones reales de la ecuación diferencial.
Así la solución general es
(5)
y x [c1 cos( ln x) c2 sen( ln x)].
x cos( ln x)
y1
_1
1
a) solución para 0 x 1.
EJEMPLO 3
y
Resuelva 4x2 y
10
Problema con valores iniciales
17y
0, y(1)
1
2.
1, y (1)
SOLUCIÓN El término y falta en la ecuación de Cauchy-Euler; sin embargo, la sustitución y xm produce
5
4x2 y
x
25
50
75
xm (4m(m
17y
1)
xm (4m2
17)
4m
17)
0
donde 4m2 4m 17 0. De la fórmula cuadrática se encuentra que las raíces son
m1 12 2i y m2 12 2i&RQODVLGHQWL¿FDFLRQHVĮ 12 y ȕ 2 se ve de (5) que la
solución general de la ecuación diferencial es
x1/2 [c1 cos(2 ln x)
y
100
c2 sen(2 ln x)].
1 la solución anterior y usando
Aplicando las condiciones iniciales y(l) 1, y (1)
2
ln 1 0, se obtiene, a su vez, que c1 1 y c2 0. Así la solución del problema
con valores iniciales es y x 1/2 cos(2 ln x)(QOD¿JXUDVHSUHVHQWDODJUi¿FD
de esta función que se obtuvo con ayuda de un paquete de cómputo. Se observa que la
solución particular es oscilatoria y no acotada conforme x → .
b) solución para 0 x 100.
FIGURA 4.7.1 Curva solución del
PVI del ejemplo 3.
En el ejemplo siguiente se ilustra la solución de una ecuación de Cauchy-Euler de
tercer orden.
EJEMPLO 4
Resuelva x3
d3y
dx 3
Ecuación de tercer orden
5x2
d2y
dx 2
7x
dy
dx
8y
0.
SOLUCIÓN Las tres primeras derivadas de y xm son
dy
dx
mxm 1,
d 2y
dx2
m(m
d3y
dx3
1)xm 2,
m(m
2)xm 3,
1)(m
así la ecuación diferencial dada se convierte en
x3
d3y
dx3
5x2
d2y
dx2
7x
dy
dx
8y
x3 m(m
xm (m(m
xm (m3
1)(m
1)(m
2m2
2)xm
2)
4m
3
5x2 m(m
5m(m
8)
xm (m
1)
1)xm
2
7m
8)
2)(m2
4)
7xmxm
1
8xm
0.
En este caso veremos que y xm es una solución de la ecuación diferencial para m1
2, m2 2i y m3 2i. Por tanto, la solución general es y c1x 2 c 2 cos(2 ln x)
c 3 sen(2 ln x).
4.7
ECUACIÓN DE CAUCHY-EULER
l
161
ECUACIONES NO HOMOGÉNEAS (OPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRVTXH
se describió en las secciones 4.5 y 4.6 no se aplica, en general, a las ecuaciones diferenFLDOHVOLQHDOHVFRQFRH¿FLHQWHVYDULDEOHV3RUWDQWRHQHOVLJXLHQWHHMHPSORVHHPSOHDHO
método de variación de parámetros.
EJEMPLO 5
Variación de parámetros
Resuelva x 2y 3xy 3y 2x 4 e x.
SOLUCIÓN Puesto que la ecuación es no homogénea, primero se resuelve la ecuación
homogénea asociada. De la ecuación auxiliar (m l)(m 3) 0 se encuentra yc
c1x c2x3. Ahora, antes de usar la variación de parámetros para encontrar una solución
particular yp u1 y1 u2 y2, recuerde que las fórmulas u 1 W1> W y u 2 W 2> W ,
donde W1, W2 y WVRQORVGHWHUPLQDQWHVGH¿QLGRVHQODSiJLQDTXHVHGHGXMHURQ
bajo la suposición de que la ecuación diferencial se escribió en la forma estándar y
P(x)y Q(x)y f(x). Por tanto, dividiendo entre x2 la ecuación dada,
3
y
x
y
3
y
x2
2x2 ex
KDFHPRVODLGHQWL¿FDFLyQf(x) 2x2ex. Ahora con y1 x, y2 x3, y
W
x x3
1 3x2
2x3,
0
x3
2x2ex 3x2
W1
2x5ex,
0
2x2 ex
x
1
W2
2x3ex,
2x5 ex
2x3 ex
2 x
y
x
e
u
ex.
2
2x3
2x3
La integral de la última función es inmediata, pero en el caso de u1 se integra por
partes dos veces. Los resultados son u1 x 2e x 2xe x 2e x y u2 e x. Por tanto
yp u1 y1 u2 y2 es
encontramos
u1
( x2 ex
yp
Finalmente,
yc
y
2xex
yp
2ex )x
c1 x
c2 x3
ex x3
2x2ex
2x2 ex
2xex.
2xex.
REDUCCIÓN A COEFICIENTES CONSTANTES Las similitudes entre las formas
de soluciones de ecuaciones de Cauchy-Euler y soluciones de ecuaciones lineales con
FRH¿FLHQWHVFRQVWDQWHVQRVyORVRQXQDFRLQFLGHQFLD3RUHMHPSORFXDQGRODVUDtFHV
de las ecuaciones auxiliares para ay by cy 0 y ax 2y bxy cy 0 son
distintas y reales, las soluciones generales respectivas son
y
c1 em1 x
c2 em2 x
y
y
c1 xm1
c2 xm2,
x
0.
(6)
Usando la identidad e ln x x, x 0, la segunda solución dada en (5) puede expresarse
en la misma forma que la primera solución:
y
c1 em1 ln x
c2 em2 ln x
c1em1 t
c2 em2 t,
donde t ln x. Este último resultado ilustra el hecho de que cualquier ecuación de
Cauchy-Euler siempre se puede escribir de nuevo como una ecuación diferencial lineal
FRQFRH¿FLHQWHVFRQVWDQWHVVXVWLWX\HQGRx e t. La idea es resolver la nueva ecuación
diferencial en términos de la variable t, usando los métodos de las secciones anteriores
y una vez obtenida la solución general, sustituir nuevamente t ln x. Este método, que
se ilustró en el último ejemplo, requiere el uso de la regla de la cadena de la derivación.
EJEMPLO 6
&DPELRDFRH¿FLHQWHVFRQVWDQWHV
Resuelva x 2y xy y ln x.
162
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
SOLUCIÓN
dy
dx
d 2y
dx2
Sustituyendo x et o t ln x, se tiene que
1 dy
x dt
dy dt
dt dx
; Regla de la cadena
1 d dy
x dx dt
dy
dt
1
x2
1 d 2y 1
x dt2 x
dy
dt
1
x2
; Regla del producto y regla de la cadena
1 d 2y
x2 dt2
dy
.
dt
6XVWLWX\HQGRHQODHFXDFLyQGLIHUHQFLDOGDGD\VLPSOL¿FDQGRVHREWLHQH
d2y
dt2
2
dy
dt
y
t.
&RPRHVWD~OWLPDHFXDFLyQWLHQHFRH¿FLHQWHVFRQVWDQWHVVXHFXDFLyQDX[LOLDUHVm2
2m 1 0, o (m 1)2 0. Así se obtiene yc c1et c2tet.
8VDQGRFRH¿FLHQWHVLQGHWHUPLQDGRVVHSUXHEDXQDVROXFLyQSDUWLFXODUGHODIRUPD
yp $ Bt. Esta suposición conduce a 2B $ Bt t, por tanto $ 2 y B 1.
Usando y yc yp, se obtiene
y c1 et c 2 tet 2 t,
así la solución general de la ecuación diferencial original en el intervalo (0,
y c1x c2x ln x 2 ln x.
) es
SOLUCIONES PARA x < 0 En el análisis anterior hemos resuelto las ecuaciones de
Cauchy-Euler para x 0. Una forma de resolver una ecuación de Cauchy-Euler para
x 0 es cambiar la variable independiente por medio de la sustitución t x (lo que
implica t 0) y usando la regla de la cadena:
dy
dx
dy dt
dt dx
dy
dt
y
d 2y
dx2
d
dt
dy dt
dt dx
d 2y
.
dt 2
Vea los problemas 37 y 38 de los ejercicios 4.7.
UNA FORMA DISTINTA
a(x
Una ecuación de segundo orden de la forma
d2y
dy
x0)2 2 b(x x0)
cy 0
dx
dx
(7)
también es una ecuación de Cauchy-Euler. Observe que (7) se reduce a (1) cuando
x0 0.
Podemos resolver (7) como lo hicimos con (1), es decir, buscando soluciones de
y (x x0)m y usando
dy
dx
m(x
x0)m
1
y
d2y
dx2
m(m
1)(x
x0)m 2.
De forma alterna, podemos reducir a (7) a la forma familiar (1) por medio del cambio
de variable independiente t x x0, resolver la ecuación reducida y sustituir de
nuevo. Vea los problemas 39 a 42 de los ejercicios 4.7.
EJERCICIOS 4.7
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-5.
En los problemas 1 a 18 resuelva la ecuación diferencial dada.
1. x 2y 2y 0
2. 4x 2y y 0
7. x 2y 3xy 2y 0
3. xy y 0
4. xy 3y 0
9. 25x 2y 25xy y 0
5. x 2y xy 4y 0
6. x 2y 5xy 3y 0
11. x 2y 5xy 4y 0
8. x 2y 3xy 4y 0
10. 4x 2y 4xy y 0
12. x 2y 8xy 6y 0
4.7
13. 3x 2y 6xy y 0
14. x 2y 7xy 41y 0
15. x 3y 6y 0
16. x 3y xy y 0
17. xy (4) 6y 0
ECUACIÓN DE CAUCHY-EULER
l
163
En los problemas 39 y 40 utilice y (x x0)m para resolver la
ecuación diferencial dada.
39. (x 3)2y 8(x 3)y 14y 0
40. (x 1)2y (x 1)y 5y 0
18. x 4y (4) 6x 3y 9x 2y 3xy y 0
En los problemas 19 a 24 resuelva la ecuación diferencial
dada por variación de parámetros.
19. xy 4y x 4
En los problemas 41 y 42 utilice la sustitución t x x0 para
resolver la ecuación diferencial dada.
41. (x 2)2y (x 2)y y 0
42. (x 4)2y 5(x 4)y 9y 0
20. 2x 2y 5xy y x 2 x
21. x 2y xy y 2x
22. x 2y 2xy 2y x 4e x
1
xy
y
24. x2 y
x 1
23. x 2y xy y ln x
En los problemas 25 a 30 resuelva el problema con valores
LQLFLDOHV8VHXQDDSOLFDFLyQSDUDJUD¿FDU\REWHQJDODJUi¿FD
de la curva solución.
25. x 2y 3xy 0,
y(1) 0, y(1) 4
26. x y 5xy 8y 0,
27. x 2y xy y 0,
y(1) 1, y(1) 2
28. x 2y 3xy 4y 0,
y(1) 5, y(1) 3
29. xy
1, y (1)
30. x2 y
y
x,
5xy
y(1)
8y
8x6,
y
1
2
44. ¿Es posible encontrar una ecuación diferencial de
&DXFK\(XOHUGHRUGHQPtQLPRFRQFRH¿FLHQWHVUHDOHVVL
se sabe que 2 y 1 i son raíces de su ecuación auxiliar?
Desarrolle sus ideas.
x 2y 0,
x 2y 2xy 2y 0,
1
2
0, y
43. Dé el intervalo más largo posible sobre el cual la solución
JHQHUDOGHOSUREOHPDHVWiGH¿QLGD
45. Las condiciones iniciales y(0) y0, y(0) y1 se aplican
a cada una de las siguientes ecuaciones diferenciales:
y(2) 32, y(2) 0
2
Problemas para analizar
x 2y 4xy 6y 0.
1
2
0
En los problemas 31 a 36 use la sustitución x et para convertir la ecuación de Cauchy-Euler a una ecuación diferencial
FRQFRH¿FLHQWHVFRQVWDQWHV5HVXHOYDODHFXDFLyQRULJLQDODO
resolver la nueva ecuación usando los procedimientos de las
secciones 4.3 a 4.5.
31. x 2y 9xy 20y 0
¿Para qué valores de y0 y y1 cada problema con valores
iniciales tiene una solución?
46. ¿Cuáles son las intersecciones con el eje x de la curva
VROXFLyQTXHVHPXHVWUDHQOD¿JXUD"¢&XiQWDVLQ1
tersecciones con el eje x hay en 0 x 2?
Tarea para el laboratorio de computación
33. x 2y 10xy 8y x 2
En los problemas 47 al 50 resuelva la ecuación diferencial
dada usando un SAC para encontrar las raíces (aproximadas)
de la ecuación auxiliar.
34. x 2y 4xy 6y ln x 2
47. 2x 3y 10.98x 2y 8.5xy 1.3y 0
35. x 2y 3xy 13y 4 3x
48. x 3y 4x 2y 5xy 9y 0
36. x 3y 3x 2y 6xy 6y 3 ln x 3
49. x 4y (4) 6x 3y 3x 2y 3xy 4y 0
32. x 2y 9xy 25y 0
En los problemas 37 y 38 resuelva el problema con valores
iniciales dado en el intervalo ( , 0).
37. 4x 2y y 0,
y(1) 2, y(1) 4
38. x 2y 4xy 6y 0,
y(2) 8, y(2) 0
50. x 4y (4) 6x 3y 33x 2y 105xy 169y 0
51. Resuelva x 3y x 2y 2xy 6y x 2 por variación
de parámetros. Use un SAC como ayuda para calcular las
raíces de la ecuación auxiliar y los determinantes dados
en (15) de la sección 4.6.
164
l
CAPÍTULO 4
4.8
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
FUNCIONES DE GREEN
REPASO DE MATERIAL
l Vea los ComentariosDO¿QDOGHODVHFFLyQSDUDODVGH¿QLFLRQHVGHrespuesta, entrada, y salida.
l Operadores diferenciales en la sección 4.1 y en la sección 4.5.
l El método de variación de parámetros en la sección 4.6.
INTRODUCCIÓN Veremos en el capítulo 5 que la ecuación diferencial lineal de segundo orden
d2y
a2(x) 2
dx
a1(x)
dy
dx
a0(x)y
(1)
g(x)
desempeña un papel importante en muchas aplicaciones. En el análisis matemático de sistemas físicos
con frecuencia expresar la respuesta o salida y(x) de (1) sujeta ya sea a condiciones iniciales o a condiciones frontera en términos de una función de forzamiento o de entrada g(x). De esta manera, la
respuesta del sistema se puede analizar rápidamente para diferentes funciones de forzamiento.
Para ver cómo se hace esto, comenzamos examinando las soluciones de los problemas con valores
iniciales en los cuales la ED (1) se ha puesto en la forma estándar
y
P(x)y
Q(x)y
(2)
f(x)
GLYLGLHQGRODHFXDFLyQHQWUHHOFRH¿FLHQWHSULQFLSDOa2(x). También suponemos en toda esta sección
TXHODVIXQFLRQHVFRH¿FLHQWHVP(x), Q(x) y f (x) son continuas en algún intervalo común I.
4.8.1 PROBLEMAS CON VALORES INICIALES
TRES PROBLEMAS CON VALORES INICIALES Veremos conforme se desarrolla
el análisis que la solución y(x) del problema de valores iniciales de segundo orden
y
P(x)y
Q(x)y
f(x), y(x0)
y0, y (x0)
y1
(3)
se puede expresar como la superposición de las dos soluciones
y(x)
Aquí se supone que al menos uno de los
números y0 o y1 es distinto de cero. Si tanto y0 como y1 son 0, entonces la solución
del PVI es y = 0.
yh(x)
yp(x),
(4)
donde yh(x) es la solución de la ED homogénea asociada con las condiciones iniciales
no homogéneas
y
(5)
P(x)y
Q(x)y 0, y(x0) y0, y (x0) y1
y yp(x) es la solución de la ED no homogénea con condiciones iniciales homogéneas (es
decir, cero)
P(x)y
Q(x)y f(x), y(x0) 0, y (x0) 0.
y
(6)
(QHOFDVRGHTXHORVFRH¿FLHQWHVP y Q sean constantes, la solución del PVI (5) no
SUHVHQWDGL¿FXOWDGHV8WLOLFHHOPpWRGRGHODVHFFLyQSDUDHQFRQWUDUODVROXFLyQGHOD
ED homogénea y después utilice las condiciones iniciales dadas para determinar las dos
constantes de la solución. Nos concentraremos en la solución del PVI (6). Debido a las
condiciones iniciales cero, la solución de (6) podría describir un sistema físico que está
inicialmente en reposo y a veces se llama una solución de reposo.
FUNCIÓN DE GREEN Si y1(x) y y2(x) forman un conjunto fundamental de soluciones
en la intervalo I de la ecuación homogénea asociada de (2), entonces una solución particular de la ecuación no homogénea (2) en el intervalo I se puede encontrar por variación de
parámetros. Recuerde de la ecuación (3) de la sección 4.6 que la forma de esta solución es
yp(x)
u1(x)y1(x)
u2(x)y2(x).
(7)
/RVFRH¿FLHQWHVYDULDEOHVu1(x) y u2(x)HVWiQGH¿QLGRVSRUODHFXDFLyQ GHODVHFFLyQ
4.6:
y2(x)f(x)
y1(x)f(x)
, u 2(x)
.
u 1(x)
(8)
W
W
4.8
FUNCIONES DE GREEN
165
l
La independencia lineal de y1(x) y y2(x) en el intervalo I garantiza que el Wronskiano
W = W(y1(x), y2(x)) 0 para toda x en I. Si x y x0 son números en I, entonces al integrar
las derivadas u1(x) y u2(x) en las ecuaciones (8) en el intervalo [x0, x] y al sustituir los
resultados en la ecuación (7) se obtiene
x
yp(x)
Debido a que y1(x) y y2(x) son constantes con respecto a la integración
en t, podemos mover estas funciones
GHQWURGHODVLQWHJUDOHVGH¿QLGDV
y1(x)
x
W(t)
x0
y2(x)
x
y1(x)y2(t)
f(t) dt
W(t)
x0
donde
x
y2(t)f(t)
dt
W(t)
x0
y1(t)
y 1(t)
W(y1(t), y2(t))
x0
y1(t)f(t)
dt
W(t)
(9)
y1(t)y2(x)
f(t) dt,
W(t)
y2(t)
y2(t)
'HODVSURSLHGDGHVGHODLQWHJUDOGH¿QLGDODVGRVLQWHJUDOHVHQHOVHJXQGRUHQJOyQGH
(9) se pueden reescribir como una sola integral
x
G(x, t) f(t) dt.
(10)
y1(t)y2(x) y1(x)y2(t)
W(t)
(11)
yp(x)
x0
La función G(x, t) en (10),
G(x, t)
Esto es importante. Lea este párrafo
otra vez.
se denomina función de Green para la ecuación diferencial (2).
Observe que la función de Green (11) depende sólo de las soluciones fundamentales y1(x) y y2(x) de la ecuación diferencial homogénea asociada para (2) y no
de la fuerza de forzamiento f(x). Por lo tanto, todas las ecuaciones diferenciales de
segundo orden (2) con el mismo lado izquierdo, pero con diferentes funciones de
forzamiento tienen la misma función de Green. Por lo que un título alternativo para
(11) es la función de Green para el operador diferencial lineal de segundo orden
L D2 P(x) D Q(x)
EJEMPLO 1
Solución particular
Utilice las ecuaciones (10) y (11) para encontrar una solución particular de y y f(x).
Las soluciones de la ecuación homogénea asociada y y 0 son y1 ex,
y2 ex y W(y1(t), y2(t)) 2. Se tiene de la ecuación (11) que la función de Green es
SOLUCIÓN
G(x, t)
ete
x
exe
t
ex
2
t
e
2
(x
t)
sinh(x
(12)
t).
Así para la ecuación (10), una solución particular de la ED es
x
yp(x)
EJEMPLO 2
sinh(x
t) f(t) dt.
(13)
x0
Soluciones generales
Determine la solución de las siguientes ecuaciones diferenciales no homogéneas.
a) y y 1冫x
b) y y e2x
SOLUCIÓN En el ejemplo 1, ambas ED tienen la misma función complementaria
yc c1ex c2ex. Además, como se señaló en el párrafo anterior al ejemplo 1, la función de
Green para ambas ecuaciones diferenciales es la ecuación (12).
a) &RQODVLGHQWL¿FDFLRQHVf(x) 1冫x y f(t) 1冫t vemos en la ecuación (13) que una
solución particular de y y 1冫x es yp(x)
x senh(x
x0
t
t)
dt . Así la solución general
y yc yp de la ED dada en cualquier intervalo [x0, x] que no contiene al origen es
166
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
c1e x
y
x
x
c2e
x0
senh(x
t
t)
(14)
dt.
Debe comparar esta solución con la encontrada en el ejemplo 3 de la sección 4.6.
b) Con f(x) e2x en la ecuación (13), una solución particular de y y e2x es yp(x)
x
x0 senh(x
t) e2t dt. Entonces la solución general y yc yp es
c1ex
y
c2e
x
x
senh(x
t) e2t dt.
(15)
x0
Ahora considere el problema de valores iniciales especial (6) con las condiciones iniciales homogéneas. Una manera de resolver el problema cuando f(x) 0 ya se ha mostrado en las secciones 4.4 y 4.6, es decir, aplicando las condiciones iniciales y(x0) 0,
y(x0) 0 a la solución general de la ED no homogénea. Pero no hay una necesidad
real de hacer esto ya que tenemos una solución del PVI a la mano, ésta es la función
GH¿QLGDHQODHFXDFLyQ
TEOREMA 4.8.1 Solución del PVI (6)
La función yp(x GH¿QLGDHQ HVODVROXFLyQGHOSUREOHPDGHYDORUHVLQLciales (6).
Por construcción sabemos que yp(x) satisface la ED no homogénea.
'HVSXpVSXHVWRTXHXQDLQWHJUDOGH¿QLGDWLHQHODSURSLHGDG aa 0 tenemos
DEMOSTRACIÓN
yp(x0)
x0
x0
G(x0, t) f(t) dt
0.
Por último, para demostrar que yp(x0) 0 utilizamos la fórmula de Leibniz* para la derivada de una integral:
0 de (11)
yp (x)
x0
yp(x 0)
por lo tanto
EJEMPLO 3
x
G(x, x) f (x)
x0
x0
y1(t)y 2(x) y 1(x)y2(t)
f(t) dt.
W(t)
y1(t)y 2 (x0) y 1(x0)y2(t)
f(t) dt
W(t)
0.
Vuelta al ejemplo 2
Resuelva los problemas con valores iniciales
a) y y 1冫x, y(1) 0, y(1) 0
b) y y e2x, y(0) 0, y(0) 0
a) Con x0 1 y f(t) 1冫t,, se tiene de la ecuación (14) del ejemplo 2 y del
teorema 4.8.1 que la solución del problema de valores iniciales, donde [1, x], x 0, es
SOLUCIÓN
x
yp(x)
1
senh(x
t
t)
dt
b),GHQWL¿FDQGRx0 0 y f(t) e2t, vemos en la ecuación (15) que la solución del PVI es
x
yp(x)
*
senh(x
t) e2t dt.
(16)
0
Esta fórmula, normalmente se analiza en cursos avanzados de cálculo, está dada por
d
dx
v(x)
F(x, t)dt
u(x)
v(x)
F(x, v(x))v (x)
F(x, u(x))u (x)
u(x)
x
F(x, t) dt.
4.8
FUNCIONES DE GREEN
l
167
En el inciso b) del ejemplo 3, realizamos la integración de la ecuación (16), pero considere que x se conserva constante, cuando se integra con respecto a t:
x
yp(x)
0
t
ex
x
0
1 2x
3e
1 x
2e
t)
e2t dt
x
1
x
2e
et dt
(x
e
2
0
1 x
2e
EJEMPLO 4
x
t) e2t dt
senh(x
e3t dt
0
1
x
6e .
Uso de (10) y (11)
Resuelva el problema de valores iniciales
y 4y x, y(0) 0, y(0) 0
Comencemos por construir la función de Green de la ecuación diferencial dada.
Las dos soluciones linealmente independientes de y 4y 0 son y1(x) cos2x y
y2(x) sen2x. En la ecuación (11), con W(cos2t, sen2t) 2, encontramos
SOLUCIÓN
Aquí hemos usado la identidad trigonométrica
sen(2x – 2t) = sen2x cos2t – cos2x sen2t
cos2t sin2x
G(x, t)
cos2x sin2t
1
2 sin2(x
2
t).
+DFLHQGRPiVLGHQWL¿FDFLRQHVx0 0 y f(t) t en la ecuación (10) vemos que una
solución del problema de valores iniciales es
1
2
yp(x)
x
t sen2(x
t)dt.
0
Si deseamos evaluar la integral, primero escribimos
1
2 sen2x
yp(x)
x
t cos2t dt
0
x
1
2
cos2x
1
2
cos2x
t sen2t dt
0
y después integramos por partes:
yp(x)
[
1
1
2 sen2x 2 t sen2t
1
4
yp(x)
o
]x0
cos2t
1
4x
1
8
[
1
2t
cos2t
]
x
1
4 sen2t 0
sen 2x
CONTINUACIÓN DE LOS PROBLEMAS DE VALORES INICIALES Finalmente,
ahora estamos en posición de hacer uso del teorema 4.8.1 para encontrar la solución del
problema de valores iniciales expresado en (3). Ésta es simplemente la función ya dada
en la ecuación (4).
TEOREMA 4.8.2
Solución del PVI (3)
Si yh(x) es la solución del problema de valores iniciales (5) y yp(x) es la solución (10) del problema de valores iniciales (6) en el intervalo I, entonces
y(x) yh(x) yp(x)
(17)
es la solución del problema de valores iniciales (3).
DEMOSTRACIÓN Ya que yh(x) es una combinación lineal de las soluciones fundamentales, se tiene de (10) de la sección 4.1 que y yh yp es una solución de la ED no homogénea.
Además, puesto que yh satisface las condiciones iniciales en (5) y yp satisface las condiciones iniciales en (6), tenemos,
y(x0)
yh(x0)
yp(x0)
y0
0
y0
y (x0)
y h (x0)
y p (x0)
y1
0
y1.
168
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
Considerando la ausencia de una función de forzamiento en (5) y la presencia de ese término en (6), vemos en la ecuación (17) que la respuesta y(x) de un sistema físico descrito
por el problema de valores iniciales (3) se puede separar en dos respuestas diferentes:
yh(x)
y(x)
yp(x)
respuesta del sistema
debida a las condiciones
iniciales
y(x0) y0, y(x0) y1
(18)
respuesta del sistema
debida a la función de
forzamiento f
Si desea adelantarse, el siguiente problema de valores iniciales representa una situación
de resonancia pura para un sistema masa resorte forzado. Vea la sección 5.1.3.
EJEMPLO 5
Uso del teorema 4.8.2
Resuelva el problema de valores iniciales
y 4y sen2x, y(0) 1, y(0) 2
Resolvemos los dos problemas de valores iniciales.
Primero, resolvemos y 4y 0, y(0) 1, y(0) 2. Al aplicar las condiciones
iniciales a la solución general y(x) c1cos2x c2sen2x de la ED homogénea, encontramos
que c1 1 y c2 1. Por lo tanto, yh(x) = cos2x sen2x.
Después, resolvemos y 4y sen2x, y(0) 0, y(0) 0. Como el lado izquierdo
de la ecuación diferencial es el mismo que el de la ED del ejemplo 4, la función de Green es
la misma, es decir, G(x, t) 1冫2sen2(x t). Con f(t) sen2t vemos de (10) que la solución
del segundo problema es yp(x) 12 x0 sen 2(x t)sen2t dt .
Por último, en vista de (17) en el teorema 4.8.2, la solución del PVI original es
SOLUCIÓN
yh(x)
y(x)
yp(x)
cos2x
sen2x
x
1
2
sen2(x
t)sen2t dt
(19)
0
6LVHGHVHDSRGHPRVLQWHJUDUODLQWHJUDOGH¿QLGDHQ XVDQGRODLGHQWLGDGWULJRQRPpWULFD
1
2 [cos(A
sen Asen B
con A
2(x
t) y B
B)
cos (A
B)]
2t:
yp(x)
x
1
2
sen2(x
x
1
4
1
4
t)sen2tdt
0
[cos(2x
4t)
cos2x] dt
1
4 sen(2x
4t)
tcos2x
(20)
0
[
1
8 sen2x
]x0
1
4 xcos2x.
Por lo tanto, la solución (19) se puede reescribir como:
y(x)
yh(x)
yp(x)
cos2x
y(x)
o
cos2x
1
8 sen2x
sen2x
7
8 sen2 x
1
4
1
4 x cos2x
x cos2x.
,
(21)
2EVHUYHTXHHOVLJQL¿FDGRItVLFRLQGLFDGRHQ VHSLHUGHHQ GHVSXpVGHFRPELnar términos semejantes en las dos partes de la solución y(x) yh(x) yp(x).
La belleza de la solución dada en (19) es que podemos escribir inmediatamente la
respuesta de un sistema si las condiciones iniciales siguen siendo las mismas, pero la
función de forzamiento cambia. Por ejemplo, si el problema en el ejemplo 5 se cambia a:
y 4y x, y(0) 1, y(0) 2
simplemente reemplazamos sen2t en la integral en (19) por t y entonces la solución es
y(x)
yh(x)
yp(x)
cos 2x
1
4x
sen2x
cos2x
1
2
x
tsen2(x
0
9
8 sen2x
t) dt
vea el ejemplo 4
4.8
FUNCIONES DE GREEN
l
169
x
Como la función de forzamiento f está sola en la solución particular yp(x)
x G(x, t) f(t) dt
la solución de (l7) es útil cuando fHVWiGH¿QLGDHQSDUWHV(OVLJXLHQWHHMHPSORLOXVWUD
esta idea.
0
EJEMPLO 6
Un problema con valores iniciales
Resuelva el problema de valores iniciales
y 4y f(x), y(0) 1, y(0) 2
donde la función de forzamiento fSRUSDUWHVVHGH¿QH
0,
x
sen 2x, 0
0,
x
f(x)
SOLUCIÓN
0
x 2
2 .
De (19), remplazando a f(t) con sen2t, podemos escribir
cos 2 x
y(x)
x
1
2
sen 2x
sen 2(x
t) f(t) dt.
0
Debido a que fVHGH¿QHHQWUHVSDUWHVFRQVLGHUDPRVWUHVFDVRVHQODHYDOXDFLyQGHOD
LQWHJUDOGH¿QLGD3DUDx 0,
1
2
yp(x)
x
t) 0 dt
sen2(x
0,
0
para 0 x 2,
x
1
2
yp(x)
1
8 sen2x
\¿QDOPHQWHSDUDx
yp x)
2S
1
2
1
2S
1
4
[
VHQ x
1
4 VHQ
x
x
1
2
x
2S
t dt
VHQ x
t VHQt dt
tcos 2x]
2S
4t)
8S )
1
2
S cos 2 x
ĸXVDQGRODLQWHJUDFLyQHQ
1
16 VHQx
ĸVHQ x
8S )
VHQ 2x
Por lo tanto, yp(x) es
yp(x)
p
2p
3p
_1
x
0,
1
1
8 sin2x 4 x cos 2x,
1
2 cos2x,
x
0
x
0
x 2
2 .
y así
y(x)
FIGURA 4.8.1 *Ui¿FDGHy(x) del
ejemplo 6..
t VHQ 2t dt
cos 2x.
1
_p
1
4 x cos2x
VHQ x
1
16 VHQ
y
usando la integración de (20)
2ʌ, podemos usar la integración que sigue al ejemplo 5:
2S
1
2S
t) sen2t dt
sen 2(x
0
yh(x)
yp(x)
cos 2x
sen 2x
yp(x).
Juntando todas las piezas, obtenemos
y(x)
cos 2x sen 2x,
x
1
7
(1 4 x) cos 2x 8 sen 2 x, 0
(1 12 )cos2x sen2x,
x
0
x 2
2 .
Las tres partes de y(x VHPXHVWUDQHQGLIHUHQWHVFRORUHVHQOD¿JXUD
A continuación examinaremos cómo se puede resolver un problema de valores en la
frontera (PVF) usando una clase diferente de función de Green.
170
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
4.8.2 PROBLEMAS CON VALORES EN LA FRONTERA
En contraste con un PVI de segundo orden, en el que y(x) y y(x VHHVSHFL¿FDQHQHO
mismo punto, un PVF para una ED de segundo orden implica condiciones y(x) y y(x)
TXHVHHVSHFL¿FDQHQGRVSXQWRVGLIHUHQWHVx a y x b. Condiciones tales como
y(a) 0, y(b) 0
y(a) 0, y(b) 0
y(a) 0, y(b) 0
son sólo casos especiales de las condiciones frontera homogéneas más generales:
A1 y(a)
B1 y (a)
0
(22)
A2 y(b)
B2 y (b)
0,
(23)
donde $1, $2, B1 y B2 son constantes. Concretamente, nuestro objetivo es encontrar una
solución integral yp(x) que sea análoga a (10) para problemas de valores en la frontera
no homogéneos de la forma
y
P(x)y
A1y(a)
A2 y(b)
Q(x)y
B1y (a)
B2 y (b)
f(x),
0
0.
(24)
Además de las suposiciones habituales de que P(x), Q(x) y f (x) son continuas en [a, b],
suponemos que el problema homogéneo
y
P(x)y
A1 y(a)
A2 y(b)
0
0
0
Q(x)y
B1 y (a)
B2 y (b)
tiene solamente la solución trivial y 0 (VWD ~OWLPD KLSyWHVLV HV VX¿FLHQWH
para garantizar una solución única de (24) que existe y está dada por una integral
b
yp(x)
aG(x, t) f(t)dt, donde G(x, t) es función de Green.
El punto de partida en la construcción de G(x, t) otra vez son las fórmulas de variación de parámetros (7) y (8).
OTRA FUNCIÓN DE GREEN Suponga que y1(x) y y2(x) son soluciones linealmente
independientes en [a, b] de la forma homogénea asociada de la ED en (24) y que x es un
número en el intervalo [a, b]. A diferencia de la construcción de (9) donde empezamos
integrando las derivadas en (8) sobre el mismo intervalo, integramos ahora la primera
ecuación en (8) en [b, x] y la segunda ecuación en (8) en [a, x]:
x
u1(x)
b
x
y2(t) f(t)
dt and u2(x)
W(t)
a
y1(t) f(t)
dt.
W(t)
(25)
La razón para la integración de u1(x) y u2(x) en diferentes intervalos pronto será clara.
De las ecuaciones (25), una solución particular yp(x) u1(x)y1(x) u2(x)y2(x) de la ED es
aquí usamos el signo menos
de (25) para invertir
los límites de integración
b
yp(x)
y1(x)
x
o
yp(x)
a
x
y2(t) f(t)
dt
W(t)
y2(x)y1(t)
f(t) dt
W(t)
x
y2(x)
b
x
a
y1(t) f(t)
dt
W(t)
y1(x)y2(t)
f(t)dt.
W(t)
(26)
El lado derecho de la ecuación (26) se puede escribir como una sola integral
b
yp(x)
(27)
G(x, t) f(t)dt,
a
donde la función G(x, t) es
G(x, t)
y1(t)y2(x)
,
W(t)
y1(x)y2(t)
,
W(t)
a
t
x
x
t
b.
(28)
4.8
FUNCIONES DE GREEN
l
171
/DIXQFLyQGH¿QLGDSRUSDUWHV VHGHQRPLQDfunción de Green para el problema
de valores en la frontera (24). Se puede probar que G(x, t) es una función continua de
x en el intervalo [a, b].
Ahora, si se eligen las soluciones y1(x) y y2(x) utilizadas en la construcción de
G(x, t) en (28) de tal manera que en x a, y1(x) satisface $1 y1(a) B1 y1(a) 0 y
x b, y2(x) satisface $2 y2(b) B2 y2(b) 0, entonces, maravillosamente, yp(x)GH¿QLGD
en (27) satisface ambas condiciones homogéneas en la frontera en (24).
Para ver esto necesitaremos
El segundo renglón en (30) es resultado del
hecho de que
y1(x)u´1(x) + y2(x)u´2(x) = 0
Vea el análisis en la sección 4.6, fórmula (4)
y
yp(x)
u1(x)y1(x)
u2(x)y2(x)
y p(x)
u1(x)y 1(x)
y1(x)u 1(x)
u1(x)y 1(x)
u2(x)y 2(x).
(29)
u2(x)y 2(x)
y2(x)u 2(x)
(30)
Antes de proceder, observemos en (25) que u1(b) 0 y u2(a) 0. De la segunda de
estas dos propiedades podemos demostrar que yp(x) satisface la ecuación (22) cada vez
que y1(x) satisface la misma condición frontera. De las ecuaciones (29) y (30) tenemos
0
A1yp(a)
B1yp(a)
A1[u1(a)y1(a)
u2(a)y2(a)]
u1(a)[A1y1(a)
B1y 1 (a)]
0
B1[u1(a)y1(a)
u2(a)y 2(a)]
0.
0 de (22)
Asimismo, u1(b) 0 implica que cada vez que y2(x) satisface (23) también lo hace yp(x):
0
A2yp(b)
B2y p(b)
0
A2[u1(b)y1(b)
u2(b)y2(b)]
u2(b)[A2 y2(b)
B2 y 2(b)]
B2[u1(b)y 1(b)
u2(b)y 2(b)]
0.
0 de (22)
El siguiente teorema resume estos resultados.
TEOREMA 4.8.3 Solución del PVF (24)
Sea y1(x) y y2(x) soluciones linealmente independientes de
y P(x)y Q(x)y 0
sobre [a, b], y suponga que y1(x) y y2(x) satisfacen las ecuaciones (22) y (23),
respectivamente. Entonces la función yp(x)GH¿QLGDHQ HVXQDVROXFLyQGHO
problema de valores en la frontera (24).
EJEMPLO 7
La condición frontera y’(0) = 0 es un caso
especial de (22) con a = 0, $1 = 0 y B1 = 1.
La condición frontera y(ʌ冫2) = 0 es un caso
especial de (23) con b = ʌ冫2, $2 = 1, B2 = 0.
Uso del teorema 4.8.3
Resuelva el problema de valores en la frontera
y 4y 3,
y(0) 0,
y(ʌ冫2) 0
SOLUCIÓN Las soluciones de la ecuación homogénea asociada y 4y 0 son
y1(x) cos2x y y2(x) sen2x y y1(x) satisface y(0) 0, mientras que y2(x) satisface
y(ʌ冫2) 0. El Wronskiano es W(y1, y2) 2, y así de (28) vemos que la función de Green
para el problema de valores en la frontera es
G(x, t)
1
2 cos
2t sen 2x, 0
t
x
1
2 cos
2x sen 2t, x
t
S 冫2.
6H GHGXFH GHO WHRUHPD TXH XQD VROXFLyQ GHO 39) HV FRQ ODV LGHQWL¿FDFLRQHV
a 0, b ʌ冫2, y f (t) 3:
172
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
yp(x)
S 冫2
3
G(x, t) dt
0
1
2 sen
3
x
2x cos 2t dt
3
0
RGHVSXpVGHHYDOXDUODVLQWHJUDOHVGH¿QLGDV yp(x)
1
2 cos
3
4
S 冫2
2x
sen 2t dt,
x
3
4 cos
2x.
1RLQ¿HUDGHOHMHPSORDQWHULRUTXHODH[LJHQFLDGHTXHy1(x) satisfaga (22) y y2(x) satisfaga
(23) determina en forma única estas funciones. Como vimos en el ejemplo anterior, hay una
cierta arbitrariedad en la selección de estas funciones.
EJEMPLO 8
Uso del teorema 4.8.3
Resuelva el problema de valores en la frontera
x2y 3xy 3y 24x5,
y(1) 0,
y(2) 0
La ecuación diferencial se reconoce como una ED de Cauchy-Euler. De
la ecuación auxiliar m(m 1) 3m 3 (m 1)(m 3) 0 la solución general
de la ecuación homogénea asociada es y c1x c2x3. Aplicar y(1) 0 a esta solución implica c1 c2 0 o c1 c2. Al elegir c2 1 obtenemos c1 1 y y1 x x3. Por otro lado,
y(2) 0 aplicada a la solución general muestra que 2c1 8c2 0 o c1 4c2. La elección c2
1 ahora da c1 4 y así y2(x) 4x x3. El Wronskiano de estas dos funciones es
SOLUCIÓN
W(y1(x), y2(x))
x
1
x3 4x
3x2 4
x3
3x2
6x3.
Por lo tanto, la función de Green para los problemas de valores en la frontera es
(t
G(x, t)
(x
t3)(4x
6t 3
x 3)(4t
6t 3
x3)
, 1
t
x
t 3)
, x
t
2
&RQHO¿QGHLGHQWL¿FDUODIXQFLyQGHIRU]DPLHQWRFRUUHFWDf debemos escribir la ED en la
forma estándar:
3
3
y
y
y 24x3
x
x2
En esta ecuación vemos que f(t) 24t3 y así yp(x) en (27) se convierte en
2
yp(x)
24 G(x, t) t 3dt
1
x
4(4x
x 3) (t
1
9HUL¿TXHTXHyp(x) satisface la ecuación
diferencial y las dos condiciones de
frontera.
t 3) dt
2
4(x
x 3) (4t
t 3)dt.
x
$OLQWHJUDUHQIRUPDVLPSOHODLQWHJUDOGH¿QLGD\VLPSOL¿FDUDOJHEUDLFDPHQWHVHREWLHQHOD
solución yp(x) 3x5 15x3 12x.
COMENTARIOS
$SHQDV KHPRV WRFDGR OD VXSHU¿FLH GH OD HOHJDQWH DXQTXH FRPSOLFDGD WHRUtD
de las funciones de Green. Las funciones de Green también se pueden construir
para ecuaciones diferenciales parciales lineales de segundo orden, pero dejamos
la cobertura del último tema para un curso avanzado.
4.8
EJERCICIOS 4.8
En los problemas 1 al 6 proceda como en el ejemplo 1 para encontrar una solución particular yp(x) de la ecuación diferencial
dada en forma integral (10).
1. y
16y f(x)
2. y
3y
10y f(x)
2y
y
5. y
9y
f(x)
4y
4. 4y
f(x)
2y
6. y
y
f(x)
2y
f(x)
16y
9. y
2y
11. y
9y
xe
y
2x
e
x
arctan x
y
2y
12. y
x2
10y
4y
10. 4y
sen x
x
3y
8. y
cos2x
2y
En los problemas 13 al 18 proceda como en el ejemplo 3 para
encontrar una solución del problema dado con valores iniciales.
(YDO~HODLQWHJUDOTXHGH¿QHyp(x).
13. y
4y
e2x, y(0)
14. y
y
1, y(0)
0, y (0)
0
15. y
10y
25y
e5x, y(0)
0, y (0)
16. y
6y
17. y
y
csc x cot x, y(ʌ冫2)
18. y
y
sec2x, y( ʌ )
9y
0, y (0)
0
0, y (0)
x, y(0)
0
4y
e2x, y(0)
0
20. y
y
1, y(0)
25y
1, y (0)
1
5x
21. y
10y
22. y
6y
23. y
y
csc x cot x, y( ʌ 冫2)
24. y
y
sec2x, y( ʌ )
9y
4
10, y (0)
e , y(0)
1, y (0)
1, y (0)
x, y(0)
1
2,
1
ʌ冫2, y ( ʌ 冫2)
1
1
sen e x, y(0)
1, y (0) 0
1
26. y
3y
2y
, y(0) 0, y (0) 1
1 ex
2
27. x y
2xy
2y x, y(1) 2, y (1)
1
25. y
3y
28. x 2y
2xy
29. x 2y
6y
30. x 2y
xy
2y
2y
x ln x, y(1)
ln x, y(1)
y
1, y (1)
1, y (1)
x2, y(1)
0
3
4, y (1)
3
En los problemas 31 al 34 proceda como en el ejemplo 6 para
encontrar una solución del problema de valores iniciales con la
IXQFLyQGHIRU]DPLHQWRGH¿QLGDHQSDUWHV
f(x), y(0) 8, y (0)
1, x 0
donde f(x)
1, x 0
31. y
y
2,
donde f(x)
33. y
y
34. y
y
3, y (0)
f(x), y(0)
0, x
x, x
0
0
1, y (0)
f(x), y(0)
0, x
10, 0
0, x
1,
0
x 3ʌ
3ʌ
0, y (0)
1,
0, x 0
cos x, 0 x
0, x 4ʌ
4ʌ
f(x), y(0)
donde f(x)
2,
4.8.2 PROBLEMAS CON VALORES
EN LA FRONTERA
En los problemas de 35 y 36: a) Use (27) y (28) para encontrar una
solución del problema de valores en la frontera. b) Compruebe
que la función yp(x) satisface las ecuaciones diferenciales y ambas
condiciones en la frontera.
35. y
f(x), y(0)
0, y(1)
0
36. y
f(x), y(0)
0, y(1)
y (1)
0
39. y
40. y
y
9y
1, y(0)
0, y(1)
0
0, y ( ʌ )
1, y(0)
0
0, y( ʌ 冫2)
x
2y
2y e , y(0)
y
e2x, y(0) 0, y(1) 0
42. y
43. x 2y
xy
1, y(e 1) 0, y(1) 0
2
4xy
6y x4, y(1) y (1)
44. x y
41. y
0
0, y(3)
0
Problemas para analizar
3
y (ʌ )
y
En los problemas 39-44 proceda como en los ejemplos 7 y 8 para
encontrar una solución del problema dado con valores en la frontera.
0
En los problemas 19 al 30 proceda como en el ejemplo 5 para encontrar una solución del problema dado con valores iniciales.
19. y
173
37. En el problema 35 encuentre una solución del PVF cuando f(x) 1.
38. En el problema 36 encuentre una solución del PVF cuando f(x) x.
0
0, y ( ʌ冫2)
0, y ( ʌ )
32. y
donde f(x)
En los problemas 7 al 12 proceda como en el ejemplo 2 para encontrar la solución general de la ecuación diferencial dada. Utilice los resultados obtenidos en los problemas del 1 al 6. No evalúe
ODLQWHJUDOTXHGH¿QHyp(x).
7. y
l
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-6.
4.8.1 PROBLEMAS CON VALORES INICIALES
3. y
FUNCIONES DE GREEN
45. Suponga que la solución del problema con valores en la frontera
y Py Qy f(x), y(a) 0, y(b) 0
b
a b, está dada por yp(x) aG(x, t f t)dt donde y1(x) y y2(x) son
soluciones de la ecuación diferencial homogénea asociada elegida
en construcción de G(x, t) de forma que y1(a) 0 y y2(b) 0.
Demuestre que la solución del problema con valores en la frontera
con la ED no homogénea y condiciones en la frontera
y Py Qy f(x), y(a) $, y(b) B
está dada por
y(x)
yp(x)
B
y (x)
y1(b) 1
A
y (x)
y2(a) 2
[Sugerencia: en su demostración, tendrá que demostrar que
y1(b) 0 y y2(a) 0. Lea de nuevo las hipótesis que siguen a (24).]
46. Utilice el resultado en el problema 45 para resolver
y y 1, y(0) 5, y(1) 10.
174
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
4.9 SOLUCIÓN DE SISTEMAS DE ED LINEALES POR ELIMINACIÓN
REPASO DE MATERIAL
l Puesto que el método de eliminación sistemática desacopla un sistema en distintas EDO lineales
en cada variable dependiente, esta sección le brinda la oportunidad de practicar lo que aprendió
en las secciones 4.3, 4.4 (o 4.5) y 4.6.
INTRODUCCIÓN Las ecuaciones diferenciales ordinarias simultáneas tienen que ver con dos o
más ecuaciones que contienen derivadas de dos o más variables dependientes (las funciones desconocidas) respecto a una sola variable independiente. El método de eliminación sistemática para
UHVROYHUVLVWHPDVGHHFXDFLRQHVGLIHUHQFLDOHVFRQFRH¿FLHQWHVFRQVWDQWHVVHEDVDHQHOSULQFLSLRDOgebraico de eliminación de variables. Veremos que la operación análoga de multiplicar una ecuación
algebraica por una constante es operar en una EDO con cierta combinación de derivadas.
ELIMINACIÓN SISTEMÁTICA La eliminación de una incógnita en un sistema de
ecuaciones diferenciales lineales se facilita al rescribir cada ecuación del sistema en notación de operador diferencial. Recuerde de la sección 4.1 que una sola ecuación lineal
an y(n)
an 1y(n
1)
a1 y
a0 y
g(t),
donde las ai, i 0, 1, . . . , n son constantes, puede escribirse como
an 1D(n
(an Dn
1)
a0 )y
a1D
g(t).
Si el operador diferencial de n-ésimo orden an Dn an 1D(n 1)
a1D a0
se factoriza en operadores diferenciales de menor orden, entonces los factores conmutan. Ahora, por ejemplo, para rescribir el sistema
x
2x
y
x
y
3y
x
4x
sent
2y
e
t
en términos del operador D, primero se escriben los términos con variables dependientes en un miembro y se agrupan las mismas variables.
x
2x
x
x
4x
y
y
3y
2y
sent
(D2
es
lo
mismo
que
t
e
2D
(D
1)x
4)x
(D2
(D
3)y
2)y
sent
e t.
SOLUCIÓN DE UN SISTEMA Una solución de un sistema de ecuaciones diferenciaOHVHVXQFRQMXQWRGHIXQFLRQHVVX¿FLHQWHPHQWHGHULYDEOHVx 1(t), y 2(t), z 3(t),
etcétera, que satisface cada ecuación del sistema en algún intervalo común I.
MÉTODO DE SOLUCIÓN
primer orden
dx
dt
dy
dt
Considere el sistema simple de ecuaciones lineales de
3y
o, equivalentemente
2x
Dx
2x
3y
Dy
0
0.
(1)
Operando con D la primera ecuación de (1) en tanto que la segunda se multiplica por 3
y después se suma para eliminar y del sistema, se obtiene D2x 6x 0. Puesto que las
16 y m2
16 , se obtiene
raíces de la ecuación auxiliar de la última ED son m1
x(t)
c1 e
16t
c 2 e16t.
(2)
4.9
SOLUCIÓN DE SISTEMAS DE ED LINEALES POR ELIMINACIÓN
l
175
0XOWLSOLFDQGR OD SULPHUD HFXDFLyQ HQ SRU PLHQWUDV TXH VH RSHUD OD VHJXQGD
con D y después restando, se obtiene la ecuación diferencial para y, D2y 6y 0.
Inmediatamente se tiene que
y(t)
c3 e
16t
c4 e16t.
(3)
Ahora (2) y (3) no satisfacen el sistema (1) para toda elección de c1, c2, c3 y c4
porque el sistema en sí pone una restricción al número de parámetros en una solución
que se puede elegir en forma arbitraria. Para ver esto, observe que sustituyendo x(t) y
y(t HQODSULPHUDHFXDFLyQGHOVLVWHPDRULJLQDO GHVSXpVGHVLPSOL¿FDUVHREWLHQH
16c1
16c 2
16 t
3c 3 e
3c 4 e16 t
0.
Puesto que la última expresión es cero para todos los valores de t, debemos tener
16c1 3c3 0 y 16c 2 3c 4 0. Estas dos ecuaciones nos permiten escribir
c3 como un múltiplo de c1 y c4 como un múltiplo de c2:
16
16
c4
c .
c1 y
3 2
3
Por tanto se concluye que una solución del sistema debe ser
(4)
c3
16
16
c e 16 t
c e16 t.
3 1
3 2
Se recomienda sustituir (2) y (3) en la segunda ecuación de (1) y comprobar que
se cumple la misma relación (4) entre las constantes.
x(t)
c1e
EJEMPLO 1
16t
c2 e16 t,
y(t)
Solución por eliminación
Resuelva
(D
Dx
3)x
(D
2) y
2y
0
0.
(5)
Operando con D – 3 la primera ecuación y la segunda con D y luego
restándolas se elimina x del sistema. Se deduce que la ecuación diferencial para y es
SOLUCIÓN
[(D
3)(D
2)
2D]y
0
o
(D 2
6)y
D
0.
Puesto que la ecuación característica de esta última ecuación diferencial es m2 m
6 (m 2)(m 3) 0, se obtiene la solución
c1 e 2t
y(t)
c2 e
3t
(6)
.
Eliminando y de modo similar, se obtiene (D D 6)x 0, a partir de lo cual se
encuentra que
2
c 3 e 2t
x(t)
c4 e
(7)
3t
.
Como se observó en la descripción anterior, una solución de (5) no contiene cuatro constantes independientes. Sustituyendo (6) y (7) en la primera ecuación de (5) se obtiene
(4c1
2c 3 )e 2t
( c2
3c 4 )e
3t
0.
1
3 c2.
De 4c1 2c3 0 y c2 3c4 0 se obtiene c3 2c1 y c4
solución del sistema es
x(t)
2c1 e2t
1
c e
3 2
3t
,
y(t)
c1e2t
c2 e
Por tanto una
3t
.
Ya que sólo se podría despejar fácilmente a c3 y c4 en términos de c1 y c2, la solución
del ejemplo 1 se escribe en la forma alternativa
x(t)
c3 e2t
c4 e
3t
,
y(t)
1
c e2t
2 3
3c4 e
3t
.
176
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
Esto podría ahorrarle algo
de tiempo.
En ocasiones da resultado mantener los ojos abiertos cuando se resuelven sistemas. Si en el primer ejemplo se hubiera resuelto para x, entonces se podría encontrar
y, junto con la relación entre las constantes, usando la última ecuación del sistema
(5). Usted debe comprobar que la sustitución de x(t) en y 12 (Dx 3x) produce
1
2t
y
3c4 e 3t. Observe también en la descripción inicial que la relación que
2 c3 e
se proporciona en (4) y la solución y(t) de (1) se podría haber obtenido al usar x(t) en
(2) y la primera ecuación de (1) en la forma
1
3
y
EJEMPLO 2
1
3
Dx
26c1e
16t
26c2 e16t.
1
3
Solución por eliminación
Resuelva
4x
x
x
x
t2
0.
y
y
(8)
SOLUCIÓN Primero se escribe el sistema en notación de operador diferencial:
(D
(D
D2 y
Dy
4)x
1)x
t2
0.
(9)
Entonces, eliminando a x, obtenemos
1)D2
[(D
(D
4)D]y
1)t2
(D
(D
4)0
o
(D3 4D)y t2 2t.
Puesto que las raíces de la ecuación auxiliar m(m2 4) 0 son m1 0, m2 2i y m3
2i, la función complementaria es yc c1 c2 cos 2t c3 sen 2t. Para determinar
la solución particular ypVHXVDQFRH¿FLHQWHVLQGHWHUPLQDGRVVXSRQLHQGRTXHyp $W3
Bt2 Ct. Por tanto y p
4y p
yp
3At2
2Bt
12At2
C, y p
6At
2B, y p
6A
4C
t2
8Bt
6A,
2t.
La última igualdad indica que 12$ 1, 8B 2 y 6$ 4C 0; por tanto A
1
yC
. Así
8
y
yc
yp
c1
c2 cos 2t
c3 sen 2 t
1 3
t
12
1 2
t
4
1
t.
8
1
12 ,
B
1
,
4
(10)
Eliminando y del sistema (9), se obtiene
[(D
4)
D(D
t2
1)]x
o
(D2
4)x
t2.
Debe ser obvio que xc c4 cos 2t c5 sen 2t\TXHVHSXHGHQDSOLFDUFRH¿FLHQWHVLQdeterminados para obtener una solución particular de la forma xp $W2 Bt C. En
1
1 2
y así
este caso usando derivadas y álgebra usuales se obtiene xp
8,
4t
1 2 1
(11)
t
.
4
8
Ahora se expresan c4 y c5 en términos de c2 y c3 sustituyendo (10) y (11) en cualquier ecuación de (8). Utilizando la segunda ecuación, se encuentra, después de combinar términos,
x
(c5
xc
2c4
xp
c4 cos 2t
2c2 ) sen 2t
(2c5
c5 sen 2t
c4
2c3) cos 2t
0,
así c5 2c4 2c2 0 y 2c5 c4 2c3 0. Despejando c4 y c5 en términos de c2 y
c3 se obtiene c4 15 (4c2 2c3) y c5 15 (2c2 4c3). Por último, se encuentra que
una solución de (8) es
1
1
1 2 1
x(t)
(4c2 2c3 ) cos 2t
(2c2 4c3 ) sen 2t
t
,
5
5
4
8
1 3 1 2 1
y(t) c1 c2 cos 2t c3 sen 2t
t
t
t.
12
4
8
4.9
SOLUCIÓN DE SISTEMAS DE ED LINEALES POR ELIMINACIÓN
EJEMPLO 3
l
177
Volver a tratar un problema de mezclas
En la ecuación (3) de la sección 3.3 vimos que el sistema de ecuaciones diferenciales
lineales de primer orden
2
x
25 1
2
x
25 1
dx1
dt
dx2
dt
1
x
50 2
2
x
25 2
es un modelo para la cantidad de libras de sal x1(t) y x2(t) en mezclas de salmuera en los
tanques $ y BUHVSHFWLYDPHQWHTXHVHPXHVWUDQHQOD¿JXUD(QHVHPRPHQWR
no podíamos resolver el sistema. Pero ahora, en términos de operadores diferenciales,
el sistema anterior se puede escribir como
D
2
x
25 1
2
x
25 1
D
1
x
50 2
0
2
x
25 2
0.
Operando con D 252 la primera ecuación y multiplicando la segunda ecuación por 501 ,
VHVXPDQ\VLPSOL¿FDQ\VHREWLHQH D 2 100D 3)x1 0. De la ecuación auxiliar
625m 2
3
(25m
1)(25m
3)
0
se observa inmediatamente que x1(t) c1et/25 c2e3t/25. Ahora se puede obtener x2(t)
usando la primera ED del sistema en la forma x2 50(D 252 )x1. De esta manera se
encuentra que la solución del sistema es
25
20
libras de sal
100m
x1(t)
x1(t)
t / 25
c2 e
3t / 25
,
x2(t)
2c1 e
t / 25
3t / 25
2c2 e
.
En el análisis original de la sección 3.3 se supuso que las condiciones iniciales eran
x1(0) 25 y x2(0) 0. Aplicando estas condiciones a la solución se obtiene c1 c2
25 y 2c1 2c2 0. Resolviendo simultáneamente estas ecuaciones se obtiene
c1 c2 252. Por último, una solución del problema con valores iniciales es
15
10
5 x (t)
2
0
c1e
40
60
Tiempo
20
80
x1(t)
100
25
e
2
t / 25
25
e
2
3t / 25
,
x2 (t)
25e
t / 25
25e
3t / 25
.
FIGURA 4.9.1 Libras de sal en los
(QOD¿JXUDVHPXHVWUDQODVJUi¿FDVGHDPEDVHFXDFLRQHV&RQVLVWHQWHVFRQHOKHFKR
que se bombea agua pura al tanque $HQOD¿JXUDYHPRVTXHx1(t) → 0 y x2(t) → 0 conforme t → .
EJERCICIOS 4.9
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-6.
tanques $ y B del ejemplo 3.
En los problemas 1 a 20 resuelva el sistema de ecuaciones
diferenciales dado por eliminación sistemática.
1.
3.
dx
dt
dy
dt
dx
dt
dy
dt
2x
y
2.
x
y
x
t
t
4.
dx
dt
dy
dt
dx
dt
dy
dt
4x
7y
x
2y
4y
1
x
2
2y 0
5. (D 2 5)x
2
2x (D 2)y 0
6. (D 1)x (D 1)y 2
3x (D 2)y 1
7.
9.
d 2x
dt2
d 2y
dt2
4y
et
4x
et
8.
d 2 x dy
dt2
dt
dx dy
dt
dt
Dx
D 2y e3t
(D 1)x (D 1)y 4e3t
5x
x
4y
178
10.
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
D 2x
Dy t
(D 3)x (D 3)y 2
11. (D 2 1)x y 0
(D 1)x Dy 0
12. (2D 2 D 1)x (2D 1)y 1
(D 1)x
Dy 1
dx
dy
13. 2
5x
et
dt
dt
dx
dy
x
5et
dt
dt
dx dy
14.
et
dt
dt
d2 x dx
x y 0
dt2
dt
15. (D 1)x (D 2 1)y 1
(D 2 1)x (D 1)y 2
FIGURA 4.9.3 Fuerzas en el problema 24.
Dx
z et
(D 1)x Dy Dz 0
x 2y Dz e t
dx
x z
20.
dt
dy
y z
dt
dz
x y
dt
22 resuelva el problema con valores
18.
22.
θ
k
25. Examine y analice el siguiente sistema:
dx
y 1
dt
dy
3x 2y
dt
x(0) 0, y(0) 0
Modelos matemáticos
23. Movimiento de un proyectil Un proyectil disparado de
una pistola tiene un peso w mg y una velocidad v tangente
a su trayectoria de movimiento. Ignorando la resistencia del
aire y las fuerzas que actúan sobre el proyectil excepto su
peso, determine un sistema de ecuaciones diferenciales que
GHVFULEDVXWUD\HFWRULDGHPRYLPLHQWR9HDOD¿JXUD
Resuelva el sistema. [Sugerencia: Use la segunda ley de
Newton del movimiento en las direcciones x y y.]
y
v
mg
x
FIGURA 4.9.2
v
Problemas para analizar
16. D 2x 2(D 2 D)y sen t
x
Dy 0
17. Dx y
Dy z
Dz x
dx
19.
6y
dt
dy
x z
dt
dz
x y
dt
En los problemas 21 y
iniciales.
dx
21.
5x y
dt
dy
4x y
dt
x(1) 0, y(1) 1
24. Movimiento del proyectil con resistencia del aire
Determine un sistema de ecuaciones diferenciales que describa la trayectoria de movimiento en el problema 23 si la
resistencia del aire es una fuerza retardadora k (de magnitud k) que actúa tangente a la trayectoria del proyectil pero
RSXHVWDDVXPRYLPLHQWR9HDOD¿JXUD5HVXHOYDHO
sistema. [Sugerencia: k es un múltiplo de velocidad, digamos, ȕv.]
Trayectoria del proyectil del problema 23.
(D
Dx
1)x
2Dy
2(D 1)y
t2
1.
Tarea para el laboratorio de computación
26. ([DPLQHGHQXHYROD¿JXUDGHOHMHPSOR/XHJR
utilice una aplicación para determinar raíces para saber
cuando el tanque B contiene más sal que el tanque $.
27. a)
Lea nuevamente el problema 8 de los ejercicios 3.3.
En ese problema se pidió demostrar que el sistema de
ecuaciones diferenciales
dx1
dt
dx2
dt
dx3
dt
1
x
50 1
1
x
50 1
2
x
75 2
2
x
75 2
1
x
25 3
es un modelo para las cantidades de sal en los tanques de mezclado conectados $, B y C que se muesWUDQHQOD¿JXUD5HVXHOYDHOVLVWHPDVXMHWRD
x1(0) 15, x2(t) 10, x3(t) 5.
b) 8VH XQ 6$& SDUD JUD¿FDU x1(t), x2(t) y x3(t) en el
PLVPR SODQR FRRUGHQDGR FRPR HQ OD ¿JXUD
en el intervalo [0, 200].
c) Debido a que se bombea agua pura hacia el tanque $,
es 1ógico que en algún momento la sal salga de los
tres tanques. Utilice una aplicación de un SAC para
encontrar raíces para determinar el tiempo cuando la
cantidad de sal en cada recipiente sea menor o igual
que 0.5 libras. ¿Cuándo son las cantidades de sal
x1(t), x2(t) y x3(t) simultáneamente menores o iguales
que 0.5 libras?
4.10
4.10
ECUACIONES DIFERENCIALES NO LINEALES
l
179
ECUACIONES DIFERENCIALES NO LINEALES
REPASO DE MATERIAL
l Secciones 2.2 y 2.5.
l Sección 4.2.
l También se recomienda un repaso de series de Taylor.
INTRODUCCIÓN $ FRQWLQXDFLyQ VH H[DPLQDQ ODV GL¿FXOWDGHV HQ WRUQR D ODV (' no lineales de
orden superior y los pocos métodos que producen soluciones analíticas. Dos de los métodos de solución
que se consideran en esta sección emplean un cambio de variable para reducir una ED de segundo orden
a una de primer orden. En ese sentido los métodos son análogos al material de la sección 4.2.
ALGUNAS DIFERENCIAS Entre las ecuaciones diferenciales lineales y no lineales hay
varias diferencias importantes. En la sección 4.1 vimos que las ecuaciones lineales
homogéneas de orden dos o superior tienen la propiedad de que una combinación lineal
de soluciones también es una solución (teorema 4.1.2). Las ecuaciones no lineales no
tienen esta propiedad de superposición. Vea los problemas 1 y 18 de los ejercicios 4.10.
Podemos encontrar soluciones generales de ED lineales de primer orden y ecuaciones
GHRUGHQVXSHULRUFRQFRH¿FLHQWHVFRQVWDQWHV$XQFXDQGRVHSXHGDUHVROYHUXQDHFXDción diferencial no lineal de primer orden en la forma de una familia uniparamétrica,
esta familia no representa, como regla, una solución general. Es decir, las ED no lineales de primer orden pueden tener soluciones singulares, en tanto que las ecuaciones
lineales no. Pero la principal diferencia entre las ecuaciones lineales y no lineales de
orden dos o superior radica en el área de la solubilidad. Dada una ecuación lineal, hay
una probabilidad de encontrar alguna forma de solución que se pueda analizar, una
VROXFLyQH[SOtFLWDRTXL]iXQDVROXFLyQHQODIRUPDGHXQDVHULHLQ¿QLWD YHDHOFDStWXOR
6). Por otro lado, las ecuaciones diferenciales no lineales de orden superior desafían virtualmente la solución con métodos analíticos. Aunque esto podría sonar desalentador,
D~QKD\FRVDVTXHVHSXHGHQKDFHU&RPRVHVHxDOyDO¿QDOGHODVHFFLyQVLHPSUH
es posible analizar de modo cualitativo y numérico una ED no lineal.
Desde el principio se aclaró que las ecuaciones diferenciales no lineales de orden
superior son importantes, digamos ¿quizá más que las lineales?, porque a medida que
se ajusta un modelo matemático, por ejemplo, un sistema físico, se incrementa por
LJXDOODSUREDELOLGDGGHTXHHVWHPRGHORGHPD\RUGH¿QLFLyQVHDQROLQHDO
Empezamos por mostrar un método analítico que en ocasiones permite determinar soluciones explícitas o implícitas de clases especiales de ecuaciones diferenciales
de segundo orden no lineales.
REDUCCIÓN DE ORDEN Las ecuaciones diferenciales no lineales de segundo
orden F(x, y, y) 0, donde falta la variable dependiente y, y F(y, y, y) 0, donde
falta la variable independiente x, a veces se resuelven usando métodos de primer orden.
Cada ecuación se reduce a una de primer orden por medio de la sustitución u y.
FALTA LA VARIABLE DEPENDIENTE En el ejemplo siguiente se ilustra la técnica
de sustitución para una ecuación de la forma F(x, y, y) 0. Si u y, entonces la ecuación diferencial se convierte en F(x, u, u) 0. Si podemos resolver esta última ecuación
para u, podemos encontrar a y por integración. Observe que como se está resolviendo
una ecuación de segundo orden, su solución contendrá dos constantes arbitrarias.
EJEMPLO 1
Falta la variable dependiente y
Resuelva y 2x(y)2.
180
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
Si hacemos u y, entonces du兾dx y. Después de sustituir, la segunda ecuación diferencial se reduce a una ecuación de primer orden con variables
separables; la variable independiente es x y la variable dependiente es u :
SOLUCIÓN
du
dx
2
u
du
u2
o
2xu2
2x dx
du
u
2x dx
1
x2
c21.
La constante de integración se escribe como c21 por conveniencia. La razón debe ser
obvia en los pocos pasos siguientes. Debido a que u1 l兾y, se tiene que
1
dy
dx
y así
2
dx
y
x2
c21
x
o
c21
,
1
tan
c1
y
1
x
c1
c2.
FALTA LA VARIABLE INDEPENDIENTE A continuación se muestra cómo resolver
una ecuación que tiene la forma F(y, y, y) 0. Una vez más se hace u y, pero debido
a que falta la variable independiente x, esta sustitución se usa para convertir la ecuación
diferencial en una en la que la variable independiente es y y la variable dependiente es u.
Entonces utilizamos la regla de la cadena para calcular la segunda derivada de y:
du
dx
y
du dy
dy dx
u
du
.
dy
En este caso la ecuación de primer orden que debemos resolver es
F y, u, u
EJEMPLO 2
du
dy
0.
Falta la variable independiente x
Resuelva yy ( y)2.
Con ayuda de u y, la regla de la cadena que se acaba de mostrar y de
la separación de variables, la ecuación diferencial se convierte en
SOLUCIÓN
y u
du
dy
u2
o
dy
.
y
du
u
Entonces, integrando la última ecuación se obtiene ln兩u兩 ln兩y兩 c1, que, a su vez,
da u c2 y, donde la constante ec1 VHLGHQWL¿FDFRPRc2. Ahora se vuelve a sustituir
u dy兾dx, se separan de nuevo las variables, se integra y se etiquetan las constantes
por segunda vez:
dy
y
c2
dx
o
ln y
c2 x
c3
o
y
c4ec2 x.
USO DE SERIES DE TAYLOR En algunos casos una solución de un problema con
YDORUHVLQLFLDOHVQROLQHDOHVHQHOTXHODVFRQGLFLRQHVLQLFLDOHVVHHVSHFt¿FDQHQx0, se
puede aproximar mediante una serie de Taylor centrada en x0.
4.10
EJEMPLO 3
ECUACIONES DIFERENCIALES NO LINEALES
l
181
Series de Taylor de un PVI
Supongamos que existe una solución del problema con valores iniciales
y
x
y2,
y
1,
y(0)
y (0)
(1)
1
Si además se supone que la solución y(x) del problema es analítica en 0, entonces y(x)
tiene un desarrollo en serie de Taylor centrado en 0:
y (0)
y (0) 2 y (0) 3 y(4)(0) 4 y(5)(0) 5
x
x
.
x
x
x
(2)
1!
2!
3!
4!
5!
Observe que se conocen los valores del primero y segundo términos en la serie (2)
SXHVWRTXHHVRVYDORUHVVRQODVFRQGLFLRQHVLQLFLDOHVHVSHFL¿FDGDVy(0) 1, y(0)
$GHPiVODHFXDFLyQGLIHUHQFLDOSRUVtPLVPDGH¿QHHOYDORUGHODVHJXQGDGHULYDGD
en 0: y(0) 0 y(0) y(0)2 0 (1) (1)2 2. Entonces se pueden encontrar expresiones para las derivadas superiores y , y (4), . . . calculando las derivadas
sucesivas de la ecuación diferencial:
y(x)
y(0)
y (x)
d
(x
dx
y
y (4)(x)
d
(1
dx
y
y(5)(x)
d
(y
dx
y2 )
1
2yy )
2yy
(3)
2yy
y
2( y )2 )
2yy
y
(4)
2( y )2
2yy
y
6y y ,
(5)
etcétera. Ahora usando y(0) 1 y y(0) 1, se encuentra de (3) que y (0) 4. De
los valores y(0) 1, y(0) 1 y y(0) 2 se encuentra y(4)(0) 8 de (4). Con
la información adicional de que y (0) 4, entonces se ve de (5) que y(5)(0) 24.
Por tanto de (2) los primeros seis términos de una solución en serie del problema con
valores iniciales (1) son
2 3 1 4 1 5
y(x)
1 x x2
x
x
x
.
3
3
5
USO DE UN PROGRAMA DE SOLUCIÓN NUMÉRICA Los métodos numéricos,
como el de Euler o el de Runge-Kutta, se desarrollaron sólo para ecuaciones diferenciales de primer orden y luego se ampliaron a sistemas de ecuaciones de primer orden.
Para analizar en forma numérica un problema con valores iniciales de n-ésimo orden, se
expresa la EDO de n-ésimo orden como un sistema de n ecuaciones de primer orden. En
resumen, aquí se muestra cómo se hace esto para un problema con valores iniciales de
segundo orden: primero, se resuelve para y , es decir, se escribe la ED en la forma normal y f(x, y, y) y después se hace que y u. Por ejemplo, si sustituimos y u en
d 2y
dx2
f (x, y, y ),
y(x0 )
y0 ,
y (x0 )
u0 ,
(6)
entonces y u y y(x0) u(x0), por lo que el problema con valores iniciales (6) se
convierte en
Resuelva:
y
u
Sujeto a:
y(x0)
u
f(x, y, u)
y0 , u(x0)
u0.
Sin embargo, se debe observar que un programa de solución numérica podría no requerir* que se proporcione el sistema.
Algunos programas de solución numérica sólo requieren que una ecuación diferencial de segundo orden
sea expresada en la forma normal y f (x, y, y). La traducción de la única ecuación en un sistema de dos
ecuaciones se construye en el programa de computadora, ya que la primera ecuación del sistema siempre
es y u y la segunda ecuación es u f (x, y, u).
*
182
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
y
EJEMPLO 4
polinomio
de Taylor
$QiOLVLVJUi¿FRGHOHMHPSOR
Siguiendo el procedimiento anterior, se encuentra que el problema con valores iniciales de segundo orden del ejemplo 3 es equivalente a
dy
u
dx
du
dx
x
y
y2
con condiciones iniciales y(0) 1, u(0) 1. Con ayuda de un programa de solución
QXPpULFDVHREWLHQHODFXUYDVROXFLyQHQD]XOHQOD¿JXUD3RUFRPSDUDFLyQODJUi
¿FDGHOSROLQRPLRGH7D\ORUGHTXLQWRJUDGRT5(x)
1 x x2 23 x3 13 x4 15 x5
se muestra en rojo. Aunque no se conoce el intervalo de convergencia de la serie de Taylor
obtenida en el ejemplo 3, la proximidad de las dos curvas en una vecindad del origen indica
que la serie de potencias podría converger en el intervalo (1, 1).
curva solución generada
mediante un programa
de solución numérica
FIGURA 4.10.1 Comparación de dos
soluciones aproximadas.
y
x
10
x
20
FIGURA 4.10.2 Curva solución
numérica para el PVI en (1).
CUESTIONES CUALITATIVAS /DJUi¿FDHQD]XOGHOD¿JXUDRULJLQDDOgunas preguntas de naturaleza cualitativa: ¿la solución del problema con valores iniciales original es oscilatoria conforme x → "/DJUi¿FDJHQHUDGDFRQXQSURJUDPD
GHVROXFLyQQXPpULFDHQHOLQWHUYDORPiVJUDQGHTXHVHPXHVWUDHQOD¿JXUD
parecería sugerir que la respuesta es sí. Pero este simple ejemplo o incluso un grupo
de ejemplos, no responde la pregunta básica en cuanto a si todas las soluciones de la
ecuación diferencial y x y y2 son de naturaleza oscilatoria. También, ¿qué está
VXFHGLHQGRFRQODFXUYDVROXFLyQGHOD¿JXUDFRQIRUPHx está cerca de 1?
¿Cuál es el comportamiento de las soluciones de la ecuación diferencial conforme
x → ? ¿Están acotadas las soluciones conforme x → ? Preguntas como éstas no
son fáciles de responder, en general, para ecuaciones diferenciales de segundo orden
no lineales. Pero ciertas clases de ecuaciones de segundo orden se prestan a un análisis cualitativo sistemático y éstas, al igual que las ecuaciones de primer orden que se
obtuvieron en la sección 2.1, son de la clase que no tiene dependencia explícita en la
variable independiente. Las EDO de segundo orden de la forma
d 2y
f (y, y ),
dx2
ecuaciones libres de la variable independiente x, se llaman autónomas. La ecuación diferencial del ejemplo 2 es autónoma y debido a la presencia del término
x en su miembro derecho, la ecuación del ejemplo 3 es autónoma. Para un tratamiento profundo del tema de estabilidad de ecuaciones diferenciales autónomas
de segundo orden y sistemas autónomos de ecuaciones diferenciales, consulte el
capítulo 10.
F(y, y , y )
EJERCICIOS 4.10
1
( y )2; y1
2
1, y 2
o
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-7.
En los problemas 1 y 2 compruebe que y1 y y2 son soluciones
de la ecuación diferencial dada pero que y c1 y1 c2 y2 en
general, no es una solución.
1. (y) 2 y 2; y 1 e x, y 2 cos x
2. yy
0
x2
En los problemas 3 a 8 resuelva la ecuación diferencial usando
la sustitución u y.
3. y ( y) 2 1 0
4. y 1 ( y) 2
2
2
5. x y ( y) 0
6. (y 1)y ( y) 2
7. y 2y( y) 3 0
8. y 2y y
En los problemas 9 y 10 resuelva el problema dado con valores iniciales.
9. 2yy 1, y(0) 2, y(0) 1
10. y x( y) 2 0, y(1) 4, y(1) 2
11. Considere el problema con valores iniciales
y yy 0, y(0) 1, y(0) 1.
a) Use la ED y un programa de solución numérica para
trazar la curva solución.
REPASO DEL CAPÍTULO 4
b) Encuentre una solución explícita del PVI. Use un proJUDPDGHJUD¿FDFLyQSDUDWUD]DUODVROXFLyQ
c) 'HWHUPLQHXQLQWHUYDORGHGH¿QLFLyQSDUDODVROXFLyQ
del inciso b).
12. Encuentre dos soluciones del problema con valores iniciales
( y )2
( y )2
1,
y
2
1
, y
2
2
13
.
2
Use un programa de solución numérica para trazar la grá¿FDGHODVFXUYDVVROXFLyQ
En los problemas 13 y 14 demuestre que la sustitución u y
conduce a una ecuación de Bernoulli. Resuelva esta ecuación
(vea la sección 2.5).
13. xy y ( y) 3
14. xy y x( y) 2
En los problemas 15 a 18 proceda como en el ejemplo 3 y
obtenga los primeros seis términos no cero de una solución en
serie de Taylor, centrada en 0, del problema con valores iniciales. Use un programa de solución numérica para comparar
ODFXUYDVROXFLyQFRQODJUi¿FDGHOSROLQRPLRGH7D\ORU
15. y x y 2,
y(0) 1, y(0) 1
16. y y 1,
y(0) 2, y(0) 3
2
17. y x 2 y 2 2y,
y(0) 1, y(0) 1
18. y e ,
y(0) 1
y
y(0) 0,
19. (Q FiOFXOR OD FXUYDWXUD GH XQD OtQHD TXH VH GH¿QH SRU
medio de una función y f(x) es
y
.
[1 ( y ) 2]3 / 2
Encuentre y f(x) para la cual ț 1. [Sugerencia: Para
VLPSOL¿FDUGHVSUHFLHODVFRQVWDQWHVGHLQWHJUDFLyQ@
k
Problemas para analizar
20. En el problema 1 vimos que cos x y ex eran soluciones de
la ecuación no lineal (y)2 y2 0. Compruebe que sen
x y ex también son soluciones. Sin intentar resolver la
ecuación diferencial, analice cómo se pueden encontrar
estas soluciones usando su conocimiento acerca de las
ecuaciones lineales. Sin intentar comprobar, analice por
qué las combinaciones lineales y c1e x c2ex c 3 cos
REPASO DEL CAPÍTULO 4
&RQWHVWHORVSUREOHPDVDOVLQFRQVXOWDUHO¿QDOGHOOLEUR
Complete el espacio en blanco o conteste falso o verdadero.
1. La única solución del problema con valores iniciales
y x 2 y 0, y(0) 0, y(0) 0 es __________.
2. 3DUDHOPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRVODIRUPD
supuesta de la solución particular yp para y y 1 ex
es __________.
l
183
x c4 sen x y y c2ex c4 sen x no son, en general, soluciones, pero las dos combinaciones lineales especiales
y c1e x c2ex y y c3 cos x c 4 sen x deben satisfacer la ecuación diferencial.
21. Analice cómo se puede aplicar el método de reducción de
orden considerado en esta sección a la ecuación diferencial de tercer orden y
11 (y )2 . Lleve a cabo sus
ideas y resuelva la ecuación.
22. Explique cómo encontrar una familia alternativa de soluciones de dos parámetros para la ecuación diferencial
no lineal y 2x( y) 2 en el ejemplo 1. [Sugerencia:
Suponga que c21 se usa como constante de integración
en lugar de c21.]
Modelos matemáticos
23. Movimiento de un campo de fuerza Un modelo matemático para la posición x(t) de un cuerpo con movimiento
rectilíneo en el eje x en un campo de fuerza inverso del
cuadrado de x es
d 2x
k2
.
2
dt
x2
Suponga que en t 0 el cuerpo comienza a partir del reposo
en la posición x x0, x0 0XHVWUHTXHODYHORFLGDGGHO
cuerpo en el tiempo t está dada por v2 2k2(1兾x 1兾x0).
Use la última expresión y un SAC para realizar la integración
para expresar al tiempo t en términos de x.
24. Un modelo matemático para la posición x(t) de un objeto
en movimiento es
d 2x
dt2
senx
0.
Use un programa de solución numérica para investigar en
IRUPDJUi¿FDODVVROXFLRQHVGHODHFXDFLyQVXMHWDDx(0) 0,
x(0) x1, x1 0. Analice el movimiento del objeto para t
0 y para diferentes elecciones de x1. Investigue la ecuación
d 2 x dx
senx 0
dt2
dt
en la misma forma. Proponga una interpretación física
posible del término dx兾dt.
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-7.
3. Un múltiplo constante de una solución de una ecuación
diferencial lineal es también una solución. __________
4. Si el conjunto que consiste en dos funciones fl y f2 es linealmente independiente en un intervalo I, entonces el
Wronskiano W(fl, f2) 0 para toda x en I. __________
5. Si y sen5x es una solución de una ecuación diferencial
OLQHDOGHVHJXQGRRUGHQFRQFRH¿FLHQWHVFRQVWDQWHVHQtonces la solución general de la ED es __________
184
l
CAPÍTULO 4
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
6. Si y 1 x 6x2 3ex es una solución de una ecuación diferencial lineal homogénea de cuarto orden con
FRH¿FLHQWHV FRQVWDQWHV HQWRQFHV ODV UDtFHV GH OD HFXDción auxiliar son __________
7. Si y c1x c2x ln x, x
0 es la solución general de
una ecuación Cauchy-Euler de segundo orden homogénea entonces la ED es __________
2
2
8. yp $[2 es la solución particular de y y 1 para
$ __________
9. Si yp1 x es la solución particular de y y x y yp2
x2 2 es una solución particular de y y x2 entonces
una solución particular de y y x2 x es _________
10. Si y1 ex y y2 ex son soluciones de la ecuación diferencial homogénea, entonces necesariamente y 5ex
10ex también es una solución de la ED. ___________
11. Dé un intervalo en el que el conjunto de dos funciones
fl(x) x2 y f2(x) x兩x兩 es linealmente independiente.
Después indique un intervalo en el que el conjunto formado por fl y f2 es linealmente dependiente.
12. Sin la ayuda del Wronskiano, determine si el conjunto de
funciones es linealmente independiente o dependiente en
el intervalo indicado.
a) f1(x) ln x, f 2(x) ln x 2, (0, )
b) f1(x) x n, f 2(x) x n1, n 1, 2, . . . , ( , )
c) f1(x) x, f 2(x) x 1, ( , )
d) f1(x)
cos x
2
, f2 (x)
senx, (
e) g(x) sen2x
f) g(x)
ex
senx
En los problemas del 15 a 30 use los procedimientos desarrollados en este capítulo para encontrar la solución general de
cada ecuación diferencial.
15. y 2y 2y 0
16. 2y 2y 3y 0
17. y 10y 25y 0
18. 2y 9y 12y 5y 0
19. 3y 10y 15y 4y 0
20. 2y (4) 3y 2y 6y 4y 0
21. y 3y 5y 4x 3 2x
22. y 2y y x 2e x
23. y 5y 6y 8 2 sen x
24. y y 6
25. y 2y 2y e x tan x
26. y
y
2ex
e
e
x
x
27. 6x 2y 5xy y 0
28. 2x 3y 19x 2y 39xy 9y 0
, )
29. x 2y 4xy 6y 2x 4 x 2
e) f1(x) 0, f 2(x) x, (5, 5)
30. x 2y xy y x 3
f) f1(x) 2, f 2(x) 2x, ( , )
31. Escriba la forma de la solución general y yc yp de la
ecuación diferencial en los dos casos Ȧ Į y Ȧ Į. No
GHWHUPLQHORVFRH¿FLHQWHVHQyp.
b) y Z2y e Į[
a) y Z2y sen Į[
g) f1(x) x 2, f 2(x) 1 x 2, f3(x) 2 x 2, ( , )
h) f1(x) xe x1, f 2(x) (4x 5)e x,
f 3(x) xe x, ( , )
13. Suponga que m1 3, m2 5 y m3 1 son raíces de
multiplicidad uno, dos y tres, respectivamente, de una
ecuación auxiliar. Escriba la solución general de la ED
lineal homogénea correspondiente si es
a) XQDHFXDFLyQFRQFRH¿FLHQWHVFRQVWDQWHV
b) una ecuación de Cauchy-Euler.
14. Considere la ecuación diferencial ay by cy g(x),
donde a, b y c son constantes. Elija las funciones de entrada g(x SDUD ODV TXH HV DSOLFDEOH HO PpWRGR GH FRH¿cientes indeterminados y las funciones de entrada para las
que es aplicable el método de variación de parámetros.
a) g(x) e x ln x
b) g(x) x 3 cos x
senx
d) g(x) 2x2e x
c) g(x)
ex
32. a) Dado que y sen x es una solución de
y (4) 2y 11y 2y 10y 0,
encuentre la solución general de la ED sin la ayuda de
una calculadora o computadora.
b) Encuentre una ecuación diferencial lineal de segundo
RUGHQFRQFRH¿FLHQWHVFRQVWDQWHVSDUDODFXDOy1 1
y y2 ex son soluciones de la ecuación homogénea
asociada y yp 12 x 2 x es una solución particular
de la ecuación homogénea.
33. a) Escriba completamente la solución general de la ED
de cuarto orden y (4) 2y y 0 en términos de
funciones hiperbólicas.
b) Escriba la forma de una solución particular de
y (4) 2y y senh x.
REPASO DEL CAPÍTULO 4
34. Considere la ecuación diferencial
2
3
Compruebe que y1 x es una solución de la ecuación homogénea asociada. Después demuestre que el método de
reducción de orden analizado en la sección 4.2 conduce
a una segunda solución y2 de la ecuación homogénea así
como a una solución particular yp de la ecuación no homogénea. Forme la solución general de la ED en el intervalo (0, ).
En los problemas 35 a 40 resuelva la ecuación diferencial sujeta a las condiciones indicadas.
35. y
2y
2y
0, y
0, y( )
2
36. y 2y y 0, y(1) 0, y(0) 0
37. y y x sen x,
38. y
1, y (0)
39. yy 4x,
y(1) 5, y(1) 2
40. 2y 3y ,
y(0) 1, y(0) 1
2
42. Encuentre un miembro de la familia de soluciones de
xy
y
1x 0 FX\DJUi¿FDHVWDQJHQWHDOHMHx en
x 8VHXQDDSOLFDFLyQSDUDJUD¿FDU\REWHQJDODFXUYD
solución.
En los problemas 43 a 46 use la eliminación sistemática para
resolver cada sistema.
43.
y(0) 2, y(0) 3
sec3x, y(0)
y
1
1
2
41. a) Use un SAC como ayuda para encontrar las raíces de la
ecuación auxiliar para
12y (4) 64y 59y 23y 12y 0.
Dé la solución general de la ecuación.
185
b) Resuelva la ED del inciso a) sujeta a las condiciones
iniciales y(0) 1, y(0) 2, y(0) 5, y (0)
0. Use un SAC como ayuda para resolver el sistema
resultante de cuatro ecuaciones con cuatro incógnitas.
x y (x 2x)y (x 2)y x .
2
l
44.
45.
dx
dt
dx
dt
dx
dt
dy
dt
(D
46. (D
dy
dt
dy
2
dt
2x
2x
y
t
3x
4y
4t
2y
1
y
3
2
2) x
3x
(D
y
4) y
2) x
5x
(D
(D
1)y
3)y
et
7et
sen 2t
cos 2t
5
MODELADO CON ECUACIONES
DIFERENCIALES DE ORDEN SUPERIOR
5.1 Modelos lineales: Problemas con valores iniciales
5.1.1 6LVWHPDVUHVRUWHPDVD0RYLPLHQWROLEUHQRDPRUWLJXDGR
5.1.2 6LVWHPDVUHVRUWHPDVD0RYLPLHQWROLEUHDPRUWLJXDGR
5.1.3 6LVWHPDVUHVRUWHPDVD0RYLPLHQWRIRU]DGR
5.1.4 &LUFXLWRHQVHULHDQiORJR
5.2 0RGHORVOLQHDOHV3UREOHPDVFRQYDORUHVHQODIURQWHUD
5.3 Modelos no lineales
REPASO DEL CAPÍTULO 5
<DKHPRVYLVWRTXHXQDVRODHFXDFLyQSXHGHVHUYLUFRPRPRGHORPDWHPiWLFRSDUD
YDULRVVLVWHPDVItVLFRV3RUHVWDUD]yQVyORH[DPLQDPRVXQDDSOLFDFLyQHO
PRYLPLHQWRGHXQDPDVDVXMHWDDXQUHVRUWHTXHVHWUDWDHQODVHFFLyQ([FHSWR
SRUODWHUPLQRORJtD\ODVLQWHUSUHWDFLRQHVItVLFDVGHORVFXDWURWpUPLQRVGHODHFXDFLyQGLIHUHQFLDOOLQHDO
a
d 2y
dt 2
b
dy
dt
cy
g(t),
ODVPDWHPiWLFDVGHGLJDPRVXQFLUFXLWRHOpFWULFRHQVHULHVRQLGpQWLFDVDODVGHXQ
VLVWHPDYLEUDWRULRPDVDUHVRUWH/DVIRUPDVGHHVWD('GHVHJXQGRRUGHQVH
SUHVHQWDQHQHODQiOLVLVGHSUREOHPDVHQGLYHUVDViUHDVGHODFLHQFLDHLQJHQLHUtD
(QODVHFFLyQVHWUDWDQH[FOXVLYDPHQWHSUREOHPDVFRQYDORUHVLQLFLDOHV
PLHQWUDVTXHHQODVHFFLyQH[DPLQDPRVDSOLFDFLRQHVGHVFULWDVSRUSUREOHPD
FRQYDORUHVHQODIURQWHUD7DPELpQHQODVHFFLyQYHPRVFyPRDOJXQRV
SUREOHPDVFRQYDORUHVHQODIURQWHUDFRQGXFHQDORVLPSRUWDQWHVFRQFHSWRVFRQ
eigenvalores\funciones propias HLJHQIXQFLRQHV /DVHFFLyQLQLFLDFRQXQ
DQiOLVLVDFHUFDGHODVGLIHUHQFLDVHQWUHORVUHVRUWHVOLQHDOHV\QROLQHDOHVHQWRQFHV
VHPXHVWUDFyPRHOSpQGXORVLPSOH\XQFDEOHVXVSHQGLGRFRQGXFHQDPRGHORV
PDWHPiWLFRVQROLQHDOHV
186
5.1
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
l
187
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
5.1
REPASO DE MATERIAL
l 6HFFLRQHV\
l 3UREOHPDVDGHORVHMHUFLFLRV
l 3UREOHPDVDGHORVHMHUFLFLRV
INTRODUCCIÓN (QHVWDVHFFLyQVHYDQDFRQVLGHUDUYDULRVVLVWHPDVGLQiPLFRVOLQHDOHVHQORV
TXHFDGDPRGHORPDWHPiWLFRHVXQDHFXDFLyQGLIHUHQFLDOGHVHJXQGRRUGHQFRQFRH¿FLHQWHVFRQVWDQWHVMXQWRFRQFRQGLFLRQHVLQLFLDOHVHVSHFL¿FDGDVHQXQWLHPSRTXHWRPDUHPRVFRPRt = 0:
a
d 2y
dt 2
b
dy
dt
cy
g(t), y(0)
y0 ,
y (0)
y1.
5HFXHUGHTXHODIXQFLyQg es la entradafunción de conducción o función forzadaGHOVLVWHPD
8QDVROXFLyQy(t GHODHFXDFLyQGLIHUHQFLDOHQXQLQWHUYDORITXHFRQWLHQHDt TXHVDWLVIDFHODV
condiciones iniciales se llama salida o respuestaGHOVLVWHPD
5.1.1 SISTEMAS RESORTE冒MASA:
MOVIMIENTO LIBRE NO AMORTIGUADO
l
l
no estirado
s
l+s
m
posición de
equilibrio
mg − ks = 0
a)
x
m
movimiento
b)
c)
FIGURA 5.1.1 Sistema masa兾UHVRUWH
LEY DE HOOKE 6XSRQJDTXHXQUHVRUWHVHVXVSHQGHYHUWLFDOPHQWHGHXQVRSRUWH
UtJLGR\OXHJRVHOH¿MDXQDPDVDmDVXH[WUHPROLEUH3RUVXSXHVWRODFDQWLGDGGHDODU
JDPLHQWR R HORQJDFLyQ GHO UHVRUWH GHSHQGH GH OD PDVD PDVDV FRQ SHVRV GLIHUHQWHV
DODUJDQHOUHVRUWHHQFDQWLGDGHVGLIHUHQWHV3RUODOH\GH+RRNHHOUHVRUWHPLVPRHMHUFH
XQDIXHU]DUHVWDXUDGRUDFRSXHVWDDODGLUHFFLyQGHHORQJDFLyQ\SURSRUFLRQDODODFDQWLGDGGHHORQJDFLyQs\HVH[SUHVDGDHQIRUPDVLPSOHFRPRF ksGRQGHkHVXQDFRQVWDQ
WHGHSURSRUFLRQDOLGDGOODPDGDconstante de resorte(OUHVRUWHVHFDUDFWHUL]DHQHVHQFLDSRUHOQ~PHURk3RUHMHPSORVLXQDPDVDTXHSHVDOLEUDVKDFHTXHXQUHVRUWHVH
DODUJXH 12 SLHHQWRQFHV10 k 12 LPSOLFDTXHk OESLH(QWRQFHVQHFHVDULDPHQWH
XQDPDVDTXHSHVDGLJDPRVOLEUDVDODUJDHOPLVPRUHVRUWHVyOR 52 SLH
SEGUNDA LEY DE NEWTON 'HVSXpVGHTXHVHXQHXQDPDVDmDXQUHVRUWHpVWD
DODUJDHOUHVRUWHXQDFDQWLGDGs\ORJUDXQDSRVLFLyQGHHTXLOLEULRHQODFXDOVXSHVRW se
HTXLOLEUDPHGLDQWHODIXHU]DUHVWDXUDGRUDks5HFXHUGHTXHHOSHVRVHGH¿QHPHGLDQWH
W mgGRQGHODPDVDVHPLGHHQVOXJVNLORJUDPRVRJUDPRV\g SLHVV
PVRELHQFPVUHVSHFWLYDPHQWH&RPRVHLQGLFDHQOD¿JXUD E ODFRQGLFLyQGHHTXLOLEULRHVmg ks o mg ks 6LODPDVDVHGHVSOD]DSRUXQDFDQWLGDG
xGHVXSRVLFLyQGHHTXLOLEULRODIXHU]DUHVWDXUDGRUDGHOUHVRUWHHVHQWRQFHVk(x s
6XSRQLHQGRTXHQRKD\IXHU]DVUHVWDXUDGRUDVTXHDFW~DQVREUHHOVLVWHPD\VXSRQLHQGR
TXHODPDVDYLEUDOLEUHGHRWUDVIXHU]DVH[WHUQDV²movimiento libre²VHSXHGHLJXDODUODVHJXQGDOH\GH1HZWRQFRQODIXHU]DQHWDRUHVXOWDQWHGHODIXHU]DUHVWDXUDGRUD
\HOSHVR
d2x
m –––2 k(s x) mg kx mg ks kx.
dt
cero
x<0
x=0
x>0
m
FIGURA 5.1.2 /DGLUHFFLyQKDFLD
DEDMRGHODSRVLFLyQGHHTXLOLEULRHV
SRVLWLYD
(OVLJQRQHJDWLYRHQ LQGLFDTXHODIXHU]DUHVWDXUDGRUDGHOUHVRUWHDFW~DRSXHVWDD
ODGLUHFFLyQGHPRYLPLHQWR$GHPiVVHDGRSWDODFRQYHQFLyQGHTXHORVGHVSOD]DPLHQWRVPHGLGRVDEDMRGHODSRVLFLyQGHHTXLOLEULRVRQSRVLWLYRV9HDOD¿JXUD
ED DE UN MOVIMIENTO LIBRE NO AMORTIGUADO 'LYLGLHQGR HQWUHOD
masa mVHREWLHQHODHFXDFLyQGLIHUHQFLDOGHVHJXQGRRUGHQdx兾dt (k兾m x R
d 2x
2
x 0
dt 2
188
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
donde Ȧ k兾m6HGLFHTXHODHFXDFLyQ GHVFULEHHOmovimiento armónico simple
o movimiento libre no amortiguado'RVFRQGLFLRQHVLQLFLDOHVREYLDVUHODFLRQDGDV
FRQ VRQx x0\x xHOGHVSOD]DPLHQWRLQLFLDO\ODYHORFLGDGLQLFLDOGHOD
PDVDUHVSHFWLYDPHQWH3RUHMHPSORVLx0 x ODPDVDSDUWHGHXQSXQWRabajo
GHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGLPSDUWLGDKDFLDarriba&XDQGRx
VHGLFHTXHODPDVDVHOLEHUDDSDUWLUGHOUHSRVR3RUHMHPSORVLx0 x ODPDVD
se libera desde el reposoGHXQSXQWR兩x0兩XQLGDGHVarribaGHODSRVLFLyQGHHTXLOLEULR
ECUACIÓN DE MOVIMIENTO 3DUDUHVROYHUODHFXDFLyQ VHREVHUYDTXHOD
VROXFLyQGHVXHFXDFLyQDX[LOLDUm Ȧ VRQORVQ~PHURVFRPSOHMRVml Ȧi
m Ȧi$VtGH GHODVHFFLyQVHHQFXHQWUDODVROXFLyQJHQHUDOGH HV
x (t)
c1 cos t
c2 sen t
(OperiodoGHOPRYLPLHQWRGHVFULWRSRUODHFXDFLyQ HVT ʌ兾Ȧ(OQ~PHURT
UHSUHVHQWD HO WLHPSR PHGLGR HQ VHJXQGRV TXH WDUGD OD PDVD HQ HMHFXWDU XQ FLFOR
GHPRYLPLHQWR8QFLFORHVXQDRVFLODFLyQFRPSOHWDGHODPDVDHVGHFLUODPDVDm
TXHVHPXHYHSRUHMHPSORDOSXQWRPtQLPRDEDMRGHODSRVLFLyQGHHTXLOLEULRKDVWD
HOSXQWRPiVDOWRDUULEDGHODPLVPD\OXHJRGHUHJUHVRDOSXQWRPtQLPR'HVGHXQ
SXQWRGHYLVWDJUi¿FRT ʌ兾ȦVHJXQGRVHVODORQJLWXGGHOLQWHUYDORGHWLHPSRHQWUH
GRVPi[LPRVVXFHVLYRV RPtQLPRV GHx(t 5HFXHUGHTXHXQPi[LPRGHx(t HVHOGHV
SOD]DPLHQWRSRVLWLYRFRUUHVSRQGLHQWHDODPDVDTXHDOFDQ]DVXGLVWDQFLDPi[LPDGHEDMRGHODSRVLFLyQGHHTXLOLEULRPLHQWUDVTXHXQPtQLPRGHx(t HVHOGHVSOD]DPLHQWR
QHJDWLYRFRUUHVSRQGLHQWHDODPDVDTXHORJUDVXDOWXUDPi[LPDDUULEDGHODSRVLFLyQGH
HTXLOLEULR6HKDFHUHIHUHQFLDDFXDOTXLHUFDVRFRPRXQdesplazamiento extremo de la
PDVD/Dfrecuencia de movimiento es f 兾T Ȧ兾ʌ\HVHOQ~PHURGHFLFORVFRPSOHWDGRFDGDVHJXQGR3RUHMHPSORVLx(t FRVʌW VHQʌWHQWRQFHVHOSHULRGR
es T ʌ兾ʌ 兾V\ODIUHFXHQFLDHVf 兾FLFORV兾V'HVGHXQSXQWRGHYLVWD
x (t)
HVTXHPiWLFR OD JUi¿FD GH x(t VH UHSLWH FDGD 23 GH VHJXQGR HV GHFLU x t 23
\ 32 FLFORVGHODJUi¿FDVHFRPSOHWDQFDGDVHJXQGR RHTXLYDOHQWHPHQWHWUHVFLFORVGH
ODJUi¿FDVHFRPSOHWDQFDGDGRVVHJXQGRV (OQ~PHUR
1k>m (medido en radianes
SRUVHJXQGR VHOODPDfrecuencia circularGHOVLVWHPD'HSHQGLHQGRGHTXpOLEUROHD
tanto f Ȧ兾ʌ como Ȧ se conocen como frecuencia natural GHOVLVWHPD3RU~OWLPR
FXDQGRVHHPSOHDQODVFRQGLFLRQHVLQLFLDOHVSDUDGHWHUPLQDUODVFRQVWDQWHVc\cHQ
VHGLFHTXHODVROXFLyQSDUWLFXODUUHVXOWDQWHRUHVSXHVWDHVODecuación de movimiento
(
EJEMPLO 1
)
Movimiento libre no amortiguado
8QDPDVDTXHSHVDOLEUDVDODUJDSXOJDGDVXQUHVRUWH(Qt 0 se libera la masa
GHVGHXQSXQWRTXHHVWiSXOJDGDVDEDMRGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLdad ascendente de 43 SLH兾V'HWHUPLQHODHFXDFLyQGHPRYLPLHQWR
SOLUCIÓN 'HELGRDTXHVHHVWiXVDQGRHOVLVWHPDGHXQLGDGHVGHLQJHQLHUtDODV
PHGLFLRQHVGDGDVHQWpUPLQRVGHSXOJDGDVVHGHEHQFRQYHUWLUHQSLHVSXOJ 12 SLH
SXOJ 23 SLH$GHPiVVHGHEHQFRQYHUWLUODVXQLGDGHVGHSHVRGDGDVHQOLEUDVD
1
XQLGDGHVGHPDVD'Hm W兾gWHQHPRVTXHm 322
16 VOXJ7DPELpQGHODOH\GH
1
+RRNH 2 k 2 LPSOLFDTXHODFRQVWDQWHGHUHVRUWHHVk 4 lb兾SLH3RUORTXHGHOD
HFXDFLyQ VHREWLHQH
1 d 2x
d 2x
4x o
64 x 0.
2
16 dt
dt 2
(OGHVSOD]DPLHQWRLQLFLDO\ODYHORFLGDGLQLFLDOVRQx 23 x 43 GRQGHHO
VLJQRQHJDWLYRHQOD~OWLPDFRQGLFLyQHVXQDFRQVHFXHQFLDGHOKHFKRGHTXHDODPDVD
VHOHGDXQDYHORFLGDGLQLFLDOHQODGLUHFFLyQQHJDWLYDRKDFLDDUULED
$KRUDȦ RȦ SRUORTXHODVROXFLyQJHQHUDOGHODHFXDFLyQGLIHUHQFLDOHV
x (t)
c1 cos 8t
c2 sen 8t
$SOLFDQGRODVFRQGLFLRQHVLQLFLDOHVDx(t \x(t VHREWLHQH c1
WDQWRODHFXDFLyQGHPRYLPLHQWRHV
2
3
\ c2
1
3RU
6
5.1
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
2
cos 8t
3
x (t)
l
1
sen 8t
6
189
FORMA ALTERNATIVA DE X(t) &XDQGRc \c ODamplitud A de las viEUDFLRQHVOLEUHVQRHVHYLGHQWHDSDUWLUGHODLQVSHFFLyQGHODHFXDFLyQ 3RUHMHPSOR
DXQTXHODPDVDGHOHMHPSORVHGHVSOD]DLQLFLDOPHQWH 23 SLHPiVDOOiGHODSRVLFLyQGH
HTXLOLEULRODDPSOLWXGGHODVYLEUDFLRQHVHVXQQ~PHURPD\RUTXH 23 3RUWDQWRVXHOH
VHUFRQYHQLHQWHFRQYHUWLUXQDVROXFLyQGHODIRUPD HQXQDIRUPDPiVVLPSOH
donde A
x (t)
2c21
)
A sen( t
c22 \HVXQángulo de faseGH¿QLGRSRU
c1
A
tan
c2
A
sen
cos
c1
c2
3DUDFRPSUREDUHVWRVHGHVDUUROODODHFXDFLyQ XVDQGRODIyUPXODGHVXPDSDUDOD
IXQFLyQVHQR
A sen t cos
cos t sen
( sen )cos t
( cos )sen t
6HGHGXFHGHOD¿JXUDTXHVLHVWiGH¿QLGDSRU
1c12
c1
c1
,
A
HQWRQFHVODHFXDFLyQ VHFRQYLHUWHHQ
sen
c12 + c22
c1
A
φ
c1
cos t
A
c22
A
c2
sen t
A
1c12
c2
cos
c1 cos t
c22
c2 sen t
c2
,
A
x (t).
c2
FIGURA 5.1.3 8QDUHODFLyQHQWUH
c
c
\HOiQJXORGHIDVH
EJEMPLO 2
Forma alternativa de solución (5)
(QYLVWDGHODGHVFULSFLyQDQWHULRUVHSXHGHHVFULELUODVROXFLyQ HQODIRUPDDOWHUQDWLYD
1 2
x(t
2 23 2
f AVHQ t ( O FiOFXOR GH OD DPSOLWXG HV GLUHFWR A
6
17
236 0.69 pies SHURVHGHEHWHQHUFXLGDGRDOFDOFXODUHOiQJXORGHIDVHGH¿QLGR
()
SRU &RQ c1
2
3
\ c2
1
6
( )
VHHQFXHQWUDWDQ\ FRQXQDFDOFXODGRUDVHRE
tiene tan ( UDG (VWH no HV HO iQJXOR GH IDVH SXHVWR TXH WDQ( VH
ORFDOL]D HQ HO cuarto cuadrante \ SRU WDQWR FRQWUDGLFH HO KHFKR GH TXH VHQ \
cos SRUTXH c \ c 3RU WDQWR VH GHEH FRQVLGHUDU TXH HV XQ iQJXOR
del segundo cuadrante ʌ ( UDG$VtODHFXDFLyQ HVLJXDOD
x (t)
117
sen(8t
6
1.816)
(OSHULRGRGHHVWDIXQFLyQHVT ʌ兾 ʌ兾V
'HEHWHQHUHQFXHQWDTXHDOJXQRVSURIHVRUHVGHFLHQFLDHLQJHQLHUtDSUH¿HUHQH[SUHVDU
D FRPRXQDIXQFLyQFRVHQRFRUULGR
x(t A cos(Ȧt
2c21 c22 (QHVWHFDVRHOiQJXORPHGLGRHQUDGLDQHVVHGH¿QHHQXQD
donde A
IRUPDOLJHUDPHQWHGLIHUHQWHTXHHQ
190
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
sen
cos
x negativa
x=−
x=0
x=
17
6
x=0
2
3
x=
17
6
a)
x
(0, 23 )
x positiva
c2
c1
3RUHMHPSORHQHOHMHPSORFRQc 兾\
c 兾 LQGLFDTXHWDQ 兾
<D TXH VHQ \ FRV HO iQJXOR
VHHQFXHQWUDHQHOFXDUWRFXDGUDQWH\DVt
UHGRQGHDQGRFRQWUHVOXJDUHVGHFLPDO
tan(兾 UDG'H VHREWLHQHXQDVHJXQGDIRUPDDOWHUQDWLYDGHVROXFLyQ
x=0
x positiva
c2
A
tan
c1
A
x(t)
冪17
cos(8t
6
( 0.245))
x(t)
冪17
cos(8t
6
0.245).
o
amplitud
INTERPRETACIÓN GRÁFICA (Q OD ¿JXUD D VH LOXVWUD OD PDVD GHO HMHPSOR
x=0
t
TXH UHFRUUH DSUR[LPDGDPHQWH GRV FLFORV
FRPSOHWRV GH PRYLPLHQWR /H\HQGR GH L]x negativa
TXLHUGD D GHUHFKD ODV SULPHUDV FLQFR SRVLπ
FLRQHV PDUFDGDVFRQSXQWRVQHJURV FRUUHV4
SRQGHQDODSRVLFLyQLQLFLDOGHODPDVDGHEDMR
periodo
GHODSRVLFLyQGHHTXLOLEULR x 23 ODPDVD
b)
TXHSDVDSRUODSRVLFLyQGHHTXLOLEULRSRUSULPHUDYH]HQGLUHFFLyQDVFHQGHQWH x OD
FIGURA 5.1.4 0RYLPLHQWRDUPyQLFRVLPSOH
PDVDHQVXGHVSOD]DPLHQWRH[WUHPRDUULEDGH
ODSRVLFLyQGHHTXLOLEULR (x
117 6) OD
PDVDHQODSRVLFLyQGHHTXLOLEULRSDUDODVHJXQGDYH]TXHVHGLULJHKDFLDDUULED x \
ODPDVDHQVXGHVSOD]DPLHQWRH[WUHPRDEDMRGHODSRVLFLyQGHHTXLOLEULR(x
117 6) /RV
SXQWRVQHJURVVREUHODJUi¿FDGH TXHVHSUHVHQWDHQOD¿JXUD E WDPELpQFRQFXHUGDQFRQODVFLQFRSRVLFLRQHVDQWHVPHQFLRQDGDV6LQHPEDUJRREVHUYHTXHHQOD¿JXUD
E OD GLUHFFLyQ SRVLWLYD HQ HO SODQR tx HV OD GLUHFFLyQ DVFHQGHQWH XVXDO \ SRU
WDQWRHVRSXHVWDDODGLUHFFLyQSRVLWLYDTXHVHLQGLFDHQOD¿JXUD D 3RUORTXH
OD JUi¿FD VyOLGD D]XO TXH UHSUHVHQWD HO PRYLPLHQWR GH OD PDVD HQ OD ¿JXUD
E HV OD UHÀH[LyQ SRU HO HMH t GH OD FXUYD SXQWHDGD D]XO GH OD ¿JXUD D
/D IRUPD HV PX\ ~WLO SRUTXH HV IiFLO HQFRQWUDU YDORUHV GH WLHPSR SDUD
ORV FXDOHV OD JUi¿FD GH x(t FUX]D HO HMH t SRVLWLYR OD UHFWD x 6H REVHUYD TXH
sen(ȦW FXDQGRȦW QʌGRQGHnHVXQHQWHURQRQHJDWLYR
A=
17
6
(
)
SISTEMAS CON CONSTANTES DE RESORTE VARIABLES (QHOPRGHORDSHQDV
DQDOL]DGRVHVXSXVRXQDVLWXDFLyQLGHDOXQDHQODTXHODVFDUDFWHUtVWLFDVItVLFDVGHOUHVRUWH
QRFDPELDQFRQHOWLHPSR1RREVWDQWHHQODVLWXDFLyQQRLGHDOSDUHFHUD]RQDEOHHVSHUDU
TXHFXDQGRXQVLVWHPDUHVRUWHPDVDHVWiHQPRYLPLHQWRGXUDQWHXQODUJRWLHPSRHOUHVRUWHVHGHELOLWDHQRWUDVSDODEUDVYDUtDOD³FRQVWDQWHGHUHVRUWH´GHPDQHUDPiVHVSHFt¿FDGHFDHFRQHOWLHPSR(QXQPRGHORSDUDHO resorte cada vez más viejo la constante
de resorte kHQ VHUHHPSOD]DFRQODIXQFLyQGHFUHFLHQWHK(t keĮWk Į
/DHFXDFLyQGLIHUHQFLDOOLQHDOmx keĮW x QRVHSXHGHUHVROYHUFRQORVPpWRGRV
FRQVLGHUDGRVHQHOFDStWXOR6LQHPEDUJRHVSRVLEOHREWHQHUGRVVROXFLRQHVOLQHDOPHQWH
LQGHSHQGLHQWHVFRQORVPpWRGRVGHOFDStWXOR9HDHOSUREOHPDHQORVHMHUFLFLRV
HOHMHPSORGHODVHFFLyQ\ORVSUREOHPDV\GHORVHMHUFLFLRV
5.1
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
l
191
&XDQGR XQ VLVWHPD UHVRUWHPDVD VH VRPHWH D XQ DPELHQWH HQ HO FXDO OD WHPSHUDWXUD
GLVPLQX\HFRQUDSLGH]SRGUtDWHQHUVHQWLGRUHHPSOD]DUODFRQVWDQWHk con K(t ktk
XQDIXQFLyQTXHVHLQFUHPHQWDFRQHOWLHPSR(OPRGHORUHVXOWDQWHmx ktx HVXQD
IRUPDGHODecuación diferencial de Airy$OLJXDOTXHODHFXDFLyQSDUDXQUHVRUWHYLHMR
ODHFXDFLyQGH$LU\VHUHVXHOYHFRQORVPpWRGRVGHOFDStWXOR9HDHOSUREOHPDGHORV
HMHUFLFLRVHOHMHPSORGHODVHFFLyQ\ORVSUREOHPDV\GHORVHMHUFLFLRV
5.1.2 SISTEMAS RESORTE/MASA:
MOVIMIENTO LIBRE AMORTIGUADO
(OFRQFHSWRGHPRYLPLHQWRDUPyQLFROLEUHHVXQSRFRLUUHDOSXHVWRTXHHOPRYLPLHQWR
TXHGHVFULEHODHFXDFLyQ VXSRQHTXHQRKD\IXHU]DVUHWDUGDGRUDVDFWXDQGRVREUH
ODPDVDHQPRYLPLHQWR$PHQRVTXHODPDVDVHVXVSHQGDHQXQYDFtRSHUIHFWRKDEUi
SRUORPHQRVXQDIXHU]DGHUHVLVWHQFLDGHELGDDOPHGLRFLUFXQGDQWH&RPRVHPXHVWUD
HQOD¿JXUDODPDVDSRGUtDHVWDUVXVSHQGLGDHQXQPHGLRYLVFRVRRXQLGDDXQ
GLVSRVLWLYRDPRUWLJXDGRU
ED DE UN MOVIMIENTO LIBRE AMORTIGUADO (QHOHVWXGLRGHODPHFiQLFDODVIXHU]DVGHDPRUWLJXDPLHQWRTXHDFW~DQVREUHXQFXHUSRVHFRQVLGHUDQSURSRUFLRQDOHVDXQDSRWHQFLDGHODYHORFLGDGLQVWDQWiQHD(QSDUWLFXODUHQHODQiOLVLVSRVWHULRUVHVXSRQHTXHHVWDIXHU]DHVWiGDGDSRUXQP~OWLSORFRQVWDQWHGHdx兾dt&XDQGR
QLQJXQDRWUDIXHU]DDFW~DHQHOVLVWHPDVHWLHQHGHODVHJXQGDOH\GH1HZWRQTXH
m
a)
m
d 2x
dt 2
dx
dt
kx
donde ȕ HV XQD constante de amortiguamiento SRVLWLYD \ HO VLJQR QHJDWLYR HV XQD
FRQVHFXHQFLDGHOKHFKRGHTXHODIXHU]DGHDPRUWLJXDPLHQWRDFW~DHQXQDGLUHFFLyQ
RSXHVWDDOPRYLPLHQWR
'LYLGLHQGRODHFXDFLyQ HQWUHODPDVDmVHHQFXHQWUDTXHODHFXDFLyQGLIHUHQcial del movimiento libre amortiguado es d x兾dt (ȕ兾m dx兾dt (k兾m x 0 o
m
d 2x
dt 2
donde
2
2
DPRUWLJXDPLHQWR
0
2
x
2
,
m
b)
FIGURA 5.1.5 'LVSRVLWLYRVGH
dx
dt
k
m
(OVtPERORȜVHXVDVyORSRUFRQYHQLHQFLDDOJHEUDLFDSRUTXHODHFXDFLyQDX[LOLDUHV
m ȜP Ȧ \ODVUDtFHVFRUUHVSRQGLHQWHVVRQHQWRQFHV
2
m1
2
2,
2
m2
2
2.
$KRUDVHSXHGHQGLVWLQJXLUWUHVFDVRVSRVLEOHVGHSHQGLHQGRGHOVLJQRDOJHEUDLFRGH
Ȝ Ȧ3XHVWRTXHFDGDVROXFLyQFRQWLHQHHOfactor de amortiguamiento eȜWȜ ORV
GHVSOD]DPLHQWRVGHODPDVDVHYXHOYHQGHVSUHFLDEOHVFRQIRUPHHOWLHPSRtDXPHQWD
CASO I: Ȝ2 Ȧ2 0 (QHVWDVLWXDFLyQHOVLVWHPDHVWisobreamortiguadoSRUTXH
HOFRH¿FLHQWHGHDPRUWLJXDPLHQWRȕHVJUDQGHFRPSDUDGRFRQODFRQVWDQWHGHOUHVRUWH
k/DVROXFLyQFRUUHVSRQGLHQWHGH HV x(t) c1 e m1t c2 em 2 t o
x
t
FIGURA 5.1.6 0RYLPLHQWRGHXQ
VLVWHPDVREUHDPRUWLJXDGR
x(t)
e
t
(c1 e1
2
2t
c2 e
1
2
2t
)
(VWDHFXDFLyQUHSUHVHQWDXQPRYLPLHQWRXQLIRUPH\QRRVFLODWRULR(QOD¿JXUD
VHPXHVWUDQGRVJUi¿FDVSRVLEOHVGHx(t
192
CAPÍTULO 5
l
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
CASO II: Ȝ2 Ȧ2 0 (VWHVLVWHPDHVWicríticamente amortiguadoSRUTXHFXDOTXLHU OLJHUD GLVPLQXFLyQ HQ OD IXHU]D GH DPRUWLJXDPLHQWR GDUtD FRPR UHVXOWDGR XQ
PRYLPLHQWRRVFLODWRULR/DVROXFLyQJHQHUDOGH HV x (t) c1e m1t c2 tem1t o
x
t
x (t)
FIGURA 5.1.7 0RYLPLHQWRGHXQ
VLVWHPDFUtWLFDPHQWHDPRUWLJXDGR
no amortiguado
subamortiguado
x
e
t
c2 t)
(c1
(QOD¿JXUDVHSUHVHQWDQDOJXQDVJUi¿FDVWtSLFDVGHPRYLPLHQWR2EVHUYHTXHHO
PRYLPLHQWRHVEDVWDQWHVLPLODUDOGHXQVLVWHPDVREUHDPRUWLJXDGR7DPELpQHVHYLGHQWHGH TXHODPDVDSXHGHSDVDUSRUODSRVLFLyQGHHTXLOLEULRDORPiVXQDYH]
CASO III: Ȝ2 Ȧ2 0 (QHVWHFDVRHOVLVWHPDHVWisubamortiguadoSXHVWRTXH
HOFRH¿FLHQWHGHDPRUWLJXDPLHQWRHVSHTXHxRFRPSDUDGRFRQODFRQVWDQWHGHOUHVRUWH
/DVUDtFHVm\mDKRUDVRQFRPSOHMDV
1
m1
2
2 i,
1
m2
2
2 i.
$VtTXHODHFXDFLyQJHQHUDOGHODHFXDFLyQ HV
t
FIGURA 5.1.8 0RYLPLHQWRGHXQ
VLVWHPDVXEDPRUWLJXDGR
x (t)
e
t
(c1 cos 1
2
c2 sen 1
2t
2
)
2t
&RPRVHLQGLFDHQOD¿JXUDHOPRYLPLHQWRGHVFULWRSRUODHFXDFLyQ HVRVFLODWRULRSHURGHELGRDOFRH¿FLHQWHeȜWODVDPSOLWXGHVGHYLEUDFLyQ→FXDQGRt →
EJEMPLO 3
Movimiento sobreamortiguado
6HFRPSUXHEDIiFLOPHQWHTXHODVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHV
d 2x
dt 2
es
2
5
1
2
3
t
a)
t
x(t)
1
1.5
2
2.5
3
0.601
0.370
0.225
0.137
0.083
b)
FIGURA 5.1.9 Sistema
VREUHDPRUWLJXDGRGHOHHMHPSOR
dx
dt
4x
x (t)
x
x = 3 e −t − 3 e −4t
5
0, x (0)
5
e
3
t
2
e
3
1,
4t
x (0)
1
(OSUREOHPDVHSXHGHLQWHUSUHWDUFRPRUHSUHVHQWDWLYRGHOPRYLPLHQWRVREUHDPRUWLJXDGRGHXQDPDVDVREUHXQUHVRUWH/DPDVDVHOLEHUDDOLQLFLRGHXQDSRVLFLyQXQD
XQLGDGabajoGHODSRVLFLyQGHHTXLOLEULRFRQYHORFLGDGdescendenteGHSLHV
3DUDJUD¿FDUx(t VHHQFXHQWUDHOYDORUGHtSDUDHOFXDOODIXQFLyQWLHQHXQH[WUHPRHVGHFLUHOYDORUGHWLHPSRSDUDHOFXDOODSULPHUDGHULYDGD YHORFLGDG HVFHUR
8
5
t
4t
DVtx(t LPSOLFD
'HULYDQGRODHFXDFLyQ VHREWLHQH x (t)
3e
3e
8
1
8
3
t
6H
WLHQHGH
ODSUXHED
GH
ODSULPHUDGHULYDGDDVt
TXH e
o
t
ln
0.157
5
3
5
FRPRGHODLQWXLFLyQItVLFDTXHx SLHVHVHQUHDOLGDGXQPi[LPR(Q
RWUDV SDODEUDV OD PDVD ORJUD XQ GHVSOD]DPLHQWR H[WUHPR GH SLHV DEDMR GH OD
SRVLFLyQGHHTXLOLEULR
6HGHEHFRPSUREDUWDPELpQVLODJUi¿FDFUX]DHOHMHtHVGHFLUVLODPDVDSDVD
SRUODSRVLFLyQGHHTXLOLEULR(QHVWHFDVRWDOFRVDQRSXHGHVXFHGHUSRUTXHODHFXDFLyQx(t R e3t 25 WLHQHXQDVROXFLyQLUUHOHYDQWHGHVGHHOSXQWRGHYLVWDItVLFR
t 13 ln 25
0.305
(Q OD ¿JXUD VH SUHVHQWD OD JUi¿FD GH x(t MXQWR FRQ DOJXQRV RWURV GDWRV
SHUWLQHQWHV
EJEMPLO 4
Movimiento críticamente amortiguado
8QDPDVDTXHSHVDOLEUDVDODUJDSLHVXQUHVRUWH6XSRQLHQGRTXHXQDIXHU]DDPRUWLJXDGDTXHHVLJXDODGRVYHFHVODYHORFLGDGLQVWDQWiQHDDFW~DVREUHHOVLVWHPDGHWHUPLQHODHFXDFLyQGHPRYLPLHQWRVLODPDVDLQLFLDOVHOLEHUDGHVGHODSRVLFLyQGH
HTXLOLEULRFRQXQDYHORFLGDGDVFHQGHQWHGHSLHVV
5.1
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
l
193
SOLUCIÓN 'HODOH\GH+RRNHVHYHTXH k GDk OESLH\TXHW mg da
8
32
m
1
4
VOXJ/DHFXDFLyQGLIHUHQFLDOGHPRYLPLHQWRHVHQWRQFHV
1 d 2x
4 dt2
4x
2
dx
dt
d 2x
dt 2
o
8
dx
dt
16 x
0
/DHFXDFLyQDX[LOLDUSDUD HVm m (m DVtTXHm m
3RUWDQWRHOVLVWHPDHVWiFUtWLFDPHQWHDPRUWLJXDGR\
x (t)
x
t=
1
4
t
− 0.276
c1e
4t
FIGURA 5.1.10 6LVWHPDFUtWLFDPHQWH
DPRUWLJXDGRGHOHHMPSOR
$SOLFDQGRODVFRQGLFLRQHVLQLFLDOHVx \x VHHQFXHQWUDDVXYH]TXH
c \c 3RUWDQWRODHFXDFLyQGHPRYLPLHQWRHV
x (t)
altura
máxima arriba de la
posición de equilibrio
4t
c2 te
3te
4t
3DUDJUD¿FDUx(t VHSURFHGHFRPRHQHOHMHPSOR'Hx(t e4t 4t YHPRV
TXH x(t FXDQGR t 14 (O GHVSOD]DPLHQWR H[WUHPR FRUUHVSRQGLHQWH HV
x 14
3 14 e 1
0.276 SLHV &RPR VH PXHVWUD HQ OD ¿JXUD HVWH YDORU
VHLQWHUSUHWDSDUDLQGLFDUTXHODPDVDDOFDQ]DXQDDOWXUDPi[LPDGHSLHVDUULED
GHODSRVLFLyQGHHTXLOLEULR
()
()
EJEMPLO 5
Movimiento subamortiguado
8QDPDVDTXHSHVDOLEUDVVHXQHDXQUHVRUWHGHSLHVGHODUJR(QHTXLOLEULRHO
UHVRUWHPLGHSLHV6LDOLQLFLRODPDVDVHOLEHUDGHVGHHOUHSRVRHQXQSXQWRSLHV
DUULEDGHODSRVLFLyQGHHTXLOLEULRHQFXHQWUHORVGHVSOD]DPLHQWRVx(t VLVHVDEHDGHPiV
TXH HO PHGLR FLUFXQGDQWH RIUHFH XQD UHVLVWHQFLD QXPpULFDPHQWH LJXDO D OD YHORFLGDG
LQVWDQWiQHD
SOLUCIÓN /DHORQJDFLyQGHOUHVRUWHGHVSXpVTXHVHXQHODPDVDHV
SLHVDVtTXHVHGHGXFHGHODOH\GH+RRNHTXH k Rk OESLH$GHPiV
1
m 16
32
2 VOXJSRUORTXHODHFXDFLyQGLIHUHQFLDOHVWiGDGDSRU
1 d 2x
2 dt 2
dx
dt
5x
d 2x
dt 2
o
2
dx
dt
10 x
0
3URFHGLHQGRHQFRQWUDPRVTXHODVUDtFHVGHm m 0 son m i\
m iORTXHVLJQL¿FDTXHHOVLVWHPDHVWiVXEDPRUWLJXDGR\
e t(c1 cos 3t
x (t)
c2 sen 3t)
3RU ~OWLPR ODV FRQGLFLRQHV LQLFLDOHV x \ x SURGXFHQ c \
2
SRUORTXHODHFXDFLyQGHPRYLPLHQWRHV
c2
3
x (t)
e
t
2 cos 3t
2
sen 3t
3
FORMA ALTERNATIVA DE x(t) 'HXQDPDQHUDLGpQWLFDDOSURFHGLPLHQWRXVDGR
HQODSiJLQDVHSXHGHHVFULELUFXDOTXLHUVROXFLyQ
x (t)
e
t
(c1 cos 1
HQODIRUPDDOWHUQDWLYD
donde A
1c12
x (t)
Ae
t
2
2t
sen 1
(
2
c2 sen 1
2
t
)
2
2t
)
c22 \HOiQJXORGHIDVHVHGHWHUPLQDGHODVHFXDFLRQHV
sen
c1
,
A
cos
c2
,
A
tan
c1
.
c2
194
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
(O FRH¿FLHQWH AeȜW en ocasiones se llama amplitud amortiguada GH YLEUDFLRQHV
2
se llama
'HELGRDTXH QRHVXQDIXQFLyQSHULyGLFDHOQ~PHUR2 1 2
2
2
2 es la cuasi frecuencia (O FXDVL SHULRGR HV HO LQcuasi periodo \ 1
WHUYDORGHWLHPSRHQWUHGRVPi[LPRVVXFHVLYRVGHx(t 6HGHEHFRPSUREDUSDUDOD
HFXDFLyQGHPRYLPLHQWRGHOHMHPSORTXH A 2 110 3 \ 3RUWDQWRXQD
IRUPDHTXLYDOHQWHGH HV
2 110 t
e sen(3t
3
x (t)
4.391).
5.1.3 SISTEMAS RESORTE/MASA: MOVIMIENTO
FORZADO
ED DE MOVIMIENTO FORZADO CON AMORTIGUAMIENTO 6XSRQJD
TXHDKRUDVHWRPDHQFRQVLGHUDFLyQXQDIXHU]DH[WHUQDf(t TXHDFW~DVREUHXQDPDVD
YLEUDQWHHQXQUHVRUWH3RUHMHPSORf(t SRGUtDUHSUHVHQWDUXQDIXHU]DPRWUL]TXHFDXVD
XQ PRYLPLHQWR YHUWLFDO RVFLODWRULR GHO VRSRUWH GHO UHVRUWH 9HD OD ¿JXUD /D
LQFOXVLyQGHf(t HQODIRUPXODFLyQGHODVHJXQGDOH\GH1HZWRQGDODHFXDFLyQGLIHrencial de movimiento forzado o dirigido:
m
m
d 2x
dt2
kx
dx
dt
f (t)
F (t)
'LYLGLHQGRODHFXDFLyQ HQWUHmVHREWLHQH
FIGURA 5.1.11 Movimiento vertical
d 2x
dt2
RVFLODWRULRGHODSR\R
2
dx
dt
2
x
donde F(t f(t 兾m\FRPRHQODVHFFLyQDQWHULRUȜ ȕ兾mȦ k兾m3DUDUHVROYHU
OD~OWLPDHFXDFLyQKRPRJpQHDVHSXHGHXVDU\DVHDHOPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRVRYDULDFLyQGHSDUiPHWURV
EJEMPLO 6
Interpretación de un problema con valores iniciales
,QWHUSUHWH\UHVXHOYDHOSUREOHPDFRQYDORUHVLQLFLDOHV
1 d 2x
5 dt2
1.2
dx
dt
2x
5 cos 4t, x (0)
1
,
2
x (0)
0
SOLUCIÓN 6HSXHGHLQWHUSUHWDUHOSUREOHPDSDUDUHSUHVHQWDUXQVLVWHPDYLEUDWRULR
TXHFRQVLVWHHQXQDPDVD m 15 VOXJRNLORJUDPR XQLGDDXQUHVRUWH k OE兾SLHR
1兾P /DPDVDVHOLEHUDLQLFLDOPHQWHGHVGHHOUHSRVR 12 XQLGDG SLHRPHWUR DEDMRGH
ODSRVLFLyQGHHTXLOLEULR(OPRYLPLHQWRHVDPRUWLJXDGR ȕ \HVWiVLHQGRLPSXOVDGRSRUXQDIXHU]DSHULyGLFDH[WHUQD T ʌ兾V FRPHQ]DQGRHQt 'HPDQHUD
LQWXLWLYDVHSRGUtDHVSHUDUTXHLQFOXVRFRQDPRUWLJXDPLHQWRHOVLVWHPDSHUPDQHFLHUDHQ
PRYLPLHQWRKDVWDTXHVH³GHVDFWLYH´ODIXQFLyQIRU]DGDHQFX\RFDVRGLVPLQXLUtDQODV
DPSOLWXGHV6LQHPEDUJRFRPRVHSODQWHDHQHOSUREOHPDf (t FRVtSHUPDQHFHUi
³DFWLYDGD´SRUVLHPSUH
3ULPHURVHPXOWLSOLFDODHFXDFLyQGLIHUHQFLDOHQ SRU\VHUHVXHOYH
dx2
dt2
6
dx
dt
10 x
0
SRUORVPpWRGRVXVXDOHV'HELGRDTXHm im iVHGHGXFHTXH
xc(t et(c cos t c sen t &RQ HO PpWRGR GH FRH¿FLHQWHV LQGHWHUPLQDGRV VH
VXSRQHXQDVROXFLyQSDUWLFXODUGHODIRUPDxp(t A cos 4t B sen 4t.'HULYDQGRxp(t
\VXVWLWX\HQGRHQOD('VHREWLHQH
xp
6x p
10 xp
( 6A
24B) cos 4 t
( 24A
6B) sen 4t
25 cos 4 t.
5.1
6A
estado estable
xp (t)
25
102 \B
VHFXPSOHHQ A
t
transitorio
x (t)
π/2
a)
x
x(t)=transitorio
+ estado estable
1
195
t
π /2
b)
FIGURA 5.1.12 *Ui¿FDGHODVROXFLyQ
GDGDHQ GHOHMHPSOR
50
51
25,
24A
6B
0
6HWLHQHTXH
3t
e
e
3t
(c1 cos t
c2 sen t)
38
cos t
51
86
sen t
51
25
cos 4 t
102
50
sen 4t
51
TÉRMINOS TRANSITORIO Y DE ESTADO ESTABLE &XDQGRFHVXQDIXQFLyQ
SHULyGLFDFRPRF(t F0 sen ȖW o F(t F0 cos ȖWODVROXFLyQJHQHUDOGH SDUDȜ
HVODVXPDGHXQDIXQFLyQQRSHULyGLFDxc(t \XQDIXQFLyQSHULyGLFDxp(t $GHPiV
xc(t VHGHVYDQHFHFRQIRUPHVHLQFUHPHQWDHOWLHPSRHVGHFLU lím t : xc (t) 0 $Vt
SDUDYDORUHVJUDQGHVGHWLHPSRORVGHVSOD]DPLHQWRVGHODPDVDVHDSUR[LPDQPHGLDQWH
ODVROXFLyQSDUWLFXODUxp(t 6HGLFHTXHODIXQFLyQFRPSOHPHQWDULDxc(t HVXQtérmino
transitorio o solución transitoria\ODIXQFLyQxp(t ODSDUWHGHODVROXFLyQTXHSHUPDQHFHGHVSXpVGHXQLQWHUYDORGHWLHPSRVHOODPDtérmino de estado estable o solución de estado estable3RUWDQWRREVHUYHTXHHOHIHFWRGHODVFRQGLFLRQHVLQLFLDOHVHQ
XQVLVWHPDUHVRUWHPDVDLPSXOVDGRSRUFHVWUDQVLWRULR(QODVROXFLyQSDUWLFXODU
25
50
86
e 3t 38
102 cos 4 t
51 sen 4t es
51 cos t
51 sen t HVXQWpUPLQRWUDQVLWRULR\ xp(t)
XQWpUPLQRGHHVWDGRHVWDEOH/DVJUi¿FDVGHHVWRVGRVWpUPLQRV\ODVROXFLyQ VH
SUHVHQWDQHQODV¿JXUDV D \ E UHVSHFWLYDPHQWH
(
_1
24B
25
50
cos 4 t
sen 4t
102
51
c1 38
&XDQGRVHKDFHt HQODHFXDFLyQDQWHULRUVHREWLHQH
51 'HULYDQGRODH[SUH
51
86
3RUWDQWRODHFXDFLyQGH
VLyQ\KDFLHQGRt VHHQFXHQWUDWDPELpQTXH c2
51
movimiento es
x (t)
_1
l
(OVLVWHPDGHHFXDFLRQHVUHVXOWDQWH
x
1
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
EJEMPLO 7
)
Soluciones de estado transitorio y de estado estable
/DVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHV
d 2x
dx
2
2 x 4 cos t
dt2
dt
donde xHVFRQVWDQWHHVWiGDGDSRU
x
x 1 =7
x 1 =3
x 1 =0
x(t)
(x1
2 sen t, x (0)
2) e t sen t
0, x (0)
x1,
2 sen t.
transitorio estado estable
t
x1=_3
/DVFXUYDVVROXFLyQSDUDYDORUHVVHOHFFLRQDGRVGHODYHORFLGDGLQLFLDOxDSDUHFHQHQ
OD¿JXUD/DVJUi¿FDVPXHVWUDQTXHODLQÀXHQFLDGHOWpUPLQRWUDQVLWRULRHVGHVSUHFLDEOHSDUDXQYDORUDSUR[LPDGRGHt ʌ兾
ED DE MOVIMIENTO FORZADO SIN AMORTIGUAMIENTO &XDQGR VH
HMHUFHXQDIXHU]DSHULyGLFDVLQIXHU]DGHDPRUWLJXDPLHQWRQRKD\WpUPLQRWUDQVLWRULR
π
2π
HQODVROXFLyQGHXQSUREOHPD7DPELpQVHYHTXHXQDIXHU]DSHULyGLFDFRQXQDIUHFIGURA 5.1.13 *Ui¿FDGHODVROXFLyQ FXHQFLDFHUFDQDRLJXDOTXHODIUHFXHQFLDGHODVYLEUDFLRQHVOLEUHVDPRUWLJXDGDVFDXVD
GHOHMHPSORSDUDGLIHUHQWHVx
XQSUREOHPDJUDYHHQXQVLVWHPDPHFiQLFRRVFLODWRULR
EJEMPLO 8
Movimiento no amortiguado forzado
5HVXHOYDHOSUREOHPDFRQYDORULQLFLDO
d 2x
2
x F0 sen t, x (0)
dt2
donde F0HVXQDFRQVWDQWH\Ȗ Ȧ
0, x (0)
0
196
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
SOLUCIÓN /DIXQFLyQFRPSOHPHQWDULDHVxc(t c cos ȦW c sen ȦW3DUDREWHQHU
XQDVROXFLyQSDUWLFXODUVHVXSRQHxp(t A cos ȖW B sen ȖWSRUORTXH
2
xp
xp
A(
2
2
) cos t
B(
2
2
F0 sen t.
) sen t
,JXDODQGRORVFRH¿FLHQWHVVHREWLHQHGHLQPHGLDWRA \B F0兾(Ȧ Ȗ 3RUWDQWR
xp(t)
F0
2
2
sen t.
$SOLFDQGRODVFRQGLFLRQHVLQLFLDOHVDODVROXFLyQJHQHUDO
x (t)
c1 cos t
F0
c2 sen t
2
2
sen t
se obtiene c \c Ȗ)0 兾Ȧ(Ȧ Ȗ 3RUWDQWRODVROXFLyQHV
x (t)
F0
(
2
2
)
(
sen t
sen t),
RESONANCIA PURA $XQTXHODHFXDFLyQ QRVHGH¿QHSDUDȖ ȦHVLQWHUHVDQWHREVHUYDUTXHVXYDORUOtPLWHFRQIRUPHȖ → ȦVHREWLHQHDODSOLFDUODUHJODGH
/ +{SLWDO (VWH SURFHVR OtPLWH HV DQiORJR D ³VLQWRQL]DU´ OD IUHFXHQFLD GH OD IXHU]D
LPSXOVRUD Ȗ兾ʌ FRQODIUHFXHQFLDGHYLEUDFLRQHVOLEUHV Ȧ兾ʌ 'HXQDPDQHUDLQ
WXLWLYDVHHVSHUDTXHHQXQHVSDFLRGHWLHPSRVHGHEDQSRGHULQFUHPHQWDUHQIRUPD
VXVWDQFLDOODVDPSOLWXGHVGHYLEUDFLyQ3DUDȖ ȦVHGH¿QHODVROXFLyQFRPR
x (t)
lím F0
:
sen t
( 2
sen t
2
)
F0 lím
d
(
d
d
(
d
:
F0 lím
sen t
sen t
F0
t
FIGURA 5.1.14 5HVRQDQFLDSXUD
2
2
sen t
)
t cos t
:
x
3
sen t)
t cos t
2
2
F0
F0
sen t
t cos t.
2
2
2
&RPR VH VRVSHFKDED FRQIRUPH t → ORV GHVSOD]DPLHQWRV VH YXHOYHQ ODUJRV GH
KHFKR兩x(tn 兩 → FXDQGRtn Qʌ兾Ȧn (OIHQyPHQRUHFLpQGHVFULWRVH
conoce como resonancia pura/DJUi¿FDGHOD¿JXUDPXHVWUDHOPRYLPLHQWR
FDUDFWHUtVWLFRHQHVWHFDVR
(QFRQFOXVLyQVHGHEHREVHUYDUTXHQRKD\QHFHVLGDGUHDOGHXVDUXQSURFHVR
OtPLWHHQ SDUDREWHQHUODVROXFLyQSDUDȖ Ȧ$OWHUQDWLYDPHQWHODHFXDFLyQ
VHGHGXFHUHVROYLHQGRHOSUREOHPDFRQYDORUHVLQLFLDOHV
d 2x
2
x F0 sen t, x (0) 0, x (0) 0
dt 2
HQIRUPDGLUHFWDSRUPpWRGRVFRQYHQFLRQDOHV
6LUHDOPHQWHXQDIXQFLyQFRPRODHFXDFLyQ GHVFULELHUDORVGHVSOD]DPLHQWRVGH
XQ VLVWHPD UHVRUWHPDVD HO VLVWHPD QHFHVDULDPHQWH IDOODUtD /DV RVFLODFLRQHV JUDQGHV
GHODPDVDIRU]DUiQHQDOJ~QPRPHQWRHOUHVRUWHPiVDOOiGHVXOtPLWHHOiVWLFR6HSRGUtD
DUJXPHQWDUWDPELpQTXHHOPRGHORUHVRQDQWHSUHVHQWDGRHQOD¿JXUDHVSRUFRPSOHWRLUUHDOSRUTXHQRVHWRPDQHQFXHQWDORVHIHFWRVUHWDUGDGRUHVGHODVIXHU]DVGHDPRUWLJXDPLHQWRTXHVLHPSUHHVWiQSUHVHQWHV$XQTXHHVYHUGDGTXHODUHVRQDQFLDSXUDQR
SXHGHRFXUULUFXDQGRVHWRPDHQFRQVLGHUDFLyQODFDQWLGDGSHTXHxDGHDPRUWLJXDPLHQ
WRODVDPSOLWXGHVGHYLEUDFLyQJUDQGHVHLJXDOPHQWHGHVWUXFWLYDVSXHGHQRFXUULU DXQTXH
DFRWDGDVFRQIRUPHt → 9HDHOSUREOHPDGHORVHMHUFLFLRV
5.1
5.1.4
E
L
R
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
FIGURA 5.1.15 &LUFXLWRLRC en
197
CIRCUITO EN SERIE ANÁLOGO
CIRCUITOS LRC EN SERIE &RPRVHPHQFLRQyHQODLQWURGXFFLyQGHHVWHFDStWXORPXFKRVVLVWHPDVItVLFRVGLIHUHQWHVVHGHVFULEHQPHGLDQWHXQDHFXDFLyQGLIHUHQFLDOGHVHJXQGR
RUGHQVLPLODUDODHFXDFLyQGLIHUHQFLDOGHPRYLPLHQWRIRU]DGRFRQDPRUWLJXDPLHQWR
m
C
VHULH
l
d 2x
dt 2
dx
dt
kx
f (t)
Si i(t GHQRWDODFRUULHQWHHQHOcircuito eléctrico en serie LRCTXHVHPXHVWUDHQOD
¿JXUD HQWRQFHV ODV FDtGDV GH YROWDMH HQ HO LQGXFWRU UHVLVWRU \ FDSDFLWRU VRQ
FRPRVHPXHVWUDHQOD¿JXUD3RUODVHJXQGDOH\GH.LUFKKRIIODVXPDGHHVWRV
YROWDMHVHVLJXDODOYROWDMHE(t DSOLFDGRDOFLUFXLWRHVGHFLU
L
di
dt
Ri
1
q
C
E (t)
3HURODFDUJDq(t HQHOFDSDFLWRUVHUHODFLRQDFRQODFRUULHQWHi(t FRQi dq兾dtDVtOD
HFXDFLyQ VHFRQYLHUWHHQODHFXDFLyQGLIHUHQFLDOOLQHDOGHVHJXQGRRUGHQ
L
d 2q
dt2
R
1
q
C
dq
dt
E(t)
/DQRPHQFODWXUDXVDGDHQHODQiOLVLVGHFLUFXLWRVHVVLPLODUDODTXHVHHPSOHD
SDUDGHVFULELUVLVWHPDVUHVRUWHPDVD
Si E(t VHGLFHTXHODVvibraciones eléctricasGHOFLUFXLWRHVWiQlibres'HELGRD
TXHODHFXDFLyQDX[LOLDUSDUD HVLm Rm 兾C KDEUiWUHVIRUPDVGHVROXFLyQ
con R GHSHQGLHQGRGHOYDORUGHOGLVFULPLQDQWHR 4L兾C6HGLFHTXHHOFLUFXLWRHV
R 4L兾C
sobreamortiguado si
\
críticamente amortiguado si
R 4L兾C
subamortiguado si
R 4L兾C
(QFDGDXQRGHHVWRVWUHVFDVRVODVROXFLyQJHQHUDOGH FRQWLHQHHOIDFWRUeRt兾L
DVtq(t →FRQIRUPHt → (QHOFDVRVXEDPRUWLJXDGRFXDQGRq q0ODFDUJD
HQHOFDSDFLWRURVFLODDPHGLGDTXHpVWDGLVPLQX\HHQRWUDVSDODEUDVHOFDSDFLWRUVH
FDUJD\VHGHVFDUJDFRQIRUPHt → &XDQGRE(t \R VHGLFHTXHHOFLUFXLWR
QRHVWiDPRUWLJXDGR\ODVYLEUDFLRQHVHOpFWULFDVQRWLHQGHQDFHURFRQIRUPHt crece sin
OtPLWHODUHVSXHVWDGHOFLUFXLWRHVarmónica simple
EJEMPLO 9
Circuito en serie subamortiguado
(QFXHQWUHODFDUJDq(t HQHOFDSDFLWRUHQXQFLUFXLWRLRCFXDQGRL KHQU\ K
R RKPV ! C IDUDG I E(t q q0FRXORPEV & Hi
SOLUCIÓN 3XHVWRTXH兾C ODHFXDFLyQ VHFRQYLHUWHHQ
1
q
4
10 q
1000 q
0
o
q
40 q
4000 q
0.
5HVROYLHQGRHVWDHFXDFLyQKRPRJpQHDGHODPDQHUDXVXDOVHHQFXHQWUDTXHHOFLUFXLWR
HVVXEDPRUWLJXDGR\q(t et(cFRVt cVHQt $SOLFDQGRODVFRQGLFLRQHV
1
3RUWDQWR
LQLFLDOHVVHHQFXHQWUDc q0\ c2
3 q0
q (t)
q0e
20t
cos 60t
1
sen 60t .
3
198
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
8VDQGR SRGHPRVHVFULELUODVROXFLyQDQWHULRUFRPR
q0 1 10
e
3
q(t)
20t
1.249).
sen(60t
&XDQGRVHDSOLFDXQYROWDMHE(t DOFLUFXLWRVHGLFHTXHODVYLEUDFLRQHVHOpFWULFDV
son forzadas(QHOFDVRFXDQGRR ODIXQFLyQFRPSOHPHQWDULDqc(t GH VH
llama solución transitoria6LE(t HVSHULyGLFDRXQDFRQVWDQWHHQWRQFHVODVROXFLyQ
SDUWLFXODUqp(t GH HVXQDsolución de estado estable
EJEMPLO 10
Corriente de estado estable
(QFXHQWUHODVROXFLyQGHHVWDGRHVWDEOHqp(t \ODcorriente de estado estableHQXQ
FLUFXLWRLRC HQVHULHFXDQGRHOYROWDMHDSOLFDGRHVE(t E0 sen ȖW
SOLUCIÓN /DVROXFLyQGHHVWDGRHVWDEOHqp(t HVXQDVROXFLyQSDUWLFXODUGHODHFXD-
FLyQGLIHUHQFLDO
L
d 2q
dt 2
R
dq
dt
1
q
C
E0 sen t.
&RQHOPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRVVHVXSRQHXQDVROXFLyQSDUWLFXODUGHOD
IRUPDqp(t A sen ȖW B cos ȖW6XVWLWX\HQGRHVWDH[SUHVLyQHQODHFXDFLyQGLIHUHQFLDOHLJXDODQGRFRH¿FLHQWHVVHREWLHQH
E0 L
A
2 2
L
2L
C
1
C
,
1
C2
2
R
E0 R
2L
1
2
C
C
B
2
2 2
L
.
2
R
2
(VFRQYHQLHQWHH[SUHVDUA\BHQWpUPLQRVGHDOJXQRVQXHYRVVtPERORV
Si
X
L
Si
Z
1X2
1 ,
C
R2,
entonces
X2
L2
2
entonces
Z2
L2
2
2L
C
1
C2
2L
C
1
C2
2
2
R 2.
Por tanto A E0 X兾(Ȗ= \B E0 R兾(Ȗ= DVtTXHODFDUJDGHHVWDGRHVWDEOHHV
qp(t)
E0 X
sen t
Z2
E0 R
cos t.
Z2
$KRUDODFRUULHQWHGHHVWDGRHVWDEOHHVWiGDGDSRU ip(t)
ip(t)
E0 R
sen t
Z Z
q p(t) :
X
cos t
Z
/DVFDQWLGDGHVX /Ȗ 兾&Ȗ\ Z
1X2 R2 GH¿QLGDVHQHOHMHPSORVH
llaman reactancia e impedancia GHO FLUFXLWR UHVSHFWLYDPHQWH 7DQWR OD UHDFWDQFLD
FRPRODLPSHGDQFLDVHPLGHQHQRKPV
5.1
EJERCICIOS 5.1
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
l
199
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-7.
5.1.1 SISTEMAS RESORTE/MASA:
MOVIMIENTO LIBRE NO AMORTIGUADO
1. UnDPDVDTXHSHVDOLEUDVVHXQHDXQUHVRUWHFX\DFRQVWDQWH HV OESLH ¢&XiO HV HO SHULRGR GHO PRYLPLHQWR
DUPyQLFRVLPSOH"
2. 8QDPDVDGHNLORJUDPRVVHXQHDXQUHVRUWH6LODIUHFXHQFLDGHOPRYLPLHQWRDUPyQLFRVLPSOHHV兾ʌFLFORVV
¢FXiOHVODFRQVWDQWHGHUHVRUWHk"¢&XiOHVODIUHFXHQFLD
GHO PRYLPLHQWR DUPyQLFR VLPSOH VL OD PDVD RULJLQDO VH
UHHPSOD]DFRQXQDPDVDGHNLORJUDPRV"
3. 8QDPDVDTXHSHVDOLEUDVXQLGDDOH[WUHPRGHXQUHVRUWH OR DODUJD SXOJDGDV $O LQLFLR OD PDVD VH OLEHUD
GHVGHHOUHSRVRHQXQSXQWRSXOJDGDVDUULEDGHODSRVLFLyQGHHTXLOLEULR(QFXHQWUHODHFXDFLyQGHPRYLPLHQWR
4. 'HWHUPLQHODHFXDFLyQGHPRYLPLHQWRVLODPDVDGHOSUREOHPDVHOLEHUDDOLQLFLRGHVGHODSRVLFLyQGHHTXLOLEULR
FRQXQDYHORFLGDGGHVFHQGHQWHGHSLHVV
5. 8QDPDVDTXHSHVDOLEUDVDODUJDSXOJDGDVXQUHVRUWH
/DPDVDVHOLEHUDDOLQLFLRGHVGHHOUHSRVRHQXQSXQWR
SXOJDGDVDEDMRGHODSRVLFLyQGHHTXLOLEULR
a) (QFXHQWUHODSRVLFLyQGHODPDVDHQORVWLHPSRVt
ʌ兾ʌ兾ʌ兾ʌ兾\ʌ兾V
b) ¢&XiOHVODYHORFLGDGGHODPDVDFXDQGRt ʌ兾V"
¢(QTXpGLUHFFLyQVHGLULJHODPDVDHQHVWHLQVWDQWH"
c) ¢(QTXpWLHPSRVODPDVDSDVDSRUODSRVLFLyQGHHTXLOLEULR"
6. 8QD IXHU]D GH QHZWRQV DODUJD PHWURV XQ UHVRUWH
8QDPDVDGHNLORJUDPRVVHXQHDOH[WUHPRGHOUHVRUWH
\ VH OLEHUD LQLFLDOPHQWH GHVGH OD SRVLFLyQ GH HTXLOLEULR
FRQ XQD YHORFLGDG DVFHQGHQWH GH PV (QFXHQWUH OD
HFXDFLyQGHPRYLPLHQWR
7. 2WURUHVRUWHFX\DFRQVWDQWHHV1PVHVXVSHQGHGHO
PLVPR VRSRUWH SHUR SDUDOHOR DO VLVWHPD UHVRUWHPDVD
GHO SUREOHPD $O VHJXQGR UHVRUWH VH OH FRORFD XQD
PDVDGHNLORJUDPRV\DPEDVPDVDVVHOLEHUDQDOLQLFLR GHVGH OD SRVLFLyQ GH HTXLOLEULR FRQ XQD YHORFLGDG
DVFHQGHQWHGHPV
a) ¢ &XiO PDVD SUHVHQWD OD PD\RU DPSOLWXG GH PRYLPLHQWR"
b) ¢&XiOPDVDVHPXHYHPiVUiSLGRHQt ʌ兾V"¢(Q
ʌ兾V"
c) ¢(Q TXp LQVWDQWHV ODV GRV PDVDV HVWiQ HQ OD PLVPD
SRVLFLyQ"¢'yQGHHVWiQODVPDVDVHQHVWRVLQVWDQWHV"
¢(QTXpGLUHFFLRQHVVHHVWiQPRYLHQGRODVPDVDV"
8. 8QD PDVD TXH SHVD OLEUDV DODUJD SLHV XQ UHVRUWH
'HWHUPLQHODDPSOLWXG\HOSHULRGRGHPRYLPLHQWRVLOD
PDVDVHOLEHUDLQLFLDOPHQWHGHVGHXQSXQWRVLWXDGRSLH
DUULEDGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGDV-
FHQGHQWHGHSLHVV¢&XiQWRVFLFORVHQWHURVKDEUiFRPSOHWDGRODPDVDDO¿QDOGHʌVHJXQGRV"
9. 8QDPDVDTXHSHVDOLEUDVVHXQHDXQUHVRUWH&XDQGR
VH SRQH HQ PRYLPLHQWR HO VLVWHPD UHVRUWHPDVD H[KLEH
PRYLPLHQWRDUPyQLFRVLPSOH
a) 'HWHUPLQHODHFXDFLyQGHPRYLPLHQWRVLODFRQVWDQWH
GH UHVRUWH HV OESLH \ OD PDVD VH OLEHUD LQLFLDOPHQWH
GHVGHXQSXQWRSXOJDGDVDEDMRGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGGHVFHQGHQWHGH 32 SLHV
b) ([SUHVHODHFXDFLyQGHPRYLPLHQWRHQODIRUPDGDGD
HQ
c) ([SUHVHODHFXDFLyQGHPRYLPLHQWRHQODIRUPDGDGD
HQ
10. 8QDPDVDTXHSHVDOLEUDVDODUJDXQUHVRUWH 14 SLH(VWD
PDVDVHUHWLUD\VHFRORFDXQDGHVOXJVTXHVHOLEHUD
GHVGHXQSXQWRVLWXDGRD 13 SLHDUULEDGHODSRVLFLyQGH
HTXLOLEULRFRQXQDYHORFLGDGGHVFHQGHQWHGH 54 SLHV
a) ([SUHVHODHFXDFLyQGHPRYLPLHQWRHQODIRUPDGDGD
HQ
b) ([SUHVHODHFXDFLyQGHPRYLPLHQWRHQODIRUPDGDGD
HQ
c) 8WLOLFHORVUHVXOWDGRVGHD \E SDUDYHUHQTXpWLHPSRVODPDVDORJUDXQGHVSOD]DPLHQWRGHEDMRGHODSRVLFLyQ
GHHTXLOLEULRQXPpULFDPHQWHLJXDOD 12 GHODDPSOLWXG
11. 8QDPDVDTXHSHVDOLEUDVDODUJDSLHVXQUHVRUWH
$OLQLFLRODPDVDVHOLEHUDGHVGHXQSXQWRTXHHVWiSXOJDGDVDUULEDGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGGHVFHQGHQWHGHSLHVV
a) (QFXHQWUHODHFXDFLyQGHPRYLPLHQWR
b) ¢&XiOHVVRQODDPSOLWXG\HOSHULRGRGHOPRYLPLHQWR"
c) ¢&XiQWRVFLFORVFRPSOHWRVKDEUiUHDOL]DGRODPDVDDO
¿QDOGHʌVHJXQGRV"
d) ¢(Q TXp PRPHQWR OD PDVD SDVD SRU OD SRVLFLyQ GH
HTXLOLEULRFRQGLUHFFLyQKDFLDDEDMRSRUVHJXQGDYH]"
e) ¢(QTXpLQVWDQWHVODPDVDDOFDQ]DVXVGHVSOD]DPLHQWRV
H[WUHPRVHQFXDOTXLHUODGRGHODSRVLFLyQGHHTXLOLEULR"
f) ¢&XiOHVODSRVLFLyQGHODPDVDHQt V"
g) ¢&XiOHVODYHORFLGDGLQVWDQWiQHDHQt V"
h) ¢&XiOHVODDFHOHUDFLyQHQt V"
i) ¢&XiOHVODYHORFLGDGLQVWDQWiQHDHQORVPRPHQWRVHQ
TXHODPDVDSDVDSRUODSRVLFLyQGHHTXLOLEULR"
j) ¢(QTXpLQVWDQWHVODPDVDHVWiSXOJDGDVDEDMRGHOD
SRVLFLyQGHHTXLOLEULR"
k) ¢(QTXpLQVWDQWHVODPDVDHVWiSXOJDGDVDEDMRGHODSRVLFLyQGHHTXLOLEULRDSXQWDQGRHQGLUHFFLyQKDFLDDUULED"
12. 8QDPDVDGHVOXJVHVXVSHQGHGHXQUHVRUWHFX\DFRQVWDQWHHV
GHOE兾SLH,QLFLDOPHQWHODPDVDVHOLEHUDGHVGHXQSXQWRTXH
HVWiSLHDUULEDGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDG
ascendente de 13 SLHVV'HWHUPLQHORVLQVWDQWHVHQORVTXH
ODPDVDVHGLULJHKDFLDDEDMRDXQDYHORFLGDGGHSLHVV
200
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
13. %DMR DOJXQDV FLUFXQVWDQFLDV FXDQGR GRV UHVRUWHV SDUD
OHORVFRQFRQVWDQWHVk\kVRSRUWDQXQDVRODPDVDOD
constante de resorte efectiva GHO VLVWHPD VH H[SUHVD
como k 4kk 兾(k k 8QDPDVDTXHSHVDOLEUDV
HVWLUDSXOJDGDVXQUHVRUWH\SXOJDGDVRWURUHVRUWH/RV
UHVRUWHVVHXQHQDXQVRSRUWHUtJLGRFRP~Q\OXHJRDXQD
SODFDPHWiOLFD&RPRVHPXHVWUDHQOD¿JXUDOD
PDVDVHXQHDOFHQWURGHODSODFDHQODFRQ¿JXUDFLyQGH
UHVRUWHGREOH'HWHUPLQHODFRQVWDQWHGHUHVRUWHHIHFWLYD
GHHVWHVLVWHPD(QFXHQWUHODHFXDFLyQGHPRYLPLHQWRVL
ODPDVDVHOLEHUDLQLFLDOPHQWHGHVGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGGHVFHQGHQWHGHSLHVV
17.
x
t
FIGURA 5.1.17 *Ui¿FDGHOSUREOHPD
18.
x
t
k2
k1
FIGURA 5.1.18 *Ui¿FDGHOSUREOHPD
20 lb
FIGURA 5.1.16
SUREOHPD
Sistema de resorte doble del
14. 8QDFLHUWDPDVDDODUJDXQUHVRUWH 13 SLH\RWURUHVRUWH 12
SLH/RVGRVUHVRUWHVVHXQHQDXQVRSRUWHUtJLGRFRP~Q
HQ OD PDQHUD GHVFULWD HQ HO SUREOHPD \ HQ OD ¿JXUD
6HTXLWDODSULPHUDPDVD\VHFRORFDXQDTXHSHVD
OLEUDVHQODFRQ¿JXUDFLyQGHUHVRUWHGREOH\VHSRQHHQ
PRYLPLHQWRHOVLVWHPD6LHOSHULRGRGHPRYLPLHQWRHV
ʌ兾VHJXQGRVGHWHUPLQHFXiQWRSHVDODSULPHUDPDVD
15. 8QPRGHORGHXQVLVWHPDGHUHVRUWHPDVDHVx etx
3RULQVSHFFLyQGHODHFXDFLyQGLIHUHQFLDOVRODPHQWH
GHVFULED HO FRPSRUWDPLHQWR GHO VLVWHPD GXUDQWH XQ SHULRGRODUJR
16. (OPRGHORGHXQVLVWHPDGHUHVRUWHPDVDHVx tx
3RULQVSHFFLyQGHODHFXDFLyQGLIHUHQFLDOVRODPHQWHGHVFULEDHOFRPSRUWDPLHQWRGHOVLVWHPDGXUDQWHXQSHULRGR
ODUJR
5.1.2
SISTEMAS RESORTE/MASA:
MOVIMIENTO LIBRE AMORTIGUADO
(QORVSUREOHPDVDOD¿JXUDUHSUHVHQWDODJUi¿FDGHXQD
HFXDFLyQGHPRYLPLHQWRSDUDXQVLVWHPDUHVRUWHPDVDDPRUWLJXDGR8VHODJUi¿FDSDUDGHWHUPLQDU
a) V LHOGHVSOD]DPLHQWRLQLFLDOHVWiDUULEDRDEDMRGHODSRVLFLyQGHHTXLOLEULR\
b) VLODPDVDVHOLEHUDLQLFLDOPHQWHGHVGHHOUHSRVRFRQGLUHFFLyQGHVFHQGHQWHRDVFHQGHQWH
19.
x
t
FIGURA 5.1.19 *Ui¿FDGHOSUREOHPD
20.
x
t
FIGURA 5.1.20 *Ui¿FDGHOSUREOHPD
21. 8QDPDVDTXHSHVDOLEUDVVHXQHDXQUHVRUWHFX\DFRQVWDQWH HV OESLH (O PHGLR RIUHFH XQD IXHU]D GH DPRUWLJXDPLHQWR TXH HV QXPpULFDPHQWH LJXDO D OD YHORFLGDG
LQVWDQWiQHD /D PDVD VH OLEHUD GHVGH XQ SXQWR VLWXDGR
SLHDUULEDGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGGHVFHQGHQWHGHSLHVV'HWHUPLQHHOWLHPSRHQHO
TXHODPDVDSDVDSRUODSRVLFLyQGHHTXLOLEULR(QFXHQWUH
HO WLHPSR HQ HO TXH OD PDVD DOFDQ]D VX GHVSOD]DPLHQWR
H[WUHPRGHVGHODSRVLFLyQGHHTXLOLEULR¢&XiOHVODSRVLFLyQGHODPDVDHQHVWHLQVWDQWH"
5.1
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
22. UQUHVRUWHGHSLHVPLGHSLHVGHODUJRGHVSXpVGHFROJDUOHXQDPDVDTXHSHVDOLEUDV(OPHGLRSRUHOTXHVH
PXHYHODPDVDRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRLJXDO
a 1 2 YHFHVODYHORFLGDGLQVWDQWiQHD(QFXHQWUHODHFXDFLyQGHPRYLPLHQWRVLODPDVDVHOLEHUDLQLFLDOPHQWHGHVGH
OD SRVLFLyQ GH HTXLOLEULR FRQ XQD YHORFLGDG GHVFHQGHQWH
GHSLHVV&DOFXOHHOWLHPSRHQTXHODPDVDDOFDQ]DVX
GHVSOD]DPLHQWR H[WUHPR GHVGH OD SRVLFLyQ GH HTXLOLEULR
¢&XiOHVODSRVLFLyQGHODPDVDHQHVHLQVWDQWH"
23. 8QDPDVDGHNLORJUDPRVH¿MDDXQUHVRUWHFX\DFRQVWDQWHHV1P\OXHJRHOVLVWHPDFRPSOHWRVHVXPHUJH
HQXQOtTXLGRTXHLPSDUWHXQDIXHU]DDPRUWLJXDGRUDLJXDO
DYHFHVODYHORFLGDGLQVWDQWiQHD'HWHUPLQHODVHFXDciones de movimiento si:
a) DO LQLFLR OD PDVD VH OLEHUD GHVGH XQ SXQWR VLWXDGR
PHWURDEDMRGHODSRVLFLyQGHHTXLOLEULR\OXHJR
b) ODPDVDVHOLEHUDLQLFLDOPHQWHGHVGHXQSXQWRPHWUR
DEDMRGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDG
DVFHQGHQWHGHPV
24. (Q ORV LQFLVRV D \ E GHO SUREOHPD GHWHUPLQH VL OD
PDVD SDVD SRU OD SRVLFLyQ GH HTXLOLEULR (Q FDGD FDVR
FDOFXOH HO WLHPSR HQ TXH OD PDVD DOFDQ]D VX GHVSOD]DPLHQWRH[WUHPRGHVGHODSRVLFLyQGHHTXLOLEULR¢&XiOHV
ODSRVLFLyQGHODPDVDHQHVWHLQVWDQWH"
25. 8QDIXHU]DGHOLEUDVDODUJDSLHXQUHVRUWH8QDPDVD
TXHSHVDOLEUDVVHXQHDOUHVRUWH\OXHJRVHVXPHUJHHO
VLVWHPDHQXQPHGLRTXHRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRLJXDODYHFHVODYHORFLGDGLQVWDQWiQHD
a) (
QFXHQWUHODHFXDFLyQGHPRYLPLHQWRVLLQLFLDOPHQWH
VHOLEHUDODPDVDGHVGHHOUHSRVRHQXQSXQWRVLWXDGR
DSLHSRUHQFLPDGHODSRVLFLyQGHHTXLOLEULR
b) (
[SUHVHODHFXDFLyQGHPRYLPLHQWRHQODIRUPDGDGD
HQ
c) (QFXHQWUHODSULPHUDYH]HQTXHODPDVDSDVDDWUDYpV
GHODSRVLFLyQGHHTXLOLEULRHQGLUHFFLyQKDFLDDUULED
26. 'HVSXpVGHTXHXQDPDVDGHOLEUDVVHVXMHWDDXQUHVRUWHGHSLHVpVWHOOHJDDPHGLUSLHV6HUHWLUDODPDVD
\ VH VXVWLWX\H FRQ XQD GH OLEUDV /XHJR VH FRORFD DO
VLVWHPDHQXQPHGLRTXHRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRLJXDODODYHORFLGDGLQVWDQWiQHD
a) (QFXHQWUHODHFXDFLyQGHPRYLPLHQWRVLODPDVDVHOLEHUDLQLFLDOPHQWHGHVGHHOUHSRVRGHXQSXQWRVLWXDGR
兾 SLH DUULED GH OD SRVLFLyQ GH HTXLOLEULR FRQ XQD
YHORFLGDGGHVFHQGHQWHGHGHSLH兾V
b) (
[SUHVHODHFXDFLyQGHPRYLPLHQWRHQODIRUPDGDGD
HQ
c) &DOFXOH ORV WLHPSRV HQ ORV TXH OD PDVD SDVD SRU OD
SRVLFLyQGHHTXLOLEULRFRQGLUHFFLyQKDFLDDEDMR
d) 7UDFHODJUi¿FDGHODHFXDFLyQGHPRYLPLHQWR
27. 8QDPDVDTXHSHVDOLEUDVSURGXFHXQDODUJDPLHQWRGH
SLHVHQXQUHVRUWH/DPDVDVHXQHDXQGLVSRVLWLYRDPRUWLJXDGRUTXHRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRLJXDO
a ȕ (ȕ YHFHV OD YHORFLGDG LQVWDQWiQHD 'HWHUPLQH
l
201
lRVYDORUHVGHODFRQVWDQWHGHDPRUWLJXDPLHQWRȕSRUOR
TXH HO PRYLPLHQWR SRVWHULRU VHD a) VREUHDPRUWLJXDGR
b)FUtWLFDPHQWHDPRUWLJXDGR\c)VXEDPRUWLJXDGR
28. 8QDPDVDTXHSHVDOLEUDVDODUJDSLHVXQUHVRUWH(O
PRYLPLHQWRSRVWHULRUWRPDOXJDUHQXQPHGLRTXHRIUHFH
XQDIXHU]DGHDPRUWLJXDPLHQWRLJXDODȕ (ȕ YHFHVOD
YHORFLGDGLQVWDQWiQHD6LDOLQLFLRODPDVDVHOLEHUDGHVGH
OD SRVLFLyQ GH HTXLOLEULR FRQ XQD YHORFLGDG DVFHQGHQWH
3 1 2 ODHFXDFLyQGH
GHSLHVVPXHVWUHTXHFXDQGR
movimiento es
3
2
x (t)
e 2 t /3 senh 1 2 18 t.
2
1
3
18
5.1.3 SISTEMAS RESORTE/MASA:
MOVIMIENTO FORZADO
29. UQDPDVDTXHSHVDOLEUDVDODUJD 83 SLHXQUHVRUWH/D
PDVD VH OLEHUD LQLFLDOPHQWH GHVGH HO UHSRVR GHVGH XQ
SXQWRSLHVDEDMRGHODSRVLFLyQGHHTXLOLEULR\HOPRYLPLHQWR SRVWHULRU RFXUUH HQ XQ PHGLR TXH RIUHFH XQD
IXHU]D GH DPRUWLJXDPLHQWR LJXDO D 12 de la velocidad
LQVWDQWiQHD (QFXHQWUH OD HFXDFLyQ GH PRYLPLHQWR VL VH
DSOLFDDODPDVDXQDIXHU]DH[WHUQDLJXDODf(t FRV
t.
30. 8QD PDVD GH VOXJ HVWi XQLGD D XQ UHVRUWH FX\D FRQVWDQWHHVOESLH$OLQLFLRODPDVDVHOLEHUDSLHDEDMRGH
ODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGGHVFHQGHQWH
GHSLHVV\HOPRYLPLHQWRSRVWHULRUWRPDOXJDUHQXQ
PHGLRTXHRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRLJXDOD
GRVYHFHVODYHORFLGDGLQVWDQWiQHD
a) (
QFXHQWUH OD HFXDFLyQ GH PRYLPLHQWR VL XQD IXHU]D
H[WHUQD LJXDO D f (t FRV t VHQ t DFW~D
VREUHODPDVD
b) 7UDFHODJUi¿FDGHODVVROXFLRQHVWUDQVLWRULDV\GHHVWDGRHVWDEOHHQORVPLVPRVHMHVGHFRRUGHQDGDV
c) 7UDFHODJUi¿FDGHODHFXDFLyQGHPRYLPLHQWR
31. 8QDPDVDGHVOXJFXDQGRVHXQHDXQUHVRUWHFDXVDHQ
pVWHXQDODUJDPLHQWRGHSLHV\OXHJROOHJDDOSXQWRGH
UHSRVRHQODSRVLFLyQGHHTXLOLEULR(PSH]DQGRHQt
XQDIXHU]DH[WHUQDLJXDODf(t VHQtVHDSOLFDDOVLVWHPD(QFXHQWUHODHFXDFLyQGHPRYLPLHQWRVLHOPHGLR
FLUFXQGDQWHRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRLJXDOD
YHFHVODYHORFLGDGLQVWDQWiQHD
32. (QHOSUREOHPDGHWHUPLQHODHFXDFLyQGHPRYLPLHQWR
VLODIXHU]DH[WHUQDHVf(t et sen 4t$QDOLFHHOGHVSOD]DPLHQWRSDUDt →
33. &XDQGRXQDPDVDGHNLORJUDPRVVHXQHDXQUHVRUWHFX\D
FRQVWDQWHHV1兾PpVWHOOHJDDOUHSRVRHQODSRVLFLyQGH
HTXLOLEULR&RPHQ]DQGRHQt XQDIXHU]DLJXDODf(t
et cos 4tVHDSOLFDDOVLVWHPD'HWHUPLQHODHFXDFLyQGH
PRYLPLHQWRHQDXVHQFLDGHDPRUWLJXDPLHQWR
34. (QHOSUREOHPDHVFULEDODHFXDFLyQGHPRYLPLHQWRHQ
ODIRUPDx(t Asen(ȦW Betsen(4t ș ¢&XiO
HV OD DPSOLWXG GH ODV YLEUDFLRQHV GHVSXpV GH XQ WLHPSR
PX\ODUJR"
202
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
35. Una masa m HVWi XQLGD DO H[WUHPR GH XQ UHVRUWH FX\D
constante es k'HVSXpVGHTXHODPDVDDOFDQ]DHOHTXLOLEULRVXVRSRUWHHPSLH]DDRVFLODUYHUWLFDOPHQWHUHVSHFWR
DXQDUHFWDKRUL]RQWDOLGHDFXHUGRFRQXQDIyUPXODh(t
(OYDORUGHhUHSUHVHQWDODGLVWDQFLDHQSLHVPHGLGDGHVGH
L9HDOD¿JXUD
a) 'HWHUPLQHODHFXDFLyQGLIHUHQFLDOGHPRYLPLHQWRVL
HOVLVWHPDHQWHURVHPXHYHHQXQPHGLRTXHRIUHFH
XQDIXHU]DGHDPRUWLJXDPLHQWRLJXDODȕ(dx兾dt
b) 5HVXHOYDODHFXDFLyQGLIHUHQFLDOGHOLQFLVRD VLHOUHVRUWHVHDODUJDSLHVFRQXQDPDVDTXHSHVDOLEUDV
\ȕ h(t FRVtx x
F0
b) (YDO~H lím
2
:
2
40. &RPSDUH HO UHVXOWDGR REWHQLGR HQ HO LQFLVR E GHO SUREOHPDFRQODVROXFLyQREWHQLGDXVDQGRODYDULDFLyQGH
SDUiPHWURVFXDQGRODIXHU]DH[WHUQDHVF0 cos ȦW
41. a) 0
XHVWUHTXHx(t GDGDHQHOLQFLVRD GHOSUREOHPD
VHSXHGHHVFULELUHQODIRUPD
x(t)
2F0
2
2
x(t)
L
h(t)
FIGURA 5.1.21 6RSRUWHRVFLODQWHGHOSUREOHPD
36. 8QD PDVD GH JUDPRV VH ¿MD D XQ UHVRUWH FX\D FRQVWDQWHHVGLQDVFP'HVSXpVGHTXHODPDVDDOFDQ]DHO
HTXLOLEULRVXDSR\RRVFLODGHDFXHUGRFRQODIyUPXODh(t
VHQtGRQGHhUHSUHVHQWDHOGHVSOD]DPLHQWRGHVGHVX
SRVLFLyQRULJLQDO9pDQVHHOSUREOHPD\OD¿JXUD
a) (QDXVHQFLDGHDPRUWLJXDPLHQWRGHWHUPLQHODHFXDFLyQGHPRYLPLHQWRVLODPDVDSDUWHGHOUHSRVRGHVGH
ODSRVLFLyQGHHTXLOLEULR
b) ¢(Q TXp LQVWDQWHV OD PDVD SDVD SRU OD SRVLFLyQ GH
HTXLOLEULR"
c) ¢(QTXpWLHPSRVODPDVDDOFDQ]DVXVGHVSOD]DPLHQWRVH[WUHPRV"
d) ¢&XiOHVVRQORVGHVSOD]DPLHQWRVPi[LPR\PtQLPR"
e) 7UDFHODJUi¿FDGHODHFXDFLyQGHPRYLPLHQWR
(QORVSUREOHPDV\UHVXHOYDHOSUREOHPDFRQYDORUHV
LQLFLDOHV
38.
d 2x
dt 2
4x
5 sen 2t
1, x (0)
9x
3 cos 2t,
1
5 sen 3t,
x(0)
2, x (0)
0
39. a) 0
XHVWUHTXHODVROXFLyQGHOSUREOHPDFRQYDORUHVLQLciales
d 2x
2
x F0 cos t, x(0) 0, x (0) 0
dt 2
es
x(t)
F0
2
2
(cos t
1
sen (
2
1
)t sen (
2
)t.
1
b) 6
LVHGH¿QH
)PXHVWUHTXHFXDQGRİ es
2 (
SHTXHxDXQDVROXFLyQDSUR[LPDGDHV
soporte
d2x
37.
dt 2
x(0)
cos t)
(cos t
cos t)
F0
sen t sen t.
2
&
XDQGRİHVSHTXHxDODIUHFXHQFLDȖ兾ʌGHODIXHU]DDSOLFDGDHVFHUFDQDDODIUHFXHQFLDȦ兾ʌGHYLEUDFLRQHVOLEUHV
&XDQGRHVWRRFXUUHHOPRYLPLHQWRHVFRPRVHLQGLFDHQOD
¿JXUD/DVRVFLODFLRQHVGHHVWDFODVHVHOODPDQpulsaciones\VHGHEHQDOKHFKRGHTXHODIUHFXHQFLDGHVHQİW es
EDVWDQWHSHTXHxDHQFRPSDUDFLyQFRQODIUHFXHQFLDGHVHQ
ȖW/DVFXUYDVSXQWHDGDVRHQYROWXUDGHODJUi¿FDGHx(t VH
REWLHQHQGHODVJUi¿FDVGH(F0 兾İȖ VHQİW8VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUJUi¿FDVFRQYDULRVYDORUHV
de F0İ\ȖSDUDFRPSUREDUODJUi¿FDGHOD¿JXUD
x
t
FIGURA 5.1.22 )HQyPHQRGHSXOVDFLRQHVGHOSUREOHPD
Tarea para el laboratorio de computación
42. ¢3XHGH KDEHU SXOVDFLRQHV FXDQGR VH DJUHJD XQD IXHU]D
GHDPRUWLJXDPLHQWRDOPRGHORGHOLQFLVRD GHOSUREOHPD
" 'H¿HQGD VX SRVLFLyQ FRQ ODV JUi¿FDV REWHQLGDV \D
VHDGHODVROXFLyQH[SOtFLWDGHOSUREOHPD
d 2x
dt 2
2
dx
dt
2
F0 cos t, x(0)
x
0, x (0)
0
R GH FXUYDV VROXFLyQ REWHQLGDV XVDQGR XQ SURJUDPD GH
VROXFLyQQXPpULFD
43. a) 0XHVWUHTXHODVROXFLyQJHQHUDOGH
d2x
dt 2
2
dx
dt
2
x
F0 sen t
5.1
es
x(t)
Ae
lt
sen 2v
1(
5.1.4
2
2
lt
2 )2
4
2
sen( t
2
),
donde A
1c12 c22 \ORViQJXORVGHIDVH\ș
HVWiQUHVSHFWLYDPHQWHGH¿QLGRVSRUVHQ c兾A
cos c兾A\
sen
1(
cos
1(
2
2
2) 2
2
2
l
203
CIRCUITO EN SERIE ANÁLOGO
f
F0
2
MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES
,
4
2
2
4
2
2
2
2) 2
.
b) /
DVROXFLyQGHOLQFLVRD WLHQHODIRUPDx(t xc(t
xp(t /DLQVSHFFLyQPXHVWUDTXHxc(t HVWUDQVLWRULD\
SRUWDQWRSDUDYDORUHVJUDQGHVGHWLHPSRODVROXFLyQ
VHDSUR[LPDPHGLDQWHxp(t g(Ȗ VHQ ȖW ș GRQGH
F0
g( )
.
2
2)2
1(
4 2 2
$XQTXH OD DPSOLWXG g(Ȗ GH xp(t HVWi DFRWDGD FRQIRUPHt → GHPXHVWUHTXHODVRVFLODFLRQHVPi[LPDVRFXUULUiQHQHOYDORU 1
1 2 2 2 ¢&XiOHV
HOYDORUPi[LPRGHg"(OQ~PHUR1 2 2 2 /2 se
GLFHTXHHVODfrecuencia de resonanciaGHOVLVWHPD
c) &XDQGRF0 m \k g se convierte en
2
g( )
.
2 )2
2 2
1(4
&RQVWUX\D XQD WDEOD GH YDORUHV GH Ȗ \ g(Ȗ TXH
FRUUHVSRQGHQ D ORV FRH¿FLHQWHV GH DPRUWLJXDPLHQ
1
3
1
\
8VDQGR
to ȕ ȕ
4
4,
2
XQ SURJUDPD GH JUD¿FDFLyQ SDUD WUD]DU REWHQJD ODV
JUi¿FDVGHgTXHFRUUHVSRQGHQDHVWRVFRH¿FLHQWHVGH
DPRUWLJXDPLHQWR8VHORVPLVPRVHMHVGHFRRUGHQDGDV
(VWDIDPLOLDGHJUi¿FDVVHOODPDcurva de resonancia o
curva de respuesta de frecuenciaGHOVLVWHPD¢$TXp
YDORUVHDSUR[LPDȖFRQIRUPHȕ →"¢4XpVXFHGHFRQ
ODFXUYDGHUHVRQDQFLDFRQIRUPHȕ →"
44. &RQVLGHUHXQVLVWHPDUHVRUWHPDVDQRDPRUWLJXDGRGHVFULWRSRUHOSUREOHPDFRQYDORUHVLQLFLDOHV
d 2x
2
x F0 sen n t, x(0) 0, x (0) 0.
dt2
a) Para n H[SOLTXHSRUTXpKD\XQDVRODIUHFXHQFLD
Ȗ兾ʌHQODTXHHOVLVWHPDHVWiHQUHVRQDQFLDSXUD
b) Para n DQDOLFHSRUTXpKD\GRVIUHFXHQFLDVȖ兾ʌ
\Ȗ兾ʌHQODVTXHHOVLVWHPDHVWiHQUHVRQDQFLDSXUD
c) 6XSRQJDTXHȦ \F0 8VHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDREWHQHUODJUi¿FDGHODVROXFLyQ
GHOSUREOHPDFRQYDORUHVLQLFLDOHVSDUDn \Ȗ Ȗ
HQHOLQFLVRD 2EWHQJDODJUi¿FDGHODVROXFLyQGHO
SUREOHPDFRQYDORUHVLQLFLDOHVSDUDn TXHFRUUHVSRQGHDVXYH]DȖ Ȗ\Ȗ ȖHQHOLQFLVRE
45. (QFXHQWUHODFDUJDHQHOFDSDFLWRUGHXQFLUFXLWRHQVHULH
LRC en t VFXDQGRL KR !C
IE(t 9q &Hi $'HWHUPLQHOD
SULPHUDYH]HQTXHODFDUJDGHOFDSDFLWRUHVLJXDODFHUR
46. &DOFXOHODFDUJDGHOFDSDFLWRUHQXQFLUFXLWRLRC en serie
1
FXDQGR L 14 hR ! C 300
f, E(t 9q
4 C e i $¢$OJXQDYH]ODFDUJDHQHOFDSDFLWRU
HVLJXDODFHUR"
(QORVSUREOHPDV\HQFXHQWUHODFDUJDHQHOFDSDFLWRU
\ODFRUULHQWHHQHOFLUFXLWRLRC'HWHUPLQHODFDUJDPi[LPD
HQHOFDSDFLWRU
47. L 53 h, R ! C
i $
48. L K R !
q &i $
1
30
f, E(t 9q &
C I
E(t 9
49. (QFXHQWUHODFDUJD\ODFRUULHQWHGHHVWDGRHVWDEOHHQXQ
FLUFXLWRLRC HQVHULHFXDQGRL KR !C
I\E(t FRVt9
50. 'HPXHVWUHTXHODDPSOLWXGGHODFRUULHQWHGHHVWDGRHVWDEOHHQHOFLUFXLWRLRCHQVHULHGHOHMHPSORHVWiGDGD
SRUE0兾=GRQGH=HVODLPSHGDQFLDGHOFLUFXLWR
51. 8VHHOSUREOHPDSDUDGHPRVWUDUTXHODFRUULHQWHGHHVWDGRHVWDEOHHQXQFLUFXLWRLRCHQVHULHFXDQGRL 12 h
R !C I\E(t VHQt9HVWiGDGD
SRUip(t VHQ t
52. (QFXHQWUH OD FRUULHQWH GH HVWDGR HVWDEOH HQ XQ FLUFXLWR
LRC FXDQGR L 12 h R ! C I \ E(t
VHQt FRVt9
53. (QFXHQWUH OD FDUJD HQ HO FDSDFLWRU GH XQ FLUFXLWR
LRC HQ VHULH FXDQGR L 12 h R ! C I
E(t 9q &Hi $¢&XiOHVODFDUJD
HQHOFDSDFLWRUGHVSXpVGHXQODUJRWLHPSR"
54. 'HPXHVWUHTXHVLLRC\E0VRQFRQVWDQWHVHQWRQFHVOD
DPSOLWXGGHODFRUULHQWHGHHVWDGRHVWDEOHGHOHMHPSOR
HVXQPi[LPRFXDQGR
1> 1LC ¢&XiOHVODDPSOLWXGPi[LPD"
55. 'HPXHVWUHTXHVLLRE0\ȖVRQFRQVWDQWHVHQWRQFHVOD
DPSOLWXGGHODFRUULHQWHGHHVWDGRHVWDEOHHQHOHMHPSOR
HVXQPi[LPRFXDQGRODFDSDFLWDQFLDHVC 兾/Ȗ
56. &DOFXOHODFDUJDHQHOFDSDFLWRU\ODFRUULHQWHHQXQFLUFXLWRLCFXDQGRL KC IE(t VHQȖW
9q 0 C e i $
57. &DOFXOHODFDUJDGHOFDSDFLWRU\ODFRUULHQWHHQXQFLUFXLWR
LCFXDQGRE(t E0 cos ȖW9q q0 C e i i0$
58. (QHOSUREOHPDGHWHUPLQHODFRUULHQWHFXDQGRHOFLUFXLWRHVWiHQUHVRQDQFLD
204
l
CAPÍTULO 5
5.2
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
MODELOS LINEALES: PROBLEMAS CON VALORES EN LA FRONTERA
REPASO DE MATERIAL
l 6HFFLyQ
l 3UREOHPDVDGHORVHMHUFLFLRV
l 3UREOHPDVDGHORVHMHUFLFLRV
INTRODUCCIÓN /DVHFFLyQDQWHULRUVHGHGLFyDVLVWHPDVHQORVTXHXQPRGHORPDWHPiWLFRGH
VHJXQGRRUGHQYDDFRPSDxDGRGHFRQGLFLRQHVLQLFLDOHV(VGHFLUFRQGLFLRQHVVXSOHPHQWDULDVTXHVH
HVSHFL¿FDQHQODIXQFLyQGHVFRQRFLGD\VXSULPHUDGHULYDGDHVXQVRORSXQWR3HURFRQIUHFXHQFLDOD
GHVFULSFLyQPDWHPiWLFDGHXQVLVWHPDItVLFRUHTXLHUHUHVROYHUXQDHFXDFLyQGLIHUHQFLDOOLQHDOKRPRJpQHDVXMHWDDFRQGLFLRQHVHQODIURQWHUDHVGHFLUFRQGLFLRQHVHVSHFt¿FDVGHODIXQFLyQGHVFRQRFLGD
RHQXQDGHVXVGHULYDGDVRLQFOXVRXQDFRPELQDFLyQOLQHDOGHODIXQFLyQGHVFRQRFLGD\XQDGHVXV
GHULYDGDVHQGRV RPiV SXQWRVGLIHUHQWHV
eje de simetría
a)
curva de deflexión
DEFLEXIÓN DE UNA VIGA 0XFKDV HVWUXFWXUDV VH FRQVWUX\HQ XVDQGR WUDEHV R
YLJDV\HVWDVYLJDVVHÀH[LRQDQRGHIRUPDQEDMRVXSURSLRSHVRRSRUODLQÀXHQFLDGH
DOJXQDIXHU]DH[WHUQD&RPRYHUHPRVDFRQWLQXDFLyQHVWDGHÀH[LyQy(x HVWiJREHUQDGDSRUXQDHFXDFLyQGLIHUHQFLDOOLQHDOGHFXDUWRRUGHQUHODWLYDPHQWHVLPSOH
3DUD HPSH]DU VXSRQJDPRV TXH XQD YLJD GH ORQJLWXG L HV KRPRJpQHD \ WLHQH
VHFFLRQHVWUDQVYHUVDOHVXQLIRUPHVDORODUJRGHVXORQJLWXG(QDXVHQFLDGHFDUJDHQ
ODYLJD LQFOX\HQGRVXSHVR XQDFXUYDTXHXQHORVFHQWURLGHVGHWRGDVVXVVHFFLRQHV
WUDQVYHUVDOHVHVXQDUHFWDFRQRFLGDFRPReje de simetría9HDOD¿JXUD D 6LVH
DSOLFDXQDFDUJDDODYLJDHQXQSODQRYHUWLFDOTXHFRQWLHQHDOHMHGHVLPHWUtDODYLJD
FRPRVHPXHVWUDHQOD¿JXUD E H[SHULPHQWDXQDGLVWRUVLyQ\ODFXUYDTXHFRnecta los centroides de las secciones transversales se llama FXUYDGHGHÀH[LyQ o curva
elástica/DFXUYDGHGHÀH[LyQVHDSUR[LPDDODIRUPDGHXQDYLJD$KRUDVXSRQJDTXH
HOHMHxFRLQFLGHFRQHOHMHGHVLPHWUtD\TXHODGHÀH[LyQy(x PHGLGDGHVGHHVWHHMH
HVSRVLWLYDVLHVKDFLDDEDMR(QODWHRUtDGHHODVWLFLGDGVHPXHVWUDTXHHOPRPHQWRGH
ÀH[LyQM(x HQXQSXQWRxDORODUJRGHODYLJDVHUHODFLRQDFRQODFDUJDSRUXQLGDG
GHORQJLWXGw(x PHGLDQWHODHFXDFLyQ
d 2M
dx 2
b)
FIGURA 5.2.1 'HÀH[LyQGHXQDYLJD
KRPRJpQHD
w(x)
$GHPiVHOPRPHQWRGHÀH[LyQM(x HVSURSRUFLRQDODODFXUYDWXUDțGHODFXUYDHOiVWLFD
M(x)
EI
donde E e IVRQFRQVWDQWHVEHVHOPyGXORGH<RXQJGHHODVWLFLGDGGHOPDWHULDOGHOD
YLJDHIHVHOPRPHQWRGHLQHUFLDGHXQDVHFFLyQWUDQVYHUVDOGHODYLJD UHVSHFWRDXQ
HMHFRQRFLGRFRPRHOHMHQHXWUR (OSURGXFWREI se llama rigidez f1exionalGHODYLJD
$KRUDGHOFiOFXORODFXUYDWXUDHVWiGDGDSRUț y兾> ( y ]兾&XDQGROD
GHÀH[LyQy(x HVSHTXHxDODSHQGLHQWHy ⬇\SRUWDQWR> (y ]兾 ⬇6LVH
SHUPLWHTXHț ⬇ yODHFXDFLyQ VHFRQYLHUWHHQM EI y/DVHJXQGDGHULYDGD
GHHVWD~OWLPDH[SUHVLyQHV
d 2M
dx2
EI
d2
y
dx2
EI
d 4y
dx4
6LVHXWLOL]DHOUHVXOWDGRHQ SDUDUHHPSOD]DUdM兾dxHQ VHYHTXHODGHÀH[LyQ
y(x VDWLVIDFHODHFXDFLyQGLIHUHQFLDOGHFXDUWRRUGHQ
d 4y
w(x)
dx4
/DVFRQGLFLRQHVGHIURQWHUDDVRFLDGDVFRQODHFXDFLyQ GHSHQGHQGHFyPRHVWpQ
DSR\DGRVORVH[WUHPRVGHODYLJD8QDYLJDHQYRODGL]RHVWiempotrada o ¿MDHQXQ
H[WUHPR\OLEUHHQHORWUR8QWUDPSROtQXQEUD]RH[WHQGLGRXQDODGHDYLyQ\XQEDOFyQ
EI
5.2
x=0
x=L
a) empotrada en ambos extremos
MODELOS LINEALES: PROBLEMAS CON VALORES EN LA FRONTERA
l
205
VRQHMHPSORVFRPXQHVGHWDOHVYLJDVSHURLQFOXVRiUEROHVDVWDVGHEDQGHUDVUDVFDFLHORV
\PRQXPHQWRVDFW~DQFRPRYLJDVHQYRODGL]RGHELGRDTXHHVWiQHPSRWUDGRVHQXQ
H[WUHPR\VXMHWRVDODIXHU]DGHÀH[LyQGHOYLHQWR3DUDXQDYLJDHQYRODGL]RODGHÀH[LyQ
y(x GHEHVDWLVIDFHUODVVLJXLHQWHVGRVFRQGLFLRQHVHQHOH[WUHPR¿MRx 0:
• y SRUTXHQRKD\ÀH[LyQ\
• y SRUTXHODFXUYDGHGHÀH[LyQHVWDQJHQWHDOHMHx HQRWUDVSDODEUDV
ODSHQGLHQWHGHODFXUYDGHGHÀH[LyQHVFHURHQHVWHSXQWR
(Qx LODVFRQGLFLRQHVGHH[WUHPROLEUHVRQ
x=0
x=L
b) viga en voladizo: empotrada en
el extremo izquierdo, libre en el
extremo derecho
x=0
x=L
c) apoyada simplemente en ambos
extremos
FIGURA 5.2.2 9LJDVFRQYDULDV
FRQGLFLRQHVGHH[WUHPR
• y(L SRUTXHHOPRPHQWRGHÀH[LyQHVFHUR\
• y(L SRUTXHODIXHU]DGHFRUWHHVFHUR
/DIXQFLyQF(x dM兾dx EI dy兾dxVHOODPDIXHU]DGHFRUWH6LXQH[WUHPRGHODYLJD
HVWiapoyado simplemente o abisagrado DORTXHWDPELpQVHFRQRFHFRPRapoyo con
perno o fulcro HQWRQFHVVHGHEHWHQHUy \y HQHVHH[WUHPR(QODWDEOD
VHUHVXPHQODVFRQGLFLRQHVHQODIURQWHUDTXHVHUHODFLRQDQFRQ 9HDOD¿JXUD
EJEMPLO 1
Una viga empotrada
8QD YLJD GH ORQJLWXG L HVWi HPSRWUDGD HQ DPERV H[WUHPRV (QFXHQWUH OD GHÀH[LyQ
GHODYLJDVLXQDFDUJDFRQVWDQWHw0 HVWiXQLIRUPHPHQWHGLVWULEXLGDDORODUJRGHVX
ORQJLWXGHVGHFLUw(x w0 x L
SOLUCIÓN 'H YHPRVTXHODGHÀH[LyQy(x VDWLVIDFH
EI
TABLA 5.1
([WUHPRVGHODYLJD &RQGLFLRQHVIURQWHUD
HPSRWUDGRV
y y 0
libres
y y 0
DSR\DGRVVLPSOHPHQWH
RDELVDJUDGRV
y y 0
d4y
dx4
w0 .
'HELGRDTXHODYLJDHVWiHPSRWUDGDWDQWRHQVXH[WUHPRL]TXLHUGR x FRPRHQVX
H[WUHPRGHUHFKR x L QRKD\GHÀH[LyQYHUWLFDO\ODUHFWDGHGHÀH[LyQHVKRUL]RQWDO
HQHVWRVSXQWRV$VtODVFRQGLFLRQHVHQODIURQWHUDVRQ
y(0)
0,
y (0)
0,
y(L)
0,
y (L)
0.
6HSXHGHUHVROYHUODHFXDFLyQGLIHUHQFLDOQRKRPRJpQHDGHODPDQHUDXVXDO GHWHUPLnar ycREVHUYDQGRTXHm HVUDt]GHPXOWLSOLFLGDGFXDWURGHODHFXDFLyQDX[LOLDU
m4 \OXHJRHQFRQWUDUXQDVROXFLyQSDUWLFXODUypSRUFRH¿FLHQWHVLQGHWHUPLQDGRV
RVLPSOHPHQWHVHLQWHJUDODHFXDFLyQd 4y 兾dx 4 w0 兾EI VXFHVLYDPHQWHFXDWURYHFHV
'HFXDOTXLHUPRGRVHHQFXHQWUDODVROXFLyQJHQHUDOGHODHFXDFLyQy yc ypTXHHV
y(x)
c1
c2 x
c3 x2
c4 x3
w0 4
x.
24EI
$KRUDODVFRQGLFLRQHVy \y GDQDVXYH]c \c PLHQWUDVTXH
w0 4
x
las condiciones restantes y(L \y(L DSOLFDGDVDy(x) c3 x2 c4 x3
24EI
SURGXFHQODVHFXDFLRQHVVLPXOWiQHDV
c3 L2
c4 L3
2c3 L
3c4 L2
w0 4
L
24EI
w0 3
L
6EI
0
0.
Resolviendo este sistema se obtiene c w0 L 兾EI\c4 w0 L兾EI.$Vt TXH OD
GHÀH[LyQHV
w0 L2 2
w0 L 3
w0 4
x
x
x
y(x)
12EI
24EI
24EI
206
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
w0 2
x (x L)2 (OLJLHQGR w0 EI \ L REWHQHPRV OD FXUYD GH
24EI
GHÀH[LyQGHOD¿JXUD
o y(x)
0.5
1 x
EIGENVALORES Y FUNCIONES PROPIAS 0XFKRVSUREOHPDVGHDSOLFDFLyQUHTXLHUHQTXHVHUHVXHOYDXQSUREOHPDFRQYDORUHVHQODIURQWHUDHQGRVSXQWRV 39)
HQORVTXHLQWHUYLHQHXQDHFXDFLyQGLIHUHQFLDOOLQHDOTXHFRQWLHQHXQSDUiPHWURȜ6H
EXVFDQORVYDORUHVGHȜSDUDORVTXHHOSUREOHPDFRQYDORUHVHQODIURQWHUDWLHQHVROXciones no trivialesHVGHFLUno nulas
y
FIGURA 5.2.3 &XUYDGHGHÀH[LyQ
SDUDHOHMHPSOR
EJEMPLO 2
Soluciones no triviales de un PVF
5HVXHOYDHOSUREOHPDFRQYDORUHVHQODIURQWHUD
y
y
0,
y(0)
0,
0.
y(L)
SOLUCIÓN Consideraremos tres casos: Ȝ Ȝ \Ȝ
CASO I: Para Ȝ ODVROXFLyQGHy 0 es y cx c/DVFRQGLFLRQHVy \
y(L DSOLFDGDVDHVWDVROXFLyQLPSOLFDQDVXYH]c \c 3RUWDQWRSDUDȜ
OD~QLFDVROXFLyQGHOSUREOHPDFRQYDORUHVHQODIURQWHUDHVODVROXFLyQWULYLDOy 0
2EVHUYHTXHDTXtVHHPSOHDQIXQFLRQHVKLSHUEyOLFDV9XHOYDDOHHU
³'RVHFXDFLRQHVTXHYDOHODSHQD
FRQRFHU´GHODVHFFLyQ
CASO II: Para Ȝ 0 es conveniente escribir Ȝ ĮGRQGHĮGHQRWDXQQ~PHUR
SRVLWLYR&RQHVWDQRWDFLyQODVUDtFHVGHODHFXDFLyQDX[LOLDUm Į 0 son ml Į\
m Į3XHVWRTXHHOLQWHUYDORHQHOTXHVHHVWiWUDEDMDQGRHV¿QLWRVHHOLJHHVFULELU
ODVROXFLyQJHQHUDOGHy Įy 0 como y c cosh Į[ c senh Į[$KRUDy HV
c1 cosh 0
y(0)
c2 senh 0
c1 1
c1,
c2 0
\SRUWDQWRy VLJQL¿FDTXHc $Vty c senh Į[/DVHJXQGDFRQGLFLyQ
y(L UHTXLHUHTXHc senh Į/ 3DUDĮ VHQKĮ/HQFRQVHFXHQFLDVH
HVWiIRU]DGRDHOHJLUc 'HQXHYRODVROXFLyQGHO39)HVODVROXFLyQWULYLDOy 0
CASO III: Para Ȝ 0 se escribe Ȝ ĮGRQGHĮHVXQQ~PHURSRVLWLYR'HELGRD
TXHODHFXDFLyQDX[LOLDUm Į WLHQHUDtFHVFRPSOHMDVml LĮ\m LĮOD
VROXFLyQJHQHUDOGHy Įy 0 es y c cos Į[ c sen Į[&RPRDQWHVy 0
SURGXFHc \SRUWDQWRy c sen Į[$KRUDOD~OWLPDFRQGLFLyQy(L R
c2 sen L
0,
VHVDWLVIDFHDOHOHJLUc 3HURHVWRVLJQL¿FDTXHy 6LVHUHTXLHUHc HQWRQces sen Į/ VHVDWLVIDFHVLHPSUHTXHĮ/VHDXQP~OWLSORHQWHURGHʌ
n
n 2
2
o
, n 1, 2, 3, . . . .
n
n
L
L
3RUWDQWRSDUDFXDOTXLHUQ~PHURUHDOcGLVWLQWRGHFHURy csen(Qʌ[兾L HVXQDVROXFLyQGHOSUREOHPDSDUDFDGDn'HELGRDTXHODHFXDFLyQGLIHUHQFLDOHVKRPRJpQHD
FXDOTXLHUP~OWLSORFRQVWDQWHGHXQDVROXFLyQWDPELpQHVXQDVROXFLyQDVtTXHVLVHGHVHD
VHSRGUtDVLPSOHPHQWHWRPDUc (QRWUDVSDODEUDVSDUDFDGDQ~PHURGHODVXFHVLyQ
L
n
o
4 2
,
,
2
L2
L2
ODIXQFLyQcorrespondienteHQODVXFHVLyQ
2
y1 sen x,
y2 sen x,
L
L
2
1
HV XQD VROXFLyQ QR WULYLDO GHO SUREOHPD y
n UHVSHFWLYDPHQWH
3
9 2
,
L2
,
y3
sen
3
x,
L
,
y
0,
y(0)
0,
y(L)
0. SDUD
/RV Q~PHURV Ȝn n ʌ 兾L n SDUD ORV FXDOHV HO SUREOHPD FRQ YDORUHVHQODIURQWHUDGHOHMHPSORWLHQHVROXFLRQHVQRWULYLDOHVTXHVHFRQRFHQFRPR
5.2
y
n=2 n=1
1
n=3
L
–1
n=4
l
207
eigenvalores YDORUHV SURSLRV /DV VROXFLRQHV QR WULYLDOHV TXH GHSHQGHQ GH
estos valores de Ȝ ny n c sen (Qʌ[ 兾L RVLPSOHPHQWHy n sen(Qʌ[ 兾L VHOODman eigenfunciones IXQFLRQHVSURSLDV /DVJUi¿FDVGHODVHLJHQIXQFLRQHVSDUD
n VHPXHVWUDQHQOD¿JXUD1RWDTXHFDGDOtQHDJUD¿FDGDSDVD
SRUORVGRVSXQWRV \ /
EJEMPLO 3
Vuelta al ejemplo 2
6H HQWLHQGH GHO HMPSOR \ OD GLVFXVLyQ DQWHULRU TXH HO SUREOHPD FRQ YDORUHV HQ OD
IURQWHUD
y y y y(L 0
n=5
FIGURA 5.2.4 *Ui¿FDVGHODV
HLJHQIXQFLRQHVyn = sen(Qʌ[兾L SDUD
n
SRVHHVRODPHQWHODVROXFLyQWULYLDOy 0SRUTXHnoHVXQHLJHQYDORU
PANDEO DE UNA COLUMNA VERTICAL DELGADA (Q HO VLJOR XVIII
/HRQKDUG (XOHU IXH XQR GH ORV SULPHURV PDWHPiWLFRV HQ HVWXGLDU XQ SUREOHPD FRQ
HLJHQYDORUHV\DQDOL]DUFyPRVHSDQGHDXQDFROXPQDHOiVWLFDGHOJDGDEDMRXQDIXHU]D
D[LDOFRPSUHVLYD
&RQVLGHUHXQDFROXPQDYHUWLFDOODUJD\GHOJDGDGHVHFFLyQWUDQVYHUVDOXQLIRUPH\
ORQJLWXGL6HDy(x ODGHÀH[LyQGHODFROXPQDFXDQGRVHDSOLFDHQODSDUWHVXSHULRUXQD
IXHU]DFRPSUHVLYDYHUWLFDOFRQVWDQWHXQDFDUJDP,FRPRVHPXHVWUDHQOD¿JXUD$O
FRPSDUDUORVPRPHQWRVGHÀH[LyQHQDOJ~QSXQWRDORODUJRGHODFROXPQDVHREWLHQH
P
x=0
x
MODELOS LINEALES: PROBLEMAS CON VALORES EN LA FRONTERA
y
x
EI
L
d 2y
dx 2
Py
o
EI
d 2y
dx 2
0
Py
donde EHVHOPyGXORGH<RXQJSDUDODHODVWLFLGDGHIHVHOPRPHQWRGHLQHUFLDGHXQD
VHFFLyQWUDQVYHUVDOUHVSHFWRDXQDUHFWDYHUWLFDOSRUVXFHQWURLGH
EJEMPLO 4
x=L
a)
(QFXHQWUHODGHÀH[LyQGHXQDFROXPQDKRPRJpQHDYHUWLFDO\GHOJDGDGHORQJLWXGLVXMHWDDXQDFDUJDD[LDOFRQVWDQWHPVLODFROXPQDVH¿MDFRQELVDJUDVHQDPERVH[WUHPRV
b)
FIGURA 5.2.5 3DQGHRGHXQD
FROXPQDHOiVWLFDEDMRXQDIXHU]D
FRPSUHVLYD
y
y
La carga de Euler
SOLUCIÓN (OSUREOHPDFRQYDORUHVHQODIURQWHUDSRUUHVROYHUHV
EI
y
d 2y
dx 2
L
x
x
a)
0.
y(L)
y
0,
y(0)
0,
y(L)
0
HVLGpQWLFRDOSUREOHPDGHOHMHPSOR'HOFDVR,,,GHHVDGHVFULSFLyQVHYHTXHODVGHÀH[LRQHV VRQ yn(x c sen(Qʌ[兾L TXH FRUUHVSRQGHQ D ORV HLJHQYDORUHV
Ȝn Pn 兾EI nʌ 兾L n 'HVGHHOSXQWRGHYLVWDItVLFRHVWRVLJQL¿FDTXH
ODFROXPQDH[SHULPHQWDÀH[LyQVyORFXDQGRODIXHU]DFRPSUHVLYDHVXQRGHORVYDORUHV
Pn n ʌEI兾L n (VWDVIXHU]DVGLIHUHQWHVVHOODPDQcargas críticas/D
GHÀH[LyQFRUUHVSRQGLHQWHDODFDUJDFUtWLFDPiVSHTXHxDP ʌEI兾L OODPDGDcarga
de EulerHVy(x c sen(ʌ[兾L \VHFRQRFHFRPRprimer modo de pandeo
L
x
b)
0,
3ULPHURREVHUYHTXHy HVXQDVROXFLyQPX\EXHQDGHHVWHSUREOHPD(VWDVROXFLyQ
WLHQHXQDVLPSOHLQWHUSUHWDFLyQLQWXLWLYD6LODFDUJDPQRHVVX¿FLHQWHPHQWHJUDQGH
QRKD\GHÀH[LyQ(QWRQFHVODSUHJXQWDHVHVWD¢SDUDTXpYDORUHVGHP se dobla la coOXPQD"(QWpUPLQRVPDWHPiWLFRV¢SDUDTXpYDORUHVGHPHOSUREOHPDFRQYDORUHVHQ
ODIURQWHUDWLHQHVROXFLRQHVQRWULYLDOHV"
$OHVFULELUȜ P兾EIYHPRVTXH
y
L
0, y(0)
Py
c)
FIGURA 5.2.6 &XUYDVGHGHÀH[LyQ
TXHFRUUHVSRQGHQDODVIXHU]DV
FRPSUHVLYDVPPP
/DV FXUYDV GH GHÀH[LyQ GHO HMHPSOR TXH FRUUHVSRQGHQ D n n \ n
VH PXHVWUDQ HQ OD ¿JXUD 2EVHUYH TXH VL OD FROXPQD RULJLQDO WLHQH DOJXQD
FODVH GH UHVWULFFLyQ ItVLFD HQ x L兾 HQWRQFHV OD FDUJD FUtWLFD PiV SHTXHxD VHUi
P 4ʌEI兾L \ODFXUYDGHGHÀH[LyQVHUiFRPRVHPXHVWUDHQOD¿JXUD E 6L
208
CAPÍTULO 5
l
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
VHSRQHQUHVWULFFLRQHVDODFROXPQDHQx L兾\HQx L兾HQWRQFHVODFROXPQD
QRVHSDQGHDKDVWDTXHVHDSOLFDODFDUJDFUtWLFDP ʌEI兾L \ODFXUYDGHGHÀH[LyQ
VHUiFRPRVHPXHVWUDHQOD¿JXUD F 9HDHOSUREOHPDGHORVHMHUFLFLRV
CUERDA ROTANDO
/DHFXDFLyQGLIHUHQFLDOOLQHDOGHVHJXQGRRUGHQ
y
a)
ω
y(x)
x=0
x=L
b)
T2
θ2
θ1
T1
x + Δx
x
c)
FIGURA 5.2.7 &XHUGDURWDWRULD\
IXHU]DVTXHDFW~DQVREUHHOOD
0
y
VHSUHVHQWDXQD\RWUDYH]FRPRXQPRGHORPDWHPiWLFR(QODVHFFLyQYLPRVTXH
ODHFXDFLyQ HQODVIRUPDVd x兾dt (k兾m x \d q兾dt 兾LC q 0 son moGHORVSDUDHOPRYLPLHQWRDUPyQLFRVLPSOHGHXQVLVWHPDUHVRUWHPDVD\ODUHVSXHVWD
DUPyQLFDVLPSOHGHXQFLUFXLWRHQVHULHUHVSHFWLYDPHQWH(VHYLGHQWHFXDQGRHOPRGHOR
SDUD OD GHÀH[LyQ GH XQD FROXPQD GHOJDGD HQ VH HVFULEH FRPR d y兾dx (P兾EI
y TXHHVORPLVPRTXH 6HHQFXHQWUDODHFXDFLyQEiVLFD XQDYH]PiVHQHVWD
VHFFLyQFRPRXQPRGHORTXHGH¿QHODFXUYDGHGHÀH[LyQRODIRUPDy(x TXHDGRSWDXQD
FXHUGDURWDWRULD/DVLWXDFLyQItVLFDHVVLPLODUDFXDQGRGRVSHUVRQDVVRVWLHQHQXQDFXHUGD
SDUDVDOWDU\ODKDFHQJLUDUGHXQDPDQHUDVLQFURQL]DGD9HDOD¿JXUD D \ E
6XSRQJDTXHXQDFXHUGDGHORQJLWXGL con densidad lineal constante ȡ PDVDSRU
XQLGDGGHORQJLWXG VHHVWLUDDORODUJRGHOHMHx\VH¿MDHQx \x L6XSRQJDTXH
ODFXHUGDVHKDFHJLUDUUHVSHFWRDOHMHDXQDYHORFLGDGDQJXODUFRQVWDQWHȦ&RQVLGHUH
XQDSRUFLyQGHODFXHUGDHQHOLQWHUYDOR>xx "x@GRQGH"xHVSHTXHxD6LODPDJQLWXGTGHODWHQVLyQTTXHDFW~DWDQJHQFLDODODFXHUGDHVFRQVWDQWHDORODUJRGH
pVWDHQWRQFHVODHFXDFLyQGLIHUHQFLDOGHVHDGDVHREWLHQHDOLJXDODUGRVIRUPXODFLRQHV
GLVWLQWDVGHODIXHU]DQHWDTXHDFW~DHQODFXHUGDHQHOLQWHUYDOR>xx "x@3ULPHUR
YHPRVHQOD¿JXUD F VHYHTXHODIXHU]DYHUWLFDOQHWDHV
x
T sen
F
2
T sen 1
&XDQGRORViQJXORVș\ș PHGLGRVHQUDGLDQHV VRQSHTXHxRVVHWLHQHVHQș ⬇ tan
ș\VHQș ⬇ tan ș$GHPiVSXHVWRTXHWDQș\WDQșVRQDVXYH]SHQGLHQWHVGH
ODVUHFWDVTXHFRQWLHQHQORVYHFWRUHVT\TWDPELpQVHSXHGHHVFULELU
tan
x) \ tan
y (x
2
1
y (x).
3RUWDQWRODHFXDFLyQ VHFRQYLHUWHHQ
F
T [ y (x
x)
y (x)]
6HJXQGR VH SXHGH REWHQHU XQD IRUPD GLIHUHQWH GH HVWD PLVPD IXHU]D QHWD XVDQGR
OD VHJXQGD OH\ GH 1HZWRQ F ma $TXt OD PDVD GHO UHVRUWH HQ HO LQWHUYDOR HV
m ȡ "xODDFHOHUDFLyQFHQWUtSHWDGHXQFXHUSRTXHJLUDFRQYHORFLGDGDQJXODUȦ en
XQFtUFXORGHUDGLRr es a UȦ&RQ"xSHTXHxDVHWRPDr y$VtODIXHU]DYHUWLFDO
QHWDHVWDPELpQDSUR[LPDGDPHQWHLJXDOD
(
F
x)y
2
GRQGHHOVLJQRPHQRVYLHQHGHOKHFKRGHTXHODDFHOHUDFLyQDSXQWDHQODGLUHFFLyQ
RSXHVWDDODGLUHFFLyQySRVLWLYD$KRUDDOLJXDODU \ VHWLHQH
cociente de diferencias
T[y(x "x) y(x)] (r"x)yv2
o
y(x "x) y(x)
T ––––––––––––––––– rv2y 0.
"x
Para "xFHUFDQDDFHURHOFRFLHQWHGHGLIHUHQFLDVHQ HVDSUR[LPDGDPHQWHODVHJXQGDGHULYDGDdy兾dx3RU~OWLPRVHOOHJDDOPRGHOR
d2y
2
y 0
dx2
3XHVWRTXHODFXHUGDHVWiDQFODGDHQVXVH[WUHPRVHQx \x LHVSHUDPRVTXH
ODVROXFLyQy(x GHODHFXDFLyQ VDWLVIDJDWDPELpQODVFRQGLFLRQHVIURQWHUDy
\y(L
T
5.2
MODELOS LINEALES: PROBLEMAS CON VALORES EN LA FRONTERA
l
209
COMENTARIOS
i /RVHLJHQYDORUHVQRVLHPSUHVRQIiFLOHVGHHQFRQWUDUFRPRVXFHGLyHQHO
HMHPSOR HV SRVLEOH TXH VH WHQJDQTXH DSUR[LPDUODV UDtFHVGH HFXDFLRQHV
como tan x x o cos x cosh x 9pDQVHORVSUREOHPDVDHQORV
HMHUFLFLRV
ii /DVFRQGLFLRQHVGHIURQWHUDDSOLFDGDVDXQDVROXFLyQJHQHUDOGHXQDHFXDFLyQGLIHUHQFLDOGDQOXJDUDXQVLVWHPDDOJHEUDLFRKRPRJpQHRGHHFXDFLRQHV
OLQHDOHVHQODVTXHODVLQFyJQLWDVVRQORVFRH¿FLHQWHVciGHODVROXFLyQJHQHUDO
8QVLVWHPDDOJHEUDLFRKRPRJpQHRGHHFXDFLRQHVOLQHDOHVHVVLHPSUHFRQVLVWHQWHSRUTXHSRUORPHQRVWLHQHXQDVROXFLyQWULYLDO3HURXQVLVWHPDKRPRJpneo de nHFXDFLRQHVOLQHDOHVFRQnLQFyJQLWDVWLHQHXQDVROXFLyQQRWULYLDOVL\
VyORVLHOGHWHUPLQDQWHGHORVFRH¿FLHQWHVHVLJXDODFHUR3RGUtDVHUQHFHVDULR
XVDUHVWH~OWLPRKHFKRHQORVSUREOHPDV\GHORVHMHUFLFLRV
EJERCICIOS 5.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-8.
Deflexión de una viga
(QORVSUREOHPDVDUHVXHOYDODHFXDFLyQ VXMHWDDODV
FRQGLFLRQHVGHIURQWHUDDGHFXDGDV/DYLJDHVGHORQJLWXGL\
w0HVXQDFRQVWDQWH
1. a) /
D YLJD HVWi HPSRWUDGD HQ VX H[WUHPR L]TXLHUGR \
OLEUHHQVXH[WUHPRGHUHFKR\w(x w0 x L
b) 8VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODFXUYD
GHGHÀH[LyQFXDQGRw0 EI\L
2. a) /
DYLJDHVWiDSR\DGDVLPSOHPHQWHHQDPERVH[WUHPRV\w(x w0 x L
b) 8VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODFXUYD
GHGHÀH[LyQFXDQGRw0 EI\L
3. a) /
D YLJD HVWi HPSRWUDGD HQ VX H[WUHPR L]TXLHUGR \
DSR\DGDVLPSOHPHQWHHQVXH[WUHPRGHUHFKR\w(x
w0 x L
b) 8VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODFXUYD
GHGHÀH[LyQFXDQGRw0 EI\L
4. a) /
D YLJD HVWi HPSRWUDGD HQ VX H[WUHPR L]TXLHUGR \
DSR\DGDVLPSOHPHQWHHQVXH[WUHPRGHUHFKR\w(x
w0 sen(ʌ[兾L x L
b) 8WLOLFH XQ SURJUDPD GH JUD¿FDFLyQ SDUD WUD]DU OD
FXUYDGHGHÀH[LyQFXDQGRw0 ʌEI\L
c) 8VDQGR XQ SURJUDPD GH JUD¿FDFLyQ SDUD HQFRQWUDU
UDtFHV R GH XQD FDOFXODGRUD JUi¿FD DSUR[LPH HO
SXQWRHQODJUi¿FDGHOLQFLVRE HQHOTXHRFXUUHOD
Pi[LPDGHÀH[LyQ¢&XiOHVODPi[LPDGHÀH[LyQ"
5. a) /
DYLJDHVWiVLPSOHPHQWHVRSRUWDGDHQDPERVH[WUHPRV\w(x w0 x x L
b) 8WLOLFH XQ SURJUDPD GH JUD¿FDFLyQ SDUD WUD]DU OD
FXUYDGHGHÀH[LyQFXDQGRw0 EI\L
c) 8VDQGR XQ SURJUDPD GH JUD¿FDFLyQ SDUD HQFRQWUDU
UDtFHV R GH XQD FDOFXODGRUD JUi¿FD DSUR[LPH HO
SXQWRHQODJUi¿FDGHOLQFLVRE HQHOTXHRFXUUHOD
Pi[LPDGHÀH[LyQ¢&XiOHVODPi[LPDGHÀH[LyQ"
6. a) &DOFXOHODGHÀH[LyQPi[LPDGHODYLJDHQYRODGL]R
GHOSUREOHPD
b) ¢&yPRVHFRPSDUDFRQHOYDORUGHOLQFLVRD FRQOD
GHÀH[LyQPi[LPDGHXQDYLJDTXHWLHQHODPLWDGGH
ODUJR"
c) (QFXHQWUH OD GHÀH[LyQ Pi[LPD GH OD YLJD DSR\DGD
GHOSUREOHPD
d) ¢&yPR VH FRPSDUD OD GHÀH[LyQ Pi[LPD GH OD YLJD
FRQDSR\RVVLPSOHVGHOLQFLVRF FRQHOYDORUGHODGHÀH[LyQPi[LPDGHODYLJDHPSRWUDGDGHOHMHPSOR"
7. 8QDYLJDHQYRODGL]RGHORQJLWXGLHVWiHPSRWUDGDHQVX
H[WUHPRGHUHFKR\VHDSOLFDXQDIXHU]DGHPOLEUDVHQVXH[
WUHPR L]TXLHUGR OLEUH &XDQGR HO RULJHQ VH WRPD FRPR
VX H[WUHPR OLEUH FRPR VH LOXVWUD HQ OD ¿JXUD VH
SXHGHGHPRVWUDUTXHODGHÀH[LyQy(x GHODYLJDVDWLVIDFH
ODHFXDFLyQGLIHUHQFLDO
EIy
Py
x
w(x) .
2
(QFXHQWUHODGHÀH[LyQGHODYLJDHQYRODGL]RVLw(x
w0 x x L\y y(L
y
L
w0 x
P
O
x
x
FIGURA 5.2.8 'HÀH[LyQGHODYLJDHQYRODGL]RGHOSUREOHPD
210
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
8. &XDQGRVHDSOLFDXQDIXHU]DFRPSUHVLYDHQOXJDUGHXQD
IXHU]DGHWHQVLyQHQHOH[WUHPROLEUHGHODYLJDGHOSUREOHPDODHFXDFLyQGLIHUHQFLDOGHODGHÀH[LyQHV
x
EIy
Py w(x) .
2
5HVXHOYDHVWDHFXDFLyQVLw(x w0x x L\y
y(L
x
P
x=L
δ
Eigenvalores y funciones propias
(QORVSUREOHPDVDGHWHUPLQHORVHLJHQYDORUHV\ODVIXQFLRQHVSURSLDVGHOSUREOHPDFRQYDORUHVHQODIURQWHUDGDGR
9. y Ȝ\ y y(ʌ 0
10. y Ȝ\ y y(ʌ兾 0
11. y Ȝ\ y y(L 0
12. y Ȝ\ y y(ʌ兾 0
13. y Ȝ\ y y(ʌ 0
14. y Ȝ\ y(ʌ y(ʌ 0
15. y y (Ȝ y y y 0
16. y (Ȝ y y y 0
17. x y xy Ȝ\ y y(eʌ 0
x=0
y
FIGURA 5.2.9 'HÀH[LyQGHODFROXPQDYHUWLFDOGHO
SUREOHPD
a) ¢&XiOHVODGHÀH[LyQSUHGLFKDFXDQGRį "
b) &XDQGRį GHPXHVWUHTXHODFDUJDGH(XOHUSDUD
HVWDFROXPQDHVXQFXDUWRGHODFDUJDGH(XOHUSDUDOD
FROXPQDTXHHVWiDELVDJUDGDGHOHMHPSOR
23. &RPRVHPHQFLRQyHQHOSUREOHPDODHFXDFLyQGLIHUHQFLDO TXHJRELHUQDODGHÀH[LyQy(x GHXQDFROXPQD
HOiVWLFDGHOJDGDVXMHWDDXQDIXHU]DD[LDOFRPSUHVLYDFRQVtante PHVYiOLGDVyORFXDQGRORVH[WUHPRVGHODFROXPQD
HVWiQDELVDJUDGRV(QJHQHUDOODHFXDFLyQGLIHUHQFLDOTXH
JRELHUQDODGHÀH[LyQGHODFROXPQDHVWiGDGDSRU
18. x y xy Ȝ\ y(e y 0
(Q ORV SUREOHPDV \ GHWHUPLQH ORV HLJHQYDORUHV \ ODV
IXQFLRQHV SURSLDV GHO SUREOHPD FRQ YDORUHV HQ OD IURQWHUD
GDGR&RQVLGHUHVyORHOFDVRȜ Į4Į
19. y Ȝ\ y y y
y 0
20. y Ȝ\ y y y(ʌ
y(ʌ 0
Pandeo de una columna delgada
21. &RQVLGHUHOD¿JXUD¢'yQGHVHGHEHQFRORFDUHQOD
FROXPQDODVUHVWULFFLRQHVItVLFDVVLVHTXLHUHTXHODFDUJD
FUtWLFD VHD P4" 'LEXMH OD FXUYD GH GHÀH[LyQ FRUUHVSRQGLHQWHDHVWDFDUJD
22. /DV FDUJDV FUtWLFDV GH FROXPQDV GHOJDGDV GHSHQGHQ GH ODV
FRQGLFLRQHVGHH[WUHPRGHODFROXPQD(OYDORUGHODFDUJD
GH(XOHUPHQHOHMHPSORVHREWXYREDMRODVXSRVLFLyQGH
TXHODFROXPQDHVWDEDDELVDJUDGDSRUDPERVH[WUHPRV6X
SRQJDTXHXQDFROXPQDYHUWLFDOKRPRJpQHDGHOJDGDHVWiHP
SRWUDGDHQVXEDVH x \OLEUHHQVXSDUWHVXSHULRU x L
\TXHVHDSOLFDXQDFDUJDD[LDOFRQVWDQWHPHQVXH[WUHPR
OLEUH (VWD FDUJD FDXVD XQD GHÀH[LyQ SHTXHxD į como se
PXHVWUDHQOD¿JXUDRQRFDXVDWDOGHÀH[LyQ(QFXDOTXLHUFDVRODHFXDFLyQGLIHUHQFLDOSDUDODGHÀH[LyQy(x HV
EI
d 2y
dx 2
Py
P .
d2
d 2y
EI
dx 2
dx 2
P
d 2y
dx 2
0.
6XSRQJDTXHODFROXPQDHVXQLIRUPH EIHVXQDFRQVWDQWH
\TXHORVH[WUHPRVGHODFROXPQDHVWiQDELVDJUDGRV0XHV
WUH TXH OD VROXFLyQ GH HVWD HFXDFLyQ GLIHUHQFLDO GH FXDUWR
RUGHQVXMHWDDODVFRQGLFLRQHVOtPLWHy y
y(L y(L HVHTXLYDOHQWHDODQiOLVLVGHOHMHPSOR
24. 6XSRQJD TXH XQD FROXPQD HOiVWLFD GHOJDGD \ XQLIRUPH
HVWi DELVDJUDGD HQ HO H[WUHPR x \ HPSRWUDGD HQ HO
H[WUHPRx L
a) 8VHODHFXDFLyQGLIHUHQFLDOGHFXDUWRRUGHQGHOSUREOHPD SDUD HQFRQWUDU ORV YDORUHV SURSLRV Ȝn ODV
FDUJDVFUtWLFDVPnODFDUJDGH(XOHUP\ODVGHÀH[LRnes yn(x
b 8VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODJUi¿FD
GHOSULPHUPRGRGHSDQGHR
Cuerda rotando
25. &RQVLGHUHHOSUREOHPDFRQYDORUHVHQODIURQWHUDSUHVHQWDGR HQ OD FRQVWUXFFLyQ GHO PRGHOR PDWHPiWLFR SDUD OD
IRUPDGHXQDFXHUGDURWDWRULD
d 2y
2
y 0, y(0) 0, y(L) 0.
dx 2
Para T\ȡFRQVWDQWHVGH¿QDODVYHORFLGDGHVFUtWLFDVGHOD
URWDFLyQDQJXODUȦn como los valores de ȦSDUDORVFXDOHV
HO SUREOHPD FRQ YDORUHV HQ OD IURQWHUD WLHQH VROXFLRQHV
QRWULYLDOHV'HWHUPLQHODVUDSLGHFHVFUtWLFDVȦn\ODVGHÀH[LRQHVFRUUHVSRQGLHQWHV yn(x
T
5.2
MODELOS LINEALES: PROBLEMAS CON VALORES EN LA FRONTERA
26. &XDQGRODPDJQLWXGGHODWHQVLyQTQRHVFRQVWDQWHHQWRQFHVXQPRGHORSDUDODFXUYDGHGHÀH[LyQRIRUPDy(x
TXHWRPDXQDFXHUGDURWDWRULDHVWiGDGRSRU
d
dy
T (x)
dx
dx
2
6XSRQJDTXH x e\TXHT(x x
a) Si y O y(e \ȡȦ GHPXHVWUHTXH
ODV YHORFLGDGHV FUtWLFDV GH URWDFLyQ DQJXODU VRQ
1
2 2
1)> \ ODV GHÀH[LRQHV FRUUHVn
2 2(4n
SRQGLHQWHVVRQ
yn(x c x兾 sen(Qʌ ln x n
b) 8
WLOLFH XQ SURJUDPD GH JUD¿FDFLyQ SDUD WUD]DU ODV
FXUYDVGHGHÀH[LyQHQHOLQWHUYDOR>e@SDUDn
(OLMDc
Diferentes problemas con valores en la frontera
27. Temperatura en una esfera &RQVLGHUH GRV HVIHUDV
FRQFpQWULFDVGHUDGLRr a\r ba b9HDOD¿JXUD
/DWHPSHUDWXUDu(r HQODUHJLyQHQWUHODVHVIHUDV
VHGHWHUPLQDGHOSUREOHPDFRQYDORUHVHQODIURQWHUD
r
d 2u
dr 2
2
du
dr
0,
u0 ,
u(a)
donde u0\uVRQFRQVWDQWHV'HPXHVWUHTXH
u0 ln(r>b) u1 ln(r>a)
.
ln(a>b)
u(r)
Problemas para analizar
0.
y
211
l
u 1,
u(b)
donde u0\uVRQFRQVWDQWHV5HVXHOYDSDUDu(r
u = u1
u = u0
29. Movimiento armónico simple (OPRGHORmx kx 0
SDUDHOPRYLPLHQWRDUPyQLFRVLPSOHTXHVHDQDOL]yHQ
OD VHFFLyQ VH SXHGH UHODFLRQDU FRQ HO HMHPSOR GH
HVWDVHFFLyQ
&RQVLGHUH XQ VLVWHPD UHVRUWHPDVD OLEUH QR DPRUWLJXDGRSDUDHOFXDOODFRQVWDQWHGHUHVRUWHHVGLJDPRVk
OESLH'HWHUPLQHODVPDVDVmnTXHVHSXHGHQXQLUDO
UHVRUWHSDUDTXHFXDQGRVHOLEHUHFDGDPDVDHQODSRVLFLyQ
GHHTXLOLEULRHQt FRQXQDYHORFLGDGv0GLIHUHQWHGH
FHURSDVHSRUODSRVLFLyQGHHTXLOLEULRHQt VHJXQGR
¢&XiQWDV YHFHV SDVD FDGD PDVD mn SRU OD SRVLFLyQ GH
HTXLOLEULRHQHOLQWHUYDORGHWLHPSR t "
30. Movimiento amortiguado 6XSRQJDTXHHOPRGHORSDUD
HOVLVWHPDUHVRUWHPDVDGHOSUREOHPDVHUHHPSOD]DSRU
mx x kx (QRWUDVSDODEUDVHOVLVWHPDHVOLEUH
SHURHVWiVXMHWRDDPRUWLJXDPLHQWRQXPpULFDPHQWHLJXDOD
GRVYHFHVODYHORFLGDGLQVWDQWiQHD&RQODVPLVPDVFRQGLFLRQHVLQLFLDOHV\ODFRQVWDQWHGHUHVRUWHGHOSUREOHPD
LQYHVWLJXHVLHVSRVLEOHHQFRQWUDUXQDPDVDmTXHSDVHSRU
ODSRVLFLyQGHHTXLOLEULRHQt VHJXQGR
(QORVSUREOHPDV\GHWHUPLQHVLHVSRVLEOHHQFRQWUDU
valores y0\y SUREOHPD \YDORUHVGHL SUREOHPD
WDOTXHHOSUREOHPDFRQYDORUHVLQLFLDOHVWHQJDa)H[DFWDPHQWH
XQD VROXFLyQ QR WULYLDO b) PiV GH XQD VROXFLyQ c) QLQJXQD
VROXFLyQd)ODVROXFLyQWULYLDO
31. y y y y0y(ʌ兾 y
32. y y y y(L
33. &RQVLGHUHHOSUREOHPDFRQYDORUHVHQODIURQWHUD
FIGURA 5.2.10 (VIHUDVFRQFpQWULFDVGHOSUREOHPD
28. Temperatura en un anillo /D WHPSHUDWXUD u(r HQ HO
DQLOORFLUFXODUPRVWUDGRHQOD¿JXUDVHGHWHUPLQDD
SDUWLUGHOSUREOHPDFRQYDORUHVHQODIURQWHUD
r
d 2u
dr 2
du
dr
0,
u0 ,
u(a)
a
u(b)
u1,
y
0,
y
y(
)
y( ), y (
)
y ( ).
a) $
OWLSRGHFRQGLFLRQHVHQODIURQWHUDHVSHFL¿FDGDVVH
le llaman condiciones frontera periódicas'pXQD
LQWHUSUHWDFLyQJHRPpWULFDGHHVWDVFRQGLFLRQHV
b) 'HWHUPLQH ORV HLJHQYDORUHV \ ODV IXQFLRQHV SURSLDV
GHOSUREOHPD
c) 8VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUDOJXQDV
GH ODV IXQFLRQHV SURSLDV &RPSUXHEH VX LQWHUSUHWDFLyQJHRPpWULFDGHODVFRQGLFLRQHVIURQWHUDGDGDVHQ
HOLQFLVRD
34. 0XHVWUHTXHORVHLJHQYDORUHV\ODVIXQFLRQHVSURSLDVGHO
SUREOHPDFRQYDORUHVHQODIURQWHUD
b
u = u0
u = u1
FIGURA 5.2.11 $QLOORFLUFXODUGHOSUREOHPD
y
y
0,
y(0)
0,
y(1)
y (1)
0
2
son n
n \yn sen Įn xUHVSHFWLYDPHQWHGRQGHĮn
n VRQODVUDtFHVSRVLWLYDVFRQVHFXWLYDVGHOD
HFXDFLyQWDQĮ Į
212
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
Tarea para el laboratorio de computación
35. 8VH XQ 6$& SDUD WUD]DU ODV JUi¿FDV TXH OR FRQYHQ]DQ
GH TXH OD HFXDFLyQ WDQ Į Į GHO SUREOHPD WLHQH
XQQ~PHURLQ¿QLWRGHUDtFHV([SOLTXHSRUTXpVHSXHGHQ
GHVSUHFLDUODVUDtFHVQHJDWLYDVGHODHFXDFLyQ([SOLTXH
SRUTXpȜ QRHVXQHLJHQYDORUDXQFXDQGRĮ 0 es
XQDVROXFLyQREYLDGHODHFXDFLyQWDQĮ Į
36. 8VDQGRXQSURJUDPDSDUDGHWHUPLQDUUDtFHVGHXQ6$&
DSUR[LPHORVSULPHURVFXDWURYDORUHVSURSLRVȜȜȜ\
Ȝ4SDUDHO39)GHOSUREOHPD
5.3
(Q ORV SUREOHPDV \ GHWHUPLQH ORV HLJHQYDORUHV \ ODV
IXQFLRQHVSURSLDVGHOSUREOHPDFRQYDORUHVHQODIURQWHUD8VH
XQ6$&SDUDDSUR[LPDUORVSULPHURVFXDWURYDORUHVSURSLRV
ȜȜȜ\Ȝ4
37. y
y
0, y(0)
0,
y(1)
1
2y
(1)
0
38. y Ȝ\ y y y y 0
[Sugerencia:FRQVLGHUHVyORȜ Į4Į @
MODELOS NO LINEALES
REPASO DE MATERIAL
l 6HFFLyQ
INTRODUCCIÓN (Q HVWD VHFFLyQ VH H[DPLQDQ DOJXQRV PRGHORV PDWHPiWLFRV QR OLQHDOHV GH
RUGHQVXSHULRU$OJXQRVGHHVWRVPRGHORVVHSXHGHQUHVROYHUXVDQGRHOPpWRGRGHVXVWLWXFLyQ OR
TXHFRQGXFHDODUHGXFFLyQGHRUGHQGHOD(' SUHVHQWDGRHQODVHFFLyQ(QDOJXQRVFDVRVGRQGH
QRVHSXHGHUHVROYHUHOPRGHORVHPXHVWUDFyPRVHUHHPSOD]DOD('QROLQHDOSRUXQD('OLQHDO
PHGLDQWHXQSURFHVRFRQRFLGRFRPROLQHDOL]DFLyQ
RESORTES NO LINEALES (OPRGHORPDWHPiWLFRHQ GHODVHFFLyQWLHQHOD
IRUPD
d 2x
F(x) 0
dt2
donde F(x kx'HELGRDTXHxGHQRWDHOGHVSOD]DPLHQWRGHODPDVDGHVGHVXSRVLFLyQ
GHHTXLOLEULRF(x kxHVODOH\GH+RRNHHVGHFLUODIXHU]DHMHUFLGDSRUHOUHVRUWH
TXHWLHQGHDUHVWDXUDUODPDVDDODSRVLFLyQGHHTXLOLEULR8QUHVRUWHTXHDFW~DEDMRXQD
IXHU]D UHVWDXUDGRUD OLQHDO F(x kx se llama resorte lineal 3HUR ORV UHVRUWHV SRFDV
YHFHVVRQOLQHDOHV'HSHQGLHQGRGHFyPRHVWpFRQVWUXLGR\GHOPDWHULDOXWLOL]DGRXQ
UHVRUWHSXHGHYDULDUGHVGH³ÀH[LEOH´RVXDYHKDVWD³UtJLGR´RGXURSRUORTXHVXIXHU]D
UHVWDXUDGRUDSXHGHYDULDUUHVSHFWRDODOH\OLQHDO(QHOFDVRGHPRYLPLHQWROLEUHVLVH
VXSRQHTXHXQUHVRUWHHQEXHQHVWDGRWLHQHDOJXQDVFDUDFWHUtVWLFDVQROLQHDOHVHQWRQFHV
SRGUtDVHUUD]RQDEOHVXSRQHUTXHODIXHU]DUHVWDXUDGRUDGHXQUHVRUWHHVGHFLUF(x HQ
ODHFXDFLyQ HVSURSRUFLRQDODOFXERGHOGHVSOD]DPLHQWRxGHODPDVDPiVDOOiGHVX
SRVLFLyQGHHTXLOLEULRRTXHF(x HVXQDFRPELQDFLyQOLQHDOGHSRWHQFLDVGHOGHVSOD]DPLHQWRFRPRHOTXHVHGHWHUPLQDPHGLDQWHODIXQFLyQQROLQHDOF(x kx kx8Q
UHVRUWHFX\RPRGHORPDWHPiWLFRLQFRUSRUDXQDIXHU]DUHVWDXUDGRUDQROLQHDOFRPR
m
d 2x
d 2x
kx3 0 o m 2
kx k1 x3 0
2
dt
dt
se llama resorte no lineal$GHPiVVHH[DPLQDQPRGHORVPDWHPiWLFRVHQORVTXHHO
DPRUWLJXDPLHQWRLPSDUWLGRDOPRYLPLHQWRHUDSURSRUFLRQDODODYHORFLGDGLQVWDQWiQHD
dx兾dt\ODIXHU]DUHVWDXUDGRUDGHXQUHVRUWHHVWiGDGDSRUODIXQFLyQOLQHDOF(x kx
3HURHVWDVIXHURQVXSRVLFLRQHVPX\VLPSOHVHQVLWXDFLRQHVPiVUHDOHVHODPRUWLJXDPLHQWRSRGUtDVHUSURSRUFLRQDODDOJXQDSRWHQFLDGHODYHORFLGDGLQVWDQWiQHDdx兾dt/D
HFXDFLyQGLIHUHQFLDOQROLQHDO
m
m
d2x
dt 2
dx dx
dt dt
kx
0
5.3
MODELOS NO LINEALES
l
213
HVXQPRGHORGHXQVLVWHPDOLEUHUHVRUWHPDVDHQHOTXHODIXHU]DGHDPRUWLJXDPLHQ
WRHVSURSRUFLRQDODOFXDGUDGRGHODYHORFLGDG$VtTXHHVSRVLEOHLPDJLQDURWUDVFODVHV
GHPRGHORVDPRUWLJXDPLHQWROLQHDO\IXHU]DUHVWDXUDGRUDQROLQHDODPRUWLJXDPLHQWR
QROLQHDO\IXHU]DUHVWDXUDGRUDQROLQHDOHWFpWHUD(OSXQWRHVTXHODVFDUDFWHUtVWLFDVQR
OLQHDOHVGHXQVLVWHPDItVLFRGDQOXJDUDXQPRGHORPDWHPiWLFRTXHHVQROLQHDO
2EVHUYHHQ TXHWDQWRF(x kx como F(x kx kxVRQIXQFLRQHVLPSDUHV
de x3DUDYHUSRUTXpXQDIXQFLyQSROLQRPLDOTXHFRQWLHQHVyORSRWHQFLDVLPSDUHVGH
xSURSRUFLRQDXQPRGHORUD]RQDEOHSDUDODIXHU]DUHVWDXUDGRUDVHH[SUHVDDF como
XQDVHULHGHSRWHQFLDVFHQWUDGDHQODSRVLFLyQGHHTXLOLEULRx 0:
F (x)
c0
c2 x2
c1 x
c3 x3
.
&XDQGRORVGHVSOD]DPLHQWRVxVRQSHTXHxRVORVYDORUHVGHx nVRQLQVLJQL¿FDQWHVSDUD
nVX¿FLHQWHPHQWHJUDQGH6LVHWUXQFDODVHULHGHSRWHQFLDVSRUHMHPSORHQHOFXDUWR
WpUPLQRHQWRQFHVF(x c 0 c x c x c x 3DUDODIXHU]DHQx
F (x)
F
resorte
duro
resorte lineal
\SDUDTXHODIXHU]DHQx
resorte suave
F( x)
x
FIGURA 5.3.1 5HVRUWHVGXURV\VXDYHV
c0
c0
c1 x
c2 x2
c2 x2
c1 x
c3 x3,
c3 x3
WHQJDODPLVPDPDJQLWXGSHURDFW~HHQGLUHFFLyQFRQWUDULDVHGHEHWHQHUF(x
F(x 'HELGRDTXHHVWRVLJQL¿FDTXHFHVXQDIXQFLyQLPSDUVHGHEHWHQHUc0 \c
\SRUWDQWRF(x cx cx36LVHKXELHUDQXVDGRVyORORVSULPHURVGRVWpUPLQRV
GHODVHULHHOPLVPRDUJXPHQWRSURGXFHODIXQFLyQOLQHDOF(x cx6HGLFHTXHXQD
IXHU]DUHVWDXUDGRUDFRQSRWHQFLDVPL[WDVFRPRF(x cx cx\ODVYLEUDFLRQHV
FRUUHVSRQGLHQWHVVRQDVLPpWULFDV(QHODQiOLVLVVLJXLHQWHVHHVFULEHc k\c k
RESORTES DUROS Y SUAVES $QDOLFHPRVFRQPiVGHWDOOHODHFXDFLyQ SDUD
HOFDVRHQTXHODIXHU]DUHVWDXUDGRUDHVWiGDGDSRUF(x kx klxk 6HGLFH
TXHHOUHVRUWHHVduro si kl \suave si kl /DVJUi¿FDVGHWUHVWLSRVGHIXHU]DVUHVWDXUDGRUDVVHPXHVWUDQHQOD¿JXUD(QHOHMHPSORVLJXLHQWHVHLOXVWUDQ
HVWRV GRV FDVRV HVSHFLDOHV GH OD HFXDFLyQ GLIHUHQFLDO md x兾dt kx k x
m k
x
x(0)=2,
x'(0)=_3
t
EJEMPLO 1
x(0)=2,
x'(0)=0
/DVHFXDFLRQHVGLIHUHQFLDOHV
a) resorte duro
d 2x
dt 2
x x3
\
d 2x
dt 2
x
x
x(0)=2,
x'(0)=0
t
x(0)=2,
x'(0)=_3
b) resorte suave
FIGURA 5.3.2 &XUYDVGHVROXFLyQ
QXPpULFD
Comparación de resortes duros y suaves
x3
0
0
VRQFDVRVHVSHFLDOHVGHODVHJXQGDHFXDFLyQHQ \VRQPRGHORVGHXQUHVRUWHGXUR\
XQRVXDYHUHVSHFWLYDPHQWH(QOD¿JXUD D VHPXHVWUDQGRVVROXFLRQHVGH \HQ
OD¿JXUD E GRVVROXFLRQHVGH REWHQLGDVGHXQSURJUDPDGHVROXFLyQQXPpULFD
/DVFXUYDVPRVWUDGDVHQURMRVRQVROXFLRQHVTXHVDWLVIDFHQODVFRQGLFLRQHVLQLFLDOHV
x x ODVGRVFXUYDVHQURMRVRQVROXFLRQHVTXHVDWLVIDFHQx
x 'HVGHOXHJRHVWDVFXUYDVVROXFLyQLQGLFDQTXHHOPRYLPLHQWRGHXQDPDVD
HQHOUHVRUWHGXURHVRVFLODWRULRPLHQWUDVTXHHOPRYLPLHQWRGHXQDPDVDHQHOUHVRUWH
ÀH[LEOHDOSDUHFHUHVQRRVFLODWRULR3HURVHGHEHWHQHUFXLGDGRUHVSHFWRDVDFDUFRQFOXVLRQHVFRQEDVHHQXQSDUGHFXUYDVGHVROXFLyQQXPpULFD8QFXDGURPiVFRPSOHMRGH
ODQDWXUDOH]DGHODVVROXFLRQHVGHDPEDVHFXDFLRQHVVHREWLHQHGHODQiOLVLVFXDOLWDWLYR
GHVFULWRHQHOFDStWXOR
214
CAPÍTULO 5
l
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
PÉNDULO NO LINEAL &XDOTXLHU REMHWR TXH RVFLOD GH XQ ODGR D RWUR VH OODPD
péndulo físico(Opéndulo simpleHVXQFDVRHVSHFLDOGHOSpQGXORItVLFR\FRQVLVWH
HQXQDYDULOODGHORQJLWXGlDODTXHVH¿MDXQDPDVDmHQXQH[WUHPR$OGHVFULELU
HOPRYLPLHQWRGHXQSpQGXORVLPSOHHQXQSODQRYHUWLFDOVHKDFHQODVVXSRVLFLRQHV
GHVLPSOL¿FDFLyQGHTXHODPDVDGHODYDULOODHVGHVSUHFLDEOH\TXHQLQJXQDIXHU]D
H[WHUQDGHDPRUWLJXDPLHQWRRPRWUL]DFW~DVREUHHOVLVWHPD(OiQJXORGHGHVSOD]Dmiento șGHOSpQGXORPHGLGRGHVGHODYHUWLFDOFRPRVHLOXVWUDHQOD¿JXUDVH
FRQVLGHUDSRVLWLYRFXDQGRVHPLGHDODGHUHFKDGHOP\QHJDWLYRDODL]TXLHUGDGHOP
$KRUDUHFXHUGHTXHHODUFRsGHXQFtUFXORGHUDGLRlVHUHODFLRQDFRQHOiQJXORFHQWUDO
șSRUODIyUPXODs Oș3RUWDQWRODDFHOHUDFLyQDQJXODUHV
O
θ
l
mg sen θ
θ W = mg
mg cos θ
P
d 2s
d2
.
l
dt 2
dt 2
'HODVHJXQGDOH\GH1HZWRQWHQHPRVTXH
FIGURA 5.3.3 3pQGXORVLPSOH
a
d2
.
dt2
'H OD ¿JXUD VH YH TXH OD PDJQLWXG GH OD FRPSRQHQWH WDQJHQFLDO GH OD IXHU]D
GHELGDDOSHVRW es mg sen ș(QFXDQWRDGLUHFFLyQHVWDIXHU]DHVmg sen șSRUTXH
DSXQWDDODL]TXLHUGDSDUDș \DODGHUHFKDSDUDș 6HLJXDODQODVGRVYHUVLRQHV
GLVWLQWDVGHODIXHU]DWDQJHQFLDOSDUDREWHQHUml d ș兾dt mg sen șR
ma
F
d2
dt2
(0)= 12 , (0)=2
ml
g
sen
l
(0) =
5
...
3!
5!
DVtTXHVLVHXVDODDSUR[LPDFLyQ VHQș ⬇ș ș 兾 ODHFXDFLyQ VHFRQYLHUWHHQ
d ș兾dt (g兾l ș (g兾l ș 2EVHUYHTXHHVWD~OWLPDHFXDFLyQHVODPLVPDTXH
ODVHJXQGDHFXDFLyQOLQHDOHQ FRQm k g兾l\k g兾l6LQHPEDUJRVLVH
VXSRQHTXHORVGHVSOD]DPLHQWRVșVRQVX¿FLHQWHPHQWHSHTXHxRVSDUDMXVWL¿FDUHOXVR
GHODVXVWLWXFLyQVHQș 艐 șHQWRQFHVODHFXDFLyQ VHFRQYLHUWHHQ
sen
(0)=12
t
LINEALIZACIÓN &RPRUHVXOWDGRGHODSUHVHQFLDGHVHQșHOPRGHORHQ HVQR
OLQHDO(QXQLQWHQWRSRUHQWHQGHUHOFRPSRUWDPLHQWRGHODVVROXFLRQHVGHHFXDFLRQHV
GLIHUHQFLDOHVQROLQHDOHVGHRUGHQVXSHULRUHQRFDVLRQHVVHWUDWDGHVLPSOL¿FDUHOSUREOHPDVXVWLWX\HQGRWpUPLQRVQROLQHDOHVSRUFLHUWDVDSUR[LPDFLRQHV3RUHMHPSOROD
VHULHGH0DFODXULQSDUDVHQșHVWiGDGDSRU
3
1
2,
0
2
a)
d2
dt2
1
b) (0) 2 ,
1
(0) 2
FIGURA 5.3.4 3pQGXORRVFLODQWHHQ
E SpQGXORJLUDWRULRHQF
0
9HDHOSUREOHPDHQORVHMHUFLFLRV6LVHKDFHȦ g兾lVHUHFRQRFHD FRPROD
HFXDFLyQGLIHUHQFLDO GHODVHFFLyQTXHHVXQPRGHORSDUDODVYLEUDFLRQHVOLEUHV
QRDPRUWLJXDGDVGHXQVLVWHPDOLQHDOUHVRUWHPDVD(QRWUDVSDODEUDV HVGHQXHYR
ODHFXDFLyQOLQHDOEiVLFDy Ȝ\ DQDOL]DGDHQODVHFFLyQ&RPRFRQVHFXHQFLD
VHGLFHTXHODHFXDFLyQ HVXQDlinealizaciónGHODHFXDFLyQ 'HELGRDTXHOD
VROXFLyQJHQHUDOGH HVș(t c cos ȦW c sen ȦWHVWDOLQHDOL]DFLyQLQGLFDTXH
SDUD FRQGLFLRQHV LQLFLDOHV FRUUHVSRQGLHQWHV D RVFLODFLRQHV SHTXHxDV HO PRYLPLHQWR
GHOSpQGXORGHVFULWRSRU HVSHULyGLFR
EJEMPLO 2
c) (0) 12 ,
(0) 2
g
l
Dos problemas con valores iniciales
/DVJUi¿FDVGHOD¿JXUD D VHREWXYLHURQFRQD\XGDGHXQSURJUDPDGHVROXFLyQ
QXPpULFD\UHSUHVHQWDQFXUYDVVROXFLyQGHODHFXDFLyQ FXDQGRȦ /DFXUYDD]XO
1
1
LOXVWUDODVROXFLyQGH TXHVDWLVIDFHODVFRQGLFLRQHVLQLFLDOHV (0) 2, (0) 2
PLHQWUDVTXHODFXUYDURMDHVODVROXFLyQGH TXHVDWLVIDFH (0)
1
2,
u (0)
2 /D
5.3
MODELOS NO LINEALES
l
215
FXUYDD]XOUHSUHVHQWDXQDVROXFLyQSHULyGLFDHOSpQGXORTXHRVFLODHQYDLYpQFRPRVH
PXHVWUDHQOD¿JXUD E FRQXQDDPSOLWXGDSDUHQWHA /DFXUYDURMDPXHVWUD
TXH ș FUHFH VLQ OtPLWH FXDQGR DXPHQWD HO WLHPSR HO SpQGXOR FRPHQ]DQGR GHVGH HO
PLVPR GHVSOD]DPLHQWR LQLFLDO UHFLEH XQD YHORFLGDG LQLFLDO GH PDJQLWXG VX¿FLHQWHPHQWHJUDQGHSDUDHQYLDUORKDVWDDUULED²HQRWUDVSDODEUDVHOSpQGXORJLUDUHVSHFWRD
VX SLYRWH FRPR VH LOXVWUD HQ OD ¿JXUD F (Q DXVHQFLD GH DPRUWLJXDPLHQWR HO
PRYLPLHQWRHQFDGDFDVRFRQWLQ~DGHIRUPDLQGH¿QLGD
CABLES TELEFÓNICOS /D HFXDFLyQ GLIHUHQFLDO GH SULPHU RUGHQ dy兾dx
W兾T HV OD HFXDFLyQ GH OD VHFFLyQ (VWD HFXDFLyQ GLIHUHQFLDO HVWDEOHFLGD FRQ OD D\XGD GH OD ¿JXUD VLUYH FRPR PRGHOR PDWHPiWLFR SDUD OD IRUPD
GH XQ FDEOH ÀH[LEOH VXVSHQGLGR HQWUH GRV VRSRUWHV YHUWLFDOHV FXDQGR HO FDEOH OOHYD
XQDFDUJDYHUWLFDO(QODVHFFLyQVHUHVXHOYHHVWD('VLPSOHEDMRODVXSRVLFLyQ
GHTXHODFDUJDYHUWLFDOTXHVRSRUWDQORVFDEOHVGHXQSXHQWHVXVSHQGLGRHUDHOSHVRGH
ODFDUSHWDDVIiOWLFDGLVWULEXLGDGHPRGRXQLIRUPHDORODUJRGHOHMHx&RQW ȡ[ȡ
HOSHVRSRUXQLGDGGHORQJLWXGGHODFDUSHWDDVIiOWLFDODIRUPDGHFDGDFDEOHHQWUHORV
DSR\RVYHUWLFDOHVUHVXOWyVHUSDUDEyOLFD$KRUDVHHVWiHQFRQGLFLRQHVGHGHWHUPLQDU
ODIRUPDGHXQFDEOHÀH[LEOHXQLIRUPHTXHFXHOJDVyOREDMRVXSURSLRSHVRFRPRXQ
FDEOHVXVSHQGLGRHQWUHGRVSRVWHVWHOHIyQLFRV$KRUDODFDUJDYHUWLFDOHVHOFDEOH\SRU
WDQWRVLȡHVODGHQVLGDGOLQHDOGHODODPEUH PHGLGRSRUHMHPSORHQOLEUDVSRUSLH \s
HVODORQJLWXGGHOVHJPHQWRPPHQOD¿JXUDHQWRQFHVW ȡV3RUWDQWR
dy
s
dx
1
3XHVWRTXHODORQJLWXGGHDUFRHQWUHORVSXQWRVP\PHVWiGDGDSRU
dy 2
dx
1
dx
0 B
GHOWHRUHPDIXQGDPHQWDOGHOFiOFXORVHWLHQHTXHODGHULYDGDGH HV
x
s
1
B
ds
dx
dy 2
dx
'HULYDQGRODHFXDFLyQ UHVSHFWRDx\XVDQGRODHFXDFLyQ VHREWLHQHODHFXDFLyQ
GHVHJXQGRRUGHQ
d 2y
dx 2
ds
T1 dx
o
d 2y
dx2
T1 B
1
dy 2
dx
(QHOHMHPSORVLJXLHQWHVHUHVXHOYHODHFXDFLyQ \VHPXHVWUDTXHODFXUYDGHO
FDEOHVXVSHQGLGRHVXQDcatenaria$QWHVGHSURFHGHUREVHUYHTXHODHFXDFLyQGLIHUHQFLDOQROLQHDOGHVHJXQGRRUGHQ HVXQDGHODVHFXDFLRQHVTXHWLHQHQODIRUPDF(x
yy DQDOL]DGDVHQODVHFFLyQ5HFXHUGHTXHKD\SRVLELOLGDGHVGHUHVROYHU
XQDHFXDFLyQGHHVWHWLSRDOUHGXFLUHORUGHQGHODHFXDFLyQXVDQGRODVXVWLWXFLyQu y
EJEMPLO 3
Una solución de (11)
'HODSRVLFLyQGHOHMH yHQOD¿JXUDHVHYLGHQWHTXHODVFRQGLFLRQHVLQLFLDOHV
UHODFLRQDGDVFRQODVHJXQGDHFXDFLyQGLIHUHQFLDOHQ VRQy a\y
du
6LVHVXVWLWX\Hu yHQWRQFHVODHFXDFLyQHQ VHFRQYLHUWHHQ
11 u2
dx
1
6HSDUDQGRODVYDULDEOHVVHHQFXHQWUDTXH
du
11 u2
T1
dx
se obtiene
senh 1u
T1
x
c1.
216
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
$KRUDy HVHTXLYDOHQWHDu 3XHVWRTXHVHQK 0 c \SRU
WDQWRu senh (ȡ[兾T 3RU~OWLPRLQWHJUDQGRDPERVODGRVGH
dy
dx
senh
T1
x,
obtenemos
y
T1
cosh
T1
x
c2.
Con y aFRVKVHGHGXFHGHOD~OWLPDHFXDFLyQTXHc a T兾ȡ3RU
WDQWRYHPRVTXHODIRUPDGHOFDEOHTXHFXHOJDHVWiGDGDSRU y
a
T1> .
(T1> ) cosh( x> T1)
6LHQHOHMHPSORKHPRVVDELGRHVFRJHUGHVGHHOSULQFLSLRa T兾ȡHQWRQFHVODVROXFLyQ
GHOSUREOHPDKDEUtDVLGRVLPSOHPHQWHHOFRVHQRKLSHUEyOLFRy (T兾ȡ FRVK ȡ[兾T
MOVIMIENTO DE UN COHETE (Q HFXDFLyQ GH OD VHFFLyQ VH YLR TXH OD
HFXDFLyQGLIHUHQFLDOGHXQFXHUSRGHPDVDmHQFDtGDOLEUHFHUFDGHODVXSHU¿FLHGHOD7LHUUD
HVWiGDGDSRU
y
d 2s
d 2s
mg, RVLPSOHPHQWH
g,
2
dt
dt2
donde s UHSUHVHQWD OD GLVWDQFLD GHVGH OD VXSHU¿FLH GH OD 7LHUUD KDVWD HO REMHWR \ VH
FRQVLGHUDTXHODGLUHFFLyQSRVLWLYDHVKDFLDDUULED'LFKRGHRWUDIRUPDODVXSRVLFLyQ
EiVLFDHQHVWHFDVRHVTXHODGLVWDQFLDsDOREMHWRHVSHTXHxDFXDQGRVHFRPSDUDFRQ
el radio RGHOD7LHUUDHQRWUDVSDODEUDVODGLVWDQFLDyGHVGHHOFHQWURGHOD7LHUUDDO
REMHWRHVDSUR[LPDGDPHQWHODPLVPDTXHR6LSRURWURODGRODGLVWDQFLDyDOREMHWR
SRUHMHPSORXQFRKHWHRXQDVRQGDHVSDFLDOHVJUDQGHFRPSDUDGDFRQRHQWRQFHVVH
FRPELQDODVHJXQGDOH\GH1HZWRQGHOPRYLPLHQWR\VXOH\GHJUDYLWDFLyQXQLYHUVDO
SDUDREWHQHUXQDHFXDFLyQGLIHUHQFLDOHQODYDULDEOHy
6XSRQJDTXHVHODQ]DYHUWLFDOPHQWHKDFLDDUULEDXQFRKHWHGHVGHHOVXHORFRPRVH
LOXVWUDHQOD¿JXUD6LODGLUHFFLyQSRVLWLYDHVKDFLDDUULED\VHGHVSUHFLDODUHVLVWHQFLDGHODLUHHQWRQFHVODHFXDFLyQGLIHUHQFLDOGHPRYLPLHQWRGHVSXpVGHFRQVXPLU
HOFRPEXVWLEOHHV
m
v0
R
centro de
la Tierra
FIGURA 5.3.5 /DGLVWDQFLDDOFRKHWH
HVJUDQGHFRPSDUDGDFRQR
m
d 2y
dt2
k
Mm
y2
d 2y
dt2
o
k
M
y2
donde kHVXQDFRQVWDQWHGHSURSRUFLRQDOLGDGy es la distancia desde el centro de la
7LHUUDDOFRKHWHMHVODPDVDGHOD7LHUUD\mHVODPDVDGHOFRKHWH3DUDGHWHUPLQDU
la constante kVHXVDHOKHFKRGHTXHFXDQGRy R kMm兾R mg o k gR兾M$Vt
TXHOD~OWLPDHFXDFLyQHQ VHFRQYLHUWHHQ
d 2y
dt 2
g
R2
y2
9HDHOSUREOHPDHQORVHMHUFLFLRV
MASA VARIABLE 2EVHUYHHQODH[SOLFDFLyQDQWHULRUTXHVHGHVFULEHHOPRYLPLHQWR
GHOFRKHWHGHVSXpVGHTXHKDTXHPDGRWRGRVXFRPEXVWLEOHFXDQGRVXSXHVWDPHQWHVX
masa mHVFRQVWDQWH3RUVXSXHVWRGXUDQWHVXDVFHQVRODPDVDWRWDOGHOFRKHWHSURSXOVDGRYDUtDDPHGLGDTXHVHFRQVXPHHOFRPEXVWLEOH/DVHJXQGDOH\GHOPRYLPLHQWR
FRPRODDGHODQWy1HZWRQHQXQSULQFLSLRHVWDEOHFHTXHFXDQGRXQFXHUSRGHPDVDm
VHPXHYHSRUXQFDPSRGHIXHU]DFRQYHORFLGDGvODUDSLGH]GHFDPELRUHVSHFWRDO
WLHPSRGHODFDQWLGDGGHPRYLPLHQWRmvGHOFXHUSRHVLJXDODODIXHU]DDSOLFDGDRQHWD
FTXHDFW~DVREUHHOFXHUSR
d
F
(mv)
dt
Si mHVFRQVWDQWHHQWRQFHVODHFXDFLyQ SURGXFHODIRUPDPiVIDPLOLDUF m dv兾dt
maGRQGHaHVODDFHOHUDFLyQ(QHOVLJXLHQWHHMHPSORVHXVDODIRUPDGHODVHJXQGD
OH\GH1HZWRQGDGDHQODHFXDFLyQ HQODTXHODPDVDmGHOFXHUSRHVYDULDEOH
5.3
5 lb
fuerza
hacia
arriba
x(t)
FIGURA 5.3.6 &DGHQDMDODGDKDFLD
DUULEDSRUXQDIXHU]DFRQVWDQWH
EJEMPLO 4
MODELOS NO LINEALES
l
217
Cadena jalada hacia arriba por una fuerza constante
8QDFDGHQDXQLIRUPHGHSLHVGHODUJRVHHQUROODVLQWHQVLyQVREUHHOSLVR8QH[WUHPRGHODFDGHQDVHMDODYHUWLFDOPHQWHKDFLDDUULEDXVDQGRXQDIXHU]DFRQVWDQWHGH
OLEUDV/DFDGHQDSHVDOLEUDSRUSLH'HWHUPLQHODDOWXUDGHOH[WUHPRVREUHHOQLYHO
GHVXHORDOWLHPSRt9HDOD¿JXUD
SOLUCIÓN 6XSRQJDPRVTXHx x(t GHQRWDODDOWXUDGHOH[WUHPRGHODFDGHQDHQHO
DLUHDOWLHPSRtv dx兾dt\TXHODGLUHFFLyQSRVLWLYDHVKDFLDDUULED3DUDODSRUFLyQGH
ODFDGHQDTXHHVWiHQHODLUHHQHOWLHPSRtVHWLHQHQODVVLJXLHQWHVFDQWLGDGHVYDULDEOHV
peso:
(x pie) (1 lb/pie)
W
masa:
m
W>g
fuerza neta:
F
5
x,
x>32,
5
W
x.
$VtGHODHFXDFLyQ VHWLHQH
regla del producto
( )
d x
––– –––v 5 x
dt 32
dv
dx
x ––– v ––– 160 32x.
dt
dt
o
'HELGRDTXHv dx兾dtOD~OWLPDHFXDFLyQVHFRQYLHUWHHQ
d2x
dx 2
32x 160
2
dt
dt
/DVHJXQGDHFXDFLyQGLIHUHQFLDOQROLQHDOGHVHJXQGRRUGHQ WLHQHODIRUPDF(xx
x TXHHVODVHJXQGDGHODVGRVIRUPDVFRQVLGHUDGDVHQODVHFFLyQTXHSRVLEOHPHQWHVHSXHGHQUHVROYHUSRUUHGXFFLyQGHRUGHQ3DUDUHVROYHUODHFXDFLyQ VH
dv dv dx
dv
YXHOYHD \VHXVDv xMXQWRFRQODUHJODGHODFDGHQD'H
v
dt
dx
dt
dx
ODVHJXQGDHFXDFLyQHQ VHSXHGHHVFULELUFRPR
x
xv
dv
dx
v2
32x
160
$OLQVSHFFLRQDUODHFXDFLyQ SRGUtDSDUHFHUGHGLItFLOVROXFLyQSXHVWRTXHQRVH
SXHGHFDUDFWHUL]DUFRPRDOJXQDGHODVHFXDFLRQHVGHSULPHURUGHQUHVXHOWDVHQHOFDStWXOR6LQHPEDUJRVLVHUHHVFULEHODHFXDFLyQ HQODIRUPDGLIHUHQFLDOM(xv
dx N(xv dv VHREVHUYDTXHDXQTXHODHFXDFLyQ
(v2
32x
160)dx
xv dv
0
QR HV H[DFWD VH SXHGH WUDQVIRUPDU HQ XQD HFXDFLyQ H[DFWD DO PXOWLSOLFDUOD SRU XQ
IDFWRULQWHJUDQWH'H Mv Nx 兾N l兾xVHYHGH GHODVHFFLyQTXHXQIDFWRU
LQWHJUDQWHHV e dx/x eln x x.&XDQGRODHFXDFLyQ VHPXOWLSOLFDSRUȝ(x xOD
HFXDFLyQUHVXOWDQWHHVH[DFWD FRPSUXHEH ,GHQWL¿FDQGRf 兾x xv x x
f 兾v x v\SURFHGLHQGRGHVSXpVFRPRHQODVHFFLyQVHREWLHQH
1 2 2
xv
2
32 3
x
3
80x2
c1
3XHVWRTXHVHVXSXVRTXHDOSULQFLSLRWRGDODFDGHQDHVWiVREUHHOSLVRVHWLHQHx
(VWD~OWLPDFRQGLFLyQDSOLFDGDDODHFXDFLyQ SURGXFHc 5HVROYLHQGR
ODHFXDFLyQDOJHEUDLFD 12 x2v2 323 x3 80x2 0 SDUDv dx兾dt VHREWLHQHRWUD
HFXDFLyQGLIHUHQFLDOGHSULPHURUGHQ
dx
dt
160
B
64
x.
3
218
CAPÍTULO 5
l
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
/D~OWLPDHFXDFLyQVHSXHGHUHVROYHUSRUVHSDUDFLyQGHYDULDEOHV6HGHEHFRPSUREDUTXH
x
8
7
6
5
4
3
2
1
3
160
32
64
x
3
1/2
c2
t
(VWDYH]ODFRQGLFLyQLQLFLDOx LQGLFDTXHc2
3110 83RU~OWLPRHOHYDQGR
DOFXDGUDGRDPERVODGRVGH \GHVSHMDQGRxOOHJDPRVDOUHVXOWDGRGHVHDGR
0
0.5
1.5
1
2
2.5
FIGURA 5.3.7 *Ui¿FDGH SDUD
x(t
EJERCICIOS 5.3
x(t)
t
Resortes no lineales
(QORVSUREOHPDVDOODHFXDFLyQGLIHUHQFLDOGDGDHVPRGHORGHXQVLVWHPDUHVRUWHPDVDQRDPRUWLJXDGRHQHOTXHOD
IXHU]DUHVWDXUDGRUDF(x HQ HVQROLQHDO3DUDFDGDHFXDFLyQXWLOLFHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDWUD]DUODV
FXUYDV VROXFLyQ TXH VDWLVIDFHQ ODV FRQGLFLRQHV LQLFLDOHV GHO
SUREOHPD6LDOSDUHFHUODVVROXFLRQHVVRQSHULyGLFDVXVHOD
FXUYDVROXFLyQSDUDHVWLPDUHOSHULRGRTGHODVRVFLODFLRQHV
2.
x3
x(0)
1, x (0)
d2x
dt2
x(0)
d2x
3.
dt2
x(0)
d2x
4.
dt2
x(0)
0,
4x
1;
16x3
1
2,
x (0)
1
0,
1, x (0)
1;
x2
0,
2x
x(0)
2, x (0)
1, x (0)
1; x(0)
x (0)
x(0)
2, x (0)
0;
d2x
dt 2
x(0)
dx
dt
d2x
dt2
dx
dt
x(0)
0.01x
xe
1, x (0)
0,
1; x(0)
3, x (0)
1
5. (QHOSUREOHPDVXSRQJDTXHODPDVDVHOLEHUDGHVGHOD
SRVLFLyQLQLFLDOx FRQXQDYHORFLGDGLQLFLDOx
x8VHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDHVWLPDU
HOYDORUPiVSHTXHxRGH兩x兩HQHOTXHHOPRYLPLHQWRGHOD
PDVDHVQRSHULyGLFR
6. (QHOSUREOHPDVXSRQJDTXHODPDVDVHOLEHUDGHVGHXQD
SRVLFLyQLQLFLDOx x0 con velocidad inicial x
8VDQGRXQSURJUDPDGHVROXFLyQQXPpULFDHVWLPHXQLQWHUvalo a x0 bSDUDHOFXDOHOPRYLPLHQWRVHDRVFLODWRULR
7. 'HWHUPLQH XQD OLQHDOL]DFLyQ GH OD HFXDFLyQ GLIHUHQFLDO
GHOSUREOHPD
1, x (0)
x(0)
1;
x(0)
x(0)
1
2;
2, x (0)
2, x (0)
1
2;
12, x (0)
1.
(QORVSUREOHPDV\ODHFXDFLyQGLIHUHQFLDOGDGDHVXQPRGHORGHXQVLVWHPDUHVRUWHPDVDQROLQHDODPRUWLJXDGR3UHGLJD
HOFRPSRUWDPLHQWRGHFDGDVLVWHPDFXDQGRt → 3DUDFDGD
HFXDFLyQXVHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDREWHQHU
ODVFXUYDVVROXFLyQTXHVDWLVIDFHQODVFRQGLFLRQHVLQLFLDOHVGHO
SUREOHPDGDGDV
2
1
x(0)
12, x (0)
1;
x(0)
10.
3
2,
8. &RQVLGHUHHOPRGHORGHXQVLVWHPDUHVRUWHPDVDQROLQHDO
VLQDPRUWLJXDPLHQWRGDGRSRUx x x x
8VHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDDQDOL]DUOD
QDWXUDOH]DGHODVRVFLODFLRQHVGHOVLVWHPDTXHFRUUHVSRQden a las condiciones iniciales:
9.
x(0)
4 110 2
t .
15
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-8.
SDUWHGHORVSUREOHPDVDD\SRGUtDQVHUYLU
FRPRWDUHDVGHOODERUDWRULRGHFRPSXWDFLyQ
d2x
dt 2
15
1
2
/DJUi¿FDGHODHFXDFLyQ TXHVHSUHVHQWDHQOD¿JXUDQRVHGHEHFRQEDVHV
ItVLFDVDFHSWDUWDOFXDO9HDHOSUREOHPDGHORVHMHUFLFLRV
Al profesor $GHPiV GH ORV SUREOHPDV \ WRGRV R
1.
15
2
x
x3
3, x (0)
x
0, x (0)
0,
4; x(0)
x3
3
2;
0, x (0)
8
0,
x(0)
1, x (0)
1
11. (OPRGHORmx kx kx F0 cos ȦWGHXQVLVWHPDQR
DPRUWLJXDGR UHVRUWHPDVD IRU]DGR HQ IRUPD SHULyGLFD VH
llama HFXDFLyQ GLIHUHQFLDO GH 'XI¿QJ &RQVLGHUH HO SURblema con valores iniciales x x kx FRVtx
x 8VHXQSURJUDPDGHVROXFLyQQXPpULFDSDUD
LQYHVWLJDUHOFRPSRUWDPLHQWRGHOVLVWHPDSDUDYDORUHVGHk
TXHYDQGHk Dk ([SUHVHVXVFRQFOXVLRQHV
12. a) (
QFXHQWUH ORV YDORUHV GH k SDUD ORV FXDOHV HO
VLVWHPDGHOSUREOHPDHVRVFLODWRULR
b) &RQVLGHUHHOSUREOHPDFRQYDORUHVLQLFLDOHV
x x k x cos 32 t, x x
(QFXHQWUHYDORUHVSDUDk SDUDORVFXDOHVHOVLVWHPDHVRVFLODWRULR
5.3
Péndulo no lineal
13. &RQVLGHUHHOPRGHORGHOSpQGXORQROLQHDODPRUWLJXDGR
OLEUHGDGRSRU
d2
d
2
2
sen
0.
dt2
dt
8VHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDLQYHVWLJDUVLHO
movimiento en los dos casos Ȝ Ȧ \Ȝ Ȧ 0 coUUHVSRQGHUHVSHFWLYDPHQWHDORVFDVRVVREUHDPRUWLJXDGR\
VXEDPRUWLJXDGRDQDOL]DGRVHQODVHFFLyQSDUDVLVWHPDV
UHVRUWHPDVD3DUDȜ Ȧ XVHȜ Ȧ ș \
ș 3DUDȜ Ȧ XVHȜ Ȧ ș
\ș
Movimiento de un cohete
14. a) 8VHODVXVWLWXFLyQv dy兾dtSDUDGHVSHMDUGHODHFXDFLyQ D v HQ WpUPLQRV GH y 6XSRQLHQGR TXH OD
YHORFLGDGGHOFRKHWHFXDQGRVHDJRWDHOFRPEXVWLEOH
es v v0\y 艐 RHQHVHLQVWDQWHGHPXHVWUHTXHHO
YDORUDSUR[LPDGRGHODFRQVWDQWHcGHLQWHJUDFLyQHV
c
gR 12 v02
b) 8VHODVROXFLyQSDUDvGHOLQFLVRD FRQHO¿QGHGHPRVWUDUTXHODYHORFLGDGGHHVFDSHGHXQFRKHWHHVWi
GDGDSRU v0
12gR >Sugerencia:7RPHy → \
VXSRQJDTXHv SDUDWRGRWLHPSRt@
c) (OUHVXOWDGRGHOLQFLVRE VHFXPSOHSDUDFXDOTXLHUFXHUSR
GHOVLVWHPDVRODU8VHORVYDORUHVg SLHVs\R
PLOODVSDUDGHPRVWUDUTXHODYHORFLGDGGHHVFDSHGH
OD7LHUUDHV DSUR[LPDGDPHQWH v0 PLK
d) 'HWHUPLQHODYHORFLGDGGHHVFDSHHQOD/XQDVLODDFHOHUDFLyQGHELGDDODJUDYHGDGHVg\R PLOODV
Masa variable
MODELOS NO LINEALES
l
219
a) 5
HVXHOYDvHQWpUPLQRVGHx'HWHUPLQHxHQWpUPLnos de t([SUHVHvHQWpUPLQRVGHt
b) '
HWHUPLQHFXiQWRWDUGDHQFDHUWRGDODFDGHQDDOVXHOR
c) ¢4XpYHORFLGDGSUHGLFHHOPRGHORGHOLQFLVRD SDUDHO
H[WUHPRVXSHULRUGHODFDGHQDFXDQGRWRFDHOVXHOR"
Diferentes modelos matemáticos
17. Curva de persecución (QXQHMHUFLFLRQDYDOXQEDUFRS
HVSHUVHJXLGRSRUXQVXEPDULQRSFRPRVHPXHVWUDHQOD
¿JXUD(OEDUFRSSDUWHGHOSXQWR HQt \VH
PXHYHDORODUJRGHXQFXUVRHQOtQHDUHFWD HOHMHy DXQD
UDSLGH]FRQVWDQWHv(OVXEPDULQRS mantiene al barco S
HQFRQWDFWRYLVXDOLQGLFDGRSRUODOtQHDSXQWHDGDL en la
¿JXUDPLHQWUDVTXHYLDMDFRQXQDUDSLGH]FRQVWDQWHv a lo
ODUJRGHODFXUYDC6XSRQJDTXHHOEDUFRSFRPLHQ]DHQHO
SXQWR a a HQt \TXHLHVWDQJHQWHDC
a) 'HWHUPLQH XQ PRGHOR PDWHPiWLFR TXH GHVFULED OD
FXUYDC
b) (QFXHQWUHXQDVROXFLyQH[SOtFLWDGHODHFXDFLyQGLIHUHQFLDO3RUFRQYHQLHQFLDGH¿QDr v兾v
c) 'HWHUPLQHVLODVWUD\HFWRULDVGHS\SDOJXQDYH]VHLQWHUFHSWDUtDQDOFRQVLGHUDUORVFDVRVr r \r
dt
dt ds
[Sugerencia:
Gonde sHVODORQJLWXGGH
dx ds dx
DUFRPHGLGDDORODUJRGHC@
y
C
S1
L
S2
15. a) (
Q HO HMHPSOR ¢TXp ORQJLWXG GH OD FDGHQD VH HVSHUDUtDSRULQWXLFLyQTXHSXGLHUDOHYDQWDUODIXHU]D
FRQVWDQWHGHOLEUDV"
b) ¢&XiOHVODYHORFLGDGLQLFLDOGHODFDGHQD"
c) ¢3RU TXp HO LQWHUYDOR GH WLHPSR TXH FRUUHVSRQGH D
x(t LOXVWUDGR HQ OD ¿JXUD QR HV HO LQWHUvalo I GH GH¿QLFLyQ GH OD VROXFLyQ " 'HWHUPLQH
el intervalo I¢4XpORQJLWXGGHODFDGHQDVHOHYDQWD
HQUHDOLGDG"([SOLTXHFXDOTXLHUGLIHUHQFLDHQWUHHVWD
UHVSXHVWD\ODSUHGLFFLyQGHOLQFLVRD
d) ¢3RUTXpHVSHUDUtDTXHx(t IXHVHXQDVROXFLyQSHULyGLFD"
16. 8QDFDGHQDXQLIRUPHGHORQJLWXGLPHGLGDHQSLHVVHPDQWLHQH YHUWLFDOPHQWH SRU OR TXH HO H[WUHPR LQIHULRU DSHQDV
WRFDHOSLVR/DFDGHQDSHVDOE兾SLH(OH[WUHPRVXSHULRU
TXHHVWiVXMHWRVHOLEHUDGHVGHHOUHSRVRHQt \ODFDGHQD
FDHUHFWD6Lx(t GHQRWDODORQJLWXGGHODFDGHQDHQHOSLVRDO
WLHPSRtVHGHVSUHFLDODUHVLVWHQFLDGHODLUH\VHGHWHUPLQD
TXHODGLUHFFLyQSRVLWLYDHVKDFLDDEDMRHQWRQFHV
(L
x)
d2x
dt2
dx
dt
2
Lg .
x
FIGURA 5.3.8 &XUYDGHSHUVHFXFLyQGHOSUREOHPD
18. Curva de persecución (Q RWUR HMHUFLFLR QDYDO XQ GHVWUXFWRUSSHUVLJXHDXQVXEPDULQRS6XSRQJDTXHS en
HQHOHMHx detecta a SHQ \TXHDOPLVPRWLHPSR
S detecta a S(OFDSLWiQGHOGHVWUXFWRUSVXSRQHTXHHO
VXEPDULQRHPSUHQGHUiXQDDFFLyQHYDVLYDLQPHGLDWD\HVSHFXODTXHVXQXHYRFXUVRSUREDEOHHVODUHFWDLQGLFDGDHQ
OD¿JXUD&XDQGRSHVWiHQ FDPELDGHVXFXUVR
HQOtQHDUHFWDKDFLDHORULJHQDXQDFXUYDGHSHUVHFXFLyQ
C6XSRQJDTXHODYHORFLGDGGHOGHVWUXFWRUHVHQWRGRPRPHQWRXQDFRQVWDQWHGHPLOODV兾K\TXHODUDSLGH]GHO
VXEPDULQRHVFRQVWDQWHGHPLOODV兾K
a) ([SOLTXHSRUTXpHOFDSLWiQHVSHUDKDVWDTXHSOOHJXH
D DQWHVGHRUGHQDUXQFDPELRGHFXUVRDC
b) 8VDQGRFRRUGHQDGDVSRODUHVHQFXHQWUHXQDHFXDFLyQ
r f (ș SDUDODFXUYDC
c) 6HDTXHTGHQRWHHOWLHPSRPHGLGRGHVGHODGHWHFFLyQLQLFLDOHQTXHHOGHVWUXFWRULQWHUFHSWDDOVXEPDULQR'HWHUPLQHXQOtPLWHVXSHULRUSDUDT
220
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
y
h
m
b
m
C
S2
w
máx
l
mb
vb
S1
L
(9, 0) x
(3, 0)
b) 8VHHOUHVXOWDGRGHOLQFLVRD SDUDGHPRVWUDUTXH
FIGURA 5.3.9 &XUYDGHSHUVHFXFLyQGHOSUREOHPD
19. El péndulo balístico +LVWyULFDPHQWH SDUD PDQWHQHU
HO FRQWURO GH FDOLGDG VREUH ODV PXQLFLRQHV EDODV SURGXFLGDV SRU XQD OtQHD GH PRQWDMH HO IDEULFDQWH XVDUtD XQ péndulo balístico SDUD GHWHUPLQDU OD YHORFLGDG
GH OD ERFD GH XQ DUPD HV GHFLU OD YHORFLGDG GH XQD
EDODFXDQGRGHMDHOEDUULO(OSpQGXOREDOtVWLFR LQYHQWDGR
HQ HVVLPSOHPHQWHXQSpQGXORSODQRTXHFRQVLVWHHQ
XQDYDULOODGHPDVDGHVSUHFLDEOHTXHHVWiXQLGDDXQEORTXH
de madera de masa mw(OVLVWHPDVHSRQHHQPRYLPLHQWR
SRUHOLPSDFWRGHXQDEDODTXHVHHVWiPRYLHQGRKRUL]RQWDOPHQWH FRQ XQD YHORFLGDG GHVFRQRFLGD vb DO PRPHQWR
GHOLPSDFWRTXHVHWRPDFRPRt ODPDVDFRPELQDGD
es mw mbGRQGHmbHVODPDVDGHODEDODLQFUXVWDGDHQOD
PDGHUD(Q YLPRVTXHHQHOFDVRGHSHTXHxDVRVFLODFLRQHVHOGHVSOD]DPLHQWRDQJXODUș(t GHOSpQGXORSODQRTXH
VHPXHVWUDHQOD¿JXUDHVWiGDGRSRUOD('OLQHDOș
(g兾l ș GRQGHș FRUUHVSRQGHDOPRYLPLHQWRDODGHUHFKDGHODYHUWLFDO/DYHORFLGDGvbVHSXHGHHQFRQWUDUPL
GLHQGR OD DOWXUD h de la masa mw mb HQ HO iQJXOR GH
GHVSOD]DPLHQWRPi[LPRșPi[TXHVHPXHVWUDHQOD¿JXUD
,QWXLWLYDPHQWHODYHORFLGDGKRUL]RQWDOV de la masa
FRPELQDGD PDGHUD PiV EDOD GHVSXpV GHO LPSDFWR HV
VyORXQDIUDFFLyQGHODYHORFLGDGvbGHODEDODHVGHFLU
mb
mw
mb
mb
mw
mb
vb
vb
.
l
mw
2lg umáx.
mb
mb
c) 8
VH OD ¿JXUD SDUD H[SUHVDU FRV șPi[ HQ WpU
minos de l \ de h'HVSXpVXWLOLFHORVSULPHURVGRV
WpUPLQRVGHODVHULHGH0DFODXULQSDUDFRVșSDUDH[SUHVDU șPi[ HQ WpUPLQRV GH l \ de h 3RU ~OWLPR GHPXHVWUHTXHvbHVWiGDGR DSUR[LPDGDPHQWH SRU
mw
vb
22gh.
mb
mb
d) 8
VHHOUHVXOWDGRGHOLQFLVRF SDUDHQFRQWUDUvbFXDQGR
mb Jmw NJ\h FP
20. Suministros de ayuda &RPR VH PXHVWUD HQ OD ¿JXUD
XQDYLyQTXHYXHODKRUL]RQWDOPHQWHFRQXQDYHORFLdad constante v0VXHOWDXQSDTXHWHGHVXPLQLVWURVGHD\XGD
DXQDSHUVRQDHQWLHUUD6XSRQJDTXHHORULJHQHVHOSXQWR
GRQGH VH OLEHUD HO SDTXHWH \ TXH HO HMH x SRVLWLYR DSXQWD
KDFLDDGHODQWH\TXHHOHMH ySRVLWLYRDSXQWDKDFLDDEDMR
%DMRODVXSRVLFLyQGHTXHODVFRPSRQHQWHVKRUL]RQWDO\YHUWLFDOGHODUHVLVWHQFLDGHODLUHVRQSURSRUFLRQDOHVD dx兾dt
\ dy兾dt UHVSHFWLYDPHQWH\VLODSRVLFLyQGHOSDTXHWHGH
VXPLQLVWURHVWiGDGDSRUr(t (t i y(t jHQWRQFHVVXYHlocidad es v(t (dx兾dt i (dy兾dt j,JXDODQGRFRPSRQHQWHVHQODIRUPDYHFWRULDOGHODVHJXQGDOH\GH1HZWRQ
m
da
vb.
$KRUDUHFXHUGHTXHXQDGLVWDQFLDsTXHYLDMDSRUXQDSDUWtFXODTXHVHPXHYHDORODUJRGHXQDWUD\HFWRULDFLUFXODUHVWi
relacionada con el radio l\HOiQJXORFHQWUDOșSRUODIyUPXOD
s lș'HULYDQGROD~OWLPDIyUPXODUHVSHFWRDOWLHPSRtVH
WLHQHTXHODYHORFLGDGDQJXODUȦGHODPDVD\VXYHORFLGDG
lineal v HVWi UHODFLRQDGD SRU v OȦ 3RU WDQWR OD YHORFL
GDGDQJXODUȦ0HQHOWLHPSRtSDUDHOTXHODEDODLPSDFWDHO
EORTXHGHPDGHUDHVWiUHODFLRQDGDFRQVSRUV OȦ0 o
v0
h
V
FIGURA 5.3.10 3pQGXOREDOtVWLFRGHOSUREOHPD
θ
V
mw
dv
dt
mg
dx
dt
k
2
i
dy 2
j
dt
m
d 2x
dt 2
mg
k
dx 2
,
dt
x(0)
0, x (0)
v0
m
d 2y
dt 2
mg
k
dy 2
,
dt
y(0)
0, y (0)
0
paquete
a) 5HVXHOYDHOSUREOHPDFRQYDORUHVLQLFLDOHV
d 2u
dt2
g
u
l
blanco
0,
u(0)
0,
u (0)
v0.
FIGURA 5.3.11 $YLyQ\VXPLQLVWURVGHOSUREOHPD
5.3
a) 5
HVXHOYDORVGRVSUREOHPDVFRQYDORUHVLQLFLDOHVPHGLDQWHODVVXVWLWXFLRQHVu dx兾dtw dy兾dt\VHSDUDFLyQGHYDULDEOHV>Sugerencia:9HDORVComentarios
DO¿QDOGHODVHFFLyQ@
c) 6
XSRQJDTXHHODYLyQYXHODDXQDDOWLWXGGHSLHV
\TXHVXUDSLGH]FRQVWDQWHHVPLK6XSRQJDTXHOD
FRQVWDQWHGHSURSRUFLRQDOLGDGGHODUHVLVWHQFLDGHODLUH
es k \TXHHOSDTXHWHGHVXPLQLVWURSHVD
OE8VHXQSURJUDPDSDUDHQFRQWUDUUDtFHVGHXQ6$&
RXQDFDOFXODGRUDJUD¿FDGRUDSDUDGHWHUPLQDUODGLVWDQFLDKRUL]RQWDOTXHYLDMDHOSDTXHWHPHGLGRGHVGH
VXSXQWRGHOLEHUDFLyQDOSXQWRGRQGHSHJDHQHOVXHOR
Problemas para analizar
21. $QDOLFH SRU TXp HO WpUPLQR GH DPRUWLJXDPLHQWR GH OD
HFXDFLyQ VHHVFULEHFRPR
dx dx
dx 2
.
HQOXJDUGH
dt dt
dt
22. a) ([SHULPHQWHFRQXQDFDOFXODGRUDSDUDHQFRQWUDUXQLQtervalo 0 ș șGRQGHșVHPLGHHQUDGLDQHVSDUD
HOFXDOVHFRQVLGHUDTXHVHQș 艐 șHVXQDHVWLPDFLyQ
EDVWDQWH EXHQD /XHJR XVH XQ SURJUDPD GH JUD¿FD
FLyQSDUDWUD]DUODVJUi¿FDVGHy x\y sen x en el
PLVPRHMHGHFRRUGHQDGDVSDUD[ ʌ兾¢/DVJUi¿FDVFRQ¿UPDQVXVREVHUYDFLRQHVFRQODFDOFXODGRUD"
b) 8WLOLFHXQSURJUDPDGHVROXFLyQQXPpULFDSDUDWUD]DU
ODVFXUYDVVROXFLyQGHORVSUREOHPDVGHYDORULQLFLDO
2
\
d
dt 2
d2
dt 2
sen
0,
0,
(0)
0,
(0)
0
(0)
0,
(0)
0
S DUDYDULRVYDORUHVGHș0 en el intervalo 0 ș ș deWHUPLQDGRHQHOLQFLVRD /XHJRWUDFHODJUi¿FDFXUYDVGHVROXFLyQGHORVSUREOHPDVFRQYDORUHVLQLFLDOHV
SDUDYDULRVYDORUHVGHș0SDUDORVFXDOHVș0 ș
23. Movimiento del péndulo en la Luna ¢8QSpQGXORGH
ORQJLWXGlRVFLODPiVUiSLGRHQOD7LHUUDRHQOD/XQD"
a) 7RPHl \g SDUDODDFHOHUDFLyQGHODJUDYHGDG
HQOD7LHUUD8VHXQSURJUDPDGHVROXFLyQQXPpULFD
SDUDJHQHUDUXQDFXUYDGHVROXFLyQQXPpULFDSDUDHO
PRGHORQROLQHDO VXMHWRDODVFRQGLFLRQHVLQLFLDles ș ș 5HSLWD XVDQGR ORV PLVPRV
YDORUHVSHURXWLOLFHJSDUDODDFHOHUDFLyQGHOD
JUDYHGDGHQOD/XQD
b) 'HODVJUi¿FDVGHOLQFLVRD GHWHUPLQHTXpSpQGXOR
RVFLODPiVUiSLGR¢4XpSpQGXORWLHQHODPD\RUDPSOLWXGGHPRYLPLHQWR"
24. Continuación del movimiento del péndulo en la Luna
5HSLWDORVGRVLQFLVRVGHOSUREOHPDHVWDYH]XWLOL]DQGR
HOPRGHOROLQHDO
Tarea para el laboratorio de computación
25. &RQVLGHUHHOSUREOHPDFRQYDORUHViniciales
MODELOS NO LINEALES
l
221
1
d2
sen
0,
(0)
,
(0)
2
dt
12
3
SDUDXQSpQGXORQROLQHDO3XHVWRTXHQRVHSXHGHUHVROYHU OD HFXDFLyQ GLIHUHQFLDO QR HV SRVLEOH HQFRQWUDU XQD
VROXFLyQH[SOtFLWDGHHVWHSUREOHPD3HURVXSRQJDTXHVH
GHVHDGHWHUPLQDUODSULPHUtl SDUDODFXDOHOSpQGXORGH
OD¿JXUDFRPHQ]DQGRGHVGHVXSRVLFLyQLQLFLDODOD
GHUHFKDDOFDQ]DODSRVLFLyQOPHVGHFLUODSULPHUDUDt]
SRVLWLYDGHș(t (QHVWHSUREOHPD\HOVLJXLHQWHVH
H[DPLQDQYDULDVIRUPDVGHFyPRSURFHGHU
a) $SUR[LPH t UHVROYLHQGR HO SUREOHPD OLQHDO
1
d ș兾dt ș ș ʌ兾 (0)
3.
b) 8VHHOPpWRGRLOXVWUDGRHQHOHMHPSORGHODVHFFLyQ
SDUDHQFRQWUDUORVSULPHURVFXDWURWpUPLQRVQR
QXORVGHXQDVROXFLyQHQVHULHGH7D\ORUș(t FHQWUDGD
HQSDUDHOSUREOHPDFRQYDORUHVLQLFLDOHVQROLQHDO
'pORVYDORUHVH[DFWRVGHORVFRH¿FLHQWHV
c) 8
VHORVGRVSULPHURVWpUPLQRVGHODVHULHGH7D\ORU
GHOLQFLVRE SDUDDSUR[LPDUt
d) (
PSOHH ORV WUHV SULPHURV WpUPLQRV GH OD VHULH GH
7D\ORUGHOLQFLVRE SDUDDSUR[LPDUt
e) 8
WLOLFHXQDDSOLFDFLyQGHXQ6$& RXQDFDOFXODGRUDJUi¿FD SDUDHQFRQWUDUUDtFHV\ORVSULPHURVFXDWURWpUPLQRV
GHODVHULHGH7D\ORUGHOLQFLVRE SDUDDSUR[LPDUt
f) (
Q HVWD SDUWH GHO SUREOHPD VH SURSRUFLRQDQ ODV LQVWUXFFLRQHV GH Mathematica TXH SHUPLWHQ DSUR[LPDU
OD UDt] t (O SURFHGLPLHQWR VH PRGL¿FD FRQ IDFLOLGDG
SRUORTXHVHSXHGHDSUR[LPDUFXDOTXLHUUDt]GHș(t
Si no tiene Mathematica, adapte el procedimiento
mediante la sintaxis correspondiente para el SAC que
tenga 5HSURGX]FDFRQSUHFLVLyQ\OXHJRDVXYH]HMHFXWHFDGDOtQHDGHODVHFXHQFLDGDGDGHLQVWUXFFLRQHV
sol NDSolve [{y[t] Sin[y[t]] 0,
y[0] Pi兾12, y[0] 1兾3},
y, {t, 0, 5}]兾兾Flatten
solution y[t]兾.sol
Clear[y]
y[t_]: Evaluate[solution]
y[t]
gr1 Plot[y[t], {t, 0, 5}]
root FindRoot[y[t] 0, {t, 1}]
g) 0
RGL¿TXHGHPDQHUDDSURSLDGDODVLQWD[LVGHOLQFLVRI \
GHWHUPLQHODVVLJXLHQWHVGRVUDtFHVSRVLWLYDVGHș(t
23. &RQVLGHUHXQSpQGXORTXHVHOLEHUDGHVGHHOUHSRVRFRQXQ
GHVSOD]DPLHQWRLQLFLDOGHș0UDGLDQHV5HVROYLHQGRHOPRGHOR
OLQHDO VXMHWRDODVFRQGLFLRQHVLQLFLDOHVș ș0ș
0 se obtiene (t)
0 cos 1g/lt (OSHULRGRGHRVFLODFLRQHVTXHVHSUHGLFHFRQHVWHPRGHORVHGHWHUPLQDPHGLDQWH
ODFRQRFLGDIyUPXODT 2 1g/l 2 1l/g /RLQWHUHVDQWHGHHVWDIyUPXODSDUDTHVTXHQRGHSHQGHGHODPDJQLWXGGHOGHVSOD]DPLHQWRLQLFLDOș0(QRWUDVSDODEUDV
222
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
HOPRGHOROLQHDOSUHGLFHTXHHOWLHPSRTXHWDUGDUtDHOSpQGXORHQRVFLODUGHVGHXQGHVSOD]DPLHQWRLQLFLDOGHGLJDPRV
ș0 ʌ兾 Dʌ兾\GHUHJUHVRRWUDYH]VHUtDH[DFWDPHQWHHOPLVPRTXHWDUGDUtDHQFRPSOHWDUHOFLFORGHGLJDPRVș0 ʌ兾 Dʌ兾(VWRHVLOyJLFRGHVGHHO
SXQWRGHYLVWDLQWXLWLYR\DTXHHOSHULRGRUHDOGHEHGHSHQGHU
de ș0
6LVHVXSRQHTXHg SLHVV\l SLHVHQWRQFHVHOSHULRGRGHRVFLODFLyQGHOPRGHOROLQHDOHVT ʌV
&RPSDUHHVWH~OWLPRQ~PHURFRQHOSHULRGRSUHGLFKRPHGLDQWH HO PRGHOR QR OLQHDO FXDQGR ș0 ʌ兾 8VDQGR XQ
SURJUDPDGHVROXFLyQQXPpULFDTXHVHDFDSD]GHJHQHUDU
GDWRVFRQFUHWRV\UHDOHVDSUR[LPHODVROXFLyQGH
REPASO DEL CAPÍTULO 5
&RQWHVWHORVSUREOHPDVDOVLQFRQVXOWDUHOWH[WR&RPSOHWH
HOHVSDFLRHQEODQFRRFRQWHVWHYHUGDGHURRIDOVR
1. 6LXQDPDVDTXHSHVDOLEUDVDODUJDSLHVXQUHVRUWH
XQDPDVDTXHSHVDOLEUDVORDODUJD
SLHV
2. (OSHULRGRGHOPRYLPLHQWRDUPyQLFRVLPSOHGHXQDPDVD
TXH SHVD OLEUDV XQLGD D XQ UHVRUWH FX\D FRQVWDQWH HV
OE兾SLHHVGH
VHJXQGRV
3. /DHFXDFLyQGLIHUHQFLDOGHXQVLVWHPDUHVRUWHPDVDHVx
x 6L OD PDVD VH OLEHUD LQLFLDOPHQWH GHVGH XQ
SXQWRTXHHVWiPHWURDUULEDGHODSRVLFLyQGHHTXLOLEULR
FRQXQDYHORFLGDGKDFLDDEDMRGHPVODDPSOLWXGGHODV
vibraciones es de
PHWURV
4. /D UHVRQDQFLD SXUD QR WLHQH OXJDU HQ SUHVHQFLD GH XQD
IXHU]DGHDPRUWLJXDPLHQWR
5. (QSUHVHQFLDGHXQDIXHU]DGHDPRUWLJXDPLHQWRORVGHVSOD]DPLHQWRVGHXQDPDVDHQXQUHVRUWHVLHPSUHWLHQGHQ
DFHURFXDQGRt →
6. 8QD PDVD HQ XQ UHVRUWH FX\R PRYLPLHQWR HVWi FUtWLFDPHQWH DPRUWLJXDGR WLHQH SRVLELOLGDGHV GH SDVDU SRU OD
SRVLFLyQGHHTXLOLEULRGRVYHFHV
7. (QDPRUWLJXDPLHQWRFUtWLFRFXDOTXLHUDXPHQWRGHDPRUWLJXDPLHQWRGDUiFRPRUHVXOWDGRXQVLVWHPD
8. 6L HO PRYLPLHQWR DUPyQLFR VLPSOH VH GHVFULEH PHGLDQWH
x ( 22 2)sen(2t f)HOiQJXORIDVH es __________
FXDQGRODVFRQGLFLRQHVLQLFLDOHVVRQx 12 \x
(QORVSUREOHPDV\ORVHLJHQYDORUHV\ODVIXQFLRQHVSURSLDV GHO SUREOHPD FRQ YDORUHV HQ OD IURQWHUD y Ȝ\
y y(ʌ 0 son Ȝn nn \y cos nx
UHVSHFWLYDPHQWH/OHQHORVHVSDFLRVHQEODQFR
9. 8QDVROXFLyQGHO39)FXDQGRȜ HVy
SRUTXH
d2
sen
0,
(0)
,
(0) 0
dt 2
4
en el intervalo a 0 t &RPRHQHOSUREOHPDVLt
GHQRWDODSULPHUDYH]TXHHOSpQGXORDOFDQ]DODSRVLFLyQ
OPHQOD¿JXUDHQWRQFHVHOSHULRGRGHOSpQGXORQR
lineal es 4t$TXtHVWiRWUDIRUPDGHUHVROYHUODHFXDFLyQ
ș(t ([SHULPHQWHFRQWDPDxRVGHSDVR\KDJDDYDQ]DUHOWLHPSRFRPHQ]DQGRHQt \WHUPLQDQGRHQt
'H VXV GDWRV FRQFUHWRV REVHUYH HO WLHPSR t FXDQGR
ș(t FDPELDSRUSULPHUDYH]GHSRVLWLYDDQHJDWLYD8VH
el valor tSDUDGHWHUPLQDUHOYDORUYHUGDGHURGHOSHULRGR
GHOSpQGXORQROLQHDO&DOFXOHHOHUURUUHODWLYRSRUFHQWXDO
HQHOSHULRGRHVWLPDGRSRUT ʌ
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-8.
10. 8QDVROXFLyQGHO39)FXDQGRȜ HVy
SRUTXH
11. 8QVLVWHPDUHVRUWHPDVDOLEUHQRDPRUWLJXDGRRVFLODFRQ
XQ SHULRGR GH VHJXQGRV &XDQGR VH HOLPLQDQ OLEUDV
GHO UHVRUWH HO VLVWHPD WLHQH XQ SHULRGR GH VHJXQGRV
¢&XiOHUDHOSHVRGHODPDVDRULJLQDOHQHOUHVRUWH"
12. 8QDPDVDTXHSHVDOLEUDVDODUJDSLHVXQUHVRUWH$OLQLFLRODPDVDVHOLEHUDGHVGHXQSXQWRSLHDEDMRGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLGDGDVFHQGHQWHGHSLHVV
a) 'HWHUPLQHODHFXDFLyQGHPRYLPLHQWR
b) ¢ &XiOHV VRQ OD DPSOLWXG SHULRGR \ IUHFXHQFLD GHO
PRYLPLHQWRDUPyQLFRVLPSOH"
c) ¢(QTXpLQVWDQWHVODPDVDYXHOYHDOSXQWRVLWXDGRD
SLHDEDMRGHODSRVLFLyQGHHTXLOLEULR"
d) ¢ (Q TXp LQVWDQWHV OD PDVD SDVD SRU OD SRVLFLyQ GH
HTXLOLEULR HQ GLUHFFLyQ KDFLD DUULED" ¢(Q GLUHFFLyQ
KDFLDDEDMR"
e) ¢&XiOHVODYHORFLGDGGHODPDVDHQt ʌ兾V"
f) ¢(QTXpLQVWDQWHVODYHORFLGDGHVFHUR"
13. 8QDIXHU]DGHOLEUDVHVWLUDSLHXQUHVRUWH&RQXQH[WUHPR
¿MRVHXQHDORWURH[WUHPRXQDPDVDTXHSHVDOLEUDV(OVLVWHPD\DFHVREUHXQDPHVDTXHLPSDUWHXQDIXHU]DGHIULFFLyQ
QXPpULFDPHQWHLJXDOD 32 YHFHVODYHORFLGDGLQVWDQWiQHD$O
LQLFLRODPDVDVHGHVSOD]DSXOJDGDVDUULEDGHODSRVLFLyQ
GHHTXLOLEULR\VHOLEHUDGHVGHHOUHSRVR(QFXHQWUHODHFXDFLyQGHPRYLPLHQWRVLHOPRYLPLHQWRWLHQHOXJDUDORODUJR
GHODUHFWDKRUL]RQWDOTXHVHWRPDFRPRHOHMHx
14. UnDPDVDTXHSHVDOLEUDVDODUJDSXOJDGDVXQUHVRUWH/D
PDVDVHPXHYHHQXQPHGLRTXHRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRTXHHVQXPpULFDPHQWHLJXDODȕ veces la veloFLGDGLQVWDQWiQHD'HWHUPLQHORVYDORUHVGHȕ SDUDORV
TXHHOVLVWHPDUHVRUWHPDVDH[KLEHPRYLPLHQWRRVFLODWRULR
REPASO DEL CAPÍTULO 5
18. (QFXHQWUHXQDVROXFLyQSDUWLFXODUSDUDx Ȝ[ Ȧx
AGRQGHAHVXQDIXHU]DFRQVWDQWH
19. 8QDPDVDTXHSHVDOLEUDVVHVXVSHQGHGHXQUHVRUWHFX\D
FRQVWDQWHHVOESLH7RGRHOVLVWHPDVHVXPHUJHHQXQ
OtTXLGRTXHRIUHFHXQDIXHU]DGHDPRUWLJXDPLHQWRQXPpULFDPHQWHLJXDODODYHORFLGDGLQVWDQWiQHD&RPHQ]DQGR
en t VHDSOLFDDOVLVWHPDXQDIXHU]DH[WHUQDLJXDOf(t
et'HWHUPLQHODHFXDFLyQGHPRYLPLHQWRVLODPDVD
VHOLEHUDDOLQLFLRGHVGHHOUHSRVRHQXQSXQWRTXHHVWi
SLHVDEDMRGHODSRVLFLyQGHHTXLOLEULR
20. a) '
RVUHVRUWHVVHXQHQHQVHULHFRPRVHPXHVWUDHQOD
¿JXUD56LVHGHVSUHFLDODPDVDGHFDGDUHVRUWH
PXHVWUHTXHODFRQVWDQWHGHUHVRUWHHIHFWLYDk del sisWHPDVHGH¿QHPHGLDQWH兾k 兾k 兾k
b) 8QDPDVDTXHSHVDWOLEUDVSURGXFHXQDODUJDPLHQWR
de 12 SLHHQXQUHVRUWH\XQRGH 14 SLHHQRWURUHVRUWH6H
XQHQORVGRVUHVRUWHV\GHVSXpVVH¿MDODPDVDDOUHVRU
WHGREOHFRPRVHLOXVWUDHQOD¿JXUD56XSRQJDTXH
HOPRYLPLHQWRHVOLEUH\TXHQRKD\IXHU]DGHDPRU
WLJXDPLHQWRSUHVHQWH'HWHUPLQHODHFXDFLyQGHPRYLPLHQWRVLODPDVDVHOLEHUDDOLQLFLRHQXQSXQWRVLWXDGR
SLHDEDMRGHODSRVLFLyQGHHTXLOLEULRFRQXQDYHORFLdad de descenso de 23 SLHV
c) 'HPXHVWUH TXH OD YHORFLGDG Pi[LPD GH OD PDVD HV
2
1.
3 23g
21. 8QFLUFXLWRHQVHULHFRQWLHQHXQDLQGXFWDQFLDGHL
KXQDFDSDFLWDQFLDGHC 4I\XQDIXHU]DHOHFWURPRWUL]GHE(t VHQt9$OLQLFLRODFDUJDq\OD
corriente iVRQFHUR
a) 'HWHUPLQHODFDUJDq(t
b) 'HWHUPLQHODFRUULHQWHi(t
c) &DOFXOHORVWLHPSRVSDUDORVTXHODFDUJDHQHOFDSDFLWRUHVFHUR
22. a)'HPXHVWUHTXHODFRUULHQWHi(t HQXQFLUFXLWRHQVHULH
d 2i
di
1
R
i E (t)
LRC VDWLVIDFHODHFXDFLyQ L 2
dt
dt C
donde E(t GHQRWDODGHULYDGDGHE(t
'HPXHVWUHTXHH[FHSWRSDUDHOFDVRȜ KD\GRVIXQFLRQHV SURSLDV LQGHSHQGLHQWHV TXH FRUUHVSRQGHQ D FDGD
YDORUSURSLR
24. 8QD FXHQWD HVWi UHVWULQJLGD D GHVOL]DUVH D OR ODUJR GH
XQD YDULOOD VLQ IULFFLyQ GH ORQJLWXG L /D YDULOOD JLUD
HQXQSODQRYHUWLFDOFRQYHORFLGDGDQJXODUFRQVWDQWHȦ
UHVSHFWRDXQSLYRWHP¿MRHQHOSXQWRPHGLRGHODYDULOODSHURHOGLVHxRGHOSLYRWHSHUPLWHTXHODFXHQWDVH
PXHYDDORODUJRGHWRGDODYDULOOD6HDr(t ODSRVLFLyQ
GHODFXHQWDUHVSHFWRDHVWHVLVWHPDGHFRRUGHQDGDVJLUDWRULRVHJ~QVHLOXVWUDHQOD¿JXUD5&RQHO¿QGH
DSOLFDUODVHJXQGDOH\GH1HZWRQGHOPRYLPLHQWRDHVWH
PDUFRGHUHIHUHQFLDURWDWRULRHVQHFHVDULRXVDUHOKHFKR
GHTXHODIXHU]DQHWDTXHDFW~DHQODFXHQWDHVODVXPD
GH ODV IXHU]DV UHDOHV HQ HVWH FDVR OD IXHU]D GHELGD D
ODJUDYHGDG \ODVIXHU]DVLQHUFLDOHV FRULROLVWUDQVYHUVDO\FHQWUtIXJD /DVPDWHPiWLFDVGHOFDVRVRQXQSRFR
FRPSOLFDGDVDVtTXHVyORVHGDODHFXDFLyQGLIHUHQFLDO
UHVXOWDQWHSDUDr:
m
d 2r
dt 2
m
2
mg sen t.
r
a) 5
HVXHOYDOD('DQWHULRUVXMHWDDODVFRQGLFLRQHVLQLciales r r0r v0
k1
k2
FIGURA 5.R.1 5HVRUWHVXQLGRVGHOSUREOHPD
cuenta
t)
17. 8QD PDVD TXH SHVD OLEUDV HVWLUD SXOJDGDV XQ UHVRUWH 6H DSOLFD DO VLVWHPD XQD IXHU]D SHULyGLFD LJXDO D
f(t cos ȖW sen ȖWFRPHQ]DQGRHQt (QDXVHQFLD
GHXQDIXHU]DGHDPRUWLJXDPLHQWR¢SDUDTXpYDORUGHȖ el
VLVWHPDHVWiHQXQHVWDGRGHUHVRQDQFLDSXUD"
223
b) 6
HSXHGHQHVSHFL¿FDUGRVFRQGLFLRQHVLQLFLDOHVi H
i SDUDOD('GHOLQFLVRD 6Li i0\q q0
¢FXiOHVi "
23. &RQVLGHUHHOSUREOHPDFRQYDORUHVHQODIURQWHUD
y
y 0, y(0) y(2 ), y (0) y (2 ).
r(
15. Un resorte con constante k VHVXVSHQGHHQXQOtTXLGR
TXH RIUHFH XQD IXHU]D GH DPRUWLJXDPLHQWR QXPpULFDPHQWH LJXDO D YHFHV OD YHORFLGDG LQVWDQWiQHD 6L XQD
masa mVHVXVSHQGHGHOUHVRUWHGHWHUPLQHORVYDORUHVGH
mSDUDTXHHOPRYLPLHQWROLEUHSRVWHULRUVHDQRRVFLODWRULR
16. (OPRYLPLHQWRYHUWLFDOGHXQDPDVDVXMHWDDXQUHVRUWHVH
1
x
x 0, x
GHVFULEHPHGLDQWHHO39, 4 x
x 'HWHUPLQHHOGHVSOD]DPLHQWRYHUWLFDOPi[LPR
GHODPDVD
l
ωt
P
FIGURA 5.R.2 9DULOODURWDQGRGHOSUREOHPD
224
l
CAPÍTULO 5
MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR
b) '
HWHUPLQH ODV FRQGLFLRQHV LQLFLDOHV SDUD ODV FXDOHV OD
FXHQWD H[KLEH PRYLPLHQWR DUPyQLFR VLPSOH ¢&XiO HV
ODORQJLWXGPtQLPDLGHODYDULOODSDUDODFXDOSXHGHpVWD
DFRPRGDUHOPRYLPLHQWRDUPyQLFRVLPSOHGHODFXHQWD"
c) Para las condiciones iniciales distintas de las obtenidas en
HOLQFLVRE ODFXHQWDHQDOJ~QPRPHQWRGHEHVDOLUGHOD
YDULOOD([SOLTXHXVDQGRODVROXFLyQr(t GHOLQFLVRD
d) 6XSRQJDTXHȦ UDG兾V8VHXQDDSOLFDFLyQJUD¿FDGRUDSDUDWUD]DUODVROXFLyQr(t SDUDODVFRQGLFLRnes iniciales r r v0GRQGHv0HV
\
e) 6XSRQJDTXHODORQJLWXGGHODYDULOODHVL SLHV
3DUDFDGDSDUGHFRQGLFLRQHVLQLFLDOHVGHOLQFLVRG
XVHXQDDSOLFDFLyQSDUDHQFRQWUDUUDtFHVSDUDFDOFXODU
HOWLHPSRWRWDOTXHODFXHQWDSHUPDQHFHHQODYDULOOD
25. 6XSRQJDTXHXQDPDVDmTXHSHUPDQHFHVREUHXQDVXSHU¿FLHSODQDVHFD\VLQIULFFLyQHVWiXQLGDDOH[WUHPROLEUHGH
XQUHVRUWHFX\DFRQVWDQWHHVk(QOD¿JXUD5 D ODPDVD
VHPXHVWUDHQODSRVLFLyQGHHTXLOLEULRx HVGHFLUHO
UHVRUWHQRHVWiQLHVWLUDGRQLFRPSULPLGR&RPRVHLOXVWUD
HQOD¿JXUD5 E HOGHVSOD]DPLHQWRx(t GHODPDVDD
ODGHUHFKDGHODSRVLFLyQGHHTXLOLEULRHVSRVLWLYR\QHJDWLYRDODL]TXLHUGD2EWHQJDXQDHFXDFLyQGLIHUHQFLDOSDUD
HO PRYLPLHQWR GHVOL]DQWH KRUL]RQWDO OLEUH GH OD PDVD
'HVFULEDODGLIHUHQFLDHQWUHODREWHQFLyQGHHVWD('\HO
DQiOLVLVTXHGDOXJDUDODHFXDFLyQ GHODVHFFLyQ
26. 6XSRQJDTXHODPDVDPVREUHODVXSHU¿FLHSODQDVHFD
\VLQIULFFLyQGHOSUREOHPDHVWiXQLGDDGRVUHVRUWHV
FRPRVHPXHVWUDHQOD¿JXUD56LODVFRQVWDQWHVGH
resorte son k \ k GHWHUPLQH XQD HFXDFLyQ GLIHUHQFLDO
SDUDHOGHVSOD]DPLHQWRx(t GHODVPDVDVTXHVHGHVOL]DQ
OLEUHPHQWH
27. 6XSRQJDTXHODPDVDPHQHOVLVWHPDPDVDUHVRUWHHQHO
SUREOHPD VH GHVOL]D VREUH XQD VXSHU¿FLH VHFD FX\R
FRH¿FLHQWH GH IULFFLyQ FLQpWLFR HV ȝ 6L OD IXHU]D
UHWDUGDGRUD TXH OD IULFFLyQ FLQpWLFD WLHQH XQD PDJQLWXG
constante fk ȝPJGRQGHmgHVHOSHVRGHODPDVD\
DFW~DHQGLUHFFLyQRSXHVWDGHOPRYLPLHQWRHQWRQFHVVH
conoce como fricción de Coulomb 0HGLDQWH OD función signo
sgn(x )
1,
1,
x
x
0 (movimiento a la izquierda)
0 (movimiento a la derecha)
GHWHUPLQHODHFXDFLyQGLIHUHQFLDOGH¿QLGDHQSDUWHVSDUD
HO GHVSOD]DPLHQWR R x(t GH OD PDVD GHVOL]DQWH DPRUWLJXDGD
28. 3RUVLPSOL¿FDUVXSRQJDTXHHQHOSUREOHPDm
k \fk
a) (QFXHQWUHHOGHVSOD]DPLHQWRx(t GHODPDVDVLpVWDVH
OLEHUDDSDUWLUGHOUHSRVRGHVGHXQSXQWRXQLGDGHVD
ODGHUHFKDGHODSRVLFLyQGHHTXLOLEULRHVGHFLUFXDQGR
las condiciones iniciales son x x´
&XDQGRVHOLEHUDLQWXLWLYDPHQWHHOPRYLPLHQWRGHOD
PDVDVHUiKDFLDODL]TXLHUGD'pXQLQWHUYDORGHWLHPSR
>t@VREUHHOFXDOHVWDVROXFLyQHVWiGH¿QLGD¢'yQGH
HVWiODPDVDDOWLHPSRt"
b) Para t tVXSRQJDTXHHOPRYLPLHQWRHVDKRUDKDFLD
ODGHUHFKD8VDQGRODVFRQGLFLRQHVLQLFLDOHVHQtHQFXHQWUHx(t \GpXQLQWHUYDORGHWLHPSR>tt] sobre el
FXDOHVWDVROXFLyQHVWiGH¿QLGD¢'yQGHHVWiODPDVD
DOWLHPSRt"
c) Para t tVXSRQJDTXHHOPRYLPLHQWRHVDKRUDKDFLD
OD L]TXLHUGD 8VDQGR ODV FRQGLFLRQHV LQLFLDOHV HQ
tHQFXHQWUHx(t \GpXQLQWHUYDORGHWLHPSR>tt]
VREUHHOFXDOHVWDVROXFLyQHVWiGH¿QLGD¢'yQGHHVWi
ODPDVDDOWLHPSRt"
d) Usando las condiciones iniciales en tGHPXHVWUHTXH
HOPRGHORSUHGLFHTXHQRKD\PiVPRYLPLHQWRSDUD
t t
e) 7
UDFH OD JUi¿FD GHO GHVSOD]DPLHQWR x(t HQ HO LQWHUYDOR>t@
apoyo
rígido
m
apoyo
rígido
superficie sin fricción:
a) equilibrio
x=0
m
m
x(t) < 0
x(t) > 0
b) movimiento
FIGURA 5.R.3 6LVWHPDGHVOL]DQWHUHVRUWHPDVDGHO
SUREOHPD
k2
k1
apoyo
rígido
FIGURA 5.R.4 6LVWHPDGHUHVRUWHVGREOHVGHOSUREOHPD
6
6.1
SOLUCIÓNS ABOUT ORDINARY POINTS
l
225
SOLUCIONES EN SERIES
DE ECUACIONES LINEALES
6.1
6.2
6.3
6.4
Repaso de series de potencias
Soluciones respecto a puntos ordinarios
Soluciones en torno a puntos singulares
Funciones especiales
REPASO DEL CAPÍTULO 6
Hasta ahora se han resuelto principalmente ecuaciones diferenciales de orden dos
RVXSHULRUFXDQGRODHFXDFLyQWLHQHFRH¿FLHQWHVFRQVWDQWHV/D~QLFDH[FHSFLyQ
IXHODHFXDFLyQGH&DXFK\(XOHUTXHVHHVWXGLyHQODVHFFLyQ(QDSOLFDFLRQHV
ODVHFXDFLRQHVOLQHDOHVGHRUGHQVXSHULRUFRQFRH¿FLHQWHVYDULDEOHVVRQWDQ
LPSRUWDQWHVRTXL]iPiVTXHODVHFXDFLRQHVGLIHUHQFLDOHVFRQFRH¿FLHQWHV
FRQVWDQWHV&RPRVHLQGLFyHQODVHFFLyQDXQXQDHFXDFLyQVLPSOHOLQHDO
GHVHJXQGRRUGHQFRQFRH¿FLHQWHVYDULDEOHVWDOHVFRPRy xy 0 no tiene
VROXFLRQHVTXHVHDQIXQFLRQHVHOHPHQWDOHV3HURSRGHPRVHQFRQWUDUGRVVROXFLRQHV
linealmente independientes de y xy YHUHPRVHQODVVHFFLRQHV\TXH
ODVVROXFLRQHVGHHVWDHFXDFLyQHVWiQGH¿QLGDVSRUVHULHVLQ¿QLWDV
(QHVWHFDStWXORHVWXGLDUHPRVGRVPpWRGRVGHVHULHVLQ¿QLWDVSDUDHQFRQWUDU
soluciones de ED lineales homogéneas de segundo orden a(x)y a1(x)y
a0(x)y GRQGHORVFRH¿FLHQWHVYDULDEOHVa(x a1(x) y a0(x VRQODPD\RUtDGHODV
YHFHVVLPSOHVSROLQRPLRV
225
226
CAPÍTULO 6
l
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
REPASO DE SERIES DE POTENCIAS
6.1
REPASO DE MATERIAL
l 6HULHLQ¿QLWDGHFRQVWDQWHVVHULHpVHULHDUPyQLFDVHULHDUPyQLFDDOWHUQDVHULHJHRPpWULFD
SUXHEDVGHFRQYHUJHQFLDHVSHFLDOPHQWHSUXHEDGHOFRFLHQWH
l 6HULHGHSRWHQFLDVVHULHGH7D\ORUVHULHGH0DFODXULQ YHDFXDOTXLHUOLEURGHFiOFXOR
INTRODUCCIÓN (QODVHFFLyQYLPRVTXHUHVROYHUXQD('OLQHDOKRPRJpQHDFRQFRH¿FLHQWHV
FRQVWDQWHVHUDHQHVHQFLDXQSUREOHPDGHiOJHEUD(QFRQWUDQGRODVUDtFHVGHODHFXDFLyQDX[LOLDUHVSRVLEOHHVFULELUXQDVROXFLyQJHQHUDOGHOD('FRPRXQDFRPELQDFLyQOLQHDOGHIXQFLRQHVHOHPHQWDOHVex
xkexxkex cos ȕ[ y xkex sen ȕ[3HURFRPRVHLQGLFyHQODLQWURGXFFLyQGHODVHFFLyQODPD\RUtDGH
ODV('OLQHDOHVGHRUGHQVXSHULRUFRQFRH¿FLHQWHVYDULDEOHVQRVHUHVXHOYHQHQWpUPLQRVGHIXQFLRQHVHOHPHQWDOHV8QDHVWUDWHJLDXVXDOSDUDHFXDFLRQHVGHHVWDFODVHHVVXSRQHUXQDVROXFLyQHQODIRUPDGHVHULHV
LQ¿QLWDV\SURFHGHUGHPDQHUDVLPLODUDOPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRV VHFFLyQ (QODVHFFLyQVHFRQVLGHUDQ('OLQHDOHVGHVHJXQGRRUGHQFRQFRH¿FLHQWHVYDULDEOHVTXHWLHQHQVROXFLRQHVGH
ODIRUPDGHVHULHVGHSRWHQFLDV\SRUHVRHVDGHFXDGRFRPHQ]DUHVWHFDStWXORFRQXQUHSDVRGHHVHWHPD
SERIE DE POTENCIAS 5HFXHUGHGHVXFXUVRGHFiOFXORTXHXQDserie de potencias en x aHVXQDVHULHLQ¿QLWDGHODIRUPD
El índice de la sumatoria no
QHFHVLWDFRPHQ]DUHQn = 0
cn(x
a) n
c0
c1(x
a)
c 2(x
a)2
.
n 0
Se dice que esta serie es una serie de potencias centrada en a3RUHMHPSORODVHULH
de potencias n 0 (x 1)n HVWiFHQWUDGDHQa (QHVWDVHFFLyQWUDWDPRVSULQFLpalmente con las series de potencias en xHQRWUDVSDODEUDVVHULHVGHSRWHQFLDVFRPR
n 1 n
x
x 2x2 4x3
TXHHVWiQFHQWUDGDVHQa
n 12
HECHOS IMPORTANTES /DVLJXLHQWHOLVWDUHVXPHDOJXQRVKHFKRVLPSRUWDQWHV
acerca de las series de potencias n 0 cn (x a)n
divergencia
convergencia
absoluta divergencia
a−R
a
a+R
x
la serie podría
converger o divergir
en los puntos extremos
FIGURA 6.1.1 &RQYHUJHQFLDDEVROXWD
GHQWURGHOLQWHUYDORGHFRQYHUJHQFLD\
GLYHUJHQFLDIXHUDGHHVWHLQWHUYDOR
• Convergencia 8QD VHULH GH SRWHQFLDV HV convergente HQ XQ YDORU
HVSHFL¿FDGR GH x si su sucesión de sumas parciales {SN(x ` FRQYHUJH HV
GHFLUVLHO lím SN (x)
lím Nn 0 cn (x a) n H[LVWH6LHOOtPLWHQRH[LVWH
N:
N:
en xHQWRQFHVVHGLFHTXHODVHULHHVdivergente
• Intervalo de convergencia 7RGD VHULH GH SRWHQFLDV WLHQH XQ intervalo
de convergencia (O LQWHUYDOR GH FRQYHUJHQFLD HV HO FRQMXQWR GH todos los
Q~PHURV UHDOHV x SDUD ORV TXH FRQYHUJH OD VHULH (O FHQWUR GH LQWHUYDOR GH
FRQYHUJHQFLDHVHOFHQWURaGHODVHULH
• Radio de convergencia 7RGDVHULHGHSRWHQFLDVWLHQHXQradio de convergencia
R6LR HQWRQFHVODVHULHGHSRWHQFLDV n 0 cn (x a)n FRQYHUJHSDUD兩 x
– a 兩 R \ GLYHUJH SDUD 兩 x – a 兩
R 6L OD VHULH FRQYHUJH VyOR HQ VX FHQWUR
a HQWRQFHV R 6L OD VHULH FRQYHUJH SDUD WRGD x HQWRQFHV VH HVFULEH R
5HFXHUGHTXHODGHVLJXDOGDGGHYDORUDEVROXWR兩 x – a 兩 RHVHTXLYDOHQWHD
ODGHVLJXDOGDGVLPXOWiQHDa R x a R8QDVHULHGHSRWHQFLDVSRGUtD
FRQYHUJHURQRHQORVSXQWRVH[WUHPRVa R y a RGHHVWHLQWHUYDOR
• Convergencia absoluta 'HQWURGHVXLQWHUYDORGHFRQYHUJHQFLDXQDVHULH
de potencias converge absolutamente(QRWUDVSDODEUDVVLxHVXQQ~PHUR
HQHOLQWHUYDORGHFRQYHUJHQFLD\QRHVXQH[WUHPRGHOLQWHUYDORHQWRQFHVOD
VHULHGHYDORUHVDEVROXWRV n 0 cn (x a)n FRQYHUJH9pDVHOD¿JXUD
• Prueba de la razón /DFRQYHUJHQFLDGHXQDVHULHGHSRWHQFLDVVXHOHGHWHUPL
narse mediante la prueba de la razón 6XSRQJD TXH cn 0 para toda n en
a)n y que
n 0 cn (x
c (x a)n 1
c
lím n 1
x a n:
lím n 1
L.
n:
cn
cn(x a)n
Si L OD VHULH FRQYHUJH DEVROXWDPHQWH VL L OD VHULH GLYHUJH \ VL
L HO FULWHULR QR HV FRQFOX\HQWH /D SUXHED GHO FRFLHQWH QXQFD HV
FRQFOX\HQWHHQXQSXQWRH[WUHPRa R
6.1
REPASO DE SERIES DE POTENCIAS
l
227
EJEMPLO 1 Suma de dos series de potencias
'HWHUPLQHHOLQWHUYDOR\UDGLRGHFRQYHUJHQFLDSDUD
n
1 (x
SOLUCIÓN /DSUXHEDGHODUD]yQDUURMD
(x 3) n 1
lím 2n 1 (n 1)
no
(x 3)n
2n n
x
3 lím
1
n
2n
no
1
x
2
3) n> 2n n
3.
1
1o x 3
2 o 1 x 5 (VWD
ODVHULHFRQYHUJHDEVROXWDPHQWHSDUD 2 x 3
~OWLPD GHVLJXDOGDG GH¿QH HO LQWHUYDOR abierto GH FRQYHUJHQFLD /D VHULH GLYHUJH SDUD
x 3
2 HVGHFLUSDUDx 5 o x (QHOH[WUHPRL]TXLHUGRx GHOLQWHUYDOR
DELHUWR GH FRQYHUJHQFLD OD VHULH GH FRQVWDQWHV n 1 (( 1)n兾n) HV FRQYHUJHQWH SRU OD
SUXHEDGHVHULHVDOWHUQDQWHV(QHOH[WUHPRGHUHFKRx ODVHULH n 1 (1> n) es la serie
DUPyQLFD GLYHUJHQWH (O LQWHUYDOR GH FRQYHUJHQFLD GH OD VHULH HV > y el radio de
FRQYHUJHQFLDHVR
• 8QDVHULHGHSRWHQFLDVGH¿QHXQDIXQFLyQ 8QDVHULHGHSRWHQFLDVGH¿QHXQD
a)n FX\RGRPLQLRHVHOLQWHUYDORGHFRQYHUJHQFLDGH
función f (x)
n 0 cn (x
ODVHULH6LHOUDGLRGHFRQYHUJHQFLDHVR 0 o R HQWRQFHVfHVFRQWLQXDGHULYDEOH
HLQWHJUDEOHHQHOLQWHUYDOR a Ra R) o ( $GHPiVf (x) y f (x)dx
VHHQFXHQWUDQGHULYDQGRHLQWHJUDQGRWpUPLQRDWpUPLQR/DFRQYHUJHQFLDHQXQ
n
H[WUHPRVHSRGUtDSHUGHUSRUGHULYDFLyQRJDQDUSRULQWHJUDFLyQ6Ly
n 0 cn x
c0 c1x cx cx ÂÂÂHVXQDVHULHGHSRWHQFLDVHQxHQWRQFHVODVSULPHUDV
n 1
yy
GRVGHULYDGDVVRQy
1)xn 2.2EVHUYHTXHHO
n 0 nx
n 0 n(n
SULPHUWpUPLQRHQODSULPHUDGHULYDGD\ORVGRVSULPHURVWpUPLQRVGHODVHJXQGD
GHULYDGDVRQFHUR6HRPLWHQHVWRVWpUPLQRVFHUR\VHHVFULEH
cn nxn
y
n
1
n
2
y
cn n(n
1
c1 cx cx 4c4x ÂÂÂ
1)xn
2
ccx c4x ÂÂÂ
(1)
$VHJ~UHVHGHHQWHQGHUORVGRVUHVXOWDGRVGDGRVHQ HVSHFLDOPHQWHREVHUYH
GyQGHFRPLHQ]DHOtQGLFHGHODVXPDWRULDHQFDGDVHULH(VWRVUHVXOWDGRVVRQ
LPSRUWDQWHV\VHXVDUiQHQWRGRVORVHMHPSORVGHODVLJXLHQWHVHFFLyQ
• Propiedad de identidad Si n 0 cn (x a)n 0, R 0 SDUDORVQ~PHURV
xHQHOLQWHUYDORGHFRQYHUJHQFLDHQWRQFHVcn 0 para toda n
• Analítica en un punto 8QDIXQFLyQf es analítica en un punto a si se puede
representar mediante una serie de potencias en x aFRQXQUDGLRSRVLWLYRR
LQ¿QLWRGHFRQYHUJHQFLD(QFiOFXORVHYHTXHODVIXQFLRQHVFRPRexFRVx
sen xex ln(1 x HWFpWHUDVHSXHGHQUHSUHVHQWDUPHGLDQWHVHULHVGH7D\ORU
n
a)n
f (a)
f (a)
(x
1!
a)
f (a)
(x
1!
a)2
...
RXQDVHULHGH0DFODXULQ
n
f (n)(a)
(x
0 n!
f (n)(0) n
x
0 n!
f(0)
f (0)
x
1!
f (0) 2
x
1!
. . ..
3RGUtDUHFRUGDUDOJXQDVGHODVUHSUHVHQWDFLRQHVHQVHULHGH0DFODXULQFX\RV
UHVXOWDGRV VH SXHGHQ XWLOL]DU SDUD REWHQHU UHSUHVHQWDFLRQHV GH VHULHV GH
potencias de otras funciones:
228
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
Intervalo
de Convergencia
Series de Maclaurin
ex
cos x
se n x
tan
1
x
cosh x
se nh x
ln(1
x)
1
1
x
1
1
x
x
1
x
x
1
x
1!
x2
2!
x3
3!
...
x2
2!
x4
4!
x6
6!
...
x3
3!
x5
5!
x7
7!
...
x3
3
x5
5
x7
7
...
x2
2!
x4
4!
x6
6!
...
x3
3!
x5
5!
x7
7!
...
x2
2
x3
3
x4
4
...
x
x2
x3
...
3XHGHWDPELpQFRPSUREDUTXHHO
LQWHUYDORGHFRQYHUJHQFLDHV @
XVDQGRODSUXHEDGHFRQYHUJHQFLD
ln(1
(x
(
, )
n
( 1)n 2n
x
0 (2n)!
(
, )
n
( 1)n 2n
x
1)!
0 (2n
n
( 1)n 2n
x
1
0 2n
n
1 2n
x
0 (2n)!
n
0 (2n
1)!
1
n
( 1)n
n
1
1
1
1
[ 1, 1]
x2n
1
xn
(
, )
(
, )
(2)
( 1, 1]
xn
( 1, 1)
0
3RUHMHPSORVLGHVHDPRVHQFRQWUDUODUHSUHVHQWDFLyQHQVHULHGH0DFODXULQ
2
GHGLJDPRVex QHFHVLWDPRVVXVWLWXLUxHQODVHULHGH0DFODXULQGHex:
2
ln x
, )
n
ex
(
n
1 n
x
n!
0
x2
1!
1
x4
2!
x6
3!
...
n
1 2n
x .
n!
0
'HPDQHUDVLPLODUSDUDREWHQHUXQDUHSUHVHQWDFLyQHQVHULHGH7D\ORUGHOQx
centrada en a VXVWLWX\Dx por x HQODVHULHGH0DFODXULQSDUDOQ x)
1))
(x
1)
1)2
(x
2
1)3
(x
3
1)4
(x
4
...
n
( 1)n
n
1
1
(x
1)n.
(OLQWHUYDORGHFRQYHUJHQFLDSDUDODUHSUHVHQWDFLyQHQVHULHGHSRWHQFLDVGHex
es el mismo que para exHVGHFLU 3HURHOLQWHUYDORGHFRQYHUJHQFLD
GHODVHULHGH7D\ORUGHOQxHVDKRUD @HVWHLQWHUYDORHV @GHVSOD]DGR
XQDXQLGDGDODGHUHFKD
2
• Aritmética de series de potencias /DV VHULHV GH SRWHQFLDV VH FRPELQDQ
PHGLDQWH RSHUDFLRQHV GH VXPD PXOWLSOLFDFLyQ \ GLYLVLyQ /RV SURFHGLPLHQWRV
SDUDODVVHULHVGHSRWHQFLDVVRQVLPLODUHVDORVTXHVHXVDQSDUDVXPDUPXOWLSOLFDU
\GLYLGLUGRVSROLQRPLRVHVGHFLUVHVXPDQORVFRH¿FLHQWHVGHSRWHQFLDVLJXDOHV
de xVHXVDODOH\GLVWULEXWLYD\VHUH~QHQWpUPLQRVVHPHMDQWHV\VHUHDOL]DOD
GLYLVLyQODUJD
EJEMPLO 2 Multiplicación de series de potencias
Determine una representación en serie de potencias de ex sen x
SOLUCIÓN 8WLOL]DPRVXQDVHULHGHSRWHQFLDVSDUDex y sen x
6.1
ex senx
1
x2
2
x
x4
24
1
6
(1)x2
(1)x
x3
3
x2
x
x3
6
REPASO DE SERIES DE POTENCIAS
1 3
x
2
x5
30
x3
6
x
1
6
x5
120
229
l
x7
5040
1 4
x
6
1
120
1
12
1 5
x
24
.
3XHVWRTXHODVVHULHVGHSRWHQFLDVSDUDex y sen xFRQYHUJHQSDUD( ODVHULHGH
SURGXFWRVFRQYHUJHHQHOPLVPRLQWHUYDOR/RVSUREOHPDVUHODFLRQDGRVFRQPXOWLSOLFDFLyQRGLYLVLyQGHVHULHVGHSRWHQFLDVVHUHVXHOYHQPHMRUXVDQGRXQVLVWHPDDOJHEUDLFRFRPSXWDFLRQDO
CORRIMIENTO DEL ÍNDICE DE LA SUMA 3DUD HO UHVWR GH HVWD VHFFLyQ DVt
FRPRHVWHFDStWXORHVLPSRUWDQWHTXHVHDFRVWXPEUHDVLPSOL¿FDUODVXPDGHGRVR
PiVVHULHVGHSRWHQFLDVFDGDXQDH[SUHVDGDHQQRWDFLyQGHVXPD VLJPD HQXQDH[presión con una sola . &RPRVHPXHVWUDHQHOVLJXLHQWHHMHPSORODFRPELQDFLyQGH
GRVRPiVVXPDVHQXQDVRODVXHOHUHTXHULUTXHVHYXHOYDDLQGL]DUODVHULHHVGHFLU
TXHVHUHDOLFHXQFDPELRHQHOtQGLFHGHODVXPD
EJEMPLO 3 Suma de dos series de potencias
(VFULED
n
2
1)cn xn
n(n
2
n
0
cn xn 1 FRPRXQDVRODVHULHGHSRWHQFLDV
SOLUCIÓN 3DUDVXPDUODVGRVVHULHVHVQHFHVDULRTXHDPERVtQGLFHVGHODVVXPDV
FRPLHQFHQFRQHOPLVPRQ~PHUR\ODVSRWHQFLDVGHx en cada caso estén “en fase”; es
GHFLUVLXQDVHULHFRPLHQ]DFRQXQP~OWLSORGHSRUHMHPSORxDODSULPHUDSRWHQFLD
HQWRQFHVVHTXLHUHTXHODRWUDVHULHFRPLHQFHFRQODPLVPDSRWHQFLD2EVHUYHTXHHQ
HOSUREOHPDODSULPHUDVHULHHPSLH]DFRQx0PLHQWUDVTXHODVHJXQGDFRPLHQ]DFRQx1
6LVHHVFULEHHOSULPHUWpUPLQRGHODSULPHUDVHULHIXHUDGHODQRWDFLyQGHVXPD
serie comienza serie comienza
con x
con x
para n 3
para n 0
兺 n(n 1)cn x n2 n0
兺 cn x n1 2
n2
1c2 x 0 兺 n(n 1)cn x n2 兺 cn x n1,
n3
n0
YHPRVTXHDPEDVVHULHVGHOODGRGHUHFKRHPSLH]DQFRQODPLVPDSRWHQFLDGHxHQ
particular x1$KRUDSDUDREWHQHUHOPLVPRtQGLFHGHODVXPDVHWRPDQFRPRJXtD
ORVH[SRQHQWHVGHxVHHVWDEOHFHk n HQODSULPHUDVHULH\DOPLVPRWLHPSR
k n HQODVHJXQGDVHULH3DUDn HQk n REWHQHPRVk \SDUDn 0
en k n 1 REWHQHPRVk \DVtHOODGRGHUHFKRGHODHFXDFLyQ VHFRQYLHUWHHQ
igual
2c2 兺 (k 2)(k 1)ck2 x k 兺 ck1 x k .
k1
(4)
k1
igual
5HFXHUGHTXHHOtQGLFHGHODVXPDHVXQDYDULDEOH³PXGD´HOKHFKRGHTXHk n
en un caso y k n HQ HO RWUR QR GHEH FDXVDU FRQIXVLyQ VL VH FRQVLGHUD TXH OR
importante es el valorGHOtQGLFHGHVXPD(QDPERVFDVRVkWRPDORVPLVPRVYDORUHV
VXFHVLYRVk FXDQGRnWRPDORVYDORUHVn SDUDk n 1 y n
SDUDk n $KRUDHVSRVLEOHVXPDUODVVHULHVGH WpUPLQRDWpUPLQR
n(n 1)cn xn
n
2
2
cn xn
n
0
1
2c2
[(k
k
2)(k
1)ck
2
ck 1 ]xk.
(5)
1
6L QR HVWi FRQYHQFLGR GHO UHVXOWDGR HQ HQWRQFHV HVFULED DOJXQRV WpUPLQRV GH
DPERVODGRVGHODLJXDOGDG
230
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
EJEMPLO 4 Una solución en serie de potencias
Determine una solución en serie de potencias de y
cial y´ y
n
cnxn de la ecuación diferen-
0
'HVFRPSRQHPRVODVROXFLyQHQXQDVHFXHQFLDGHSDVRV
i 3ULPHURFDOFXODPRVODGHULYDGDGHODVROXFLyQVXSXHVWD
SOLUCIÓN
n
1
cn nx n
y
vea la primera línea de (1)
1
ii) Después sustituya y y y´ en la ED dada:
y
1
cn nxn
y
1
n
n
cn x n.
0
iii $KRUDFRUUDORVtQGLFHVGHODVXPDWRULD&XDQGRORVtQGLFHVGHODVXPDWRULDWLHQHQ
el mismo punto de inicio y las potencias de xFRQFXHUGDQVHFRPELQDQODVVXPDWRULDV
y
y
1
k
k
k
1
cnnxn
n
n
n 1
cnxn
0
k
ck 1(k
1)xk
[ck 1(k
1)
n
0
k
0
ckxk
0
ck]xk.
iv 3XHVWRTXHTXHUHPRVTXHVHVDWLVIDJDy´ y 0 para toda xHQDOJ~QLQWHUYDOR
k
[ck 1(k
ck]xk
1)
0
0
HVXQDLGHQWLGDG\DVtVHGHEHGHWHQHUTXHck1(k 1) ck R
1
c , k 0, 1, 2, . . . .
ck 1
k 1 k
v) haciendo que kWRPHYDORUHVVXFHVLYRVHQWHURVFRPHQ]DQGRFRQk HQFRQWUDPRV
1
c1
c
c0
1 0
1
1
1
c2
c1
( c0)
c
2
2
2 0
1
1 1
1
c3
c
c
c
3 2
3 2 0
3 2 0
1
c
4 2
c4
1
4
1
3 2
c0
1
c
4 3 2 0
\DVtVXFHVLYDPHQWHGRQGHc0HVDUELWUDULR
vi 8VDQGRODVROXFLyQRULJLQDOVXSXHVWD\ORVUHVXOWDGRVGHOLQFLVRv REWHQHPRVXQD
solución formal en serie de potencias
c2 x2 c3 x3 c4 x4 . . .
1 3
1
1 2
c0 c0 x
c x
c0
x
c0
x4 . . .
2 0
3 2
4 3 2
1 2
1 3
1
c0 1 x
x
x
x4 . . .
2
3 2
4 3 2
'HEHUtD VHU EDVWDQWH REYLR TXH HO SDWUyQ GH ORV FRH¿FLHQWHVHQ HO LQFLVRv) es ck
c0 (1)k兾kk «SRUORTXHHQQRWDFLyQGHVXPDWRULDSRGHPRVHVFULELU
( 1)k k
y c0
x
k 0 k!
y
6LVHGHVHDSRGUtDPRVUHJUHVDUDn
como el índice de la sumatoria
c0
c1x
6.1
REPASO DE SERIES DE POTENCIAS
l
231
'HODSULPHUDUHSUHVHQWDFLyQHQVHULHGHSRWHQFLDV ODVROXFLyQHQ VHUHFRQRFH
como y c0ex.6LKXELHUDXVDGRHOPpWRGRGHODVHFFLyQKDEUtDHQFRQWUDGRTXHy
cex es una solución de y´ y HQHOLQWHUYDOR (VWHLQWHUYDORWDPELpQ
HVHOLQWHUYDORGHFRQYHUJHQFLDGHODVHULHGHSRWHQFLDVHQ
EJERCICIOS 6.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-9.
(QORVSUREOHPDVDHQFXHQWUHXQLQWHUYDOR\XQUDGLRGH
FRQYHUJHQFLDSDUDODVHULHGHSRWHQFLDVGDGD
2.
n
( 1)n n
x
1 n
4.
n
2n n
x
1n
k
( 1)k
(x
k
1 10
1.
3.
5.
k
2
1k
k
5k
9.
k
n
5n n
x
0 n!
k
0
25.
2 x
2k
3
15
(3x
1)k
k
k
10.
n
( 1) 2n
x
n
0 9
(QORVSUREOHPDVGHODXVHXQDVHULHDGHFXDGDHQ
SDUDHQFRQWUDUODVHULHGH0DFODXULQGHODIXQFLyQGDGD(VFULEDVXUHVSXHVWDHQQRWDFLyQGHVXPDWRULD
11. e
13.
3x
x兾2
12. xe
1
2
14.
x
x
x2
1
16. sen x
15. ln(1 x)
(QORVSUREOHPDV\XWLOLFHXQDVHULHDGHFXDGDHQ SDUD
HQFRQWUDUODVHULHGH7D\ORUGHODIXQFLyQGDGDFHQWUDGDHQHOYDORU
indicado de a(VFULEDVXUHVSXHVWDHQQRWDFLyQGHVXPDWRULD
17. sen xa ʌ
(QORVSUREOHPDV\ODIXQFLyQGDGDHVDQDOtWLFDHQa
8WLOLFHODVHULHDGHFXDGDHQ \ODPXOWLSOLFDFLyQSDUDHQFRQtrar los primeros cuatro términos distintos de cero de la serie
GH0DFODXULQGHODIXQFLyQGDGD
19. sen x cos x
20. excos x
(Q ORV SUREOHPDV \ OD IXQFLyQ GDGD HV DQDOtWLFD HQ
a 8WLOLFHODVHULHDGHFXDGDHQ \ODGLYLVLyQODUJDSDUD
encontrar los primeros cuatro términos distintos de cero de la
VHULHGH0DFODXULQGHODIXQFLyQGDGD
21. sec x
22. tan x
(QORVSUREOHPDV\XWLOLFHXQDVXVWLWXFLyQSDUDFRUUHUHO
índice de la sumatoria para que el término general de la serie
de potencias dada implique a xk
n
ncn xn
1
2
(2n
24.
n
3
1)cn x n
3
2
n(n
29.
n
2
n
0
1
2
1
6cn x n
n
0
1)cn x n
2
1)cn x n
2
cn x n
2
0
n
1)cn x n
n(n
30.
ncn x n
2
1
n
2
1)cn x n
n(n
n
n
2
cn x n
0
2
ncn x n
3
1
n
(Q ORV SUREOHPDV GHO DO FRPSUXHEH SRU VXVWLWXFLyQ
directa que la serie de potencias dada es una solución de la
ecuación diferencial indicada [Sugerencia:3DUDXQDSRWHQFLD
xn+1 haga k n @
y
2xy
n
( 1)n 2n
x ,
0 n!
( 1)nx 2n,
(1
x2)y
n
0
(x
n
( 1)n 1 n
x,
n
1
xy
n
( 1)n 2n
x ,
2n
2
0 2 (n!)
31. y
32. y
[Sugerencia:8VHSHULRGLFLGDG@
18. ln x; a >Sugerencia: x > (x 兾@@
23.
n
1
n
2
cn xn
3
1
n(n
28.
cn x n
0
n
2ncn x n
5)k
0
n
1
1
1)k
3 k(4x
ncn xn
n
27.
8.
1
1
26.
k!(x
6.
ncn xn
n
n
1
7.
5)k
n
1 n
x
2
1n
(QORVSUREOHPDVGHODOSURFHGDFRPRHQHOHMHPSOR
SDUDUHVFULELUODH[SUHVLyQGDGDXVDQGRXQDVRODVHULHGHSRtencias cuyo término general implica a xk
33. y
34. y
0
2xy
0
1)y
y
0
y
xy
0
(QORVSUREOHPDVGHODSURFHGDFRPRHQHOHMHPSOR\
encuentre una solución en serie de potencias y
cnxn de
0
n
ODHFXDFLyQGLIHUHQFLDOOLQHDOGHSULPHURUGHQGDGD
35. y
5y
37. y
xy
0
36. 4y
y
38. (1
x)y
0
y
0
Problemas para analizar
39. (Q HO SUREOHPD HQFXHQWUH XQD IRUPD PiV IiFLO TXH
PXOWLSOLFDUGRVVHULHVGHSRWHQFLDVSDUDREWHQHUODUHSUHVHQWDFLyQHQVHULHVGH0DFODXULQGHVHQx cos x
40. (QHOSUREOHPD¢FXiOFUHHXVWHGTXHHVHOLQWHUYDORGH
FRQYHUJHQFLDSDUDODVHULHGH0DFODXULQGHVHFx?
232
l
CAPÍTULO 6
6.2
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
SOLUCIONES RESPECTO A PUNTOS ORDINARIOS
REPASO DE MATERIAL
l 6HULHGHSRWHQFLDVDQDOtWLFDHQXQSXQWRFRUULPLHQWRGHOtQGLFHGHODVXPDWRULDHQODVHFFLyQ
INTRODUCCIÓN $O¿QDOGHOD~OWLPDVHFFLyQPRVWUDUHPRVFyPRREWHQHUXQDVROXFLyQHQVHULHGH
SRWHQFLDVGHXQDHFXDFLyQGLIHUHQFLDOOLQHDOGHSULPHURUGHQ(QHVWDVHFFLyQUHJUHVDUHPRVDOSUREOHPD
PiVLPSRUWDQWHGHHQFRQWUDUVROXFLRQHVGHODVHFXDFLRQHVOLQHDOHVGHVHJXQGRRUGHQHQODIRUPDGH
VHULHVGHSRWHQFLDVFX\RFHQWURHVXQQ~PHURx0 que es un punto ordinarioGHOD('&RPHQ]DPRV
FRQODGH¿QLFLyQGHXQSXQWRRUGLQDULR
UNA DEFINICIÓN
Suponga que la ecuación diferencial lineal de segundo orden
a2 (x)y
a1 (x)y
a0 (x)y
0
(1)
VHHVFULEHHQIRUPDHVWiQGDU
y
P(x)y
Q(x)y
0
GLYLGLHQGRHQWUHHOFRH¿FLHQWHSULQFLSDOa(x 6HWLHQHODGH¿QLFLyQVLJXLHQWH
DEFINICIÓN 6.2.1
Puntos ordinarios y singulares
Se dice que un punto x x0 es un punto ordinario de la ecuación diferencial (1)
si tanto P(x) como Q(x HQODIRUPDHVWiQGDU VRQDQDOtWLFDVHQx06HGLFHTXH
un punto que no es punto ordinario es un punto singular GHODHFXDFLyQ
EJEMPLO 1
Puntos ordinarios
a)8QDHFXDFLyQGLIHUHQFLDOOLQHDOGHVHJXQGRRUGHQFRQFRH¿FLHQWHVFRQVWDQWHVFRPR
y y 0 y y y y 0
QRSXHGHWHQHUSXQWRVVLQJXODUHV(QRWUDVSDODEUDVFDGDYDORU¿QLWR GHx es un punto
RUGLQDULRGHHVWDVHFXDFLRQHV
b)&DGDYDORU¿QLWRGHx es un punto ordinario de la ecuación diferencial
y (ex)y (sen x)y
(QSDUWLFXODUx HVXQSXQWRRUGLQDULRSRUTXHFRPR\DVHYLRHQ GHODVHFFLyQ
WDQWRex como sen xVRQDQDOtWLFDVHQHVWHSXQWR
/D QHJDFLyQ HQ HO VHJXQGR HQXQFLDGR GH OD GH¿QLFLyQ HVWDEOHFH TXH VL SRU OR
menos una de las funciones P(x) y Q(x HQ QRHVDQDOtWLFDHQx0HQWRQFHVx0 es un
SXQWRVLQJXODU
EJEMPLO 2
Puntos singulares
a)/DHFXDFLyQGLIHUHQFLDO
y xy (ln x)y 0
\DHVWiHQODIRUPDHVWiQGDU/DVIXQFLRQHVFRH¿FLHQWHVVRQ
P(x) x y Q(x) ln x
$KRUDP(x) xHVDQDOtWLFDHQWRGRQ~PHURUHDO\Q(x) ln x es analítica para todo
Q~PHURUHDOpositivo6LQHPEDUJR\DTXHQ(x) ln x es discontinua en x 0 no se
puede representar por una serie de potencias en xHVGHFLUXQDVHULHGHSRWHQFLDVFHQWUDGDHQ&RQFOXLPRVTXHx HVXQSXQWRVLQJXODUGHOD('
b)$OWHQHUxy y xy HQODIRUPDHVWiQGDU
3DUDQXHVWURVSURSyVLWRVORVSXQWRVRUGLQDULRV\SXQWRVVLQJXODUHVVLHPSUHVHUiQSXQWRV¿QLWRV(V
SRVLEOHTXHXQD('2WHQJDXQSXQWRVLQJXODUHQHOLQ¿QLWR
6.2
SOLUCIONES RESPECTO A PUNTOS ORDINARIOS
l
233
y (1兾x)y y 0
YHPRVTXHP(x) 1兾x no es analítica en x 03RUORTXHx 0 es un punto singular de
ODHFXDFLyQ
COEFICIENTES POLINOMIALES 6HSRQHDWHQFLyQVREUHWRGRDOFDVRHQHOFXDO
ORVFRH¿FLHQWHVa(x a1(x) y a0(x) en la ecuación (1) son funciones polinomiales sin
IDFWRUHVFRPXQHV8QSROLQRPLRHVDQDOtWLFRHQFXDOTXLHUYDORUx y una función raFLRQDOHVDQDOtWLFDH[FHSWRHQORVSXQWRVGRQGHVXGHQRPLQDGRUHVFHUR$VtHQ
DPERV FRH¿FLHQWHV P(x) a1(x)兾a(x) y Q(x) a0(x)兾a(x VRQ DQDOtWLFDV H[FHSWR
donde a(x) (QWRQFHVVHWLHQHTXH
Un número x x0 es un punto ordinario de (1) si a(x0) 0 mientras que x x0
es un punto singular de (1) si a(x0)
EJEMPLO 3
Puntos ordinarios y singulares
a)/RV~QLFRVSXQWRVVLQJXODUHVGHODHFXDFLyQ
(x l)y xy y 0
son soluciones de x 1 0 o x O7RGRVORVRWURVYDORUHVGHx son puntos orGLQDULRV
b)/DLQVSHFFLyQGHODHFXDFLyQGH&DXFK\(XOHU
↓ a(x) x 0 en x 0
x y y 0
muestra que tiene un punto singular en x 7RGRVORVRWURVYDORUHVGHx son puntos
RUGLQDULRV
c)/RVSXQWRVVLQJXODUHVQRQHFHVLWDQVHUQ~PHURVUHDOHV/DHFXDFLyQ
(x l)y xy y 0
tiene puntos singulares en las soluciones x 1 HQSDUWLFXODUx i/RVRWURV
YDORUHVGHxUHDOHVRFRPSOHMRVVRQSXQWRVRUGLQDULRV
(VWDEOHFHPRVHOVLJXLHQWHWHRUHPDDFHUFDGHODH[LVWHQFLDGHVROXFLRQHVHQVHULHVGH
SRWHQFLDVVLQGHPRVWUDFLyQ
TEOREMA 6.2.1
Existencia de soluciones en series de potencias
Si x x0HVXQSXQWRRUGLQDULRGHODHFXDFLyQGLIHUHQFLDO VLHPSUHHVSRVLEOHHQFRQWUDUGRVVROXFLRQHVOLQHDOPHQWHLQGHSHQGLHQWHVHQODIRUPDGHXQD
serie de potencias centrada en x0HVGHFLU y
x0 )n 8QDVROXn 0 cn (x
FLyQHQVHULHFRQYHUJHSRUORPHQRVHQXQLQWHUYDORGH¿QLGRSRU兩 x x0 兩 R
donde R es la distancia desde x0DOSXQWRVLQJXODUPiVFHUFDQR
Se dice que una solución de la forma y
x0 )n es una solución resn 0 cn (x
pecto a un punto ordinario x0/DGLVWDQFLDRHQHOWHRUHPDHVHOvalor mínimo
o límite inferiorGHOUDGLRGHFRQYHUJHQFLD
EJEMPLO 4
/tPLWHLQIHULRUSDUDHOUDGLRGHFRQYHUJHQFLD
(QFXHQWUHHOUDGLRPtQLPRGHFRQYHUJHQFLDGHXQDVHULHGHSRWHQFLDVGHODHFXDFLyQ
diferencial de segundo orden
(x x 5)y xy y 0
a) en torno al punto ordinario en x
b) en torno al punto ordinario x 1
234
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
SOLUCIÓN 0HGLDQWHODIyUPXODFXDGUiWLFDYHPRVHQx x 5 0 que los puntos
VLQJXODUHVGHODHFXDFLyQGLIHUHQFLDOGDGDVRQORVQ~PHURVFRPSOHMRVi
y
1 + 2i
i
兹5
1 x
兹5
1 − 2i
FIGURA 6.2.1 Distancias desde los
puntos singulares al punto ordinario 0 en
HOHMHPSOR
a) Ya que x HVXQSXQWRRUGLQDULRGHODHFXDFLyQHOWHRUHPDJDUDQWL]DTXH
HV SRVLEOH HQFRQWUDU GRV VROXFLRQHV HQ VHULH GH SRWHQFLDV FHQWUDGDV HQ HV GHFLU
n
soluciones que se parecen a y
n 0 cn x . \DGHPiVVDEHPRVVLQUHDOPHQWHHQFRQWUDUHVWDVVROXFLRQHVTXHFDGDVHULHGHEHFRQYHUJHUal menos para x
15 donde
R
15HVODGLVWDQFLDHQHOSODQRFRPSOHMRGHVGH HOSXQWR DFXDOTXLHUD
GHORVQ~PHURVi HOSXQWR Ri HOSXQWR DOSXQWRRUGLQDULR
HOSXQWR 9HDOD¿JXUD
b) Ya que x HVXQSXQWRRUGLQDULRGHOD('HOWHRUHPDJDUDQWL]DTXHSRGHmos encontrar dos soluciones en series de potencias parecidas a y
1) n
n 0 cn (x
&DGDVHULHGHEHFRQYHUJHUDOPHQRVSDUD_x _ 212 ya que la distancia de cada
punto singular a 1 (el punto ( HVR
18 2 12.
(QHOLQFLVRD GHOHMHPSORXQDGHODVVROXFLRQHVHQVHULHVGHSRWHQFLDVHQGHOD
HFXDFLyQGLIHUHQFLDOHVYiOLGDHQXQLQWHUYDORPXFKRPD\RUTXH 15 ; 15) en realiGDGHVWDVROXFLyQHVYiOLGDHQHOLQWHUYDOR ) ya que se puede demostrar que una
GHODVGRVVROXFLRQHVHQWRUQRDVHUHGXFHDXQSROLQRPLR
NOTA (Q ORV HMHPSORV TXH VLJXHQ DVt FRPR HQ ORV HMHUFLFLRV SRU VLPSOL¿FDU HQFRQWUDUHPRV VROXFLRQHV HQ VHULH GH SRWHQFLDV VyOR UHVSHFWR DO SXQWR RUGLQDrio x 6L HV QHFHVDULR HQFRQWUDU XQD VROXFLyQ HQ VHULH GH SRWHQFLDV GH XQD ('
lineal respecto a un punto ordinario x0 VLPSOHPHQWHVHKDFHHOFDPELRGHYDULDEOH
t x x0 en la ecuación (esto traduce x x0 en t SDUDHQFRQWUDUODVVROXFLRQHV
n
GHODQXHYDHFXDFLyQGHODIRUPD y
n 0 cn t \GHVSXpVYROYHUDVXVWLWXLUt x x0
DETERMINACIÓN DE UNA SOLUCIÓN EN SERIES DE POTENCIAS /DGHWHUPLnación real de una solución en serie de potencias de una ED lineal homogénea de segundo
RUGHQHVEDVWDQWHVLPLODUDORTXHVHKL]RHQODVHFFLyQSDUDHQFRQWUDUVROXFLRQHVSDUWLFXODUHVGH('QRKRPRJpQHDVFRQHOPpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRV'HKHFKR
HO PpWRGR GH VHULH GH SRWHQFLDV SDUD UHVROYHU XQD (' OLQHDO FRQ FRH¿FLHQWHV YDULDEOHV
FRQIUHFXHQFLDVHGHVFULEHFRPR³PpWRGRGHFRH¿FLHQWHVLQGHWHUPLQDGRVGHseries´(Q
n
UHVXPHQODLGHDHVODVLJXLHQWHVXVWLWXLPRV y
n 0 cn x HQODHFXDFLyQGLIHUHQFLDOVH
FRPELQDODVHULHFRPRVHKL]RHQHOHMHPSORGHODVHFFLyQ\OXHJRVHLJXDODQORVFRH¿FLHQWHVGHOPLHPEURGHUHFKRGHODHFXDFLyQSDUDGHWHUPLQDUORVFRH¿FLHQWHVcn3HURFRPR
HOPLHPEURGHUHFKRHVFHURHO~OWLPRSDVRUHTXLHUHSRUODpropiedad de identidad en la
OLVWDGHSURSLHGDGHVDQWHULRUTXHWRGRVORVFRH¿FLHQWHVGHxVHGHEDQLJXDODUDFHUR(VWR
noVLJQL¿FDTXHORVFRH¿FLHQWHVsonFHURSXHVHOORQRWHQGUtDVHQWLGRGHVSXpVGHWRGRHO
WHRUHPDJDUDQWL]DTXHVHSXHGHQHQFRQWUDUGRVVROXFLRQHV(QHOHMHPSORVHLOXVWUD
n
c0 c1 x c2 x2
cómo la sola suposición de y
conduce a dos
n 0 cn x
FRQMXQWRVGHFRH¿FLHQWHVSRUORTXHVHWLHQHQGRVVHULHVGHSRWHQFLDVGLVWLQWDVy1(x) y y(x
DPEDVGHVDUUROODGDVUHVSHFWRDOSXQWRRUGLQDULRx /DVROXFLyQJHQHUDOGHODHFXDFLyQ
diferencial es y C1y1(x) Cy(x GHKHFKRVHSXHGHGHPRVWUDUTXHC1 c0 y C c1
$QWHVGHTXHWUDEDMHFRQHVWH
HMHPSOROHUHFRPHQGDPRVTXH
OHDGHQXHYRHOHMHPSORGHOD
VHFFLyQ
EJEMPLO 5
Soluciones en series de potencias
5HVXHOYDy xy
SOLUCIÓN 3XHVWRTXHQRKD\SXQWRVVLQJXODUHV¿QLWRVHOWHRUHPDJDUDQWL]D
GRV VROXFLRQHV HQ VHULH GH SRWHQFLDV FHQWUDGDV HQ FRQYHUJHQWHV SDUD 兩 x 兩
n
1)cn xn 2 YHD
Sustituyendo y
n 0 cn x \ODVHJXQGDGHULYDGD y
n 2 n(n
GHODVHFFLyQ HQODHFXDFLyQGLIHUHQFLDOVHREWLHQH
y
xy
cn n(n
n
2
1)xn
2
cn xn
x
n
0
cn n(n
n
2
1)xn
2
n
cn xn 1.
0
(QHOHMHPSOR\DVHVXPDURQODVGRV~OWLPDVVHULHVHQHOPLHPEURGHUHFKRGHODLJXDOGDGHQ FRUULHQGRHOtQGLFHGHODVXPD'HOUHVXOWDGRGDGRHQ GHODVHFFLyQ
y
6.1
SOLUCIONES RESPECTO A PUNTOS ORDINARIOS
xy
2c2
[(k
k
1)(k
2)ck
ck 1]xk
2
235
l
(4)
0.
1
(QHVWHSXQWRVHLQYRFDODSURSLHGDGGHLGHQWLGDG3XHVWRTXH HVLGpQWLFDPHQWHFHUR
HVQHFHVDULRTXHHOFRH¿FLHQWHGHFDGDSRWHQFLDGHxVHLJXDOHDFHURHVGHFLUc 0
HVHOFRH¿FLHQWHGHx0) y
(k
1)(k
2)ck
ck
2
0,
1
(5)
1, 2, 3, . . .
k
$KRUDc REYLDPHQWHGLFHTXHc 3HURODH[SUHVLyQHQ OODPDGDrelación
de recurrenciaGHWHUPLQDODckGHWDOPDQHUDTXHVHSXHGHHOHJLUTXHFLHUWRVXEFRQMXQWRGHOFRQMXQWRGHFRH¿FLHQWHVVHDdiferente de cero3XHVWRTXH k 1)(k
SDUDORVYDORUHVGHkVHSXHGHUHVROYHU SDUDck en términos de ck 1:
ck
2
ck 1
1)(k
(k
2)
,
1, 2, 3, . . .
k
(VWDUHODFLyQJHQHUDFRH¿FLHQWHVFRQVHFXWLYRVGHODVROXFLyQVXSXHVWDXQDYH]TXHk
WRPDORVHQWHURVVXFHVLYRVLQGLFDGRVHQ
c0
2 3
c1
3 4
c2
4 5
c3
5 6
c4
6 7
c5
7 8
c6
8 9
k
1,
c3
k
2,
c4
k
3,
c5
k
4,
c6
k
5,
c7
k
6,
c8
k
7,
c9
k
8,
c10
c7
9 10
k
9,
c11
c8
10 11
0
m c2 es cero
1
c
2 3 5 6 0
1
c
3 4 6 7 1
0
m c5 es cero
1
2 3 5 6 8 9
c0
1
c
3 4 6 7 9 10 1
0
m c8 es cero
HWFpWHUD$KRUDVXVWLWX\HQGRORVFRH¿FLHQWHVREWHQLGRVHQODVXSRVLFLyQRULJLQDO
y
c0
c1 x
c2 x2
c3 x3
c4 x4
c5 x5
c6 x6
c7 x7
c8 x8
c9 x9
c10 x10
c11 x11
,
REWHQHPRV
y
c0
c1 x
c0
0
c1
3 4 6 7
2 3
x7
0
x3
c1
3 4
x4
0
c0
2 3 5 6
c0
2 3 5 6 8 9
x9
x6
c1
x10
3 4 6 7 9 10
0
Después de agrupar los términos que contienen c0 y los que contienen c1VHREWLHQH
y c0 yl(x) c1y(x GRQGH
.
236
l
CAPÍTULO 6
y1 (x)
y2(x)
1
x
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
1
2 3
1
3 4
x3
x4
1
2 3 5 6
1
3 4 6 7
x6
x7
1
2 3 5 6 8 9
x9
1
k
1
x10
3 4 6 7 9 10
( 1) k
x3k
(3k 1)(3k)
2 3
1
x
1
k
3 4
( 1) k
(3k)(3k
1)
x3k 1.
'HELGRDTXHHOXVRUHFXUVLYRGH GHMDDc0 y a c1FRPSOHWDPHQWHLQGHWHUPLQDGDVVH
SXHGHQ HOHJLU HQ IRUPD DUELWUDULD &RPR \D VH PHQFLRQy DQWHV GH HVWH HMHPSOR OD
FRPELQDFLyQOLQHDOy c0 yl(x) c1 y(x) representa en realidad la solución general de
ODHFXDFLyQGLIHUHQFLDO$XQTXHVHVDEHGHOWHRUHPDTXHFDGDVROXFLyQHQVHULH
FRQYHUJHSDUD兩 x 兩 HVGHFLUHQHOLQWHUYDOR (VWHKHFKRWDPELpQVHSXHGH
FRPSUREDUFRQODSUXHEDGHODUD]yQ
/D HFXDFLyQ GLIHUHQFLDO GHO HMHPSOR VH OODPD ecuación de Airy OODPDGD DVt SRU
HO PDWHPiWLFR \ DVWUyQRPR LQJOpV *HRUJH %LGGHO $LU\ \ VH HQFXHQWUD
HQHOHVWXGLRGHODGLIUDFFLyQGHODOX]ODGLIUDFFLyQGHRQGDVGHUDGLRDOUHGHGRUGH
ODVXSHU¿FLHGHOD7LHUUDODDHURGLQiPLFD\ODGHÀH[LyQGHXQDFROXPQDYHUWLFDOGHOJDGDXQLIRUPHTXHVHFXUYDEDMRVXSURSLRSHVR2WUDVIRUPDVFRPXQHVGHODHFXDFLyQ
GH$LU\VRQy xy 0 y y xy 9pDVHHOSUREOHPDGHORVHMHUFLFLRV
SDUDXQDDSOLFDFLyQGHOD~OWLPDHFXDFLyQ
EJEMPLO 6
Solución con series de potencias
5HVXHOYD x 1)y xy y
SOLUCIÓN &RPRVHYLRHQODSiJLQDODHFXDFLyQGLIHUHQFLDOGDGDWLHQHSXQWRV
singulares en x i\SRUWDQWRXQDVROXFLyQHQVHULHGHSRWHQFLDVFHQWUDGDHQTXH
FRQYHUJHDOPHQRVSDUD兩 x 兩 GRQGHHVODGLVWDQFLDHQHOSODQRFRPSOHMRGHVGHDi
n
o i/DVXSRVLFLyQ y
n 0 cn x \VXVSULPHUDVGRVGHULYDGDV YpDVH FRQGXFHQD
(x2 1) 兺 n(n 1)cnxn2 x 兺 ncnxn1 兺 cnxn
n2
n1
n0
兺 n(n 1)cnxn 兺 n(n 1)cnxn2 兺 ncnxn 兺 cnxn
n2
n2
n1
n0
2c2x0 c0x0 6c3x c1x c1x 兺 n(n 1)cnxn
n2
kn
兺 n(n 1)cnxn2 兺 ncnxn 兺 cnxn
n4
n2
kn2
n2
kn
kn
2c2 c0 6c3x 兺 [k(k 1)ck (k 2)(k 1)ck2 kck ck]xk
k2
2c2 c0 6c3x 兺 [(k 1)(k 1)ck (k 2)(k 1)ck2]xk 0.
k2
'HHVWDLGHQWLGDGVHFRQFOX\HTXHc – c0 c \
(k
1)(k
1)ck
(k
2)(k
1)ck
2
0.
6.1
SOLUCIONES RESPECTO A PUNTOS ORDINARIOS
3RUWDQWR
ck
c2
1
c
2 0
c3
0
2
1
k
k
c,
2 k
l
237
2, 3, 4, . . .
k
Sustituyendo k HQOD~OWLPDIyUPXODVHREWLHQH
c4
1
c
4 2
1
c5
2
c
5 3
00
c6
3
c
6 4
3
c
2 4 6 0
c7
4
c
7 5
00
c8
5
c
8 6
c9
6
c
9 7
c10
7
c
10 8
2 4
1
c
2 2! 0
c0
2
; c3 es cero
1 3
c
23 3! 0
; c5 es cero
3 5
c
2 4 6 8 0
00,
1 3 5
c0
24 4!
; c7 es cero
3 5 7
c
2 4 6 8 10 0
1 3 5 7
c 0,
25 5!
c5 x5
c8 x8
HWFpWHUD3RUWDQWR
y
c0
c2 x2
c1 x
1 2
x
2
c0 1
c0 y1(x)
c3 x3
c4 x4
1 4
x
2 2!
1 3 6
x
23 3!
2
c6 x6
c 7 x7
1 3 5 8
x
24 4!
c9 x9
c10 x10
1 3 5 7 10
x
25 5!
c1 x
c1 y 2(x).
/DVVROXFLRQHVVRQHOSROLQRPLRy(x) x y la serie de potencias
y1 (x)
1 2
x
2
1
EJEMPLO 7
( 1)n
n
1 3 5
2n
1
n
2 n!
2
y
VHREWLHQH c2
x2n ,
x
1.
Relación de recurrencia de tres términos
6LVHEXVFDXQDVROXFLyQHQVHULHGHSRWHQFLDV y
1
2 c0
3
(1
n
0
cn xn para la ecuación diferencial
0,
x)y
y la relación de recurrencia de tres términos
ck
ck
2
(k
ck
1)(k
1
2)
,
k
1, 2, 3, . . .
6HGHGXFHDSDUWLUGHHVWRVGRVUHVXOWDGRVTXHORVFRH¿FLHQWHVcnSDUDn VHH[presan en términos de c0 y c13DUDVLPSOL¿FDUVHSXHGHHOHJLUSULPHURc0 c1 0;
HVWRFRQGXFHDFRH¿FLHQWHVSDUDXQDVROXFLyQH[SUHVDGDSRUFRPSOHWRHQWpUPLQRVGH
c0$FRQWLQXDFLyQVLHOHJLPRVc0 c1 HQWRQFHVORVFRH¿FLHQWHVSDUDODRWUD
VROXFLyQVHH[SUHVDQHQWpUPLQRVGHc18VDQGR c2 12 c0 HQDPERVFDVRVODUHODFLyQ
de recurrencia para k VHREWLHQH
238
CAPÍTULO 6
l
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
c0
0, c1
0
c2
1
c
2 0
c3
c1 c0
2 3
2 3
c4
c2 c1
3 4
c0
2 3 4
c0
c0
6
c0
24
c0
0, c1
0
c2
1
c
2 0
0
c3
c1 c0
2 3
c4
c2 c1
3 4
c1
2 3
c1
3 4
c1
6
c1
12
c3 c2
c0 1 1
c0
c3 c2
c1
c1
c5
4 5
4 5 6 2
30
4 5
4 5 6 120
HWFpWHUD3RU~OWLPRYHPRVTXHODVROXFLyQJHQHUDOGHODHFXDFLyQHVy c0 yl(x)
c1y(x GRQGH
1 2 1 3
1 4
1 5
y1 (x) 1
x
x
x
x
2
6
24
30
c5
y
y2 (x)
1 3
x
6
x
1 4
x
12
1 5
x
120
.
&DGDVHULHFRQYHUJHSDUDWRGRVORVYDORUHV¿QLWRVGHx
COEFICIENTES NO POLINOMIALES (QHOVLJXLHQWHHMHPSORVHPXHVWUDFyPR
encontrar una solución en serie de potencias respecto a un punto ordinario x0 0 de
XQDHFXDFLyQGLIHUHQFLDOFXDQGRVXVFRH¿FLHQWHVQRVRQSROLQRPLRV(QHVWHHMHPSOR
YHPRVXQDDSOLFDFLyQGHODPXOWLSOLFDFLyQGHGRVVHULHVGHSRWHQFLDV
EJEMPLO 8
('FRQFRH¿FLHQWHVQRSROLQRPLDOHV
5HVXHOYDy (cos x)y
SOLUCIÓN 9HPRVTXHx HVXQSXQWRRUGLQDULRGHODHFXDFLyQSRUTXHFRPR\D
KHPRVYLVWRFRVxHVDQDOtWLFDHQHVHSXQWR8VDQGRODVHULHGH0DFODXULQSDUDFRVx dada
n
HQ MXQWRFRQODVXSRVLFLyQXVXDO y
n 0 cn x \ORVUHVXOWDGRVGH VHHQFXHQWUD
y
(cos x)y
1)cn xn
n(n
n
2
x2
2!
1
2
x4
4!
x6
6!
cn xn
n
0
2
2c2
6c3 x
2c2
c0
12c4 x2
(6c3
20c5 x3
c1)x
1
x
2!
12c4
c2
1
c x2
2 0
6c3
c1
0,
x4
4!
20c5
(c0
c3
c2 x2
c1 x
c3 x3
1
c x3
2 1
)
0.
Se tiene que
2c2
c0
0,
12c4
c2
1
c
2 0
0,
20c5
c3
1
1
1
1
HWFpWHUD (VWR GD c2
30 c1, . . .
12 c0 , c5
6 c1 , c4
2 c0 , c3
términos se llega a la solución general y c0 yl(x) c1y(x GRQGH
y1 (x)
1
1 2
x
2
1 4
x
12
y
y2 (x)
x
1 3
x
6
1 5
x
30
1
c
2 1
0,
y agrupando
.
'HELGRDTXHODHFXDFLyQGLIHUHQFLDOQRWLHQHSXQWRVVLQJXODUHV¿QLWRVDPEDVVHULHVGH
SRWHQFLDVFRQYHUJHQSDUD兩 x 兩
6.1
l
239
CURVAS SOLUCIÓN /DJUi¿FDDSUR[LPDGDGHXQDVROXFLyQHQVHULHGHSRWHQFLDV
n
y(x)
n 0 cn x VH SXHGHREWHQHUGH YDULDVPDQHUDV6LHPSUHVH SXHGHUHFXUULU D
WUD]DUODJUi¿FDGHORVWpUPLQRVHQODVXFHVLyQGHVXPDVSDUFLDOHVGHODVHULHHQRWUDV
N
n
SDODEUDVODVJUi¿FDVGHORVSROLQRPLRVSN (x)
n 0 cn x . 3DUDYDORUHVJUDQGHVGHN
SN(x GHEHGDUQRVXQDLQGLFDFLyQGHOFRPSRUWDPLHQWRGHy(x) cerca del punto ordinario
x 7DPELpQVHSXHGHREWHQHUXQDFXUYDVROXFLyQDSUR[LPDGDRQXPpULFDXVDQGR
XQSURJUDPDFRPRVHKL]RHQODVHFFLyQ3RUHMHPSORVLVHH[DPLQDQFXLGDGRVDPHQWHODVVROXFLRQHVHQVHULHGHODHFXDFLyQGH$LU\GHOHMHPSORVHGHEHYHUTXH
y1(x) y y(x VRQDVXYH]ODVVROXFLRQHVGHORVSUREOHPDVGHYDORUHVLQLFLDOHV
y1
3
2
1
x
_2
SOLUCIONES RESPECTO A PUNTOS ORDINARIOS
2
4
6
8
10
a) Gráfica de y1(x) contra x
y2
1
x
y
xy
0,
y(0)
1,
y (0)
0,
y
xy
0,
y(0)
0,
y (0)
1.
/DV FRQGLFLRQHV LQLFLDOHVHVSHFL¿FDGDV ³VHOHFFLRQDQ´ODV VROXFLRQHVyl(x) y y(x) de
y c0 yl(x) c1y(x SXHVWRTXHGHEHVHUHYLGHQWHGHODVXSRVLFLyQEiVLFDGHVHULHV
n que y(0) c y y(0) c $KRUDVLHOSURJUDPDGHVROXFLyQQXPpULFD
y
n 0 cn x
0
1
UHTXLHUHXQVLVWHPDGHHFXDFLRQHVODVXVWLWXFLyQy u en y xy 0 produce y
u xy\SRUFRQVLJXLHQWHXQVLVWHPDGHGRVHFXDFLRQHVGHSULPHURUGHQHTXLYDOHQWHDODHFXDFLyQGH$LU\HV
_1
y
_2
u
_3
_2
2
4
6
8
10
b) Gráfica de y2(x) contra x
FIGURA 6.2.2 &XUYDVGHVROXFLyQ
QXPpULFDSDUDOD('GH$LU\
u
xy.
/DVFRQGLFLRQHVLQLFLDOHVSDUDHOVLVWHPDHQ VRQORVGRVFRQMXQWRVGHFRQGLFLRQHV
LQLFLDOHVHQ UHHVFULWDVFRPRy(0) u(0) 0 y y(0) u(0) /DVJUi¿FDV
de yl(x) y y(x TXHVHPXHVWUDQHQOD¿JXUDVHREWXYLHURQFRQODD\XGDGHXQSURJUDPDGHVROXFLyQQXPpULFD(OKHFKRGHTXHODVFXUYDVVROXFLyQQXPpULFDVSDUH]FDQ
RVFLODWRULDVHVFRQVLVWHQWHFRQHOKHFKRGHTXHODHFXDFLyQGH$LU\VHSUHVHQWyHQOD
VHFFLyQHQODIRUPDmx ktx 0 como el modelo de un resorte cuya “constante
de resorte” K(t) ktVHLQFUHPHQWDFRQHOWLHPSR
COMENTARIOS
i (QORVSUREOHPDVTXHVLJXHQQRHVSHUHSRGHUHVFULELUXQDVROXFLyQHQWpUPLQRV
GHODQRWDFLyQGHVXPDHQFDGDFDVR$XQFXDQGRVHSXHGDQJHQHUDUWDQWRVWpUPLn
nos como se desee en una solución en serie y
n 0 cn x ya sea usando una relaFLyQGHUHFXUUHQFLDRFRPRHQHOHMHPSORSRUPXOWLSOLFDFLyQSRGUtDQRVHUSRVLEOH
GHGXFLUQLQJ~QWpUPLQRJHQHUDOSDUDORVFRH¿FLHQWHVcn3RGUtDPRVWHQHUTXHFRQIRU
PDUQRVFRPRVHKL]RHQORVHMHPSORV\FRQORVSULPHURVWpUPLQRVGHODVHULH
ii 8Q SXQWR x0 es un punto ordinario de una ED lineal no homogénea de segundo orden y P(x)y Q(x)y f(x) si P(x Q(x) y f [ VRQDQDOtWLFDVHQ
x0$GHPiVHOWHRUHPDVHDPSOtDDHVWDFODVHGH('HQRWUDVSDODEUDV
podemos encontrar soluciones en serie de potencias y
x0 ) n de
n 0 cn (x
('OLQHDOHVQRKRPRJpQHDVGHODPLVPDPDQHUDTXHHQORVHMHPSORVDO9HD
HOSUREOHPDGHORVHMHUFLFLRV
240
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
EJERCICIOS 6.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-9.
(QORVSUREOHPDV\VLQUHDOPHQWHUHVROYHUODHFXDFLyQGLIHUHQFLDOGDGDHQFXHQWUHXQOtPLWHLQIHULRUSDUDHOUDGLRGHFRQYHUJHQFLD GH ODV VROXFLRQHV HQ VHULH GH SRWHQFLDV UHVSHFWR DO
punto ordinario x &RQUHVSHFWRDOSXQWRRUGLQDULRx
1. (x y xy y 0
2. (x x 10)y xy 4y 0
(QORVSUREOHPDVDOGHWHUPLQHGRVVROXFLRQHVHQVHULHVGH
potencias de la ecuación diferencial dada en torno al punto ordinario x &RPSDUHODVVROXFLRQHVHQVHULHVFRQODVVROXFLRQHVGHODHFXDFLyQGLIHUHQFLDOREWHQLGDXVDQGRHOPpWRGRGHOD
VHFFLyQ7UDWHGHH[SOLFDUFXDOTXLHUGLIHUHQFLDHQWUHODVGRV
IRUPDVGHVROXFLRQHV
3. y y 0
4. y y 0
5. y y 0
6. y y 0
(QORVSUREOHPDVDHQFXHQWUHGRVVHULHVGHSRWHQFLDVGH
la ecuación diferencial dada respecto al punto ordinario x
7. y xy 0
8. y x y 0
9. y xy y 0
10. y xy y 0
11. y x y xy 0
12. y xy y 0
13. (x 1)y y 0
14. (x y xy y 0
15. y (x 1)y y 0
16. (x 1)y y 0
17. (x y xy y 0
18. (x 1)y xy y 0
(QORVSUREOHPDVDXVHHOPpWRGRGHVHULHVGHSRWHQFLDV
SDUDUHVROYHUHOSUREOHPDFRQYDORUHVLQLFLDOHV
19. (x 1)y xy y y(0) y(0)
20. (x 1)y x)y y y(0) y(0) 1
21. y xy y y(0) y(0) 0
22. (x 1)y xy y(0) y(0) 1
(QORVSUREOHPDV\XVHHOSURFHGLPLHQWRGHOHMHPSOR
para encontrar dos soluciones en serie de potencias de la ecuación diferencial respecto al punto ordinario x
23. y (sen x)y 0
24. y e x y y 0
Problemas para analizar
25. 6LQUHVROYHUHQVXWRWDOLGDGODHFXDFLyQGLIHUHQFLDO FRV
x)y y 5y HQFXHQWUHXQOtPLWHLQIHULRUSDUDHO
UDGLRGHFRQYHUJHQFLDGHODVVROXFLRQHVHQVHULHGHSRWHQcias respecto a x 5HVSHFWRDx
26. ¢&yPRVHSXHGHXVDUHOPpWRGRGHVFULWRHQHVWDVHFFLyQ
para encontrar una solución en serie de potencias de la
ecuación no homogénea y xy 1 respecto al punto
ordinario x "¢'Hy 4xy 4y ex"/OHYHDFDER
VXVLGHDVDOUHVROYHUDPEDV('
27. ¢(Vx 0 un punto ordinario o singular de la ecuación diferencial xy (sen x)y "'H¿HQGDVXUHVSXHVWDFRQ
PDWHPiWLFDV FRQYLQFHQWHV >Sugerencia: 8WLOLFH OD VHULH
GH0DFODXULQGHVHQx\GHVSXpVH[DPLQH VHQx)兾x@
28. ¢(V x = 0 un punto ordinario de la ecuación diferencial
y 5xy 冪xy 0?
Tarea para el laboratorio de computación
29. a)
Determine dos soluciones en serie de potencias para
y xy y \H[SUHVHODVVROXFLRQHV y1(x) y
y(x HQWpUPLQRVGHODQRWDFLyQGHVXPD
b) 8
VHXQ6$&SDUDJUD¿FDUODVVXPDVSDUFLDOHVSN(x)
para y1(x 8VHN 5HSLWDFRQODV
sumas parciales SN(x) para y(x
c) &
RPSDUH ODV JUi¿FDV REWHQLGDV HQ HO LQFLVR E FRQ
OD FXUYD REWHQLGD SRU PHGLR GH XQ SURJUDPD GH
VROXFLyQ QXPpULFD 8VH ODV FRQGLFLRQHV LQLFLDOHV
y 1(0) y1(0) 0 y y (0) y(0)
d) 5
HH[DPLQHODVROXFLyQy1(x GHOLQFLVRD ([SUHVH
HVWD VHULH FRPR XQD IXQFLyQ HOHPHQWDO 'HVSXpV
XVHODHFXDFLyQ GHODVHFFLyQSDUDHQFRQWUDU
XQD VHJXQGD VROXFLyQ GH OD HFXDFLyQ &RPSUXHEH
que esta segunda solución es la misma que la solución en serie de potencias y(x
Encuentre un término diferente de cero para cada una
de las soluciones y1(x) y y(x GHOHMHPSOR
b) Determine una solución en serie y(x GHOSUREOHPDGH
YDORULQLFLDOy (cos x)y y(0) y(0)
c) 8
VHXQ6$&SDUDWUD]DUODVJUi¿FDVGHODVVXPDVSDUciales SN(x) para la solución y(x GHOLQFLVRE 8VH
N
d) &RPSDUHODVJUi¿FDVREWHQLGDVHQHOLQFLVRF FRQ
ODFXUYDREWHQLGDXVDQGRXQSURJUDPDGHVROXFLyQ
QXPpULFDSDUDHOSUREOHPDFRQYDORUHVLQLFLDOHVGHO
LQFLVRE
30. a)
6.3
6.3
SOLUCIONES EN TORNO A PUNTOS SINGULARES
l
241
SOLUCIONES EN TORNO A PUNTOS SINGULARES
REPASO DE MATERIAL
l 6HFFLyQ HVSHFLDOPHQWH GHHVDVHFFLyQ
l /DGH¿QLFLyQGHXQSXQWRVLQJXODUHQOD'H¿QLFLyQ
INTRODUCCIÓN /DVGRVHFXDFLRQHVGLIHUHQFLDOHV
y xy 0
y
xy y 0
VRQVLPLODUHVVyORHQTXHVRQHMHPSORVGH('OLQHDOHVVLPSOHVGHVHJXQGRRUGHQFRQFRH¿FLHQWHV
YDULDEOHV(VRHVWRGRORTXHWLHQHQHQFRP~Q'HELGRDTXHx 0 es un punto ordinario de y
xy YLPRVHQODVHFFLyQDQWHULRUTXHQRKXERSUREOHPDHQHQFRQWUDUGRVVROXFLRQHVHQVHULHGH
SRWHQFLDVGLVWLQWDVFHQWUDGDVHQHVHSXQWR(QFRQWUDVWHGHELGRDTXHx 0 es un punto singular
de xy y HQFRQWUDUGRVVROXFLRQHVHQVHULHVLQ¿QLWDV²REVHUYHTXHQRVHGLMRseries de potencias—GHODHFXDFLyQGLIHUHQFLDOUHVSHFWRDHVHSXQWRVHYXHOYHXQDWDUHDPiVGLItFLO
(OPpWRGRGHVROXFLyQDQDOL]DGRHQHVWDVHFFLyQQRVLHPSUHSURGXFHGRVVROXFLRQHVHQVHULHV
LQ¿QLWDV&XDQGRVyORVHHQFXHQWUDXQDVROXFLyQVHSXHGHXVDUODIyUPXODGDGDHQ GHODVHFFLyQ
SDUDHQFRQWUDUXQDVHJXQGDVROXFLyQ
UNA DEFINICIÓN
8QSXQWRVLQJXODUx0 de una ecuación diferencial lineal
(1)
a2 (x)y
a1 (x)y
a0 (x)y 0
VHFODVL¿FDPiVELHQFRPRUHJXODURLUUHJXODU/DFODVL¿FDFLyQGHQXHYRGHSHQGHGH
las funciones P y QHQODIRUPDHVWiQGDU
y
P(x)y
Q(x)y
0.
DEFINICIÓN 6.3.1 Puntos singulares regulares e irregulares
Se dice que un punto singular x x0 es un punto singular regular de la ecuación diferencial (l) si las funciones p(x) (x – x0) P(x) y q(x) (x x0)Q(x)
son analíticas en x08QSXQWRVLQJXODUTXHQRHVUHJXODUHVXQpunto singular
irregularGHODHFXDFLyQ
(OVHJXQGRHQXQFLDGRHQODGH¿QLFLyQLQGLFDTXHVLXQDRDPEDVIXQFLRQHVp(x)
(x x0) P (x) y q(x) (x x0)Q(x) no son analíticas en x0HQWRQFHVx0 es un punto
VLQJXODULUUHJXODU
COEFICIENTES POLINOMIALES &RPRHQODVHFFLyQHVWDPRVSULQFLSDOPHQWH
LQWHUHVDGRV HQ HFXDFLRQHV OLQHDOHV GRQGH ORV FRH¿FLHQWHV a(x al(x) y a0(x) son
SROLQRPLRVVLQIDFWRUHVFRPXQHV<DVHKDYLVWRTXHVLa(x0) HQWRQFHVx x0 es
XQSXQWRVLQJXODUGH \DTXHDOPHQRVXQDGHODVIXQFLRQHVUDFLRQDOHVP(x) al(x)
兾a(x) y Q(x) a0(x)兾a(x HQODIRUPDHVWiQGDU QRHVDQDOtWLFDHQHVHSXQWR3HUR
como a(x) es un polinomio y x0HVXQDGHVXVUDtFHVVHGHGXFHGHOWHRUHPDGHOIDFWRU
GHOiOJHEUDTXHx x0 es un factor de a(x (VWRVLJQL¿FDTXHGHVSXpVGHTXHal(x)兾a(x)
y a0(x)兾a(x VHUHGXFHQDWpUPLQRVPtQLPRVHOIDFWRUx x0GHEHSHUPDQHFHUSDUD
DOJXQDSRWHQFLDHQWHUDSRVLWLYDHQXQRRHQDPERVGHQRPLQDGRUHV$KRUDVXSRQJDTXH
x x0HVXQSXQWRVLQJXODUGH SHURDPEDVIXQFLRQHVGH¿QLGDVSRUORVSURGXFWRV
p(x) (x x0) P(x) y q(x) (x x0)Q(x) son analíticas en x0/OHJDPRVDODFRQFOXsión de que multiplicar P(x) por x x0 y Q(x) por (x x0) tiene el efecto (por eliminación) de que x x0\DQRDSDUH]FDHQQLQJXQRGHORVGHQRPLQDGRUHV$KRUDVHSXHGH
determinar si x0HVUHJXODUFRQXQDFRPSUREDFLyQYLVXDOUiSLGDGHORVGHQRPLQDGRUHV
Si x x0 aparece DORPiV a la primera potencia en el denominador de P(x) y a
ORPiV a la segunda potencia en el denominador de Q(x), entonces x x0 es un
punto singular regular.
242
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
$GHPiVREVHUYHTXHVLx x0 es un punto singular regular y se multiplica la ecuación
SRU x x0)HQWRQFHVOD('RULJLQDOVHSXHGHHVFULELUHQODIRUPD
x0)2 y
(x
(x
x0)p(x)y
0,
q(x)y
donde p y q son analíticas en x x0
EJEMPLO 1
&ODVL¿FDFLyQGHSXQWRVVLQJXODUHV
6HGHEHDFODUDUTXHx \x VRQSXQWRVVLQJXODUHVGH
(x2
4) 2 y
3(x
2)y
5y
0.
'HVSXpVGHGLYLGLUODHFXDFLyQHQWUH x 4) (x (x y de reducir los coH¿FLHQWHVDORVWpUPLQRVPtQLPRVVHHQFXHQWUDTXH
P(x)
(x
3
2)(x
2)2
y
Q(x)
(x
5
2)2 (x
.
2)2
$KRUDVHSUXHEDP(x) y Q(x HQFDGDSXQWRVLQJXODU
3DUDTXHx VHDXQSXQWRVLQJXODUUHJXODUHOIDFWRUx SXHGHDSDUHFHUHOHYDGR
a la primera potencia en el denominador de P(x \DORPiVDODVHJXQGDSRWHQFLDHQHOGHnominador de Q(x 8QDFRPSUREDFLyQGHORVGHQRPLQDGRUHVGHP(x) y Q(x) muestra que
DPEDVFRQGLFLRQHVVHVDWLVIDFHQSRUORTXHx HVXQSXQWRVLQJXODUUHJXODU(QIRUPD
DOWHUQDWLYDOOHJDPRVDODPLVPDFRQFOXVLyQDOQRWDUTXHDPEDVIXQFLRQHVUDFLRQDOHV
p(x)
(x
2)P(x)
3
(x
2)
2
y
q(x)
(x
2)2 Q(x)
5
(x
2)2
son analíticas en x
$KRUDSXHVWRTXHHOIDFWRUx ( x DSDUHFHDODVHJXQGDSRWHQFLDHQ
el denominador de P(x VHFRQFOX\HGHLQPHGLDWRTXHx HVXQSXQWRVLQJXODU
LUUHJXODUGHODHFXDFLyQ(VWRWDPELpQVHGHGXFHGHOKHFKRGHTXH
p(x)
(x
2)P(x)
(x
3
2)(x
2)
es no analítica en x
(QHOHMHPSORREVHUYHTXHFRPRx HVXQSXQWRVLQJXODUUHJXODUODHFXDFLyQ
RULJLQDOVHSXHGHHVFULELUFRPR
p(x) analítica
en x 2
q(x) analítica
en x 2
5
3
(x 2)2y (x 2) ––––––––2 y ––––––––2 y 0.
(x 2)
(x 2)
&RPRRWURHMHPSORVHSXHGHYHUTXHx 0 es punto singular irregular de xy
xy y 0 por inspección de los denominadores de P(x) 兾x y Q(x)
兾x3RURWURODGRx 0 es un punto singular regular de xy xy y SXHVWR
que x 0 y (x 0)LQFOXVRQRDSDUHFHQHQORVGHQRPLQDGRUHVUHVSHFWLYRVGHP(x)
\Q(x) 兾x3DUDXQSXQWRVLQJXODUx x0FXDOTXLHUSRWHQFLDQRQHJDWLYDGH
x x0PHQRUTXHXQR HQSDUWLFXODUFHUR \FXDOTXLHUSRWHQFLDQRQHJDWLYDPHQRUTXH
GRV HQSDUWLFXODUFHUR\XQR HQORVGHQRPLQDGRUHVGHP(x) y Q(x UHVSHFWLYDPHQWH
indican que x0HVXQSXQWRVLQJXODULUUHJXODU8QSXQWRVLQJXODUSXHGHVHUXQQ~PHUR
FRPSOHMR6HGHEHFRPSUREDUTXHx i y que x i son dos puntos singulares
regulares de (x y±xy (l x)y
NOTA Cualquier ecuación de Cauchy-Euler de segundo orden axy bxy cy
GRQGHab y cVRQFRQVWDQWHVUHDOHVWLHQHXQSXQWRVLQJXODUUHJXODUHQx
6HGHEHFRPSUREDUTXHGRVVROXFLRQHVGHODHFXDFLyQGH&DXFK\(XOHUxy xy
4y HQHOLQWHUYDOR ) son y1 x y y x ln x6LVHLQWHQWDHQFRQWUDUXQD
6.3
SOLUCIONES EN TORNO A PUNTOS SINGULARES
243
l
solución en serie de potencias respecto al punto singular regular x HQSDUWLFXODU
n
y
n 0 cn x VHWHQGUtDp[LWRHQREWHQHUVyORODVROXFLyQSROLQRPLDOy1 x (O
KHFKRGHTXHQRVHREWXYLHUDODVHJXQGDVROXFLyQQRHVVRUSUHQGHQWHSRUTXHOQx (y en
consecuencia y x ln x) no es analítica en x HVGHFLUy no tiene un desarrollo
HQVHULHGH7D\ORUFHQWUDGRHQx
MÉTODO DE FROBENIUS 3DUDUHVROYHUXQDHFXDFLyQGLIHUHQFLDO UHVSHFWRD
XQSXQWRVLQJXODUUHJXODUVHHPSOHDHOVLJXLHQWHWHRUHPDGHELGRDOHPLQHQWHPDWHPiWLFRDOHPiQ)HUGLQDQG*HRUJ)UREHQLXV
TEOREMA 6.3.1 Teorema de Frobenius
Si x x0HVXQSXQWRVLQJXODUUHJXODUGHODHFXDFLyQGLIHUHQFLDO HQWRQFHV
H[LVWHDOPHQRVXQDVROXFLyQGHODIRUPD
y
(x
x0 ) r
x0 ) n
cn (x
n
0
(4)
x0 ) n r,
cn (x
0
n
GRQGHHOQ~PHURrHVXQDFRQVWDQWHSRUGHWHUPLQDU/DVHULHFRQYHUJHSRUOR
PHQRVHQDOJ~QLQWHUYDOR x – x0 R
2EVHUYHODVSDODEUDVal menosHQHOSULPHUHQXQFLDGRGHOWHRUHPD(VWRVLJQL¿FD
TXHHQFRQWUDVWHFRQHOWHRUHPDHOWHRUHPDQRJDUDQWL]DTXHVHDSRVLEOHHQcontrar dosVROXFLRQHVHQVHULHGHOWLSRLQGLFDGRHQ (Ométodo de FrobeniusSDUD
encontrar soluciones en serie respecto a un punto singular regular x0HVVLPLODUDOPpWRGR
GH FRH¿FLHQWHV LQGHWHUPLQDGRV GH VHULHV GH OD VHFFLyQ DQWHULRU HQ OD TXH VH VXVWLWX\H
y
x0 ) n r HQODHFXDFLyQGLIHUHQFLDOGDGD\VHGHWHUPLQDQORVFRH¿FLHQWHV
n 0 cn (x
desconocidos cnFRQXQDUHODFLyQGHUHFXUUHQFLD6LQHPEDUJRVHWLHQHXQDWDUHDPiVHQ
HVWHSURFHGLPLHQWRDQWHVGHGHWHUPLQDUORVFRH¿FLHQWHVVHGHEHHQFRQWUDUHOH[SRQHQWH
desconocido r6LVHHQFXHQWUDTXHrHVXQQ~PHURTXHQRHVXQHQWHURQHJDWLYRHQWRQx0 ) n r QRHVXQDVHULHGHSRWHQFLDV
ces la solución correspondiente y
n 0 cn (x
&RPRVHKL]RHQHODQiOLVLVGHVROXFLRQHVUHVSHFWRDSXQWRVRUGLQDULRVVLHPSUH
VXSRQGUHPRVSRUUD]RQHVGHVLPSOLFLGDGDOUHVROYHUHFXDFLRQHVGLIHUHQFLDOHVTXHHO
punto singular regular es x
EJEMPLO 2
Dos soluciones en series
'HELGRDTXHx 0 es un punto singular regular de la ecuación diferencial
3xy
y
(5)
0,
y
tratamos de encontrar una solución de la forma y
(n
y
r)cn x n
r 1
y
(n
y
n 0
n 0
cn xn r. $KRUD
r)(n
1)cn x n
r
r 2
,
n 0
por lo que
3xy
y
y
3
(n
r)(n
r
1)cn x n
r 1
(n
(n
r)(3n
3r
2)cn x n
r 1
r
1
cn x n
r
n 0
2) c0 x
1
(n r)(3n 3r 2) cn x n 1
1444442444443
cn x n
123
n 0
n 1
k
x r r(3r
r
n 0
cn x n
n 0
x r r(3r
r) cn x n
n 0
n 0
2)c0 x
1
[(k
k 0
r
n 1
1)(3k
k
3r
1) c k
1
n
ck ] x k
0,
244
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
r r c 0 0
lo que implica que
y
(k
1)(3k
r
3r
1)ck
1
0,
ck
0, 1, 2, . . .
k
Ya que no se ha ganado nada al hacer c0 HQWRQFHVGHEHPRVWHQHU
r(3r 2) 0
ck
y
ck 1
,
k 0, 1, 2, . . .
(k r 1)(3k 3r 1)
&XDQGRVHVXVWLWX\HHQ ORVGRVYDORUHVGHrTXHVDWLVIDFHQODHFXDFLyQFXDGUiWLFD
r1 23 y r VHREWLHQHQGRVUHODFLRQHVGHUHFXUUHQFLDGLIHUHQWHV
r1
2
3,
ck
1
r2
0,
ck
1
(3k
ck
5)(k
1)
(k
ck
1)(3k
1)
'H HQFRQWUDPRV
c0
c1
5 1
c1
c0
c2
8 2 2!5 8
c2
c0
c3
11 3 3!5 8 11
c4
c3
14 4
cn
c0
n!5 8 11
k
0, 1, 2, . . .
,
k
0, 1, 2, . . . .
'H HQFRQWUDPRV
c0
c1
1 1
c1
c0
c2
2 4 2!1 4
c2
c0
c3
3 7 3!1 4 7
c0
4!5 8 11 14
(3n
,
2)
c3
4 10
c4
.
c0
4!1 4 7 10
c0
cn
n!1 4 7
(3n
2)
.
$TXtVHHQFXHQWUDDOJRTXHQRRFXUULyFXDQGRVHREWXYLHURQVROXFLRQHVUHVSHFWRDXQ
SXQWRRUGLQDULRVHWLHQHORTXHSDUHFHQVHUGRVFRQMXQWRVGHFRH¿FLHQWHVGLIHUHQWHV
SHURFDGDFRQMXQWRFRQWLHQHHOmismoP~OWLSORc06LVHRPLWHHVWHWpUPLQRODVVROXciones en serie son
y1 (x)
1
x2/ 3 1
n 1
y2 (x)
n!5 8 11
(3n
1
x0 1
n
1 n!1 4 7
(3n
xn
(10)
xn .
(11)
2)
2)
&RQHOFULWHULRGHODUD]yQVHSXHGHGHPRVWUDUTXH \ FRQYHUJHQSDUDWRGRVORV
YDORUHVGHxHVGHFLU兩 x 兩 7DPELpQGHEHVHUHYLGHQWHGHODIRUPDGHHVWDVVROXFLRQHVTXHQLQJXQDVHULHHVXQP~OWLSORFRQVWDQWHGHODRWUD\SRUWDQWRy1(x) y y(x)
VRQOLQHDOPHQWHLQGHSHQGLHQWHVHQWRGRHOHMHx$VtSRUHOSULQFLSLRGHVXSHUSRVLFLyQ
y C1 y1(x) Cy(x HVRWUDVROXFLyQGH (QFXDOTXLHULQWHUYDORTXHQRFRQWHQJD
DORULJHQWDOFRPR HVWDFRPELQDFLyQOLQHDOUHSUHVHQWDODVROXFLyQJHQHUDOGHOD
HFXDFLyQGLIHUHQFLDO
ECUACIÓN INDICIAL /DHFXDFLyQ VHOODPDecuación indicialGHOSUREOHPD\
ORVYDORUHV r1 23 y r 0 se llaman raíces indicialesRexponentesGHODVLQJXODULGDG
n r
en la ecuación diferencial dada
x (QJHQHUDOGHVSXpVGHVXVWLWXLU y
n 0 cn x
\VLPSOL¿FDQGRODHFXDFLyQLQGLFLDOHVXQDHFXDFLyQFXDGUiWLFDHQr que resulta de iguaODUDFHURHOFRH¿FLHQWHWRWDOGHODSRWHQFLDPtQLPDGH[6HHQFXHQWUDQORVGRVYDORUHV
de r\VHVXVWLWX\HQHQXQDUHODFLyQGHUHFXUUHQFLDFRPR (OWHRUHPDJDUDQWL]D
TXHDOPHQRVVHSXHGHHQFRQWUDUXQDVROXFLyQGHODVXSXHVWDIRUPDHQVHULH
6.3
SOLUCIONES EN TORNO A PUNTOS SINGULARES
l
245
n r en la
(V SRVLEOH REWHQHU OD HFXDFLyQ LQGLFLDO DQWHV GH VXVWLWXLU y
n 0 cn x
HFXDFLyQGLIHUHQFLDO6Lx HVXQSXQWRVLQJXODUUHJXODUGH HQWRQFHVSRUODGH¿QLFLyQDPEDVIXQFLRQHVp(x) xP(x) y q(x) xQ(x GRQGHP y QVHGH¿QHQSRUOD
IRUPDHVWiQGDU VRQDQDOtWLFDVHQx HVGHFLUORVGHVDUUROORVHQVHULHGHSRWHQFLDV
p(x)
xP(x)
a0
a1 x
y
a2 x2
x2 Q(x)
q(x)
b0
b1 x
b2 x2
VRQYiOLGDVHQLQWHUYDORVTXHWLHQHQXQUDGLRGHFRQYHUJHQFLDSRVLWLYR0XOWLSOLFDQGR
SRUxVHREWLHQHODIRUPDGDGDHQ
x2 y
[x2 Q(x)]y
x[xP(x)]y
0.
n r
\ODVGRVVHULHVHQODVHFXDFLRQHV \ \
Después de sustituir y
n 0 cn x
UHDOL]DQGRODPXOWLSOLFDFLyQGHODVHULHVHHQFXHQWUDTXHODHFXDFLyQLQGLFLDOJHQHUDOHV
r (r
1)
a0 r
(14)
0,
b0
donde a0 y b0VRQFRPRVHGH¿QHHQ 9pDQVHORVSUREOHPDV\GHORVHMHUFLFLRV
EJEMPLO 3
Dos soluciones en series
5HVXHOYDxy (1 x)y y
SOLUCIÓN Sustituyendo y
n 0
cn xn
r
VHREWLHQH
2xy (1 x)y y 2 兺 (n r)(n r 1)cn x nr1 兺 (n r)cn x nr1
n0
n0
兺 (n r)cn x nr 兺 cn x nr
n0
n0
兺 (n r)(2n 2r 1)cn x nr1 兺 (n r 1)cn x nr
n0
n0
[
xr r(2r 1)c0 x1 兺 (n r)(2n 2r 1)cn x n1 兺 (n r 1)cn x n
n1
n0
kn1
[
kn
]
兺 [(k r 1)(2k 2r 1)ck1 (k r 1)ck]xk ,
xr r(2r 1)c0 x1
k0
lo que implica que
y
(k
1)
r(2r
1)(2k
r
2r
(15)
0
1)ck
(k
1
r
1
2
VHSXHGHGLYLGLUHQWUHk
ck
ck
1
2(k
,
1)
3
2 HQ
k
0,
1)ck
k 'H YHPRVTXHODVUDtFHVLQGLFLDOHVVRQ r1
3DUD r1
]
1
2
y r
SDUDREWHQHU
0, 1, 2, . . . ,
0, 1, 2, . . . .
mientras que para r VHFRQYLHUWHHQ
ck
ck
1
2k
,
1
k
246
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
'H HQFRQWUDPRV
c1
c2
c3
c4
cn
'H HQFRQWUDPRV
c0
2 1
c1
c0
2
2 2 2 2!
c2
c0
3
2 3 2 3!
c3
c0
4
2 4 2 4!
c2
c3
c4
( 1) n c0
.
2n n!
cn
c0
1 3
c0
1 3 5
c0
1 3 5 7
( 1) n c0
1 3 5 7
(2n
1)
.
1
2 VHREWLHQHODVROXFLyQ
3RUORTXHSDUDODUDt]LQGLFLDO r1
y1 (x)
c0
1
c1
3
c2
5
c3
7
c1
x1/2 1
n
( 1) n n
x
n
1 2 n!
n
( 1) n n
x
n
0 2 n!
1/2
,
GRQGHGHQXHYRVHRPLWLyc0(VWDVHULHFRQYHUJHSDUDx FRPRVHKDGDGRODVHULH
QRHVWiGH¿QLGDSDUDYDORUHVQHJDWLYRVGHxGHELGRDODSUHVHQFLDGHx1兾3DUDr
una segunda solución es
( 1) n
xn,
x
(2n 1)
n 11 3 5 7
(QHOLQWHUYDOR ) la solución general es y C1 y1(x) Cy(x
1
y2 (x)
EJEMPLO 4
.
Sólo una solución en serie
5HVXHOYDxy y
SOLUCIÓN De xP(x) xQ(x) x y el hecho de que 0 y x son sus propias series
GHSRWHQFLDVFHQWUDGDVHQVHFRQFOX\HTXHa0 0 y b0 SRUWDQWRGHODHFXDFLyQ
(14) la ecuación indicial es r (r 1) 6HGHEHFRPSUREDUTXHODVGRVUHODFLRQHVGH
recurrencia correspondientes a las raíces indiciales r1 1 y r SURGXFHQH[DFWDPHQWHHOPLVPRFRQMXQWRGHFRH¿FLHQWHV(QRWUDVSDODEUDVHQHVWHFDVRHOPpWRGRGH
)UREHQLXVSURGXFHVyORXQDVROXFLyQHQVHULH
y1(x)
n 0
( 1) n
xn
n!(n 1)!
1
x
1 2
x
2
1 3
x
12
1 4
x
144
.
TRES CASOS 3RUUD]RQHVGHDQiOLVLVGHQXHYRVHVXSRQHTXHx 0 es un punto singular regular de la ecuación (1) y que las raíces indiciales r1 y r de la singularidad son
UHDOHV&XDQGRXVDPRVHOPpWRGRGH)UREHQLXVVHGLVWLQJXHQWUHVFDVRVTXHFRUUHVSRQGHQDODQDWXUDOH]DGHODVUDtFHVLQGLFLDOHVr1 y r(QORVGRVSULPHURVFDVRVHOVtPERORr1
GHQRWDODPiVJUDQGHGHGRVUDtFHVGLVWLQWDVHVGHFLUr1 r(QHO~OWLPRFDVRr1 r
CASO I: Si r1 y r son distintas y la diferencia r1 – rQRHVXQHQWHURSRVLWLYRHQWRQFHVH[LVWHQGRVVROXFLRQHVOLQHDOPHQWHLQGHSHQGLHQWHVGHODHFXDFLyQ GHODIRUPD
cn xn
y1(x)
n
0
r1
,
c0
0,
bn xn
y2(x)
n
r2
,
b0
0.
0
(VWHHVHOFDVRTXHVHLOXVWUDHQORVHMHPSORV\
$FRQWLQXDFLyQVXSRQHPRVTXHODGLIHUHQFLDGHODVUDtFHVHVNGRQGHN es un
HQWHURSRVLWLYR(QHVWHFDVRODVHJXQGDVROXFLyQpodríaFRQWHQHUXQORJDULWPR
6.3
SOLUCIONES EN TORNO A PUNTOS SINGULARES
l
247
CASO II: Si r1 y r son distintas y la diferencia r1 – rHVXQHQWHURSRVLWLYRHQWRQFHV
H[LVWHQGRVVROXFLRQHVGHODHFXDFLyQ OLQHDOPHQWHLQGHSHQGLHQWHVGHODIRUPD
cn xn r1,
y1 (x)
0,
c0
n 0
y2 (x)
bn xn
Cy1(x) ln x
r2
,
b0
0,
n 0
donde CHVXQDFRQVWDQWHTXHSRGUtDVHUFHUR
)LQDOPHQWH HQ HO ~OWLPR FDVR HO FDVR FXDQGR r1 r XQD VHJXQGD VROXFLyQ
siempre WLHQH XQ ORJDULWPR /D VLWXDFLyQ HV VLPLODU D OD VROXFLyQ GH OD HFXDFLyQ GH
&DXFK\(XOHUFXDQGRODVUDtFHVGHODHFXDFLyQDX[LOLDUVRQLJXDOHV
CASO III: Si r1 y rVRQLJXDOHVHQWRQFHVH[LVWHQGRVVROXFLRQHVOLQHDOPHQWHLQGHpendientes de la ecuación (1) de la forma
cn x n r1,
y1(x)
0,
c0
n 0
y2 (x)
bn x n
y1(x) ln x
r1
.
n 1
DETERMINACIÓN DE UNA SEGUNDA SOLUCIÓN Cuando la diferencia r1 – r
HV XQ HQWHUR SRVLWLYR FDVR ,, VH podría o no encontrar dos soluciones de la forma
n r (VWRHVDOJRTXHQRVHVDEHFRQDQWLFLSDFLyQSHURVHGHWHUPLQDGHVy
n 0 cn x
SXpVGHKDEHUHQFRQWUDGRODVUDtFHVLQGLFLDOHV\KDEHUH[DPLQDGRFRQFXLGDGRODUHODFLyQ
GHUHFXUUHQFLDTXHGH¿QHQORVFRH¿FLHQWHVcn6HSRGUtDWHQHUODIRUWXQDGHHQFRQWUDUGRV
n r1
(ecuación
soluciones que impliquen sólo potencias de xHVGHFLU y1(x)
n 0 cn x
n r2
O \ y2(x)
HFXDFLyQ
FRQC
9pDVHHOSUREOHPDGHORV
b
x
n 0 n
HMHUFLFLRV3RURWURODGRHQHOHMHPSORVHYHTXHODGLIHUHQFLDGHODVUDtFHVLQGLFLDOHV
HVXQHQWHURSRVLWLYR r1 – r \HOPpWRGRGH)UREHQLXVIDOODHQREWHQHUXQDVHJXQGD
VROXFLyQHQVHULH(QHVWDVLWXDFLyQODHFXDFLyQ FRQC LQGLFDTXHODVHJXQ
GDVROXFLyQVHSDUHFH3RU~OWLPRFXDQGRODGLIHUHQFLDr1 – rHVXQFHUR FDVR,,, HOPpWRGRGH)UREHQLXVQRGDXQDVROXFLyQHQVHULHODVHJXQGDVROXFLyQ VLHPSUHFRQWLHQH
XQORJDULWPR\VHSXHGHGHPRVWUDUTXHHVHTXLYDOHQWHD FRQC 8QDIRUPDGH
REWHQHUODVHJXQGDVROXFLyQFRQHOWpUPLQRORJDUtWPLFRHVXVDUHOKHFKRGHTXH
y2(x)
y1(x)
e
P( x) d x
y12(x)
dx
WDPELpQHVXQDVROXFLyQGHy P(x)y Q(x)y VLHPSUH\FXDQGRy1(x) sea una
VROXFLyQFRQRFLGD(QHOHMHPSORVLJXLHQWHVHLOXVWUDFyPRXVDUODHFXDFLyQ
EJEMPLO 5
Vuelta al ejemplo 4 usando un SAC
Encuentre la solución general de xy y
SOLUCIÓN 'HODFRQRFLGDVROXFLyQGDGDGHOHMHPSOR
1 2
1 3
1 4
x
x
x
,
2
12
144
se puede construir una segunda solución y(x XVDQGRODIyUPXOD 4XLHQHVWHQJDQ
WLHPSRHQHUJtD\SDFLHQFLDSXHGHQUHDOL]DUHODEXUULGRWUDEDMRGHHOHYDUDOFXDGUDGRXQD
VHULHODGLYLVLyQODUJD\ODLQWHJUDFLyQGHOFRFLHQWHDPDQR3HURWRGDVHVWDVRSHUDFLR
QHVVHUHDOL]DQFRQUHODWLYDIDFLOLGDGFRQODD\XGDXQ6$&6HREWLHQHQORVUHVXOWDGRV
y1(x)
y2(x)
y1(x)
x
e ∫0d x
dx
[ y1(x)]2
dx
y1(x)
x
1 2
x
2
1 3
x
12
1 4
x
144
2
248
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
dx
y1(x)
o
y2(x)
x2
x3
y1(x)
1
x2
1
x
y1(x)
1
x
ln x
5 4
x
12
7
12
y1(x) ln x
y1(x)
y1 (x) ln x
1
7
x
12
1
x
1
x
2
7 5
x
72
GHVSXpVGHHOHYDUDOFXDGUDGR
19
x
72
GHVSXpVGHODGLYLVLyQODUJD
dx
19 2
x
144
después de integrar
7
x
12
19 2
x
144
1 2
x
2
.
,
después
de multiplicar
;
(QHOLQWHUYDOR ) la solución general es y C1 y1(x) Cy(x
2EVHUYHTXHODIRUPD¿QDOGHyHQHOHMHPSORFRUUHVSRQGHD FRQC 1; la serie
HQWUHSDUpQWHVLVFRUUHVSRQGHDODVXPDHQ FRQr
COMENTARIOS
i /DVWUHVIRUPDVGLVWLQWDVGHXQDHFXDFLyQGLIHUHQFLDOOLQHDOGHVHJXQGRRUGHQ
HQ \ VHXVDURQSDUDDQDOL]DUYDULRVFRQFHSWRVWHyULFRV3HURDQLYHO
SUiFWLFRFXDQGRVHWLHQHTXHUHVROYHUXQDHFXDFLyQGLIHUHQFLDOFRQHOPpWRGR
GH)UREHQLXVVHUHFRPLHQGDWUDEDMDUFRQODIRUPDGHOD('GDGDHQ
ii) Cuando la diferencia de las raíces indiciales r1 – rHVXQHQWHURSRVLWLYR
(r1 r DYHFHVGDUHVXOWDGRLWHUDUODUHODFLyQGHUHFXUUHQFLDXVDQGRSULPHUR
ODUDt]rPiVSHTXHxD9pDQVHORVSUREOHPDV\HQORVHMHUFLFLRV
iii 'HELGRDTXHXQDUDt]LQGLFLDOrHVXQDVROXFLyQGHXQDHFXDFLyQFXDGUiWLFD
pVWDSRGUtDVHUFRPSOHMD6LQHPEDUJRHVWHFDVRQRVHDQDOL]D
iv) Si x HVSXQWRVLQJXODULUUHJXODUHQWRQFHVHVSRVLEOHTXHQRVHHQFXHQWUH
n r
ninguna solución de la ED de la forma y
.
n 0 cn x
EJERCICIOS 6.3
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-9.
(QORVSUREOHPDVDGHWHUPLQHORVSXQWRVVLQJXODUHVGHOD
HFXDFLyQGLIHUHQFLDOGDGD&ODVL¿TXHFDGDSXQWRVLQJXODUFRPR
UHJXODURLUUHJXODU
1. x y 4x y y 0
(QORVSUREOHPDV\HVFULEDODHFXDFLyQGLIHUHQFLDOGDGD
HQODIRUPD SDUDFDGDSXQWRVLQJXODUUHJXODUGHODHFXDFLyQ
,GHQWL¿TXHODVIXQFLRQHVp(x) y q(x
11. (x 1)y 5(x 1)y (x x)y 0
2. x(x y y 0
12. xy (x y x y 0
3. (x y (x y y 0
(QORVSUREOHPDV\x 0 es un punto singular regular de
ODHFXDFLyQGLIHUHQFLDOGDGD8VHODIRUPDJHQHUDOGHODHFXDción indicial en (14) para encontrar las raíces indiciales de la
VLQJXODULGDG6LQUHVROYHULQGLTXHHOQ~PHURGHVROXFLRQHVHQ
VHULHTXHVHHVSHUDUtDHQFRQWUDUXVDQGRHOPpWRGRGH)UREHQLXV
1
1
4. y
y
y 0
x
(x 1) 3
5. (x 4x)y xy y 0
6. x (x 5) y 4xy (x y 0
7. (x x y (x y (x y 0
8. x(x 1) y y 0
9. x (x x y x(x y x 5)y 0
10. (x x x) y x(x y (x 1)y 0
13. x 2 y
( 53 x
)
x2 y
1
3
y
0
14. xy y 10y 0
(QORVSUREOHPDVDx 0 es un punto singular regular de
ODHFXDFLyQGLIHUHQFLDO0XHVWUHTXHODVUDtFHVLQGLFLDOHVGHOD
VLQJXODULGDGQRGL¿HUHQSRUXQHQWHUR8VHHOPpWRGRGH)UREH
6.3
QLXVSDUDREWHQHUGRVVROXFLRQHVHQVHULHOLQHDOPHQWHLQGHSHQ
dientes respecto a x )RUPHODVROXFLyQJHQHUDOHQ
15. xy y y 0
16. xy 5y xy 0
17. 4xy
1
2y
0
y
18. x y xy (x 1)y 0
19. xy x)y y 0
20. x2 y
(x
2
9
)y
0
21. xy x)y y 0
22. x2 y
xy
(x2
4
9
)y
0
23. x y x y y 0
24. x y xy x 1)y 0
(QORVSUREOHPDVDx 0 es un punto singular regular
GHODHFXDFLyQGLIHUHQFLDOGDGD'HPXHVWUHTXHODVUDtFHVLQGLFLDOHVGHODVLQJXODULGDGGL¿HUHQSRUXQHQWHUR8VHHOPpWRGR
GH)UREHQLXVSDUDREWHQHUDOPHQRVXQDVROXFLyQHQVHULHUHVpecto a x 8VHODHFXDFLyQ GRQGHVHDQHFHVDULR\XQ
6$& FRPR VH LQGLFD SDUD HQFRQWUDU XQD VHJXQGD VROXFLyQ
)RUPHODVROXFLyQJHQHUDOHQ
25. xy y xy 0
26. x2y
xy
(x2
1
4
)y
27. xy xy y 0
29. xy (1 x)y y 0
l
249
d 2y
Py 0, y(0) 0, y(L) 0.
dx 2
/DVXSRVLFLyQDTXtHVTXHODFROXPQDHVWiDELVDJUDGDHQ
DPERV H[WUHPRV /D FROXPQD VH SDQGHD VyOR FXDQGR OD
IXHU]DFRPSUHVLYDHVXQDFDUJDFUtWLFDPn
a) (Q HVWH SUREOHPD VH VXSRQH TXH OD FROXPQD HV GH
longitud LHVWiDELVDJUDGDHQDPERVH[WUHPRVWLHQH
VHFFLRQHVWUDQVYHUVDOHVFLUFXODUHV\HVFyQLFDFRPRVH
PXHVWUDHQOD¿JXUD D 6LODFROXPQDXQFRQR
WUXQFDGRWLHQHXQD¿ODPLHQWROLQHDOy cxFRPRVH
PXHVWUDHQODVHFFLyQWUDQVYHUVDOGHOD¿JXUD E
HOPRPHQWRGHLQHUFLDGHXQDVHFFLyQWUDQVYHUVDOUHVSHFWRDXQHMHSHUSHQGLFXODUDOSODQRxy es I 14 r4
donde r y y y cx 3RU WDQWR HVFULELPRVI(x)
I0(x兾b)4 GRQGH I0 I(b) 14 (cb)4 Sustituyendo
I(x HQODHFXDFLyQGLIHUHQFLDOHQ YHPRVTXHOD
GHÀH[LyQHQHVWHFDVRVHGHWHUPLQDGHO39)
d 2y
x4 2
y 0, y(a) 0, y(b) 0,
dx
donde Pb 4兾EI 0 8VH ORV UHVXOWDGRV GHO SUREOHPD
SDUDHQFRQWUDUODVFDUJDVFUtWLFDVPn para la columna
FyQLFD8VHXQDLGHQWLGDGDSURSLDGDSDUDH[SUHVDUORV
modos de pandeo yn(x FRPRXQDVRODIXQFLyQ
EI
0
y
3
28. y
y
2y 0
x
30. xy y y 0
(QORVSUREOHPDV\x 0 es un punto singular regular de
ODHFXDFLyQGLIHUHQFLDOGDGD'HPXHVWUHTXHODVUDtFHVLQGLFLDOHVGHODVLQJXODULGDGGL¿HUHQSRUXQHQWHUR8VHODUHODFLyQGH
UHFXUUHQFLDHQFRQWUDGDSRUHOPpWRGRGH)UREHQLXVSULPHURFRQ
ODUDt]PiVJUDQGHr1¢&XiQWDVVROXFLRQHVHQFRQWUy"$FRQWLQXDFLyQXVHODUHODFLyQGHUHFXUUHQFLDFRQODUDt]PiVSHTXHxD
r¢&XiQWDVVROXFLRQHVHQFRQWUy"
31. xy (x y y 0
SOLUCIONES EN TORNO A PUNTOS SINGULARES
32. x(x 1)y y y 0
33. a) /DHFXDFLyQGLIHUHQFLDOx 4y y 0 tiene un punto
singular irregular en x 'HPXHVWUHTXHODVXVWLWXción t l兾x produce la ED
d 2 y 2 dy
y 0,
dt 2
t dt
que ahora tiene un punto singular regular en t
b) 8VHHOPpWRGRGHHVWDVHFFLyQSDUDHQFRQWUDUGRVVRluciones en serie de la segunda ecuación del inciso a)
respecto a un punto singular regular t
c) (
[SUHVHFDGDVROXFLyQHQVHULHGHODHFXDFLyQRULJLQDO
HQWpUPLQRVGHIXQFLRQHVHOHPHQWDOHV
Modelo matemático
34. Pandeo de una columna cónica (QHOHMHPSORGHOD
VHFFLyQYLPRVTXHFXDQGRXQDIXHU]DFRPSUHVLYDYHUtical constante o carga P se aplica a una columna delgada
GHVHFFLyQWUDQVYHUVDOXQLIRUPHODGHÀH[LyQy(x) fue una
VROXFLyQGHOSUREOHPDFRQYDORUHVHQODIURQWHUD
P
x=a
b−a=L
y = cx
L
x=b
x
a)
b)
FIGURA 6.3.1 &ROXPQDFyQLFDGHOSUREOHPD
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHOSULPHUPRGRGH
pandeo y1(x) correspondiente a la carga de Euler P1
cuando b 11 y a
Problemas para analizar
35. $QDOLFHFyPRGH¿QLUtDXQSXQWRVLQJXODUUHJXODUSDUDOD
ecuación diferencial lineal de primer orden
a3 (x)y
a2 (x)y
a1 (x)y
a0 (x)y
0.
36. Cada una de las ecuaciones diferenciales
x3 y
0
2
(3x 1)y
y 0
y x y
tiene un punto singular irregular en x 'HWHUPLQHVL
HOPpWRGRGH)UREHQLXVSURGXFHXQDVROXFLyQHQVHULHGH
cada ecuación diferencial respecto a x $QDOLFH\H[SOLTXHVXVKDOOD]JRV
37. 6HKDYLVWRTXHx 0 es un punto singular regular de cualquier ecuación de Cauchy-Euler axy bxy cy
¢(VWiQ UHODFLRQDGDV OD HFXDFLyQ LQGLFLDO SDUD XQD
HFXDFLyQGH&DXFK\(XOHU\VXHFXDFLyQDX[LOLDU"$QDOLFH
y
250
l
CAPÍTULO 6
6.4
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
FUNCIONES ESPECIALES
REPASO DE MATERIAL
l SHFFLRQHV\
INTRODUCCIÓN En los ComentariosDO¿QDOGHODVHFFLyQPHQFLRQDPRVODUDPDGHODVPDWHPiWLFDVFRQRFLGDFRPRIXQFLRQHVHVSHFLDOHV4XL]iVXQPHMRUWtWXORSDUDHVWHFDPSRGHODVPDWHPiWLFDVDSOLFDGDVSRGUtDVHUIXQFLRQHVFRQQRPEUHSRUTXHPXFKDVGHODVIXQFLRQHVHVWXGLDGDVWLHQHQQRPEUHVSURSLRVIXQFLRQHVGH%HVVHOIXQFLRQHVGH/HJHQGUHIXQFLRQHVGH$LU\SROLQRPLRVGH&KHE\VKHY
SROLQRPLRV GH +HUPLWH SROLQRPLRV GH /DJXHUUH IXQFLyQ KLSHUJHRPpWULFD GH *DXVV IXQFLRQHV GH
0DWKLHXHWFpWHUD+LVWyULFDPHQWHODVIXQFLRQHVHVSHFLDOHVIXHURQFRQIUHFXHQFLDVXESURGXFWRVGHOD
QHFHVLGDGDOJXLHQQHFHVLWDEDXQDVROXFLyQGHXQDHFXDFLyQGLIHUHQFLDOPX\HVSHFLDOL]DGD\SRGtDGLVFHUQLUPXFKDVSURSLHGDGHVGHODIXQFLyQDSDUWLUGHODIRUPDGHODVHULHGHODVROXFLyQ
(QHVWDVHFFLyQXWLOL]DUHPRVORVPpWRGRVGHODVVHFFLRQHV\SDUDHQFRQWUDUVROXFLRQHVGH
las dos ecuaciones diferenciales
x2 y
x2 )y
(1
(x2
xy
2xy
2
)y
0
1)y
n(n
(1)
0
VHSUHVHQWDQHQHVWXGLRVDYDQ]DGRVGHPDWHPiWLFDVDSOLFDGDVItVLFDHLQJHQLHUtD6HOODPDQecuación
de Bessel de orden vOODPDGDDVtHQKRQRUGHOPDWHPiWLFR\DVWUyQRPRDOHPiQ)ULHGULFK:LOKHOP
%HVVHO \ODecuación de Legendre de orden nOODPDGDDVtSRUHOPDWHPiWLFRIUDQFpV
$GULHQ0DULH/HJHQGUH &XDQGRUHVROYHPRVODHFXDFLyQ VHVXSRQHTXH# PLHQWUDVTXHHQ VyORFRQVLGHUDUHPRVHOFDVRFXDQGRnHVXQHQWHURQRQHJDWLYR
SOLUCIÓN DE LA ECUACIÓN DE BESSEL 'HELGRDTXHx 0 es un punto sinJXODUUHJXODUGHODHFXDFLyQGH%HVVHOVHVDEHTXHH[LVWHDOPHQRVXQDVROXFLyQGHOD
n r 6XVWLWX\HQGROD~OWLPDH[SUHVLyQHQ VHREWLHQH
forma y
.
n 0 cn x
x2y
xy
(x 2
2
)y
cn (n
r)(n
1)x n
r
r
r)x n
cn (n
c0 (r2
r
2
r
)x r
xr
2
r 2
cn x n
r
cn [(n
r)(n
1)
r
cn x n
(n
2
r)
]xn
2
)x r
xr
2
n 0
r) 2
cn [(n
cn x n
xr
n 1
c0 (r2
r
n 0
n 0
n 0
n 0
2
]x n
cn x n 2.
xr
n 0
n 1
'H VHYHTXHODHFXDFLyQLQGLFLDOHVr # GHPRGRTXHODVUDtFHVLQGLFLDOHV
son r1 # y r #&XDQGRr1 #ODHFXDFLyQ VHFRQYLHUWHHQ
xn
cnn(n
2n)xn
cn x n
xn
n 1
2
n 0
[
xn (1
2n)c1x
[
2
cn x n
n 0
k
xn (1
2n)x n
cn n(n
n 2
2n)c1x
2
n
[(k
k
2)(k
2
]
n
2n)ck
2
k 0
ck]x k
]
2
0.
3RUWDQWRSRUHODUJXPHQWRXVXDOSRGHPRVHVFULELU #)c1 0 y
(k
o
ck
2)(k
2
2 )ck
2
,
2 )
ck
2
(k
2)(k
ck
2
k
0
0, 1, 2, . . .
(4)
6.4
FUNCIONES ESPECIALES
251
l
/D HOHFFLyQ c1 0 en (4) implica que c3 c5 c7
0, por lo que para
k VHHQFXHQWUDGHVSXpVGHHVWDEOHFHUk nn TXH
c2n
2 n(n
c2n
3RUORTXH c2
2
c2
22 2(2
c4
c6
c2n
c0
1 (1
2
c4
3(3
2
2
2 n!(1
)
.
(5)
)
c0
24 1 2(1
)
)(2
)
c0
6
)
2
( 1) n c0
)(2
)
2n
2
2
1
2 3(1
(n
,
)
)(2
)(3
)
1, 2, 3, . . . .
n
(QODSUiFWLFDVHDFRVWXPEUDHOHJLUDc0 como
c0
2
1
(1
,
)
donde $(1 # HVODIXQFLyQJDPPD9pDVHHODSpQGLFH,3XHVWRTXHHVWD~OWLPDIXQFLyQSRVHHODSURSLHGDGFRQYHQLHQWH$(1 ) $()VHSXHGHUHGXFLUHOSURGXFWR
LQGLFDGRHQHOGHQRPLQDGRUGH DXQWpUPLQR3RUHMHPSOR
(1
1)
(1
) (1
)
(1
2)
(2
) (2
)
(2
)(1
) (1
).
3RUWDQWRVHSXHGHHVFULELU FRPR
c2n
22n
n!(1
( 1) n
)(2
)
(n
) (1
22n
)
( 1) n
n! (1
n)
para n
FUNCIONES DE BESSEL DE PRIMERA CLASE 6LVHXVDQORVFRH¿FLHQWHVcn ape2n
QDVREWHQLGRV\r #XQDVROXFLyQHQVHULHGHODHFXDFLyQ HV y
.
n 0 c2n x
Esta solución usualmente se denota por J#(x):
J (x)
n 0
( 1) n
n! (1
x
n) 2
2n
Si # ODVHULHFRQYHUJHDOPHQRVHQHOLQWHUYDOR> 7DPELpQSDUDHOVHJXQGR
H[SRQHQWHr #VHREWLHQHH[DFWDPHQWHGHODPLVPDPDQHUD
J (x)
n 0
( 1) n
n! (1
x
n) 2
2n
/DVIXQFLRQHVJ#(x) y J#(x) se llaman IXQFLRQHVGH%HVVHOGHSULPHUDFODVH de orden
# y #UHVSHFWLYDPHQWH'HSHQGLHQGRGHOYDORUGH# SXHGHFRQWHQHUSRWHQFLDV
QHJDWLYDVGHx\SRUWDQWRFRQYHUJHUHQ
$KRUDVHGHEHWHQHUFXLGDGRDOHVFULELUODVROXFLyQJHQHUDOGH &XDQGR#
HVHYLGHQWHTXH \ VRQODVPLVPDV6L# 0 y r1 r # (#) # no es un
HQWHURSRVLWLYRVHWLHQHGHOFDVR,GHODVHFFLyQTXHJ#(x) y J#(x) son soluciones
OLQHDOPHQWHLQGHSHQGLHQWHVGH HQ \SRUWDQWRODVROXFLyQJHQHUDOGHOLQWHUYDORHVy c1J#(x) cJ#(x 3HURVHVDEHTXHGHOFDVR,,GHODVHFFLyQTXHFXDQGR
&XDQGRUHHPSOD]DPRVx por 兩 x 兩ODVVHULHVGDGDVHQ \HQ FRQYHUJHQSDUD 兩 x 兩
252
CAPÍTULO 6
l
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
y
1
0. 8
0. 6
0. 4
0. 2
J0
J1
x
_ 0. 2
_ 0. 4
2
4
6
8
r1 r # HV XQ HQWHUR SRVLWLYR podría H[LVWLU XQD VHJXQGD VROXFLyQ HQ VHULH GH
(Q HVWH VHJXQGR FDVR VH GLVWLQJXHQ GRV SRVLELOLGDGHV &XDQGR # m entero
SRVLWLYRJm(x GH¿QLGDSRU \Jm(x QRVRQVROXFLRQHVOLQHDOPHQWHLQGHSHQGLHQWHV
Se puede demostrar que JmHVXQP~OWLSORFRQVWDQWHGHJm YpDVHODSURSLHGDGi) en la
SiJLQD $GHPiVr1 r #SXHGHVHUXQHQWHURSRVLWLYRFXDQGR# es la mitad de
XQHQWHURSRVLWLYRLPSDU(QHVWH~OWLPRFDVRVHSXHGHGHPRVWUDUTXHJ#(x) y J#(x) son
OLQHDOPHQWHLQGHSHQGLHQWHV(QRWUDVSDODEUDVODVROXFLyQJHQHUDOGH HQ ) es
y c1 J (x) c2 J (x),
entero.
(QOD¿JXUDVHSUHVHQWDQODVJUi¿FDVGHy J0(x) y y J1(x
FIGURA 6.4.1 )XQFLRQHVGH%HVVHO
de primera clase para n
EJEMPLO 1
$OLGHQWL¿FDU 2
de la ecuación x2 y
Ecuaciones de Bessel de orden
1
4
y
xy
1
2
1
2 ,VHSXHGHYHUGHODHFXDFLyQ
x2 14 y 0 HQ ) es y
(
)
TXHODVROXFLyQJHQHUDO
c1J1兾(x) cJ1兾(x)
FUNCIONES DE BESSEL DE SEGUNDA CLASE Si # HQWHURODIXQFLyQGH¿QLGDSRUODFRPELQDFLyQOLQHDO
1
0. 5
y
x
_ 0. 5
_1
_ 1. 5
_2
_2. 5
_3
J (x) J (x)
(10)
sen
y la función J#(x VRQVROXFLRQHVOLQHDOPHQWHLQGHSHQGLHQWHVGH SRUORTXHRWUDIRUPD
de la solución general de (1) es y c1J#(x) cY#(x) siempre que # HQWHUR&RQIRUPH
# → m con m entero (10) tiene la forma indeterminada 0兾6LQHPEDUJRVHSXHGHGHPRVWUDUSRUODUHJODGH/ +{SLWDOTXHHOlím : m Y (x)H[LVWH$GHPiVODIXQFLyQ
Y (x)
Y1
Y0
cos
Ym (x)
2
4
6
8
FIGURA 6.4.2 )XQFLRQHVGH%HVVHO
de segunda clase para n
lím Y (x)
:m
y Jm(x) son soluciones linealmente independientes de xy xy (x m)y 3RU
WDQWRSDUDcualquierYDORUGH#ODVROXFLyQJHQHUDOGH HQ VHSXHGHHVFULELUFRPR
(11)
y c1 J (x) c2Y (x).
Y#(x) se llama IXQFLyQGH%HVVHOGHVHJXQGDFODVHde orden #/D¿JXUDPXHVWUD
ODVJUi¿FDVGHY0(x) y Y1(x
EJEMPLO 2
Ecuación de Bessel de orden 3
,GHQWL¿FDQGR# \# YHPRVGHODHFXDFLyQ TXHODVROXFLyQJHQHUDOGHOD
ecuación xy xy (x y HQ ) es y c 1J(x) c Y (x)
ED RESOLUBLES EN TÉRMINOS DE FUNCIONES DE BESSEL $OJXQDVYHFHV
HVSRVLEOHFRQYHUWLUXQDHFXDFLyQGLIHUHQFLDOHQODHFXDFLyQ SRUPHGLRGHXQFDPELR GH YDULDEOH 3RGHPRV HQWRQFHV H[SUHVDU OD VROXFLyQ GH OD HFXDFLyQ RULJLQDO HQ
WpUPLQRVGHIXQFLRQHVGH%HVVHO3RUHMHPSORVLVHHVWDEOHFHTXHt x HQ
2
xy
(a2 x2
)y 0,
x2 y
HQWRQFHVSRUODUHJODGHODFDGHQD
dy dy dt
dy
d 2y
d dy dt
d 2y
2
y
.
2
dx
dt dx
dt
dx
dt dx dx
dt 2
3RUORTXH VHFRQYLHUWHHQ
t
2
2
d 2y
dt 2
t
dy
dt
(t2
2
)y
0
o
t2
d 2y
dt 2
t
dy
dt
(t2
2
)y
0.
/D~OWLPDHFXDFLyQHVODHFXDFLyQGH%HVVHOGHRUGHQ# cuya solución es y c1J#(t)
cY#(t 9ROYLHQGRDVXVWLWXLUt xHQOD~OWLPDH[SUHVLyQVHHQFXHQWUDTXHODVROXFLyQJHQHUDOGH HV
y c1 J ( x) c2Y ( x).
6.4
FUNCIONES ESPECIALES
l
253
/DHFXDFLyQ TXHVHOODPDecuación paramétrica de Bessel de orden \VXVROXFLyQJHQHUDO VRQPX\LPSRUWDQWHVHQHOHVWXGLRGHFLHUWRVSUREOHPDVFRQYDORUHV
HQODIURQWHUDUHODFLRQDGRVFRQHFXDFLRQHVGLIHUHQFLDOHVSDUFLDOHVTXHVHH[SUHVDQHQ
FRRUGHQDGDVFLOtQGULFDV
FUNCIONES DE BESSEL MODIFICADAS 2WUD HFXDFLyQ VHPHMDQWH D HV OD
HFXDFLyQPRGL¿FDGDGH%HVVHO de orden ,
x2 y
(x2
xy
2
)y
(14)
0.
(VWD('VHSXHGHUHVROYHUHQODIRUPDTXHVHDFDEDGHLOXVWUDUSDUD (VWDYH]VL
hacemos que t ixGRQGHi HQWRQFHV VHFRQYLHUWHHQ
d 2y
dy
2
t
(t 2
)y 0.
2
dt
dt
'HELGRDTXHODVVROXFLRQHVGHODXOWLPD('VRQJ#(t) y Y#(t ODVVROXFLRQHVGHvalores complejos de la ecuación (14) son J#(ix) y Y#(ix 8QDVROXFLyQGHYDORUHVUHDOHVTXHVHOODPDIXQFLyQPRGL¿FDGDGH%HVVHOGHSULPHUDFODVH de orden #HVWiGH¿QLGDHQWpUPLQRVGHJ#(ix):
(15)
I (x) i J (ix).
t2
9HDHOSUREOHPDHQORVHMHUFLFLRV$QiORJDPHQWHD ODIXQFLyQPRGL¿FDGD
de Bessel de segunda clase de orden # HQWHURVHGH¿QHFRPR
K (x)
y para # nHQWHUR
2
Kn (x)
I (x) I (x)
,
sen
lím K (x).
:n
'HELGRDTXHI# y K#VRQOLQHDOPHQWHLQGHSHQGLHQWHVHQHOLQWHUYDOR ) para
FXDOTXLHUYDORUGH#ODVROXFLyQJHQHUDOGH HV
y c1 I (x) c2 K (x).
y
3
2. 5
2
1. 5
1
0. 5
I0
I1
I2
x
1
2
3
FIGURA 6.4.3 )XQFLRQHVPRGL¿FDGDV
GH%HVVHOGHSULPHUDFODVHSDUDn
y
3
2. 5
2
1. 5
1
0. 5
(QOD¿JXUDVHSUHVHQWDQODVJUi¿FDVGHy I0(x y I1(x \y I(x) y en
OD¿JXUDODVJUi¿FDVGHy K0(x y K1(x \y K(x $GLIHUHQFLDGHODVIXQFLRQHVGH%HVVHOGHSULPHUD\VHJXQGDFODVHODVIXQFLRQHVPRGL¿FDGDVGH%HVVHOGH
SULPHUD\VHJXQGDFODVHQRVRQRVFLODWRULDV/DV¿JXUDV\WDPELpQPXHVWUDQ
HOKHFKRGHTXHODVIXQFLRQHVPRGL¿FDGDVGH%HVVHOIn(x) y Kn(x n «QR
WLHQHQUDtFHVUHDOHVHQHOLQWHUYDOR 2EVHUYHWDPELpQTXHODVIXQFLRQHVPRGL¿FDGDVGH%HVVHOGHVHJXQGDFODVHKn(x FRPRODVIXQFLRQHVGH%HVVHOGHVHJXQGDFODVH
Yn(x) son no acotadas cuando x → 0
8QFDPELRGHYDULDEOHHQ QRGDODIRUPDSDUDPpWULFDGHODHFXDFLyQPRGL¿FDGDGH%HVVHOGHRUGHQ#:
xy xy (Įx #)y 0
/DVROXFLyQJHQHUDOGHOD~OWLPDHFXDFLyQHQHOLQWHUYDOR ) es
y c1I#(Į[) cK#(Į[)
3HURRWUDHFXDFLyQLPSRUWDQWHGHELGRDTXHPXFKDV('VHDMXVWDQDVX IRUPD
PHGLDQWHHOHFFLRQHVDSURSLDGDVGHORVSDUiPHWURVHV
y
K1
K2
1
2a
x
b 2c 2 x 2c
y
2
a2
p2 c 2
x
2
y
0,
p
0.
$XQTXHQRVHGDQORVGHWDOOHVODVROXFLyQJHQHUDOGH
y
K0
x
x a c1 Jp (bx c )
c2Yp (bx c ) ,
VH SXHGH HQFRQWUDU KDFLHQGR XQ FDPELR GH ODV YDULDEOHV LQGHSHQGLHQWH \ GHSHQ
z a/c
c
w(z). Si pQRHVXQHQWHURHQWRQFHVYpHQ VHSXH
FIGURA 6.4.4 )XQFLRQHVPRGL¿FDGDV diente: z bx , y(x)
b
GH%HVVHOGHVHJXQGDFODVHSDUDn GHUHHPSOD]DUSRUJ
p
1
2
3
254
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
EJEMPLO 3
Usando (18)
Encuentre la solución general xy y y HQ
SOLUCIÓN
(VFULELHQGROD('FRPR
3
9
y
y 0,
x
x
SRGHPRVKDFHUODVVLJXLHQWHVLGHQWL¿FDFLRQHVFRQ
y
1
2a
3,
b2 c 2
9,
2c
1 y
2
a2
p2 c 2
0.
/DVHFXDFLRQHVSULPHUD\WHUFHUDLPSOLFDQTXHa 1 y c
ecuaciones segunda y cuarta se satisfacen haciendo b \p 'H VHHQFXHQWUD
TXHODVROXFLyQJHQHUDOGHOD('HQHOLQWHUYDOR ) es
y x 1 [c1 J2 (6x1/2) c2Y2 (6x1/2)].
1
2 &RQHVWRVYDORUHVODV
EJEMPLO 4
Vuelta al problema del resorte envejecido
5HFXHUGH TXH HQ OD VHFFLyQ YLPRV TXH mx ketx
0 es un moGHOR PDWHPiWLFR SDUD HO PRYLPLHQWR DPRUWLJXDGR OLEUH GH XQD PDVD HQ XQ UHVRUWH HQYHMHFLGR $KRUD VH HVWi HQ SRVLFLyQ GH HQFRQWUDU OD VROXFLyQ JHQHUDO
GH OD HFXDFLyQ 6H GHMD FRPR SUREOHPD GHPRVWUDU TXH HO FDPELR GH YDULDEOHV
2 k
s
e t / 2 WUDQVIRUPDODHFXDFLyQGLIHUHQFLDOGHOUHVRUWHHQYHMHFLGRHQ
Bm
s2
d 2x
ds 2
s
dx
ds
s2 x
0.
/D~OWLPDHFXDFLyQVHUHFRQRFHFRPR FRQ# \GRQGHORVVtPERORVx y sMXHJDQ
los papeles de y y x UHVSHFWLYDPHQWH/DVROXFLyQJHQHUDOGHODQXHYDHFXDFLyQHV
x c1J0(s) cY0(s 6LVHVXVWLWX\HQXHYDPHQWHsHQWRQFHVVHYHTXHODVROXFLyQ
general de mx ketx 0 es
x(t)
c1J0
2
k
e
Bm
t/2
c2Y0
2
k
e
Bm
t/2
.
9pDQVHORVSUREOHPDV\GHORVHMHUFLFLRV
(ORWURPRGHORDQDOL]DGRHQODVHFFLyQGHXQUHVRUWHFX\DVFDUDFWHUtVWLFDVFDPELDQFRQHOWLHPSRIXHmx ktx 6LVHGLYLGHHQWUHmYHPRVTXHODHFXDFLyQ
k
x
tx 0 HVODHFXDFLyQGH$LU\y xy 9HDHOHMHPSORHQODVHFFLyQ
m
/DVROXFLyQJHQHUDOGHODHFXDFLyQGLIHUHQFLDOGH$LU\WDPELpQVHSXHGHHVFULELUHQ
WpUPLQRVGHIXQFLRQHVGH%HVVHO9pDQVHORVSUREOHPDV\GHORVHMHUFLFLRV
PROPIEDADES 6HOLVWDQDFRQWLQXDFLyQDOJXQDVGHODVSURSLHGDGHVPiV~WLOHVGH
ODVIXQFLRQHVGH%HVVHOGHRUGHQmm
i) J m (x) ( 1) m Jm (x),
ii) Jm ( x) ( 1) m Jm (x),
iii) Jm (0)
0,
1,
m
m
0
0,
iv) lím Ym (x)
.
x: 0
2EVHUYHTXHODSURSLHGDGii) indica que Jm(x) es una función par si m es un entero par
y una función impar si mHVXQHQWHURLPSDU/DVJUi¿FDVGHY0(x) y Y1(x HQOD¿JXUD
PXHVWUDQODSURSLHGDGiv HQSDUWLFXODUYm(x QRHVWiDFRWDGDHQHORULJHQ(VWH
~OWLPRKHFKRQRHVREYLRDSDUWLUGHODHFXDFLyQ /DVVROXFLRQHVGHODHFXDFLyQ
GH%HVVHOGHRUGHQVHREWLHQHQSRUPHGLRGHODVVROXFLRQHVy1(x HQ \y(x) en
GHODVHFFLyQ6HSXHGHGHPRVWUDUTXHODHFXDFLyQ GHODVHFFLyQHV
y1(x) J0(x PLHQWUDVTXHODHFXDFLyQ GHHVDVHFFLyQHV
6.4
FUNCIONES ESPECIALES
l
255
( 1) k
1
1 x 2k
1
.
2
2
k 2
k 1 (k!)
(QWRQFHVODIXQFLyQGH%HVVHOGHVHJXQGDFODVHGHRUGHQY0(x VHGH¿QHFRPROD
2
2
FRPELQDFLyQOLQHDO Y0 (x)
(
ln 2)y1 (x)
y 2 (x) para x (VGHFLU
y2(x)
Y0 (x)
2
J0 (x)ln x
J0 (x)
ln
( 1) k
1
2
1 (k!)
2
x
2
k
1
2
1
k
x
2
2k
donde Ȗ HVODconstante de Euler'HELGRDODSUHVHQFLDGHOWpUPLQR
ORJDUtWPLFRHVHYLGHQWHTXHY0(x) es discontinua en x
VALORES NUMÉRICOS (QODWDEODVHSUHVHQWDQODVSULPHUDVFLQFRUDtFHVQR
QHJDWLYDVGHJ0(x J1(x Y0(x) y Y1(x (QODWDEODVHSUHVHQWDQDOJXQRVRWURVYDORUHVGHODIXQFLyQGHHVWDVFXDWURIXQFLRQHV
TABLA 6.1 5DtFHVQRQHJDWLYDVGHJ0J1Y0\Y1
TABLA 6.2 9DORUHVQXPpULFRVGHJ0J1Y0\Y1
J0(x)
J1(x)
Y0(x)
Y1(x)
x
J0(x)
J1(x)
Y0(x)
Y1(x)
4
5
10
11
15
²
²
RELACIÓN DE RECURRENCIA DIFERENCIAL /DVIyUPXODVGHUHFXUUHQFLDTXHUHODFLRQDQODVIXQFLRQHVGH%HVVHOGHGLIHUHQWHVyUGHQHVVRQLPSRUWDQWHVHQODWHRUtD\HQODV
DSOLFDFLRQHV(QHOHMHPSORVLJXLHQWHVHGHGXFHXQDUHODFLyQGHUHFXUUHQFLDGLIHUHQFLDO
EJEMPLO 5
'HGXFFLyQXVDQGRODGH¿QLFLyQGHVHULH
'HGX]FDODIyUPXOD xJ (x)
SOLUCIÓN
J (x)
1 (x).
xJ
'HODHFXDFLyQ VHWLHQHTXH
(1)n(2n ) x
–
L
xJv(x) 兺 –––––––––––––––
n0 n! (1 v n) 2
()
()
2nv
x
(1)n
–
L
兺 –––––––––––––––
n0 n! (1 n) 2
2nv
x
(1)nn
–
L
2 兺 –––––––––––––––
n0 n! (1 n) 2
()
(1)n
x
–
L
J(x) x 兺 –––––––––––––––––––––
(n
1)!
(1
n)
2
n1
()
2nv
2n1
kn1
J(x) x
(1)k
L
兺 –––––––––––––––
k0 k! (2 k)
x
–
2
()
2k1
J(x) xJ1(x).
256
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
(OUHVXOWDGRGHOHMHPSORVHSXHGHHVFULELUHQXQDIRUPDDOWHUQDWLYD'LYLGLHQGR
xJ (x)
J (x)
xJ 1 (x) entre xVHREWLHQH
J (x)
J 1 (x).
x
(VWD ~OWLPD H[SUHVLyQ VH UHFRQRFH FRPR XQD HFXDFLyQ GLIHUHQFLDO OLQHDO GH SULPHU
orden en J#(x 0XOWLSOLFDQGRDPERVODGRVGHODLJXDOGDGSRUHOIDFWRULQWHJUDQWHx#
VHREWLHQH
d
[x J (x)]
x J 1 (x).
dx
Se puede demostrar de manera similar que
J (x)
d
[x J (x)]
dx
x J
1 (x).
9pDVHHOSUREOHPDHQORVHMHUFLFLRV/DVUHODFLRQHVGHUHFXUUHQFLDGLIHUHQFLDOHV \ WDPELpQVRQYiOLGDVSDUDODIXQFLyQGH%HVVHOGHVHJXQGDFODVHY#(x
2EVHUYHTXHFXDQGR# VHGHGXFHGH TXH
J 0 (x)
y
J1(x)
Y1 (x).
Y 0 (x)
(QHOSUREOHPDGHORVHMHUFLFLRVVHSUHVHQWDXQDDSOLFDFLyQGHHVWRVUHVXOWDGRV
FUNCIONES DE BESSEL DE MEDIO ORDEN INTEGRAL Cuando el orden es
ODPLWDGGHXQHQWHURLPSDUHVGHFLU 12, 32, 52, . . . , ODVIXQFLRQHVGH%HVVHOGH
SULPHUD\VHJXQGDFODVHVHSXHGHQH[SUHVDUHQWpUPLQRVGHODVIXQFLRQHVHOHPHQWDOHV
1
sen xFRVx y potencias de x&RQVLGHUDUHPRVHOFDVRFXDQGR
2 . 'H
J1/2(x)
( 1)n
n! 1 12
(
)
n
x
2
2n 1/2
1
1 los
(Q YLVWD GH OD SURSLHGDG $(1 ) $() y del hecho de que
2
1
YDORUHVGH 1 2 n para n n n \ n VRQ UHVSHFWLYDPHQWH
n 0
(
()
)
( 32)
(1
1
2
)
1
2
( 12)
( 52)
(1
3
2
)
3
2
( 32)
( 72)
(1
5
2
)
5
2
( 52)
( 92)
(1
7
2
)
7
2
( 72)
(QJHQHUDO
1
2
3
1
22
5 3
1
23
7 5
1
26 2!
1
2
1
1
n
5 4 3 2 1
1
23 4 2
7 6 5!
1
26 6 2!
5!
1
252!
7!
1 .
27 3!
(2n 1)!
1 .
22n 1 n!
( 1) n
x 2n 1/2
2
( 1) n 2n 1
x
.
(2n 1)!
2
B x n 0 (2n 1)!
n 0
n! 2n 1
1
2
n!
'HODHFXDFLyQ GHODVHFFLyQGHEHUHFRQRFHUTXHODVHULHLQ¿QLWDHQHO~OWLPR
UHQJOyQHVODVHULHGH0DFODXULQSDUDVHQx\DVtVHKDGHPRVWUDGRTXH
2
senx.
J1/ 2 (x)
B x
6HGHMDFRPRHMHUFLFLRGHPRVWUDUTXH
3RUORTXH
J1/2 (x)
J
1/ 2 (x)
2
cos x.
B x
6.4
J-1/ 2
0. 5
J 1/ 2
x
0
冪S2x cos x
Y1兾2(x)
−0.5
2
4
6
8
10
12
l
257
9HDOD¿JXUD\ORVSUREOHPDV\GHORVHMHUFLFLRV
Si nHVXQHQWHURHQWRQFHV# n 1兾HVXQPHGLRGHXQHQWHURLPSDU3XHVWR
que cos(n 1兾 ʌ 0 y sen(n + 1兾 ʌ cos Qʌ (1)nYHPRVGHODHFXDFLyQ TXH
Yn 1兾(x) (1)n 1J(n 1兾 (x 3DUDn 0 y n WHQHPRVDVXYH]TXHY1兾(x)
J1兾(x) y Y1兾(x) J1兾(x (QYLVWDGH \ HVWRVUHVXOWDGRVVRQORVPLVPRVTXH
y
1
FUNCIONES ESPECIALES
14
FIGURA 6.4.5 Funciones de
%HVVHOGHRUGHQ1兾 D]XO \RUGHQ
1兾 URMR
冪S2x sen x
1兾2(x)
Y
y
(25)
(26)
FUNCIONES ESFÉRICAS DE BESSEL /DVIXQFLRQHVGHRUGHQVHPLHQWHURVHXWLOL]DQ
SDUDGH¿QLUGRVIXQFLRQHVLPSRUWDQWHVPiV
jn(x)
S
冪2x J
y
1兾2(x)
n
冪2xS Y
yn(x)
(27)
1兾2(x).
n
/DIXQFLyQjn(x) se conoce como la IXQFLyQHVIpULFDGH%HVVHOGHSULPHUDFODVH y
yn(x) es la IXQFLyQHVIpULFDGH%HVVHOGHVHJXQGDFODVH3RUHMHPSORSDUDn 0 las
H[SUHVLRQHVHQ VHUiQ
y
j0(x)
冪2xS J
y0(x)
冪2xS Y
冪2xS 冪S2x sin x
1兾2(x)
sen x
x
冪2xS 冪S2x cos x
1兾2(x)
cos x
x
(VHYLGHQWHHQ \HQOD¿JXUDSDUDn TXHODIXQFLyQHVIpULFDGH%HVVHOGH
segunda clase yn(x VHUiQRDFRWDGDFXDQGRx → 0
/DV IXQFLRQHV HVIpULFDV GH %HVVHO VXUJHQ HQ OD VROXFLyQ GH XQD HFXDFLyQ GLIHUHQFLDO SDUFLDO H[SUHVDGD HQ FRRUGHQDGDV HVIpULFDV 9HD HO SUREOHPD GH ORV
HMHUFLFLRV
SOLUCIÓN DE LA ECUACIÓN DE LEGENDRE 3XHVWRTXHx 0 es un punto ork
GLQDULRGHODHFXDFLyQGH/HJHQGUH VXVWLWX\HQGRODVHULH y
k 0 ck x FRUULHQGR
ORVtQGLFHVGHODVXPD\FRPELQDQGRODVHULHVHREWLHQH
(1
x2)y
2xy
1)y
n(n
[n(n
1)c0
[( j
2c2 ]
2)( j
[(n
1)cj
1)(n
(n
2
2)c1
j)(n
6c3]x
j
1)cj ]x j
0
j 2
lo que implica que
(n
(j
o
c2
c3
cj
2
1)
n(n
2!
(n
2)( j
1)cj
2
n(n
1)c0
2c2
0
1)(n
2)c1
6c3
0
j
1)cj
0
(n
j)(n
c0
1)(n
3!
2)
c1
(n j)(n j 1)
c,
( j 2)( j 1) j
j
2, 3, 4, . . .
6LVHGHMDTXHjWRPHORVYDORUHVODUHODFLyQGHUHFXUUHQFLD SURGXFH
258
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
(n
2)(n
4 3
3)
(n
3)(n
5 4
4)
(n
4)(n
6 5
5)
(n
5)(n
7 6
6)
c4
c5
c6
c7
c2
c3
(n
2)n(n 1)(n
4!
(n
3)(n
c4
c5
3)
1)(n
5!
c0
2)(n
4)
(n
4)(n
2)n(n 1)(n
6!
(n
5)(n
3)(n
c1
3)(n
1)(n
7!
5)
2)(n
c0
4)(n
6)
c1
HWFpWHUD(QWRQFHVSDUDDOPHQRV兩 x 兩 VHREWLHQHQGRVVROXFLRQHVHQVHULHGHSRWHQcias linealmente independientes:
y1 (x)
y2 (x)
c0 1
c1 x
1)
n(n
2!
(n
x2
2)n(n
1)(n
3)
3)(n
5)
4!
(n
4)(n
2)n(n 1)(n
6!
(n
1)(n
3!
2)
(n
5)(n
3)(n
x3
(n
3)(n
1)(n
7!
x4
1)(n
5!
2)(n
4)(n
x6
2)(n
6)
4)
x5
x7
.
2EVHUYHTXHVLnHVXQHQWHURSDUODSULPHUDVHULHWHUPLQDPLHQWUDVTXHy(x) es
XQDVHULHLQ¿QLWD3RUHMHPSORVLn HQWRQFHV
4 5 2 2 4 5 7 4
35 4
x
x
c0 1 10x2
x .
2!
4!
3
'HPDQHUDVLPLODUFXDQGRnHVXQHQWHURLPSDUODVHULHSDUDy(x) termina con xn; es
GHFLUcuando n es un entero no negativo, obtenemos una solución polinomial de grado
n GHODHFXDFLyQGH/HJHQGUH
'HELGRDTXHVHVDEHTXHXQP~OWLSORFRQVWDQWHGHXQDVROXFLyQGHODHFXDFLyQGH
/HJHQGUHWDPELpQHVXQDVROXFLyQVHDFRVWXPEUDHOHJLUYDORUHVHVSHFt¿FRVSDUDc0 y
c1GHSHQGLHQGRGHVLnHVXQHQWHURSRVLWLYRSDURLPSDUUHVSHFWLYDPHQWH3DUDn 0
elegimos c0 \SDUDn
1 3
(n 1)
c0 ( 1)n /2
,
2 4
n
mientras que para n 1 se elige c1 1 y para n
y1 (x)
c0 1
c1
( 1)(n
1) /2
1 3
n
.
2 4
(n 1)
3RUHMHPSORFXDQGRn VHWLHQH
y1 (x)
( 1) 4 /2
1 3
1
2 4
10x 2
35 4
x
3
1
(35x 4
8
30x 2
3).
POLINOMIOS DE LEGENDRE (VWDV VROXFLRQHV SROLQRPLDOHV HVSHFt¿FDV GH
n-ésimo grado se llaman polinomios de Legendre y se denotan mediante Pn(x 'H
las series para y1(x) y y(x) y de las opciones anteriores de c0 y c1 se encuentra que los
SULPHURVSROLQRPLRVGH/HJHQGUHVRQ
P0 (x)
P2 (x)
P4 (x)
1,
1
(3x2 1),
2
1
(35x4 30x2
8
P1 (x)
P3 (x)
3),
P5 (x)
x,
1
(5x3 3x),
2
1
(63x5 70x3
8
15x).
6.4
FUNCIONES ESPECIALES
l
259
Recuerde que P0(x P1(x P(x P(x VRQDVXYH]VROXFLRQHVSDUWLFXODUHVGHODV
ecuaciones diferenciales
n
n
n
n
0:
1:
2:
3:
(1
(1
(1
(1
x2)y
x2)y
x2)y
x2)y
2xy
2xy
2xy
2xy
0,
2y 0,
6y 0,
12y 0,
(QOD¿JXUDVHSUHVHQWDQODVJUi¿FDVHQHOLQWHUYDOR>@GHORVVHLV
SROLQRPLRVGH/HJHQGUHHQ
PROPIEDADES 6HUHFRPLHQGDTXHFRPSUXHEHODVVLJXLHQWHVSURSLHGDGHVXVDQGR
ORVSROLQRPLRVGH/HJHQGUHHQ
i) Pn ( x)
y
1
0.5
1
iv) Pn (0)
0,
iii) Pn ( 1)
n LPSDU v) P n (0)
( 1) n
0,
n par
/DSURSLHGDGi LQGLFDFRPRHVHYLGHQWHHQOD¿JXUDTXHPn(x) es una función
par o impar concordantemente con la condición de si nHVSDURLPSDU
P0
P1
P2
x
-0.5
-1
-1 -0.5
ii) Pn (1)
( 1) n Pn (x)
0.5
FIGURA 6.4.6 3ROLQRPLRVGH
/HJHQGUHSDUDn
1
RELACIÓN DE RECURRENCIA /DVUHODFLRQHVGHUHFXUUHQFLDTXHYLQFXODQSROLQRPLRVGH/HJHQGUHGHGLIHUHQWHVJUDGRVWDPELpQVRQLPSRUWDQWHVHQDOJXQRVDVSHFWRV
GHVXVDSOLFDFLRQHV6HHVWDEOHFHVLQFRPSUREDFLyQODUHODFLyQGHUHFXUUHQFLDGHWUHV
términos
(k 1)Pk 1 (x) (2k 1)xPk (x) kPk 1 (x) 0,
TXHHVYiOLGDSDUDk (Q VHOLVWDQORVSULPHURVVHLVSROLQRPLRVGH
/HJHQGUH6LGHFLPRVTXHVHGHVHDHQFRQWUDUP(x VHSXHGHXVDUODHFXDFLyQ FRQ
k (VWDUHODFLyQH[SUHVDP(x) en términos de los conocidos P4(x) y P5(x 9pDVHHO
SUREOHPDGHORVHMHUFLFLRV
2WUD IyUPXOD TXH DXQTXH QR HV XQD UHODFLyQ GH UHFXUUHQFLD SXHGH JHQHUDU
ORVSROLQRPLRVGH/HJHQGUHSRUGHULYDFLyQHVODIyUPXODGH5RGULJXHVTXHSDUD
estos polinomios es
1 dn
Pn (x)
(x2 1) n,
n 0, 1, 2, . . . .
n
2 n! dx n
9HDHOSUREOHPDGHORVHMHUFLFLRV
COMENTARIOS
$XQTXHVHKDVXSXHVWRTXHHOSDUiPHWURnHQODHFXDFLyQGLIHUHQFLDOGH/HJHQGUH
(1 x )y xy n(n 1)y UHSUHVHQWD XQ HQWHUR QR QHJDWLYR HQ XQD
IRUPD PiV JHQHUDO n SXHGH UHSUHVHQWDU FXDOTXLHU Q~PHUR UHDO &XDOTXLHU VROXFLyQGHODHFXDFLyQGH/HJHQGUHVHOODPDIXQFLyQGH/HJHQGUH6Ln no es un
HQWHUR QR QHJDWLYR HQWRQFHV DPEDV IXQFLRQHV GH /HJHQGUH y1(x) y y(x) dadas
HQODHFXDFLyQ VRQVHULHVLQ¿QLWDVFRQYHUJHQWHVHQHOLQWHUYDORDELHUWR
\GLYHUJHQWHV VLQOtPLWH HQx O6LnHVXQHQWHURQRQHJDWLYRHQWRQFHVFRPR
VHKDYLVWRXQDGHODVIXQFLRQHVGH/HJHQGUHHQ HVXQSROLQRPLR\ODRWUD
HVXQDVHULHLQ¿QLWDFRQYHUJHQWHSDUD1 x 6HGHEHWHQHUSUHVHQWHTXHOD
HFXDFLyQGH/HJHQGUHWLHQHVROXFLRQHVTXHHVWiQDFRWDGDVHQHOLQWHUYDORcerrado
[@VyORHQHOFDVRFXDQGRn 0iVFRQFUHWDPHQWHODV~QLFDV
IXQFLRQHVGH/HJHQGUHTXHHVWiQDFRWDGDVHQHOLQWHUYDORFHUUDGR>@VRQORV
SROLQRPLRVGH/HJHQGUHPn(x RP~OWLSORVFRQVWDQWHVGHHVWRVSROLQRPLRV9pDVH
HOSUREOHPDGHORVHMHUFLFLRV\HOSUREOHPDHQHO5HSDVRGHOFDStWXOR
260
l
CAPÍTULO 6
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
EJERCICIOS 6.4
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-10.
Ecuación de Bessel
a) y x y 0
(QORVSUREOHPDVDXVHODHFXDFLyQ SDUDHQFRQWUDUODVROXFLyQJHQHUDOGHODHFXDFLyQGLIHUHQFLDOHQHOLQWHUYDOR
1. x2 y
1
9
x2
xy
0
y
2. x y xy (x 1)y 0
b) xy y x y 0
(QORVSUREOHPDVDXVHSULPHURODHFXDFLyQ SDUDH[presar la solución general de la ecuación diferencial en términos
GHIXQFLRQHVGH%HVVHO/XHJRXVH \ SDUDH[SUHVDUOD
VROXFLyQJHQHUDOHQWpUPLQRVGHIXQFLRQHVHOHPHQWDOHV
3. 4x y 4xy (4x y 0
23. y y 0
4. x y xy x 1)y 0
24. x y 4xy (x y 0
5. xy y xy 0
25. x y xy (x 4 y 0
d
[xy ]
6.
dx
x
26. 4x y 4xy x y 0
4
y
x
27. a) 3URFHGDFRPRHQHOHMHPSORSDUDGHPRVWUDUTXH
0
xJ#(x) #J #(x) xJ#1(x
(QORVSUREOHPDVDXVHODHFXDFLyQ SDUDHQFRQWUDU
ODVROXFLyQJHQHUDOGHODHFXDFLyQGLIHUHQFLDOGDGDHQ
b) 8WLOLFHHOUHVXOWDGRGHOLQFLVRD SDUDGHGXFLU
7. x y xy x 4)y 0
8. x 2 y
xy
36x 2
1
4
y
0
9. x2 y
xy
25x2
4
9
y
0
28. 8WLOLFHODIyUPXODGHOHMHPSORMXQWRFRQHOLQFLVRD GHO
SUREOHPDSDUDGHGXFLUODUHODFLyQGHUHFXUUHQFLD
#J# (x) xJ#1(x) xJ#1(x
10. x y xy x y 0
(QORVSUREOHPDV\XVHHOFDPELRGHYDULDEOHLQGLFDGR
para determinar la solución general de la ecuación diferencial
HQ
11. x y xy x y 0;
12. x2 y
(
2 2
x
2
1
4
)y
y x 1兾 v(x)
0; y
1x v(x)
(QORVSUREOHPDVDXVHODHFXDFLyQ SDUDHQFRQWUDU
ODVROXFLyQJHQHUDOGHODHFXDFLyQGLIHUHQFLDOHQ
13. xy y 4y 0 14. xy y xy 0
15. xy y xy 0
[Sugerencia:(VFULEDn # n #) #@
16. xy 5y xy 0
17. x y (x y 0
18. 4x y x 1)y 0
(Q ORV SUREOHPDV \ XVH OD HFXDFLyQ R SDUD
REWHQHUHOUHVXOWDGRGDGR
x
29.
rJ0 (r) dr
31. 3URFHGDFRPRHQODHFXDFLyQ SDUDGHGXFLUODIRUPD
elemental de J1兾(x
32. 8VHODUHODFLyQGHUHFXUUHQFLDGHOSUREOHPDMXQWRFRQ
\ SDUDH[SUHVDUJ兾(x J兾(x) y J5兾(x) en términos de sen xFRVx y potencias de x
k
e t / 2 para dem
B
PRVWUDUTXHODHFXDFLyQGLIHUHQFLDOGHOUHVRUWHHQYHMHFLGR
mx ketx VHFRQYLHUWHHQ
21. 8VHODVHULHHQ SDUDFRPSUREDUTXHI#(x) i#J#(ix) es
XQDIXQFLyQUHDO
22. Suponga que bHQODHFXDFLyQ SXHGHVHUXQQ~PHUR
LPDJLQDULRSXURHVGHFLUb ȕLȕ i 8VH
HVWD VXSRVLFLyQ SDUD H[SUHVDU OD VROXFLyQ JHQHUDO GH OD
HFXDFLyQGLIHUHQFLDOHQWpUPLQRVGHODVIXQFLRQHVPRGL¿FDGDVGH%HVVHOIn y Kn
2
33. 8VH HO FDPELR GH YDULDEOHV s
19. xy y x y 0
20. x y xy (x y 0
30. J0 (x) J1(x) J1(x)
xJ1 (x)
0
s2
d 2x
ds 2
s
dx
ds
(
s2 x
0.
)
34. Demuestre que y x1 / 2 w 23 x 3 / 2 es una solución de la
H FXDFLyQGLIHUHQFLDOGH$LU\y xy x VLHPpre que wVHDXQDVROXFLyQGHODHFXDFLyQGH%HVVHOGH
orden 13 HV GHFLU t2 w
tw
t 2 19 w 0, t
[Sugerencia'HVSXpVGHGHULYDUVXVWLWXLU\VLPSOL¿FDU
entonces se hace t 23 x3 / 2.]
(
)
6.4
35. a) 8
VH HO UHVXOWDGR GHO SUREOHPD SDUD H[SUHVDU OD
VROXFLyQJHQHUDOGHODHFXDFLyQGLIHUHQFLDOGH$LU\
para x HQWpUPLQRVGHIXQFLRQHVGH%HVVHO
b) &RPSUXHEH ORV UHVXOWDGRV GHO LQFLVR D XVDQGR OD
HFXDFLyQ
36. 8VHODWDEODSDUDHQFRQWUDUORVSULPHURVWUHVYDORUHV
SURSLRVSRVLWLYRV\ODVIXQFLRQHVSURSLDVFRUUHVSRQGLHQWHVGHOSUREOHPDGHYDORUHVHQODIURQWHUD
xy
y
xy 0,
y(x y(x) acotada conforme x → 0y
[Sugerencia:,GHQWL¿FDQGR OD('HVODHFXDFLyQ
GH%HVVHOSDUDPpWULFDGHRUGHQFHUR@
37. a) 8
VHODHFXDFLyQ SDUDGHPRVWUDUTXHODVROXFLyQ
general de la ecuación diferencial xy y 0 en el
LQWHUYDOR ) es
c1 1xJ1 2 1 x
(
c2 1xY1 2 1 x .
)
(
)
b) &
RPSUXHEH SRU VXVWLWXFLyQ GLUHFWD TXH y 1xJ1
(2 1x ) es una solución particular de la ED en el caso
y
FUNCIONES ESPECIALES
donde EHVHOPyGXORGH<RXQJI es el momento de inerFLDGHVHFFLyQWUDQVYHUVDO es la densidad lineal constante y x es la distancia a lo largo de la columna medida
GHVGHVXEDVH9pDVHOD¿JXUD/DFROXPQDVHGREOD
VyORSDUDDTXHOORVYDORUHVGHLSDUDORVTXHHOSUREOHPD
FRQYDORUHVHQODIURQWHUDWLHQHXQDVROXFLyQQRWULYLDO
a) (VWDEOH]FD GH QXHYR HO SUREOHPD FRQ YDORUHV HQ OD
IURQWHUDKDFLHQGRHOFDPELRGHYDULDEOHVt L x
/XHJRXWLOLFHORVUHVXOWDGRVGHOSUREOHPDDQWHULRUHQ
HVWHFRQMXQWRGHHMHUFLFLRVSDUDH[SUHVDUODVROXFLyQ
general de la ecuación diferencial en términos de
IXQFLRQHVGH%HVVHO
b) 8VHODVROXFLyQJHQHUDOHQFRQWUDGDHQHOLQFLVRD SDUD
HQFRQWUDUXQDVROXFLyQGHO39)\XQDHFXDFLyQTXHGH¿QDODORQJLWXGFUtWLFDLHVGHFLUHOYDORUPiVSHTXHxR
de LSDUDODTXHVHFRPLHQFHDGREODUODFROXPQD
c) &
RQ D\XGD GH XQ 6$& HQFXHQWUH OD ORQJLWXG L de
XQDYDULOODGHDFHURVyOLGDGHUDGLRr SXOJg
AOE兾SXOJE 10OE兾pulgA r
e I 14 r 4.
θ
Tarea para el laboratorio de computación
P(x)
38. 8VH XQ 6$& SDUD WUD]DU ODV JUi¿FDV GH J兾(x J兾(x
J5兾(x) y J5兾(x
x
39. a) 8
VH OD VROXFLyQ JHQHUDO GDGD HQ HO HMHPSOR SDUD
UHVROYHUHO39,
4x
e
0.1t
x
0,
1,
x(0)
x=0
7DPELpQXVH J 0 (x)
J1 (x) y Y 0 (x)
Y1 (x)MXQWR
FRQODWDEODRXQ6$&SDUDHYDOXDUORVFRH¿FLHQWHV
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQREWHQLGDHQHOLQFLVRD HQHOLQWHUYDOR t
40. a) 8VHODVROXFLyQJHQHUDOREWHQLGDHQHOSUREOHPD
SDUDUHVROYHUHO39,
tx
0,
x(0.1)
1,
1
2.
x (0.1)
8VHXQ6$&SDUDHYDOXDUORVFRH¿FLHQWHV
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQREWHQLGDHQHOLQFLVRD HQHOLQWHUYDOR t
41. Columna doblada bajo su propio peso 8QDFROXPQD
delgada uniforme de longitud LFRORFDGDYHUWLFDOPHQWH
FRQXQH[WUHPRLQVHUWDGRHQHOVXHORVHFXUYDGHVGHOD
YHUWLFDO EDMR OD LQÀXHQFLD GH VX SURSLR SHVR FXDQGR VX
ORQJLWXGRDOWXUDH[FHGHXQFLHUWRYDORUFUtWLFR6HSXHGH
GHPRVWUDU TXH OD GHÀH[LyQ DQJXODU (x) de la columna
GHVGH OD YHUWLFDO HQ XQ SXQWR P(x) es una solución del
SUREOHPDFRQYDORUHVHQODIURQWHUD
2
EI
d
dx 2
g(L
x)
0,
(0)
0,
suelo
1
2.
x (0)
FIGURA 6.4.7 9LJDGHOSUREOHPD
4x
261
l
(L)
0,
42. Pandeo de una columna vertical delgada (QHOHMHPSORGHODVHFFLyQYLPRVTXHFXDQGRVHDSOLFDXQD
IXHU]DFRPSUHVLYDYHUWLFDOFRQVWDQWHRFDUJDP a una coOXPQDGHOJDGDGHVHFFLyQWUDQVYHUVDOXQLIRUPH\DELVDJUDGDHQDPERVH[WUHPRVODGHÀH[LyQy(x) es una soluFLyQGHO39)
d 2y
EI 2 Py 0, y(0) 0, y(L) 0.
dx
a) 6LHOIDFWRUGHULJLGH]DODÀH[LyQEI es proporcional a x
entonces EI(x) kxGRQGHk es una constante de proSRUFLRQDOLGDG6LEI(L) kL MHVHOIDFWRUGHULJLGH]
Pi[LPDHQWRQFHVk M兾L\SRUWDQWREI(x) Mx兾L
8VHODLQIRUPDFLyQGHOSUREOHPDSDUDHQFRQWUDUXQD
solución de
M
x d 2y
L dx 2
Py
0,
y(0)
0,
y(L)
0
VLVHVDEHTXH1xY1(21 x) no es cero en x
b) 8
VHODWDEODSDUDHQFRQWUDUODFDUJDGH(XOHUP1
SDUDODFROXPQD
262
CAPÍTULO 6
l
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
c) 8
VHXQ6$&SDUDJUD¿FDUHOSULPHUPRGRGHSDQGHR
y1(x) correspondiente a la carga de Euler P13RUVLPplicidad suponga que c1 1 y L
43. Péndulo de longitud variable 3DUD HO SpQGXOR VLPSOH GHVFULWR HQ OD VHFFLyQ VXSRQJD TXH OD YDULOOD
que sostiene la masa m HQ XQ H[WUHPR VH VXVWLWX\H SRU
XQ DODPEUH ÀH[LEOH R FXHUGD \ TXH HO DODPEUH SDVD SRU
una polea en el punto de apoyo OHQOD¿JXUD'H
HVWD PDQHUD PLHQWUDV HVWi HQ PRYLPLHQWR HQ HO SODQR
YHUWLFDOODPDVDmSXHGHVXELUREDMDU(QRWUDVSDODEUDV
la longitud l(t GHOSpQGXORYDUtDFRQHOWLHPSR%DMRODV
PLVPDVVXSRVLFLRQHVTXHFRQGXFHQDODHFXDFLyQ HQOD
VHFFLyQVHSXHGHGHPRVWUDU que la ecuación diferenFLDOSDUDHOiQJXORGHGHVSOD]DPLHQWR ahora es
l
2l
g sen
0.
a) Si lDXPHQWDDXQDUD]yQFRQVWDQWHv y si l(0) l0
GHPXHVWUHTXHXQDOLQHDOL]DFLyQGHOD('DQWHULRUHV
b) 5HDOLFHHOFDPELRGHYDULDEOHVx (l0 vt)兾v y dePXHVWUHTXHODHFXDFLyQ VHFRQYLHUWHHQ
(l 0
vt)
2v
g
0.
d2
2d
g
0.
2
dx
x dx vx
c) 8
VHHOLQFLVRE \ODHFXDFLyQ SDUDH[SUHVDUOD
VROXFLyQJHQHUDOGHODHFXDFLyQ HQWpUPLQRVGH
IXQFLRQHVGH%HVVHO
d) 8VHODVROXFLyQJHQHUDOGHOLQFLVRF SDUDUHVROYHU
HO SUREOHPD FRQ YDORUHV LQLFLDOHV TXH FRQVLVWH HQ
OD HFXDFLyQ \ ODV FRQGLFLRQHV LQLFLDOHV (0)
0 (0) >Sugerencias: SDUD VLPSOL¿FDU
ORV FiOFXORV XVH XQ FDPELR GH YDULDEOH DGLFLRQDO
g 1/ 2
2
x .
1g(l0 vt) 2
v
Bv
$GHPiV UHFXHUGH TXH OD HFXDFLyQ YDOH SDUD
J1(u) y Y1(u 3RU~OWLPRODLGHQWLGDG
u
2
VHUi PX\ ~WLO@
u
e) 8
VH XQ 6$& SDUD WUD]DU OD JUi¿FD GH OD VROXFLyQ
(t GHO 39, GHO LQFLVR G FXDQGR l0 SLH 0
1
1
UDGLiQ\ v 60 pie兾V([SHULPHQWHFRQODJUi¿FD
10
XVDQGRGLIHUHQWHVLQWHUYDORVGHWLHPSRFRPR>@
>@HWFpWHUD
I ¢4XpLQGLFDQODVJUi¿FDVDFHUFDGHOiQJXORGHGHVSOD]DPLHQWR(t) cuando la longitud lGHODODPEUHVH
incrementa con el tiempo?
J1 (u)Y2 (u)
J2 (u)Y1 (u)
Ecuación de Legendre
44. a) 8VHODVVROXFLRQHVH[SOtFLWDVy1(x) y y(x) de la ecuaFLyQ GH /HJHQGUH GDGD HQ \ OD HOHFFLyQ DSUR
9HD0DU\%RDV Mathematical Methods in the Physical Sciences-RKQ
:LOH\ 6RQV7DPELpQYHDHODUWtFXORGH%RUHOOL&ROHPDQ\+REVRQ
en Mathematicas MagazineYROQ~PPDU]RGH
piada de c0 y c1 para encontrar los polinomios de
/HJHQGUHP(x) y P(x
b) (VFULEDODVHFXDFLRQHVGLIHUHQFLDOHVSDUDODVFXDOHV
P(x) y P(x VRQVROXFLRQHVSDUWLFXODUHV
45. 8VHODUHODFLyQGHUHFXUUHQFLD \P0(x) P1(x) x
SDUDJHQHUDUORVVLJXLHQWHVVHLVSROLQRPLRVGH/HJHQGUH
46. Demuestre que la ecuación diferencial
d 2y
dy
cos
n(n 1)(sen )y 0
d 2
d
SXHGHFRQYHUWLUVHHQODHFXDFLyQGH/HJHQGUHSRUPHGLR
de la sustitución x cos
47. (QFXHQWUH ORV SULPHURV WUHV YDORUHV SRVLWLYRV GH para
ORVFXDOHVHOSUREOHPD
sen
x2)y
(1
2xy
y
0,
y(0) y(x y(x HVWiDFRWDGDHQ>@
WLHQHVROXFLRQHVQRWULYLDOHV
Tarea para el laboratorio de computación
48. (QODUHDOL]DFLyQGHHVWHSUREOHPDLJQRUHODOLVWDGHSROLQRPLRVGH/HJHQGUHTXHVHSUHVHQWDQHQODVJUi¿FDVGHOD
¿JXUD8VHODIyUPXODGH5RGULJXHV SDUDJHQHUDU
ORVSROLQRPLRVGH/HJHQGUHP1(x P(x P(x 8VHXQ
6$&SDUDUHDOL]DUODVGHULYDGDV\ODVVLPSOL¿FDFLRQHV
49. 8VHXQ6$&SDUDWUD]DUODVJUi¿FDVGHP1(x P(x
P(x HQHOLQWHUYDOR>@
50. 8VHXQSURJUDPDGHFiOFXORGHUDtFHVSDUDGHWHUPLQDUODV
raíces de P1(x P(x P(x 6L ORV SROLQRPLRV GH
/HJHQGUHVRQIXQFLRQHVLQFRUSRUDGDVHQVX6$&HQFXHQWUHORVSROLQRPLRVGH/HJHQGUHGHJUDGRVXSHULRU+DJD
XQDVXSRVLFLyQDFHUFDGHODORFDOL]DFLyQGHODVUDtFHVGH
DOJ~QSROLQRPLRGH/HJHQGUHPn(x \OXHJRLQYHVWLJXHVL
HVYHUGDG
Miscelánea de ecuaciones diferenciales
51. /DHFXDFLyQGLIHUHQFLDO
y xy Į\ 0
se conoce como la ecuación de Hermite de orden Į en
KRQRU GHO PDWHPiWLFR IUDQFpV &KDUOHV +HUPLWH
'HPXHVWUHTXHODVROXFLyQJHQHUDOGHODHFXDFLyQ
es y(x) c0y1(x) c1y(x GRQGH
y1(x)
1
y2(x)
x
( 1)k
k
1
( 1)k
k
1
2kD(D
2) . . . (D
(2k)!
2k(D 1)(D 3) . . . (D
(2k 1)!
2k
2k
2)
x 2k
1)
x 2k
1
son soluciones en series de potencias en el punto ordiQDULR
52. a) Cuando Į n HV XQ HQWHUR QR QHJDWLYR OD HFXDFLyQ
GLIHUHQFLDOGH+HUPLWHWDPELpQWLHQHXQDVROXFLyQSROL-
REPASO DEL CAPÍTULO 6
nomial de grado n8WLOLFHODy1(x GDGDHQHOSUREOHPD
SDUDHQFRQWUDUODVVROXFLRQHVSROLQRPLDOHVSDUDn
n \n 'HVSXpVXVHy(x) para encontrar las
soluciones polinomiales para n n \n
b) 8Qpolinomio de Hermite Hn(x VHGH¿QHFRPRXQ
polinomio de grado n-ésimo que es solución de la
ecuación de Hermite multiplicada por una constante
DGHFXDGD GH WDO IRUPD TXH HO FRH¿FLHQWH GH xn en
Hn(x HV n 8WLOLFH ODV VROXFLRQHV SROLQRPLDOHV GHO
inciso a) para demostrar que los primeros seis polinomios de Hermite son
H0(x)
1
H1(x)
2x
H2(x)
4x2
H3(x)
3
53. /DHFXDFLyQGLIHUHQFLDO
(1 x)y xy Įy 0
donde Į HV XQ SDUiPHWUR VH FRQRFH FRPR OD ecuación
de Chebyshev HQ KRQRU DO PDWHPiWLFR UXVR 3DIQXW\
&KHE\VKHY &XDQGRĮ n es un entero no
QHJDWLYR/DHFXDFLyQGLIHUHQFLDOGH&KHE\VKHYVLHPSUH
tiene una solución polinomial de grado n(QFXHQWUHXQD
solución polinomial de quinto grado de esta ecuación diIHUHQFLDO
2
8x
xR xR [Įx n(n @R 0
12x
4
16x
H5 (x)
32x 5
48x2
HQ HO LQWHUYDOR HV R(x) c1 jn(Į[) cyn(Į[
donde jn(Į[) y yn(Į[) son las funciones esféricas de
%HVVHOGHSULPHUD\VHJXQGDFODVHGH¿QLGDVHQ
12
160x3
120x
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-10.
REPASO DEL CAPÍTULO 6
(QORVSUREOHPDV\FRQWHVWHIDOVRRYHUGDGHURVLQFRQVXOWDUGHQXHYRHOWH[WR
1. /D VROXFLyQ JHQHUDO GH x y xy (x 1)y 0 es
y c 1J 1(x) c J1(x
2. 'HELGR D TXH x 0 es un punto singular irregular de
x y xy y OD('QRWLHQHVROXFLyQTXHVHDDQDlítica en x
3. ¢(Q cuál GH ORV VLJXLHQWHV LQWHUYDORV VH JDUDQWL]D TXH
FRQYHUJHQSDUDWRGDxDPEDVVROXFLRQHVHQVHULHGHSRtencias de y ln(x 1)y y 0 centradas en el punto
ordinario x 0?
c) [
b) ( )
7HQLHQGRHQPHQWHTXHc0 y c1VRQFRQVWDQWHVDUELWUDULDV
HVFULEDORVSULPHURVFLQFRWpUPLQRVGHGRVVHULHVGHSRWHQFLDVTXHVRQVROXFLyQGHODHFXDFLyQGLIHUHQFLDO
5. 6XSRQJD TXH VH VDEH TXH OD VHULH GH SRWHQFLDV
4)kFRQYHUJHHQ\GLYHUJHHQ$QDOLFH
k 0 ck(x
VLODVHULHFRQYHUJHHQ\/DVUHVSXHVWDV
SRVLEOHVVRQsinopodría
6. 8VH OD VHULH GH 0DFODXULQ SDUD VHQ x y cos x MXQWR FRQ
OD GLYLVLyQ ODUJD SDUD HQFRQWUDU ORV SULPHURV WUHV WpUPLnos diferentes de cero de una serie de potencias en x para la
sen x
función f (x)
.
cos x
(Q ORV SUREOHPDV \ FRQVWUX\D XQD HFXDFLyQ GLIHUHQFLDO
OLQHDOGHVHJXQGRRUGHQTXHWHQJDODVSURSLHGDGHVGDGDV
d) [@
1 1
2, 2]
263
54. Si nHVXQHQWHURXVHODVXVWLWXFLyQR(x) (Į[)1兾Z(x)
para demostrar que la solución general de la ecuación diferencial
H 4 (x)
a) ( )
l
4. x 0 es un punto ordinario de cierta ecuación diferenFLDOOLQHDO'HVSXpVTXHVHVXVWLWX\HODVROXFLyQVXSXHVWD
n
y
n 0 cn x HQOD('VHREWLHQHHOVLJXLHQWHVLVWHPD
DOJHEUDLFR FXDQGR ORV FRH¿FLHQWHV GH x0 x1 x y x se
igualan a cero:
7. 8QSXQWRVLQJXODUUHJXODUHQx 1 y un punto singular
irregular en x
8. 3XQWRVVLQJXODUHVUHJXODUHVHQx 1 y en x
(Q ORV SUREOHPDV D XVH XQ PpWRGR GH VHULHV LQ¿QLWDV
apropiado respecto a x 0 para encontrar dos soluciones de
ODHFXDFLyQGLIHUHQFLDOGDGD
2c2
2c1
c0
0
6c3
4c2
c1
0
9. xy y y 0
12c4
6c3
c2
1
3 c1
0
11. (x 1)y y 0
12. y x y xy 0
20c5
8c4
c3
2
3 c2
0.
13. xy (x y y 0
14. (cos x)y y 0
10. y xy y 0
264
CAPÍTULO 6
l
SOLUCIONES EN SERIES DE ECUACIONES LINEALES
(QORVSUREOHPDV\UHVXHOYDHOSUREOHPDFRQYDORUHV
LQLFLDOHVGDGR
y
15. y xy y y(0) y(0)
16. (x y y y(0) y(0) 1
17. 6LQUHDOPHQWHUHVROYHUODHFXDFLyQGLIHUHQFLDO VHQ
x)y xy HQFXHQWUHXQOtPLWHLQIHULRUSDUDHOUDGLR
GHFRQYHUJHQFLDGHODVVROXFLRQHVHQVHULHGHSRWHQFLDV
respecto al punto ordinario x
18. $XQTXHx 0 es un punto ordinario de la ecuación difeUHQFLDOH[SOLTXHSRUTXpQRHVXQDEXHQDLGHDWUDWDUGH
HQFRQWUDUXQDVROXFLyQGHO39,
y
xy
y 0, y(1)
6, y (1) 3
n
de la forma y
n 0 cn x . 3RUPHGLRGHVHULHVGHSRWHQFLDVGHWHUPLQHXQDPHMRUIRUPDGHUHVROYHUHOSUREOHPD
(QORVSUREOHPDV\LQYHVWLJXHVLx 0 es un punto ordinaULRVLQJXODURVLQJXODULUUHJXODUGHODHFXDFLyQGLIHUHQFLDOGDGD
[Sugerencia:5HFXHUGHODVHULHGH0DFODXULQSDUDFRVx y ex@
19. xy (1 cos x)y x y 0
20. (e x 1 x)y xy 0
21. 2EVHUYHTXHx 0 es un punto ordinario de la ecuación
diferencial y x y xy 5 x 10x 8VH OD
n
suposición y
n 0 cn x para encontrar la solución general y yc yp que consiste en tres series de potencias
centradas en x
22. /DHFXDFLyQGLIHUHQFLDOGHSULPHURUGHQdy兾dx x y
QRVHSXHGHUHVROYHUHQWpUPLQRVGHIXQFLRQHVHOHPHQWDOHV6LQHPEDUJRXQDVROXFLyQVHSXHGHH[SUHVDUHQWpUPLQRVGHIXQFLRQHVGH%HVVHO
1 du
conduce
a) Demuestre que la sustitución y
u dx
a la ecuación u x u
b) 8VHODHFXDFLyQ GHODVHFFLyQSDUDHQFRQWUDU
la solución general de u xu
c) 8
VHODVHFXDFLRQHV \ GHODVHFFLyQHQODV
formas
J (x)
y
x
J (x)
J
1(x)
J (x)
J
1 (x)
x
como ayuda para demostrar que una familia uniparamétrica de soluciones de dy兾dx x yHVWiGDGDSRU
( )
cJ1/4( 12 x2)
J3 /4 12 x2
cJ
J
( ).
( )
1 2
3 /4 2 x
1 2
1/4 2 x
23. a) 8
VHODHFXDFLyQ GHODVHFFLyQ\HOSUREOHPD
GHODVHFFLyQSDUDGHPRVWUDUTXH
冪
Y3/ 2 (x)
2 cos x
x
x
sen x
b) 8
VHODHFXDFLyQ GHODVHFFLyQSDUDGHPRVWUDU
que
I1/ 2 (x)
2
senhx
B x
y
I
1/ 2 (x)
2
cosh x.
B x
c) 8VHODHFXDFLyQ GHODVHFFLyQ\HOLQFLVRE
para demostrar que
B2x
K1/ 2 (x)
e x.
24. a) '
HODVHFXDFLRQHV \ GHODVHFFLyQVHVDEH
que cuando n ODHFXDFLyQGLIHUHQFLDOGH/HJHQGUH
(1 x)y xy 0 tiene la solución polinomial
y P0(x) 8VHODHFXDFLyQ GHODVHFFLyQ
SDUDGHPRVWUDUTXHXQDVHJXQGDIXQFLyQGH/HJHQGUH
TXHVDWLVIDFHOD('HQHOLQWHUYDOR 1 x 1 es
1
1 x
ln
.
2
1 x
b) 7DPELpQVDEHPRVGHODVHFXDFLRQHV \ GHOD
VHFFLyQTXHFXDQGRn 1 la ecuación diferencial
GH /HJHQGUH x)y xy y 0 tiene la
solución polinomial y P1(x) x8VHODHFXDFLyQ
GHODVHFFLyQSDUDGHPRVWUDUTXHXQDVHJXQGD
IXQFLyQGH/HJHQGUHTXHVDWLVIDFHOD('HQHOLQWHUYDOR1 x 1 es
y
y
x
1
ln
2
1
x
x
1.
c) 8
VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODVIXQFLRQHV
GH/HJHQGUHORJDUtWPLFDVGDGDVHQORVLQFLVRVD \E
25. a) 8VHVHULHVELQRPLDOHVSDUDPRVWUDUIRUPDOPHQWHTXH
(1
J (x)
x
2xt
t2 )
1/ 2
Pn (x)t n.
n 0
b) 8
VHHOUHVXOWDGRREWHQLGRHQHOLQFLVRD SDUDGHPRVtrar que Pn(1) 1 y Pn(1) (1)n 9pDQVH ODV
propiedades ii) y iii GHORVSROLQRPLRVGH/HJHQGUH
7
LA TRANSFORMADA DE LAPLACE
7.1 'H¿QLFLyQGHODWUDQVIRUPDGDGH/DSODFH
7.2 Transformadas inversas y transformadas de derivadas
7.2.1 Transformadas inversas
7.2.2 Transformadas de derivadas
7.3 Propiedades operacionales I
7.3.1 Traslación en el eje s
7.3.2 Traslación en el eje t
7.4 Propiedades operacionales II
7.4.1 Derivadas de una transformada
7.4.2 Transformadas de integrales
7.4.3 Transformada de una función periódica
7.5 La función delta de Dirac
7.6 Sistemas de ecuaciones diferenciales lineales
REPASO DEL CAPÍTULO 7
En los modelos matemáticos lineales para sistemas físicos tales como un sistema
resorte/masa o un circuito eléctrico en serie, el miembro del lado derecho o entrada,
de las ecuaciones diferenciales
m
d 2x
dt 2
b
dx
dt
kx
f(t)
o
L
d 2q
dt 2
R
dq
dt
1
q
C
E(t)
es una función de conducción y representa ya sea una fuerza externa f (t) o un voltaje
aplicado E(t). En la sección 5.1 consideramos problemas en los que las funciones
f y E eran continuas. Sin embargo, las funciones de conducción discontinuas son
comunes. Por ejemplo, el voltaje aplicado a un circuito podría ser continuo en tramos
y periódico tal como la función “diente de sierra” que se muestra arriba. En este
caso, resolver la ecuación diferencial del circuito es difícil usando las técnicas del
capítulo 4. La transformada de Laplace que se estudia en este capítulo es una valiosa
KHUUDPLHQWDTXHVLPSOL¿FDODVROXFLyQGHSUREOHPDVFRPRpVWH
265
265
266
l
CAPÍTULO 7
7.1
LA TRANSFORMADA DE LAPLACE
DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE
REPASO DE MATERIAL
l ,QWHJUDOHVLPSURSLDVFRQOtPLWHVGHLQWHJUDFLyQLQ¿QLWRV
l Integración por partes y descomposición en fracciones parciales.
INTRODUCCIÓN En cálculo elemental aprendió que la derivación y la integración son transformadas;HVWRVLJQL¿FDDJUDQGHVUDVJRVTXHHVWDVRSHUDFLRQHVWUDQVIRUPDQXQDIXQFLyQHQRWUD
Por ejemplo, la función f(x) x2 se transforma, a su vez, en una función lineal y en una familia de
funciones polinomiales cúbicas con las operaciones de derivación e integración:
d 2
1 3
x
2x
y
x2 dx
x
c.
dx
3
Además, estas dos transformadas tienen la propiedad de linealidad tal que la transformada de una
combinación lineal de funciones es una combinación lineal de las transformadas. Para Į y ȕ constantes
d
[ f (x)
g(x)]
f (x)
g (x)
dx
y
[ f (x)
g(x)] dx
f (x) dx
g(x) dx
siempre que cada derivada e integral exista. En esta sección se examina un tipo especial de transformada integral llamada transformada de Laplace. Además de tener la propiedad de linealidad,
la transformada de Laplace tiene muchas otras propiedades interesantes que la hacen muy útil para
resolver problemas lineales con valores iniciales.
TRANSFORMADA INTEGRAL Si f(x, y) es una función de dos variables, entonces
XQDLQWHJUDOGH¿QLGDGHf respecto a una de las variables conduce a una función de la otra
variable. Por ejemplo, si se conserva y constante, se ve que 21 2xy2 dx 3y2 . De igual
PRGRXQDLQWHJUDOGH¿QLGDFRPR ba K(s, t) f (t) dt transforma una función f de la variable
t en una función F de la variable s. Tenemos en particular interés en una transformada
integral, donde el intervalo de integración es el intervalo no acotado [0, ). Si f (t VHGH¿QH
para t 0, entonces la integral impropia 0 K(s, t) f (t) dtVHGH¿QHFRPRXQOtPLWH
b
K(s, t) f (t) dt
0
Supondremos que s es una
variable real
(1)
K(s, t) f (t) dt.
lím
b:
0
Si existe el límite en (1), entonces se dice que la integral existe o es convergente; si no
existe el límite, la integral no existe y es divergente. En general, el límite en (1) existirá
sólo para ciertos valores de la variable s.
UNA DEFINICIÓN La función K(s, t) en (1) se llama kernel o núcleo de la transformada. La elección de K(s, t) est como el núcleo nos proporciona una transformada
integral especialmente importante. La transformada de Laplace se llama así en honor
del matemático y astrónomo francés Pierre Simon Marquis de Laplace (1749-1827).
DEFINICIÓN 7.1.1
Transformada de Laplace
Sea fXQDIXQFLyQGH¿QLGDSDUDt 0. Entonces se dice que la integral
{ f (t)}
e
st
f (t) dt
(2)
0
es la transformada de Laplace de f, siempre que la integral converja.
&XDQGRODLQWHJUDOGHODGH¿QLFLyQ FRQYHUJHHOUHVXOWDGRHVXQDIXQFLyQGHs. En
el análisis general se usa una letra minúscula para denotar la función que se transforma y
la letra mayúscula correspondiente para denotar su transformada de Laplace, por ejemplo,
{f (t)} F(s),
{g(t)} G(s),
{y(t)} Y(s).
7.1
DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE
l
267
Como muestran los siguientes cuatro ejemplos, el dominio de la función F(s)
depende de la función f (t).
EJEMPLO 1
Evalúe
$SOLFDQGRODGH¿QLFLyQ
{1}.
De (2),
SOLUCIÓN
b
{1}
st
(1) dt
e
lím
e
b:
0
st
dt
0
e sb 1
1
e st b
lím
0
b:
b:
s
s
s
siempre que s 0. En otras palabras, cuando s 0, el exponente sb es negativo y
esb → 0 conforme b → . La integral diverge para s 0.
lím
El uso del signo de límite se vuelve un poco tedioso, por lo que se adopta la notación
b
0 como abreviatura para escribir lím b : ( ) 0 . Por ejemplo,
e st
1
,
s 0.
s 0
s
0
(QHOOtPLWHVXSHULRUVHVREUHHQWLHQGHORTXHVLJQL¿FDest → 0 conforme t →
{1}
EJEMPLO 2
Evalúe
e
st
(1) dt
para s
0.
$SOLFDQGRODGH¿QLFLyQ
{t}.
SOLUCIÓN 'HODGH¿QLFLyQVHWLHQH
y usando lím te
st
t:
EJEMPLO 3
Evalúe a)
{e
0, s
te
s
{t}
st
{t}
t dt . Al integrar por partes
0 e
0, junto con el resultado del ejemplo 1, se obtiene
st
0
1
s
e
st
dt
0
1
s
1 1
s s
{1}
1
.
s2
$SOLFDQGRODGH¿QLFLyQ
}.
3t
b)
{e5t}
SOLUCIÓN 'HODGH¿QLFLyQVHWLHQH
a)
{e
3t
}
e
0
st
e
3t
dt
(s
e
3)t
dt
0
e
s
(s
3)t
3
0
1
, s
3.
s 3
El resultado se deduce del hecho de que lím t → e(s3)t 0 para s 3
s 3.
{e5t}
e 5t e st dt
e (s 5)t dt
0
0
b)
e (s 5)t
s 5 0
1
s 5
A diferencia del inciso a), este resultado es válido para s
requiere que s – 5 > 0 o s > 5.
0 o
5 ya que lím t → e(s5)t 0
268
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
EJEMPLO 4 $SOLFDQGRODGH¿QLFLyQ
Evalúe
{sen 2t}.
SOLUCIÓN 'HODGH¿QLFLyQHLQWHJUDQGRSRUSDUWHVVHWLHQHTXH
{sen 2t}
0
2
–s
lím e
st
t:
st
e
cos 2t
st
e
0
e st sen 2t
––––––––––––
s
sen 2t dt
0, s
cos 2t dt,
st
e
0
cos 2t dt
0
s
0
Transformada de Laplace de sen 2t
[
2 e st cos 2t
–s ––––––––––––
s
2
––2
s
2
–s
0
2
–s
0
e
0
st
sen 2t dt
]
4
––2 {sen 2t}.
s
En este punto se tiene una ecuación con
se despeja esa cantidad el resultado es
{sen 2t}
{sen 2t} en ambos lados de la igualdad. Si
2
2
,
s
4
s
0.
ᏸ ES UNA TRANSFORMACIÓN LINEAL Para una combinación lineal de funciones podemos escribir
st
e
[ f (t)
g(t)] dt
e
0
st
f (t) dt
{ f (t)}
g(t)}
g(t) dt
0
siempre que ambas integrales converjan para s
{ f (t)
st
e
0
c. Por lo que se tiene que
{g(t)}
G(s) .
F(s)
(3)
Como resultado de la propiedad dada en (3), se dice que ᏸ es una WUDQVIRUPDFLyQOLQHDO.
EJEMPLO 5 Linealidad de la transformada de Laplace
En este ejemplo usamos los resultados de los ejemplos anteriores para ilustrar la linealidad de la transformada de Laplace.
a) De los ejemplos 1 y 2 tenemos para s 0
{1
5t}
{1}
b) De los ejemplos 3 y 4 tenemos para s
{4e5t
10 sen 2t}
4
{e5t}
c) De los ejemplos 1, 2 y 3 tenemos para s
{20e
3t
7t
9}
5 {t}
1
s
5
,
s2
5.
10
{sen2t}
4
20
5
s
2
s
.
4
0,
20 {e 3t}
20
7
s 3 s2
7 {t}
9
s
9
{1}
Se establece la generalización de algunos ejemplos anteriores por medio del siguiente
teorema. A partir de este momento se deja de expresar cualquier restricción en s ; se
sobreentiende que sHVWiORVX¿FLHQWHPHQWHUHVWULQJLGDSDUDJDUDQWL]DUODFRQYHUJHQFLD
de la adecuada transformada de Laplace.
7.1
DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE
l
269
TEOREMA 7.1.1 Transformada de algunas funciones básicas
1
{1}
a)
s
n!
b)
{t n}
d)
{sen kt}
f)
{senh kt}
s
,
1, 2, 3, . . .
n
n 1
k
2
2
s
k
k
s2
k2
1
c)
{eat}
e)
{cos kt}
g)
{cosh kt}
s
a
s
s
2
k2
s
s
2
k2
(VWHUHVXOWDGRHQE GHOWHRUHPDVHSXHGHMXVWL¿FDUIRUPDOPHQWHSDUDn un entero
positivo usando integración por partes para demostrar primero que
{t n}
n
s
{t n 1}
Entonces para n = 0, 1 y 3, tenemos, respectivamente,
f(t)
a
t2
t1
t3 b
t
FIGURA 7.1.1 Función continua por
tramos.
{t}
1
s
{1}
1 1
s s
1
s2
{t2}
2
s
{t}
2 1
s s2
2 1
s3
{t3}
3
s
{t2}
3 2 1
s
s3
3 2 1
s4
6LVLJXHFRQODVHFXHQFLDDO¿QDOGHEHUiHVWDUFRQYHQFLGRGHTXH
{t n}
n...3 2 1
sn 1
n!
s
n
1
CONDICIONES SUFICIENTES PARA LA EXISTENCIA DE ᏸ{f (t)} La integral
TXHGH¿QHODWUDQVIRUPDGDGH/DSODFHQRWLHQHTXHFRQYHUJHU3RUHMHPSORQRH[LVWH
2
{1>t} ni {et }/DVFRQGLFLRQHVVX¿FLHQWHVTXHJDUDQWL]DQODH[LVWHQFLDGH {f (t)}
son que f sea continua por tramos en [0, ) y que f sea de orden exponencial para t
T. Recuerde que la función es continua por tramos en [0, ) si, en cualquier intervalo
0 a t bKD\XQQ~PHUR¿QLWRGHSXQWRVtk, k 1, 2, . . . , n (tkl tk) en los que
fWLHQHGLVFRQWLQXLGDGHV¿QLWDV\HVFRQWLQXDHQFDGDLQWHUYDORDELHUWR tkl, tk). Vea la
¿JXUD(OFRQFHSWRGHorden exponencialVHGH¿QHGHODVLJXLHQWHPDQHUD
Me ct (c > 0)
f(t)
FIGURA 7.1.2 f es de orden
exponencial c.
Orden exponencial
Se dice que f es de orden exponencial c si existen constantes c, M
0 tales que 兩 f (t) 兩 Mect para toda t T.
f (t)
T
DEFINICIÓN 7.1.2
t
0yT
Si f es una función creciente, entonces la condición 兩 f (t)兩 Mect, t
T, simSOHPHQWHHVWDEOHFHTXHODJUi¿FDGHf en el intervalo (T, ) no crece más rápido que
ODJUi¿FDGHODIXQFLyQH[SRQHQFLDOMect, donde c es una constante positiva. Vea la
¿JXUD/DVIXQFLRQHVf (t) t, f (t) et y f (t) 2 cos t son de orden exponencial
porque para c 1, M 1, T 1 se tiene, respectivamente, para t 0
t
et,
e
t
et,
y
2 cos t
2et.
270
CAPÍTULO 7
l
LA TRANSFORMADA DE LAPLACE
f (t)
f (t)
f (t)
et
et
2et
t
2 cos t
e −t
t
t
a)
t
b)
c)
FIGURA 7.1.3 Tres funciones de orden exponencial
8QDFRPSDUDFLyQGHODVJUi¿FDVHQHOLQWHUYDOR VHPXHVWUDHQOD¿JXUD
Un exponente entero positivo de t siempre es de orden exponencial puesto que,
para c 0,
tn
tn
Mect
o
M para t T
ect
f(t) e t 2
es equivalente a demostrar que el lím t : t n> ect HV ¿QLWR SDUD n 1, 2, 3, . . . El
resultado se deduce con n aplicaciones de la regla de L'Hôpital. Una función como
2
f (t) et QRHVGHRUGHQH[SRQHQFLDOSXHVWRTXHFRPRVHPXHVWUDHQOD¿JXUD
VXJUi¿FDFUHFHPiVUiSLGRTXHFXDOTXLHUSRWHQFLDOLQHDOSRVLWLYDGHe para t c 0.
Esto también se puede ver, mientras t → , en la forma
e ct
2
c
FIGURA 7.1.4
exponencial.
et
ect
t
2
et
ct
et(t
c)
o
et2 no es de orden
TEOREMA 7.1.2
&RQGLFLRQHVVX¿FLHQWHVSDUDODH[LVWHQFLD
Si f es una función continua por tramos en [0,
entonces { f (t)} existe para s c.
DEMOSTRACIÓN
demos escribir
) y de orden exponencial,
3RUODSURSLHGDGDGLWLYDGHOLQWHUYDORGHLQWHJUDOHVGH¿QLGDVSRT
{ f (t)}
e
st
f (t) dt
0
e
st
f(t) dt
I1
I2.
T
La integral I1 existe ya que se puede escribir como la suma de integrales en los intervalos en los que es t f (t) es continua. Ahora puesto que f es de orden exponencial, existen
constantes c, M 0, T 0 tales que 兩 f (t)兩 Mect para t T. Entonces podemos escribir
I2
e
st
f (t) dt
M
e
st ct
e dt
T
T
M
e
T
(s c)t
dt
M
e (s c)T
s c
para s c. Puesto que T Me (s c)t dt converge, la integral T e st f (t) dt converge
SRUODSUXHEDGHFRPSDUDFLyQSDUDLQWHJUDOHVLPSURSLDV(VWRDVXYH]VLJQL¿FDTXHI2
st
existe para s c. La existencia de I1 e I2 implica que existe {f (t)}
f (t) dt
0 e
para s c.
EJEMPLO 6
7UDQVIRUPDGDGHXQDIXQFLyQFRQWLQXDSRUWUDPRV
Evalúe ᏸ{f (t)} donde f (t)
0, 0
2, t
t
3.
3
7.1
DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE
271
l
SOLUCIÓN /DIXQFLyQTXHVHPXHVWUDHQOD¿JXUDHVFRQWLQXDSRUWUDPRV\GH
orden exponencial para t 0. Puesto que fVHGH¿QHHQGRVWUDPRVᏸ{f (t)} se expresa
como la suma de dos integrales:
3
{ f (t)}
e
st
f (t) dt
st
e
(0) dt
e
0
0
0
st
(2) dt
3
2e
st
s
y
3
3s
2e
,
s
2
3
t
FIGURA 7.1.5 Función continua por
tramos.
0.
s
Concluye esta sección con un poco más de teoría relacionada con los tipos de funciones de s con las que en general se estará trabajando. El siguiente teorema indica que
no toda función arbitraria de s es una transformada de Laplace de una función continua
por tramos de orden exponencial.
TEOREMA 7.1.3 Comportamiento de F(s) conforme s →
Si f es continua por partes en (0, ) y de orden exponencial y F(s) ᏸ{ f (t)},
entonces el lím F(s) 0.
s→
Puesto que f es de orden exponencial, existen constantes Ȗ, M1
0 y T 0 tales que 兩 f (t)兩 M1eȖ t para t T. También, puesto que f es continua por
tramos en el intervalo 0 t T, está necesariamente acotada en el intervalo; es decir,
兩 f (t)兩 M2 M2e0t Si M denota el máximo del conjunto {M1, M2} y c denota el máximo de {0, Ȗ}, entonces
DEMOSTRACIÓN
F(s)
e
st
0
para s
f (t) dt
e stect dt
M
0
M
e
0
(s c)t
dt
M
s
c
c. Conforme s → , se tiene 兩F(s)兩 → 0 y por tanto F(s) ᏸ{ f (t)} → 0.
COMENTARIOS
i) En este capítulo nos dedicaremos principalmente a funciones que son continuas
por tramos y de orden exponencial. Sin embargo, se observa que estas dos condiFLRQHVVRQVX¿FLHQWHVSHURQRQHFHVDULDVSDUDODH[LVWHQFLDGHODWUDQVIRUPDGDGH
Laplace. La función f (t) t1/2 no es continua por tramos en el intervalo [0, ), pero
existe su transformada de Laplace. La función f (t) 2te t 2 cos e t 2 no es de orden exponencial pero se puede demostrar que su transformada de Laplace existe. Vea los
problemas 43 y 54 en los ejercicios 7.1.
ii) Como consecuencia del teorema 7.1.3 se puede decir que las funciones de
s como F1(s) 1 y F2(s) s 兾 (s 1) no son las transformadas de Laplace
/ 0
de funciones continuas por tramos de orden exponencial, puesto que F1(s) :
/ 0 conforme s → . Pero no se debe concluir de esto que F1(s) y F2(s)
y F2 (s) :
no son transformadas de Laplace. Hay otras clases de funciones.
272
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
EJERCICIOS 7.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-11.
(QORVSUREOHPDVODXVHODGH¿QLFLyQSDUDHQFRQWUDU
ᏸ{ f (t)}.
1, 0 t 1
f (t)
1,
t 1
f (t)
4,
0,
0
f (t)
t,
1,
0
f (t)
2t 1, 0 t
0,
t
sen t, 0 t
0,
t
f (t)
f (t)
0,
cos t,
t
t
2
2
t
t
1
1
0
1
1
f(t)
f (t) t 5
f (t) 4t 10
f (t) 7t 3
f (t) t 6t 3
f (t) 4t 2 16t 9
f (t) (t 1)3
f (t) (2t 1)3
f (t) 1 e 4t
f (t) t 2 e9t 5
f (t) (1 e 2t)2
f (t) (e t et)2
f (t) 4t 2 5 sen 3t
f (t) cos 5t sen 2t
f (t) senh kt
f (t) cosh kt
f (t) e t senh t
f (t) et cosh t
2
En los problemas 37 a 40 encuentre ᏸ{ f (t)} usando primero
una identidad trigonométrica.
>2
2
t
t
f (t) 2t 4
(2, 2)
1
t
1
f (t) sen 2t cos 2t
f (t) cos 2t
f (t) sen(4t 5)
f (t)
6
Hemos encontrado a la IXQFLyQ JDPPD $(Į) en nuestro
estudio de las funciones de Bessel en la sección 6.4. Una
GH¿QLFLyQGHHVWDIXQFLyQHVWiGDGDSRUODLQWHJUDOLPSURSLD
FIGURA 7.1.6 *Ui¿FDSDUDHOSUREOHPD
f(t)
1
t
0
e t dt,
0.
8VHHVWDGH¿QLFLyQSDUDGHPRVWUDUTXH$(Į 1) Į$(Į).
Utilice el problema 41 y un cambio de variable para obtener la generalización
1
t
1
FIGURA 7.1.7 *Ui¿FDSDUDHOSUREOHPD
( )
(2, 2)
10 cos t
f(t)
(
1)
,
s 1
del resultado en el teorema 7.1.1(b)
{t }
1
En los problemas 43 a 46 utilice los problemas 41 y 42 y el
1
hecho que
t
1
( 12 )
1
para encontrar la transformada de
Laplace de la función dada
FIGURA 7.1.8 *Ui¿FDSDUDHOSUREOHPD
4 f (t) t1/2
f (t) t 1/2
f(t)
f (t) t 3/2.
f (t) 2t1/2 8 t 5/2
Problemas para analizar
c
a
b
t
FIGURA 7.1.9 *Ui¿FDSDUDHOSUREOHPD
f (t) e t7
f (t) e2t5
f (t) te 4t
f (t) t 2e2t
f (t) et sen t
f (t) e t cos t
f (t) t cos t
f (t) t sen t
En los problemas 19 a 36 use el teorema 7.1.1 para encontrar
ᏸ{ f (t)}.
Construya una función F(t) que sea de orden exponencial pero donde f(t) F(t) no sea de orden exponencial.
Construya una función f que no sea de orden exponencial, pero cuya transformada de Laplace exista.
{f1(t)}
Suponga que
{f2(t)} F2(s) para s
{f1(t)
F1(s) para s
c2. ¿Cuándo
f2(t)}
F1(s)
c1 y que
F2(s)?
/D ¿JXUD LQGLFD SHUR QR GHPXHVWUD TXH OD IXQFLyQ
2
f (t)
et no es de orden exponencial. ¿Cómo demuestra
la observación de que t2 ln M ct, para M 0 y tVX¿2
cientemente grande, que et
Mect para cualquier c?
7.2
TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS
l
273
Utilice el inciso c) del teorema 7.1.1 para demostrar que
s a ib
ᏸ{e (aib)t}
, donde a y b son reales
(s a)2 b2
e i2 1. Demuestre cómo se puede usar la fórmula de
Euler para deducir los resultados
s a
{eat cos bt}
(s a)2 b2
Demuestre que la transformada de Laplace
2
2
{2te t cose t } existe. [Sugerencia: Comience integrando por partes.]
b
.
(s a)2 b2
¿Bajo qué condiciones es una función lineal f(x) mx
b, m 0, una transformada lineal?
Explique por qué la función
Este resultado se conoce como el teorema de cambio
de escala.
Si ᏸ{f(t)} F(s) y a
{f(at)}
{eat sen bt}
t,
4,
1兾(t
f(t)
0
2
5), t
2
5
t
t
5
1
0
7.2
e st
dt
t2
1
e st
dt
t2
I1
1
s
F
a a
Utilice la transformada de Laplace dada y el resultado
del problema 55 para encontrar la transformada de
Laplace indicada. Suponga que a y k son constantes positivas.
No es una función en partes continua en [0, ).
Demuestre que la función f(t) 1兾t2 no tiene una transformada de Laplace [Sugerencia: escriba ᏸ{1兾t 2)}
como dos integrales impropias, como la ecuación siguiente; demuestre que I1 diverge.]
{1兾t 2}
0 es una constante, demuestre que
I2
1
a)
{et}
b)
{sen t}
c)
{1
d)
{sen t senh t}
s
{eat}
;
1
1
s2
cos t}
;
1
{sen kt}
1
;
s(s2 1)
2s
;
s4 4
{1
cos kt}
{sen kt senh kt}
TRANSFORMADAS INVERSAS Y TRANSFORMADAS
DE DERIVADAS
REPASO DE MATERIAL
l Descomposición en fracciones parciales
INTRODUCCIÓN En esta sección se dan algunos pasos hacia un estudio de cómo se puede usar
la transformada de Laplace para resolver ciertos tipos de ecuaciones para una función desconocida.
Se empieza el análisis con el concepto de transformada de Laplace inversa o, más exactamente, la
inversa de una transformada de Laplace F(s). Después de algunos antecedentes preliminares importantes sobre la transformada de Laplace de derivadas f (t), f (t), . . . , se ilustra cómo entran en
juego la transformada de Laplace y la transformada de Laplace inversa para resolver ciertas ecuaciones diferenciales ordinarias sencillas.
Transformada
{1}
1
s
{t}
1
s2
{e
1
1
1
t
1
3t
}
Transformada inversa
s
3
e
3t
1
s
1
s2
1
1
s
3
7.2.1
TRANSFORMADAS INVERSAS
EL PROBLEMA INVERSO Si F(s) representa la transformada de Laplace de una función f (t), es decir, {f (t)} F(s)
se dice entonces que f (t) es la transformada de Laplace in1
versa de F(s) y se escribe f (t)
{F(s)}. En el caso de
los ejemplos 1, 2 y 3 de la sección 7.1 tenemos las tablas a la
izquierda, respectivamente.
274
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
Pronto veremos que en la aplicación de la transformada de Laplace a ecuaciones
no se puede determinar de manera directa una función desconocida f (t); más bien,
se puede despejar la transformada de Laplace F(s) o f (t); pero a partir de ese co1
{F(s)} . La idea es simplemente
nocimiento, se determina f calculando f (t)
2s 6
es una transformada de Laplace; encuentre una
esta: suponga que F(s)
s2 4
función f (t) tal que {f (t)} F (s). En el ejemplo 2 se muestra cómo resolver este
último problema.
Para futuras referencias el análogo del teorema 7.1.1 para la transformada inversa
se presenta como nuestro siguiente teorema.
TEOREMA 7.2.1 Algunas transformadas inversas
1
a) 1
n!
,
sn 1
1
b) tn
s2
k
1
f) senh kt
s2
s
a
s2
k2
s
1
g) cosh kt
k2
s
1
e) cos kt
k2
1
1
c) eat
1, 2, 3, . . .
n
k
1
d) sen kt
1
s
s2
k2
Al evaluar las transformadas inversas, suele suceder que una función de s que
estamos considerando no concuerda exactamente con la forma de una transformada
de Laplace F(s) que se presenta en la tabla. Es posible que sea necesario “arreglar” la
función de s multiplicando y dividiendo entre una constante apropiada.
EJEMPLO 1
Evalúe
$SOLFDQGRHOWHRUHPD
1
a)
1
s5
1
1
b)
2
.
7
s
SOLUCIÓN a) Para hacer coincidir la forma dada en el inciso b) del teorema 7.2.1,
VHLGHQWL¿FDn 1 5 o n 4 y luego se multiplica y divide entre 4!:
1
1
s5
1
4!
s5
1
4!
1 4
t.
24
b) 3DUDTXHFRLQFLGDFRQODIRUPDGDGDHQHOLQFLVRG GHOWHRUHPDLGHQWL¿FDPRVk2
17 . Se arregla la expresión multiplicando y dividiendo entre 17 :
7 y, por tanto, k
1
1
2
s
17
1
7
17
1
2
7
s
1
sen17t.
17
ᏸ ⴚ1 ES UNA TRANSFORMADA LINEAL La transformada de Laplace inversa es
también una transformada lineal para las constantes Į y ȕ
1
{ F(s)
G(s)}
1
{F(s)}
1
{G(s)},
(1)
donde F y G son las transformadas de algunas funciones f y g. Como en la ecuación
GHODVHFFLyQODHFXDFLyQVHH[WLHQGHDFXDOTXLHUFRPELQDFLyQOLQHDO¿QLWDGH
transformadas de Laplace.
7.2
TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS
275
l
EJEMPLO 2 'LYLVLyQWpUPLQRDWpUPLQR\OLQHDOLGDG
2s 6
.
s2 4
SOLUCIÓN Primero se reescribe la función dada de s como dos expresiones dividiendo cada uno de los términos del numerador entre el denominador y después se usa
la ecuación (1):
Evalúe
1
linealidad y arreglo de
las constantes
división de cada uno de los términos
entre el denominador
{
}
{
}
{
}
{
2s 6
6
s
6
2
2s
–––––––
ᏸ1 –––––––––
ᏸ1 –––––––
2 ᏸ1 –––––––
– ᏸ1 –––––––
2
2
2
2
2
s 4
s 4
s 4
s 4
2
s 4
2 cos 2t 3 sen 2t.
}
(2)
incisos e) y d) del
teorema 7.2.1 con k 2
FRACCIONES PARCIALES Las fracciones parciales juegan un papel importante en la
determinación de transformadas de Laplace inversas. La descomposición de una expresión
racional en las fracciones componentes se puede hacer rápidamente usando una sola instrucción en la mayoría de los sistemas algebraicos de computadora. De hecho, algunos SAC
tienen paquetes implementados de transformada de Laplace y transformada de Laplace
inversa. Pero para quienes no cuentan con este tipo de software, en esta sección y en las
subsecuentes revisaremos un poco de álgebra básica en los casos importantes donde el denominador de una transformada de Laplace F(s) contiene factores lineales distintos, factores
lineales repetidos y polinomios cuadráticos sin factores reales. Aunque examinaremos cada
uno de estos casos conforme se desarrolla este capítulo, podría ser buena idea que consultara un libro de cálculo o uno de precálculo para una revisión más completa de esta teoría.
En el siguiente ejemplo se muestra la descomposición en fracciones parciales en el
caso en que el denominador de F(s) se puede descomponer en diferentes factores lineales.
EJEMPLO 3 Fracciones parciales: diferentes factores lineales
Evalúe
s2 6s 9
1)(s 2)(s
1
(s
4)
.
SOLUCIÓN Existen constantes reales A, B y C, por lo que
(s
s 2 6s 9
1)(s 2)(s
A
4)
B
1
s
s
2
4
s
B(s 1)(s 4) C(s 1)(s
(s 1)(s 2)(s 4)
Puesto que los denominadores son idénticos, los numeradores son idénticos:
A(s
s2
6s
9
2)(s
C
2)(s
A(s
4)
4)
B(s
1)(s
4)
C(s
1)(s
2).
2)
.
(3)
&RPSDUDQGRORVFRH¿FLHQWHVGHODVSRWHQFLDVGHs en ambos lados de la igualdad, sabemos que (3) es equivalente a un sistema de tres ecuaciones con tres incógnitas A, B y C.
Sin embargo, hay un atajo para determinar estas incógnitas. Si se hace s 1, s 2 y s
4 en (3) se obtiene, respectivamente,
16
y así, A
ciales es
A( 1)(5),
16
,
5
(s
B
25
,
6
yC
s2 6s 9
1)(s 2)(s
25
1
30
B(1)(6)
y
1
C( 5)( 6),
. Por lo que la descomposición en fracciones par-
4)
16 > 5
s 1
25> 6
s 2
1 > 30
,
s 4
(4)
276
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
y, por tanto, de la linealidad de ᏸ 1 y del inciso c) del teorema 7.2.1,
1
(s
s2 6s 9
1)(s 2)(s
16
5
4)
25
6
1
s
16 t
e
5
7.2.2
1
1
25 2t
e
6
1
e
30
1
1
4t
1
30
2
s
.
1
1
4
s
(5)
TRANSFORMADAS DE DERIVADAS
TRANSFORMADA DE UNA DERIVADA Como se indicó en la introducción de este
capítulo, el objetivo inmediato es usar la transformada de Laplace para resolver ecuaciones
GLIHUHQFLDOHV3DUDWDO¿QHVQHFHVDULRHYDOXDUFDQWLGDGHVFRPR {dy>dt} y {d 2 y> dt 2}.
Por ejemplo, si f es continua para t 0, entonces integrando por partes se obtiene
{ f (t)}
st
e
f (t) dt
st
e
f (t)
f (0)
o
{ f (t)}
s
0
0
e
st
f (t) dt
0
s { f (t)}
(6)
f (0).
sF(s)
Aquí hemos supuesto que estf (t) → 0 conforme t → . De manera similar, con la
ayuda de la ecuación (6),
{ f (t)}
e
st
f (t) dt
e
st
f (t)
0
f (0)
s 2F(s)
{ f (t)}
s
e
st
f (t) dt
0
s { f (t)}
f (0)]
s[sF(s)
o
0
sf (0)
f (0)
; de (6)
(7)
f (0).
De igual manera se puede demostrar que
(8)
La naturaleza recursiva de la transformada de Laplace de las derivadas de una función
f es evidente de los resultados en (6), (7) y (8). El siguiente teorema da la transformada
de Laplace de la n-ésima derivada de f. Se omite la demostración.
{ f (t)}
s3F(s)
s2 f (0)
sf (0)
f (0).
TEOREMA 7.2.2 Transformada de una derivada
Si f, f , . . . , f (n1) son continuas en [0, ) y son de orden exponencial y si f (n)
(t) es continua por tramos en [0, ), entonces
{ f (n) (t)} sn F(s) sn 1 f(0) sn 2 f (0)
f (n 1) (0),
donde F(s)
{ f (t)}.
SOLUCIÓN DE EDO LINEALES Es evidente del resultado general dado en el teo{y(t)} y las n 1 derivadas de y(t)
rema 7.2.2 que {d n y> dt n} depende de Y(s)
evaluadas en t 0. Esta propiedad hace que la transformada de Laplace sea adecuada
para resolver problemas lineales con valores iniciales en los que la ecuación diferencial tiene FRH¿FLHQWHVFRQVWDQWHV. Este tipo de ecuación diferencial es simplemente una
combinación lineal de términos y, y, y, . . . , y (n):
an
d ny
dt n
y(0)
an
1
y0 , y (0)
d n 1y
dt n 1
y1 , . . . , y(n
a0 y
1)
(0)
g(t),
yn 1,
7.2
TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS
l
277
donde las ai, i 0, 1, . . . , n y y0, y1, . . . , yn1 son constantes. Por la propiedad de linealidad la transformada de Laplace de esta combinación lineal es una combinación
lineal de transformadas de Laplace:
d ny
dt n
an
an
d n 1y
dt n 1
1
a0
{y}
{g(t)}.
(9)
Del teorema 7.2.2, la ecuación (9) se convierte en
an [snY(s)
sn
an 1[s
n 1
1
y(n
y(0)
Y(s)
s
n 2
1)
(0)]
y(n
y(0)
2)
(0)]
a0 Y(s)
G(s),
(10)
donde {y(t)} Y(s) y {g(t)} G(s). En otras palabras, la transformada de
/DSODFHGHXQDHFXDFLyQGLIHUHQFLDOOLQHDOFRQFRH¿FLHQWHVFRQVWDQWHVVHFRQYLHUWHHQ
una ecuación algebraica en Y(s). Si se resuelve la ecuación transformada general (10)
para el símbolo Y(s), primero se obtiene P(s)Y(s) Q(s) G(s) y después se escribe
Y(s)
Q(s)
P(s)
G(s)
,
P(s)
(11)
donde P(s) ansn an1sn1 . . . a0, Q(s) es un polinomio en s de grado menor o
igual a n TXHFRQVLVWHHQYDULRVSURGXFWRVGHORVFRH¿FLHQWHVai, i 1, . . . , n y las
condiciones iniciales prescritas y0, y1, . . . , yn1 y G(s) es la transformada de Laplace de
g(t).* Normalmente se escriben los dos términos de la ecuación (11) sobre el mínimo
común denominador y después se descompone la expresión en dos o más fracciones
parciales. Por último, la solución y(t) del problema con valores iniciales original es y(t)
ᏸ 1{Y(s)}, donde la transformada inversa se hace término a término.
El procedimiento se resume en el siguiente diagrama.
Encuentre la y(t)
desconocida que
satisface la ED y las
condiciones iniciales
Aplique la transformada
de Laplace
Solución y(t)
del PVI original
La ED transformada
se convierte en una
ecuación algebraica
en Y(s)
Resuelva la ecuación
transformada para
Y(s)
Aplique la transformada
inversa de Laplace −1
En el ejemplo siguiente se ilustra el método anterior para resolver ED, así como
la descomposición en fracciones parciales para el caso en que el denominador de Y(s)
contenga un polinomio cuadrático sin factores reales.
EJEMPLO 4 6ROXFLyQGHXQ39,GHSULPHURUGHQ
Use la transformada de Laplace para resolver el problema con valores iniciales
dy
dt
SOLUCIÓN
rencial.
3y
13 sen 2t,
y (0)
6.
Primero se toma la transformada de cada miembro de la ecuación difedy
dt
3 {y}
13 {sen 2t}.
(12)
El polinomio P(s) es igual al polinomio auxiliar de n-ésimo grado en la ecuación (12) de la sección 4.3
donde el símbolo m usual se sustituye por s.
*
278
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
sY(s) y(0) sY(s) 6 , y del inciso d) del teorema 7.1.1,
4) , por lo que la ecuación (12) es igual que
y>
De (6), {dy>dt}
{sen 2t} 2>(s 2
26
o (s 3)Y(s)
s2 4
Resolviendo la última ecuación para Y(s), obtenemos
6
sY(s)
3Y(s)
26
6
s2
4
.
26
6s2 50
.
(13)
s 3 (s 3)(s2 4) (s 3)(s2 4)
Puesto que el polinomio cuadrático s2 4 no se factoriza usando números reales, se supone
que el numerador en la descomposición de fracciones parciales es un polinomio lineal en s:
6
Y(s)
6s2 50
(s 3)(s2 4)
A
3
s
Bs
s2
C
.
4
Poniendo el lado derecho de la igualdad sobre un común denominador e igualando los
numeradores, se obtiene 6s2 50 A(s2 4) (Bs C)(s 3). Haciendo s 3
se obtiene inmediatamente que A 8. Puesto que el denominador no tiene más raíces
UHDOHVVHLJXDODQORVFRH¿FLHQWHVGHs2 y s : 6 A B y 0 3B C. Si en la primera
ecuación se usa el valor de A se encuentra que B 2, y con este valor aplicado a la
segunda ecuación, se obtiene C 6. Por lo que,
6s2 50
8
2s 6
.
2
(s 3)(s
4) s 3
s2 4
Aún no se termina porque la última expresión racional se tiene que escribir como dos
fracciones. Esto se hizo con la división término a término entre el denominador del
ejemplo 2. De (2) de ese ejemplo,
Y(s)
1
1
8
s
1
2
2
1
3
.
s 3
s
4
s
4
Se deduce de los incisos c), d) y e) del teorema 7.2.1, que la solución del problema con
valores iniciales es y(t) 8e3t 2 cos 2t 3 sen 2t.
y(t)
2
2
EJEMPLO 5 6ROXFLyQGHXQ39,GHVHJXQGRRUGHQ
Resuelva y 3y 2y e4t,
y(0) 1,
y(0) 5.
SOLUCIÓN Procediendo como en el ejemplo 4, se transforma la ED. Se toma la
suma de las transformadas de cada término, se usan las ecuaciones (6) y (7), las condiciones iniciales dadas, el inciso c) del teorema 7.1.1 y entonces se resuelve para Y(s):
d 2y
dt 2
s 2Y(s)
sy (0)
y (0)
3
3[sY(s)
dy
dt
y(0)]
2Y(s)
3s
2)Y(s)
(s 2
Y(s)
2
s
s
2
3s
2 {y}
2
(s
3s
}
1
s
4
s
2
1
s
4
2
1
2
4t
{e
2)(s
4)
(s
s
6s 9
1)(s 2)(s
. (14)
4)
Los detalles de la descomposición en fracciones parciales de Y(s) ya se presentaron en
el ejemplo 3. En vista de los resultados en (4) y (5), se tiene la solución del problema
con valores iniciales
y(t)
1
{Y(s)}
16 t
e
5
25 2t
e
6
1
e
30
4t
.
7.2
TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS
l
279
En los ejemplos 4 y 5, se ilustra el procedimiento básico de cómo usar la transformada
de Laplace para resolver un problema lineal con valores iniciales, pero podría parecer que estos ejemplos demuestran un método que no es mucho mejor que el aplicado
a los problemas descritos en las secciones 2.3 y 4.3 a 4.6. No saque conclusiones negativas de sólo dos ejemplos. Sí, hay una gran cantidad de álgebra inherente al uso
de la transformada de Laplace, pero observe que no se tiene que usar la variación de
SDUiPHWURVRSUHRFXSDUVHDFHUFDGHORVFDVRV\HOiOJHEUDHQHOPpWRGRGHFRH¿FLHQ
tes indeterminados. Además, puesto que el método incorpora las condiciones iniciales prescritas directamente en la solución, no se requiere la operación separada
de aplicar las condiciones iniciales a la solución general y c1y1 c2y2
cn yn ypGHOD('SDUDGHWHUPLQDUFRQVWDQWHVHVSHFt¿FDVHQXQDVROXFLyQSDUWLFXODU
del PVI.
La transformada de Laplace tiene muchas propiedades operacionales. En las
secciones que siguen se examinan algunas de estas propiedades y se ve cómo permiten resolver problemas de mayor complejidad.
COMENTARIOS
i) La transformada de Laplace inversa de una función F(s) podría no ser única;
{ f2(t)} y sin embargo f1 f2.
en otras palabras, es posible que { f1(t)}
Para nuestros propósitos, esto no es algo que nos deba preocupar. Si f1 y f2 son
continuas por tramos en [0, ) y de orden exponencial, entonces f1 y f2 son esencialmente iguales. Vea el problema 44 en los ejercicios 7.2. Sin embargo, si f1 y
f2 son continuas en [0, ) y { f1(t)}
{ f2(t)}, entonces f1 f2 en el intervalo.
ii) Este comentario es para quienes tengan la necesidad de hacer a mano desFRPSRVLFLRQHVHQIUDFFLRQHVSDUFLDOHV+D\RWUDIRUPDGHGHWHUPLQDUORVFRH¿cientes en una descomposición de fracciones parciales en el caso especial cuando
{ f (t)} F(s) es una función racional de s y el denominador de F es un producto de distintos factores lineales. Esto se ilustra al analizar de nuevo el ejemplo
3. Suponga que se multiplican ambos lados de la supuesta descomposición
(s
s2 6s 9
1)(s 2)(s
A
4)
B
1
s
C
2
s
s
4
(15)
digamos, por s VHVLPSOL¿FD\HQWRQFHVVHKDFHs 3XHVWRTXHORVFRH¿cientes de B y C en el lado derecho de la igualdad son cero, se obtiene
s2 6s
(s 2)(s
9
4)
o
A
16
.
5
A
s 1
Escrita de otra forma,
(s
s2 6s 9
1) (s 2)(s
4)
s 1
16
5
A,
donde se ha sombreado o cubierto, el factor que se elimina cuando el lado izquierdo se multiplica por s 1. Ahora, para obtener B y C, simplemente se
evalúa el lado izquierdo de (15) mientras se cubre, a su vez, s 2 y s 4:
s2 6s 9
––––––––––––––––––––––
(s 1)(s 2)(s 4)
y
s2 6s 9
––––––––––––––––––––––
(s 1)(s 2)(s 4)
兩
兩
s2
25
––– B
6
1
––– C.
s4
30
280
CAPÍTULO 7
l
LA TRANSFORMADA DE LAPLACE
La descomposición deseada (15) se da en (4). Esta técnica especial para determiQDUFRH¿FLHQWHVVHFRQRFHGHVGHOXHJRFRPRPpWRGRGHFXEULPLHQWR.
iii) En este comentario continuamos con la introducción a la terminología de sistemas dinámicos. Como resultado de las ecuaciones (9) y (10) la transformada de
Laplace se adapta bien a sistemas dinámicos lineales. El polinomio P(s) ansn
an1sn1
a0HQ HVHOFRH¿FLHQWHWRWDOGHY(s) en (10) y es simplemente el
lado izquierdo de la ED en donde las derivadas d ky兾dt k se sustituyen por potencias sk,
k 0, 1, . . . , n. Es común llamar al recíproco de P(s), en particular W(s) 1兾P(s),
IXQFLyQGHWUDQVIHUHQFLD del sistema y escribir la ecuación (11) como
Y(s)
W(s)G(s) .
W(s)Q(s)
(16)
De esta manera se han separado, en un sentido aditivo, los efectos de la respuesta
debidos a las condiciones iniciales (es decir, W(s)Q(s)) de los causados por la
función de entrada g (es decir, W(s)G(s)). Vea (13) y (14). Por tanto la respuesta
y(t) del sistema es una superposición de dos respuestas:
1
y (t)
1
{W(s)Q(s)}
{W(s)G(s)}
y1 (t).
y0 (t)
1
{W(s)
Si la entrada es g(t) 0, entonces la solución del problema es y0 (t)
Q(s)}. Esta solución se llama respuesta de entrada cero del sistema. Por otro
1
lado, la función y1(t)
{W(s)G(s)} es la salida debida a la entrada g(t).
Entonces, si la condición inicial del sistema es el estado cero (todas las condiciones
iniciales son cero), entonces Q(s) 0 y, por tanto, la única solución del problema con
valores iniciales es y1(t). La última solución se llama respuesta de estado cero del
sistema. Tanto y0(t) como y1(t) son soluciones particulares: y0(t) es una solución
del PVI que consiste en la ecuación homogénea relacionada con las condiciones
iniciales dadas y y1(t) es una solución del PVI que consiste en la ecuación no homogénea con condiciones iniciales cero. En el ejemplo 5 se ve de (14) que la
función de transferencia es W(s) 1兾(s2 3s 2), la respuesta de entrada cero es
s 2
1)(s 2)
1
y0(t)
(s
3et
4e2t,
y la respuesta de estado cero es
y1(t)
1
1
(s
1)(s
2)(s
1 t
e
5
4)
1 2t
e
6
1
e
30
4t
.
Compruebe que la suma de y0(t) y y1(t) es la solución de y(t) en el ejemplo 5 y
que y 0 (0) 1, y0 (0) 5 , mientras que y1(0) 0, y1(0) 0.
EJERCICIOS 7.2
7.2.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-11.
TRANSFORMADAS INVERSAS
En los problemas 1 a 30 use el álgebra apropiada y el teorema
7.2.1 para encontrar la transformada inversa de Laplace dada.
1
1
1
1
s3
1
s2
48
s5
(s
3
1)
4
s
1
1
1
1
s4
2
s
1
s3
2
(s
2)
3
s
1
1
1
1
1
1
s2
1
s
1
s
1
4s
1
5
s
2
2
49
4s
4s
2s
s2
2
1
6
9
2
1
1
1
1
1
4
s
6
s5
1
s
1
5s
2
10s
16
s
2
1
4s
s
s2
2
1
1
2
8
7.3
1
1
1
1
s2
s
3s
s
2s
2
3
0.9s
0.1)(s
(s
s
(s
2)(s
1
1
s
1
1
1
1)(s
s
1)(s
s(s
1
s
1
s
2
20
3
(s2
2
(s
6)
2s 4
s)(s2 1)
1
1)(s2
4)
2)
s
2)(s2
1
(s
28.
1
30.
30.
1
4)
1
s4
s4
9
6s 3
5s2 4
En los problemas 31 a 40, use la transformada de Laplace para
resolver el problema con valores iniciales.
dy
y 1, y (0) 0
dt
dy
2
y 0, y(0)
3
dt
y 6y e4t, y(0) 2
y y 2 cos 5t, y(0) 0
y 5y 4y 0, y(0) 1, y(0) 0
y 4y 6e3t 3et, y(0) 1, y(0) 1
y
y
22 sen 22t, y(0) 10,
y 9y et, y(0) 0, y(0) 0
7.3
281
a)2
b2
(s
b
a)2
b2
eat cos bt
eat sen bt.
En los problemas 41 y 42 use la transformada de Laplace y estas
inversas para resolver el problema con valores iniciales dado.
7.2.2 TRANSFORMADAS DE DERIVADAS
a
(s
1
26.
5s
s
1
13
3)(s
2
1
20.
l
2y 3y 3y 2y et, y(0) 0, y(0) 0,
y(0) 1
y 2y y 2y sen 3t, y(0) 0, y(0) 0,
y(0) 1
Las formas inversas de los resultados del problema 50 en los
ejercicios 7.1 son
1
4s
s
s2
s
1
1
0.2)
s 3
13 s
1
18.
PROPIEDADES OPERACIONALES I
y (0)
0
y y e3t cos 2t,
y(0) 0
y 2y 5y 0,
y(0) 1,
y(0) 3
Problemas para analizar
a) Con un ligero cambio de notación la transformada en
(6) es igual a
{ f (t)} s { f (t)} f (0).
Con f (t) teat, analice cómo se puede usar este resultado junto con c) del teorema 7.1.1 para evaluar
{teat}.
b) Proceda como en el inciso a), pero esta vez examine
cómo usar (7) con f (t) t sen kt junto con d) y e) del
teorema 7.1.1 para evaluar {t sen kt}.
Construya dos funciones f1 y f2 que tengan la misma transformada de Laplace. No considere ideas profundas.
Lea de nuevo el inciso iii) de los ComentariosGHO¿QDOGH
esta sección. Encuentre la respuesta de entrada cero y la
respuesta de estado cero para el PVI del problema 36.
Suponga que f (t) es una función para la que f (t) es continua por tramos y de orden exponencial c. Use los resultaGRVGHHVWDVHFFLyQ\ODVHFFLyQSDUDMXVWL¿FDU
f (0)
lím sF(s),
s:
donde F(s) ᏸ { f (t)}. Compruebe este resultado con
f (t) cos kt.
PROPIEDADES OPERACIONALES I
REPASO DE MATERIAL
l Continúe practicando la descomposición en fracciones parciales.
l Completar el cuadrado.
INTRODUCCIÓN 1RHVFRQYHQLHQWHXVDUODGH¿QLFLyQFDGDYH]TXHVHGHVHDHQFRQWUDUOD
transformada de Laplace de una función f (t). Por ejemplo, la integración por partes requerida para
evaluar ᏸ{ett2 sen 3t} es, por decirlo de algún modo, formidable. En esta sección y la que sigue se
presentan varias propiedades operacionales de la transformada de Laplace que ahorran trabajo y permiten construir una lista más extensa de transformadas (vea la tabla del apéndice III) sin tener que
UHFXUULUDODGH¿QLFLyQEiVLFD\DODLQWHJUDFLyQ
282
CAPÍTULO 7
l
LA TRANSFORMADA DE LAPLACE
7.3.1
TRASLACIÓN EN EL EJE s
UNA TRASLACIÓN Evaluar transformadas tales como {e 5t t 3} y {e 2t cos 4t}
es directo siempre que se conozca (y así es) {t 3} y {cos 4t} . En general, si se conoce la transformada de Laplace de una función f, { f (t)} F(s), es posible calcular
la transformada de Laplace de un múltiplo exponencial de f, es decir, {eat f (t)}, sin
ningún esfuerzo adicional que no sea trasladar o desplazar, la transformada F(s) a
F(s a). Este resultado se conoce como SULPHUWHRUHPDGHWUDVODFLyQ o primer
teorema de desplazamiento.
TEOREMA 7.3.1 3ULPHUWHRUHPDGHWUDVODFLyQ
Si
F(s) y a es cualquier número real, entonces
{f (t)}
{eat f (t)}
a).
F(s
PRUEBA /DGHPRVWUDFLyQHVLQPHGLDWD\DTXHSRUODGH¿QLFLyQ
{eat f (t)}
F
e
F(s)
F(s − a)
s = a, a > 0
e f (t) dt
s
(s a)t
e
f (t) dt
a).
F(s
0
Si se considera sXQDYDULDEOHUHDOHQWRQFHVODJUi¿FDGHF(s a HVODJUi¿FDGH
F(s) desplazada en el eje s por la cantidad 兩 a 兩. Si a ODJUi¿FDGHF(s) se desplaza
a unidades a la derecha, mientras que si a ODJUi¿FDVHGHVSOD]D兩 a 兩 unidades a la
L]TXLHUGD9HDOD¿JXUD
Para enfatizar, a veces es útil usar el simbolismo
FIGURA 7.3.1 Desplazamiento en el
eje s.
st at
0
{e at f (t)}
{ f (t)}
s:s a ,
donde s → s aVLJQL¿FDTXHHQODWUDQVIRUPDGDGH/DSODFHF(s) de f (t) siempre que
aparezca el símbolo s se reemplaza por s a.
EJEMPLO 1 8VDQGRHOSULPHUWHRUHPDGHWUDVODFLyQ
Evalúe a)
{e 5t t 3}
b)
{e
2t
cos 4t}.
SOLUCIÓN Los siguientes resultados se deducen de los teoremas 7.1.1 y 7.3.1.
a)
b)
{e5t t3}
{e
2t
{t3}
s: s 5
cos 4t}
6
3!
s4
{cos 4t}
5)4
(s
s:s 5
s
s : s ( 2)
2
s
2
s
16
s:s
2
(s
2
2)
16
FORMA INVERSA DEL TEOREMA 7.3.1 Para calcular la inversa de F(s a),
se debe reconocer F(s), para encontrar f (t) obteniendo la transformada de Laplace
inversa de F(s) y después multiplicar f (t) por la función exponencial eat. Este procedimiento se resume con símbolos de la siguiente manera:
1
{F(s
a)}
1
{F(s)
s : s a}
e at f (t) ,
(1)
1
{F(s)}.
donde f (t)
En la primera parte del ejemplo siguiente se ilustra la descomposición en fracciones
parciales en el caso cuando el denominador de Y(s) contiene factores lineales repetidos.
EJEMPLO 2 Fracciones parciales: factores lineales repetidos
Evalúe a)
1
2s
(s
5
3)2
b)
1
s> 2 5>3
.
s2 4s 6
7.3
PROPIEDADES OPERACIONALES I
283
l
SOLUCIÓN a) Un factor lineal repetido es un término (s a)n, donde a es un nú-
mero real y n es un entero positivo 2. Recuerde que si (s a)n aparece en el denominador de una expresión racional, entonces se supone que la descomposición contiene n
fracciones parciales con numeradores y denominadores constantes s a, (s a)2, . . . ,
(s a)n. Por tanto, con a 3 y n 2 se escribe
2s 5
A
B
.
2
(s 3)
s 3 (s 3)2
Colocando los dos términos del lado derecho con un denominador común, se obtiene
el numerador 2s 5 A(s 3) B y esta identidad produce A 2 y B 11. Por
tanto,
2s 5
2
11
(2)
2
(s 3)
s 3 (s 3)2
y
1
2s 5
(s 3)2
1
1
2
3
s
1
1
11
(3)
.
3)2
(s
Ahora 1兾(s 3)2 es F(s) 1兾s2 desplazada tres unidades a la derecha. Ya que
1
{1>s2} t , se tiene de (1) que
1
1
Por último, (3) es
1
3)2
(s
2s
(s
1
5
3)2
1
s2
e3t t.
s: s 3
2e3t
11e3t t .
(4)
b) Para empezar, observe que el polinomio cuadrático s2 4s 6 no tiene raíces reales
y por tanto no tiene factores lineales reales. En esta situación completamos el cuadrado:
s>2 5> 3
s2 4s 6
s>2 5>3
.
(s 2)2 2
(5)
El objetivo aquí es reconocer la expresión del lado derecho como alguna transformada
de Laplace F(s) en la cual se ha reemplazado s por s 2. Lo que se trata de hacer es similar a trabajar hacia atrás del inciso b) del ejemplo 1. El denominador en (5) ya está en la
forma correcta, es decir, s2 2 con s 2 en lugar de s. Sin embargo, se debe arreglar el
numerador manipulando las constantes: 12s 53 12 (s 2) 53 22 12 (s 2) 23.
Ahora mediante la división entre el denominador de cada término, la linealidad de
ᏸ 1, los incisos e) y d) del teorema 7.2.1 y por último (1),
s> 2 5> 3
(s 2)2 2
1
s> 2 5> 3
s2 4s 6
1
2 (s
(s
1
2
1
1
2
1
1
e
2
2
3
2)
2)2
2
s
(s
2
2)2 2
2
3
2
2
312
s
s2
2t
1
s 2
2 (s 2)2 2
cos 12t
12
e
3
s:s 2
2t
2
3 (s
1
(s
1
sen 12t.
1
2)2
1
2)2
12
s2 2
2
2
(6)
s:s 2
(7)
EJEMPLO 3 Un problema con valores iniciales
Resuelva y 6y 9y t 2e3t,
y(0) 2,
y(0) 17.
SOLUCIÓN Antes de transformar la ED, observe que su lado derecho es similar a la
función del inciso a) del ejemplo 1. Después de usar la linealidad, el teorema 7.3.1 y
ODVFRQGLFLRQHVLQLFLDOHVVHVLPSOL¿FD\OXHJRVHUHVXHOYHSDUDY(s)
{ f (t)} :
284
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
{y }
s2 Y(s)
y (0)
sy(0)
6 {y }
6[sY(s)
y (0)]
9Y(s)
6s
(s
(s2
{t2 e3t }
9 {y}
2
(s
3)3
9)Y(s)
2s
5
3)2 Y(s)
2s
5
Y(s)
2
3)3
(s
2
3)3
(s
2s 5
(s 3)2
2
(s
.
3)5
El primer término del lado derecho ya se ha descompuesto en fracciones parciales en
la ecuación (2), en el inciso a) del ejemplo 2.
2
Y(s)
Por lo que y(t)
1
1
2
s
3
s
3
(s
11
1
11
3)2
2
1
.
2
4!
3)2
(s
3)5
(s
4!
1
3)5
(s
.
(8)
De la forma inversa (1) del teorema 7.3.1, los dos últimos términos de (8) son
1
1
s2
te3t
Por lo que (8) es y(t)
2e 3t
1 4 3t
12 t e
11te 3t
4!
s5
1
y
s:s 3
t 4 e3t.
s:s 3
.
EJEMPLO 4 Un problema con valores iniciales
Resuelva y 4y 6y 1 et, y(0) 0,
SOLUCIÓN
s2Y(s)
{y }
y (0)
sy(0)
4 {y }
4[sY(s)
y(0) 0.
6 {y}
y (0)]
6Y(s)
4s
6)Y(s)
(s2
Y(s)
{e t}
{1}
1
s
1
1
s
2s
s(s
1
1)
s(s
2s
1)(s2
1
4s
6)
Puesto que el término cuadrático en el denominador no se factoriza en factores lineales
reales, se encuentra que la descomposición en fracciones parciales para Y(s) es
1>6
s
Y(s)
s
1> 3
1
s> 2 5> 3
.
s2 4s 6
Además, en la preparación para tomar la transformada inversa, ya se manejó el último
término en la forma necesaria del inciso b) del ejemplo 2. Por lo que en vista de los
resultados en (6) y (7), se tiene la solución
y(t)
1
s
1
6
1
1
6
1
e
3
1
3
t
1
e
2
1
1
s
2t
1
cos 12t
1
2
12
e
3
(s
2t
2
s
1
2
2)
sen 12t.
2
2
312
1
(s
12
2)2
2
7.3
7.3.2
1
t
a
FIGURA 7.3.2 *Ui¿FDGHODIXQFLyQ
escalón unitario.
FUNCIÓN ESCALÓN UNITARIO En ingeniería es común encontrar funciones que
están ya sea “desactivadas” o “activadas”. Por ejemplo, una fuerza externa que actúa en
un sistema mecánico, o un voltaje aplicado a un circuito, se puede desactivar después de
FLHUWRWLHPSR(VFRQYHQLHQWHHQWRQFHVGH¿QLUXQDIXQFLyQHVSHFLDOTXHHVHOQ~PHUR
(desactivada) hasta un cierto tiempo t a y entonces el número 1 (activada) después de
ese tiempo. La función se llama IXQFLyQHVFDOyQXQLWDULR o IXQFLyQGH+HDYLVLGH, así
llamada en honor del polímata inglés Oliver Heaviside (1850-1925).
La IXQFLyQHVFDOyQXQLWDULR
1
t
FIGURA 7.3.3 La función es
3)
(t
1).
f(t)
2
t
−1
FIGURA 7.3.4 La función es
f (t)
2
3 (t
285
TRASLACIÓN EN EL EJE t
(t
(2t
l
DEFINICIÓN 7.3.1 )XQFLyQHVFDOyQXQLWDULR
y
f(t)
PROPIEDADES OPERACIONALES I
2)
a)VHGH¿QHFRPR
0,
1,
a)
0
t
t
a
a.
2EVHUYHTXHVHGH¿QH (t a) sólo en el eje t no negativo, puesto que esto es
todo lo que interesa en el estudio de la transformada de Laplace. En un sentido más amplio, (t a) 0 para t a(QOD¿JXUDVHPXHVWUDODJUi¿FDGH (t a) .
Cuando una función fGH¿QLGDSDUDt 0 se multiplica por (t a) , la función
HVFDOyQXQLWDULR³GHVDFWLYD´XQDSDUWHGHODJUi¿FDGHHVDIXQFLyQ3RUHMHPSORFRQsidere la función f (t) 2t 3DUD³GHVDFWLYDU´ODSDUWHGHODJUi¿FDGHf para 0 t
1, simplemente formamos el producto (2 t 3) (t 1)9HDOD¿JXUD(Q
JHQHUDOODJUi¿FDGH f (t) (t a) es 0 (desactivada) para 0 t a y es la parte de
ODJUi¿FDGHf (activada) para t a.
/DIXQFLyQHVFDOyQXQLWDULRWDPELpQVHSXHGHXVDUSDUDHVFULELUIXQFLRQHVGH¿nidas por tramos en una forma compacta. Por ejemplo, si consideramos 0 t 2 ,
2 t 3, y t 3 y los valores correspondientes de (t 2) y (t 3) , debe ser
HYLGHQWHTXHODIXQFLyQGH¿QLGDSRUWUDPRVTXHVHPXHVWUDHQOD¿JXUDHVLJXDO
que f (t) 2 3 (t 2)
(t 3)7DPELpQXQDIXQFLyQJHQHUDOGH¿QLGDSRU
tramos del tipo
g(t), 0 t a
f (t)
h(t),
t a
(9)
es la misma que
f(t)
3).
(t
(t
g(t)
(t
g(t)
a)
(t
h(t)
a) .
(10)
Análogamente, una función del tipo
f (t)
0,
0
g(t), a
0,
t
t
t
a
b
b
(11)
puede ser escrita como
f (t)
g(t)[ (t
f (t)
a)
(t
b)].
(12)
100
EJEMPLO 5
Exprese f (t)
t
5
FIGURA 7.3.5 La función es
f (t)
20t
20t (t
5) .
ODJUi¿FD
20t,
0,
8QDIXQFLyQGH¿QLGDSRUWUDPRV
0
t
t
5
en términos de funciones escalón unitario. Trace
5
SOLUCIÓN (QOD¿JXUDVHPXHVWUDODJUi¿FDGHf. Ahora, de (9) y (10) con a
5, g(t) 20t y h(t) 0, se obtiene f (t) 20t 20t (t 5) .
286
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
Considere una función general y f (t GH¿QLGDSDUDt /DIXQFLyQGH¿QLGDSRUWUDPRV
0,
0 t a
(13)
f (t a),
t a
MXHJDXQSDSHOLPSRUWDQWHHQODH[SOLFDFLyQTXHVLJXH&RPRVHPXHVWUDHQOD¿JXUD
7.3.6, para a ODJUi¿FDGHODIXQFLyQy
f (t a) (t a) coincide con la grá¿FDGHy f (t a) para t a TXHHVODJUi¿FDcompleta de y f (t), t 0 desplazada
a unidades a la derecha en el eje t), pero es idénticamente cero para 0 t a.
Vimos en el teorema 7.3.1 que un múltiplo exponencial de f (t) da como resultado una traslación de la transformada F(s) en el eje s. Como una consecuencia del
siguiente teorema, se ve que siempre que F(s) se multiplica por una función expo0, la transformada inversa del producto eas F(s) es la función f
nencial eas, a
desplazada a lo largo del eje tHQODPDQHUDTXHVHPXHVWUDHQOD¿JXUD E (VWH
resultado, presentado a continuación en su versión de transformada directa, se llama
VHJXQGRWHRUHPDGHWUDVODFLyQ o segundo teorema de desplazamiento.
f (t
f(t)
t
a) f (t), t 0
f(t)
(t
a)
a)
TEOREMA 7.3.2 6HJXQGRWHRUHPDGHWUDVODFLyQ
Si F(s)
t
a
{ f (t)} y a
{ f (t
b) f (t a) (t a)
FIGURA 7.3.6
eje t.
Desplazamiento en el
0, entonces
a)
(t
a)}
e
as
F(s).
Por la propiedad de intervalo aditivo de integrales,
DEMOSTRACIÓN
st
e
f (t
(t
a)
a) dt
0
se puede escribir como dos integrales:
冕
冕
a
ᏸ{f (t a) ᐁ(t a)}
0
estf (t a) ᐁ (t a) dt
a
冕
estf (t a) ᐁ (t a) dt
cero para
0ta
a
estf (t a) dt.
uno para
ta
Ahora, si hacemos Y t a, GY dt en la última integral, entonces
{ f (t
a)
(t
e
a)}
s(v
a)
f (v) dv
e
as
e
0
sv
f (v) dv
e
as
{ f (t)}.
0
Con frecuencia se desea encontrar la transformada de Laplace de sólo una función
HVFDOyQXQLWDULR(VWRSXHGHVHUGHODGH¿QLFLyQRWHRUHPD6LVHLGHQWL¿FD
f (t) 1 en el teorema 7.3.2, entonces f (t a) 1, F(s)
{1} 1>s y por tanto,
{ (t
e
a)}
as
s
.
(14)
EJEMPLO 6 5HYLVLyQGHOD¿JXUD
Encuentre la transformada de Laplace de la función fGHOD¿JXUD
SOLUCIÓN Usamos f expresada en términos de la función escalón unitario
f(t)
2
3
(t
2)
(t
3)
y el resultado dado en (14):
{ f (t)}
2 {1}
2
1
s
3
3 { (t
2s
e
s
2)}
3s
e
s
.
{ (t
3)}
7.3
PROPIEDADES OPERACIONALES I
287
l
FORMA INVERSA DEL TEOREMA 7.3.2 Si f (t) ᏸ 1{F(s)}, la forma inversa
del teorema 7.3.2, a 0, es
1
as
{e
f (t
F(s)}
(t
a)
(15)
a).
EJEMPLO 7 8VRGHODIyUPXOD
Evalúe
1
1
a)
e
4
s
2s
s
1
b)
s2
9
s/2
e
.
a) De acuerdo con las identidades a 2, F(s) 1兾(s 4) y
ᏸ 1{F(s)} e 4t, se tiene de (15)
SOLUCIÓN
1
1
4
s
e
2s
b) Con a ʌ兾2, F(s) s兾(s2 9) y
s
1
s2
9
2)
(t
2).
cos 3t, de la ecuación (15) se obtiene
1
{F(s)}
s/2
e
e 4(t
cos 3 t
t
2
.
2
/D ~OWLPD H[SUHVLyQ VH SXHGH VLPSOL¿FDU XQ SRFR FRQ OD IyUPXOD DGLFLRQDO SDUD HO
coseno. Compruebe que el resultado es igual a sen 3t
t
2
.
FORMA ALTERNATIVA DEL TEOREMA 7.3.2 Con frecuencia nos enfrentamos
con el problema de encontrar la transformada de Laplace de un producto de una función g
y una función escalón unitario (t a) donde la función g no tiene la forma precisa de
desplazamiento f (t a) del teorema 7.3.2. Para encontrar la transformada de Laplace
de g(t) (t a), es posible arreglar g(t) en la forma requerida f (t a) usando álgebra.
Por ejemplo, si se quiere usar el teorema 7.3.2 para determinar la transformada de Laplace
de t2 (t 2), se tendría que forzar g(t) t2 a la forma f (t 2). Se debe trabajar algebraicamente y comprobar que t 2 (t 2)2 4(t 2) 4 es una identidad. Por tanto,
{t 2 (t
2)}
{(t
2)2
(t
2)
4(t
2)
(t
2)
4 (t
2)},
donde ahora cada término del lado derecho se puede evaluar con el teorema 7.3.2. Pero
como estas operaciones son tardadas y con frecuencia no obvias, es más simple diseñar
XQDIRUPDDOWHUQDWLYDGHOWHRUHPD8VDQGRODGH¿QLFLyQODGH¿QLFLyQGH
(t a), y la sustitución u t a, se obtiene
{g(t)
(t
a)}
e
st
g(t) dt
e
Es decir,
{g(t) (t
EJEMPLO 8
Evalúe
{cos t
(t
s(u
a)
a) du.
g(u
0
a
a)}
e
as
{g(t
a)}.
(16)
6HJXQGRWHRUHPDGHWUDVODFLyQIRUPDDOWHUQDWLYD
)}.
SOLUCIÓN Con g(t) cos t y a ʌ, entonces g(t ʌ) cos (t ʌ) cos t por
la fórmula de adicción para la función coseno. Por tanto, por la ecuación (16),
{cos t
(t
)}
e
s
{cos t}
s
s
2
1
e
s
.
288
CAPÍTULO 7
l
LA TRANSFORMADA DE LAPLACE
EJEMPLO 9
Un problema con valores iniciales
0,
3 cos t,
Resuelva y y f (t), y(0) 5, donde f (t)
0
t
t
.
SOLUCIÓN La función f se puede escribir como f (t) 3 cos t ᐁ(t ʌ), y entonces por
linealidad, por los resultados del ejemplo 7 y por las fracciones parciales usuales, se tiene
{y }
sY(s)
{y}
y(0)
Y(s)
(s
5
Y(s)
1)Y(s)
3
2
1
s
3 {cos t (t
s
3 2
e
1
s
3s
5
e
2
s
1
1
s
1
e
1
s
s2
1
)}
s
s
s
s
e
s2
1
e
s
.
(17)
Ahora procediendo como se hizo en el ejemplo 6, se tiene de (15) con a ʌ que los
inversos de los términos dentro del paréntesis son
1
1
s
1
e
s
(t
e
s
1
y
)
2
1
s
(t
e
s
2
5
4
3
2
1
t
_1
_2
cos(t
π
2π
5e t,
5e
3π
FIGURA 7.3.7 *Ui¿FDGHODIXQFLyQ
en (18) del ejemplo 9.
t
(t
3
sen t
2
)
3
cos t,
2
s
e
)
(t
).
)
(t
)
)
0
3
e
2
1
s
Por lo que el inverso de (17) es
3 (t )
3
y(t) 5e t
e
(t
)
sen(t
2
2
3 (t )
5e t
[e
sen t cos t] (t
2
y
1
1
),
sen(t
3
cos(t
2
) (t
),
)
)
(t
; identidades trigonométricas
t
(18)
.
t
8VDQGRXQSURJUDPDGHJUD¿FDFLyQKHPRVREWHQLGRODJUi¿FDGH TXHVHPXHVWUD
HQOD¿JXUD
VIGAS (QODVHFFLyQYLPRVTXHODGHÀH[LyQHVWiWLFDy(x) de una viga uniforme
de longitud L con carga w(x) por unidad de longitud se determina a partir de la ecuación diferencial lineal de cuarto orden
d4y
EI 4 w(x),
(19)
dx
donde E es el módulo de Young de elasticidad e I es un momento de inercia de una sección
transversal de la viga. La transformada de Laplace es particularmente útil para resolver la
ecuación (19) cuando w(x VHGH¿QHSRUWUDPRV6LQHPEDUJRSDUDXVDUODWUDQVIRUPDGD
de Laplace se debe suponer de manera tácita que y(x) y w(x HVWiQGH¿QLGDVHQ ) y
no en (0, L). Observe, también, que el siguiente ejemplo es un problema con valores en la
frontera más que un problema con valores iniciales.
w(x)
EJEMPLO 10
pared
x
L
y
FIGURA 7.3.8
Viga empotrada con
carga variable del ejemplo 10.
Un problema con valores en la frontera
Una viga de longitud LVHHPSRWUDHQDPERVH[WUHPRVFRPRVHPXHVWUDHQOD¿JXUD
'HWHUPLQHODGHÀH[LyQGHODYLJDFXDQGRODFDUJDHVWiGDGDSRU
w(x)
w0 1
0,
2
x ,
L
0
x
L> 2
L> 2
x
L.
7.3
PROPIEDADES OPERACIONALES I
289
l
SOLUCIÓN Recuerde que debido a que la viga esta empotrada en ambos extremos,
las condiciones de frontera son y(0) 0, y(0) 0, y(L) 0, y(L) 0. Ahora usando
(10) se puede expresar w(x) en términos de la función escalón unitario:
w(x)
2
x
L
w0 1
2
x
L
w0 1
x
L
2
2w0 L
L
L
x
x
x
.
L 2
2
2
Transformando la ecuación (19) respecto a la variable x, se obtiene
EI s4 Y(s)
s3 y(0)
s2 y (0)
o
sy (0)
s4Y(s)
y (0)
sy (0)
y (0)
2w0 L> 2
L
s
1
s2
1
e
s2
Ls/2
2w0 L> 2
EIL s
1
s2
1
e
s2
Ls/2
.
Si hacemos c1 y(0) y c2 y (0), entonces
Y(s)
c2
s4
2w0 L> 2
EIL s5
2w0 L>2
EIL 4!
1
c1
s3
1
s6
1
e
s6
1
5!
1
Ls/2
,
y en consecuencia
y(x)
c1
2!
2!
s3
c2
3!
c2 3
x
6
w0
5L 4
x
60 EIL 2
1
c1 2
x
2
1
3!
s4
x5
4!
s5
5
L
2
x
x
L
2
5!
s6
1
5!
1
5!
e
s6
Ls/ 2
.
Aplicando las condiciones y(L) 0 y y(L) 0 al último resultado, se obtiene un
sistema de ecuaciones para c1 y c2:
L2
2
c2
L3
6
49w0 L4
1920EI
0
c1 L
c2
L2
2
85w0 L3
960EI
0.
c1
Resolviendo se encuentra que c1 23w0L2兾(960El) y c2 9w0L兾(40EI). Por lo que
ODGHÀH[LyQHVWiGDGDSRU
y(x)
23w0 L2 2
x
1920EI
3w0 L 3
x
80EI
w0 5L 4
x
60EIL 2
x5
x
L
2
5
x
L
2
.
EJERCICIOS 7.3 ࣠Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-11.
7.3.1 TRASLACIÓN EN EL EJE s
1
1
1
1
1
En los problemas 1 a 20 encuentre F(s) o f (t), como se indica.
{te10t}
3
2t
{t e
}
t
{t(e
2t 2
e )}
t
{e sen 3t}
{(1
e3t 9
t
e
3e
4t
4t
) cos 5t}
10 sen
t
2
6t
{te
}
10
{t e
(s
2)
s2
1
6s
}
{e (t
1)2}
2t
cos 4t}
{e
3
10
1
1
1
1
1
1
(s
1)4
s2
1
2s
5
7t
2t
1
s
s
4s
2
s
(s
2s
2
s (s
2
1)
1
1)3
5
2s 5
s
6s 34
2
5s
(s
2)2
(s
(s
1)2
2)4
290
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
En los problemas 21 a 30, use la transformada de Laplace para
resolver el problema con valores iniciales.
L
E0
y 4y e , y(0) 2
y y 1 te t, y(0) 0
y 2y y 0, y(0) 1, y(0) 1
y 4y 4y t 3e 2t, y(0) 0, y(0) 0
y 6y 9y t, y(0) 0, y(0) 1
y 4y 4y t 3, y(0) 1, y(0) 0
y 6y 13y 0, y(0) 0, y(0) 3
2y 20y 51y 0, y(0) 2, y(0) 0
y y e t cos t, y(0) 0, y(0) 0
y 2y 5y 1 t, y(0) 0, y(0) 4
R
4t
C
FIGURA 7.3.9 Circuito en serie del problema 35.
Use la transformada de Laplace para encontrar la carga q(t)
en un circuito RC en serie cuando q(0) 0 y E(t) E0ekt,
k 0. Considere dos casos: k 1兾RC y k 1兾RC.
7.3.2 TRASLACIÓN EN EL EJE t
En los problemas 37 a 48 encuentre F(s) o f (t), como se indica.
En los problemas 31 y 32, use la transformada de Laplace y
el procedimiento descrito en el ejemplo 10 para resolver el
problema con valores en la frontera dado.
y 2y y 0,
{(t
{t
{cos 2t
1) (t
(t
1)}
2)}
(t
)}
y(0) 0, y(ʌ) 0
Un peso de 4 lb estira un resorte 2 pies. El peso se libera a
partir del reposo 18 pulgadas arriba de la posición de equilibrio y el movimiento resultante tiene lugar en un medio que
ofrece una fuerza de amortiguamiento numéricamente igual
a 78 veces la velocidad instantánea. Use la transformada de
Laplace para encontrar la ecuación de movimiento x(t).
Recuerde que la ecuación diferencial para la carga instantánea q(t) en el capacitor en un circuito RCL en serie está
dada por
d 2q
dt 2
R
1
q
C
dq
dt
E(t).
1
1
1
2s
e
s
3
e
s
2
e
s(s
s
1
s
1)
a) f (t)
b) f (t
c) f (t)
d) f (t)
e) f (t)
f) f (t
(20)
f (t)
(t
q(t)
E0C[1
1
e
E0C 1
e
1
{(3t
t
(t
2)}
1) (t
sen t
t
1
(1
e
1
1
t
2
(cosh 1
senh 1
2
2
t
(1
t
2
2
t
2
sen 1
se
s2
s/2
e
s (s
2s
4
2
b)
a)
(t
2
2
1)
b)
b
t
2
)
t ,
,
f (t)
,
2
)
2
s
FIGURA 7.3.10 *Ui¿FDSDUDORVSUREOHPDVD
2
t)],
(cos 1
2s 2
f(t)
a
2
1)}
a)
b) (t b)
(t a)
f (t) (t b)
(t a) f (t) (t
a) (t a) f (t
Considere una batería de voltaje constante E0 que carga el
FDSDFLWRUTXHVHPXHVWUDHQOD¿JXUD'LYLGDODHFXDción (20) entre L\GH¿QDȜ R兾L y Ȧ2 1兾LC. Use la
transformada de Laplace para demostrar que la solución q(t)
de q 2ȜT Ȧ2q E0兾L sujeta a q(0) 0, i(0) 0 es
e
{e2
(QORVSUREOHPDVDFRPSDUHODJUi¿FDGDGDFRQXQDGH
ODVIXQFLRQHVGHORVLQFLVRVD DI /DJUi¿FDGHf (t) se preVHQWDHQOD¿JXUD
Vea la sección 5.1. Use la transformada de Laplace para
encontrar q(t) cuando L 1 h, R 20 !, C 0.005 f,
E(t) 150 V, t 0, q(0) 0 e i(0) 0. ¿Cuál es la corriente i(t)?
E0C 1
y(0) 2, y(1) 2
y 8y 20y 0,
L
t
2
)
t
,
.
a
FIGURA 7.3.11
b
t
*Ui¿FDSDUDHOSUREOHPD
7.3
f(t)
a
b
t
FIGURA 7.3.12 *Ui¿FDSDUDHOSUREOHPD
f (t)
0,
0
sen t,
f (t)
t,
0,
f (t)
sen t, 0
0,
f(t)
PROPIEDADES OPERACIONALES I
291
3 >2
3 >2
t
t
0
l
2
2
t
t
2
2
t
t
f(t)
1
a
a
b
t
pulso rectangular
FIGURA 7.3.13 *Ui¿FDSDUDHOSUREOHPD
t
b
FIGURA 7.3.17 *Ui¿FDSDUDHOSUREOHPD
f (t)
f(t)
3
2
a
1
t
b
FIGURA 7.3.14 *Ui¿FDSDUDHOSUREOHPD
1
2
3
t
4
función escalera
FIGURA 7.3.18
f (t)
*Ui¿FDSDUDHOSUREOHPD
En los problemas 63 a 70, use la transformada de Laplace para
resolver el problema con valores iniciales.
a
b
t
FIGURA 7.3.15 *Ui¿FDSDUDHOSUREOHPD
t
FIGURA 7.3.16 *Ui¿FDSDUDHOSUREOHPD
En los problemas 55 a 62, escriba cada función en términos
de funciones escalón unitario. Encuentre la transformada de
Laplace de la función dada.
f (t)
2,
0
3
3
t
t
2,
f (t)
1, 0
0, 4
1,
t
t
t
4
5
5
f (t)
0,
t2,
t
t
1
1
0
1,
1,
f (t)
b
0
t
t
1
1
y y f (t), y(0) 0, donde
f (t)
a
0,
5,
y y f (t), y(0) 0, donde f (t)
0
1
1
t
t
y 2y f (t), y(0) 0, donde
t, 0 t
f (t)
0,
t
1
1
y
1, donde
4y
f (t),
0, y (0)
y(0)
1,
0,
f (t)
y
4y
sen t
y
5y
6y
y
y
(t
0
2 ),
y(0)
1, y (0)
0
1),
y(0)
0, y (0)
1
(t
0, y (0)
f(t), y(0)
f (t)
1
1
t
t
0,
1,
0,
0
1, donde
t
t
t
2
2
y 4y 3y 1 ᐁ(t 2) ᐁ(t 4) ᐁ(t 6),
y(0) 0, y(0) 0
292
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
Suponga que un peso de 32 libras estira un resorte 2 pies.
Si el peso se libera a partir del reposo en la posición de
equilibrio, determine la ecuación de movimiento x(t) si
una fuerza f (t) 20t actúa en el sistema para 0 t 5
y luego se retira (vea el ejemplo 5). Desprecie cualquier
IXHU]DGHDPRUWLJXDPLHQWR8VHXQSURJUDPDGHJUD¿FDción para trazar x(t) en el intervalo [0, 10].
Resuelva el problema 71 si la fuerza aplicada f (t) sen t
actúa en el sistema para 0 t 2ʌ y después se retira.
En los problemas 73 y 74 use la transformada de Laplace para
encontrar la carga q(t) en el capacitor en un circuito RC en
serie sujeto a las condiciones indicadas.
q(0) 0, R 2.5 !, C 0.08 f, E(t GDGDHQOD¿JXUD
7.3.19.
a) Use 1a transformada de Laplace para determinar 1a
carga q(t) en el capacitor en un circuito RC en serie
cuando q(0) 0, R 50 !, C 0.01 f y E(t) es
FRPRVHPXHVWUDHQOD¿JXUD
b) Suponga que E0 100 V. Use un programa de compuWDGRUDSDUDJUD¿FDU\GLEXMHq(t) para 0 t 6. Use la
JUi¿FDSDUDHVWLPDUqmáx el valor máximo de 1a carga.
E(t)
E0
1
t
3
FIGURA 7.3.22 E(t) en el problema 76.
E(t)
Una viga en voladizo está empotrada en su extremo izquierdo y libre en su extremo derecho. Use la transforPDGDGH/DSODFHSDUDGHWHUPLQDUODGHÀH[LyQy(x) cuando
la carga está dada por
5
3
t
w(x)
FIGURA 7.3.19 E(t) en el problema 73.
w(x)
E(t)
30
1.5
a) Use la transformada de Laplace para encontrar la
corriente i(t) en un circuito LR en serie de una sola
malla cuando i(0) 0, L 1 h, R 10 ! y E(t) es
FRPRVHLOXVWUDHQD¿JXUD
b) 8VHXQSURJUDPDGHFRPSXWDGRUDSDUDJUD¿FDU\GLbuje i(t) en el intervalo 0 t 8VHODJUi¿FDSDUD
estimar imáx e imín, los valores máximo y mínimo de la
corriente.
−1
0
x
L>3
L> 3 x 2L> 3
2L > 3 x L.
Una viga está empotrada en su extremo izquierdo y apoyada simplemente en el extremo derecho. Encuentre la
GHÀH[LyQy (x) cuando la carga es como la que se da en el
problema 77.
t
FIGURA 7.3.20 E(t) en el problema 74.
sen t, 0 ≤ t < 3π /2
π
0,
w0 ,
0,
(QFXHQWUHODGHÀH[LyQy (x) de una viga en voladizo empotrada en su extremo izquierdo y libre en su extremo derecho cuando la carga total es como se da en el ejemplo 10.
30et
π /2
0 x L> 2
L> 2 x L.
Resuelva el problema 77 cuando la carga está dada por
q(0) q0, R 10 !, C 0.1 f, E(t GDGDHQOD¿JXUD
7.3.20.
E(t)
1
w0,
0,
3π /2
FIGURA 7.3.21 E(t) en el problema 75.
t
Modelo matemático
3DVWHOGHQWURGHXQKRUQR Lea de nuevo el ejemplo 4 en
la sección 3.1 acerca del enfriamiento de un pastel que se
saca de un horno.
a) Diseñe un modelo matemático para la temperatura de
un pastel mientras está dentro del horno con base en
las siguientes suposiciones: en t 0 la mezcla de pastel está a temperatura ambiente de 70°; el horno no se
precalienta por lo que en t 0, cuando la mezcla de
pastel se coloca dentro del horno, la temperatura dentro del horno también es 70°; la temperatura del horno
aumenta linealmente hasta t 4 minutos, cuando se
alcanza la temperatura deseada de 300°; la temperatura
del horno se mantiene constante en 300° para t 4.
b) Use la transformada de Laplace para resolver el problema con valores iniciales del inciso a).
7.4
Problemas para analizar
real e i2 1. Demuestre que
usar para deducir
Analice cómo se podría arreglar cada una de las siguientes funciones, de tal forma que el teorema 7.3.2 se pudiera usar directamente para encontrar la transformada de
Laplace dada. Compruebe sus respuestas con la ecuación
(16) de esta sección.
a)
{(2t
1) (t
c)
{cos t
(t
1)} b)
)}
d)
{et
(t
{(t 2
3t) (t
2)}
293
{tekti} se puede
k2
k2)2
2ks
.
(s2 k2)2
{t sen kt}
5)}
l
s2
(s2
{t cos kt}
b) Ahora use la transformada de Laplace para resolver
el problema con valores iniciales x Ȧ2x cos ȦW,
x(0) 0, x (0) 0.
a) Suponga que el teorema 7.3.1 se cumple cuando el
símbolo a se reemplaza por ki, donde k es un número
7.4
PROPIEDADES OPERACIONALES II
PROPIEDADES OPERACIONALES II
REPASO DE MATERIAL
l 'H¿QLFLyQ
l Teoremas 7.3.1 y 7.3.2
INTRODUCCIÓN En esta sección se desarrollan varias propiedades operacionales más de la transformada de Laplace. En especial, veremos cómo encontrar la transformada de una función f (t) que se multiplica por un monomio t n, la transformada de un tipo especial de integral y la transformada de una función
periódica. Las dos últimas propiedades de transformada permiten resolver ecuaciones que no se han encontrado hasta este punto: ecuaciones integrales de Volterra, ecuaciones integrodiferenciales y ecuaciones
GLIHUHQFLDOHVRUGLQDULDVHQODVTXHODIXQFLyQGHHQWUDGDHVXQDIXQFLyQSHULyGLFDGH¿QLGDSRUWUDPRV
7.4.1
DERIVADAS DE UNA TRANSFORMADA
MULTIPLICACIÓN DE UNA FUNCIÓN POR t n La transformada de Laplace del
producto de una función f (t) con t se puede encontrar derivando la transformada de
Laplace de f (t). Para motivar este resultado, se supone que F(s)
{ f (t)} existe y
que es posible intercambiar el orden de la derivada y de la integral. Entonces
d
F(s)
ds
d
ds
e
st
f (t) dt
0
0
[e
s
st
f (t)] dt
e
st
tf (t) dt
{tf (t)};
0
d
{ f (t)} .
ds
Se puede usar el último resultado para encontrar la transformada de Laplace de t2f (t):
es decir,
{t f (t)}
{t2 f (t)}
{t t f (t)}
d
ds
{tf (t)}
d
ds
d
ds
{f (t)}
Los dos casos anteriores sugieren el resultado general para
TEOREMA 7.4.1 Derivadas de transformadas
Si F(s)
{ f (t)} y n 1, 2, 3, . . . , entonces
{t n f (t)}
EJEMPLO 1
Evalúe
{t sen kt}.
( 1)n
8VRGHOWHRUHPD
dn
F(s).
dsn
d2
ds 2
{t n f (t)} .
{ f (t)}.
294
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
SOLUCIÓN
Con f (t) sen kt, F(s) k兾(s2 k2) y n 1, el teorema 7.4.1 da
d
ds
{t sen kt}
2ks
.
(s
k2)2
d
k
2
ds s
k2
{sen kt}
2
Si se quiere evaluar {t 2 sen kt} y {t 3 sen kt}, todo lo que se necesita hacer, a
su vez, es tomar el negativo de la derivada respecto a s del resultado del ejemplo 1 y
después tomar el negativo de la derivada respecto a s de {t 2 sen kt}.
NOTA Para encontrar transformadas de funciones t ne at, se puede usar el teorema
7.3.1 o el teorema 7.4.1. Por ejemplo,
Teorema 7.3.1:
{te 3t}
{t}s : s
Teorema 7.4.1:
{te 3t }
d
ds
EJEMPLO 2
1
s2
3
1
(s
s :s 3
d 1
ds s 3
{e 3t }
3)2
.
(s
3)
1
2
(s
3)2
.
Un problema con valores iniciales
Resuelva x 16x cos 4t,
x(0) 0,
x(0) 1.
SOLUCIÓN El problema con valores iniciales podría describir el movimiento forzado,
no amortiguado y en resonancia de una masa en un resorte. La masa comienza con una
velocidad inicial de 1 pie/s en dirección hacia abajo desde la posición de equilibrio.
Transformando la ecuación diferencial, se obtiene
s
1
s
(s2 16) X(s) 1
.
o X(s)
s2 16
s2 16 (s2 16)2
Ahora bien, en el ejemplo 1 se vio que
1
(s2
2ks
k2)2
(1)
t sen kt
\SRUWDQWRLGHQWL¿FDQGRk 4 en (1) y en el inciso d) del teorema 7.2.1, se obtiene
1
4
x(t)
4
1
s2
1
sen 4t
4
7.4.2
1
8
16
1
(s2
8s
16)2
1
t sen 4t
8
TRANSFORMADAS DE INTEGRALES
CONVOLUCIÓN Si las funciones f y g son continuas por tramos en [0, ), entonces un producto especial, denotado por f * gVHGH¿QHPHGLDQWHODLQWHJUDO
t
f ( ) g(t
f g
(2)
)d
0
y se llama FRQYROXFLyQ de f y g. La convolución de f * g es una función de t. Por ejemplo,
t
et sen t
e sen (t
1
( sen t
2
)d
0
cos t
et ).
(3)
Se deja como ejercicio demostrar que
t
t
f ( ) g(t
0
es decir, f
)d
f (t
) g( ) d ;
0
g g f(VWRVLJQL¿FDTXHODFRQYROXFLyQGHGRVIXQFLRQHVHVFRQPXWDWLYD
7.4
PROPIEDADES OPERACIONALES II
295
l
No es cierto que la integral de un producto de funciones sea el producto de las integrales. Sin embargo, es cierto que la transformada de Laplace del producto especial
(2), es el producto de la transformada de Laplace de f y g(VWRVLJQL¿FDTXHHVSRVLEOH
determinar la transformada de Laplace de la convolución de dos funciones sin evaluar
en realidad la integral como se hizo en (3). El resultado que sigue se conoce como
WHRUHPDGHFRQYROXFLyQ.
TEOREMA 7.4.2 7HRUHPDGHFRQYROXFLyQ
Si f (t) y g (t) son funciones continuas por tramos en [0, ) y de orden exponencial, entonces
{ f g}
{ f (t)} {g(t)} F(s)G(s).
τ
τ=t
DEMOSTRACIÓN Sea F(s)
t: τ a ∞
{ f (t)}
s
e
f( ) d
0
y
{g(t)}
G(s)
s
e
g( ) d .
0
Procediendo formalmente, tenemos
τ:0a t
t
F(s)G(s)
s
e
f( ) d
e
FIGURA 7.4.1 Cambio del orden de
integración de primero t a primero IJ.
)
s(
e
0
s
g( ) d
0
0
f ( )g( ) d d
0
f( ) d
0
)
s(
e
g( ) d .
0
Conservando IJ¿MDKDFHPRVt IJ ȕ, dt Gȕ, por lo que
e stg(t
f( ) d
F(s)G(s)
) dt.
0
En el plano WIJVHUHDOL]DODLQWHJUDFLyQHQODUHJLyQVRPEUHDGDGHOD¿JXUD3XHVWR
que f y g son continuas por tramos en [0, ) y de orden exponencial, es posible intercambiar el orden de integración:
t
F(s) G(s)
e
st
t
f ( )g(t
dt
0
)d
e
0
st
f ( ) g(t
0
)d
dt
{ f g}.
0
EJEMPLO 3 7UDQVIRUPDGDGHXQDFRQYROXFLyQ
t
Evalúe
e sen(t
)d
.
0
SOLUCIÓN Con f (t) et y g(t) sen t, el teorema de convolución establece que la
transformada de Laplace de la convolución de f y g es el producto de sus transformadas
de Laplace:
t
e sen(t
0
)d
{et}
{sen t}
1
s
1
1
s2
1
(s
1
1)(s2
.
1)
INVERSA DEL TEOREMA 7.4.2 El teorema de convolución en ocasiones es útil
para encontrar la transformada de Laplace inversa del producto de dos transformadas
de Laplace. Del teorema 7.4.2, se tiene
1
(4)
{F(s)G(s)} f g.
296
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
Muchos de los resultados de la tabla de transformadas de Laplace en el apéndice III, se
pueden obtener usando la ecuación (4). En el ejemplo siguiente se obtiene el elemento
25 de la tabla:
2k3
.
(5)
{sen kt kt cos kt}
(s2 k2 )2
EJEMPLO 4 7UDQVIRUPDGDLQYHUVDFRPRXQDFRQYROXFLyQ
Evalúe
1
1
2
SOLUCIÓN
.
k2 )2
(s
Sea F(s)
1
G(s)
f (t)
s2
k2
1
k
1
g(t)
por lo que
k
2
2
s
k
1
sen kt.
k
En este caso la ecuación (4) da
1 t
(6)
sen k sen k(t
)d .
(s
k)
k2 0
Con la ayuda de la identidad trigonométrica
1
sen A sen B
[cos(A B) cos(A B)]
2
y las sustituciones A NIJ y B k(t IJ) se puede realizar la integración en (6):
1
1
2
2 2
1
1
2
(s
t
1
2k2
2 2
k)
[cos k(2
t)
cos kt] d
1 1
sen k(2
2k2 2k
t)
cos kt
0
t
0
sen kt
kt cos kt
.
2k3
3
Multiplicando ambos lados por 2k , se obtiene la forma inversa de (5).
TRANSFORMADA DE UNA INTEGRAL Cuando g(t) 1 y {g(t)} G(s) 1
兾s, el teorema de convolución implica que la transformada de Laplace de la integral de f es
t
F(s)
f( ) d
.
(7)
s
0
La forma inversa de (7),
t
F(s)
,
s
1
f( ) d
0
(8)
se puede usar en lugar de las fracciones parciales cuando sn es un factor del denomina1
dor y f (t)
{F(s)} es fácil de integrar. Por ejemplo, se sabe para f (t) sen t que
2
F(s) 1兾(s 1) y por tanto usando la ecuación (8)
1
1
1
1
s(s2
1
1)
1
s2(s2
1
1)
1
s3(s2
etcétera.
1
1)
1兾(s2
s
1兾s(s2
s
1兾s2(s2
s
1)
t
sen d
1
cos t
0
1)
t
(1
cos ) d
t
sen t
0
1)
t
(
0
sen ) d
1 2
2t
1
cos t
7.4
PROPIEDADES OPERACIONALES II
l
297
ECUACIÓN INTEGRAL DE VOLTERRA El teorema de convolución y el resultado
en (7) son útiles para resolver otros tipos de ecuaciones en las que una función desconocida aparece bajo un signo de integral. En el ejemplo siguiente se resuelve una
HFXDFLyQLQWHJUDOGH9ROWHUUD para f (t),
t
f(t)
)d .
f ( ) h(t
g(t)
(9)
0
Las funciones g(t) y h(t) son conocidas. Observe que la integral en (9) tiene la forma
de convolución (2) con el símbolo h jugando el papel de g.
EJEMPLO 5 8QDHFXDFLyQLQWHJUDO
t
Resuelva f (t)
3t 2
e
t
f ( ) e t d para
. f (t).
0
SOLUCIÓN (QODLQWHJUDOVHLGHQWL¿FDh(t IJ) et IJ por lo que h(t) et. Se toma la
transformada de Laplace de cada término; en particular, por el teorema 7.4.2 la transformada de Laplace es el producto de { f (t)} F(s) y {et} 1>(s 1) .
2
s3
3
F(s)
1
1
F(s)
1
s
1
s
.
Después de resolver la última ecuación para F(s) y realizar la descomposición en fracciones parciales, se encuentra
6
s3
La transformada inversa entonces da
6
s4
F(s)
f (t)
3
1
3t2
2!
s3
1
t3
1
s
3!
s4
2
s
1
.
1
1
s
1
1
2
1
s
2e t.
1
CIRCUITOS EN SERIE En una sola malla o circuito en serie, la segunda ley de
Kirchhoff establece que la suma de las caídas de voltaje en un inductor, resistor y capacitor es igual al voltaje aplicado E(t). Ahora se sabe que las caídas de voltaje en un
inductor, resistor y capacitor son, respectivamente,
1 t
di
i( ) d ,
,
Ri(t), y
C 0
dt
donde i(t) es la corriente y L, R y C son constantes. Se deduce que la corriente en un
FLUFXLWRFRPRHOTXHVHPXHVWUDHQOD¿JXUDHVWiJREHUQDGDSRUODHFXDFLyQ
integrodiferencial
L
L
EJEMPLO 6
E
L
R
di
dt
Circuito RCL en serie.
1
C
t
i( ) d
E(t) .
(10)
0
8QDHFXDFLyQLQWHJURGLIHUHQFLDO
Determine la corriente i(t) en un circuito RCL de un sola malla cuando L 0.1 h, R
2 !, C 0.1 f, i(0) 0 y el voltaje aplicado es
E(t)
C
FIGURA 7.4.2
Ri(t)
120t
120t
(t
1).
SOLUCIÓN Con los datos dados, la ecuación (10) se convierte en
0.1
di
dt
t
2i
10 i( ) d
0
120t
120t
(t
1).
298
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
t
Ahora usando (7), { 0 i( ) d } I(s) s , donde I(s)
formada de Laplace de la ecuación integrodiferencial es
0.1sI(s)
20
2I(s)
10
i
I(s)
s
1
s2
120
1
e
s2
1
e
s
s
{i(t)}. Por lo que la trans-
. ← por (16) de la sección 7.3
s
Multiplicando esta ecuación por l0s, usando s2 20s 100 (s 10)2 y después al
despejar I(s), se obtiene
10
t
_ 10
1
1200
I(s)
_20
_30
0.5
1
1. 5
2
1200
I(s)
2 .5
FIGURA 7.4.3 *Ui¿FDGHFRUULHQWH
1
10)2
s(s
Usando fracciones parciales,
1>100
s
1>100
e
s 10
i(t) del ejemplo 6.
10)2
s(s
1>100
s 10
e
(s
(s
1>10
10)2
1>10
e
(s 10)2
s
1
e
10)2
s
s
1>100
e
s
1
e
(s 10)2
s
.
s
s
.
'HODIRUPDLQYHUVDGHOVHJXQGRWHRUHPDGHWUDVODFLyQ GHODVHFFLyQ¿QDOmente se obtiene
i(t)
12[1
(t
1)]
12[e
10t
10t
10(t
e
10(t
1)
1)
120te
1080(t 1)e
(t
(VFULWDFRPRXQDIXQFLyQGH¿QLGDSRUWUDPRVODFRUULHQWHHV
i(t)
12 12e
12e 10t
10t
12e
120te
10(t
(t
1)]
1).
10t
,
1)
0
120te
10t
1080(t
1)e
10(t
1)
,
t
t
1
1.
&RQHVWD~OWLPDH[SUHVLyQ\XQ6$&VHWUD]DODJUi¿FDi(t) en cada uno de los dos intervaORV\GHVSXpVVHFRPELQDQODVJUi¿FDV2EVHUYHHQOD¿JXUDTXHDXQFXDQGRODIXQción de entrada E(t) es discontinua, la salida o respuesta i(t) es una función continua.
Material opcional si se cubrió
la sección 4.8
ADENDA: VUELTA A LAS FUNCIONES DE GREEN Mediante la aplicación de la
transformada de Laplace al problema con valores iniciales
y ay by f(t), y(0) 0, y(0) 0
donde a y b son constantes, encontramos que la transformada de y(t) es
F(s)
s2 as b
donde F(s) ᏸ{f(t)}. Rescribiendo la última transformada como el producto
Y(s)
1
F(s)
s
as b
podemos usar la forma inversa del teorema de convolución (4) para escribir la solución
del PVI como
t
y(t)
) f ( )d
g(t
(11)
Y(s)
2
0
1
1
g(t) y
{F(s)} f(t). De otra manera, sabemos de
s
as b
(10) de la sección 4.8 que la solución del PVI está también dada por
donde
1
2
t
G(t, ) f( ) d ,
y(t)
(12)
0
donde G(t, IJ) es la función de Green para la ecuación diferencial.
Comparando (11) y (12) vemos que la función de Green para la ecuación diferencial
1
1
g(t) por
está relacionada con
s2 as b
G(t, ) g(t
)
(13)
7.4
PROPIEDADES OPERACIONALES II
Por ejemplo, para el problema con valores iniciales y 4y f(t),
encontramos
1
1
1
g(t).
2 sen 2t
2
s
4
En el ejemplo 4 de la sección 4.8, los
papeles que están jugando los símbolos
x y t son los de t y IJ en este análisis
l
299
y(0) 0, y(0) 0
Así de (13) vemos que la función de Green para la ED es y 4y f(t), es G(t, IJ)
g(t IJ) 1兾2 sen 2(t IJ). Vea el ejemplo 4 de la sección 4.8.
7.4.3 TRANSFORMADA DE UNA FUNCIÓN
PERIÓDICA
FUNCIÓN PERIÓDICA Si una función periódica tiene periodo T, T 0, entonces
f (t T) f (t). El siguiente teorema muestra que la transformada de Laplace de una
función periódica se obtiene integrando sobre un periodo.
TEOREMA 7.4.3 7UDQVIRUPDGDGHXQDIXQFLyQSHULyGLFD
Si f (t) es continua por tramos en [0, ), de orden exponencial y periódica con
periodo T, entonces
{ f (t)}
DEMOSTRACIÓN
T
1
e
1
st
e
sT
f (t) dt.
0
Escriba la transformada de Laplace de f como dos integrales:
T
{ f (t)}
st
e
f (t) dt
st
e
0
f (t) dt.
T
Cuando se hace t u T, la última integral se convierte en
e
st
f (t) dt
e
s(u T )
f (u
T ) du
e
sT
0
T
e
su
f (u) du
e
sT
{ f (t)}.
0
T
Por tanto,
{ f (t)}
e
st
f (t) dt
{ f (t)}.
sT
e
0
{ f (t)} se demuestra el teorema.
Resolviendo la ecuación de la última línea para
E(t)
EJEMPLO 7
1
1
2
3
4
FIGURA 7.4.4 Onda cuadrada.
t
$SOLFDFLyQGHXQYROWDMHSHULyGLFR
Encuentre la transformada de Laplace de la función periódica que se muestra en la
¿JXUD
SOLUCIÓN La función E(t) se llama de onda cuadrada y tiene periodo T 2. En el
intervalo 0 t 2, E(t VHSXHGHGH¿QLUSRU
E(t)
1, 0
0, 1
1
2
t
t
y fuera del intervalo por E(t 2) E(t). Ahora del teorema 7.4.3
{E(t)}
1
1
e
2
2s
e
st
E(t) dt
0
1
1 e
1 e 2s
s
1
.
s (1 e s )
1
e
1
1
2s
2
e
st
1dt
0
e
st
0 dt
1
s
;1
e
2s
(1
e s )(1
e s)
(14)
300
CAPÍTULO 7
l
LA TRANSFORMADA DE LAPLACE
EJEMPLO 8
$SOLFDFLyQGHXQYROWDMHSHULyGLFR
La ecuación diferencial para la corriente i(t) en un circuito RL en serie de una sola
malla es
di
L
Ri E(t).
(15)
dt
Determine la corriente i(t) cuando i(0) 0 y E(t) es la función de onda cuadrada que
VHPXHVWUDHQOD¿JXUD
SOLUCIÓN Si se usa el resultado de (14) del ejemplo anterior, la transformada de
Laplace de la ED es
LsI(s)
1
RI(s)
o
e s)
s(1
I(s)
1 >L
1
.
R > L) 1 e s
s(s
(16)
Para encontrar la transformada de Laplace inversa de la última función, primero se hace
XVRGHODVHULHJHRPpWULFD&RQODLGHQWL¿FDFLyQx es, s 0, la serie geométrica
1
1
x
1
x2
x
1
se convierte en
x3
1
De
s(s
1
e
L>R
s
R>L)
s
1
s
L>R
R>L
s
e
e
2s
3s
e
.
se puede reescribir la ecuación (16) como
I(s)
1 1
R s
s
1 1
R s
e s
s
i(t)
1
(1
R>L
2s
e
s
e
2s
3s
e
3s
e
s
e
)
1
R s
s
1
R>L
1
e
R>L
s
2s
e
s
s
e
R>L
s
3s
.
R>L
Aplicando la forma del segundo teorema de traslación a cada término de ambas series,
se obtiene
1
(1
(t 1)
(t 2)
(t 3)
)
R
1
(e Rt/L e R(t 1)/L (t 1) e R(t 2)/L (t 2) e R(t 3)/L (t 3)
)
R
o, de forma equivalente
1
(1
R
i(t)
e
1
( 1) n (1 e
Rn 1
Rt/L
)
R(t n)/L
)
(t
n).
3DUDLQWHUSUHWDUODVROXFLyQVHVXSRQHSRUUD]RQHVGHHMHPSOL¿FDFLyQTXHR 1, L
1 y 0 t 4. En este caso
i(t)
2
1. 5
1
0. 5
i
1
e
t
et
(1
1
)
(t
1)
(1
e
(t
2)
)
(t
2)
(1
e
(t
3)
)
(t
3);
en otras palabras,
e t,
1
t
1
2
3
4
FIGURA 7.4.5 *Ui¿FDGHODFRUULHQWH
i(t) en ejemplo 8.
i(t)
e
1
t
e
e
t
e
t
(t 1)
,
e
e
(t 1)
(t 1)
e
e
(t 2)
(t 2)
,
e
(t 3)
,
0
1
2
3
t
t
t
t
1
2
3
4.
/DJUi¿FDGHi(t) en el intervalo 0 t TXHVHPXHVWUDHQOD¿JXUDVHREWXYR
con la ayuda de un SAC.
7.4
PROPIEDADES OPERACIONALES II
301
l
EJERCICIOS 7.4 Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-12.
7.4.1 DERIVADAS DE UNA TRANSFORMADA
7.4.2 TRANSFORMADAS DE INTEGRALES
En los problemas 1 a 8 use el teorema 7.4.1 para evaluar cada
una de las transformadas de Laplace.
En los problemas 19 a 30, use el teorema 7.4.2 para evaluar
cada una de las transformadas de Laplace. No evalúe la integral antes de transformar.
{te
{t3et}
{t cos 2t}
{t senh 3t}
{1
{t2 senh t}
{t2 cos t}
{e
{te2t sen 6 t}
{te
10t
}
3t
cos 3t}
t3}
t
et cos t}
t
{t2 tet }
{e2t sen t}
t
e d
cos d
0
En los problemas 9 a 14, use la transformada de Laplace para
resolver el problema con valores iniciales dado. Use la tabla de
transformadas de Laplace del apéndice III cuando sea necesario.
y y t sen t,
y(0) 0
y(0) 0
y 9y cos 3t,
y(0) 2,
y y sen t,
e cos d
y(0) 1,
sen d
0
0
t
et
t
d
sen cos (t
0
y(0) 5
y(0) 1, donde
cos 4t, 0
0,
y(0) 1,
t
t
y(0) 0, donde
1,
0
sen t,
f (t)
)d
0
t
sen d
t
t
t
e
d
0
y(0) 1
y(0) 0,
f(t)
t
t
>2
>2
En los problemas 31 a 34, use (8) para evaluar cada transformada inversa.
1
1
1
1)
s(s
1
3
s (s
1)
y(t) del problema 13 en el intervalo 0 t 2ʌ
y(t) del problema 14 en el intervalo 0 t 3ʌ
En algunos casos, la transformada de Laplace se puede usar
SDUDUHVROYHUHFXDFLRQHVGLIHUHQFLDOHVOLQHDOHVFRQFRH¿FLHQtes monomiales variables. En los problemas 17 y 18, use el
teorema 7.4.1 para reducir la ecuación diferencial dada a
una ED lineal de primer orden en la función transformada.
Resuelva la ED de primer
y orden para Y(s)
{y(t)} y des1
pués encuentre y(t)
{Y(s)} .
1
1
1
2
s (s
1)
1
a)2
s(s
La tabla del apéndice III no contiene un elemento para
(Q ORV SUREOHPDV \ XVH XQ SURJUDPD GH JUD¿FDFLyQ
SDUDWUD]DUODJUi¿FDGHODVROXFLyQLQGLFDGD
ty y 2t 2,
t
0
y 16y f (t),
y y f (t),
t
y y te sen t,
t
0
1
8k3s
.
(s
k2)3
2
a) Use (4) junto con los resultados de (5) para evaluar
esta transformada inversa. Utilice un SAC como
ayuda para evaluar la integral de convolución.
b) Vuelva a analizar su respuesta del inciso a). ¿Podría
haber obtenido el resultado en una forma diferente?
Emplee la transformada de Laplace y los resultados del problema 35 para resolver el problema con valores iniciales
y
y
sen t
t sen t, y(0)
0,
y (0)
0.
8VHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUODVROXFLyQ
y(0) 0
2y ty 2y 10,
y(0) y(0) 0
En los problemas 37 a 46, use la transformada de Laplace para
resolver la ecuación integral o la ecuación integrodiferencial.
302
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
t
f (t)
(t
) f( ) d
t
f(t)
a
0
f (t)
t
2t
sen f (t
4
)d
b
2b
3b
t
4b
0
f (t)
función diente de sierra
t
t
f (t
te
FIGURA 7.4.8 *Ui¿FDSDUDHOSUREOHPD
)d
0
f (t)
t
2
f ( ) cos (t
)d
4e
t
sen t
f(t)
0
1
t
f (t)
f( ) d
1
1
0
f (t)
t
cos t
f (t
e
t
1
8
3
t
FIGURA 7.4.9 *Ui¿FDSDUDHOSUREOHPD
t)3 f ( ) d
(
0
f(t)
1
e ) f (t
(e
)d
0
y (t)
π
2π
3π
4π
t
t
1
sen t
y( ) d , y(0)
0
rectificación de onda completa de sen t
0
t
dy
6y(t) 9 y( ) d
1, y(0) 0
dt
0
En los problemas 47 y 48, resuelva la ecuación (10) sujeta a i(0)
0 con L, R, C y E(t) como se dan para cada problema. Use un proJUDPDGHJUD¿FDFLyQSDUDWUD]DUODVROXFLyQHQHOLQWHUYDOR t 3.
L 0.1 h, R 3 !, C 0.05 f,
E(t) 100[ (t 1)
(t 2)]
L 0.005 h, R 1 !, C 0.02 f,
E(t) 100[t (t 1) (t 1)]
7.4.3
t
4
t
t
2 f (t)
3
función triangular
)d
0
f (t)
2
TRANSFORMADA DE UNA FUNCIÓN
PERIÓDICA
En los problemas 49 a 54 use el teorema 7.4.3 para determinar la
transformada de Laplace de cada una de las funciones periódicas.
f(t)
1
a
2a
3a
t
4a
FIGURA 7.4.10 *Ui¿FDSDUDHOSUREOHPD
f(t)
1
π
2π
3π
4π
t
rectificación de media onda de sen t
FIGURA 7.4.11 *Ui¿FDSDUDHOSUREOHPD
En los problemas 55 y 56 resuelva la ecuación (15) sujeta a
i(0) 0 con E(t) como se indica. Use un programa de gra¿FDFLyQSDUDWUD]DUODVROXFLyQHQHOLQWHUYDOR t 4 en el
caso cuando L I y R 1.
E(t) es la función serpenteante del problema 49 con amplitud 1 y a 1.
E(t) es la función diente de sierra del problema 51 con
amplitud 1 y b l.
En los problemas 57 y 58 resuelva el modelo para un sistema
forzado resorte/masa con amortiguamiento
1
d 2x
dx
kx f (t), x(0) 0, x (0) 0,
2
dt
dt
donde la función forzada fHVFRPRVHHVSHFL¿FD8WLOLFHXQSURJUDPDGHJUD¿FDFLyQSDUDWUD]DUx(t) en los valores indicados de t.
m
función serpenteante
FIGURA 7.4.6 *Ui¿FDSDUDHOSUREOHPD
f(t)
1
a
2a
3a
4a
t
función de onda cuadrada
FIGURA 7.4.7 *Ui¿FDSDUDHOSUREOHPD
m 12, b 1, k 5, f es la función serpenteante del
problema 49 con amplitud 10, y a ʌ, 0 t 2ʌ.
m 1, ȕ 2, k 1, f es la función de onda cuadrada del
problema 50 con amplitud 5, y a ʌ, 0 t 4ʌ.
7.4
Problemas para analizar
Examine cómo se puede usar el teorema 7.4.1 para encontrar
s 3
1
ln
.
s 1
En la sección 6.4 vimos que ty y ty 0 es la ecuación de Bessel de orden Y 0. En vista de (22) de esta
sección y de la tabla 6.1, una solución del problema con
valores iniciales ty y ty 0, y(0) 1, y(0) 0, es
y J0(t). Use este resultado y el procedimiento descrito
en las instrucciones de los problemas 17 y 18 para demostrar que
1
.
{J0 (t)}
1s2 1
[Sugerencia: Podría ser necesario usar el problema 46 de
los ejercicios 7.2].
a) Se sabe que la HFXDFLyQGLIHUHQFLDOGH/DJXHUUH
ty (1 t)y ny 0
tiene soluciones polinomiales cuando n es un entero
no negativo. Estas soluciones naturalmente se llaman polinomios de Laguerre y se denotan por Ln(t).
Determine y Ln(t), para n 0, 1, 2, 3, 4 si se sabe
que Ln(0) 1.
l
303
Use la transformada de Laplace como una ayuda en la
evaluación de la integral impropia 0 te 2t sen 4t dt .
Si suponemos que ᏸ{f(t)兾t} existe y ᏸ{f(t)} F(s),
entonces
f (t)
t
F(u)du.
s
Utilice este resultado para encontrar la transformada de
Laplace de la función dada. Los símbolos a y k son constantes positivas.
a) f(t)
b) f (t)
sen at
t
2(1 cos kt)
t
Transformada de un logaritmo Ya que f(t) ln t tiene
XQDGLVFRQWLQXLGDGLQ¿QLWDHQt 0 se podría suponer que
ᏸ{ln t} no existe; sin embargo, esto es incorrecto. En este
problema se le guía a través de los pasos formales que conducen a la transformada de Laplace de f(t) ln t, t 0.
a) Utilice integración por partes para demostrar que
1
{ln t} s {t ln t}
s
b) Si ᏸ{ln t} Y(s), utilice el teorema 7.4.1 con n 1
para demostrar que el inciso a) se convierte en
b) Demuestre que
et d n n
te
n! dt n
t
Y(s),
s
donde Y(s)
{y} y y Ln(t) es una solución polinomial de la ED del inciso a). Concluya que
et d n n t
te ,
n 0, 1, 2, . . . .
n! dt n
Esta última relación para generar los polinomios de
Laguerre es el análogo de la fórmula de Rodrigues
para los polinomios de Legendre. Vea (33) en la sección 6.4.
Ln (t)
2
La transformada de Laplace ᏸ{et } existe, pero sin encontrarla resuelva el problema con valores iniciales y y
2
et , y(0) 0, y(0) 0.
Resuelva la ecuación integral
f (t)
PROPIEDADES OPERACIONALES II
et
et
e
t
f( ) d
a) Demuestre que la función onda cuadrada E(t) dada
HQOD¿JXUDVHSXHGHHVFULELUFRPR
( 1)k
k
Y
1
s
Encuentre una solución explicita Y(s) de la última ecuación diferencial.
c)
3RU~OWLPRODGH¿QLFLyQLQWHJUDOGHODconstante de
Euler (algunas veces llamada la constante de Eulere t ln t dt , donde Ȗ
0DVFKHURQL) es
0
0.5772156649… Use Y(1) Ȗ en la solución del
inciso b) para demostrar que
{ln t}
s
ln s
,
s
s
0.
Tarea para el laboratorio de computación
t
0
E(t)
dY
ds
(t
k).
0
b) Obtenga la ecuación (14) de esta sección tomando la
transformada de Laplace de cada término de la serie
del inciso a).
En este problema se indican las instrucciones de Mathematica que permiten obtener la transformada de Laplace simbólica de una ecuación diferencial y la solución del problema de valores iniciales al encontrar la transformada
inversa. En Mathematica la transformada de Laplace de
una función y(t) se obtiene usando LaplaceTransform
>\>W@WV@. En el renglón dos de la sintaxis se reemplaza
/DSODFH7UDQVIRUP >\>W@ W V@ por el símbolo Y. (Si no
tiene Mathematica, entonces adapte el procedimiento dado
encontrando la sintaxis correspondiente para el SAC que
tenga a la mano.)
304
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
0RGL¿TXHGHIRUPDDSURSLDGDHOSURFHGLPLHQWRGHOSURblema 62 para encontrar una solución de
Considere el problema con valores iniciales
y
6y
9y
t sen t,
y(0)
2, y (0)
1.
3y
y
Cargue el paquete de transformada de Laplace. Reproduzca con precisión y después, a su vez, ejecute cada renglón de la siguiente secuencia de instrucciones. Copie los
resultados a mano o imprímalo.
diffequat ⴝ\ ⴖ>W@ⴙ\ⴕ>W@ⴙ\>W@ⴝⴝW6LQ>W@
transformdeq ⴝ/DSODFH7UDQVIRUP>GLIIHTXDWWV@
^\>@ⴚ \ⴕ>@ⴚ ⴚ
/DSODFH7UDQVIRUP>\>W@WV@ⴚ Y}
soln ⴝ6ROYH>WUDQVIRUPGHT<@)ODWWHQ
Y ⴝ<VROQ
,QYHUVH/DSODFH7UDQVIRUP><VW@
7.5
y(0)
4y
0,
0,
y (0)
0, y (0)
1.
La carga q(t) en un capacitor en un circuito CL en serie
está dada por
d 2q
dt2
q(0)
q
1
4 (t
0, q (0)
)
6 (t
3 ),
0.
0RGL¿TXH GH IRUPD DSURSLDGD HO SURFHGLPLHQWR GHO SURblema 62 para determinar q(t 7UDFHODJUi¿FDGHVXVROXción.
LA FUNCIÓN DELTA DE DIRAC
INTRODUCCIÓN En el último párrafo de la página 271, se indicó que como una consecuencia
inmediata del teorema 7.1.3, F(s) 1 no puede ser la transformada de Laplace de una función f que
es continua por tramos en [0, ) y de orden exponencial. En el análisis siguiente se introduce una
función que es muy diferente de las que ha estudiado en cursos anteriores. Más tarde veremos que
de hecho existe una función o más precisamente, una función generalizada, cuya transformada de
Laplace es F(s) 1.
IMPULSO UNITARIO Los sistemas mecánicos suelen ser afectados por una fuerza
externa (o fuerza electromotriz en un circuito eléctrico) de gran magnitud que actúa sólo
por un periodo muy corto. Por ejemplo, podría caer un rayo en el ala vibrante de un avión,
un martillo de bola podría golpear con precisión una masa en un resorte, una bola (de
beisbol, golf, tenis) podría ser enviada por el aire al ser golpeada de modo violento con un
EDWHSDORGHJROIRUDTXHWD9HDOD¿JXUD/DJUi¿FDGHODIXQFLyQGH¿QLGDSRUSDUWHV
a (t
t0 )
0,
1
, t0
2a
0,
0
t
t0
a
a
t
t0
a
t
t0
a,
(1)
a 0, t0 TXHVHPXHVWUDHQOD¿JXUD D SRGUtDVHUYLUFRPRPRGHORSDUDWDOIXHU]D
Para un valor pequeño de a, įa(t t0) es en esencia una función constante de gran magnitud que está “activada” sólo durante un periodo muy corto, alrededor de t0. El comportamiento de įa(t t0) conforme a →VHLOXVWUDHQOD¿JXUD E /DIXQFLyQįa(t t0) se
llama impulso unitario porque tiene la propiedad de integración 0 a (t t0 ) dt 1 .
FIGURA 7.5.1 Un palo de golf aplica
una fuerza de gran magnitud en la bola
durante un periodo muy corto.
LA FUNCIÓN DELTA DE DIRAC En la práctica es conveniente trabajar con otro tipo
de impulso unitario, una “función” que aproxima a įa(t t0 \VHGH¿QHSRUHOOtPLWH
(t
t0 )
lím
a: 0
a (t
t0 ).
(2)
7.5
y
1兾2a
t0
305
l
La última expresión, que no es una función en absoluto, se puede caracterizar por las
dos propiedades
, t t0
i ) (t t0 )
y
ii)
(t t0 ) dt 1.
0, t t0
0
2a
t0 − a
LA FUNCIÓN DELTA DE DIRAC
t0 + a t
El impulso unitario į(t t0) se llama IXQFLyQGHOWDGH'LUDF.
Es posible obtener la transformada de Laplace de la función delta de Dirac por la
suposición formal de que { (t t0 )} lím a : 0 { a (t t0 )} .
a) gráfica de a(t t0)
y
TEOREMA 7.5.1 7UDQVIRUPDGDGHODIXQFLyQGHOWDGH'LUDF
0,
Para t 0
{ (t
t0 )}
st0
e
(3)
.
DEMOSTRACIÓN Para empezar se puede escribir įa(t t0) en términos de la función
escalón unitario en virtud de (11) y (12) de la sección 7.3:
1
t0 )
[ (t (t0 a))
(t (t0 a))].
a (t
2a
Por linealidad y (14) de la sección 7.3 la transformada de Laplace de esta última expresión es
t0
b) comportamiento de a
conforme a → 0
FIGURA 7.5.2
Impulso unitario.
t
1 e s(t0 a) e s(t0 a)
esa e sa
(4)
e st0
.
2a
s
s
2sa
Puesto que (4) tiene la forma indeterminada 0兾0 conforme a → 0 se aplica la regla de
L'Hôpital:
{ a (t
{ (t
t0 )}
t0 )}
lím
{ a (t
a:0
t0 )}
e
st 0
lím
esa
a:0
e
2sa
sa
e
st 0
.
Ahora cuando t0 0, se puede concluir de (3) que
{ (t)} 1.
El último resultado enfatiza el hecho de que į(t) no es el tipo usual de función que
se ha estado considerando, puesto que se espera del teorema 7.1.3 que ᏸ { f (t)} → 0
conforme s → .
EJEMPLO 1
Dos problemas con valores iniciales
Resuelva y y 4į(t 2ʌ) sujeta a
a) y(0) 1, y(0) 0 b) y(0) 0, y(0) 0.
Dos problemas con valores iniciales podrían servir como modelos para describir el
movimiento de una masa en un resorte que se mueve en un medio en el cual el amortiguamiento es despreciable. En t 2ʌ la masa recibe un golpe preciso. En a) la masa
se libera a partir del reposo una unidad abajo de la posición de equilibrio. En b) la
masa está en reposo en la posición de equilibrio.
SOLUCIÓN a) De (3) la transformada de Laplace de la ecuación diferencial es
4e 2 s
.
s2 1 s2 1
Con la forma inversa del segundo teorema de traslación, se encuentra
s2Y(s)
s
y(t)
2 s
4e
Y(s)
cos t
o
4 sen(t
s
Y(s)
2 )
(t
2 ).
Puesto que sen(t 2ʌ) sen t, la solución anterior se puede escribir como
y(t)
cos t,
cos t
0
4 sen t,
t
t
2
2 .
(5)
306
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
(QOD¿JXUDVHYHGHODJUi¿FDGH TXHODPDVDSUHVHQWDPRYLPLHQWRDUPyQLFR
simple hasta que es golpeada en t 2ʌ/DLQÀXHQFLDGHOLPSXOVRXQLWDULRHVLQFUHmentar la amplitud de vibración a 117 para t 2ʌ.
y
1
−1
b) En este caso la transformada de la ecuación es simplemente
2π
4π
t
Y(s)
y así
4 sen(t
y(t)
FIGURA 7.5.3 La masa es golpeada en
2 s
,
1
2 )
0,
0
4 sen t,
t 2ʌ.
(t
t
t
2 )
2
2 .
(6)
/DJUi¿FDGH GHOD¿JXUDPXHVWUDFRPRVHHVSHUDUtDGHODVFRQGLFLRQHVLQLciales, que la masa no exhibe movimiento hasta que es golpeada en t 2ʌ.
y
COMENTARIOS
1
−1
4e
s2
2π
4π t
FIGURA 7.5.4 Ningún movimiento
hasta que la masa es golpeada en t 2ʌ.
i) Si į(t – t0) fuera una función en el sentido usual, entonces la propiedad i) de la función delta de Dirac implicaría 0 (t t0 ) dt 0 en vez de 0 (t t0 ) dt 1
Debido a que la función delta de Dirac no se “comporta” como una función ordinaria, aun cuando sus usuarios produjeron resultados correctos, al inicio los matemáticos la recibieron con gran desprecio. Sin embargo, en 1940 la controversial
función de Dirac fue puesta en un fundamento riguroso por el matemático francés
Laurent Schwartz en su libro La Théorie de distribution y esto, a su vez, condujo a
una rama completamente nueva de la matemática conocida como la teoría de las
distribuciones o funciones generalizadas(QHVWDWHRUtD QRHVXQDGH¿QLFLyQ
aceptada de į(t – t0), ni se habla de una función cuyos valores son o 0. Aunque se
deja en paz este tema, basta decir que la función delta de Dirac se caracteriza mejor
por su efecto en otras funciones. Si f es una función continua, entonces
f (t) (t
t0 ) dt
(7)
f (t0 )
0
se puede tomar como la GH¿QLFLyQ de į(t – t0). Este resultado se conoce como
propiedad de cribado, puesto que į(t – t0) tiene el efecto de separar el valor f (t0)
del conjunto de valores de f en [0, ). Note que la propiedad ii) (con f(t) 1) y
(3) (con f (t) esf ) son consistentes con (7).
ii) Los Comentarios en la sección 7.2 indicaron que la función de transferencia
de una ecuación diferencial lineal general de n-pVLPRRUGHQFRQFRH¿FLHQWHVFRQVtantes es W(s) 1兾(P(s), donde P(s) ansn an1sn1 . . . a0. La función
de transferencia es la transformada de Laplace de la función w(t), conocida como
IXQFLyQSHVR de un sistema lineal. Pero w(t) también se puede caracterizar en términos del análisis en cuestión. Por simplicidad se considera un sistema lineal de
segundo orden en el que la entrada es un impulso unitario en t 0:
a2 y
a1 y
a0 y
(t), y(0) 0, y (0) 0.
Aplicando la transformada de Laplace y usando { (t)} 1 se muestra que la
transformada de la respuesta y en este caso es la función de transferencia
Y(s)
a2 s
2
1
a1s
a0
1
P(s)
W(s)
y así
y
1
1
P(s)
w(t).
De esto se puede ver, en general, que la función peso y w(t) de un sistema lineal
de n-ésimo orden es la respuesta de estado cero del sistema a un impulso unitario.
Por esta razón w(t) también se llama respuesta de impulso del sistema.
7.6
EJERCICIOS 7.5
y 3y į(t 2), y(0) 0
y y į(t 1), y(0) 2
y(0) 0, y(0) 1
y 16y į(t 2ʌ),
(
y
t
y
y(0) 0, y (0)
)
1
2
(t
donde y(0) 0, y(0) 0, y(L) 0, y y (L) 0.
w0
),
x
0
L
y y į(t 2ʌ) į(t 4ʌ), y(0) 1, y(0) 0
y 2y į(t 1), y(0) 0, y(0) 1
y 2y 1 į(t 2), y(0) 0, y(0) 1
y 4y 5y į(t 2ʌ),
y(0) 0, y(0) 0
y 2y y į(t 1), y(0) 0, y(0) 0
y 4y 13y į(t ʌ) į(t 3ʌ),
y(0) 1, y(0) 0
y 7y 6y et į(t 2) į(t 4),
y(0) 0, y(0) 0
Una viga uniforme de longitud L soporta una carga con1
centrada w0 en x 2 L . La viga está empotrada en su
7.6
307
extremo izquierdo y libre en su extremo derecho. Use la
WUDQVIRUPDGDGH/DSODFHSDUDGHWHUPLQDUODGHÀH[LyQy(x)
de
d 4y
EI 4 w0 x 12 L ,
dx
y(0) 0, y(0) 0
3
2
l
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-12.
En los problemas 1 a 12, use la transformada de Laplace para
resolver el problema con valores iniciales.
y y į(t 2ʌ),
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES
y
FIGURA 7.5.5 Viga en el problema 14.
Resuelva la ecuación diferencial del problema 13 sujeta a
y(0) 0, y(0) 0, y(L) 0, y(L) 0. En este caso la viga
HVWiHPSRWUDGDHQDPERVH[WUHPRV9HDOD¿JXUD
Problemas para analizar
$OJXLHQD¿UPDTXHODVVROXFLRQHVGHGRV39,
y
y
2y
2y
10y
10y
0,
(t),
y(0)
y(0)
0, y (0)
0, y (0)
1
0
son exactamente lo mismo. ¿Está de acuerdo o no?
-XVWL¿TXHVXUHVSXHVWD
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES
REPASO DE MATERIAL
l Solución de sistemas de dos ecuaciones con dos incógnitas.
INTRODUCCIÓN &XDQGRVHHVSHFL¿FDQODVFRQGLFLRQHVLQLFLDOHVODWUDQVIRUPDGDGH/DSODFH
GH FDGD HFXDFLyQ HQ XQ VLVWHPD GH HFXDFLRQHV GLIHUHQFLDOHV OLQHDOHV FRQ FRH¿FLHQWHV FRQVWDQWHV
reduce el sistema de ED a un conjunto de ecuaciones algebraicas simultáneas en las funciones transformadas. Se resuelve el sistema de ecuaciones algebraicas para cada una de las funciones transformadas y luego se determinan las transformadas de Laplace inversas en la manera usual.
RESORTES ACOPLADOS Dos masas m1 y m2 están conectadas a dos resortes A y
B de masa despreciable con constantes de resorte k1 y k2 respectivamente. A su vez,
ORVGRVUHVRUWHVHVWiQXQLGRVFRPRVHPXHVWUDHQOD¿JXUD6HDQx1(t) y x2(t) los
desplazamientos verticales de las masas desde sus posiciones de equilibrio. Cuando
el sistema está en movimiento, el resorte B está sujeto a elongación y compresión;
por lo que su elongación neta es x2 – x1. Por tanto, se deduce de la ley de Hooke que
los resortes A y B ejercen fuerzas k1x1 y k2(x2 x1), respectivamente, en m1. Si ninguna fuerza externa se aplica al sistema y si ninguna fuerza de amortiguamiento está
presente, entonces la fuerza neta en m1 es k1x1 k2(x2 x1). Por la segunda ley de
Newton se puede escribir
d 2x
k1 x1 k2 (x2 x1).
m1 21
dt
308
CAPÍTULO 7
l
A
x1 = 0
LA TRANSFORMADA DE LAPLACE
De igual manera, la fuerza neta ejercida en la masa m2 se debe sólo a la elongación
neta de B ; es decir, k2(x2 x1). Por tanto, se tiene
k1
m1
x1
k2
B
m2
k1 x1
m1
m2
x2
m2
x1).
k2 (x2
En otras palabras, el movimiento del sistema acoplado se representa por el sistema
de ecuaciones diferenciales simultáneas de segundo orden
m1
k2 (x2 − x1)
x2 = 0
d 2 x2
dt2
k2 (x2 − x1)
m2
m1 x 1
k1 x1
k2 (x2
m2 x 2
k2 (x2
x1).
x1)
(1)
En el ejemplo siguiente se resuelve (1) bajo las suposiciones de que k1 6, k2 4,
m1 1, m2 1 y que las masas comienzan desde sus posiciones de equilibrio con
velocidades unitarias opuestas.
a) equilibrio b) movimiento c) fuerzas
FIGURA 7.6.1 Sistema resorte/masa
EJEMPLO 1
acoplado.
Resortes acoplados
Resuelva
10x1
x1
4x1
sujeta a x1(0)
0, x 1(0)
x2
1, x2 (0)
4x2
0
4x2
0
0, x 2 (0)
(2)
1.
SOLUCIÓN La transformada de Laplace de cada ecuación es
s2 X1(s)
sx1(0)
s2 X2 (s)
4X1(s)
donde X1(s)
x1(0)
sx2 (0)
{x1(t)} y X2 (s)
(s2
0
x2 (0)
4X2 (s)
0,
4X2 (s)
(s2
4 X1(s)
0. 4
4X2 (s)
{x2 (t)}. El sistema anterior es igual a
10) X1(s)
x1
10X1(s)
1
4) X2 (s)
(3)
1.
Resolviendo (3) para X1(s) y usando fracciones parciales en el resultado, se obtiene
0. 2
t
X1(s)
_ 0. 2
_ 0. 4
2
(s
s2
2)(s2
y por tanto
2.5
5
7.5
1 0 1 2 .5 1 5
x1(t)
a) gráfica de x1(t) vs. t
x2
0. 4
1
512
1
12)
12
s2 2
12
sen 12t
10
1>5
s2 2
6
5 112
s2
6>5
,
12
112
s2 12
1
13
sen 213t.
5
0. 2
t
Sustituyendo la expresión para X1(s) en la primera ecuación de (3), se obtiene
_ 0. 2
X2(s)
_ 0. 4
2.5
5
7.5 1 0 1 2 .5 1 5
b) gráfica de x2(t) vs. t
FIGURA 7.6.2 Desplazamientos de las
dos masas del ejemplo 1.
y
x2(t)
(s
2
2
512
s2 6
2)(s2 12)
12
1
2
s
12
sen 12t
5
2
2> 5
s2 2
3
5112
13
sen 213t.
10
s2
1
3> 5
12
112
s
12
2
7.6
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES
Por último, la solución del sistema (2) es
12
sen 12t
10
x1(t)
13
sen 213t
5
12
sen 12t
5
x2(t)
l
13
sen 213t.
10
309
(4)
/DVJUi¿FDVGHx1 y x2GHOD¿JXUDUHYHODQHOFRPSOLFDGRPRYLPLHQWRRVFLODWRULR
de cada masa.
i1
E
L
i2
REDES En (18) de la sección 3.3 vimos que las corrientes il(t) e i2(t) de la red que se
PXHVWUDHQOD¿JXUDFRQXQLQGXFWRUXQUHVLVWRU\XQFDSDFLWRUHVWDEDQJREHUQDdas por el sistema de ecuaciones diferenciales de primer orden
i3
R
FIGURA 7.6.3 Red eléctrica.
L
C
di1
dt
di
RC 2
dt
Ri2
E(t)
(5)
i2
0.
i1
Resolvemos este sistema con la transformada de Laplace en el siguiente ejemplo.
EJEMPLO 2
8QDUHGHOpFWULFD
Resuelva el sistema en (5) bajo las condiciones E(t) 60 V, L 1 h, R 50 !, C
104 f y al inicio las corrientes i1 e i2 son cero.
SOLUCIÓN Debemos resolver
di1
dt
50(10 4 )
di2
dt
50i2
i2
i1
60
0
sujeta a i1(0) 0, i2(0) 0.
$SOLFDQGR OD WUDQVIRUPDGD GH /DSODFH D FDGD HFXDFLyQ GHO VLVWHPD \ VLPSOL¿cando, se obtiene
60
sI1(s)
50I2(s)
s
200I1(s)
(s
200)I2(s)
0,
{i1(t)} e I2(s)
{i2(t)}. Resolviendo el sistema para I1 e I2 y desdonde I1(s)
componiendo los resultados en fracciones parciales, se obtiene
I1(s)
60s
s(s
12 000
100)2
I2(s)
12 000
s(s 100)2
6>5
s
s
6>5
100
6>5
s
6>5
s 100
(s
60
100)2
120
.
(s 100)2
Tomando la transformada inversa de Laplace, encontramos que las corrientes son
6 6 100t
i1(t)
e
60te 100t
5 5
i2(t)
6
5
6
e
5
100t
120te
100t
.
310
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
6
Observe que tanto i1(t) como i2(t) del ejemplo 2 tienden hacia el valor E>R
5
conforme t → . Además, puesto que la corriente a través del capacitor es i3(t) i1(t)
i2(t) 60te100t, se observa que i3(t) → 0 conforme t → .
θ 1 l1
PÉNDULO DOBLE Considere el sistema de péndulo doble que consiste en un pénGXORXQLGRDRWURFRPRVHPXHVWUDHQOD¿JXUD6HVXSRQHTXHHOVLVWHPDRVFLOD
HQXQSODQRYHUWLFDOEDMRODLQÀXHQFLDGHODJUDYHGDGTXHODPDVDGHFDGDYDULOODHV
despreciable y que ninguna fuerza de amortiguamiento actúa sobre el sistema. En la
¿JXUDWDPELpQVHPXHVWUDTXHHOiQJXORGHGHVSOD]DPLHQWRș1 se mide (en radianes) desde una línea vertical que se extiende hacia abajo desde el pivote del sistema
y que ș2 se mide desde una línea vertical que se extiende desde el centro de masa m1.
La dirección positiva es a la derecha; la dirección negativa es a la izquierda. Como
se esperaría del análisis que condujo a la ecuación (6) de la sección 5.3, el sistema de
ecuaciones diferenciales que describe el movimiento es no lineal:
m1
l2
θ2
m2
FIGURA 7.6.4 Péndulo doble.
(m1
m2 )l12
1
m2 l1l2
m2l22
2
cos (
1
m2l1l2
1
2
m2l1l2( 2 )2 sen (
2)
cos (
2)
1
2)
1
m2l1l2( 1 )2 sen (
(m1
m2)l1g sen
1
0
m2l2 g sen
2
0.
2)
1
(6)
Pero si se supone que los desplazamientos ș1(t) y ș2(t) son pequeños, entonces las
aproximaciones cos(ș1 ș2) 艐 1, sen(ș1 ș2) 艐 0, sen ș1 艐 ș1, sen ș2 艐 ș2 nos permiten reemplazar el sistema (6) por la linealización
(m1
m2 )l12
1
m2l1l2
m2l22
EJEMPLO 3
2
(m1
2
m2l1l2
1
m2)l1g
1
0
m2l2g
2
0.
(7)
'REOHSpQGXOR
Se deja como ejercicio completar los detalles de usar la transformada de Laplace para
resolver el sistema (7) cuando m1 3, m2 1, l1 l2 16, u1(0) 1, u 2 (0)
1, 1(0) 0 y 2(0) 0 . Debe encontrar que
1(t)
1
2
cos
t
4
13
3
cos 2t
4
2(t)
1
2
cos
t
2
13
3
cos 2t.
2
(8)
(QOD¿JXUDVHPXHVWUDQFRQODD\XGDGHXQ6$&ODVSRVLFLRQHVGHODVGRVPDVDV
en t 0 y en tiempos posteriores. Vea el problema 21 en los ejercicios 7.6.
a) t 0
b) t 1.4
c) t 2.5
d ) t 8.5
FIGURA 7.6.5 Posiciones de masas del péndulo doble en diferentes tiempos del ejemplo 3.
7.6
EJERCICIOS 7.6
dx
x y
dt
dy
2x
dt
x(0) 0, y(0) 1
dx
dt
dy
dt
x
2y
5x
y
x(0) 1,
dx dy
2x
dt
dt
dx dy
3x 3y
dt
dt
x(0) 0, y(0) 0
2
dx
x
dt
dx
dt
x(0) 0,
dx
2y
dt
dy
8x
dt
x(0) 1,
y(0) 1
dx
3x
dt
dx
x
dt
x(0) 0,
dy
dt
dy
y
dt
y(0) 0
y(0) 2
et
t
Resuelva el sistema (1) cuando k1 3, k2 2, m1 1,
m2 1 y x1(0) 0, x1(0) 1, x 2 (0) 1, x 2(0) 0.
Construya el sistema de ecuaciones diferenciales que
describe el movimiento vertical en línea recta de los
UHVRUWHV DFRSODGRV TXH VH PXHVWUDQ HQ OD ¿JXUD
Use la transformada de Laplace para resolver el sistema
cuando k1 1, k2 1, k3 1, m1 1, m2 1 y x1(0) 0,
x1(0)
1, x 2 (0) 0, x 2(0) 1.
k1
t
e
k2
2
k3
dy
y 0
dt
dy
2y 0
dt
y(0) 1
FIGURA 7.6.6 Resortes acoplados del problema 14.
2
a) Demuestre que el sistema de ecuaciones diferenciales
para las corrientes i2(t) e i3(t) en la red eléctrica que se
PXHVWUDHQOD¿JXUDHV
di
L1 2 Ri2 Ri3 E(t)
dt
di
L2 3 Ri2 Ri3 E(t).
dt
b) Resuelva el sistema del inciso a) si R 5 !, L1 0.01
h, L2 0.0125 h, E 100 V, i2(0) 0 e i3(0) 0.
c) Determine la corriente i1(t).
i1 R
E
d 2x
dy
3
3y 0
dt2
dt
d 2x
3y te t
dt2
x(0) 0, x(0) 2, y(0) 0
4x
2y
2 (t
1)
3x
y
(t
1)
0,
y(0)
1
2
m2
x2 = 0
d x
d x dx
dy
x y 0
0
2
2
dt
dt
dt
dt
d 2 y dy
dx
d 2y
y
x
0
4
0
2
2
dt
dt
dt
dt
x(0) 0, x(0) 2,
x(0) 1, x(0) 0,
y(0) 0, y(0) 1
y(0) 1, y(0) 5
x(0)
m1
x1 = 0
1
2
dx
dt
dy
dt
311
1
2
2
dx
d 3y
d x d y t2
4x
6 sen t
dt
dt3
dt2
dt2
dx
d 3y
d 2x d 2y
2x
2
0
4t
dt
dt3
dt2
dt2
x(0) 8, x(0) 0,
x(0) 0, y(0) 0,
y(0) 0, y(0) 0
y(0) 0, y(0) 0
l
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-12.
En los problemas 1 a 12, use la transformada de Laplace para
resolver el sistema dado de ecuaciones diferenciales.
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES
i2
i3
L1
L2
FIGURA 7.6.7 Red del problema 15.
a) En el problema 12 de los ejercicios 3.3 se pide demostrar que las corrientes i2(t) e i3(t) de la red eléctrica que
VHPXHVWUDHQOD¿JXUDVDWLVIDFH
di
di
L 2 L 3 R1i2 E(t)
dt
dt
di
di
1
R1 2 R2 3
i
0.
dt
dt
C 3
312
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
Resuelva el sistema si R1 10 !, R2 5 !, L 1 h,
C 0.2 f.
120,
0,
E(t)
0
i1
2
2,
t
t
E
i3 R2
i2
L
E
R1
C
Resuelva el sistema dado en (17) de la sección 3.3 cuando
R1 6 !, R2 5 !, L1 1 h, L2 1 h, E(t) 50 sen t
V, i2(0) 0 e i3(0) 0.
Resuelva (5) cuando E 60 V, L
104 f, i1(0) 0 e i2(0) 0.
1
2
h , R 50 !, C
Resuelva (5) cuando E 60 V, L 2 h, R 50 !, C
104 f, i1(0) 0 e i2(0) 0.
a) Demuestre que el sistema de ecuaciones diferenciales
para la carga en el capacitor q(t) y la corriente i 3(t) en
ODUHGHOpFWULFDTXHVHPXHVWUDHQOD¿JXUDHV
R1
dq
dt
1
q
C
R1i3
E(t)
L
di3
dt
R2i3
1
q
C
0.
b) Determine la carga en el capacitor cuando L 1 h, R1
1 !, R2 1 !, C 1 f.
0,
50e t,
0
t
t
1
1,
i 3(0) 0 y q(0) 0.
REPASO DEL CAPÍTULO 7
(QORVSUREOHPDV\XWLOLFHODGH¿QLFLyQGHODWUDQVIRUPDGD
de Laplace para encontrar { f (t)} .
f (t)
t,
2
0
t,
0, 0
1, 2
0,
t
t
t
t
t
2
4
4
L
Tarea para el laboratorio de computación
FIGURA 7.6.8 Red del problema 16.
f (t)
C
FIGURA 7.6.9 Red del problema 20.
b) Determine la corriente i1(t).
E(t)
i3
i2
R2
i 2(0) 0, e i 3(0) 0.
i1
R1
1
1
a) Use la transformada de Laplace y la información
dada en el ejemplo 3 para obtener la solución (8) del
sistema que se presenta en (7).
b) 8VH XQ SURJUDPD GH JUD¿FDFLyQ SDUD WUD]DU ș1(t) y
ș2(t) en el plano Wș. ¿Cuál masa tiene desplazamienWRV H[WUHPRV GH PD\RU PDJQLWXG" 8VH ODV JUi¿FDV
para estimar la primera vez que cada masa pasa por
su posición de equilibrio. Analice si el movimiento
del péndulo es periódico.
c) 7
UDFH OD JUi¿FD GH ș1(t) y ș2(t) en el plano ș1ș2 como
HFXDFLRQHV SDUDPpWULFDV /D FXUYD TXH GH¿QHQ HVWDV
ecuaciones paramétricas se llama FXUYDGH/LVVDMRXV.
d) (Q OD ¿JXUD D VH SUHVHQWDQ ODV SRVLFLRQHV GH ODV
masas en t 0. Observe que se ha usado 1 radián
艐 57.3°. Use una calculadora o una tabla de aplicación
de un SAC para construir una tabla de valores de los
ángulos ș1 y ș2 para t 1, 2, . . . , 10 s. Después dibuje
las posiciones de las dos masas en esos tiempos.
e) Use un SAC para encontrar la primera vez que ș1(t)
ș2(t) y calcule el correspondiente valor angular. Dibuje
las posiciones de las dos masas en esos tiempos.
f) Utilice un SAC para dibujar las rectas apropiadas para
simular las varillas de los péndulos, como se muestra
HQ OD ¿JXUD 8VH OD XWLOLGDG GH DQLPDFLyQ GH
su SAC para hacer un “video” del movimiento del
péndulo doble desde t 0 hasta t 10 usando un
incremento de 0.1. [Sugerencia: Exprese las coordenadas (x1(t), y1(t)) y (x2(t), y2(t)) de las masas m1 y m2
respectivamente, en términos de ș1(t) y ș2(t).]
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-13
En los problemas 3 a 24 complete los espacios en blanco o
conteste verdadero o falso.
Si f no es continua por tramos en [0, ), entonces
no existirá. _______
La función f (t)
{ f (t)}
(e t )10 no es de orden exponencial. ____
F(s) s2兾(s2 4) no es la transformada de Laplace de
una función que es continua por tramos y de orden exponencial. _______
REPASO DEL CAPÍTULO 7
Si
{ f (t)} F(s) y {g(t)} G(s), entonces
{F(s)G(s)}
f (t)g(t). _______
{e 7t } _______
{te 7t } _______
l
313
y
1
{sen 2t} _______
{t sen 2t} _______
{sen 2t
20
s6
1
)}
1
3s
1
1
FIGURA 7.R.3 *Ui¿FDSDUDHOSUREOHPD
_______
5
s2
s
10s
1
s
s2
e
2
s
2 2
2
2
Ls
n
En los problemas 29 a 32 exprese f en términos de funciones
escalón unitario. Encuentre { f (t)} y {et f (t)}.
_______
{e 5t} existe para s _______.
Si { f (t)}
F(s), entonces {te8t f (t)}
F(s) y k 0, entonces
Si { f (t)}
at
{e f (t k) (t k)} _______.
t
t
t1
FIGURA 7.R.5 *Ui¿FDSDUDHOSUREOHPD
_______
f (t)
1
1
_______.
_______ mientras que
{ 0 ea f ( ) d }
y
t0
_______
1
1
t
_______
29
5s
e
s2
y
FIGURA 7.R.4 *Ui¿FDSDUDHOSUREOHPD
_______
s2
1
t
t0
_______
1
_______
t0
5)3
(s
sen 2t}
_______
1
1
1
3t
_______
1
(t
{e
3
t
4
FIGURA 7.R.6 *Ui¿FDSDUDHOSUREOHPD
f (t)
y = sen t, π ≤ t ≤ 3 π
t
{eat 0
1
f ( ) d } _______.
En los problemas 25 a 28, use la función escalón unitario para
GHWHUPLQDUXQDHFXDFLyQSDUDFDGDJUi¿FDHQWpUPLQRVGHOD
función y f (t FX\DJUi¿FDVHSUHVHQWDHQOD¿JXUD5
π
−1
2π
3π
FIGURA 7.R.7 *Ui¿FDSDUDHOSUREOHPD
y
2
f (t)
(3, 3)
y = f(t)
2
1
t0
t
FIGURA 7.R.8 *Ui¿FDSDUDHOSUREOHPD
FIGURA 7.R.1 *Ui¿FDSDUDORVSUREOHPDVD
y
t
1 2 3
f (t)
1
t0
t
FIGURA 7.R.2 *Ui¿FDSDUDHOSUREOHPD
1
2
t
FIGURA 7.R.9 *Ui¿FDSDUDHOSUREOHPD
t
314
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
En los problemas 33 a 40, use la transformada de Laplace para
resolver la ecuación dada.
y 2y y e t, y(0) 0, y(0) 5
y 8y 20y te t, y(0) 0, y(0) 0
y 6y 5y t t ᐁ(t 2), y(0) 1, y(0) 0
y 5y f (t), donde
t2,
0,
f (t)
0
1
, y(0)
1
t
t
1
y 2y f (t), y(0) 1, donde f (t HVWiGDGRSRUOD¿gura 7.R.10
f (t)
1
1
2
t
3
FIGURA 7.R.10 *Ui¿FDSDUDHOSUREOHPD
y 5y 4y f (t), y(0) 1, y(0) 3, donde
f (t)
( 1)k
12
k
y (t)
(t
k)
0
t
cos t
y( ) cos(t
) d , y(0)
1
0
t
f ( ) f (t
)d
6t 3
0
En los problemas 41 y 42, use la transformada de Laplace para
resolver cada sistema.
x y t
4x y 0
x(0) 1, y(0) 2
x y e2t
2x y e2t
x(0) 0, y(0) 0,
x(0) 0, y(0) 0
La corriente i(t) en un circuito RC en serie se puede determinar de la ecuación integral
1 t
i( ) d
E(t),
C 0
donde E(t) es el voltaje aplicado. Determine i(t) cuando R
10 !, C 0.5 f y E(t) 2(t2 t).
Ri
Un circuito en serie contiene un inductor, un resistor y un
1
capacitor para el cual L
, R 10 ! y C 0.01 f,
2 h
respectivamente. El voltaje
10, 0 t 5
0,
t 5
se aplica al circuito. Determine la carga instantánea q(t)
en el capacitor para t 0 si q(0) 0 y q(0) 0.
E(t)
Una viga en voladizo uniforme de longitud L está empotrada en su extremo izquierdo (x 0) y libre en su
H[WUHPRGHUHFKR(QFXHQWUHODGHÀH[LyQy(x) si la carga
por unidad de longitud se determina por
w(x)
2w0 L
L 2
x
x
L
2
x
L
2
Cuando una viga uniforme se apoya mediante una base
HOiVWLFDODHFXDFLyQGLIHUHQFLDOSDUDVXGHÀH[LyQy(x) es
d 4y
EI 4 ky w(x),
dx
donde k es el módulo de la base y ky es la fuerza restauradora de la base que actúa en dirección opuesta a la de
la carga w(x 9HDOD¿JXUD53RUFRQYHQLHQFLDDOJHbraica suponga que la ecuación diferencial se escribe como
d 4y
w(x)
4a4 y
,
4
dx
EI
donde a (k兾4EI)1/4. Suponga que L ʌ y a 1.
(QFXHQWUHODGHÀH[LyQy(x) de una viga que está apoyada
en una base elástica cuando
a) la viga está apoyada simplemente en ambos extremos
y una carga constante w0 se distribuye uniformemente
a lo largo de su longitud,
b) la viga está empotrada en ambos extremos y w(x) es
una carga concentrada w0 aplicada en x ʌ兾2.
[Sugerencia: En ambas partes de este problema, use los
elementos 35 y 36 de la tabla de transformadas de Laplace
del apéndice III].
a) Suponga que dos péndulos idénticos están acoplados
por medio de un resorte con kFRQVWDQWH9HDOD¿JXUD
7.R.12. Bajo las mismas suposiciones hechas en el análisis anterior al ejemplo 3 de la sección 7.6, se puede
demostrar que cuando los ángulos de desplazamiento
1(t) y 2(t) son pequeños, el sistema de ecuaciones diferenciales lineales que describen el movimiento es
g
k
(
1
2)
l 1
m 1
g
k
(
2
2
2 ).
l
m 1
Utilice la transformada de Laplace para resolver el
sistema cuando ș1(0) ș0, ș1(0) 0, ș2(0) ȥ0,
ș2(0) 0, donde ș0 y ȥ0 son constantes. Por conveniencia, sea Ȧ2 g兾l, K k 兾m.
w(x)
L
0
x
base elástica
y
FIGURA 7.R.11 Viga sobre la base elástica del problema 46.
l
θ2
l
θ1
m
.
m
FIGURA 7.R.12
Péndulos acoplados del problema 47.
REPASO DEL CAPÍTULO 7
b) Use la solución del inciso a) para analizar el movimiento
de los péndulos acoplados en el caso especial cuando
las condiciones iniciales son ș1(0) ș0, ș1(0) 0,
ș2(0) ș0, ș2(0) 0. Cuando las condiciones iniciales
son ș1(0) ș0, ș1(0) 0, ș2(0) ș0, ș2(0) 0.
5HYLVLyQGHODIULFFLyQGH&RXORPE En el problema
27 del repaso del capítulo 5 examinamos un sistema masa
UHVRUWHHQHOFXDOXQDPDVDVHGHVOL]DVREUHXQDVXSHU¿FLHKRUL]RQWDOVHFDFX\RFRH¿FLHQWHGHIULFFLyQFLQpWLFRHV
una constante ȝ. La fuerza constante retardante fk μmg
GH OD VXSHU¿FLH VHFDDFW~DRSRQLpQGRVHDODGLUHFFLyQGHO
movimiento o se llama fricción de Coulomb en honor al físico francés Charles Augustin de Coulomb (1736-1806). Se
OHSLGLyHQWRQFHVGHPRVWUDUTXHODHFXDFLyQGH¿QLGDHQSDUtes para el desplazamiento x(t) de la masa está dado por
m
d2x
dt2
fk,
kx
fk,
0 (movimiento a la izquierda)
0 (movimiento a la derecha)
x
x
Ȧ2x
x
Ȧ2x
x
Ȧ2x
F, 0
t
F, T兾2
f) Demuestre que cada oscilación sucesiva es 2F兾Ȧ2
más corta que la anterior.
g) Prediga el comportamiento a largo plazo del sistema.
$OFDQFHGHXQSUR\HFWLO6LQUHVLVWHQFLDGHODLUH
a) Un proyectil, tal como la bala de cañón se muestra
HQ OD ¿JXUD 5 WLHQH XQ SHVR w mg y velocidad inicial Y0 que es tangente a su trayectoria de
movimiento. Si se ignoran la resistencia del aire y
todas las demás fuerzas, excepto su peso, vimos en
el problema 23 de los ejercicios 4.9 que el movimiento de proyectiles describe el sistema de ecuaciones diferenciales lineales
F, T
t
T
3T兾2,
y así sucesivamente, donde Ȧ2 k兾m, F fk 兾m
μg, g 32, y T 2ʌ兾Ȧ. Demuestre que los tiempos 0,
T兾2, T, 3T兾2, . . . corresponden a x(t) 0.
b) Explique por qué, en general, el desplazamiento inicial debe satisfacer Ȧ2 冷 x0 冷 F.
d 2x
dt 2
m
d 2y
dt 2
0
mg
b) Utilice x(t) en el inciso a) para eliminar el parámetro t
en y(t). Use la ecuación resultante para y para demostrar
que el rango horizontal R del proyectil está dado por
c) Explique por qué el intervalo F兾Ȧ2 x F兾Ȧ2
apropiadamente se llama la “zona muerta” del sistema.
d) Utilice la transformada de Laplace y el concepto de
la función de serpenteante para resolver el desplazamiento x(t) para t 0.
m
Use la transformada de Laplace para resolver el
sistema sujeto a las condiciones iniciales x(0) 0,
x(0) Y0 cos ș, y(0) 0, y(0) Y0 sen ș, donde
Y0 冷v0冷 es constante y ș es el ángulo constante de
HOHYDFLyQ TXH VH PXHVWUD HQ OD ¿JXUD 5 /DV
soluciones de x(t) y y(t) son ecuaciones paramétricas de la trayectoria del proyectil.
T兾2
t
R
v20
sen 2ș
g
c) De la fórmula en el inciso b), vemos que R está
al máximo cuando sen 2ș 1 o cuando ș ʌ兾4.
y
v0
θ
x
Rango horizontal
R
FIGURA 7.R.13 Proyectil del problema 49.
315
e) Demuestre que en el caso m 1. k 1, fk 1 y
x0 5.5 que en el intervalo [0, 2ʌ) su solución de
acuerdo con los incisos a) y b) del problema 28 en el
repaso del capítulo 5.
a) Suponga que la masa se libera a partir del reposo del
punto x(0) x0 0 y que no hay otras fuerzas externas. Entonces las ecuaciones diferenciales que describen el movimiento de la masa m son
x
l
316
l
CAPÍTULO 7
LA TRANSFORMADA DE LAPLACE
Demuestre que el mismo rango, que sea menor que el
máximo se puede lograr al disparar el arma en alguno
de los dos ángulos complementarios ș y ʌ兾2 ș. La
única diferencia es que el ángulo más pequeño tiene
una trayectoria baja mientras que el ángulo más
grande tiene una trayectoria alta.
d) Suponga g 32 pies/s2, ș 38º, y Y0 300 pies/s.
Utilice el inciso b) para encontrar el rango horizontal
del proyectil. Encuentre el tiempo cuando el proyectil
golpea el suelo.
e) Utilice las ecuaciones paramétricas x(t) y y(t) en el inciso a) junto con los datos numéricos en el inciso d)
para trazar la curva balística del proyectil. Repita con
ș 52 º y Y0 300 pies/s. Sobreponga ambas curvas
en el mismo sistema de coordenadas.
5DQJRGHXQSUR\HFWLO&RQUHVLVWHQFLDGHODLUH
a) Ahora supongamos que la resistencia del aire es
una fuerza retardadora tangente a la trayectoria que
actúa en dirección opuesta al movimiento. Si tomamos la resistencia del aire proporcional a la velocidad del proyectil, entonces vimos en problema 24
de los ejercicios 4.9 que el movimiento del proyectil
está descrito por el sistema de ecuaciones diferenciales
d 2x
dt 2
d 2y
m 2
dt
m
ȕ
dx
dt
mg
ȕ
dy
dt
donde ȕ 0. Utilice transformada de Laplace para
resolver este sistema sujeto a la condiciones iniciales x(0) 0, x(0) Y0 cos ș, y(0) 0, y(0) Y0
sen ș, donde Y0 冷v0冷 y ș son constantes.
b) Supongamos que m 1兾4slug, g 32 pies/s2, ȕ
0.02, ș 38 º y Y0 = 300 pies/s. Use un SAC para encontrar el tiempo en que el proyectil golpea el suelo y
luego calcule su correspondiente rango horizontal.
c) Repita el inciso c) utilizando el ángulo complementario ș 52º y compare el rango con el que encuentra en
los inciso b). ¿La propiedad del inciso c) del problema
49 se conserva?
d) Utilice las ecuaciones paramétricas x(t) y y(t) del inciso a) junto con los datos numéricos del inciso b)
para trazar la curva balística del proyectil. Repita este
procedimiento con los mismos datos numéricos del
inciso b) pero tome ș 52°. Superponga ambas curvas en el mismo sistema de coordenadas. Compare
estas curvas con las que se obtuvieron en el inciso e)
del problema 49.
8
SISTEMAS DE ECUACIONES
DIFERENCIALES LINEALES
DE PRIMER ORDEN
8.1 Teoría preliminar: Sistemas lineales
8.2 Sistemas lineales homogéneos
8.2.1 Eigenvalores reales distintos
8.2.2 Eigenvalores repetidos
8.2.3 Eigenvalores complejos
8.3 Sistemas lineales no homogéneos
8.3.1 &RH¿FLHQWHVLQGHWHUPLQDGRV
8.3.2 Variación de parámetros
8.4 Matriz exponencial
REPASO DEL CAPÍTULO 8
En las secciones 3.3, 4.9 y 7.6 tratamos con sistemas de ecuaciones diferenciales
y pudimos resolver algunos de estos sistemas mediante eliminación sistemática
o con la transformada de Laplace. En este capítulo nos vamos a dedicar sólo a
sistemas de ecuaciones lineales diferenciales de primer orden. Aunque la mayor
parte de los sistemas que se consideran se podrían resolver usando eliminación o
la transformada de Laplace, vamos a desarrollar una teoría general para estos tipos
GHVLVWHPDV\HQHOFDVRGHVLVWHPDVFRQFRH¿FLHQWHVFRQVWDQWHVXQPpWRGRGH
solución que utiliza algunos conceptos básicos del álgebra de matrices. Veremos
que esta teoría general y el procedimiento de solución son similares a los de las
ecuaciones de cálculo diferencial de orden superior lineales consideradas en el
capítulo 4. Este material es fundamental para analizar ecuaciones no lineales de
primer orden.
317
318
l
CAPÍTULO 8
8.1
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
TEORÍA PRELIMINAR: SISTEMAS LINEALES
REPASO DE MATERIAL
l En este capítulo se usará la notación matricial y sus propiedades se usarán con mucha frecuencia
a lo largo del mismo. Es indispensable que repase el apéndice II o un texto de álgebra lineal si no
está familiarizado con estos conceptos
INTRODUCCIÓN Recuerde que en la sección 4.9 se ilustró cómo resolver sistemas de n ecuaciones diferenciales lineales con n incógnitas de la forma
P11(D)x1 P12(D)x2 . . . P1n(D)xn b1(t)
P21(D)x1 P22(D)x2 . . . P2n(D)xn b2(t)
.
.
.
.
.
.
Pn1(D)x1 Pn2(D)x2 . . . Pnn(D)xn bn(t),
(1)
donde las Pij eran polinomios de diferentes grados en el operador diferencial D. Este capítulo se dedica al
estudio de sistemas de ED de primer orden que son casos especiales de sistemas que tienen la forma normal
dx1
––– g1(t,x1,x2, . . . ,xn)
dt
dx2
––– g2(t,x1,x2, . . . ,xn)
dt
.
.
.
.
.
.
dxn
––– gn(t,x1,x2, . . . ,xn).
dt
(2)
Un sistema tal como (2) de n ecuaciones diferenciales de primer orden se llama sistema de primer orden.
SISTEMAS LINEALES Cuando cada una de las funciones g1, g2, . . . , gn en (2) es
lineal en las variables dependientes x1, x2, . . . , xn, se obtiene la forma normal de un
sistema de ecuaciones lineales de primer orden.
dx1
––– a11(t)x1 a12(t)x2 . . . a1n(t)xn f1(t)
dt
dx2
––– a21(t)x1 a22(t)x2 . . . a2n(t)xn f2(t)
dt.
.
.
.
.
.
dxn
––– an1(t)x1 an2(t)x2 . . . ann(t)xn fn(t).
dt
(3)
Nos referimos a un sistema de la forma dada en (3) simplemente como un sistema
lineal6HVXSRQHTXHORVFRH¿FLHQWHVaij así como las funciones fi son continuas en un
intervalo común I. Cuando fi(t) 0, i 1, 2, . . . , n, se dice que el sistema lineal (3)
es homogéneo; de otro modo es no homogéneo.
FORMA MATRICIAL DE UN SISTEMA LINEAL Si X, A(t), y F(t)
trices respectivas
x1(t)
a11(t) a12(t) . . . a1n(t)
x2(t)
a21(t) a22(t) . . . a2n(t)
.
. ,
A(t)
F(t)
X .. ,
.
.
.
.
.
xn(t)
an1(t) an2(t) . . . ann(t)
() (
denotan ma-
) ()
f1(t)
f2(t)
. ,
.
.
fn(t)
8.1
TEORÍA PRELIMINAR: SISTEMAS LINEALES
l
319
entonces el sistema de ecuaciones diferenciales lineales de primer orden (3) se puede
escribir como
a11(t) a12(t) . . . a1n(t) x1
f1(t)
x1
.
.
.
a21(t) a22(t)
a2n(t) x2
f2(t)
x2
d
.
.
. .
–– .
.
.
.
.
dt ..
.
.
.
.
.
.
.
an1(t) an2(t)
ann(t) xn
fn(t)
xn
() (
)( ) ( )
o simplemente
X
AX
(4)
F.
Si el sistema es homogéneo, su forma matricial es entonces
X
AX.
EJEMPLO 1
(5)
Sistema escrito en notación matricial
x
, entonces la forma matricial del sistema homogéneo
y
a) Si X
dx
dt
dy
dt
3x
4y
es X
5x
7y
3
5
4
X.
7
x
y , entonces la forma matricial del sistema homogéneo
z
b) Si X
dx
dt
dy
dt
dz
dt
6x
y
z
t
8x
7y
z
10t
2x
9y
z
6t
DEFINICIÓN 8.1.1
es X
6
8
2
1
7
9
1
1 X
1
t
10t .
6t
Vector solución
Un vector solución en un intervalo I es cualquier matriz columna
()
x1(t)
x2(t)
X ..
.
xn(t)
cuyos elementos son funciones derivables que satisfacen el sistema (4) en el
intervalo.
Un vector solución de (4) es, por supuesto, equivalente a n ecuaciones escalares x1
1(t), x2 2(t), . . . , xn n(t) y se puede interpretar desde el punto de vista geométrico
como un conjunto de ecuaciones paramétricas de una curva en el espacio. En el caso
importante n 2, las ecuaciones x1 1(t), x2 2(t) representan una curva en el plano
x1x2. Es práctica común llamar trayectoria a una curva en el plano y llamar plano fase al
plano x1x2. Regresaremos a estos conceptos y se ilustrarán en la siguiente sección.
320
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
EJEMPLO 2
Comprobación de soluciones
Compruebe que en el intervalo ( , )
X1
1
e
1
e
e
2t
son soluciones de
1
5
2t
2e
2e
2t
y
2t
AX1
1
5
3
3
e
e
AX2
1
5
3
3
3e6t
5e6t
3
X.
3
X2
e
5e
2t
3e6t
5e6t
3 6t
e
5
X2
y
X
SOLUCIÓN De X 1
y
2t
2t
2t
2t
3e6t
15e6t
(6)
18e6t
vemos que
30e6t
3e
3e
2t
2e
2e
2t
15e6t
15e6t
18e6t
30e6t
2t
X1,
2t
X2 .
Gran parte de la teoría de sistemas de n ecuaciones diferenciales de primer orden
es similar a la de las ecuaciones diferenciales de nésimo orden.
PROBLEMA CON VALORES INICIALES
valo I y
()
Sea t0 que denota un punto en un inter-
x1(t0)
x2(t0)
.
X(t0)
.
.
y
()
%1
%2
X0 . ,
.
.
%n
xn(t0)
donde las Ȗi, i 1, 2, . . . , n son las constantes dadas. Entonces el problema
A(t)X
Resolver: X
Sujeto a: X (t0) X0
F(t)
(7)
es un problema con valores iniciales en el intervalo.
TEOREMA 8.1.1
Existencia de una solución única
Sean los elementos de las matrices A(t) y F(t) funciones continuas en un intervalo común I que contiene al punto t0. Entonces existe una solución única del
problema con valores iniciales (7) en el intervalo.
SISTEMAS HOMOGÉNEOS (QODVVLJXLHQWHVGH¿QLFLRQHV\WHRUHPDVVHFRQVLGHUDQVyORVLVWHPDVKRPRJpQHRV6LQD¿UPDUORVLHPSUHVHVXSRQGUiTXHODVaij y las fi
son funciones continuas de t en algún intervalo común I.
PRINCIPIO DE SUPERPOSICIÓN El siguiente resultado es un principio de superposición para soluciones de sistemas lineales.
TEOREMA 8.1.2 Principio de superposición
Sea X1, X2, . . . , Xk un conjunto de vectores solución del sistema homogéneo
(5) en un intervalo I. Entonces la combinación lineal
X c1 X1 c2 X2
ck Xk ,
donde las ci, i 1, 2, . . . , k son constantes arbitrarias, es también una solución
en el intervalo.
8.1
TEORÍA PRELIMINAR: SISTEMAS LINEALES
l
321
Se deduce del teorema 8.1.2 que un múltiplo constante de cualquier vector solución de un sistema homogéneo de ecuaciones diferenciales lineales de primer orden es
también una solución.
EJEMPLO 3
Usando el principio de superposición
Debería practicar comprobando que los dos vectores
cos t
1
1
X1
y X2
2 cos t
2 sen t
cos t sen t
son soluciones del sistema
1
1
2
X
0
1
0
0
et
0
1
0 X.
1
(8)
Por el principio de superposición la combinación lineal
X
c1X1
c2X2
c1
1
2
cos t
cos t 12 sen t
cos t sen t
0
c2 et
0
es otra solución del sistema.
DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL Estamos interesados
principalmente en soluciones linealmente independientes del sistema homogéneo (5).
DEFINICIÓN 8.1.2
Dependencia/independencia lineal
Sea X1, X2, . . . , Xk un conjunto de vectores solución del sistema homogéneo
(5) en un intervalo I. Se dice que el conjunto es linealmente dependiente en el
intervalo si existen constantes c1, c2, . . . , ck, no todas cero, tales que
c1 X 1
c2 X 2
ck X k
0
para toda t en el intervalo. Si el conjunto de vectores no es linealmente dependiente en el intervalo, se dice que es linealmente independiente.
El caso cuando k 2 debe ser claro; dos vectores solución X1 y X2 son linealmente
dependientes si uno es un múltiplo constante del otro y a la inversa. Para k 2 un
conjunto de vectores solución es linealmente dependiente si se puede expresar por lo
menos un vector solución como una combinación lineal de los otros vectores.
WRONSKIANO En la consideración anterior de la teoría de una sola ecuación diferencial ordinaria se puede introducir el concepto del determinante Wronskiano como
prueba para la independencia lineal. Se expresa el siguiente teorema sin prueba.
TEOREMA 8.1.3 Criterio para las soluciones linealmente independientes
Sean
X1
() ()
x11
x21
. ,
.
.
xn1
x12
x22
X2 . ,
.
.
xn2
. . . ,
()
x1n
x2n
Xn .
.
.
xnn
322
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
n vectores solución del sistema homogéneo (5) en un intervalo I. Entonces el
conjunto de vectores solución es linealmente independiente en I si y sólo si
el Wronskiano
冟
x11 x12 . . .
x21 x22 . . .
W(X1,X2, . . . ,Xn) .
.
.
xn1 xn2 . . .
冟
x1n
x2n
. 0
.
.
xnn
(9)
para toda t en el intervalo.
Se puede demostrar que si X1, X2, . . . , Xn son vectores solución de (5), entonces
para toda t en I ya sea W(X1, X2, . . . , Xn) 0 o W(X1, X2, . . . , Xn) 0. Por tanto, si
se puede demostrar que W 0 para alguna t0 en I, entonces W 0 para toda t y, por
tanto, las soluciones son linealmente independientes en el intervalo.
2EVHUYHTXHDGLIHUHQFLDGHODGH¿QLFLyQGH:URQVNLDQRHQODVHFFLyQDTXt
ODGH¿QLFLyQGHOGHWHUPLQDQWH QRLPSOLFDGHULYDFLyQ
EJEMPLO 4
Soluciones linealmente independientes
1
3 6t
e 2t y X2
e son soluciones del
1
5
sistema (6). Es evidente que X1 y X2 son linealmente independientes en el intervalo
( , ) puesto que ningún vector es un múltiplo constante del otro. Además, se tiene
En el ejemplo 2 vimos que X1
W(X 1, X 2 )
e
e
2t
2t
3e 6t
5e 6t
8e 4t
0
para todos los valores reales de t.
DEFINICIÓN 8.1.3
Conjunto fundamental de soluciones
Cualquier conjunto X1, X2, . . . , Xn de n vectores solución linealmente independientes del sistema homogéneo (5) en un intervalo I se dice que es un conjunto fundamental de soluciones en el intervalo.
TEOREMA 8.1.4 Existencia de un conjunto fundamental
Existe un conjunto fundamental de soluciones para el sistema homogéneo (5)
en un intervalo I.
Los dos teoremas siguientes son equivalentes a los teoremas 4.1.5 y 4.1.6 para
sistemas lineales.
TEOREMA 8.1.5 Solución general, sistemas homogéneos
Sea X1, X2, . . . , Xn un conjunto fundamental de soluciones del sistema homogéneo (5) en un intervalo I. Entonces la solución general del sistema en el
intervalo es
X
c1 X 1
c2 X 2
cn X n ,
donde las ci, i 1, 2, . . . , n son constantes arbitrarias.
8.1
EJEMPLO 5
TEORÍA PRELIMINAR: SISTEMAS LINEALES
l
323
Solución general del sistema (6)
1
3 6t
e 2t y X2
e son soluciones lineal1
5
mente independientes de (6) en ( , ). Por tanto X1 y X2 son un conjunto fundamental
de soluciones en el intervalo. La solución general del sistema en el intervalo entonces es
Del ejemplo 2 sabemos que X1
X
c1 X1
EJEMPLO 6
c2 X2
1
e
1
c1
2t
3 6t
e .
5
c2
(10)
Solución general del sistema (8)
Los vectores
cos t
t 12 sen t ,
cos t sen t
1
2 cos
X1
0
1 et,
0
X2
sen t
1
2 sen t
X3
1
2 cos
sen t
t
cos t
son soluciones del sistema (8) en el ejemplo 3 (vea el problema 16 en los ejercicios
8.1). Ahora,
W( X1, X2, X3)
p
cos t
t 12 sen t
cos t sen t
1
2 cos
0
et
0
sen t
1
2 sen t
1
2 cos
sen t
cos t
tp
et
0
para todos los valores reales de t. Se concluye que X1, X2 y X3 forman un conjunto
fundamental de soluciones en ( , ). Por lo que la solución general del sistema en el
intervalo es la combinación lineal X c1X1 c2X2 c3X3; es decir,
X
c1
cos t
t 12 sen t
cos t sen t
1
2 cos
0
c2 1 et
0
sen t
c3
1
2 sen t
1
2 cos
sen t
cos t
t .
SISTEMAS NO HOMOGÉNEOS Para sistemas no homogéneos una solución particular Xp en el intervalo I es cualquier vector libre de parámetros arbitrarios, cuyos
elementos son funciones que satisfacen el sistema (4).
TEOREMA 8.1.6 Solución general: sistemas no homogéneos
Sea Xp una solución dada del sistema no homogéneo (4) en un intervalo I y sea
Xc
c1 X 1
c2 X 2
cn X n
que denota la solución general en el mismo intervalo del sistema homogéneo
asociado (5). Entonces la solución general del sistema no homogéneo en el
intervalo es
X
Xc
X p.
La solución general Xc del sistema homogéneo relacionado (5) se llama
función complementaria del sistema no homogéneo (4).
324
CAPÍTULO 8
l
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
EJEMPLO 7
Solución general: sistema no homogéneo
3t
5t
El vector Xp
4
es una solución particular del sistema no homogéneo
6
1
5
X
3
X
3
12t
11
(11)
3
en el intervalo ( , ). (Compruebe esto.) La función complementaria de (11) en el
1
5
mismo intervalo o la solución general de X
ejemplo 5 que X c
X
c1
Xc
1
e
1
Xp
2t
c1
3
X , como vimos en (10) del
3
3 6t
e . Por tanto, por el teorema 8.1.6
5
1
3 6t
3t 4
e 2t c2
e
1
5
5t 6
c2
es la solución general de (11) en ( , ).
EJERCICIOS 8.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-13.
En los problemas l a 6 escriba el sistema lineal en forma matricial.
1.
3.
5.
dx
dt
dy
dt
dx
dt
dy
dt
dz
dt
dx
dt
dy
dt
dz
dt
3x
5y
4x
8y
3x
2.2.
4y
6x
4.4.
9z
y
10x
x
4y
y
3z
z
dx
dx
dt
dt
dy
dy
dt
dt
dx
dx
dt
dt
dy
dy
dt
dt
dz
dz
dt
dt
4x
x
d
y
9.
dt
z
2z
x
x
z
y
x
y
z
z
3t
t2
t
2
dx
3x 4y e t sen 2t
dt
dy
5x 9z 4e t cos 2t
dt
dz
y 6z e t
dt
En los problemas 7 a 10, reescriba el sistema dado sin el uso
de matrices.
4
1
2
X
3
1 t
e
1
9
1 X
3
1
3
2
1
4
5
0
2 e5t
1
8
0 e
3
2t
2
1
6
1
2 e
2
x
y
z
3
1 t
1
t
3
1
d x
dt y
7
1
4
sent
8
x
y
t
2t
4 4t
e
1
En los problemas 11 a 16, compruebe que el vector X es una
solución del sistema dado.
2
6.
7. X
10.
11.
2x
5
1
2
y
1
t
7
4
0
7y
5x
x
8. X
12.
dx
dt
3x
4y
dy
dt
4x
7y; X
dx
dt
2x
5y
dy
dt
2x
4y; X
13. X
1
1
14. X
2
1
1
4
1
1
e
2
X; X
1
X; X
0
5t
5 cos t
et
3 cos t sent
1
e
2
1 t
e
3
3t/2
4 t
te
4
8.2
15. X
1
6
1
16. X
1
1
2
2
1
2
1
0 X;
1
0
1
0
1
0 X;
1
1
6
13
X
sent
1
1
2 sent
2 cos t
sent cos t
X
1
e
1
2t
,
18. X1
1 t
e,
1
19. X1
1
2
4
20. X1
dx
dt
x
dy
dt
3x
8.2
4y
2y
4t
1
X
4
1
4
6
1 t
e;
7
2
2
1
3
0 X
0
1
3
Xp
1 t
e
1
Xp
1 t
te
1
1
4 sen 3t; Xp
3
0
1
1
8 t
te
8
1
2 ,
4
X2
sen 3t
0
cos 3t
6
0
1
0
1 X
0
en el intervalo ( , ) es
X
6
1 e
5
c1
t
c2
3
1 e
1
2t
2
c3 1 e3t.
1
26. Demuestre que la solución general de
1
2 e
1
X2
2t
2
3
5
;
2
X
4t
,
2
3 e3t
2
X3
X
2
t
1
Xp
1
X
1
1 2
t
1
4
t
6
1
5
en el intervalo ( , ) es
7
18;
1
1
X
En los problemas 21 a 24 compruebe que el vector Xp es una
solución particular del sistema dado.
21.
23. X
1
X
1
325
l
25. Demuestre que la solución general de
2
t 4
4
1
6 ,
13
2
1
6t
2 t
e
6
X2
1
t 2 ,
2
3
6
12
X3
1
e
1
X2
22. X
24. X
En los problemas 17 a 20, los vectores dados son soluciones
de un sistema X AX. Determine si los vectores forman un
conjunto fundamental en ( , ).
17. X1
SISTEMAS LINEALES HOMOGÉNEOS
1
c1
5
1
1
12
1 2
t
0
e12t
c2
2
t
4
1
.
0
1
1
12
e
12t
SISTEMAS LINEALES HOMOGÉNEOS
REPASO DE MATERIAL
l Sección II.3 del apéndice II
INTRODUCCIÓN
homogéneo X
1
5
Vimos en el ejemplo 5 de la sección 8.1 que la solución general del sistema
3
X es
3
X
c1X1
c2X2
c1
1
e
1
2t
c2
Ya que los vectores solución X1 y X2 tienen la forma
Xi
k1 i t
e ,
k2
i 1, 2,
3 6t
e .
5
326
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
donde k1, k2, Ȝ1 y Ȝ2 son constantes, nos inquieta preguntar si siempre es posible hallar una solución
de la forma
()
k1
k2
X .. e lt Ke lt
.
(1)
kn
para la solución del sistema lineal homogéneo general de primer orden
X
(2)
AX,
donde A es una matriz n n de constantes.
EIGENVALORES Y EIGENVECTORES Si (1) es un vector solución del sistema
homogéneo lineal (2), entonces X KȜH ȜW, por lo que el sistema se convierte en
KȜH ȜW AKe ȜW. Después de dividir entre eȜW y reacomodando, obtenemos AK ȜK o
AK ȜK 0. Ya que K IK, la última ecuación es igual a
(A l I)K 0.
(3)
La ecuación matricial (3) es equivalente a las ecuaciones algebraicas simultáneas
a12k2 . . .
a1nkn 0
(a11 l)k1
a21k1 (a22 l)k2 . . .
a2nkn 0
.
.
.
.
.
.
an1k1
an2k2 . . . (ann l)kn 0.
Por lo que para encontrar soluciones X de (2), necesitamos primero encontrar una
solución no trivial del sistema anterior; en otras palabras, debemos encontrar un vector
no trivial K que satisfaga a (3). Pero para que (3) tenga soluciones que no sean la so kn 0, se debe tener
lución obvia k1 k2
det(A
I)
0.
Esta ecuación polinomial en Ȝ se llama ecuación característica de la matriz A. Sus
soluciones son los eigenvalores de A. Una solución K 0 de (3) correspondiente a
un eigenvalor Ȝ se llama eigenvector de A. Entonces una solución del sistema homogéneo (2) es X KeȜW.
En el siguiente análisis se examinan tres casos: eigenvalores reales y distintos (es
decir, los eigenvalores no son iguales), eigenvalores repetidos y, por último, eigenvalores complejos.
8.2.1
EIGENVALORES REALES DISTINTOS
Cuando la matriz A n n tiene n eigenvalores reales y distintos Ȝ1, Ȝ2, . . . , Ȝn entonces siempre se puede encontrar un conjunto de n eigenvectores linealmente independientes K1, K2, . . . , Kn y
X1
K1e 1t,
X2
K2e 2 t,
...,
Xn
Kne
nt
es un conjunto fundamental de soluciones de (2) en el intervalo ( , ).
TEOREMA 8.2.1
Solución general: Sistemas homogéneos
Sean Ȝ1, Ȝ2, . . . , Ȝn nHLJHQYDORUHVUHDOHV\GLVWLQWRVGHODPDWUL]GHFRH¿FLHQWHVA
del sistema homogéneo (2) y sean K1, K2, . . . , Kn los eigenvectores correspondientes. Entonces la solución general de (2) en el intervalo ( , ) está dada por
cn K n e n t.
X c1K1e 1t c2K2 e 2 t
8.2
EJEMPLO 1
SISTEMAS LINEALES HOMOGÉNEOS
l
327
Eigenvalores distintos
Resuelva
dx
dt
2x
dy
dt
2x
3y
(4)
y.
SOLUCIÓN Primero determine los eigenvalores y eigenvectores de la matriz de
FRH¿FLHQWHV
De la ecuación característica
det(A
2
I)
3
2
2
3
1
4
(
1)(
4)
0
vemos que los eigenvalores son Ȝ1 1 y Ȝ2 4.
Ahora para Ȝ1 1, (3) es equivalente a
x
6
3k1
3k2
0
2k1
2k2
0.
Por lo que k1 k2. Cuando k2 1, el eigenvector correspondiente es
5
4
1
.
1
K1
3
2
Para Ȝ2 4 tenemos
1
_3 _2
_1
1
2
3
t
por lo que k1
a) gráfica de x e t 3e 4t
3
2 k2;
3k2
0
2k1
3k2
0
por tanto con k2 2 el eigenvector correspondiente es
y
6
2k1
3
.
2
K2
3XHVWRTXHODPDWUL]GHFRH¿FLHQWHVA es una matriz 2 2 y como hemos encontrado
dos soluciones linealmente independientes de (4),
4
2
t
_2
1
e
1
X1
_4
_6
_3 _2
_1
1
2
t
y
3 4t
e ,
2
X2
Se concluye que la solución general del sistema es
3
b) gráfica de y e t 2e 4t
X
c1 X1
c2 X2
1
e
1
c1
t
c2
3 4t
e .
2
(5)
y
4
2
x
_2
_4
_6
_8
_ 10
2.5
5
7 .5 1 0 1 2 .5 1 5
c) trayectoria definida por
x e t 3e 4t, y e t 2e 4t
en el plano fase
FIGURA 8.2.1 Una solución particular
de (5) produce tres curvas diferentes en
tres planos diferentes.
DIAGRAMA DE FASE Debe considerar que escribir una solución de un sistema de
ecuaciones en términos de matrices es simplemente una alternativa al método que se
empleó en la sección 4.9, es decir, enumerar cada una de las funciones y la relación
entre las constantes. Si sumamos los vectores en el lado derecho de (5) y después igualamos las entradas con las entradas correspondientes en el vector en el lado izquierdo,
se obtiene la expresión familiar
x
c1e
t
3c2e4t,
y
c1e
t
2c2e4t.
Como se indicó en la sección 8.1, se pueden interpretar estas ecuaciones como ecuaciones paramétricas de curvas en el plano xy o plano fase. Cada curva, que corresponde
DHOHFFLRQHVHVSHFt¿FDVGHc1 y c2, se llama trayectoria. Para la elección de constantes
c1 c2 HQODVROXFLyQ YHPRVHQOD¿JXUDODJUi¿FDGHx(t) en el plano
txODJUi¿FDGHy(t) en el plano ty y la trayectoria que consiste en los puntos (x(t), y(t))
328
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
y
x
X2
X1
FIGURA 8.2.2 Un diagrama de fase
del sistema (4).
en el plano fase. Al conjunto de trayectorias representativas en el plano fase, como se
PXHVWUDHQOD¿JXUDVHOHOODPDdiagrama fase para un sistema lineal dado. Lo
que parecen dosUHFWDVURMDVHQOD¿JXUDVRQHQUHDOLGDGcuatro semirrectas GH¿nidas paramétricamente en el primero, segundo, tercero y cuarto cuadrantes con las soluciones X2, X1, X2 y X1, respectivamente. Por ejemplo, las ecuaciones cartesianas
y 23 x, x 0 y y x, x 0, de las semirrectas en el primer y cuarto cuadrantes se
obtuvieron eliminando el parámetro t en las soluciones x 3e4t, y 2e4t y x et, y
et, respectivamente. Además, cada eigenvector se puede visualizar como un vector
bidimensional que se encuentra a lo largo de una de estas semirrectas. El eigenvector
3
1
K2
se encuentra junto con y 23 x en el primer cuadrante y K1
2
1
se encuentra junto con y x en el cuarto cuadrante. Cada vector comienza en el
origen; K2 termina en el punto (2, 3) y K1 termina en (1, 1).
El origen no es sólo una solución constante x 0, y 0 de todo sistema lineal homogéneo 2 2, X AX, sino también es un punto importante en el estudio cualitativo de dichos sistemas. Si pensamos en términos físicos, las punWDV GH ÀHFKD GH FDGD WUD\HFWRULD HQ OD ¿JXUD LQGLFDQ OD GLUHFFLyQ FRQ TXH XQD
partícula en el tiempo t se mueve conforme aumenta el tiempo. Si imaginamos
que el tiempo va de a , entonces examinando la solución x c1et 3c2e4t,
y c1et 2c2e4t, c1 0, c2 0 muestra que una trayectoria o partícula en moviPLHQWR³FRPLHQ]D´DVLQWyWLFDDXQDGHODVVHPLUUHFWDVGH¿QLGDVSRUX1 o X1 (ya que e4t
es despreciable para t → \³WHUPLQD´DVLQWyWLFDDXQDGHODVVHPLUUHFWDVGH¿QLGDV
por X2 y X2 (ya que et es despreciable para t → ).
2EVHUYHTXHOD¿JXUDUHSUHVHQWDXQGLDJUDPDGHIDVHTXHHVFDUDFWHUtVWLFR
de todos los sistemas lineales homogéneos 2 2 X AX con eigenvalores reales de
signos opuestos. Vea el problema 17 de los ejercicios 8.2. Además, los diagramas de
fase en los dos casos cuando los eigenvalores reales y distintos tienen el mismo signo
son característicos de esos sistemas 2 2; la única diferencia es que las puntas de
ÀHFKDLQGLFDQTXHXQDSDUWtFXODVHDOHMDGHORULJHQHQFXDOTXLHUWUD\HFWRULDFXDQGRȜ1
y Ȝ2 son positivas y se mueve hacia el origen en cualquier trayectoria mientras t →
cuando Ȝ1 y Ȝ2 son negativas. Por lo que al origen se le llama repulsor en el caso
Ȝ1 0, Ȝ2 0 y atractor en el caso Ȝ1 0, Ȝ2 0. Vea el problema 18 en los ejercicios
(ORULJHQHQOD¿JXUDQRHVUHSXOVRUQLDWUDFWRU/DLQYHVWLJDFLyQGHOFDVR
restante cuando Ȝ 0 es un eigenvalor de un sistema lineal homogéneo de 2 2 se
deja como ejercicio. Vea el problema 49 de los ejercicios 8.2.
EJEMPLO 2
Eigenvalores distintos
Resuelva
dx
dt
dy
dt
dz
dt
SOLUCIÓN
det (A
4x
y
z
x
5y
z
y
3 z.
(6)
Usando los cofactores del tercer renglón, se encuentra
I)
p
4
1
1
0
1
1
5
1
3
p
(
y así los eigenvalores son Ȝ1 3, Ȝ2 4 y Ȝ3 5.
3)(
4)(
5)
0,
8.2
SISTEMAS LINEALES HOMOGÉNEOS
Para Ȝ1 3, con la eliminación de Gauss-Jordan, se obtiene
(A 3I冟0)
冟)
(
1 1
1 0
1 8 1 0
0 1
0 0
(
operaciones
entre renglones
l
329
冟)
1 0 1 0
0 1
0 0
0 0
0 0
Por tanto k1 k3 y k2 0. La elección k3 1 da un eigenvector y el vector solución
correspondiente
1
0 ,
1
K1
De igual manera, para Ȝ2 4
X1
冟)
(
1
0 e
1
0 1
1 0
(A 4I冟0) 1 9 1 0
0 1
1 0
operaciones
entre renglones
(7)
3t
.
(
冟)
1 0 10 0
0 1
1 0
0 0
0 0
implica que k1 10k3 y k2 k3. Al elegir k3 1, se obtiene un segundo eigenvector
y el vector solución
10
1 ,
1
K2
10
1 e
1
X2
4t
Por último, cuando Ȝ3 5, las matrices aumentadas
冟)
(
9 1
1 0
(A 5I冟0) 1 0 1 0
0 1 8 0
producen
1
8 ,
1
K3
operaciones
entre renglones
X3
(8)
.
(
冟)
1 0 1 0
0 1 8 0
0 0
0 0
1
8 e5t.
1
(9)
La solución general de (6) es una combinación lineal de los vectores solución en
(7), (8) y (9):
X
1
c1 0 e
1
3t
c2
10
1 e
1
4t
1
c3 8 e5t.
1
USO DE COMPUTADORAS Los paquetes de software como MATLAB,
Mathematica, Maple y DERIVE, ahorran tiempo en la determinación de eigenvalores
y eigenvectores de una matriz A.
8.2.2
EIGENVALORES REPETIDOS
Por supuesto, no todos los n eigenvalores Ȝ1, Ȝ2, . . . , Ȝn de una matriz A de n n deben
ser distintos, es decir, algunos de los eigenvalores podrían ser repetidos. Por ejemplo,
ODHFXDFLyQFDUDFWHUtVWLFDGHODPDWUL]GHFRH¿FLHQWHVHQHOVLVWHPD
X
3
2
18
X
9
(10)
330
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
se demuestra fácilmente que es (Ȝ 3)2 0, y por tanto, Ȝ1 Ȝ2 3 es una raíz de
multiplicidad dos. Para este valor se encuentra el único eigenvector
3
,
1
K1
por lo que
3
e
1
X1
(11)
3t
es una solución de (10). Pero como es obvio que tenemos interés en formar la solución
general del sistema, se necesita continuar con la pregunta de encontrar una segunda
solución.
En general, si m es un entero positivo y (Ȝ Ȝ1)m es un factor de la ecuación
característica, mientras que (Ȝ Ȝ1)m1 no es un factor, entonces se dice que Ȝ1 es un
eigenvalor de multiplicidad m. En los tres ejemplos que se dan a continuación se
ilustran los casos siguientes:
i)
Para algunas matrices A de n n sería posible encontrar m eigenvectores
linealmente independientes K1, K2, . . . , Km, correspondientes a un
eigenvalor Ȝ1, de multiplicidad m n. En este caso la solución general del
sistema contiene la combinación lineal
c1K 1e
ii)
1t
1t
c2K 2e
cmK me 1t.
Si sólo hay un eigenvector propio que corresponde al eingenvalor Ȝ1 de
multiplicidad m, entonces siempre se pueden encontrar m soluciones
linealmente independientes de la forma
X1 K11e l t
lt
lt
X2
. K21te K22e
.
.
t m2
t m1
Xm Km1 –––––––– e l t Km2 –––––––– e l t . . . Kmme l t,
(m 1)!
(m 2)!
1
1
1
1
1
1
donde las Kij son vectores columna.
EIGENVALORES DE MULTIPLICIDAD DOS Se comienza por considerar eigenvalores de multiplicidad dos. En el primer ejemplo se ilustra una matriz para la que podemos
encontrar dos eigenvectores distintos que corresponden a un doble eigenvalor.
EJEMPLO 3
Resuelva X
SOLUCIÓN
Eigenvalores repetidos
1
2
2
2
1
2
2
2 X.
1
Desarrollando el determinante en la ecuación característica
det(A
I)
p
1
2
2
2
2
2
1
2
1
p
0
se obtiene (Ȝ l)2(Ȝ 5) 0. Se ve que Ȝ1 Ȝ2 1 y Ȝ3 5.
Para Ȝ1 1, con la eliminación de Gauss-Jordan se obtiene de inmediato
(
冟)
2 2
2 0
(A I冟0) 2
2 2 0
2 2
2 0
operaciones
entre renglones
(
冟)
1 1 0 0
0
01 01 0 .
0
0 0 0
8.2
SISTEMAS LINEALES HOMOGÉNEOS
l
331
El primer renglón de la última matriz indica que k1 – k2 k3 0 o k1 k2 – k3. Las
elecciones k2 1, k3 0 y k2 1, k3 1 producen, a su vez, k1 1 y k1 0. Por lo
que dos eigenvectores correspondientes a Ȝ1 1 son
1
1
0
K1
y
0
1 .
1
K2
Puesto que ningún eigenvector es un múltiplo constante del otro, se han encontrado
dos soluciones linealmente independientes,
X1
1
1 e
0
t
y
0
1 e t,
1
X2
que corresponden al mismo eigenvalor. Por último, para Ȝ3 5 la reducción
冟)
(
4 2
2 0
(A 5I冟0) 2 4 2 0
2 2 4 0
operaciones
entre renglones
(
冟)
1 0 1 0
0 1
1 0
0 0
0 0
implica que k1 k3 y k2 k3. Al seleccionar k3 1, se obtiene k1 1, k2 1; por
lo que el tercer eigenvector es
1
1 .
1
K3
Concluimos que la solución general del sistema es
X
1
c1 1 e
0
t
0
c2 1 e
1
t
1
1 e5t.
1
c3
/DPDWUL]GHFRH¿FLHQWHVA del ejemplo 3 es un tipo especial de matriz conocida
como matriz simétrica. Se dice que una matriz A de n n es simétrica si su transpuesta AT (donde se intercambian renglones y columnas) es igual que A, es decir, si AT
A. Se puede demostrar que si la matriz A del sistema X AX es simétrica y tiene
elementos reales, entonces siempre es posible encontrar n eigenvectores linealmente
independientes K1, K2, . . . , Kn, y la solución general de ese sistema es como se muestra en el teorema 8.2.1. Como se muestra en el ejemplo 3, este resultado se cumple aun
cuando estén repetidos algunos de los eigenvalores.
SEGUNDA SOLUCIÓN Suponga que Ȝ1 es un valor propio de multiplicidad dos y
que sólo hay un eigenvector asociado con este valor. Se puede encontrar una segunda
solución de la forma
X2
donde
K te
1t
(12)
Pe 1,t
() ()
k1
k2
K ..
.
kn
y
p1
p2
P .. .
.
pn
332
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
Para ver esto sustituya (12) en el sistema X AX\VLPSOL¿TXH
(AK
1K ) te
1t
(AP
1P
K)e
1t
0.
Puesto que la última ecuación es válida para todos los valores de t, debemos tener
y
(A
1I )K
0
(13)
(A
1I )P
K.
(14)
La ecuación (13) simplemente establece que K debe ser un vector característico de A
asociado con Ȝ1. Al resolver (13), se encuentra una solución X1 Ke 1t . Para encontrar la segunda solución X2, sólo se necesita resolver el sistema adicional (14) para
obtener el vector P.
EJEMPLO 4
Eigenvalores repetidos
Encuentre la solución general del sistema dado en (10).
3
e 3t.
1
p1
, encontramos de (14) que ahora debemos rep2
SOLUCIÓN De (11) se sabe que Ȝ1 3 y que una solución es X1
3
1
,GHQWL¿FDQGR K
solver
(A
y P
3I )P
K
o
6p1
2p1
18p2
6p2
3
1.
Puesto que resulta obvio que este sistema es equivalente a una ecuación, se tiene un
Q~PHURLQ¿QLWRGHHOHFFLRQHVGHp1 y p2. Por ejemplo, al elegir p1 1 se encuentra que
p2 16 . Sin embargo, por simplicidad elegimos p1 12 por lo que p2 0. Entonces
P
1
2
0
. Así de (12) se encuentra que X2
3
te
1
1
2
3t
3t
e
0
. La solución gene-
ral de (10) es X c1X1 c2X2, o
X
y
x
X1
FIGURA 8.2.3 Diagrama de fase del
sistema (l0).
c1
3
e
1
3t
c2
3
te
1
3t
1
2
0
e
3t
.
Al asignar diversos valores a c1 y c2 en la solución del ejemplo 4, se pueden
WUD]DUODVWUD\HFWRULDVGHOVLVWHPDHQ (QOD¿JXUDVHSUHVHQWDXQGLDJUDPD
fase de (10). Las soluciones X1 y X1 determinan dos semirrectas y 13 x, x 0
y y 13 x, x 0 UHVSHFWLYDPHQWH PRVWUDGDV HQ URMR HQ OD ¿JXUD 'HELGR D TXH HO
único eigenvalor es negativo y e3t → 0 conforme t → en cada trayectoria, se
tiene (x(t), y(t)) → (0, 0) conforme t → . Esta es la razón por la que las puntas
GH ODV ÀHFKDV GH OD ¿JXUD LQGLFDQ TXH XQD SDUWtFXOD HQ FXDOTXLHU WUD\HFWRULD
se mueve hacia el origen conforme aumenta el tiempo y la razón de que en este
caso el origen sea un atractor. Además, una partícula en movimiento o trayectoria
x 3c1e 3t c2(3te 3t 12e 3t), y c1e 3t c2te 3t, c2 0 tiende a (0, 0) tangencialmente a una de las semirrectas conforme t → . En contraste, cuando el eigenvalor
repetido es positivo, la situación se invierte y el origen es un repulsor. Vea el problema
GHORVHMHUFLFLRV6LPLODUDOD¿JXUDOD¿JXUDHVFDUDFWHUtVWLFDGH
todos los sistemas lineales homogéneos X AX, 2 2 que tienen dos eigenvalores
negativos repetidos. Vea el problema 32 en los ejercicios 8.2.
EIGENVALOR DE MULTIPLICIDAD TRES &XDQGR OD PDWUL] GH FRH¿FLHQWHV A
tiene sólo un eigenvector asociado con un eigenvalor Ȝ1 de multiplicidad tres, podemos
8.2
SISTEMAS LINEALES HOMOGÉNEOS
l
333
encontrar una segunda solución de la forma (12) y una tercera solución de la forma
X3
K
t2
e
2
1t
Pte
() ()
k1
k2
K .. ,
.
donde
p1
p2
P .. ,
.
1t
()
q1
q2
Q .. .
.
y
pn
kn
(15)
Qe 1 t,
qn
Al sustituir (15) en el sistema X AX, se encuentra que los vectores columna K, P
y Q deben satisfacer
y
(A
1I)K
0
(16)
(A
1I)P
K
(17)
(A
1I)Q
P.
(18)
Por supuesto, las soluciones (16) y (17) se pueden usar para formar las soluciones X1 y X2.
EJEMPLO 5
Resuelva X
2
0
0
Eigenvalores repetidos
1
2
0
6
5 X.
2
SOLUCIÓN La ecuación característica (Ȝ 2)3 0 demuestra que Ȝ1 2 es un eigen-
valor de multiplicidad tres. Al resolver (A 2I)K 0, se encuentra el único eigenvector
1
0 .
0
K
A continuación se resuelven primero el sistema (A 2I)P K y después el sistema
(A 2I)Q P y se encuentra que
P
0
1
0
0
y
Q
6
5
1
5
.
Usando (12) y (15), vemos que la solución general del sistema es
X
1
c1 0 e2t
0
c2
1
0 te2t
0
0
1 e2t
0
c3
1 2
t 2t
0
e
2
0
0
1 te2t
0
0
6
5
1
5
e2t .
COMENTARIOS
Cuando un eigenvalor Ȝ1 tiene multiplicidad m, se pueden determinar m eigenvectores linealmente independientes o el número de eigenvectores correspondientes es menor que m. Por tanto, los dos casos listados en la página 330 no
son todas las posibilidades bajo las que puede ocurrir un eigenvalor repetido.
Puede suceder, por ejemplo, que una matriz de 5 5 tenga un eigenvalor de
multiplicidad cinco y existan tres eigenvectores correspondientes linealmente
independientes. Véanse los problemas 31 y 50 de los ejercicios 8.2.
334
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
8.2.3
EIGENVALORES COMPLEJOS
Si Ȝ1 Į ȕL y Ȝ2 Į ȕL, ȕ 0, i2 1 son eigenvalores complejos de la matriz
GHFRH¿FLHQWHVA, entonces se puede esperar de hecho que sus eigenvectores correspondientes también tengan entradas complejas.*
Por ejemplo, la ecuación característica del sistema
dx
dt
dy
dt
es
y
5x
4y
(19)
6
I)
det(A
6x
1
5
2
10
4
29
0.
De la fórmula cuadrática se encuentra Ȝ1 5 2i, Ȝ2 5 2i.
Ahora para Ȝ1 5 2i se debe resolver
(1
2i)k1
5k1
(1
k2
0
2i)k2
0.
Puesto que k2 (1 2i)k1,†la elección k1 1 da el siguiente eigenvector y el vector
solución correspondiente:
1
K1
1
2i
1
X1
,
1
2i
e(5
2i)t
e(5
2i)t
.
De manera similar, para Ȝ2 5 2i encontramos
1
K2
1
2i
1
X2
,
1
2i
.
3RGHPRVFRPSUREDUSRUPHGLRGHO:URQVNLDQRTXHHVWRVYHFWRUHVVROXFLyQVRQOLnealmente independientes y por tanto la solución general de (19) es
X
c1
1
1
2i
e(5
2i )t
c2
1
1
2i
e(5
2i )t
.
(20)
Observe que las entradas en K2 correspondientes a Ȝ2 son los conjugados de las
entradas en K1 correspondientes a Ȝ1. El conjugado de Ȝ1 es, por supuesto, Ȝ2. Esto se
K1 . Hemos ilustrado el siguiente resultado general.
escribe como 2
1 y K2
TEOREMA 8.2.2
Soluciones correspondientes a un eigenvalor complejo
Sea AXQDPDWUL]GHFRH¿FLHQWHVTXHWLHQHHQWUDGDVUHDOHVGHOVLVWHPDKRPRJpneo (2) y sea K1 un eigenvector correspondiente al eigenvalor complejo Ȝ1 Į
ȕL, Į y ȕreales. Entonces
K1e
1t
y
K1e
1t
son soluciones de (2).
&XDQGRODHFXDFLyQFDUDFWHUtVWLFDWLHQHFRH¿FLHQWHVUHDOHVORVHLJHQYDORUHVFRPSOHMRVVLHPSUHDSDUHFHQ
en pares conjugados.
†
Note que la segunda ecuación es simplemente (1 2i) veces la primera.
*
8.2
SISTEMAS LINEALES HOMOGÉNEOS
l
335
Es deseable y relativamente fácil reescribir una solución tal como (20) en térmiQRVGHIXQFLRQHVUHDOHV&RQHVWH¿QSULPHURXVDPRVODIyUPXODGH(XOHUSDUDHVFULELU
e(5
2i )t
e5te2ti
e(5
2i )t
e5te
e5t(cos 2t
2ti
i sen 2t)
e5t(cos 2t
i sen 2t).
Entonces, multiplicando los números complejos, agrupando términos y reemplazando
c1 c2 por C1 y (c1 c2)i por C2, (20) se convierte en
X
donde
X1
y
X2
C1X1
(21)
C2X2 ,
1
cos 2t
1
0
sen 2t e5t
2
0
cos 2t
2
1
sen 2t e5t.
1
Ahora es importante entender que los vectores X1 y X2 en (21) constituyen un conjunto
linealmente independiente de soluciones reales del sistema original. Estamos justi¿FDGRVSDUDGHVSUHFLDUODUHODFLyQHQWUHC1, C2 y c1, c2, y podemos considerar C1 y C2
como totalmente arbitrarias y reales. En otras palabras, la combinación lineal (21) es
una solución general alternativa de (19). Además, con la forma real dada en (21) podemos obtener un diagrama de fase del sistema dado en (19). A partir de (21) podemos
encontrar que x(t) y y(t) son
y
x
FIGURA 8.2.4
del sistema (19).
Un diagrama de fase
x
C1e 5t cos 2t
y
(C1
C2e 5t sen 2t
2C2 )e 5t cos 2t
(2C1
C2 )e 5t sen 2t.
$OJUD¿FDUODVWUD\HFWRULDV x(t), y(t)) para diferentes valores de C1 y C2, se obtiene el
GLDJUDPDGHIDVHGH TXHVHPXHVWUDHQOD¿JXUD<DTXHODSDUWHUHDOGHȜ1
es 5 0, e5t → conforme t → (VSRUHVWRTXHODVSXQWDVGHÀHFKDGHOD¿JXUD
8.2.4 apuntan alejándose del origen; una partícula en cualquier trayectoria se mueve en
espiral alejándose del origen conforme t → . El origen es un repulsor.
El proceso con el que se obtuvieron las soluciones reales en (21) se puede generalizar. Sea K1 XQ HLJHQYHFWRU FDUDFWHUtVWLFR GH OD PDWUL] GH FRH¿FLHQWHV A (con
elementos reales) que corresponden al eigenvalor complejo Ȝ1 Į Lȕ. Entonces los
vectores solución del teorema 8.2.2 se pueden escribir como
K1e
1t
K1e tei
t
K1e
1t
K1e te
i t
K1e t(cos t
i sen t)
K1e t(cos t
i sen t).
Por el principio de superposición, teorema 8.1.2, los siguientes vectores también son
soluciones:
X1
1
(K e
2 1
X2
i
( K1e
2
1t
K1e 1t )
1t
K1e 1t )
1
(K
2 1
K1)e t cos t
i
( K1
2
i
( K1
2
K1)e t cos t
1
(K
2 1
K1)e t sen t
K1)e t sen t.
Tanto 12 (z z) a como 12 i ( z z ) b son números reales para cualquier número
complejo z a ib. Por tanto, los elementos de los vectores columna 12(K1 K1) y
1
K1)VRQQ~PHURVUHDOHV'H¿QLU
2 i( K1
B1
1
(K
2 1
conduce al siguiente teorema.
K1)
y
B2
i
( K1
2
K1),
(22)
336
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
TEOREMA 8.2.3 Soluciones reales que corresponden a un eigenvalor
complejo
Sea Ȝ1 Į LȕXQHLJHQYDORUFRPSOHMRGHODPDWUL]GHFRH¿FLHQWHVA en el
sistema homogéneo (2) y sean B1 y B2ORVYHFWRUHVFROXPQDGH¿QLGRVHQ
Entonces
X1 [B1 cos t B2 sen t]e t
(23)
X2 [B2 cos t B1 sen t]e t
son soluciones linealmente independientes de (2) en ( , ).
Las matrices B1 y B2 en (22) con frecuencia se denotan por
B1 Re(K1) y
B2 Im(K1)
(24)
ya que estos vectores son, respectivamente, las partes real e imaginaria del eigenvector K1. Por ejemplo, (21) se deduce de (23) con
K1
B1
EJEMPLO 6
1
1
2i
1
1
Re(K1)
y
1
1
i
0
,
2
B2
Im(K1)
0
.
2
Eigenvalores complejos
Resuelva el problema con valores iniciales
2
1
X
SOLUCIÓN
8
X,
2
2
.
1
X(0)
(25)
Primero se obtienen los eigenvalores a partir de
det(A
2
I)
los eigenvalores son Ȝl 2i y
(2
8
1
2
2
2
0.
2i. Para Ȝl el sistema
1
2i ) k1
k1
4
( 2
8k2
0
2i )k2
0
da k1 (2 2i)k 2. Eligiendo k 2 1, se obtiene
K1
2
2i
1
2
1
i
2
.
0
B2
Im(K1)
Ahora de (24) formamos
B1
2
1
Re(K1 )
y
2
.
0
Puesto que Į 0, se tiene a partir de (23) que la solución general del sistema es
X
c1
c1
2
cos 2t
1
2
sen 2t
0
2 cos 2t 2 sen 2t
cos 2t
c2
c2
2
cos 2t
0
2 cos 2t 2 sen 2t
.
sen 2t
2
sen 2t
1
(26)
8.2
y
x
(2, _1)
FIGURA 8.2.5 Un diagrama de fase
del sistema (25) del ejemplo 6.
SISTEMAS LINEALES HOMOGÉNEOS
l
337
$OJXQDV JUi¿FDV GH ODV FXUYDV R WUD\HFWRULDV GH¿QLGDV SRU OD VROXFLyQ GHO VLVWHPDVHLOXVWUDQHQHOGLDJUDPDGHIDVHGHOD¿JXUD$KRUDODFRQGLFLyQLQLFLDO
2
X(0)
, de forma equivalente x(0) 2 y y(0) 1 produce el sistema
1
algebraico 2c1 2c2 2, c1 1, cuya solución es c1 1, c2 0. Así la solución
2 cos 2t 2 sen 2t
para el problema es X
/D WUD\HFWRULD HVSHFt¿FD GH¿QLGD
cos 2t
paramétricamente por la solución particular x 2 cos 2t 2 sen 2t, y cos 2t es la
FXUYDHQURMRGHOD¿JXUD2EVHUYHTXHHVWDFXUYDSDVDSRU 1).
COMENTARIOS
En esta sección hemos examinado solamente sistemas homogéneos de ecuaciones lineales de primer orden en forma normal X AX. Pero con frecuencia el
modelo matemático de un sistema dinámico físico es un sistema homogéneo de
segundo orden cuya forma normal es X AX. Por ejemplo, el modelo para los
resortes acoplados en (1) de la sección 7.6.
m1 x 1
k1 x1 k2(x2 x1)
(27)
m2 x 2
k2(x2 x1),
se puede escribir como
donde
M
m1
0
MX
0
,
m2
K
KX,
k1 k2
k2
k2
,
k2
y
X
x1(t)
.
x2(t)
Puesto que M es no singular, se puede resolver X como X AX, donde A
M1K. Por lo que (27) es equivalente a
X
k1
m1
k2
m1
k2
m2
k2
m1
X.
k2
m2
(28)
Los métodos de esta sección se pueden usar para resolver este sistema en dos
formas:
• Primero, el sistema original (27) se puede transformar en un sistema de
primer orden por medio de sustituciones. Si se hace x 1 x3 y x 2 x4 ,
entonces x 3 x 1 y x 4 x 2 por tanto (27) es equivalente a un sistema de
cuatro ED lineales de primer orden.
x1 x 3
0
0 1 0
x2 x 4
0
0 0 1
k1
k2
k2
k
k
k
1
2
2
x3
x
x o X
0 0 X. (29)
m1 m1 1 m1 2
m1 m1
m1
k2
k2
k2
k2
0 0
x1
x2
x4
m2
m2
m2
m2
$OHQFRQWUDUORVHLJHQYDORUHV\ORVHLJHQYHFWRUHVGHODPDWUL]GHFRH¿FLHQWHV
A en (29), vemos que la solución de este sistema de primer orden proporciona
el estado completo del sistema físico, las posiciones de las masas respecto a
las posiciones de equilibrio (x1 y x2) así como también las velocidades de las
masas (x3 y x4) en el tiempo t. Vea el problema 48(a) en los ejercicios 8.2.
338
CAPÍTULO 8
l
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
• Segundo, debido a que (27) describe el movimiento libre no amortiguado,
se puede argumentar que las soluciones de valores reales del sistema de segundo orden (28) tendrán la forma
(30)
X V cos t y X V sen t,
donde V es una matriz columna de constantes. Sustituyendo cualquiera de
las funciones de (30) en X AX se obtiene (A Ȧ2I)V 0. (Comprobar.)
,GHQWL¿FDQGRFRQ GHHVWDVHFFLyQVHFRQFOX\HTXHȜ Ȧ2 representa
un eigenvalor y V un eigenvector correspondiente de A. Se puede demostrar
2
1, 2 de A son negativos y por tanto
que los eigenvalores i
i,i
1 i es un número real y representa una frecuencia de vibración
i
(circular) (vea (4) de la sección 7.6). Con superposición de soluciones, la
solución general de (28) es entonces
X c1V1 cos 1 t c2V1 sen 1 t c3V2 cos 2 t c4V2 sen 2 t
(31)
(c1 cos 1 t c2 sen 1 t)V1 (c3 cos 2 t c4 sen 2 t)V2 ,
donde V1 y V2 son, a su vez, eigenvectores reales de A correspondientes a
Ȝ1 y Ȝ2.
2
2
2
El resultado dado en (31) se generaliza. Si
1,
2, . . . ,
n son
eigenvalores negativos y distintos y V1, V2, . . . , Vn son los eigenvectores
correspondientes reales de la matriz n nGHFRH¿FLHQWHVA, entonces el
sistema homogéneo de segundo orden X AX tiene la solución general
n
X
(ai cos
i
bi sen
it
(32)
i t)Vi ,
1
donde ai y bi representan constantes arbitrarias. Vea el problema 48(b) en
los ejercicios 8.2.
EJERCICIOS 8.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-14.
8.2.1 EIGENVALORES REALES DISTINTOS
En los problemas l a 12 determine la solución general del sistema dado.
dx
dx
x 2y
2x 2y
1.
2.
dt
dt
dy
dy
4x 3y
x 3y
dt
dt
3.
dx
dt
dy
dt
dx
dt
dy
dt
dz
dt
2y
5
x
2
2y
10
8
5. X
7.
4x
x
5
X
12
y
2y
y
z
z
4.
dx
dt
dy
dt
5
x
2
3
x
4
8.
dx
dt
dy
dt
dz
dt
2x
9. X
10. X
11. X
2y
12. X
2
X
1
7y
5y
10y
2z
1
2
3
0
1
0
0
1 X
1
1
0 X
1
1
1
3
4
1
8
3
2
1
4
1
4
0
4
1
0
0
3 X
1
2
2
2 X
6
En los problemas 13 y 14, resuelva el problema con valores
iniciales.
13. X
5x
1
0
1
2y
6
3
6. X
1
1
0
4z
14. X
1
2
0
1
1
2
1
0
1
1
2
1
X,
X(0)
4
0 X, X(0)
1
3
5
1
3
0
8.2
Tarea para el laboratorio de computación
En los problemas 15 y 16, use un SAC o software de álgebra
lineal como ayuda para determinar la solución general del sistema dado.
0.9
0.7
1.1
15. X
2.1
6.5
1.7
1
0
1
0
2.8
16. X
3.2
4.2 X
3.4
0
5.1
2
1
0
2
0
3
3.1
0
0
3
0 X
0
1
3x
y
9x
3y
1
3
21. X
dx
23.
dt
dy
dt
dz
dt
25. X
27. X
20.
3
X
5
3x
y
z
x
y
z
x
y
z
5
1
0
1
2
0
4
0
2
0
2
1
0
2 X
5
0
1 X
0
0
0
1
dx
dt
dy
dt
22. X
dx
24.
dt
dy
dt
dz
dt
26. X
28. X
5y
5x
4y
12
4
9
X
0
2y
2x
2z
4x
2y
1
0
0
0
3
1
4
0
0
0
1
0
1
6
1
0 X, X(0)
0
1
2
5
1
4
0
0
1 X
4
0
0
2
0
0
0
0
0
2
0
0
0
0
1
2
EIGENVALORES COMPLEJOS
En los problemas 33 a 44, determine la solución general del
sistema dado.
35.
dx
dt
dy
dt
dx
dt
dy
dt
6x
y
5x
2y
5x
y
2x
4
5
37. X
0
1 X
1
1
2
0
0
0
32. Determine los diagramas de fase para los sistemas de los
problemas 20 y 21. Para cada sistema determine cualquier trayectoria de semirrecta e incluya estas líneas en el
diagrama de fase.
4z
3z
2
0
0
0
0
Tarea para el laboratorio de computación
33.
6x
3x
4
X, X(0)
6
tiene un eigenvalor Ȝ1 de multiplicidad 5. Demuestre que
se pueden determinar tres eigenvectores linealmente independientes correspondientes a Ȝ1.
8.2.3
EIGENVALORES REPETIDOS
En los problemas 19 a 28 encuentre la solución general del sistema.
dx
dt
dy
dt
2
1
29. X
A
18. Encuentre los diagramas de fase para los sistemas de los
problemas 2 y 4. Para cada sistema determine las trayectorias de semirrecta e incluya estas rectas en el diagrama de
fase.
19.
339
31. Demuestre que la matriz de 5 5
17. a) Utilice software para obtener el diagrama de fase
del sistema en el problema 5. Si es posible, incluya
SXQWDVGHÀHFKDFRPRHQOD¿JXUD7DPELpQLQcluya cuatro semirrectas en el diagrama de fase.
b) Obtenga las ecuaciones cartesianas de cada una de las
cuatro semirrectas del inciso a).
c) Dibuje los eigenvectores en el diagrama de fase del
sistema.
8.2.2
l
En los problemas 29 y 30, resuelva el problema de valores iniciales
30. X
1.8
1
0
4
1.5
SISTEMAS LINEALES HOMOGÉNEOS
39.
dx
dt
dy
dt
dz
dt
41. X
34.
36.
3y
5
X
4
z
y
1
1
1
1 2
1 0 X
0 1
dx
dt
dy
dt
38. X
40.
z
dx
dt
dy
dt
dx
dt
dy
dt
dz
dt
42. X
x
y
2x
4x
y
5y
2x
6y
1
1
8
X
3
2x
y
3x
6z
4x
4
0
4
2z
3z
0
6
0
1
0 X
4
340
l
CAPÍTULO 8
2
5
0
43. X
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
5 1
6 4 X 44. X
0 2
2
1
1
4
2
0
4
0 X
2
En los problemas 45 y 46, resuelva el problema con valores
iniciales.
45. X
46. X
1
1
1
12
2
1
14
3 X,
2
6
5
1
X,
4
X(0)
X(0)
4
6
7
Problemas para analizar
49. Resuelva cada uno de los siguientes sistemas.
a) X
1
1
1
X
1
b) X
1
1
1
X
1
Encuentre un diagrama de fase de cada sistema. ¿Cuál es
la importancia geométrica de la recta y x en cada diagrama?
2
8
Tarea para el laboratorio de computación
47. Determine los diagramas de fase para los sistemas de los
problemas 36, 37 y 38.
48. a) Resuelva (2) de la sección 7.6 usando el primer método
descrito en los Comentarios (página 337), es decir, exprese (2) de la sección 7.6 como un sistema de cuatro
ecuaciones lineales de primer orden. Use un SAC o software de álgebra lineal como ayuda para determinar los
eigenvalores y los eigenvectores de una matriz de 4
4. Luego aplique las condiciones iniciales a su solución
general para obtener (4) de la sección 7.6.
b) Resuelva (2) de la sección 7.6 usando el segundo método descrito en los Comentarios, es decir, exprese (2)
de la sección 7.6 como un sistema de dos ecuaciones
8.3
lineales de segundo orden. Suponga soluciones de la
forma X V sen ȦW y X V cos ȦW. Encuentre los
eigenvalores y eigenvectores de una matriz de 2 2.
Como en el inciso a), obtenga (4) de la sección 7.6.
50. Considere la matriz de 5 5 dada en el problema 31.
Resuelva el sistema X AX sin la ayuda de métodos
matriciales, pero escriba la solución general usando notación matricial. Use la solución general como base para un
análisis de cómo se puede resolver el sistema usando métodos matriciales de esta sección. Lleve a cabo sus ideas.
51. 2EWHQJDXQDHFXDFLyQFDUWHVLDQDGHODFXUYDGH¿QLGDSDramétricamente por la solución del sistema lineal en el
HMHPSOR,GHQWL¿TXHODFXUYDTXHSDVDSRU 1) en la
¿JXUD>Sugerencia: Calcule x2, y2 y xy.]
52. Examine sus diagramas de fase del problema 47. ¿En
qué condiciones el diagrama de fase de un sistema lineal
homogéneo de 2 2 con eigenvalores complejos está
compuesto de una familia de curvas cerradas? ¿De una
familia de espirales? ¿En qué condiciones el origen (0, 0)
es un repulsor? ¿Un atractor?
SISTEMAS LINEALES NO HOMOGÉNEOS
REPASO DE MATERIAL
l 6HFFLyQ &RH¿FLHQWHVLQGHWHUPLQDGRV
l Sección 4.6 (Variación de parámetros)
INTRODUCCIÓN En la sección 8.1 vimos que la solución general de un sistema lineal no homogéneo X AX F(t) en un intervalo I es X Xc Xp, donde Xc c1X1 c2X2
cnXn es la
función complementaria o solución general del sistema lineal homogéneo asociado X AX y Xp
es cualquier solución particular del sistema no homogéneo. En la sección 8.2 vimos cómo obtener
XcFXDQGRODPDWUL]GHFRH¿FLHQWHVA era una matriz de constantes n n. En esta sección consideraremos dos métodos para obtener Xp.
Los métodos de FRH¿FLHQWHVLQGHWHUPLQDGRV y variación de parámetros empleados en el capítulo 4 para determinar soluciones particulares de EDO lineales no homogéneas, se pueden adaptar
a la solución de sistemas lineales no homogéneos X AX F(t). De los dos métodos, variación
GHSDUiPHWURVHVODWpFQLFDPiVSRGHURVD6LQHPEDUJRKD\FDVRVHQTXHHOPpWRGRGHFRH¿FLHQWHV
indeterminados provee un medio rápido para encontrar una solución particular.
8.3.1
COEFICIENTES INDETERMINADOS
LAS SUPOSICIONES &RPRHQODVHFFLyQHOPpWRGRGHFRH¿FLHQWHVLQGHWHUPLnados consiste en hacer una suposición bien informada acerca de la forma de un vector
8.3
SISTEMAS LINEALES NO HOMOGÉNEOS
l
341
solución particular Xp; la suposición es originada por los tipos de funciones que constituyen los elementos de la matriz columna F(t). No es de sorprender que la versión maWULFLDOGHORVFRH¿FLHQWHVLQGHWHUPLQDGRVVHDDSOLFDEOHDX AX F(t) sólo cuando
los elementos de A son constantes y los elementos de F(t) son constantes, polinomios,
IXQFLRQHVH[SRQHQFLDOHVVHQRV\FRVHQRVRVXPDV\SURGXFWRV¿QLWRVGHHVWDVIXQFLRQHV
EJEMPLO 1
&RH¿FLHQWHVLQGHWHUPLQDGRV
1
1
Resuelva el sistema X
2
X
1
8
en ( , ).
3
SOLUCIÓN Primero resolvemos el sistema homogéneo asociado
1
1
X
2
X.
1
/DHFXDFLyQFDUDFWHUtVWLFDGHODPDWUL]GHFRH¿FLHQWHVA.
1
I)
det (A
2
1
produce los eigenvalores complejos Ȝ1 i y
de la sección 8.2, se encuentra que
Xc
cos t sent
cos t
c1
2
1
1
2
c2
i . Con los procedimientos
1
cos t
0,
sent
.
sent
Ahora, puesto que F(t) es un vector constante, se supone un vector solución particular
a1
constante Xp
. Sustituyendo esta última suposición en el sistema original e
b1
igualando las entradas se tiene que
0
a1
2b1
8
0
a1
b1
3.
Al resolver este sistema algebraico se obtiene a1 14 y b1 11 y así, una solución
14
particular Xp
. La solución general del sistema original de ED en el intervalo
11
( , ) es entonces X Xc Xp o
X
EJEMPLO 2
c1
cos t sent
cos t
c2
cos t
sent
sent
14
.
11
&RH¿FLHQWHVLQGHWHUPLQDGRV
Resuelva el sistema X
6
4
1
X
3
6t
10t
4
en ( , ).
SOLUCIÓN Se determina que los eigenvalores y los eigenvectores del sistema
6 1
X son Ȝ1 2, Ȝ2 7, K1
4 3
Por tanto la función complementaria es
1 2t
1 7t
Xc c1
e
c2
e .
4
1
homogéneo asociado X
1
, y K2
4
1
.
1
342
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
6
0
t
, se
10
4
tratará de encontrar una solución particular del sistema que tenga la misma forma:
Ahora bien, debido a que F(t) se puede escribir como F(t)
a2
t
b2
Xp
a1
.
b1
Sustituyendo esta última suposición en el sistema dado se obtiene
a2
b2
0
0
o
6
4
1
3
(4a2
a2
t
b2
6
t
10
a1
b1
(6a2 b2 6)t 6a1 b1
3b2 10)t 4a1 3b1
0
4
a2
b2
4
.
De la última identidad se obtienen cuatro ecuaciones algebraicas con cuatro incógnitas
6a2
4a2
6
10
b2
3b2
0
0
6a1
4a1
y
b1
3b1
a2
b2
0
0.
4
Resolviendo de forma simultánea las primeras dos ecuaciones se obtiene a2 2 y
b2 6. Después, se sustituyen estos valores en las dos últimas ecuaciones y se despeja
4
10
para a1 y b1. Los resultados son a1
7 , b1
7 . Por tanto, se tiene que un vector
solución particular es
4
7
2
t
6
Xp
.
10
7
la solución general del sistema en ( , ) es X Xc Xp o
X
EJEMPLO 3
c1
1 2t
e
4
1 7t
c2
e
1
4
7
2
t
6
10
7
.
Forma de X p
Determine la forma de un vector solución particular Xp para el sistema
dx
dt
dy
dt
SOLUCIÓN
5x
3y
x
y
2e
e
t
t
1
5t
7.
Ya que F(t) se puede escribir en términos matriciales como
F(t)
2
e
1
t
0
t
5
1
7
una suposición natural para una solución particular sería
Xp
a3
e
b3
t
a2
t
b2
a1
.
b1
8.3
SISTEMAS LINEALES NO HOMOGÉNEOS
l
343
COMENTARIOS
(O PpWRGR GH FRH¿FLHQWHV LQGHWHUPLQDGRV SDUD VLVWHPDV OLQHDOHV QR HV WDQ
directo como parecerían indicar los últimos tres ejemplos. En la sección
4.4 la forma de una solución particular yp se predijo con base en el conocimiento previo de la función complementaria yc. Lo mismo se cumple para
la formación de Xp 3HUR KD\ RWUDV GL¿FXOWDGHV ODV UHJODV TXH JRELHUQDQ
la forma de yp en la sección 4.4 no conducen a la formación de Xp. Por ejemplo, si F(t) es un vector constante como en el ejemplo 1 y Ȝ 0 es un eigenvalor de multiplicidad uno, entonces Xc contiene un vector constante. Bajo la regla
de multiplicación del ejemplo 7 de la sección 4.4 se trataría comúnmente de una
a1
t . Esta no es la suposición apropiada
solución particular de la forma Xp
b1
a2
a1
para sistemas lineales, la cual debe ser Xp
. De igual manera, en
t
b2
b1
el ejemplo 3, si se reemplaza et en F(t) por e2t (Ȝ 2 es un eigenvalor), entonces
la forma correcta del vector solución particular es
a4 2t
te
b4
Xp
a3 2t
e
b3
a2
t
b2
a1
.
b1
(Q YH] GH DKRQGDU HQ HVWDV GL¿FXOWDGHV VH YXHOYH DO PpWRGR GH YDULDFLyQ GH
parámetros.
8.3.2
VARIACIÓN DE PARÁMETROS
UNA MATRIZ FUNDAMENTAL Si X1, X2 . . . , Xn es un conjunto fundamental de
soluciones del sistema homogéneo X AX en el intervalo I, entonces su solución
general en el intervalo es la combinación lineal X c1X1 c2X2
cnXn o
x1n
c1x11 c2 x12 . . . cn x1n
x2n
c1x21 c2 x22 . . . cn x2n
.
.
.
.
.
.
.
xnn
c1xn1 c2 xn2 . . . cn xnn
() () ()(
x11
x21
X c1 .. c2
.
xn1
x12
x22
. . . . cn
.
.
xn2
)
(1)
La última matriz en (1) se reconoce como el producto de una matriz n n con una matriz
n 1. En otras palabras, la solución general (1) se puede escribir como el producto
X
(2)
(t)C ,
donde C es un vector columna de n 1 constantes arbitrarias c1, c2, . . . , cn y la matriz
n n, cuyas columnas consisten en los elementos de los vectores solución del sistema
X AX,
x11 x12 . . . x1n
x21 x22 . . . x2n
. ,
⌽(t) ..
.
.
.
.
.
.
xnn
xn1 xn2
(
)
se llama matriz fundamental del sistema en el intervalo.
344
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
En el análisis siguiente se requiere usar dos propiedades de una matriz fundamental:
• Una matriz fundamental ⌽(t) es no singular.
• Si ⌽(t) es una matriz fundamental del sistema X AX, entonces
(3)
A (t).
(t)
Un nuevo examen de (9) del teorema 8.1.3 muestra que det ⌽(t) es igual al WronsNLDQRW(X1, X2, . . ., Xn). Por tanto, la independencia lineal de las columnas de ⌽(t)
en el intervalo I garantiza que det ⌽(t) 0 para toda t en el intervalo. Puesto que
⌽(t) es no singular, el inverso multiplicativo ⌽1(t) existe para todo t en el intervalo.
El resultado dado en (3) se deduce de inmediato del hecho de que cada columna de
⌽(t) es un vector solución de X AX.
VARIACIÓN DE PARÁMETROS Análogamente al procedimiento de la sección
4.6, nos preguntamos si es posible reemplazar la matriz de constantes C en (2) por una
matriz columna de funciones
()
u1(t)
u2(t)
U(t) .. por lo que Xp ⌽(t)U(t)
.
(4)
un(t)
es una solución particular del sistema no homogéneo
X
AX
(5)
F(t).
Por la regla del producto la derivada de la última expresión en (4) es
Xp
(t)U (t)
(6)
(t)U(t).
Observe que el orden de los productos en (6) es muy importante. Puesto que U(t) es una
matriz columna, los productos U(t)⌽(t) y U(t)⌽(t QRHVWiQGH¿QLGRV6XVWLWX\HQGR
(4) y (6) en (5), se obtiene
(t)U (t)
(t)U(t)
A (t)U(t)
F(t).
(7)
Ahora si usa (3) para reemplazar ⌽(t), (7) se convierte en
(t)U (t)
A (t)U(t)
o
A (t)U(t)
(t)U (t)
F(t)
(8)
F(t).
Multiplicando ambos lados de la ecuación (8) por ⌽1(t), se obtiene
U (t)
1
(t) F(t)
por tanto
U(t)
1
(t) F(t) dt.
Puesto que Xp ⌽(t)U(t), se concluye que una solución particular de (5) es
Xp
1
(t) F(t) dt.
(t)
(9)
3DUDFDOFXODUODLQWHJUDOLQGH¿QLGDGHODPDWUL]FROXPQD⌽1(t)F(t) en (9), se integra
cada entrada. Así, la solución general del sistema (5) es X Xc Xp o
X
(t)C
(t)
1
(t) F(t) dt.
(10)
Observe que no es necesario usar una constante de integración en la evaluación de
1
(t) F(t) dt por las mismas razones expresadas en la explicación de variación
de parámetros en la sección 4.6.
8.3
EJEMPLO 4
SISTEMAS LINEALES NO HOMOGÉNEOS
l
345
Variación de parámetros
Resuelva el sistema
3
2
X
1
X
4
3t
e t
(11)
en ( , ).
SOLUCIÓN Primero resolvemos el sistema homogéneo asociado
3
2
X
1
X.
4
(12)
ODHFXDFLyQFDUDFWHUtVWLFDGHODPDWUL]GHFRH¿FLHQWHVHV
det(A
3
I)
1
2
(
4
2)(
5)
0,
por lo que los eigenvalores son Ȝ1 2 y Ȝ2 5. Con el método usual se encuentra
1
que los eigenvectores correspondientes a Ȝ1 y Ȝ2 son, respectivamente, K1
y
1
1
K2
. Entonces, los vectores solución del sistema (12) son
2
1
e
1
X1
e
e
2t
2t
y
2t
1
e
2
X2
e
2e
5t
5t
5t
.
Las entradas en X1 a partir de la primera columna de ⌽(t) y las entradas en X2 a partir
de la segunda columna de ⌽(t). Por tanto
e
e
(t)
2t
e
2e
2t
5t
y
5t
1
(t)
2 2t
3e
1 2t
3e
1 5t
3e
1 5t
3e
.
A partir de (9) obtenemos
Xp
1
(t) F(t) dt
(t)
e
e
e
e
e
e
2t
e
2e
2t
2t
e
2e
2t
2t
e
2e
2t
6
5t
3
5t
27
50
21
50
2 2t
3e
1 5t
3e
1 2t
3e
1 5t
3e
5t
2te2t
5t
te5t
1 t
3e
1 4t
3e
5t
5t
5t
te2t
5t
1 5t
5 te
1
t
4e
1
t
2e
1 2t
2e
1 5t
25 e
3t
dt
e t
dt
1 t
3e
1 4t
12 e
.
Por tanto a partir de (10) la solución de (11) en el intervalo es
X
e
e
c1
2t
2t
1
e
1
e
2e
2t
5t
5t
c2
c1
c2
1
e
2
6
5t
3
5t
5t
27
50
21
50
6
5
3
5
1
t
4e
1
t
2e
t
27
50
21
50
1
4
1
2
e t.
346
CAPÍTULO 8
l
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
PROBLEMA CON VALORES INICIALES La solución general de (5) en el intervalo se puede escribir en una forma alternativa
t
X
(t)C
(13)
1
(s) F(s) ds,
(t)
t0
donde t y t0 son puntos en el intervalo. Esta última forma es útil para resolver (5) sujeta
a una condición inicial X(t0) X0, porque los límites de integración se eligen de tal
forma que la solución particular sea cero en t t0. Sustituyendo t t0 en (13) se obtiene
1
(t0)X0. Sustituyendo este último
X0
(t0)C a partir de la que se obtiene C
resultado en (13) se obtiene la siguiente solución del problema con valores iniciales:
t
X
1
(t0)X0
(t)
(14)
1
(s) F(s) ds.
(t)
t0
EJERCICIOS 8.3
8.3.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-14.
COEFICIENTES INDETERMINADOS
(QORVSUREOHPDVDXWLOLFHHOPpWRGRGHORVFRH¿FLHQWHV
indeterminados para resolver el sistema dado.
1.
2.
dx
dt
dy
dt
dx
dt
dy
dt
3y
7
x
2y
5
9y
3. X
1
3
4. X
1
4
5. X
4
9
3
X
1
6
1
1
6. X
6
R1
i1
2 t2
t 5
t
L2
8.3.2 VARIACIÓN DE PARÁMETROS
sen t
2 cos t
1
0
0
1
2
0
1
3 X
5
1
1 e4t
2
8. X
0 0
0 5
5 0
5
0 X
0
5
10
40
1
3
i R
i2 3 2
FIGURA 8.3.1 Red del problema 10.
3 t
e
10
5
X
1
4
.
5
E>L1
.
E>L2
9e6t
e6t
7. X
X(0)
i2
i3
L1
E
4t
X
9. Resuelva X
R1>L1
R2)>L2
VHHOPpWRGRGHORVFRH¿FLHQWHVLQGHWHUPLQDGRVSDUD
8
resolver el sistema si R1 2 !, R 2 3 !, L 1 1 h,
L 2 1 h, E 60 V, i 2(0) 0, e i 3(0) 0.
b) Determine la corriente i1(t).
4
X
1
1
3
(R1
2
11y
x
R1 >L1
R1>L2
d i2
dt i3
2x
5x
10. a) El sistema de ecuaciones diferenciales para las corrientes i2(t) e i3(t) en la red eléctrica que se muestra
HQOD¿JXUDHV
2
X
4
En los problemas 11 a 30 utilice variación de parámetros para
resolver el sistema dado.
11.
12.
3
sujeta a
3
dx
dt
dy
dt
dx
dt
dy
dt
13. X
3x
3y
4
2x
2y
1
2x
y
3x
2y
3
3
4
4t
5
X
1
1 t/2
e
1
8.3
14. X
2
4
1
X
2
0
1
2
X
3
16. X
0
1
2
X
3
e
1 t
e
1
8
X
1
12
t
12
18. X
1
1
8
X
1
e t
tet
19. X
3
2
2
X
1
2e t
e t
20. X
3
2
2
X
1
1
1
347
R2 >L2
R2 >L1
E>L2
.
0
i1
i2
Utilice variación de parámetros para resolver el sistema si R1 8 !, R2 3 !, L1 1 h, L 2 1 h,
E(t) 100 sen t V, i1(0) 0, e i2(0) 0.
3t
1
1
(R1 R2)>L2
R2 >L1
d i1
dt i2
2
17. X
l
33. El sistema de ecuaciones diferenciales para las corrientes
i1(t) e i2(t HQODUHGHOpFWULFDTXHVHPXHVWUDHQOD¿JXUD
8.3.2 es
sen 2t
e2t
2 cos 2t
15. X
SISTEMAS LINEALES NO HOMOGÉNEOS
R1
i1
i3
i2
R2
L1
E
L2
FIGURA 8.3.2 Red del problema 33.
21. X
0
1
1
X
0
sec t
0
22. X
1
1
1
X
1
3 t
e
3
23. X
1
1
1
X
1
cos t t
e
sen t
24. X
2
8
2
X
6
1 e 2t
3 t
34. Si y1 y y2 son soluciones linealmente independientes de las
ED homogéneas asociadas para y P(x)y Q(x)y
f(x), demuestre en el caso de una ED lineal no homogénea
de segundo orden que (9) se reduce a la forma de variación de parámetros analizada en la sección 4.6.
Tarea para el laboratorio de computación
Problemas para analizar
25. X
0
1
1
X
0
0
sec t tan t
26. X
0
1
1
X
0
1
cot t
27. X
1 2
X
1
1
2
28. X
1
1
29. X
1
1
0
2
X
1
1
1
0
0
0 X
3
35. Resolver un sistema lineal no homogéneo X AX
F(t) usando variación de parámetros cuando A es una matriz 3 3 (o más grande) es casi una tarea imposible de
hacer a mano. Considere el sistema
csc t t
e
sec t
tan t
1
X
et
e2t
te3t
3
1
1
0
1
1
1 X
t
30. X
1
1
1
2et
En los problemas 31 y 32, use (14) para resolver el problema
con valores iniciales.
3
1
4e2t
1
X
, X(0)
31. X
1
3
4e4t
1
32. X
1
1
1
X
1
1>t
,
1>t
X(1)
2
1
2
1
0
0
2
3
0
0
2
0
4
2
1
3
X
2
1
tet
e t
.
e2t
1
a) Use un SAC o software de álgebra lineal para encontrar los eigenvalores y los eigenvectores de la matriz
GHFRH¿FLHQWHV
b) Forme una matriz fundamental ⌽(t) y utilice la
computadora para encontrar ⌽1(t).
c) Use la computadora para realizar los cálculos de:
1
1
1
(t) F(t),
(t)F(t) dt,
(t)
(t)F(t) dt,
1
(t)C y (t)C
(t) F(t) dt, donde C es una
matriz columna de constantes c1, c2, c3 y c4.
d) Reescriba el resultado de la computadora para la solución general del sistema en la forma X Xc Xp,
donde Xc c1X1 c2X2 c3X3 c4X4.
348
l
CAPÍTULO 8
8.4
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
MATRIZ EXPONENCIAL
REPASO DE MATERIAL
l $SpQGLFH,, GH¿QLFLRQHV,,\,,
INTRODUCCIÓN Las matrices se pueden usar de una manera completamente distinta para resolver un sistema de ecuaciones diferenciales lineales de primer orden. Recuerde que la ecuación
diferencial lineal simple de primer orden x ax, donde a es constante, tiene la solución general x
ceat, donde cHVFRQVWDQWH3DUHFHQDWXUDOSUHJXQWDUVLVHSXHGHGH¿QLUXQDIXQFLyQH[SRQHQFLDO
matricial eAt, donde A es una matriz de constantes por lo que una solución del sistema X AX es eAt.
SISTEMAS HOMOGÉNEOS $KRUDYHUHPRVTXHHVSRVLEOHGH¿QLUXQDPDWUL]H[ponencial eAt tal que
X eAtC
(1)
es una solución del sistema homogéneo X AX. Aquí A es una matriz n n de constantes
y C es una matriz columna n 1 de constantes arbitrarias. Observe en (1) que la matriz C
se multiplica por la derecha a eAt porque queremos que eAt sea una matriz n n. Mientras
TXHHOGHVDUUROORFRPSOHWRGHOVLJQL¿FDGR\WHRUtDGHODPDWUL]H[SRQHQFLDOUHTXHULUtDXQ
FRQRFLPLHQWRFRPSOHWRGHiOJHEUDGHPDWULFHVXQDIRUPDGHGH¿QLUeAt se basa en la representación en serie de potencias de la función exponencial escalar eat:
(at)2
(at)k
eat 1 at
2!
k!
tk
tk
t2
(2)
k
k
2
.
1 at a
2!
k!
k!
k 0
La serie en (2) converge para toda t. Si se usa esta serie, con la matriz identidad I en
vez de 1 y la constante a se reemplaza por una matriz A n n de constantes, se obtiene
XQDGH¿QLFLyQSDUDODPDWUL]n n, eAt.
DEFINICIÓN 8.4.1
Matriz exponencial
Para cualquier matriz A n n,
t2
eAt I A t A2
2!
Ak
tk
k!
Ak
k 0
tk
.
k!
(3)
Se puede demostrar que la serie dada en (3) converge a una matriz n n para todo
valor de t. También, A2 AA, A3 A(A)2, etcétera.
EJEMPLO 1
Matriz exponencial usando (3)
Calcule eAt para la matriz
2
0
A
0
3
SOLUCIÓN De las diferentes potencias
A2
22 0
, A3
0 32
vemos de (3) que
1
0
1
23 0
, A4
0 33
eAt
0
1
2t
I
2
0
22
0
t2
2!
A2 2
t
2!
At
0
t
3
24 0
, . . . , An
0 34
...
22 0 t2
0 32 2!
...
2n 0 t n
0 3n n!
...
0
1
3t
2n 0
,...,
0 3n
32
t2
2!
...
.
...
8.4
MATRIZ EXPONENCIAL
l
349
8VDQGR \ODVLGHQWL¿FDFLRQHVa 2 y a 3, las series de potencias en el primer y en el
segundo renglón de la última matriz, representan, respectivamente e2t y e3t y así tenemos que
e2t 0
eAt
.
0 e3t
La matriz en el ejemplo 1 es un ejemplo de una matriz diagonal 2 2. En general, una
matriz n n A es una matriz diagonal si todos los elementos fuera de la diagonal
principal son cero, es decir,
a11 0 . . . 0
0 a22 . . . 0
A
.
⯗
⯗
⯗
0
0 . . . ann
Por lo tanto si A es cualquier matriz diagonal n n se sigue del ejemplo 1 que
eAt
ea11t
0
⯗
0
0
...
a22t
...
⯗
0
...
e
0
0
.
⯗
eannt
DERIVADA DE e At La derivada de la matriz exponencial es similar a la propiedad
d
de derivación de la exponencial escalar eat aeat 3DUDMXVWL¿FDU
dt
d At
e
dt
derivamos (3) término por término:
d At
e
dt
d
I
dt
A I
At
At
A2
A2
t2
2!
Ak
t2
2!
(4)
AeAt,
tk
k!
A
A2t
1 32
At
2!
A eAt.
Debido a (4), ahora se puede probar que (1) es una solución de X AX para todo
vector n 1 C de constantes:
d At
X
e C A eAtC A(eAtC) AX.
dt
e At ES UNA MATRIZ FUNDAMENTAL Si se denota la matriz exponencial eAt con
el símbolo ⌿(t), entonces (4) es equivalente a la ecuación diferencial matricial ⌿(t)
A ⌿(t YHD GHODVHFFLyQ $GHPiVVHGHGXFHGHLQPHGLDWRGHODGH¿QLFLyQ
8.4.1 que ⌿(0) eA0 I, y por tanto det ⌿(0) 0. Se tiene que estas propiedades
VRQVX¿FLHQWHVSDUDFRQFOXLUTXH⌿(t) es una matriz fundamental del sistema X AX.
SISTEMAS NO HOMOGÉNEOS Se vio en (4) de la sección 2.3 que la solución
general de la ecuación diferencial lineal única de primer orden x ax f(t), donde a
es una constante, se puede expresar como
t
x
xceat
eat e
as
f (s) ds.
t0
Para un sistema no homogéneo de ecuaciones diferenciales lineales de primer orden,
se puede demostrar que la solución general de X AX F(t), donde A es una matriz
n n de constantes, es
t
X
eAtC
eAt e
As
F(s) ds.
(5)
t0
Puesto que la matriz exponencial eAt es una matriz fundamental, siempre es no singular
y eAs (eAs)1. En la práctica, eAs se puede obtener de eAt al reemplazar t por –s.
350
CAPÍTULO 8
l
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
CÁLCULO DE e At /DGH¿QLFLyQGHeAt dada en (3) siempre se puede usar para calcular eAt. Sin embargo, la utilidad práctica de (3) está limitada por el hecho de que los
elementos de eAt son series de potencias en t. Con un deseo natural de trabajar con
FRVDVVLPSOHV\IDPLOLDUHVVHWUDWDGHUHFRQRFHUVLHVWDVVHULHVGH¿QHQXQDIXQFLyQGH
forma cerrada. Por fortuna, hay muchas formas alternativas de calcular eAt; la siguiente
explicación muestra cómo se puede usar la transformada de Laplace.
USO DE LA TRANSFORMADA DE LAPLACE Vimos en (5) que X eAt es una
solución de X AX. De hecho, puesto que eA0 I, X eAt es una solución de problema con valores iniciales
X
AX, X(0) I.
(6)
Si x(s)
{eAt} , entonces la transformada de Laplace de (6) es
{ X(t)}
s x(s)
X(0)
Ax(s)
o
(sI
A)x(s)
I.
) A)1 se tiene que x(s) (sI A)1 I (sI
Multiplicando la última ecuación(por (sI
At
1
A) . En otras palabras, {e } (sI A) 1 o
e At
EJEMPLO 2
1
(7)
A) 1}.
{(sI
Matriz exponencial usando (7)
1
2
Use la transformada de Laplace para calcular e At para A
1
.
2
SOLUCIÓN Primero calcule la matriz sI – A y determine su inversa:
sI
(sI
A
A)
1
s
s
1
1
,
2 s 2
1
1
2 s 2
2
1)
s
s(s
1
2
s(s
1
s (s
s
1) s(s
1)
.
1
1)
Entonces, descomponiendo las entradas de la última matriz en fracciones parciales:
2
1
1
1
s
s
1
s
s
1
(8)
.
(sI A) 1
2
2
1
2
s s 1
s s 1
Se deduce de (7) que la transformada de Laplace inversa de (8) proporciona el resultado deseado,
2 e t
1 e t
e At
.
t
2 2e
1 2e t
USO DE COMPUTADORAS Para quienes por el momento están dispuestos a
intercambiar la comprensión por la velocidad de solución, eAt se puede calcular con la
ayuda de software. Véanse los problemas 27 y 28 de los ejercicios 8.4.
EJERCICIOS 8.4
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-15.
En los problemas l y 2 use (3) para calcular eAt y eAt.
1. A
1
0
0
2
2. A
0
1
1
0
En los problemas 3 y 4 use (3) para calcular eAt.
3. A
1
1
2
1
1
2
1
1
2
4. A
0
3
5
0
0
1
0
0
0
8.4
En los problemas 5 a 8 use (1) para encontrar la solución general del sistema dado.
2
3
19. A
5. X
1
0
0
X
2
1
1
2
7. X
1
1
2
1
1 X
2
6. X
0
1
1
X
0
8. X
0
3
5
0
0
1
0
0 X
0
En los problemas 9 a 12 use (5) para encontrar la solución
general del sistema dado.
9. X
1
0
0
X
2
3
1
10. X
1
0
0
X
2
t
e4t
11. X
0
1
1
X
0
1
1
12. X
0
1
1
X
0
cosh t
senht
4
.
3
En los problemas 15 a 18, use el método del ejemplo 2 para
calcular eAtSDUDODPDWUL]GHFRH¿FLHQWHV8VH SDUDHQFRQtrar la solución general del sistema dado.
17. X
5
1
3
X
4
9
X
1
20. A
2
1
351
1
2
21. Suponga que A PDP1, donde DVHGH¿QHFRPRHQ
Use (3) para demostrar que eAt PeDtP1.
22. Si DVHGH¿QHFRPRHQ HQWRQFHVHQFXHQWUHeDt.
En los problemas 23 y 24 use los resultados de los problemas
19 a 22 para resolver el sistema dado.
2
3
23. X
1
X
6
24. X
2
1
1
X
2
25. Vuelva a leer el análisis que lleva al resultado dado en
(7). ¿La matriz sI A siempre tiene inversa? Explique.
X(0)
4
4
1
6
l
Problemas para analizar
13. Resuelva el sistema en el problema 7 sujeto a la condición inicial
1
X(0)
4 .
6
14. Resuelva el sistema del problema 9 sujeto a la condición
inicial
15. X
MATRIZ EXPONENCIAL
16. X
4
1
18. X
2
X
1
0
2
1
X
2
Sea P una matriz cuyas columnas son eigenvectores K1,
K2, . . . , Kn que corresponden a eigenvalores Ȝ1, Ȝ2, . . . , Ȝn
de una matriz A de n n. Entonces se puede demostrar que A
PDP1, donde DVHGH¿QHSRU
l1 0 . . . 0
0 l2 . . . 0
. .
D ..
(9)
.
.
.
0 0 . . . ln
( )
En los problemas 19 y 20, compruebe el resultado anterior
para la matriz dada.
26. Se dice que una matriz A es nilpotente cuando existe algún entero m tal que Am 0. Compruebe que
1 1 1
A
1 0 1 es nilpotente. Analice porqué es rela1 1 1
tivamente fácil calcular eAt cuando A es nilpotente. Calcule
eAt y luego utilice (1) para resolver el sistema X AX.
Tarea para el laboratorio de computación
27. a) Utilice (1) para obtener la solución general de
4 2
X
X. Use un SAC para encontrar eAt.
3 3
Luego emplee la computadora para determinar eigen YDORUHV\ HLJHQYHFWRUHVGH ODPDWUL]GH FRH¿FLHQWHV
4 2
y forme la solución general de acuer3 3
do con la sección 8.2. Por último, reconcilie las dos
formas de la solución general del sistema.
A
b) Use (1) para determinar la solución general de
3
1
X. Use un SAC, para determinar
2
1
eAt. En el caso de un resultado complejo, utilice el
VRIWZDUHSDUDKDFHUODVLPSOL¿FDFLyQSRUHMHPSORHQ
Mathematica, si m MatrixExp[A t] tiene elementos complejos, entonces intente con la instrucción
Simplify[ComplexExpand[m]].
X
28. Use (1) para encontrar la solución general de
4
0 6
0
0
5 0
4
X
X.
1
0 1
0
0
3 0
2
Use MATLAB o un SAC para encontrar eAt.
352
l
CAPÍTULO 8
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-15.
REPASO DEL CAPÍTULO 8
En los problemas 1 y 2 complete los espacios en blanco.
4
1. El vector X k
es una solución de
5
1
X
2
para k __________.
8
1
5 7t
e es solución del
3
1 10
2
problema con valores iniciales X
X, X(0)
6 3
0
para c1 __________ y c 2 __________.
2. El vector X
c1
1
e
1
4
X
1
11. X
9t
c2
4
6
6
3. Considere el sistema lineal X
1
3
2 X.
1
4
3
Sin intentar resolver el sistema, determine cada uno de
los vectores
K1
0
1 ,
1
1
1 ,
1
K2
3
1 ,
1
K3
6
2
5
K4
HVXQHLJHQYHFWRUGHODPDWUL]GHFRH¿FLHQWHV¢&XiOHVOD
solución del sistema correspondiente a este eigenvector?
4. Considere un sistema lineal X AX de dos ecuaciones diferenciales, donde A es una matriz de coe¿FLHQWHV UHDOHV ¢&XiO HV OD VROXFLyQ JHQHUDO GHO VLVtema si se sabe que Ȝ1 1 2i es un eigenvalor y
1
es un eigenvector correspondiente?
K1
i
2
0
8
X
4
2
16t
12. X
1 2
X
1
1
2
0
e tan t
13. X
1
2
1
X
1
1
cot t
14. X
3
1
1
X
1
t
2 2t
e
1
15. a) Considere el sistema lineal X AX de tres ecuaciones diferenciales de primer orden, donde la matriz de
FRH¿FLHQWHVHV
2x
x
1
2
7. X
9. X
6.
y
1
0
4
2
X
1
1
1
3
1
3 X
1
dx
dt
dy
dt
4x
2x
10. X
0
1
2
3
3
3
b) Use el procedimiento del inciso a) para resolver
1
1
1
X
1
1
1
1
1 X.
1
2y
16. Compruebe que X
lineal
4y
2
2
8. X
3
5
5
y Ȝ 2 es un eigenvalor conocido de multiplicidad
dos. Encuentre dos soluciones diferentes del sistema
correspondiente a este eigenvalor sin usar una fórmula especial (como (12) de la sección 8.2)
En los problemas 5 a 14 resuelva el sistema lineal dado.
5. dx
dt
dy
dt
5
3
5
A
5
X
4
2
1
2
1
2 X
1
X
c1 t
e es una solución del sistema
c2
1
0
0
X
1
para constantes arbitrarias c1 y c2. A mano, trace un diagrama de fase del sistema.
9
SOLUCIONES NUMÉRICAS DE
ECUACIONES DIFERENCIALES
ORDINARIAS
9.1
9.2
9.3
9.4
9.5
Métodos de Euler y análisis de errores
Métodos de Runge-Kutta
Métodos multipasos
Ecuaciones y sistemas de orden superior
Problemas con valores en la frontera de segundo orden
REPASO DEL CAPÍTULO 9
Aun cuando se pueda demostrar que la solución de una ecuación diferencial exista,
no siempre es posible expresarla en forma explícita o implícita. En muchos casos
tenemos que conformarnos con una aproximación de la solución. Si la solución
existe, se representa por un conjunto de puntos en el plano cartesiano. En este
capítulo continuamos investigando la idea básica de la sección 2.6, es decir,
utilizar la ecuación diferencial para construir un algoritmo para aproximar las
coordenadas y de los puntos de la curva solución real. Nuestro interés en este
capítulo son principalmente los PVI dy兾dx f (x, y), y(x0) y0. En la sección 4.10
vimos que los procedimientos numéricos desarrollados para las ED de primer
orden se generalizan de una manera natural para sistemas de ecuaciones de
primer orden y por tanto se pueden aproximar soluciones de una ecuación de orden
superior remodelándola como un sistema de ED de primer orden. El capítulo 9
concluye con un método para aproximar soluciones de problemas con valores en la
frontera lineales de segundo orden.
353
354
l
CAPÍTULO 9
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
MÉTODOS DE EULER Y ANÁLISIS DE ERRORES
9.1
REPASO DE MATERIAL
l Sección 2.6
INTRODUCCIÓN En el capítulo 2 se examinó uno de los métodos numéricos más simples para
aproximar soluciones de problemas con valores iniciales de primer orden y f (x, y), y(x0) y0.
Recuerde que la estructura del método de Euler fue la fórmula
yn
1
yn
(1)
hf (xn , yn ),
donde f es la función obtenida de la ecuación diferencial y f (x, y). El uso recursivo de (1) para
n 0, 1, 2, . . . produce las cordenadas y: y1, y2, y3, . . . de puntos en “rectas tangentes” sucesivas
respecto a la curva solución en x1, x2, x3, . . . o xn x0 nh, donde h es una constante y es el tamaño
de paso entre xn y xn 1. Los valores y1, y2, y3, . . . aproximan los valores de una solución y(x) del PVI
en x1, x2, x3, . . . Pero sin importar la ventaja que la ecuación (1) tenga en su simplicidad, se pierde en
la severidad de sus aproximaciones.
UNA COMPARACIÓN En el problema 4 de los ejercicios 2.6 se pidió usar el método de Euler para obtener el valor aproximado de y(1.5) para la solución del problema
con valores iniciales y 2xy, y(1) 1. Se debe haber obtenido la solución analítica
2
y ex 1 y resultados similares a los que se presentan en las tablas 9.1 y 9.2.
TABLA 9.1
xn
1.00
1.10
1.20
1.30
1.40
1.50
TABLA 9.2
Método de Euler con h 0.1
yn
Valor
real
Error
absoluto
% de error
relativo
1.0000
1.2000
1.4640
1.8154
2.2874
2.9278
1.0000
1.2337
1.5527
1.9937
2.6117
3.4903
0.0000
0.0337
0.0887
0.1784
0.3244
0.5625
0.00
2.73
5.71
8.95
12.42
16.12
xn
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
Método de Euler con h 0.05
yn
Valor
real
Error
absoluto
% de error
relativo
1.0000
1.1000
1.2155
1.3492
1.5044
1.6849
1.8955
2.1419
2.4311
2.7714
3.1733
1.0000
1.1079
1.2337
1.3806
1.5527
1.7551
1.9937
2.2762
2.6117
3.0117
3.4903
0.0000
0.0079
0.0182
0.0314
0.0483
0.0702
0.0982
0.1343
0.1806
0.2403
0.3171
0.00
0.72
1.47
2.27
3.11
4.00
4.93
5.90
6.92
7.98
9.08
En este caso, con un tamaño de paso h 0.1, un error relativo de 16% en el
cálculo de la aproximación a y(1.5) es totalmente inaceptable. A expensas de duplicar
el número de cálculos, se obtiene cierta mejoría en la precisión al reducir a la mitad el
tamaño de paso, es decir h 0.05.
ERRORES EN LOS MÉTODOS NUMÉRICOS Al elegir y usar un método numérico para la solución de un problema con valores iniciales, se debe estar consciente de
las distintas fuentes de error. Para ciertas clases de cálculos, la acumulación de errores
podría reducir la precisión de una aproximación al punto de hacer inútil el cálculo.
Por otra parte, dependiendo del uso dado a una solución numérica, una precisión extrema podría no compensar el trabajo y la complicación adicionales.
Una fuente de error que siempre está presente en los cálculos es el error de redondeo. Este error es resultado del hecho de que cualquier calculadora o computadora
SXHGH UHSUHVHQWDU Q~PHURV XVDQGR VyOR XQ Q~PHUR ¿QLWR GH GtJLWRV 6XSRQJD SRU
9.1
MÉTODOS DE EULER Y ANÁLISIS DE ERRORES
l
355
ejemplo, que se tiene una calculadora que usa aritmética base 10 y redondea a cuatro
dígitos, de modo que 13 se representa en la calculadora como 0.3333 y 19 se representa
como 0.1111. Si con esta calculadora se calcula x2 19 x 13 para x 0.3334,
se obtiene
(
) (
(0.3334)2 0.1111 0.1112 0.1111
0.3334 0.3333
0.3334 0.3333
Sin embargo, con ayuda de un poco de álgebra, vemos que
x2
x
(x
1
9
1
3
1
3
)(x
(
)
1
3
x
1
9
1
3
)(
)
1.
1
,
3
x
)
x 13
0.3334 0.3333 0.6667. Este
por lo que cuando x 0.3334, x
ejemplo muestra que los efectos del redondeo pueden ser bastante considerables a
menos que se tenga cierto cuidado. Una manera de reducir el efecto del redondeo es
reducir el número de cálculos. Otra técnica en una computadora es usar aritmética de
doble precisión para comprobar los resultados. En general, el error de redondeo es
impredecible y difícil de analizar y se desprecia en el análisis siguiente, por lo que sólo
nos dedicaremos a investigar el error introducido al usar una fórmula o algoritmo para
aproximar los valores de la solución.
2
ERRORES DE TRUNCAMIENTO PARA EL MÉTODO DE EULER En la sucesión
de valores y1, y2, y3, . . . generados de (1), usualmente el valor de y1 no concuerda con la
solución real en x1, en particular, y(x1), porque el algoritmo sólo da una aproximación
GHOtQHDUHFWDDODVROXFLyQ9HDOD¿JXUD(OHUURUVHOODPDerror de truncamiento
local, error de fórmula o error de discretización. Este ocurre en cada paso, es decir,
si se supone que yn es precisa, entonces yn 1 tendrá error de truncamiento local.
Para deducir una fórmula para el error de truncamiento local del método de Euler,
se usa la fórmula de Taylor con residuo. Si una función y(x) tiene k 1 derivadas que
son continuas en un intervalo abierto que contiene a a y a x, entonces
y (x)
y (a)
y (a)
x
a
y(k) (a)
1!
a) k
(x
k!
y(k
1)
(c)
(x a) k 1
,
(k 1)!
donde c es algún punto entre a y x. Al establecer k 1, a xn y x xn 1 xn h,
se obtiene
h
h2
y (xn 1 ) y (xn ) y (xn )
y (c )
1!
2!
o
h2
y(xn1) yn hf (xn, yn) y(c) –– .
2!
yn1
El método de Euler (1) es la última fórmula sin el último término; por tanto, el error de
truncamiento local en yn 1 es
h2
, donde x n c xn 1.
2!
Usualmente se conoce el valor de c (existe desde el punto de vista teórico) y por tanto
no se puede calcular el error exacto, pero un límite superior en el valor absoluto del
máx y (x) .
error es Mh2兾2!, donde M
y (c)
xn x
xn
1
Al analizar los errores que surgen del uso de métodos numéricos, es útil usar la notación O(hn 3DUDGH¿QLUHVWHFRQFHSWRVHGHQRWDFRQe(h) el error en un cálculo numérico
dependiendo de h. Entonces se dice que e(h) es de orden hn, denotado con O(hn), si existe
una constante C y un entero positivo n tal que 兩 e(h) 兩 Chn para hVX¿FLHQWHPHQWHSHTXHxD
Por lo que el error de truncamiento local para el método de Euler es O(h2). Se observa que,
en general, si e(h) en un método numérico es del orden hn y h se reduce a la mitad, el nuevo
error es más o menos C(h兾2)n Chn兾2n; es decir, el error se redujo por un factor de 1兾2n.
356
l
CAPÍTULO 9
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
EJEMPLO 1
Límite para errores de truncamiento local
Determine un límite superior para los errores de truncamiento local del método de
Euler aplicado a y 2xy, y(1) 1.
De la solución y
error de truncamiento es
SOLUCIÓN
y (c)
ex
h2
2
2
1
obtenemos y
4 c2) e(c
(2
2
(2
1)
4 x2 )ex
2
1
, por lo que el
h2
,
2
donde c está entre xn y xn h. En particular, para h 0.1 se puede obtener un límite
superior en el error de truncamiento local para y1 al reemplazar c por 1.1:
(4)(1.1)2 ] e((1.1)
[2
2
1)
(0.1)2
2
0.0422.
De la tabla 9.1 se observa que el error después del primer paso es 0.0337, menor que
el valor dado por el límite.
De igual forma, se puede obtener un límite para el error de truncamiento local de
cualquiera de los cinco pasos que se muestran en la tabla 9.1 al reemplazar c por 1.5
(este valor de c da el valor más grande de y(c) de cualquiera de los pasos y puede ser
demasiado generoso para los primeros pasos). Al hacer esto se obtiene
2
(4)(1.5)2 ] e((1.5)
[2
1)
(0.1)2
2
0.1920
(2)
como un límite o cota superior para el error de truncamiento local en cada paso.
Observe que si h se reduce a 0.05 en el ejemplo 1, entonces el límite de error es 0.0480,
casi un cuarto del valor que se muestra en (2). Esto es de esperarse porque el error de
truncamiento local para el método de Euler es O(h2).
En el análisis anterior se supone que el valor de yn fue exacto en el cálculo de yn 1
pero no lo es porque contiene errores de truncamiento local de los pasos anteriores. El
error total en yn 1 es una acumulación de errores en cada uno de los pasos previos.
Este error total se llama error de truncamiento global. Un análisis completo del error
de truncamiento global queda fuera del alcance de este libro, pero se puede mostrar
que el error de truncamiento global para el método de Euler es O(h).
Se espera que para el método de Euler, si el tamaño de paso es la mitad, el error será
PiVRPHQRVODPLWDG(VWRVHFRQ¿UPDHQODVWDEODV\GRQGHHOHUURUDEVROXWRHQ
x 1.50 con h 0.1 es 0.5625 y con h 0.05 es 0.3171, aproximadamente la mitad.
En general, se puede demostrar que si un método para la solución numérica de
una ecuación diferencial tiene error de truncamiento local O(hĮ 1), entonces el error
de truncamiento global es O(hĮ).
En lo que resta de esta sección y en las siguientes, se estudian métodos mucho más
precisos que el método de Euler.
MÉTODO DE EULER MEJORADO (OPpWRGRQXPpULFRGH¿QLGRSRUODIyUPXOD
donde
f (xn , yn)
yn
1
yn
h
yn*
1
yn
h f (xn , yn),
f (xn 1 , yn* 1)
,
2
(3)
(4)
se conoce comúnmente como el método de Euler mejorado. Para calcular yn 1 para
n 0, 1, 2, . . . de (3), se debe, en cada paso, usar primero el método de Euler (4)
para obtener una estimación inicial yn* 1 . Por ejemplo, con n 0, usando (4) se obtiene y*1 y 0 hf (x0 , y0 ), y después, conociendo este valor, se usa (3) para obtener
f (x0 , y 0 ) f (x1, y1*)
, donde x1 x 0 h. Estas ecuaciones se representan
y1 y 0 h
2
9.1
y
curva
solución
mprom
(x1, y(x1))
m1 = f(x1, y*1)
m 0 = f(x0 , y0)
(x1, y1)
(x1, y*1)
(x0 , y0)
mprom =
x0
f(x0 , y0) + f(x1, y1*)
2
x
x1
h
MÉTODOS DE EULER Y ANÁLISIS DE ERRORES
l
357
FRQIDFLOLGDG(QOD¿JXUDVHREVHUYDTXHm0 f (x0, y0) y m1 f (x1, y1* ) son
pendientes de las rectas trazadas con la línea continua que pasan por los puntos (x0,
y0) y (x1, y1*), respectivamente. Tomando un promedio de estas pendientes, es decir,
f (x0 , y0 ) f (x1, y1* )
, se obtiene la pendiente de las rectas paralelas inclinadas.
mprom
2
Con el primer paso, más que avanzar a lo largo de la recta que pasa por (x0, y0) con
pendiente f (x0, y0) al punto con coordenada y y1* obtenida por el método de Euler, se
avanza a lo largo de la recta punteada de color rojo que pasa por (x0, y0) con pendiente
mprom hasta llegar a x1$OH[DPLQDUOD¿JXUDSDUHFHSRVLEOHTXHy1 sea una mejora de y1*.
En general, el método de Euler mejorado es un ejemplo de un método de predicción-corrección. El valor de yn* 1 dado por (4) predice un valor de y(xn), mientras que
el valor de yn 1GH¿QLGRSRUODIyUPXOD FRUULJHHVWDHVWLPDFLyQ
FIGURA 9.1.1 La pendiente de la
recta roja punteada es el promedio
de m0 y m1.
EJEMPLO 2
Método de Euler mejorado
Use el método de Euler mejorado para obtener el valor aproximado de y(1.5) para la
solución del problema con valores iniciales y 2xy, y(1) 1. Compare los resultados
para h 0.1 y h 0.05.
SOLUCIÓN
(4):
Con x0 1, y0 1, f(xn, yn) 2xnyn, n 0 y h 0.1, primero se calcula
y1*
(0.1)(2 x0 y0)
y0
1
(0.1)2(1)(1)
1.2.
Se usa este último valor en (3) junto con x1 1 h 1 0.1 1.1:
y1
y0
(0.1)
2 x1 y1*
2 x0 y0
1
2
(0.1)
2(1)(1)
2(1.1)(1.2)
2
1.232.
En las tablas 9.3 y 9.4, se presentan los valores comparativos de los cálculos para h
0.1 y h 0.05, respectivamente.
TABLA 9.3
Método de Euler mejorado con h 0.1
xn
yn
Valor
real
Error
absoluto
% de error
relativo
1.00
1.10
1.20
1.30
1.40
1.50
1.0000
1.2320
1.5479
1.9832
2.5908
3.4509
1.0000
1.2337
1.5527
1.9937
2.6117
3.4904
0.0000
0.0017
0.0048
0.0106
0.0209
0.0394
0.00
0.14
0.31
0.53
0.80
1.13
TABLA 9.4
Método de Euler mejorado con h 0.05
xn
yn
Valor
real
Error
absoluto
% de error
relativo
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.0000
1.1077
1.2332
1.3798
1.5514
1.7531
1.9909
2.2721
2.6060
3.0038
3.4795
1.0000
1.1079
1.2337
1.3806
1.5527
1.7551
1.9937
2.2762
2.6117
3.0117
3.4904
0.0000
0.0002
0.0004
0.0008
0.0013
0.0020
0.0029
0.0041
0.0057
0.0079
0.0108
0.00
0.02
0.04
0.06
0.08
0.11
0.14
0.18
0.22
0.26
0.31
Aquí es importante hacer una advertencia. No se pueden calcular primero todos los
valores de yn*; y después sustituir sus valores en la fórmula (3). En otras palabras, no
se pueden usar los datos de la tabla 9.1 para ayudar a construir los valores de la tabla
9.3. ¿Por qué no?
ERRORES DE TRUNCAMIENTO PARA EL MÉTODO DE EULER MEJORADO
El error de truncamiento local para el método de Euler mejorado es O(h3). La deducción de este resultado es similar a la deducción del error de truncamiento local para el
358
CAPÍTULO 9
l
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
método de Euler. Puesto que el error de truncamiento para el método de Euler mejorado
es O(h3), el error de truncamiento global es O(h2). Esto se puede ver en el ejemplo 2;
cuando el tamaño de paso se reduce a la mitad de h 0.1 a h 0.05, el error absoluto
en x 1.50 se reduce de 0.0394 a 0.0108, una reducción de aproximadamente 1 2 1.
2
4
()
EJERCICIOS 9.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.
En los problemas l a 10, use el método de Euler mejorado
para obtener una aproximación de cuatro decimales del valor
indicado. Primero use h 0.1 y después h 0.05.
1. y 2x 3y 1, y(1) 5;
y(1.5)
2. y 4x 2y, y(0) 2; y(0.5)
3. y 1 y , y(0) 0; y(0.5)
2
4. y x 2 y 2, y(0) 1; y(0.5)
5. y ey, y(0) 0; y(0.5)
6. y x y 2, y(0) 0; y(0.5)
7. y (x y) 2, y(0) 0.5; y(0.5)
1y, y (0) 1; y (0.5)
y
9. y
xy2
, y (1) 1; y (1.5)
x
10. y y y 2, y(0) 0.5; y(0.5)
8. y
xy
11. Considere el problema con valores iniciales y (x y
1)2, y(0) 2. Use el método de Euler mejorado con h
0.1 y h 0.05 para obtener los valores aproximados de la
solución en x 0.5. En cada paso compare el valor aproximado con el valor real de la solución analítica.
12. Aunque podría no ser evidente de la ecuación diferencial,
su solución podría tener “un mal comportamiento” cerca
de un punto x en el que se desea aproximar y(x). Los procedimientos numéricos podrían dar resultados bastante
distintos cerca de este punto. Sea y(x) la solución del problema con valores iniciales y x 2 y 3, y(1) 1.
a) Use un programa de solución numérica para trazar la
solución en el intervalo [1, 1.4].
b) Con el tamaño de paso h 0.1, compare los resultados obtenidos con el método de Euler con los del método de Euler mejorado en la aproximación de y(1.4).
13. Considere el problema con valores iniciales y 2y,
y(0) 1. La solución analítica es y e2x.
a) Aproxime y(0.1) con un paso y el método de Euler.
b) Determine un límite para el error de truncamiento
local en y1.
c) Compare el error en y1 con su límite de error.
d) Aproxime y(0.1) con dos pasos y el método de Euler.
e) Compruebe que el error de truncamiento global para
el método de Euler es O(h) al comparar los errores de
los incisos a) y d).
14. Repita el problema 13 con el método de Euler mejorado.
Su error de truncamiento global es O(h2).
15. Repita el problema 13 con el problema con valores iniciales y x 2y, y(0) 1. La solución analítica es
y
1
2x
1
4
5
2x
.
4e
16. Repita el problema 15 usando el método de Euler mejorado. Su error de truncamiento global es O(h2).
17. Considere el problema con valores iniciales y 2x 3y
1, y(l) 5. La solución analítica es
y (x)
1
9
2
3x
38
9
e
3(x 1)
.
a) Encuentre una fórmula en la que intervengan c y h
para el error de truncamiento local en el n-ésimo paso
si se usa el método de Euler.
b) Encuentre un límite para el error de truncamiento local
en cada paso si se usa h 0.1 para aproximar y(1.5).
c) Aproxime y(1.5) con h 0.1 y h 0.05 con el método
de Euler. Vea el problema 1 de los ejercicios 2.6.
d) Calcule los errores del inciso c) y compruebe que el
error de truncamiento global del método de Euler es
O(h).
18. Repita el problema 17 usando el método de Euler mejorado
que tiene un error de truncamiento global O(h2). Vea el problema 1. Podría ser necesario conservar más de cuatro decimales para ver el efecto de reducir el orden del error.
19. Repita el problema 17 para el problema con valores iniciales
y ey, y(0) 0. La solución analítica es y(x) ln(x 1).
Aproxime y(0.5). Vea el problema 5 en los ejercicios 2.6.
20. Repita el problema 19 con el método de Euler mejorado,
que tiene un error de truncamiento global O(h2). Vea el
problema 5. Podría ser necesario conservar más de cuatro
decimales para ver el efecto de reducir el orden de error.
Problemas para analizar
21. Conteste la pregunta “¿Por qué no?” que sigue a los tres
enunciados después del ejemplo 2 de la página 357.
9.2
9.2
MÉTODOS DE RUNGE-KUTTA
359
l
MÉTODOS DE RUNGE-KUTTA
REPASO DE MATERIAL
l Sección 2.6
INTRODUCCIÓN Probablemente uno de los procedimientos numéricos más populares, así como
más preciso, usado para obtener soluciones aproximadas para un problema con valores iniciales y
f(x, y), y(x0) y0 es el método de Runge-Kutta de cuarto orden. Como el nombre lo indica, existen
métodos de Runge-Kutta de diferentes órdenes.
MÉTODOS DE RUNGE-KUTTA En esencia, los métodos de Runge-Kutta son generalizaciones de la fórmula básica de Euler (1) de la sección 9.1 en que la función
pendiente f se reemplaza por un promedio ponderado de pendientes en el intervalo xn
x xn l. Es decir,
promedio ponderado
yn1 yn h (w1k1 w2k2 … wmkm).
(1)
Aquí los pesos wi, i 1, 2, . . . , m, son constantes que generalmente satisfacen w1
w2 . . . wm 1, y cada ki, i 1, 2, . . . , m, es la función f evaluada en un punto
seleccionado (x, y) para el que xn x xn l. Veremos que las kiVHGH¿QHQUHFXUVLYDmente. El número m se llama el orden del método. Observe que al tomar m 1, w1
1 y k1 f (xn, yn), se obtiene la conocida fórmula de Euler yn 1 yn h f (xn, yn). Por
esta razón, se dice que el método de Euler es un método de Runge-Kutta de primer
orden.
El promedio en (1) no se forma a la fuerza, pero los parámetros se eligen de modo
que (1) concuerda con un polinomio de Taylor de grado m. Como se vio en la sección
anterior, si una función y(x) tiene k 1 derivadas que son continuas en un intervalo
abierto que contiene a a y a x, entonces se puede escribir
y (x)
y (a)
y (a)
x
a
y (a)
1!
a)2
(x
y(k
2!
1)
(c)
(x a) k 1
,
(k 1)!
donde c es algún número entre a y x. Si se reemplaza a por xn y x por xn 1 xn h,
entonces la fórmula anterior se convierte en
y (xn 1)
y (xn
h)
y (xn )
h2
y (xn )
2!
hy (xn )
hk
(k
1
1)!
y(k
1)
(c),
donde c es ahora algún número entre xn y xn 1. Cuando y(x) es una solución de y
f (x, y) en el caso k 1 y el residuo 12 h2 y (c) es pequeño, vemos que un polinomio de
Taylor y(xn 1) y(xn) hy(xn) de grado uno concuerda con la fórmula de aproximación del método de Euler
yn
yn
1
hy n
yn
h f (xn , yn ).
MÉTODO DE RUNGE-KUTTA DE SEGUNDO ORDEN Para ilustrar más (1),
ahora se considera un procedimiento de Runge-Kutta de segundo orden. Éste consiste en encontrar constantes o parámetros w1, w2, Į y ȕ tal que la fórmula
yn
donde
1
yn
h (w1k1
k1
f (xn , yn )
k2
f (xn
h , yn
w2 k2 ),
hk1),
(2)
360
l
CAPÍTULO 9
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
FRQFXHUGDFRQXQSROLQRPLRGH7D\ORUGHJUDGRGRV3DUDQXHVWURVREMHWLYRVHVVX¿ciente decir que esto se puede hacer siempre que las constantes satisfagan
1
1
(3)
y w2
.
2
2
Este es un sistema algebraico de tres ecuaciones con cuatro incógnitas y tiene un núPHURLQ¿QLWRGHVROXFLRQHV
w1
w2
1,
w1
1
w2 ,
w2
1
2w2
1
2
donde w2 0. Por ejemplo, la elección w2
tanto (2) se convierte en
yn
donde
k1
y
f (xn , yn)
(4)
1y
1 y, por
k2),
f (xn
k2
1
2,
produce w1
h
(k
2 1
yn
1
1
,
2w2
y
h, yn
hk1).
Puesto que xn h xn 1 y yn hk1 yn h f (xn, yn) se reconoce al resultado anterior
como el método mejorado de Euler que se resume en (3) y (4) de la sección 9.1.
En vista de que w2 0 se puede elegir de modo arbitrario en (4), hay muchos posibles métodos de Runge-Kutta de segundo orden. Vea el problema 2 en los ejercicios 9.2.
Se omite cualquier explicación de los métodos de tercer orden para llegar al punto
principal de análisis en esta sección.
MÉTODO DE RUNGE-KUTTA DE CUARTO ORDEN Un procedimiento de
Runge-Kutta de cuarto orden consiste en determinar parámetros de modo que la
fórmula
yn
donde
1
h (w1 k1
yn
w2 k2
w4 k4 ),
w3 k3
k1
f (xn , yn )
k2
f (xn
1 h,
yn
1 hk1)
k3
f (xn
2 h,
yn
2 hk1
3 hk2 )
k4
f (xn
3 h,
yn
4 hk1
5 hk2
(5)
6 hk3 ),
concuerda con un polinomio de Taylor de grado cuatro. Esto da como resultado un
sistema de 11 ecuaciones con 13 incógnitas. El conjunto de valores usado con más
frecuencia para los parámetros produce el siguiente resultado:
yn
k1
h
(k
6 1
f (xn , yn )
k2
f xn
1
2 k2
yn
1
2 h,
yn
k3
(
f (xn
1
2 h,
yn
k4
f (xn
h , yn
2 k3
)
1
2 hk2)
1
2 hk1
k4),
(6)
hk3).
Mientras que las otras fórmulas de cuarto orden se deducen con facilidad, el algoritmo
resumido en (6) que es muy usado y reconocido como una invaluable herramienta de
cálculo, se denomina el método de Runge-Kutta de cuarto orden o método clásico
de Runge-Kutta. De aquí en adelante se debe considerar a (6) cuando se use la abreviatura método RK4.
Se le aconseja que tenga cuidado con las fórmulas en (6); observe que k2 depende
de k1, k3 depende de k2 y k4 depende de k3. También, k2 y k3 implican aproximaciones
a la pendiente en el punto medio xn 12 h HQHOLQWHUYDORGH¿QLGRSRUxn x xn l.
9.2
EJEMPLO 1
MÉTODOS DE RUNGE-KUTTA
l
361
Método RK4
Use el método RK4 con h 0.1 para obtener una aproximación a y(1.5) para la solución de y 2xy, y(1) 1.
SOLUCIÓN 3DUDHMHPSOL¿FDUSHUPtWDQRVFDOFXODUHOFDVRFXDQGRn 0. De (6) se
encuentra que
k1 f (x0 , y0) 2 x0 y0 2
k2
k3
TABLA 9.5
k4
Método RK4 con h 0.1
xn
yn
Valor
real
Error
% de error
absoluto relativo
1.00
1.10
1.20
1.30
1.40
1.50
1.0000
1.2337
1.5527
1.9937
2.6116
3.4902
1.0000
1.2337
1.5527
1.9937
2.6117
3.4904
0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.00
0.00
0.00
0.00
0.00
0.00
(
2 (x0
f (x0
2 (x0
f x0
1
2 (0.1)
)
1
2 (0.2))
1
2 (0.1),
y0
1
2 (0.1)2.31
)( y0
1
2 (0.231)
1
2 (0.1),
y0
)( y0
1
2 (0.1)
f (x0
(0.1), y0
2(x0
0.1)( y0
1
2 (0.1)2
2.31
)
)
2.34255
(0.1)2.34255)
0.234255)
2.715361
y por tanto
0.1
(k
2 k2 2 k3 k4 )
6 1
0.1
1
(2 2(2.31) 2(2.34255) 2.715361) 1.23367435.
6
Los cálculos que restan se resumen en la tabla 9.5, cuyas entradas se redondean a
cuatro decimales.
y1
y0
Al examinar la tabla 9.5 se encuentra por qué el método de Runge-Kutta de cuarto
orden es popular. Si todo lo que se desea es una precisión de cuatro decimales, es innecesario usar un tamaño de paso más pequeño. En la tabla 9.6 se comparan los resultados
de aplicar los métodos de Euler, de Euler mejorado y de Runge-Kutta de cuarto orden al
problema con valores iniciales y 2xy, y (l) 1. (Véanse las tablas 9.1 a 9.4.)
TABLA 9.6
y 2xy, y(1) 1
Comparación de métodos numéricos con h 0.1
Comparación de métodos numéricos con h 0.05
xn
Euler
Euler
mejorado
RK4
Valor
real
1.00
1.10
1.20
1.30
1.40
1.50
1.0000
1.2000
1.4640
1.8154
2.2874
2.9278
1.0000
1.2320
1.5479
1.9832
2.5908
3.4509
1.0000
1.2337
1.5527
1.9937
2.6116
3.4902
1.0000
1.2337
1.5527
1.9937
2.6117
3.4904
xn
Euler
Euler
mejorado
RK4
Valor
real
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.0000
1.1000
1.2155
1.3492
1.5044
1.6849
1.8955
2.1419
2.4311
2.7714
3.1733
1.0000
1.1077
1.2332
1.3798
1.5514
1.7531
1.9909
2.2721
2.6060
3.0038
3.4795
1.0000
1.1079
1.2337
1.3806
1.5527
1.7551
1.9937
2.2762
2.6117
3.0117
3.4903
1.0000
1.1079
1.2337
1.3806
1.5527
1.7551
1.9937
2.2762
2.6117
3.0117
3.4904
ERRORES DE TRUNCAMIENTO PARA EL MÉTODO RK4 En la sección 9.1
vimos que los errores de truncamiento globales para el método de Euler y el método de
Euler mejorado son, respectivamente, O(h) y O(h2). Debido a que la primera ecuación
en (6) concuerda con un polinomio de Taylor de cuarto grado, el error de truncamiento
global para este método es y(5)(c) h5兾5! o O(h5), y así el error de truncamiento global es
O(h4). Ahora es evidente por qué el método de Euler, el método de Euler mejorado y
(6) son métodos de primero, segundo y cuarto orden, respectivamente.
362
CAPÍTULO 9
l
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
EJEMPLO 2
Límite para errores de truncamiento locales
Determine un límite para los errores de truncamiento local del método RK4 aplicado
a y 2xy, y(l) 1.
SOLUCIÓN
Al calcular la quinta derivada de la solución conocida y (x)
ex
2
1
se
obtiene
y (5)(c)
TABLA 9.7
h
(120 c
160 c 3
32 c 5 ) e c
2
1
h5
.
5!
(7)
Por lo que con c 1.5, (7) se obtiene un límite de 0.00028 en el error de truncamiento
local para cada uno de los cinco pasos cuando h 0.1. Observe que en la tabla 9.5 el
error en y1 es mucho menor que este límite.
En la tabla 9.7 se presentan las aproximaciones a la solución del problema con
valores iniciales en x 1.5 que se obtienen del método RK4. Al calcular el valor de la
solución analítica en x 1.5, se puede encontrar el error en estas aproximaciones.
Debido a que el método es tan preciso, se deben usar muchos decimales en la solución
numérica para ver el efecto de reducir a la mitad el tamaño de paso. Observe que
cuando h se reduce a la mitad, de h 0.1 a h 0.05, el error se divide entre un factor
de aproximadamente 24 16, como se esperaba.
Método RK4
Aproximación
h5
5!
Error
0.1 3.49021064 1.32321089 104
0.05 3.49033382 9.13776090 106
MÉTODOS DE ADAPTACIÓN Se ha visto que la precisión de un método numérico
para aproximar soluciones de ecuaciones diferenciales mejora al reducir el tamaño de paso
h. Por supuesto, esta mayor precisión tiene usualmente un costo, en particular, incremento
en el tiempo de cálculo y mayor posibilidad de error de redondeo. En general, en el intervalo
de aproximación podría haber subintervalos donde un tamaño de paso relativamente grande
HVVX¿FLHQWH\RWURVVXELQWHUYDORVGRQGHVHUHTXLHUHXQWDPDxRGHSDVRPiVSHTXHxRSDUD
mantener el error de truncamiento dentro del límite deseado. Los métodos numéricos en
los que se usa un tamaño de paso variable se llaman métodos de adaptación. Una de las
rutinas más populares de adaptación es el método de Runge-Kutta-Fehlberg. Debido a
que Fehlberg empleó dos métodos de Runge-Kutta de órdenes distintos, uno de cuarto y
otro de quinto, este algoritmo suele denotarse como método RKF45.*
*
EJERCICIOS 9.2
El método de Runga-Kutta de orden cuarto usado en RKF45 no es el mismo que se presenta en (6).
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.
1. Use el método RK4 con h 0.1 para aproximar y(0.5),
donde y(x) es la solución del problema de valores iniciales y
(x y 1) 2, y(0) 2. Compare este valor
aproximado con el valor real obtenido en el problema 11
de los ejercicios 9.1.
2. Suponga que w2 34 en (4). Use el método de Runge-Kutta
de segundo orden resultante para aproximar y(0.5), donde
y(x) es la solución del problema con valores iniciales en el
problema 1. Compare este valor aproximado con el valor
obtenido en el problema 11 en los ejercicios 9.1.
En los problemas 3 a 12, use el método RK4 con h 0.1 para
obtener una aproximación de cuatro decimales del valor indicado.
3. y 2x 3y 1, y(1) 5;
y(1.5)
4. y 4x 2y, y(0) 2; y(0.5)
5. y 1 y 2, y(0) 0; y(0.5)
6. y x 2 y 2, y(0) 1; y(0.5)
7. y ey, y(0) 0; y(0.5)
8. y x y 2, y(0) 0; y(0.5)
9. y (x y)2, y(0) 0.5; y(0.5)
1y, y (0) 1; y (0.5)
y
11. y
xy
, y (1) 1; y (1.5)
x
12. y y y 2, y(0) 0.5; y(0.5)
10. y
xy
2
13. Si la resistencia del aire es proporcional al cuadrado de la
velocidad instantánea, entonces la velocidad v de una masa
m que se deja caer desde cierta altura se determina de
dv
m
mg kv2,
k 0.
dt
Sea v(0) 0, k 0.125, m 5 slugs y g 32 pies兾s2.
9.2
a) Use el método RK4 con h 1 para aproximar la velocidad v(5).
b) Utilice un programa de solución numérica para trazar
ODJUi¿FDVROXFLyQGHO39,HQHOLQWHUYDOR>@
c) Utilice la separación de variables para resolver el PVI
y luego determine el valor real v(5).
14. Un modelo matemático para el área A (en cm2) que ocupa
una colonia de bacterias (B. dendroides) está dada por
dA
dt
A(2.128
0.0432 A).*
Suponga que el área inicial es 0.24 cm2.
a) Use el método RK4 con h 0.5 para completar la
siguiente tabla:
t (días)
A (observado)
1
2
3
4
5
2.78
13.53
36.30
47.50
49.40
A (aproximado)
b) Use un programa de solución numérica para trazar la
JUi¿FDGHVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHV
Calcule los valores A(1), A(2), A(3), A(4) y A(5) de
ODJUi¿FD
c) Use la separación de variables para resolver el problema con valores iniciales y calcular los valores reales A(l), A(2), A(3), A(4) y A(5).
15. Considere el problema con valores iniciales y x2 y3,
y(1) 1. Vea el problema 12 de los ejercicios 9.1.
a) Compare los resultados obtenidos de usar el método
RK4 en el intervalo [1, 1.4] con tamaños de paso h
0.1 y h 0.05.
b) Utilice un programa de solución numérica para trazar
ODJUi¿FDVROXFLyQGHOSUREOHPDFRQYDORUHVLQLFLDOHV
en el intervalo [1, 1.4].
16. Considere el problema con valores iniciales y 2y,
y(0) 1. La solución analítica es y(x) e2x.
a) Aproxime y(0.1) con un paso y el método RK4.
b) Determine un límite para el error de truncamiento
local en y1.
c) Compare el error en y1 con el límite de error.
d) Aproxime y(0.1) con dos pasos y el método RK4.
e) Compruebe que el error global de truncamiento para
el método RK4 es O(h4) comparando los errores en
los incisos a) y d).
17. Repita el problema 16 con el problema con valores iniciales y 2y x, y(0) 1. La solución analítica es
y (x)
1
2x
1
4
5
2x
.
4e
* Vea Vladimir A. Kostitzin, Mathematical Biology, Londres, Harrap,
1939.
MÉTODOS DE RUNGE-KUTTA
l
363
18. Considere el problema con valores iniciales y 2x 3y
1, y(l) 5. La solución analítica es
y (x)
1
9
2
3x
38
9
e
3(x 1)
.
a) Encuentre una fórmula en la que intervengan c y h
para el error de truncamiento local en el n-ésimo paso
si se emplea el método RK4.
b) Calcule un límite para el error de truncamiento local en
cada paso si se emplea h 0.1 para aproximar y(1.5).
c) Aproxime y(1.5) con el método RK4 con h 0.1 y h
0.05. Vea el problema 3. Será necesario considerar
más de seis cifras para ver el efecto de reducir el tamaño de paso.
19. Repita el problema 18 para el problema con valores iniciales y ey, y(0) 0. La solución analítica es y(x)
ln(x 1). Aproxime y(0.5). Vea el problema 7.
Problemas para analizar
20. Se utiliza una cuenta del número de evaluaciones de la
función usada para resolver el problema con valores iniciales y f(x, y), y(x0) y0 como medida de la complejidad de un método numérico. Determine el número de evaluaciones de f requeridas para cada paso de los métodos de
Euler, de Euler mejorado y RK4. Considerando algunos
ejemplos, compare la precisión de estos métodos cuando
se usa con complejidades computacionales comparables.
Tarea para el laboratorio de computación
21. El método RK4 para resolver un problema con valores
iniciales en un intervalo [a, b] da como resultado un conMXQWR¿QLWRGHSXQWRVTXHVHVXSRQHDSUR[LPDQSXQWRVHQ
ODJUi¿FDGHODVROXFLyQH[DFWD3DUDDPSOLDUHVWHFRQMXQWR
GH SXQWRV GLVFUHWRV D XQD VROXFLyQ DSUR[LPDGD GH¿QLGD
en los puntos en el intervalo [a, b], se puede usar una función de interpolación. Esta es una función incluida en la
mayor parte de los sistemas de álgebra computarizados,
que concuerda de modo exacto con los datos y asume una
transición uniforme entre puntos. Estas funciones de interpolación pueden ser polinomios o conjuntos de polinomios
que se unen suavemente. En Mathematica el comando y
Interpolation[data] se usa para obtener una función de interpolación por los puntos data {{x0, y0}, {x1, y1}, . . . ,
{xn, yn}}. La función de interpolación y[x] se puede tratar
ahora como cualquier otra función integrada en el sistema
algebraico computarizado.
a) Encuentre la solución analítica del problema con valores iniciales y y 10 sen 3x; y(0) 0 en el
LQWHUYDOR > @ 7UDFH OD JUi¿FD GH HVWD VROXFLyQ \
determine sus raíces positivas.
b) Use el método RK4 con h 0.1 para aproximar una
solución del problema con valores iniciales del inciso
a). Obtenga una función de interpolación y trace la
JUi¿FD (QFXHQWUH ODV UDtFHV SRVLWLYDV GH OD IXQFLyQ
de interpolación del intervalo [0, 2].
364
l
CAPÍTULO 9
9.3
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
MÉTODOS MULTIPASOS
REPASO DE MATERIAL
l Secciones 9.1 y 9.2.
INTRODUCCIÓN Los métodos de Euler, de Euler mejorado y de Runge-Kutta son ejemplos de
métodos de un sólo paso o de inicio. En estos métodos cada valor sucesivo yn 1 se calcula sólo con
base en la información acerca del valor precedente inmediato yn. Por otro lado, los métodos multipasos o continuos usan los valores de los diferentes pasos calculados para obtener el valor de yn 1. Hay
un gran número de fórmulas de métodos multipasos para aproximar soluciones de ED, pero como no
se tiene la intención de estudiar el extenso campo de procedimientos numéricos, sólo consideraremos
uno de estos métodos.
MÉTODO DE ADAMS-BASHFORTH-MOULTON El método multipasos que se
analiza en esta sección se llama método de Adams-Bashforth-Moulton de cuarto
orden. Al igual que el método de Euler mejorado es un método de predicción-corrección, es decir, se emplea una fórmula para predecir un valor y*n 1, que a su vez se usa
para obtener un valor corregido yn1. La predicción en este método es la fórmula de
Adams-Bashforth
yn*
h
(55y n
24
yn
1
59y n
1
37y n
yn
1
f (xn 1 , yn 1 )
yn
2
f (xn 2 , yn 2 )
yn
3
f (xn 3 , yn 3 )
para n 3. Después se sustituye el valor de y*n
Adams-Moulton
1
h
(9 y
24 n
yn
yn
(1)
f (xn , yn )
yn
yn
9y n 3),
2
1
19 y n
5 yn
1
en la corrección de
1
yn 2 )
(2)
f (xn 1 , yn* 1 ).
1
Observe que la fórmula (1) requiere conocer los valores de y0, y1, y2 y y3 para obtener
y4. Por supuesto, el valor de y0 es la condición inicial dada. El error de truncamiento
local del método de Adams-Bashforth-Moulton es O(h5), los valores de y1, y2 y y3 se
calculan generalmente con un método con la misma propiedad de error, tal como el
método de Runge-Kutta de cuarto orden.
EJEMPLO 1
Método de Adams-Bashforth-Moulton
Use el método de Adams-Bashforth-Moulton con h 0.2 para obtener una aproximación a y(0.8) para la solución de
y
x
y
1,
y (0)
1.
Con un tamaño de paso de h 0.2, y(0.8) se aproxima por y4. En principio se emplea el método RK4 con x0 0, y0 1 y h 0.2 para obtener
SOLUCIÓN
y1
1.02140000,
y2
1.09181796,
y3
1.22210646.
9.3
MÉTODOS MULTIPASOS
l
365
$KRUDFRQODVLGHQWL¿FDFLRQHVx0 0, x1 0.2, x2 0.4, x3 0.6 y f (x, y) x y
1, encontramos
y0
f (x0 , y0 )
(0)
(1)
1
0
y1
f (x1 , y1)
(0.2)
(1.02140000)
1
0.22140000
y2
f (x2 , y2 )
(0.4)
(1.09181796)
1
0.49181796
y3
f (x3 , y3)
(0.6)
(1.22210646)
1
0.82210646.
Con los valores anteriores entonces la predicción (1) es
0.2
(55y 3 59y 2
37y 1
24
Para usar la corrección (2), primero se necesita
y*4
y4
y3
f (x4 , y*4 )
0.8
1.42535975
9y 0 )
1.42535975.
1
1.22535975.
y 1)
1.42552788.
Por último, usando (2) se obtiene
y4
y3
0.2
(9 y 4
24
19 y 3
5y 2
Se debe comprobar que el valor real de y(0.8) en el ejemplo 1 es y(0.8) 1.42554093.
Vea el problema 1 en los ejercicios 9.3.
ESTABILIDAD DE LOS MÉTODOS NUMÉRICOS Una consideración importante al usar métodos numéricos para aproximar la solución de un problema con valores iniciales es la estabilidad del método. En términos simples, un método numérico es
estable si cambios pequeños en la condición inicial dan como resultado sólo cambios
pequeños en la solución calculada. Se dice que un método numérico es inestable si no
es estable. La razón por la cual las consideraciones de estabilidad son importantes es
que en cada paso después del primero de una técnica numérica esencialmente se empieza otra vez con un nuevo problema con valores iniciales, donde la condición inicial
es el valor solución aproximado calculado en el paso anterior. Debido a la presencia
del error de redondeo, es casi seguro que este valor varíe al menos un poco respecto al
valor verdadero de la solución. Además del error de redondeo, otra fuente común de
error ocurre en la condición inicial; en aplicaciones físicas los datos con frecuencia se
obtienen con mediciones imprecisas.
Un posible método para detectar inestabilidad en la solución numérica de un proEOHPD FRQ YDORUHV LQLFLDOHV HVSHFt¿FR HV FRPSDUDU ODV VROXFLRQHV DSUR[LPDGDV REtenidas cuando se emplean tamaños de paso reducidos. Si el método es inestable, el
error puede aumentar en realidad con tamaños de paso más pequeños. Otra forma de
comprobar la inestabilidad, es observar lo que sucede con las soluciones cuando se
perturba un poco la condición inicial (por ejemplo, cambiar y(0) 1 a y(0) 0.999).
Para un estudio más detallado y preciso de la estabilidad, consulte un libro de
análisis numérico. En general, los métodos examinados en este capítulo tienen buenas
características de estabilidad.
VENTAJAS Y DESVENTAJAS DE LOS MÉTODOS MULTIPASOS Intervienen
muchas consideraciones en la elección de un método para resolver de forma numérica
una ecuación diferencial. Los métodos de un sólo paso, en particular el RK4, se eligen debido a su precisión y al hecho de que son fáciles de programar. Sin embargo,
una desventaja importante es que el lado derecho de la ecuación diferencial se debe
evaluar muchas veces en cada paso. Por ejemplo, el método RK4 requiere cuatro evaluaciones de función para cada paso. Por otro lado, si se han calculado y almacenado
las evaluaciones de función del paso anterior, un método multipasos requiere sólo una
366
l
CAPÍTULO 9
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
nueva evaluación de función para cada paso. Esto puede originar grandes ahorros de
tiempo y reducir costos.
Como ejemplo, resolver en forma numérica y f (x, y), y(x0) y0 usando n pasos
con el método de Runge-Kutta de cuarto orden requiere 4n evaluaciones de la función.
El método multipasos de Adams-Bashforth requiere 16 evaluaciones de la función
para el iniciador de cuarto orden de Runge-Kutta y n – 4 para los n pasos de AdamsBashforth, lo que da un total de n 12 evaluaciones de la función para este método.
En general, el método multipasos de Adams-Bashforth requiere poco más de un cuarto
del número de evaluaciones de función necesarias para el método RK4. Si se complica
la evaluación de f (x, y HOPpWRGRPXOWLSDVRVVHUiPiVH¿FD]
Otro asunto relacionado con los métodos multipasos es cuántas veces se debe repetir en cada paso la fórmula de corrección de Adams-Moulton. Cada vez que se usa la
corrección, se hace otra evaluación de la función y por tanto se incrementa la precisión
a expensas de perder una ventaja del método multipasos. En la práctica, la corrección se
calcula una vez y si se cambia el valor de yn 1 por una cantidad grande, se reinicia todo
el problema con un tamaño de paso más pequeño. Esta es con frecuencia la base de los
métodos de tamaño de paso variable, cuyo análisis está fuera del alcance de este libro.
EJERCICIOS 9.3
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.
1. Determine la solución analítica del problema con valores iniciales del problema 1. Compare los valores reales de y(0.2),
y(0.4), y(0.6) y y(0.8) con las aproximaciones y1, y2, y3 y y4.
2. Escriba un programa de computadora para ejecutar el método de Adams-Bashforth-Moulton.
En los problemas 3 y 4 use el método Adams-Bashforth-Moulton para aproximar y(0.8), donde y(x) es la solución del problema
con valores iniciales dado. Use h 0.2 y el método RK4 para
calcular y1, y2 y y3.
3. y 2x 3y 1,
4. y 4x 2y,
9.4
y(0) 1
y(0) 2
En los problemas 5 a 8, use el método de Adams-BashforthMoulton para aproximar y(1.0), donde y(x) es la solución del
problema con valores iniciales dado. Primero use h 0.2 y
después use h 0.1. Use el método RK4 para calcular y1, y2
y y3.
5. y 1 y 2,
y(0) 0
6. y y cos x,
7. y (x y) 2,
8. y
xy
1y,
y(0) 1
y(0) 0
y (0)
1
ECUACIONES Y SISTEMAS DE ORDEN SUPERIOR
REPASO DE MATERIAL
l Sección 1.1 (forma normal de una ED de segundo orden)
l Sección 4.10 (ED de segundo orden escrita como un sistema de ED de primer orden)
INTRODUCCIÓN Hasta ahora, nos hemos concentrado en técnicas numéricas que se pueden usar para
aproximar la solución de un problema con valores iniciales de primer orden y f(x, y), y(x0) y0.
Para aproximar la solución de un problema con valores iniciales de segundo orden, se debe expresar una ED
de segundo orden como un sistema de dos ED de primer orden. Para hacer esto, se empieza por escribir la
ED de segundo orden en forma normal al despejar y en términos de x, y y y.
PVI DE SEGUNDO ORDEN
Un problema con valores iniciales de segundo orden
y
f (x, y, y ), y (x0 ) y0 , y (x 0 ) u 0
(1)
se puede expresar como un problema con valores iniciales para un sistema de ecuaciones diferenciales de primer orden. Si y u, la ecuación diferencial en (1) se convierte
en el sistema
9.4
ECUACIONES Y SISTEMAS DE ORDEN SUPERIOR
y
l
u
(2)
f (x, y, u ).
u
367
Puesto que y(x0) u(x0), las condiciones iniciales correspondientes para (2) son
y(x0) y0, u(x0) u0. El sistema (2) se puede resolver de forma numérica mediante la
simple aplicación de un método numérico a cada ecuación diferencial de primer orden
en el sistema. Por ejemplo, el método de Euler aplicado al sistema (2) sería
yn
un
yn
1
(3)
h f (x n , yn , u n ),
un
1
hun
mientras que el método de Runge-Kutta de cuarto orden o método RK4, sería
yn
un
donde
h
(m
6 1
yn
1
m1
un
m2
un
1
2 hk1
m3
un
1
2 hk2
m4
un
hk3
2 m3
m4 )
(4)
h
(k
6 1
un
1
2 m2
2 k2
2 k3
k1
f (xn , yn , un )
k2
f xn
1
2 h,
k3
(
f (xn
k4
f (xn
h, yn
1
2 h,
k4 )
yn
1
2 hm1 ,
yn
1
2 hm2 ,
)
)
un
1
2 hk1
un
1
2 hk2
hm3 , un
hk3).
En general, se puede expresar cada ecuación diferencial de n-ésimo orden y(n)
f (x, y, y, . . . , y(n 1)) como un sistema de n ecuaciones diferenciales de primer orden
usando las sustituciones y u1, y u2, y u3, . . . , y(n 1) un.
EJEMPLO 1
Método de Euler
Use el método de Euler para obtener el valor aproximado de y(0.2), donde y(x) es la
solución del problema con valores iniciales
y
SOLUCIÓN
xy
0,
y
y (0)
1, y (0)
(5)
2.
En términos de la sustitución y u, la ecuación es equivalente para el
sistema
y
u
u
xu
y.
Por lo que de (3) se obtiene
yn
1
yn
hun
un
1
un
h [ xn un
yn ].
Usando el tamaño de paso h 0.1 y y0 1, u0 2, encontramos
y1
y0
(0.1)u0
1
u1
u0
(0.1) [ x0 u0
y2
y1
(0.1) u1
u2
u1
(0.1)[ x1u1
1.2
(0.1)2
y0 ]
1.2
2
(0.1)(1.9)
y1 ]
1.9
(0.1)[ (0)(2)
1]
1.9
1.39
(0.1)[ (0.1)(1.9)
1.2]
1.761.
En otras palabras, y(0.2) 艐 1.39 y y(0.2) 艐 1.761.
&RQD\XGDGHODDSOLFDFLyQSDUDJUD¿FDUGHXQSURJUDPDGHVROXFLyQQXPpULFDHQOD¿JXUD
9.4.1(a) se compara la curva solución de (5) generada con el método de Euler (h 0.1) en
368
l
CAPÍTULO 9
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
el intervalo [0, 3] con la curva solución generada con el método RK4 (h 'HOD¿JXUD
9.4.1(b) parece que la solución y(x) de (4) tiene la propiedad que y(x) → 0 conforme x → .
Si se desea, se puede usar el método de la sección 6.2 para obtener dos soluciones
en serie de potencias de la ecuación diferencial en (5). Pero a menos que este método
revele que la ED tiene una solución elemental, aún se puede aproximar y(0.2) con una
VXPDSDUFLDO([DPLQDQGRQXHYDPHQWHODVVROXFLRQHVHQVHULHLQ¿QLWDVGHODHFXDFLyQ
diferencial de Airy y xy 0, vistas en el ejemplo 5 de la sección 6.2, no
muestran el comportamiento oscilatorio que las soluciones y1(x) y y2(x) presentan en
ODVJUi¿FDVGHOD¿JXUD(VDVJUi¿FDVVHREWXYLHURQFRQXQSURJUDPDGHVROXFLyQ
numérica usando el método RK4 con tamaño de paso de h 0.1.
SISTEMAS REDUCIDOS A SISTEMAS DE PRIMER ORDEN Usando un procedimiento similar al que se acaba de describir para ecuaciones de segundo orden, se reduce
un sistema de ecuaciones diferenciales de orden superior a un sistema de ecuaciones de
primer orden, determinando primero la derivada de orden superior de cada variable dependiente y después haciendo las sustituciones apropiadas para las derivadas de orden menor.
EJEMPLO 2
y
Un sistema reescrito como un sistema de primer orden
Escriba
x
5x
x
Método de Euler
2x
2
et
2y
3t 2
2y
y
como un sistema de ecuaciones diferenciales de primer orden.
Método RK4
SOLUCIÓN
Escriba el sistema como
1
5x
x
y
3t2 2 x 2 y
y después elimine y multiplicando la segunda ecuación por 2 y restando. Esto da
y(0.2)
0. 2
et
2y
x
aproximadamente
1
x
2
9x
x
4y
6 t2.
et
x
Puesto que la segunda ecuación del sistema ya expresa la derivada de y de orden superior en términos de las demás funciones, ahora se tiene la posibilidad de introducir
nuevas variables. Si se hace x u y y v, las expresiones para x y y respectivamente, se convierten en
a) Método de Euler (roja) y
método RK4 (azul)
y
u
2
9x
x
4y
6 t2
et
u
v
y
2 x 2 y 3t2.
El sistema original se puede escribir en la forma
x
u
y
1
u
v
5
10
15
b) Método RK4
FIGURA 9.4.1 Curvas solución
numérica generadas con diferentes
métodos.
20
x
v
9x
2x
4y
2y
u
et
6 t2
3t2.
No siempre es posible realizar las reducciones que se muestran en el ejemplo 2.
SOLUCIÓN NUMÉRICA DE UN SISTEMA La solución de un sistema de la forma
dx1
––– g1(t, x1,x2, . . . ,xn)
dt
dx2
––– g2(t, x1,x2, . . . ,xn)
dt
.
.
.
.
.
.
dxn
––– gn(t,x1,x2, . . . ,xn)
dt
9.4
ECUACIONES Y SISTEMAS DE ORDEN SUPERIOR
l
369
se puede aproximar con una versión del método de Euler, de Runge-Kutta o de
Adams-Bashforth-Moulton adaptada al sistema. Por ejemplo, el método RK4 aplicado
al sistema
x
f (t, x, y )
g (t, x, y)
y
x (t0 )
x0 ,
se parece a:
xn
1
xn
yn
1
yn
y (t0 )
h
(m
6 1
h
(k
6 1
2 m2
(6)
y0 ,
2 m3
2 k2
2 k3
m4 )
(7)
k4 ),
donde
m1
f (tn , xn , yn )
m2
f tn
1
2
m3
(
f (tn
m4
f (tn
h, xn
h, xn
1
2 h,
xn
1
2
hm1 , yn
1
2
hm2 , yn
hm3, yn
EJEMPLO 3
)
1
2 hk2)
1
2
hk1
hk3 )
k1
g (tn , xn , yn )
k2
g tn
1
2
h, x n
1
2
h m1 , yn
k3
(
g(tn
1
2
h, xn
1
2
h m2 , yn
k4
g (tn
h, xn
hm3 , yn
)
1
2 h k2)
1
2
h k1
(8)
hk3 ).
Método RK4
Considere el problema con valores iniciales
x
2x
4y
y
x
6y
x (0)
TABLA 9.8
y (0)
6.
Use el método RK4 para aproximar x(0.6) y y(0.6). Compare los resultados para
h 0.2 y h 0.1.
h 0.2
tn
xn
yn
0.00
0.20
0.40
0.60
1.0000
9.2453
46.0327
158.9430
6.0000
19.0683
55.1203
150.8192
SOLUCIÓN Se muestran los cálculos de x1 y y1 con tamaño de paso h 0.2. Con las
LGHQWL¿FDFLRQHVf (t, x, y) 2x 4y, g(t, x, y) x 6y, t0 0, x0 1 y y0 6,
se ve de (8) que
m1
f (t0 , x0 , y0 )
f (0,
1, 6)
k1
g (t0 , x0 , y0)
g (0,
1, 6)
m2
1
2 h,
x0
1
2 hm1 ,
y0
1
2 h,
x0
1
2 hm1,
y0
1
2 h,
x0
1
2 hm 2 ,
y0
1
2 h,
x0
1
2 hm2 ,
y0
tn
xn
yn
m3
0.00
0.10
0.20
0.30
0.40
0.50
0.60
1.0000
2.3840
9.3379
22.5541
46.5103
88.5729
160.7563
6.0000
10.8883
19.1332
32.8539
55.4420
93.3006
152.0025
k3
(
g (t0
f (t0
g (t0
m4
f (t0
h, x0
hm3 , y0
k4
g (t0
h, x0
hm3 , y0
TABLA 9.9
1,
k2
h 0.1
f t0
Por tanto de (7) se obtiene
2( 1)
4(6)
1( 1)
)
1
2 hk1)
1
2 hk2)
1
2 hk2)
1
2 hk1
6(6)
22
37
f (0.1, 1.2, 9.7)
41.2
g (0.1, 1.2, 9.7)
57
f (0.1, 3.12, 11.7)
53.04
g (0.1, 3.12, 11.7)
67.08
hk3 )
f (0.2, 9.608, 19.416)
96.88
hk3 )
g (0.2, 9.608, 19.416)
106.888.
370
CAPÍTULO 9
l
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
x1
x, y
x0
1
y1
1
y(t)
2 m2
0.2
(22
6
2 m3
2(41.2)
y0
0.2
(k
6 1
2 k2
6
0.2
(37
6
2(57)
t
x(t)
0.2
(m1
6
m4)
2(53.04)
2 k3
96.88)
9.2453
k4)
2(67.08)
106.888)
19.0683,
donde, como es usual, los valores calculados de x1 y y1 están redondeados a cuatro lugares decimales. Estos números nos dan la aproximación x1 艐 x(0.2) y y1 艐 y(0.2). Los
valores subsecuentes, obtenidos con la ayuda de una computadora, se resumen en las
tablas 9.8 y 9.9.
_1
FIGURA 9.4.2 Curvas solución
numérica para el PVI del ejemplo 3.
Se debe comprobar que la solución del problema con valores iniciales del ejemplo
3 está dada por x(t) (26t 1)e 4t, y(t) (13t 6)e 4t. De estas ecuaciones vemos
que los valores reales x(0.6) 160.9384 y y(0.6) 152.1198 se comparan favoraEOHPHQWHFRQODVHQWUDGDVGHO~OWLPRUHQJOyQGHODWDEOD/DJUi¿FDGHODVROXFLyQ
en una vecindad de t TXHVHPXHVWUDHQOD¿JXUDODJUi¿FDVHREWXYRGHXQ
programa de solución numérico usando el método RK4 con h 0.1.
En conclusión, establacemos el método de Euler para el sistema general (6):
EJERCICIOS 9.4
4y
4y
0,
1
xn
h f (tn , x n , yn )
yn
1
yn
hg (tn , xn , yn ).
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.
1. Use el método de Euler para aproximar y(0.2), donde y(x)
es la solución del problema con valores iniciales
y
xn
y (0)
2, y (0)
1.
6. Cuando E 100 V, R 10 ! y L 1 h, el sistema de
ecuaciones diferenciales para las corrientes i1(t) e i3(t) en
ODUHGHOpFWULFDGDGDHQOD¿JXUDHV
Use h 0.1. Encuentre la solución analítica del problema
y compare el valor real de y(0.2) con y2·
di1
dt
2. Use el método de Euler para aproximar y(1.2), donde y(x)
es la solución del problema con valores iniciales
di3
dt
x2 y
2 xy
2y
0,
y (1)
4, y (1)
9,
donde x 0. Use h 0.1. Encuentre la solución analítica
del problema y compare el valor real de y(1.2) con y2.
En los problemas 3 y 4 repita el problema indicado con el método RK4. Primero utilice h 0.2 y después h 0.1.
20 i1
10 i1
10 i3
100
20 i3 ,
donde i1(0) 0 e i3(0) 0. Use el método RK4 para
aproximar i1(t) e i3(t) en t 0.1, 0.2, 0.3, 0.4 y 0.5. Use
h 0.1. Mediante un programa de solución numérica obWHQJDODJUi¿FDGHODVROXFLyQHQHOLQWHUYDOR t 5.
8VHODVJUi¿FDVSDUDSUHGHFLUHOFRPSRUWDPLHQWRGHi1(t)
e i3(t) conforme t → .
3. Problema 1
4. Problema 2
5. Use el método RK4 para aproximar y(0.2), donde y(x) es
la solución del problema con valores iniciales.
y
2y
2 y et cos t, y (0) 1, y (0) 2.
Primero use h 0.2 y después h 0.1.
i3
R
i1
E
L
i2
L
R
FIGURA 9.4.3 Red del problema 6.
R
9.5
PROBLEMAS CON VALORES EN LA FRONTERA DE SEGUNDO ORDEN
En los problemas 7 a 12, use el método de Runge-Kutta para
aproximar x(0.2) y y(0.2). Primero use h 0.2 y después h
0.1. Use un programa de solución numérica y h 0.1 para
WUD]DUODJUi¿FDGHODVROXFLyQHQXQDYHFLQGDGGHt 0.
7. x 2x y
y x
x(0) 6, y(0) 2
9.5
l
371
9. x y t
10. x 6x y 6t
y x t
y 4x 3y 10t 4
x(0) 3, y(0) 5
x(0) 0.5, y(0) 0.2
8. x x 2y
y 4x 3y
x(0) 1, y(0) 1
11. x 4x y 7t
12.
x y 4t
x y 2y 3t
x y y 6t 2 10
x(0) 1, y(0) 2
x(0) 3, y(0) 1
PROBLEMAS CON VALORES EN LA FRONTERA DE SEGUNDO ORDEN
REPASO DE MATERIAL
l Sección 4.1
l Ejercicios 4.3 (Problemas 37 a 40)
l Ejercicios 4.4 (Problemas 37 a 40)
l Sección 5.2
INTRODUCCIÓN En la sección 9.4 vimos cómo aproximar la solución de un problema con valores
iniciales de segundo orden
y f (x, y, y),
y(x 0 ) y0 ,
y(x 0 ) u 0.
En esta sección se tratan dos métodos para encontrar una solución aproximada de un problema con
valores en la frontera de segundo orden
y(a) Į,
y f (x, y, y),
y(b) ȕ.
A diferencia del procedimiento utilizado en los problemas con valores iniciales de segundo orden, en
los métodos para los problemas con valores en la frontera de segundo orden no se requiere escribir la
ED de segundo orden como un sistema de ED de primer orden.
APROXIMACIONES POR DIFERENCIAS FINITAS El desarrollo en serie de
Taylor centrado en el punto a, de una función y(x) es
y (x)
y (a)
y (a)
x
a
y (a)
1!
a) 2
(x
2!
a) 3
(x
y (a)
.
3!
Si se hace h x a, entonces el renglón anterior es igual a
y (x)
y (a)
y (a)
h
1!
y (a)
h2
2!
y (a)
h3
3!
.
Para el análisis posterior es conveniente volver a escribir la última expresión en las dos
formas alternativas:
y
h2
2
y (x )
h2
2
y (x)
y (x
h)
y (x)
y (x) h
y (x)
y (x
h)
y (x)
y (x) h
y (x)
h3
6
h3
6
(1)
.
(2)
Si h es pequeña, podemos despreciar los términos que implican a h4, h5, . . . puesto que
estos valores son despreciables. En realidad, si se ignoran todos los términos con h2 y
superiores, y resolviendo (1) y (2), respectivamente, para y(x) se obtienen las aproximaciones siguientes para la primera derivada:
372
l
CAPÍTULO 9
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
y (x)
1
[ y (x
h
y (x)
1
[ y (x)
h
h)
y (x)]
(3)
h)].
(4)
y (x
Restando (1) y (2) también se obtiene
1
[ y (x
2h
y (x)
h)
y (x
(5)
h)].
Por otro lado, si se ignoran los términos con h3 y superiores, entonces al sumar (1) y
(2) se obtiene una aproximación de la segunda derivada y(x):
1
[ y (x
h2
y (x)
h)
2 y (x)
y (x
(6)
h)].
Los lados derechos de (3), (4), (5) y (6) se llaman cocientes de diferencias. Las expresiones
y (x
h)
y (x), y (x)
y
y (x
y (x
h)
h), y (x
2 y (x)
y (x
h)
y (x
h),
h)
se llaman GLIHUHQFLDV¿QLWDV. En particular, y(x h) y(x) recibe el nombre de diferencia hacia adelante, y(x) y(x h) es una diferencia hacia atrás y tanto y(x h)
y(x h) como y(x h) 2y(x) y(x h) se llaman diferencias centrales. Los
resultados que se presentan en (5) y (6) se llaman aproximaciones por diferencias
centrales de las derivadas y y y.
MÉTODO DE DIFERENCIAS FINITAS Ahora considere un problema lineal con
valores en la frontera de segundo orden
P (x) y
y
Q (x ) y
f (x),
y (a)
,
y (b)
(7)
.
Suponga que a x0 x1 x2 . . . xn 1 xn b representa una partición regular
del intervalo [a, b], es decir, xi a ih, donde i 0, 1, 2, . . . , n y h (b a)兾n.
Los puntos
x1
h,
a
x2
2 h, . . . ,
a
xn
a
1
(n
1) h
se llaman puntos de malla interiores del intervalo [a, b]. Si hacemos
yi
y (xi ),
Pi
P (xi ),
Q (xi )
Qi
y
fi
f (xi )
y si y y y en (7) se reemplazan por las aproximaciones de diferencias centrales (5) y
(6), se obtiene
yi
1
2 yi
h2
yi
1
Pi
yi
yi
1
2h
1
Qi yi
fi
RGHVSXpVGHVLPSOL¿FDU
1
h
P y
2 i i
1
( 2
h2 Qi ) yi
1
h
P y
2 i i
1
h2 fi .
(8)
La ultima ecuación se conoce como HFXDFLyQGHGLIHUHQFLDV¿QLWDVy es una aproximación a la ecuación diferencial. Permite aproximar la solución y(x) de (7) en los
puntos de malla interiores x1, x2, . . . , xn 1 del intervalo [a, b]. Si i toma los valores
1, 2, . . . , n 1 en (8), se obtienen n 1 ecuaciones con n 1 incógnitas y1, y2, . . . ,
9.5
PROBLEMAS CON VALORES EN LA FRONTERA DE SEGUNDO ORDEN
l
373
yn – 1. Considere que se conocen y0 y yn porque son las condiciones prescritas en la
frontera y0 y(x0) y(a) Į y yn y(xn) y(b) ȕ.
En el ejemplo 1 se considera un problema con valores en la frontera para el que
se pueden comparar los valores aproximados con los valores reales de una solución
explícita.
EJEMPLO 1
8VRGHOPpWRGRGHGLIHUHQFLDV¿QLWDV
Use la ecuación de diferencias (8) con n 4 para aproximar la solución del problema
con valores en la frontera y 4y 0, y(0) 0, y(1) 5.
3DUD XVDU VH LGHQWL¿FD P(x) 0, Q(x) 4, f(x) 0 y
0)> 4 14 . De donde la ecuación de diferencia es
SOLUCIÓN
h
(1
yi
2.25 yi
1
yi
(9)
0.
1
1
2
3
Ahora, los puntos interiores son x1 0 4 , x2 0 4 , x3 0 4 , por lo que para i
1, 2 y 3, la ecuación (9) genera el sistema siguiente para las correspondientes y1, y2 y y3
2.25 y1
y2
y3
y4
y0
0
2.25 y2
y1
0
2.25 y3
y2
0.
Con las condiciones en la frontera y0 0 y y4 5 el sistema anterior se convierte en
0
y2
2.25y1
y1 2.25y 2
y3 0
y 2 2.25y 3 5.
La solución del sistema es y1 0.7256, y2 1.6327 y y3 2.9479.
Ahora la solución general de la ecuación diferencial dada es y c1 cosh 2x c2
senh 2x. La condición y(0) VLJQL¿FDTXHc1 0. La otra condición en la frontera
da c2. De este modo se ve que una solución del problema con valores en la frontera es
y(x) (5 senh 2x)兾senh 2. Por tanto, los valores reales (redondeados a cuatro decimales) de esta solución en los puntos interiores son los siguientes: y(0.25) 0.7184,
y(0.5) 1.6201 y y(0.75) 2.9354.
La precisión de las aproximaciones en el ejemplo 1 se puede mejorar usando un valor
más pequeño de h. Por supuesto, usar un valor más pequeño de h requiere resolver un
sistema más grande de ecuaciones. Se deja como ejercicio demostrar que con h 18 ,
las aproximaciones a y(0.25), y(0.5) y y(0.75) son 0.7202, 1.6233 y 2.9386, respectivamente. Vea el problema 11 en los ejercicios 9.5.
EJEMPLO 2
8VDQGRHOPpWRGRGHGLIHUHQFLDV¿QLWDV
Use la ecuación diferencial (8) con n 10 para aproximar la solución de
y
3y
2y
4 x 2,
y (1)
1, y (2)
6.
(QHVWHFDVRVHLGHQWL¿FDP(x) 3, Q(x) 2, f(x) 4x2 y h (2 1)
兾10 0.1, y así (8) se convierte en
SOLUCIÓN
1.15 yi
1
1.98 yi
0.85 yi
1
0.04 x 2i .
(10)
374
l
CAPÍTULO 9
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS
Ahora los puntos interiores son x1 1.1, x2 1.2, x3 1.3, x4 1.4, x5 1.5, x6
1.6, x7 1.7, x8 1.8 y x9 1.9. Para i 1, 2, . . . , 9 y y0 1, y10 6, la ecuación
(10) da un sistema de nueve ecuaciones y nueve incógnitas:
1.15 y2
1.98 y1
0.8016
1.15 y3
1.98 y2
0.85 y1
0.0576
1.15 y4
1.98 y3
0.85 y2
0.0676
1.15 y5
1.98 y4
0.85 y3
0.0784
1.15 y6
1.98 y5
0.85 y4
0.0900
1.15 y7
1.98 y6
0.85 y5
0.1024
1.15 y8
1.98 y7
0.85 y6
0.1156
1.15 y9
1.98 y8
0.85 y7
0.1296
1.98 y 9
0.85 y 8
6.7556.
Se puede resolver este grande sistema usando eliminación de Gauss o, con relativa
facilidad, por medio de un sistema algebraico computarizado. El resultado que se encuentra es y1 2.4047, y2 3.4432, y3 4.2010, y4 4.7469, y5 5.1359, y6
5.4124, y7 5.6117, y8 5.7620 y y9 5.8855.
MÉTODO DE TANTEOS Otro modo de aproximar una solución de un problema
con valores en la frontera y f(x, y, y), y(a) Į, y(b) ȕ se denomina método de
tanteos. El punto de partida de este método es reemplazar el problema con valores en
la frontera por un problema con valores iniciales
y
f ( x, y, y ), y (a)
a, y (a)
m1.
(11)
El número m1 en (11) es simplemente una suposición de la pendiente desconocida de
la curva solución en el punto conocido (a, y(a)). Se puede aplicar entonces una de las
técnicas numéricas paso a paso a la ecuación de segundo orden en (11) para encontrar
una aproximación ȕ1 del valor de y(b). Si ȕ1 concuerda con el valor dado y(b) ȕ dentro de alguna tolerancia asignada antes, se detiene el cálculo; de otro modo se repiten
los cálculos, empezando con una suposición distinta y(a) m2 para obtener una segunda aproximación ȕ2 para y(b). Se puede continuar con este método usando prueba
y error o las pendientes siguientes m3, m4, . . . se ajustan de alguna manera sistemática.
La interpolación lineal proporciona, en especial, resultados satisfactorios cuando la
ecuación diferencial en (11) es lineal. El procedimiento es similar al tiro al blanco (el
objetivo es elegir la pendiente inicial), se dispara hacia una objetivo ojo de buey y(b)
hasta que se acierta. Vea el problema 14 en los ejercicios 9.5.
Por supuesto, lo que subyace en el uso de estos métodos numéricos es la suposición de que existe una solución para el problema con valores en la frontera, la que se
sabe, no está siempre garantizada.
COMENTARIOS
(OPpWRGRGHDSUR[LPDFLyQFRQGLIHUHQFLDV¿QLWDVVHSXHGHJHQHUDOL]DUDSUREOHPDVFRQYDORUHVHQODIURQWHUDHQORVTXHODSULPHUDGHULYDGDVHHVSHFL¿FDHQXQD
frontera, por ejemplo, un problema del tipo y f (x, y, y), y(a) Į, y(b) ȕ.
Vea el problema 13 de los ejercicios 9.5.
REPASO DEL CAPÍTULO 9
EJERCICIOS 9.5
1. y 9y 0,
y(0) 4, y(2) 1;
2. y y x ,
y(0) 0, y(1) 0; n 4
3. y 2y y 5x,
n4
y(0) 0, y(1) 0;
4. y 10y 25y 1,
n5
y(0) 1, y(1) 0; n 5
5. y 4y 4y (x 1)e 2x,
y(0) 3, y(1) 0; n 6
6. y
4 1x, y (1)
5y
1, y (2)
1; n
7. x y 3xy 3y 0,
y(1) 5, y(2) 0;
8. x 2 y xy y ln x,
y(1) 0, y(2) 2;
2
6
n8
n8
9. y (1 x)y xy x, y(0) 0, y(1) 2; n 10
10. y xy y x,
y(0) 1, y(1) 0; n 10
11. Resuelva de nuevo el ejemplo 1 usando n 8.
12. El potencial electrostático u entre dos esferas concéntricas de radio r 1 y r 4 se determina a partir de
d 2u
dr 2
2 du
r dr
0,
u (1)
375
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.
(QORVSUREOHPDVODXVHHOPpWRGRGHGLIHUHQFLDV¿QLWDV\
el valor indicado de n para aproximar la solución de los problemas con valores en la frontera.
2
l
50, u (4)
100.
REPASO DEL CAPÍTULO 9
En los problemas 1 a 4 construya una tabla para comparar
los valores indicados de y(x) mediante el método de Euler,
el método de Euler mejorado y el método RK4. Calcule redondeando a cuatro cifras decimales. Primero use h 0.1 y
después h 0.05.
1. y 2 ln xy, y(1) 2;
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)
2. y sen x 2 cos y 2, y(0) 0;
y(0.1), y(0.2), y(0.3), y(0.4), y(0.5)
1x y , y (0.5) 0.5;
3. y
y(0.6), y(0.7), y(0.8), y(0.9), y(1.0)
4. y xy y , y(1) 1;
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)
Use el método de esta sección con n 6 para aproximar
la solución de este problema con valores en la frontera.
13. Considere el problema con valores en la frontera y xy
0, y(0) 1, y(1) 1.
a) Encuentre la ecuación en diferencias correspondiente
a la ecuación diferencial. Demuestre que para i 0,
1, 2, . . . , n 1 la ecuación en diferencias produce
n con n 1 incógnitas y1, y0, y1, y2, . . . , yn – 1. Aquí
y1 y y0 son incógnitas, puesto que y1 representa una
aproximación a y al punto exterior x h y y0 no
HVWiHVSHFL¿FDGDHQx 0.
b) Use la aproximación de diferencias centrales (5) para
demostrar que y1 y1 2h. Utilice esta ecuación
para eliminar y1 del sistema en el inciso a).
c) Use n 5 y el sistema de ecuaciones encontradas
en los incisos a) y b) para aproximar la solución del
problema con valores en la frontera original.
Tarea para el laboratorio de computación
14. Considere el problema con valores en la frontera y y
– sen (xy), y(0) 1, y(1) 1.5. Use el método de tanteos
para aproximar la solución de este problema. (La aproximación se puede obtener usando una técnica numérica,
digamos, el método RK4 con h 0.1; o, aún mejor, si
tiene acceso a un SAC tal como Mathematica o Maple,
puede usar la función NDSolve).
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-16.
con h 0.2 y después repita los cálculos usando dos
pasos con h 0.1.
6. Utilice el método de Adams-Bashforth-Moulton para
aproximar y(0.4), donde y(x) es la solución del problema con valores iniciales y 4x 2y, y(0) 2. Use
h 0.1 y el método de RK4 para calcular y1, y 2, y y 3.
7. Utilice el método de Euler para aproximar x(0.2) y y(0.2),
donde x(t), y(t) es la solución del problema con valores
iniciales.
x
x
y
y
x
y
2
5. Aplique el método de Euler para aproximar y(0.2), donde
y(x) es la solución del problema con valores iniciales y –
(2x 1)y 1, y(0) 3, y(0) 1. Primero use un paso
x (0)
1,
y (0)
2.
8. 8VHHOPpWRGRGHODVGLIHUHQFLDV¿QLWDVFRQn 10, aproxime la solución del problema con valores en la frontera
y 6.55(1 x)y 1, y(0) 0, y(1) 0.
376
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
10
SISTEMAS AUTÓNOMOS PLANOS
10.1
10.2
10.3
10.4
Sistemas autónomos
Estabilidad de sistemas lineales
Linealización y estabilidad local
Sistemas autónomos como modelos matemáticos
REPASO DEL CAPÍTULO 10
En el capítulo 8 se utilizaron técnicas matriciales para resolver sistemas de
ecuaciones diferenciales lineales de primer orden de la forma X AX F(t).
Cuando un sistema de ecuaciones diferenciales no es lineal, generalmente no
es posible encontrar soluciones en términos de funciones elementales. En este
capítulo demostraremos la valiosa información de la naturaleza geométrica de
las soluciones de sistemas que se puede obtener analizando primero soluciones
constantes especiales obtenidas de puntos críticos del sistema y de la búsqueda de
soluciones periódicas. Se introducirá el importante concepto de estabilidad y se
ilustrará con ejemplos de física y ecología.
376
10.1
10.1
SISTEMAS AUTÓNOMOS
l
377
SISTEMAS AUTÓNOMOS
REPASO DE MATERIAL
l Es muy recomendable que lea de nuevo la sección 2.1.
INTRODUCCIÓN En la sección 2.1, se presentaron los conceptos de las ED autónomas de primer
orden, los puntos críticos de una ED autónoma y la estabilidad de un punto crítico. Esta primera descripción de la estabilidad se mantuvo a propósito en un nivel bastante intuitivo; ahora es tiempo de
SUHVHQWDUODGH¿QLFLyQSUHFLVDGHHVWHFRQFHSWR\SDUDKDFHUORQHFHVLWDPRVH[DPLQDUsistemas autóQRPRVGH('GHSULPHURUGHQ(QHVWDVHFFLyQGH¿QLUHPRVORVSXQWRVFUtWLFRVGHVLVWHPDVDXWyQRPRV
de dos ED de primer orden; los sistemas autónomos pueden ser lineales o no lineales.
SISTEMAS AUTÓNOMOS Un sistema de ecuaciones lineales de primer orden se
dice que es autónomo cuando se puede escribir en la forma
dx1
dt
dx2
dt
g1(x1, x2, . . . , xn )
g2(x1, x2, . . . , xn )
(1)
dxn
gn(x1, x2, . . . , xn ).
dt
Observe que la variable independiente tQRVHSUHVHQWDHQIRUPDH[SOtFLWDHQHOPLHPbro de la derecha de cada ecuación diferencial. Compare el sistema (1) con el sistema
general de ecuaciones (2) de la sección 8.1.
EJEMPLO 1
Un sistema no autónomo
El sistema de ecuaciones diferenciales no lineales de primer orden
dependencia de t
dx1
––– x1 3x2 t2
dt
dx2
––– tx1 sen x2
dt
dependencia de t
es un sistema no autónomo debido a la presencia de t en los miembros a la derecha de
ambas ED.
NOTA Cuando n 1 en el sistema (1), una sola ecuación diferencial de primer orden
toma la forma dx兾dt g(x). Esta última ecuación es equivalente a (1) de la sección 2.1,
donde los símbolos x y t juegan los papeles de y y x, respectivamente. Se pueden formar
VROXFLRQHVH[SOtFLWDV\DTXHODHFXDFLyQGLIHUHQFLDOdx兾dt g(x) es separable, lo que
aprovecharemos para presentar ejemplos de los conceptos en este capítulo.
ECUACIÓN DIFERENCIAL DE SEGUNDO ORDEN COMO UN SISTEMA
Cualquier ecuación diferencial de segundo orden, x g(x, x), se puede escribir en
forma de un sistema autónomo. Como se hizo en la sección 4.10, si hacemos y x, entonces x g(x, x) se transforma en y g(x, y). Así, la ecuación diferencial de segundo
orden se transforma en el sistema de dos ecuaciones de primer orden
x y
y g(x, y).
378
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
EJEMPLO 2
La ED del péndulo como un sistema autónomo
En la ecuación (6) de la sección 5.3, demostramos que el ángulo de desplazamiento ș
de un péndulo satisface la ecuación diferencial no lineal de segundo orden
d2
g
sen
0.
dt 2
l
Si hacemos x ș y y șHVWDHFXDFLyQGLIHUHQFLDOGHVHJXQGRRUGHQVHSXHGHH[presar en forma del sistema autónomo
x
y
g
sen x.
l
y
NOTACIÓN
Si X(t) y g(X) denotan respectivamente los vectores columna
x1(t)
g1(x1,x2, . . . ,xn)
g2(x1,x2, . . . ,xn)
.
g(X)
.
.
gn(x1,x2, . . . ,xn)
() (
x2(t)
X(t ) .. ,
.
xn(t)
)
,
entonces el sistema autónomo de las ecuaciones (1) se puede escribir de manera compacta en forma de vector columna X g(X). El sistema lineal homogéneo X AX
que estudiamos en la sección 8.2 es un importante caso especial.
En este capítulo también es conveniente escribir el sistema (1) usando vectores
renglón. Si hacemos que X(t) (x1(t), x 2(t), . . . , x n(t)) y
g(X) (g1(x1, x2, . . . , x n), g2(x1, x2, . . . , x n), . . . , gn(x1, x2, . . . , x n)),
HQWRQFHVHOVLVWHPDDXWyQRPR WDPELpQVHSRGUtDH[SUHVDUHQODforma de vector
renglón X g(X). Del contexto, debe ser claro si se está usando la forma de vector
columna o renglón; por tanto no distinguiremos entre X y XT, la traspuesta de X. En
particular, cuando n 2, es conveniente usar la forma de vector renglón y escribir una
condición inicial en la forma X(0) (x0, y0).
Cuando la variable t se interpreta como tiempo, llamaremos al sistema (1) de ecuaciones diferenciales como sistema dinámico y a una solución X(t) como el estado del
sistema o la respuesta del sistema en el tiempo t. Con esta terminología, un sistema
dinámico es autónomo cuando la razón X(t) con la que cambia el sistema sólo depende
del estado actual X(t) del sistema. El sistema lineal X AX F(t) que estudiamos en
el capítulo 8 es entonces autónomo cuando F(t) es constante. En el caso en que n 2
o 3 podemos llamar una solución como camino o trayectoria, porque se pueden considerar x x1(t), y x2(t) y z x3(t) como las ecuaciones paramétricas de una curva.
INTERPRETACIÓN COMO CAMPO VECTORIAL Cuando n 2, el sistema (1)
se llama sistema autónomo plano, y se escribe como
dx
dt
dy
dt
P(x, y)
(2)
Q(x, y).
EI vector V(x, y) (P(x, y), Q(x, y GH¿QHXQcampo vectorial en una región del
plano y una solución del sistema puede interpretarse como la trayectoria resultante
GHXQDSDUWtFXODTXHVHPXHYHDWUDYpVGHODUHJLyQ3DUDVHUPiVHVSHFt¿FRVVHDTXH
V(x, y) (P(x, y), Q(x, y)) denote la velocidad de una corriente en la posición (x, y) y
supongamos que una pequeña partícula (tal como un corcho) se suelta en la corriente en
la posición (x0, y0). Si X(t) (x(t), y(t)) denota la posición de la partícula en el tiempo t,
10.1
SISTEMAS AUTÓNOMOS
l
379
entonces X(t) (x(t), y(t)) es el vector velocidad V&XDQGRQRKD\IXHU]DVH[WHUQDV
y se desprecian las fuerzas de fricción, la velocidad de la partícula al tiempo t es igual
a la velocidad de la corriente en la posición X(t):
X (t)
V(x(t), y(t))
dx
dt
dy
dt
o
P(x(t), y(t))
Q(x(t), y(t)).
Así la trayectoria de la partícula es una solución del sistema, que satisface la condición
inicial X(0) (x0, y0). Frecuentemente nos referiremos a esta simple interpretación de
un sistema autónomo plano, para ilustrar conceptos nuevos.
EJEMPLO 3
Sistema autónomo plano de un campo vectorial
8QFDPSRYHFWRULDOSDUDHOHVWDGRHVWDEOHGHOÀXMRGHXQÀXLGRHQWRUQRDXQFLOLQGUR
de radio 1 está dado por
y
V(x, y)
(−3, 1)
x
V0 1
x2
(x2
y2
2xy
, 2
,
2 2
y ) (x
y2 )2
donde V0HVODUDSLGH]GHOÀXLGROHMRVGHOFLOLQGUR6LVHFRORFDXQSHTXHxRFRUFKRHQ
(3, 1), la trayectoria del corcho X(t) (x(t), y(t)) satisface al sistema autónomo plano
FIGURA 10.1.1 Campo vectorial del
ÀXMRGHXQÀXLGRGHOHMHPSOR
dx
dt
V0 1
dy
dt
V0
x2
(x2
y2
y2 )2
2xy
(x
y2 )2
2
sujeto a la condición inicial X(0) ( 9pDQVHOD¿JXUD\HOSUREOHPD
de los ejercicios 2.4.
TIPOS DE SOLUCIONES Si P(x, y), Q(x, y) y las primeras derivadas parciales
P兾x, P兾y, Q兾x y Q兾y son continuas en una región R del plano, entonces una
solución del sistema autónomo plano (2) que satisface X(0) X0 es única y es de uno
de los tres tipos básicos:
1
X(0)
i)
P
2
X(0)
a)
b)
Una solución constante x(t) x0, y(t) y0 (o X(t) X0 para todo t).
A una solución constante se le llama punto crítico o punto estacionario.
Cuando la partícula se coloca en un punto crítico X0, (esto es, X(0) X0),
SHUPDQHFH DKt LQGH¿QLGDPHQWH 3RU HVWD UD]yQ D XQD VROXFLyQ FRQVWDQWH
también se le llama solución de equilibrio. Observe que como X(t) 0,
un punto crítico es una solución del sistema de ecuaciones algebraicas
FIGURA 10.1.2 La curva en a) se
P(x, y)
0
llama arco.
Q(x, y)
0.
ii)
X(0)
iii)
FIGURA 10.1.3 Solución periódica o
ciclo.
Una solución x x(t), y y(t TXHGH¿QHXQarco, es decir, una curva plana
que noVHFUX]DDVtPLVPD3RUWDQWRODFXUYDGHOD¿JXUD D SXHGH
VHUXQDVROXFLyQGHXQVLVWHPDDXWyQRPRSODQRPLHQWUDVTXHODGHOD¿JXUD
10.1.2(b) puede no ser una solución. Habría dos soluciones que iniciarían en
el punto de intersección P.
Una solución periódica x x(t), y y(t). A una solución se le llama ciclo.
Si p es el periodo de la solución, entonces X(t p) X(t) y una partícula
colocada sobre la curva en X0 circulará la curva y regresará a X0 en p
XQLGDGHVGHWLHPSR9HDOD¿JXUD
380
CAPÍTULO 10
l
SISTEMAS AUTÓNOMOS PLANOS
EJEMPLO 4
Encontrando puntos críticos
Encuentre todos los puntos críticos de cada uno de los siguientes sistemas autónomos
planos:
b) x x 2 y 2 6
y x 2 y
a) x x y
y x y
c) x 0.01x(100 x y)
y 0.05y(60 y 0.2x)
SOLUCIÓN Encontramos los puntos críticos igualando a cero los miembros de la
derecha de las ecuaciones diferenciales.
a) La solución del sistema
x
y
0
x
y
0
consiste en todos los puntos en la recta y x3RUWDQWRKD\XQDFDQWLGDGLQ¿QLWD
de puntos críticos.
b) Para resolver el sistema
x2 y2 6 0
x2
y
3
−3
3
x
−3
y
0
sustituimos la segunda ecuación, x2 y en la primera ecuación para obtener y2
y 6 (y 3)(y 2) 0. Si y 3, entonces x2 3, por lo que no hay soluciones reales. Si y 2, entonces x
12 , así los puntos críticos son (12, 2)
y ( 12, 2) .
c) 3DUDODGHWHUPLQDFLyQGHORVSXQWRVFUtWLFRVHQHVWHLQFLVRF VHQHFHVLWDH[DPLQDU
con cuidado los casos. La ecuación 0.0lx(100 x y) 0 implica que x 0 o
que x y 100.
Si x 0, entonces al sustituir en 0.05y(60 y 0.2x) 0, se tiene que y(60
y) 0. Por lo que y 0 o 60, así (0, 0) y (0, 60) son puntos críticos.
Si x y 100, entonces 0 y(60 y 0.2(100 y)) y(40 0.8y). Por lo
que y 0 o 50, así (100, 0) y (50, 50) son puntos críticos.
Cuando el sistema autónomo plano es lineal empleamos los métodos del capítulo 8
para investigar las soluciones.
a) Solución periódica.
EJEMPLO 5
Descubriendo soluciones periódicas
y
Determine si el sistema lineal dado tiene una solución periódica:
a)
5
5
x
−5
b) Solución no periódica.
FIGURA 10.1.4 Curvas solución para
el ejemplo 5.
b) x x 2y
1
y
y
2 x
(QFDGDFDVRGLEXMHODJUi¿FDGHODVROXFLyQTXHVDWLVIDFHX(0) (2, 0).
(2, 0)
−5
x 2x 8y
y x 2y
SOLUCIÓN a) En el ejemplo 6 de la sección 8.2 utilizamos el método del eigenvalor-eigenvector para demostrar que
x
c1 (2 cos 2t
2 sen 2t)
y
c1 cos 2t
c2 sen 2t.
c2 (2 cos 2t
2 sen 2t)
Así, toda solución es periódica, con periodo p ʌ. La solución que satisface X(0)
(2, 0) es x 2 cos 2t 2 sen 2t, y sen 2t. Esta solución genera la elipse que se
PXHVWUDHQOD¿JXUD D
10.1
SISTEMAS AUTÓNOMOS
l
381
b) Utilizando el método del eigenvalor-eigenvector, podemos demostrar que
x
2c1e t cos t
2c2e t sen t, y
c1e t sen t
c2e t cos t.
Debido a la presencia de et en la solución general, no hay soluciones periódicas (es
decir, ciclos). La solución que satisface X(0) (2, 0) es x 2et cos t, y e t sen t, y
HQOD¿JXUD E VHPXHVWUDODFXUYDUHVXOWDQWH
CAMBIANDO A COORDENADAS POLARES ([FHSWRHQHOFDVRHQTXHKD\VROXFLRQHVFRQVWDQWHVSRUORJHQHUDOQRHVSRVLEOHOOHJDUDHFXDFLRQHVH[SOtFLWDVGHODV
soluciones de un sistema autónomo no lineal. Sin embargo, se pueden resolver algunos sistemas no lineales al cambiarlos a coordenadas polares. De las fórmulas r2 x2
y2 y ș tan1(y兾x) se obtienen
dr 1 dx
dy
d
1
dx
dy
(3)
x
y
,
y
x
.
2
dt
r
dt
dt
dt
r
dt
dt
En ocasiones se pueden usar las ecuaciones (3) para convertir un sistema autónomo
plano en coordenadas rectangulares en un sistema más sencillo en coordenadas polares.
EJEMPLO 6
Cambiando a coordenadas polares
Determine la solución del sistema autónomo plano no lineal
x
x 1x2
y
y2
y
x y1x2 y2
que satisfaga la condición inicial X(0) (3, 3).
Sustituyendo dx兾dt y dy兾dt en las ecuaciones de dr兾dt y Gș兾dt en el
sistema (3), se obtienen
SOLUCIÓN
y
3
−3
3
−3
x
dr
dt
1
[x( y
r
d
dt
1
[ y( y
r2
y(x
xr)
r2
yr)]
x(x
yr)]
1.
Puesto que (3, 3) es (312, ( >4) en
, coordenadas polares, la condición inicial X(0)
(3, 3) se convierte en r(0) 312 y ș(0) ʌ兾4. Separando las variables, vemos que
la solución del sistema es
1
r
,
t c2
t c1
para r 0. (¡Compruébelo!) Entonces aplicando la condición inicial se obtiene
r
FIGURA 10.1.5 Curva solución del
ejemplo 6.
xr)
t
1
,
12 6
t
.
12 6
1
(QOD¿JXUDVHSUHVHQWDODHVSLUDO r
EJEMPLO 7
4
>4
.
Soluciones en coordenadas polares
&XDQGRVHH[SUHVDHQFRRUGHQDGDVSRODUHVFLHUWRVLVWHPDDXWyQRPRSODQRWRPDODIRUPD
dr
dt
d
dt
0.5(3
1.
r)
382
CAPÍTULO 10
l
SISTEMAS AUTÓNOMOS PLANOS
'HWHUPLQH\WUDFHODVJUi¿FDVGHODVVROXFLRQHVTXHVDWLVIDFHQTXHX(0) (0, 1) y
X(0) (3, 0), en coordenadas rectangulares.
y
4
Aplicando separación de variables a dr兾dt 0.5(3 r) e integrando
Gș兾dt se obtiene la solución r 3 c1e0.5t, ș t c2.
Si X(0) (0, 1), entonces r(0) 1 y ș(0) ʌ兾2. Por lo que c1 2 y c2 ʌ兾2.
La curva solución es la espiral r 3 2e0.5(șʌ兾2). Observe que conforme t → , ș
aumenta sin límite y r tiende a 3.
Si X(0) (3, 0), entonces r(0) 3 y ș(0) 0. Por lo que c1 c2 0, así r 3
y ș t. Como x r cos ș 3 cos t y y r sen ș 3 sen t, la solución es periódica.
(VWDVROXFLyQJHQHUDXQDFLUFXQIHUHQFLDGHUDGLRHQWRUQRD (QOD¿JXUD
se presentan ambas soluciones.
SOLUCIÓN
−4
x
4
−4
FIGURA 10.1.6 Curvas solución del
ejemplo 7.
EJERCICIOS 10.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-17.
En los problemas 1 a 6 dada la ecuación diferencial no lineal
de segundo orden escríbala como un sistema autónomo plano.
Encuentre todos los puntos críticos del sistema resultante.
1. x 9 sen x 0
2. x (x) 2 2x 0
3. x x(1 x ) x 0
3
4. x
4
x
1
x2
2
2x
0
5. x x &x 3 para &
6. x
x
x x
0
0 para
0
En los problemas 7 a 16 encuentre todos los puntos críticos
del sistema autónomo plano dado.
7. x x xy
y y xy
8. x y 2 x
y x 2 y
9. x 3x 2 4y
y x y
10. x x 3 y
y x y 3
11. x
y
(
x 10
y(16
x
y
)
1
2y
x)
2x
y
15
13. x x e
y y(e x 1)
14. x sen y
y e xy 1
15. x x(1 x 2 3y 2)
y y(3 x 2 3y 2)
16. x x(4 y 2)
y 4y(1 x 2)
2 y
17. x x 2y
y 4x 3y, X(0) (2, 2)
(Problema 1, Ejercicios 8.2)
18. x 6x 2y
y 3x y, X(0) (3, 4)
(Problema 6, Ejercicios 8.2)
19. x 4x 5y
y 5x 4y, X(0) (4, 5)
(Problema 37, Ejercicios 8.2)
20. x x y
y 2x y, X(0) (2, 2)
(Problema 34, Ejercicios 8.2)
21. x 5x y
y 2x 3y, X(0) (1, 2)
(Problema 35, Ejercicios 8.2)
12. x 2x yy 10
y
b) Encuentre la solución que satisfaga la condición inicial
dada.
c) &RQD\XGDGHXQDFDOFXODGRUDJUD¿FDGRUDRGHXQ6$&
trace la solución del inciso b) e indique la dirección en la
que se recorre la curva.
y
y
5
En los problemas 17 a 22 se tomaron los sistemas lineales
dados de los ejercicios 8.2.
a) Determine la solución general y si hay soluciones periódicas.
22. x x 8y
y x 3y, X(0) (2, 1)
(Problema 38, Ejercicios 8.2)
En los problemas 23 a 26, resuelva el sistema autónomo plano
no lineal dado, cambiado a coordenadas polares. Describa el
comportamiento geométrico de la solución que satisfaga
las condiciones iniciales dadas.
23. x y x(x 2 y 2) 2
y x y(x 2 y 2) 2, X(0) (4, 0)
24. x y x(x 2 y 2)
y x y(x 2 y 2),
X(0) (4, 0)
10.2
25. x y x(1 x 2 y 2)
y x y(1 x 2 y 2), X(0) (1, 0), X(0) (2, 0)
[Sugerencia: La ecuación diferencial resultante para r es
una ecuación diferencial de Bernoulli. Vea la sección 2.5.]
26. x
y
y
x
(4 x2 y2)
1x2 y2
y
x
(4 x2 y2),
1x2 y2
X(0) (1, 0), X(0) (2, 0)
ESTABILIDAD DE SISTEMAS LINEALES
l
383
Si un sistema autónomo plano tiene una solución periódica,
entonces debe haber al menos un punto crítico dentro de 1a
curva generada por la solución. Aplique esto en los problemas
27 a 30 y con un programa de solución numérica, investigue la
SRVLELOLGDGGHTXHH[LVWDQVROXFLRQHVSHULyGLFDV
27. x x 6y
y xy 12
28. x x 6xy
y 8xy 2y
29. x y
y y(1 3x 2 2y 2) x
30. x xy
y 1 x 2 y 2
ESTABILIDAD DE SISTEMAS LINEALES
10.2
REPASO DE MATERIAL
l
Sección 10.1, en particular los ejemplos 3 y 4.
INTRODUCCIÓN
Hemos visto que un sistema autónomo plano
dx
dt
P(x, y)
dy
dt
Q(x, y)
origina un campo vectorial V(x, y) (P(x, y), Q(x, y)) y que una solución X X(t) se puede interpretar
como la trayectoria resultante de una partícula que se coloca inicialmente en la posición X(0) X0. Si X0
HVXQSXQWRFUtWLFRODSDUWtFXODSHUPDQHFHHQUHSRVR(QHVWDVHFFLyQH[DPLQDUHPRVHOFRPSRUWDPLHQWRGH
soluciones cuando X0 se elige cerca de un punto crítico del sistema.
X0
Punto crítico
a) Localmente estable
X0
Punto crítico
b) Localmente estable
X0
Punto crítico
Punto crítico
c) Inestable
FIGURA 10.2.1 Puntos críticos.
ALGUNAS PREGUNTAS FUNDAMENTALES Suponga que X1 es un punto crítico de un sistema autónomo plano y que X X(t) es una solución del sistema que
satisface que X(0) X0. Si se interpreta la solución como una trayectoria de una partícula en movimiento, nos interesan las respuestas de las siguientes preguntas, cuando
X0 está cerca de X1:
i)
¿Regresará la partícula al punto crítico? De manera más precisa, ¿volverá a
lím t : X(t) X 1?
ii)
Si la partícula no regresa al punto crítico, ¿permanece cerca de él o
se aleja? Es concebible que, por ejemplo, la partícula sólo describa
circunferencias en torno al punto crítico o que pueda incluso regresar a
XQSXQWRFUtWLFRGLVWLQWRRTXHQRYD\DDQLQJXQR9HDOD¿JXUD
Si en alguna vecindad del punto crítico siempreRFXUUHHOFDVR D RHO E GHOD¿JXUD
10.2.1, ese punto crítico se llama localmente estable. Sin embargo, si se encuentra en
cualquier vecindad un valor inicial X0 que ocasione un comportamiento parecido al caso
(c), ese punto crítico se llama inestable. Estos conceptos se tratarán con mayor precisión
en la sección 10.3, donde investigaremos las preguntas i) e ii) para sistemas no lineales.
ANÁLISIS DE ESTABILIDAD Primero investigaremos estos dos casos de estabilidad para sistemas autónomos lineales planos, estableciendo las bases para la sección
10.3. Los métodos de solución del capítulo 8 nos permiten efectuar un análisis geométrico cuidadoso de las soluciones de
x ax by
y cx dy
(1)
384
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
HQWpUPLQRVGHORVHLJHQYDORUHV\HLJHQYHFWRUHVGHODPDWUL]GHFRH¿FLHQWHV
a
c
A
b
.
d
Para asegurar que X0 (0, 0) sea el único punto crítico, supondremos que el determinante " ad bc 0. Si IJ a d es la traza* de la matriz A, entonces, la ecuación
característica det(A ȜI) 0 se puede reescribir como
2
0.
Por tanto, los eigenvalores de A son
1 2 4
2, y los tres casos usua2
les para esas raíces se presentan según si IJ 4" es positivo, negativo o cero. En el
siguiente ejemplo usamos un programa de solución numérica para determinar la naturaleza de las soluciones correspondientes a estos casos.
(
EJEMPLO 1
)
Eigenvalores y la forma de las soluciones
Determine los eigenvalores del sistema lineal
x
x
y
cx
y
y
en términos de c y utilice un programa de solución numérica para descubrir las formas
de las soluciones correspondientes a los casos c 14 , 4, 0 y 9.
SOLUCIÓN /DPDWUL]GHFRH¿FLHQWHV
" 1 – c y por tanto los eigenvalores son
1
1
c
14
1 tiene traza IJ 2 y determinante
1
1
1c.
2
2
La naturaleza de los eigenvalores está determinada por el signo de c.
3
1
Si c 14 , entonces los eigenvalores son negativos y diferentes,
2 . En
2 y
OD¿JXUD D KHPRVXVDGRXQSURJUDPDGHVROXFLyQQXPpULFDSDUDJHQHUDUFXUYDV
solución o trayectorias, que corresponden a diversas condiciones iniciales. Observe
TXHH[FHSWRODVWUD\HFWRULDVGLEXMDGDVHQURMRGHOD¿JXUDWRGDVODVWUD\HFWRULDVSDUHcen tender a 0GHVGHXQDGLUHFFLyQ¿MD5HFXHUGHGHOFDStWXORTXHXQFRQMXQWRGH
trayectorias en el plano xy o plano fase, se llama diagrama de fase del sistema.
Cuando c 4, los eigenvalores tienen signos contrarios, Ȝ 1 y Ȝ 3, y se
presenta un fenómeno interesante. Todas las trayectorias se alejan del origen en una
GLUHFFLyQ¿MDH[FHSWRODVVROXFLRQHVTXHFRPLHQ]DQDORODUJRGHODUHFWDGLEXMDGDHQ
URMRGHOD¿JXUD E <DKHPRVYLVWRFRPSRUWDPLHQWRVSDUHFLGRVHQHOGLDJUDPD
GHIDVHGHOD¿JXUD([SHULPHQWHFRQVXSURJUDPDGHVROXFLyQQXPpULFD\FRPpruebe estas observaciones.
La selección c 0 conduce a un solo eigenvalor real Ȝ 1. Este caso es muy
parecido al caso c 14 FRQXQDH[FHSFLyQQRWDEOH7RGDVODVFXUYDVVROXFLyQHQOD
¿JXUD F SDUHFHQWHQGHUD0GHVGHXQDGLUHFFLyQ¿MDFRQIRUPHt aumenta.
Por último, cuando c
9,
1
1 9
1 3i. Por tanto, los eigenvalores son números complejos conjugados, con parte real negativa /D ¿JXUD
10.2.2(d) muestra que la curva solución describe una espiral hacia el origen 0 cuando
t aumenta.
2
4
2
4(1
c)
Los comportamientos de las trayectorias que se han observado en los cuatro diagramas
GHIDVHGHOD¿JXUDGHOHMHPSORVHSXHGHQH[SOLFDUXVDQGRODVROXFLyQHLJHQvalor-eigenvector resultante del capítulo 8.
*
En general si A es una matriz n n la traza de A es la suma de las diagonales principales.
10.2
ESTABILIDAD DE SISTEMAS LINEALES
y
y
0.5
0.5
x
x
_0.5
_0.5
_0.5
_0.5
0.5
a) c
1
4
0.5
b) c 4
y
y
0.5
0.5
x
x
_0.5
_0.5
_0.5
0.5
_0.5
c) c 0
y
385
l
0.5
d) c 9
FIGURA 10.2.2 Diagramas de fase del sistema lineal del ejemplo 1 para diferentes valores de c.
K2
K1
CASO I: EIGENVALORES REALES Y DISTINTOS (IJ2 4" 0) De acuerdo con
el teorema 8.2.1 de la sección 8.2, la solución general del sistema (1) está dada por
X(t)
x
c1K1e
1t
(2)
c2K2e 2 t,
en donde Ȝ1 y Ȝ2 son los eigenvalores y K1 y K2 son los eigenvectores correspondientes.
Observe que X(t) también se puede escribir como
X(t)
a)
FIGURA 10.2.3 Nodo estable.
y
K2
K1
x
b)
FIGURA 10.2.4 Nodo inestable.
e 1t[c1K 1
c2K 2e (
2
1)t
].
(3)
Ambos eigenvalores son negativos (IJ2 4" 0, IJ 0, y " 0)
Nodo estable (Ȝ2 Ȝ1 0): Puesto que ambos eigenvalores son negativos,
se tiene de la ecuación (2) que límt : X(t)
0 . Si suponemos que Ȝ2
t
Ȝ1, entonces Ȝ2 Ȝ1 0, por lo que e( 2 1)t HV XQD IXQFLyQ H[SRQHQFLDO
de decaimiento. Por tanto podemos concluir de la ecuación (3) que
X(t) c1K1e 1t para valores grandes de t. Cuando c1 0, X(t) tiende
a 0 de una de las dos direcciones determinadas por el eigenvector K1
correspondiente a Ȝ1. Si c1 0, X(t) c2K2e 2t y X(t) tiende a 0 a lo largo
de la recta determinada por el eigenvector K2/D¿JXUDPXHVWUDXQ
conjunto de curvas solución alrededor del origen. Un punto crítico se llama
nodo estable cuando ambos eigenvalores son negativos.
Ambos eigenvalores son positivos (IJ2 4" 0, IJ 0, y " 0)
Nodo inestable (0 Ȝ2 Ȝ1): El análisis de este caso es similar al anterior.
Nuevamente, de acuerdo con (2), X(t) es ilimitado conforme t aumenta.
Además, suponiendo nuevamente que Ȝ2 Ȝ1 y usando la ecuación (3), se
ve que X(t) aumenta sin límite en una de las direcciones determinadas por el
eigenvector K1 (cuando c1 0) o está a lo largo de la recta determinada por
386
CAPÍTULO 10
l
y
SISTEMAS AUTÓNOMOS PLANOS
K1
c)
x
el eigenvector K2 (cuando c1 /D¿JXUDPXHVWUDXQFRQMXQWRWtSLFR
de curvas solución. Esta clase de puntos críticos, que corresponden al caso en
el que ambos eigenvalores son positivos, se llama nodo inestable.
Los eigenvalores tienen signos opuestos (IJ2 4" 0 y " 0)
Punto de silla (Ȝ2 0 Ȝ1): El análisis de las soluciones es idéntico al del
LQFLVRE FRQXQDH[FHSFLyQ&XDQGRc1 0, X(t) c2K2e 2t, y puesto que
Ȝ2 0, X(t) tenderá a 0 a lo largo de la recta determinada por el eigenvector
K2. Si X(0) no está en la recta determinada por K2, la recta determinada
por K1 sirve de asíntota para X(t). Por tanto el punto crítico es inestable
aunque algunas soluciones tiendan a 0 conforme t aumenta. Este punto
crítico inestable se llama punto silla9HDOD¿JXUD
K2
EJEMPLO 2 Eigenvalores reales distintos
&ODVL¿TXHHOSXQWRFUtWLFR HQFDGDXQRGHORVVLVWHPDVOLQHDOHVX AX siguientes ya sea como un nodo estable, un nodo inestable o un punto de silla.
FIGURA 10.2.5 Punto silla.
10
6
2 3
b) A
15
19
2 1
En cada caso analice la naturaleza de las soluciones en una vecindad de (0, 0).
a) A
y
2
SOLUCIÓN a) <DTXHODWUD]DHVIJ 3 y el determinante " 4, los eigenvalores
son
−2
x
2
y = 2x/3
−2
FIGURA 10.2.6 Punto silla.
1
132 4( 4) 3 5
4, 1.
2
2
2
Los eigenvalores tienen signos opuestos, por lo que (0, 0) es un punto silla. No es difícil demostrar (vea el ejemplo 1, sección 8.2) que los eigenvectores correspondientes
a Ȝ1 4 y Ȝ2 1 son
2
4
3
3
1
,
y
K2
2
1
respectivamente. Si X(0) X0 está en la recta y x, entonces X(t) tiende a 0. Para
cualquier otra condición inicial, X(t) no tiene límite en las direcciones determinadas
por K1. En otras palabras, la recta y 23 x es una asíntota para todas estas curvas soluFLyQ9HDOD¿JXUD
b) De IJ 29 y " 100 se tiene que los eigenvalores de A son Ȝ1 4 y Ȝ2 25.
Ambos eigenvalores son negativos, así que en este caso (0, 0) es un nodo estable. Puesto
que los eigenvectores correspondientes a Ȝ1 4 y Ȝ2 25 son
K1
y
y = x
x
FIGURA 10.2.7 Nodo estable.
1
2
y
K2
,
1
5
respectivamente, por lo que todas las soluciones tienden a 0 desde la dirección de5
¿QLGD SRU K1 H[FHSWR DTXHOODV SDUD ODV TXH X(0) X0 está en la recta y
2x
5
determinada por K2. Esas soluciones tienden a 0 a lo largo de y
2 x . Vea la
¿JXUD
K1
CASO II: UN EIGENVALOR REAL REPETIDO (IJ2 ⴚ 4⌬ ⴝ 0) Recuerde de la
sección 8.2, que la solución general toma una de las dos formas distintas dependiendo
de si se pueden determinar uno o dos eigenvectores linealmente independientes, para
el eigenvalor Ȝ1 repetido.
a)
Dos eigenvectores linealmente independientes
Si K1 y K2 son dos eigenvectores linealmente independientes correspondientes a Ȝ1, entonces la solución general está dada por
X(t)
c1K 1e
1t
c2K 2e
1t
(c1K 1
c2K 2 )e 1t.
10.2
ESTABILIDAD DE SISTEMAS LINEALES
387
l
Si Ȝ1 0, entonces X(t) tiende a 0 a lo largo de la recta determinada por el
vector c1K1 c2K2 y el punto crítico se llama nodo estable degenerado
YHD OD ¿JXUD D /DV ÀHFKDV GH OD ¿JXUD D VH LQYLHUWHQ
cuando Ȝ1 0, y se tiene un nodo inestable degenerado.
y
y
c1K1 + c2 K 2
K2
K1
K1
x
x
a)
b)
FIGURA 10.2.8 Nodos estables degenerados.
b)
Un solo eigenvector linealmente independiente
&XDQGRVyORH[LVWHXQHLJHQYHFWRUOLQHDOPHQWHLQGHSHQGLHQWHK1, la solución
general se determina por
X(t)
c1K1e
1t
c2(K1te
1t
Pe 1t ),
en donde (A Ȝ1I)P K1 (vea la sección 8.2 (12) a (14)) y la solución se
puede reescribir como
X(t)
te
1t
c2K1
c1
K
t 1
c2
P .
t
Si Ȝ1 0, entonces límt : te 1t 0 , y por tanto X(t) tiende a 0 en una
de las direcciones determinadas por el vector K1 YHDOD¿JXUD E
El punto crítico en este caso también se llama nodo estable degenerado.
Cuando Ȝ1 ODVVROXFLRQHVVHYHQFRPRODVGHOD¿JXUD E FRQ
ODVGLUHFFLRQHVGHODVÀHFKDVLQYHUWLGDV/DUHFWDGHWHUPLQDGDSRUK1 es una
asíntota para todas las soluciones. De nuevo, el punto crítico se llama nodo
inestable degenerado.
CASO III: EIGENVALORES COMPLEJOS (IJ2 ⴚ 4⌬ 0) Si Ȝ1 Į Lȕ, y Ȝ1
Į Lȕ son los eigenvalores complejos y si K1 B1 iB2 es un eigenvector complejo
correspondiente a Ȝ1, la solución general se puede escribir como X(t) c1X1(t)
c2X2(t), donde
X1(t) (B1 cos ȕW B 2 sen ȕW)eĮW,
X 2(t) (B 2 cos ȕW B1 sen ȕW)eĮW.
Véanse las ecuaciones (23) y (24) en la sección 8.2. Por tanto una solución se puede
escribir en la forma
x(t) eĮW (c 11 cos ȕW c 12 sen ȕW),
y(t) eĮW (c 21 cos ȕW c 22 sen ȕW),
(4)
388
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
y cuando Į 0 se tiene que
y
x(t) c11 cos ȕW c 12 sen ȕW,
a)
x
FIGURA 10.2.9 Centro.
y
b)
x
y(t) c 21 cos ȕW c 22 sen ȕW.
(5)
Raíces imaginarias puras (IJ2 4" 0, IJ 0)
Centro: Cuando Į 0, los eigenvalores son imaginarios puros, y de las
ecuaciones (5) todas las soluciones son periódicas con periodo p 2ʌ兾ȕ.
Observe que si ocurriera que tanto c12 como c21 fueran iguales a cero,
entonces el sistema (5) se reduciría a
x(t) c 11 cos ȕW,
y(t) c 22 sen ȕW,
que es una representación paramétrica estándar de la elipse x2>c211
y2>c222 1. Resolviendo el sistema de ecuaciones (4) para cos ȕW y sen ȕW
del sistema y usando la identidad sen2ȕW cos2ȕW 1, es posible demostrar
que todas las soluciones son elipses con centro en el origen. El punto crítico
(0, 0) se llama centro\OD¿JXUDPXHVWUDXQFRQMXQWRFDUDFWHUtVWLFRGH
curvas solución. Todas las elipses se recorren en el sentido de las manecillas
del reloj o todas en sentido opuesto.
Parte real distinta de cero (IJ2 4" 0, IJ 0)
Puntos espirales: Cuando Į 0, el efecto del término eĮW del sistema (4) es
SDUHFLGRDOGHOWpUPLQRH[SRQHQFLDOHQHODQiOLVLVGHOPRYLPLHQWRDPRUWLJXDGR
H[SOLFDGRHQODVHFFLyQ&XDQGRĮ 0, eĮW→ 0 y las soluciones en forma
de espirales elípticas se acercan cada vez más al origen. Al punto crítico se
le llama punto espiral estable. Cuando Į 0, el efecto es contrario. Una
solución elíptica se aleja cada vez más del origen y ahora el punto crítico se
llama punto espiral inestable9HDOD¿JXUD
EJEMPLO 3
Eigenvalores complejos repetidos
&ODVL¿TXHHOSXQWRFUtWLFR GHFDGDXQRGHORVVLJXLHQWHVVLVWHPDVOLQHDOHVX
AX:
1 2
3
18
b) A
1 1
2
9
En cada caso, describa la naturaleza de la solución que satisface X(0) (1, 0).
Determine ecuaciones paramétricas para cada solución.
a) Punto espiral estable
a) A
y
SOLUCIÓN a) Como IJ 6 y " 9, el polinomio característico es Ȝ2
x
b) Punto espiral inestable
FIGURA 10.2.10 Puntos espirales.
6Ȝ 9 (Ȝ 3)2, por lo que (0, 0) es un nodo estable degenerado. Para
3
el eigenvalor repetido Ȝ 3 se determina un solo eigenvector K1
,
1
por lo que la solución X(t) que satisface a X(0) (1, 0) tiende a (0, 0) desde la direcFLyQHVSHFL¿FDGDSRUODUHFWDy x兾3.
b) Como IJ 0 y " 1, los eigenvalores son Ȝ i, así que (0, 0) es un centro. La
solución X(t) que satisface a X(0) (1, 0) es una elipse que da vuelta al origen cada
2ʌ unidades de tiempo.
De acuerdo con el ejemplo 4 de la sección 8.2, la solución general del sistema en
a) es
1
3
3
2
e 3t c2
te 3t
e 3t .
1
1
0
/DFRQGLFLyQLQLFLDOVLJQL¿FDTXHc1 0 y c2 2 y por tanto x (6t 1)e3t,
y 2te3t son ecuaciones paramétricas de la solución.
La solución general del sistema en b) es
X(t)
c1
X(t)
c1
cos t sen t
cos t
c2
cos t
sen t
.
sen t
10.2
l
389
La condición inicial da c1 0 y c2 1, por tanto x cos t sen t, y sen t son
ecuaciones paramétricas de la elipse. Observe que y 0 para valores positivos pequeños de t, por lo que la elipse se recorre en el sentido de las manecillas del reloj.
y
1
−1
ESTABILIDAD DE SISTEMAS LINEALES
/DV VROXFLRQHV GH ORV LQFLVRV D \ E VH PXHVWUDQ HQ ODV ¿JXUDV D \
10.2.11(b), respectivamente.
1
x
−1
CLASIFICACIÓN DE PUNTOS CRÍTICOS /D ¿JXUD UHVXPH FRQYHQLHQWHmente los resultados de esta sección. La naturaleza geométrica general de las soluciones
se puede determinar calculando la traza y el determinante de A. En la práctica, se pueden
REWHQHUFRQPiVIDFLOLGDGODVJUi¿FDVGHODVVROXFLRQHVno construyendo las soluciones
HLJHQYDORUHLJHQYHFWRUH[SOtFLWDVVLQRPiVELHQJHQHUDQGRODVVROXFLRQHVFRQXQSURgrama de solución numérica y el método de Runge-Kutta para sistemas de primer orden.
a) Nodo estable degenerado
Δ
Espiral
estable
y
τ 2 = 4Δ
Espiral
inestable
Nodo estable
Nodo inestable
1
τ 2 – 4Δ < 0
Centro
−1
1
Nodo inestable
degenerado
Nodo estable
degenerado
x
−1
τ
Punto silla
b) Centro
FIGURA 10.2.11 Puntos críticos del
ejemplo 3.
FIGURA 10.2.12 Resumen geométrico de los casos I, II y III.
EJEMPLO 4
&ODVL¿FDFLyQGHSXQWRVFUtWLFRV
&ODVL¿TXH HO SXQWR FUtWLFR GH FDGD XQR GH ORV VLJXLHQWHV VLVWHPDV OLQHDOHV
X AX:
a) A
1.01
1.10
3.10
1.02
b) A
ax̂
cdŷ
abx̂
dŷ
para las constantes positivas a, b, c, d, x̂, y ŷ.
SOLUCIÓN a) Para esta matriz IJ 0.01, " 2.3798, por lo que IJ2 4" 0. En
OD¿JXUDVHYHTXH HVXQSXQWRHVSLUDOHVWDEOH
b) Esta matriz surge del modelo de competencia de Lotka-Volterra, que estudiaremos
en la sección 10.4. Puesto que IJ (ax̂ d ŷ) y todas las constantes de la matriz son
adx̂ ŷ(1 bc). Si
positivas, IJ 0. El determinante se puede escribir en la forma
bc 1, entonces " 0 y el punto crítico es punto silla. Si bc 1, " 0 y el punto
crítico puede ya ser un nodo estable, un nodo estable degenerado o un punto espiral
estable. En los tres casos lím t : X(t) 0 .
Las respuestas a las preguntas que se presentaron al principio de esta sección para el sistema autónomo plano (1) con ad bc 0, se pueden resumir en el siguiente teorema.
390
CAPÍTULO 10
l
SISTEMAS AUTÓNOMOS PLANOS
TEOREMA 10.2.1
Criterio de estabilidad para sistemas lineales
Para un sistema lineal autónomo plano X AX en el que det A 0, sea
que X X(t) denote la solución que satisface la condición inicial X(0) X 0,
donde X 0 0.
límt: X(t) 0 si y sólo si los eigenvalores de A tienen partes reales
negativas. Esto sucede cuando " 0 y IJ 0.
b) X(t) es periódica si y sólo si los eigenvalores de A son imaginarios puros.
Esto sucede cuando " 0 y IJ 0.
c) (
QWRGRVORVRWURVFDVRVGDGDFXDOTXLHUYHFLQGDGGHORULJHQH[LVWHDOPHQRV
un X0 en ella para la cual X(t) se vuelve ilimitado conforme t aumenta.
a)
COMENTARIOS
La terminología que usamos para describir los tipos de puntos críticos varía de
uno a otro libro. La siguiente tabla es una lista de los muchos términos alternativos que podrá encontrar en su lectura.
Término
punto crítico
Términos alternativos
punto de equilibrio, punto singular, punto
estacionario, punto de reposo
foco, punto focal, punto vórtice
atractor, sumidero
repulsor, fuente
punto espiral
nodo o punto espiral estable
nodo o punto espiral inestable
EJERCICIOS 10.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-17.
En los problemas 1 a 8 se presenta la solución general del
sistema lineal X AX.
a) En cada caso, analice la naturaleza de las soluciones en
una vecindad de (0, 0).
b) &
RQD\XGDGHXQDFDOFXODGRUDJUD¿FDGRUDRGHXQ6$&
WUDFHODJUi¿FDGHODVROXFLyQTXHVDWLVIDFHX(0) (1,1).
1. A
2
2
2
,
5
X(t)
c1
2
e
1
2. A
1
3
2
, X(t)
4
c1
1 t
e
1
et c1
sen t
cos t
3. A
4. A
X(t)
1
1
1
, X(t)
1
1
1
e
t
c2
c2
4
,
1
t
c1
2 cos 2t
sen 2t
c2
1
e
2
6t
X(t)
2 sen 2t
cos 2t
c1
X(t)
4 2t
e
6
7. A
cos t
sen t
8. A
5
,
4
1
e
1
2
1
4
,
6
c1
2 4t
e
1
6. A
X(t)
c2
6
5
5. A
2
3
t
c2
1
te
1
c2
2 4t
te
1
1
, X(t)
2
1
1
c1
c1
0
t
1
5
e
t
1 4t
e
1
1 t
e
1
c2
1
e
3
t
5
,
1
5 cos 2t
cos 2t 2 sen 2t
c2
5 sen 2t
2 cos 2t sen 2t
(QORVSUREOHPDVDFODVL¿TXHHOSXQWRFUtWLFR GHO
sistema lineal correspondiente, calculando la traza IJ y el determinante "\XWLOL]DQGROD¿JXUD
10.3
LINEALIZACIÓN Y ESTABILIDAD LOCAL
l
391
9. x 5x 3y
y 2x 7y
10. x 5x 3y
y 2x 7y
20. Sea X X(t) la respuesta de un sistema dinámico lineal
x
x
y
11. x 5x 3y
y 2x 5y
12. x 5x 3y
y 7x 4y
y
x
y
que satisface la condición inicial X(0) X0. Determine
las condiciones sobre las constantes reales Į y ȕ que aseguren que límt : X(t) (0, 0). ¿Puede (0, 0) ser un
nodo o un punto silla?
21. Demuestre que el sistema lineal no homogéneo X AX
F tiene un punto crítico único X1 cuando " det A
0. Concluyendo si X X(t) es una solución del sistema no
homogéneo, IJ 0 y " 0, entonces límt : X(t) X1.
[Sugerencia: X(t) Xc(t) X1.]
22. En el ejemplo 4(b) demuestre que (0, 0) es un nodo estable cuando bc 1.
13. x
y
3
2x
x
1
4y
14. x
1
2y
y
15. x 0.02x 0.11y
y 0.10x 0.05y
16. x
3
2x
x
1
4y
1
2y
0.03x 0.01y
y 0.01x 0.05y
17. Determine las condiciones de la constante real ȝ tal que
(0, 0) sea un centro para el sistema lineal
x
x y
y
x
y.
18. Determine una condición de la constante real ȝ tal que
(0, 0) sea un punto espiral estable del sistema lineal
x
y
y
x
y.
19. Demuestre que (0, 0) siempre es un punto crítico inestable del sistema lineal
x
x y
y
x y,
donde ȝ es una constante real y ȝ 1. ¿Cuándo (0, 0)
es un punto silla inestable? ¿Cuándo (0, 0) es un punto
espiral inestable?
10.3
En los problemas 23 a 26 un sistema lineal no homogéneo X
AX F está dado.
a) En cada caso, determine el único punto crítico X1.
b) Con un programa de solución numérica, determine la naturaleza del punto crítico en el inciso a).
c) Investigue la relación entre X1 y el punto crítico (0, 0) del
sistema lineal homogéneo X AX.
23. x 2x 3y 6
24. x 5x 9y 13
y x 2y 5
y x 11y 23
25. x 0.1x 0.2y 0.35
y 0.1x 0.1y 0.25
26. x 3x 2y 1
y 5x 3y 2
LINEALIZACIÓN Y ESTABILIDAD LOCAL
REPASO DE MATERIAL
l El concepto de linealización se presentó por vez primera en la sección 2.6.
INTRODUCCIÓN La linealización es la idea principal en esta sección. Recuerde, del cálculo y de
la sección 2.6, que una linealización de una función derivable f(x) en un número x1 es la ecuación de la
recta tangenteDODJUi¿FDGHf en el punto:
y f (x1) f´(x1)(x x1).
Para x cercano a x1ORVSXQWRVVREUHODJUi¿FDGHf son cercanos a los puntos sobre la recta tangente, de
manera que los valores y(x) obtenidos mediante la ecuación de la recta tangente son aproximaciones
lineales locales a los correspondientes valores de la función f(x). De manera similar, una linealización
de una función de dos variables f(x, y) que es derivable en un punto (x1, y1) es la ecuación del plano
tangenteDODJUi¿FDGHf en el punto:
z f(x1, y1) fx(x1, y1)(x x1) fy(x1, y1)(y y1),
donde fx y fy son derivadas parciales. En esta sección se utilizará la linealización como una herramienta para analizar ED no lineales y sistemas no lineales; la idea es sustituirlos por ED lineales y
sistemas lineales.
CUENTA DESLIZANTE &RPHQ]DUHPRVHVWDVHFFLyQUH¿QDQGRHOFRQFHSWRGHHVWDbilidad que presentamos en la sección 10.2, de tal modo que se pueda aplicar también a
sistemas autónomos no lineales. Aunque el sistema lineal X AX tiene sólo un punto
392
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
z
z = f (x )
x1
x2
x3
x
FIGURA 10.3.1 Cuenta deslizándose
VREUHODJUi¿FDGHz f (x).
crítico cuando det A 0, vimos en la sección 10.1 que un sistema no lineal puede tener
muchos puntos críticos, por lo que no podemos esperar que una partícula que se coloca
inicialmente en X0 permanezca cerca de un punto crítico dado X1 a menos que inicialmente X0VHKD\DFRORFDGRVX¿FLHQWHPHQWHFHUFDGHX1. Podría ser que la partícula fuera
impulsada a un segundo punto crítico. Para subrayar esta idea, considere el sistema físico
TXHVHPXHVWUDHQOD¿JXUDGRQGHXQDFXHQWDVHGHVOL]DDORODUJRGHODFXUYDz
f (x ~QLFDPHQWHEDMRODLQÀXHQFLDGHODJUDYHGDG(QODVHFFLyQGHPRVWUDUHPRV
que la coordenada x de la cuenta satisface una ecuación diferencial no lineal de segundo
orden, x g(x, x); por tanto, haciendo y x se satisface el sistema autónomo no lineal
x
y
y
g(x, y).
Si la cuenta se coloca en P (x, f(x)) y su velocidad inicial es cero, permanecerá
en P suponiendo que f (x) 0. Si se coloca cerca del punto crítico localizado en x
x1, permanecerá cerca de x x1 sólo si su velocidad inicial no la impulsa y hace que
rebase la “joroba” que hay en x x2 cuando va hacia el punto crítico que está en x
x3. Por tanto, X(0) (x(0), x(0)) debe estar cerca de (x1, 0).
(QODVLJXLHQWHGH¿QLFLyQUHSUHVHQWDUHPRVODGLVWDQFLDHQWUHGRVSXQWRVX y Y
con 兩X – Y兩. Recuerde que si X (x1, x2, . . . , xn) y Y (y1, y2, . . . , yn), entonces
X
Y
2(x1
DEFINICIÓN 10.3.1
y1)2
(x2
y2 )2
(xn
yn )2.
Puntos críticos estables
Sea X1 un punto crítico de un sistema autónomo y sea X X(t) la solución
que satisface la condición inicial X(0) X0, donde X0 X1. Se dice que X1
es un punto crítico estable cuando, dado cualquier radio ȡ 0, hay un radio
correspondiente r 0 tal que si la posición inicial X0 satisface 兩X0 – X1兩 r,
entonces la solución X(t) correspondiente satisface 兩X(t) – X1兩 ȡ para todo t
0. Si además límt : X(t) X1 siempre que 兩X0 – X1兩 r, se dice que X1 es
un punto crítico asintóticamente estable.
ρ
X0
r
a) Estable
X0
ρ
b) Inestable
FIGURA 10.3.2 Puntos críticos
estables.
(VWDGH¿QLFLyQVHLOXVWUDHQOD¿JXUD D 'DGRFXDOTXLHUGLVFRGHUDGLRȡ en
torno al punto crítico X1 una solución permanecerá dentro de este disco siempre que
X(0) X0VHVHOHFFLRQDVX¿FLHQWHPHQWHFHUFDGHX1. No es necesario que una solución
tienda al punto crítico para que X1 sea estable. Los nodos estables, los puntos espiral
estables y los centros son ejemplos de puntos críticos estables de sistemas lineales.
Para subrayar que X0 se debe seleccionar cerca de X1, también se usa la terminología
punto crítico localmente estable.
&RQODQHJDFLyQGHODGH¿QLFLyQVHREWLHQHODGH¿QLFLyQGHXQSXQWRFUtWLFR
inestable.
DEFINICIÓN 10.3.2
Punto crítico inestable
Sea X1 un punto crítico de un sistema autónomo y X X(t) la solución que
satisface la condición inicial X(0) X0, donde X0 X1. Se dice que X1 es un
punto crítico inestable si hay un disco de radio ȡ 0 con la propiedad de que
para toda r 0 hay, al menos, una posición inicial X0 que satisface 兩X0 X1兩
r, sin embargo la solución correspondiente X(t) satisface 兩X(t) X1兩 ȡ
para al menos un t 0.
Si un punto crítico X1 es inestable, independientemente de lo pequeña que sea
la vecindad de X1, siempre se puede encontrar una posición inicial X0 que resulte ser
una solución que salga de un disco de radio ȡ en algún tiempo tIXWXUR9HDOD¿JXUD
10.3.2(b). Por tanto los nodos inestables, los puntos espiral inestables y los puntos silla
VRQHMHPSORVGHSXQWRVFUtWLFRVLQHVWDEOHVGHORVVLVWHPDVOLQHDOHV(QOD¿JXUD
el punto crítico (x2, 0) es inestable. El mínimo desplazamiento o velocidad inicial
hacen que la cuenta se deslice alejándose del punto (x2, f(x2)).
10.3
EJEMPLO 1
LINEALIZACIÓN Y ESTABILIDAD LOCAL
l
393
Un punto crítico estable
Demuestre que (0, 0) es un punto crítico estable del sistema autónomo plano no lineal
x
y
y
y
x
x 1x2
y2
y 1x2
y2
que se consideró en el ejemplo 6 de la sección 10.1.
x
FIGURA 10.3.3 Punto crítico
asintóticamente estable en el ejemplo 1.
SOLUCIÓN En el ejemplo 6 de la sección 10.1, demostramos que en coordenadas
polares, la solución del sistema es r l兾(t c1), ș t c2. Si X(0) (r0, ș0) es la
condición inicial en coordenadas polares, entonces
r0
r
,
t
0.
r0 t 1
Observe que r r0 para t 0 y que r tiende a (0, 0) conforme t aumenta. Por tanto, dado
ȡ 0, una solución que se comienza estando a menos de ȡ unidades del punto (0, 0) permanece dentro de ȡ unidades del origen para todo t 0. Así, el punto crítico (0, 0) es estable y de hecho es asintóticamente estable. Una solución característica es la que se muestra
HQOD¿JXUD
EJEMPLO 2
Un punto crítico inestable
&XDQGRVHH[SUHVDHQFRRUGHQDGDVSRODUHVXQVLVWHPDDXWyQRPRSODQRWLHQHODIRUPD
dr
dt
0.05r(3
r)
d
1.
dt
Demuestre que (x, y) (0, 0) es un punto crítico inestable.
SOLUCIÓN
Puesto que x r cos ș y y r sen ș, se tiene que
dx
dt
d
dt
dr
cos
dt
dy
d
dr
r cos
sen .
dt
dt
dt
A partir de dr兾dt 0.05r(3 r), se ve que dr兾dt 0 cuando r 0 y se puede llegar a la
conclusión de que (x, y) (0, 0) es un punto crítico, sustituyendo r 0 en el sistema nuevo.
La ecuación diferencial dr兾dt 0.05r(3 r) es una ecuación logística que se
puede resolver por separación de variables o con la ecuación (5) de la sección 3.2. Si
r(0) r0, y si r0 0, entonces
3
,
r
1 c0 e 0.15t
y
3
3 x
−3
r sen
3
3 , se tiene que, independient: 1
c0 e 0.15t
temente de lo cerca que comience una solución de (0, 0), la solución deja un disco de
UDGLRFHQWUDGRHQHORULJHQ3RUWDQWR HVXQSXQWRFUtWLFRLQHVWDEOH(QOD¿JXUD
10.3.4 se muestra una solución típica que inicia cerca de (0, 0).
donde c0 (3 r0)兾r0. Puesto que lím
−3
FIGURA 10.3.4 Punto crítico
inestable.
LINEALIZACIÓN Rara vez es posible determinar la estabilidad de un punto crítico
GHXQVLVWHPDQROLQHDOGHWHUPLQDQGRVROXFLRQHVH[SOtFLWDVFRPRKLFLPRVHQORVHMHPplos 1 y 2. En su lugar, se reemplaza el término g(X) en el sistema original autónomo
394
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
X g(X) por un término lineal A(X – X1), que está lo más cerca posible a g(X) en la
vecindad de X1. Este proceso de sustitución, se llama linealización\VHHMHPSOL¿FDUi
primero para la ecuación diferencial de primer orden x g(x).
Una ecuación de la recta tangente a la curva y g(x) en x x1 es y g(x1)
g(x1)(x x1) y si x1 es un punto crítico de x g(x), se tiene que x g(x) 艐 g(x1)
(x x1) puesto que g(x1) 0. La solución general de la ecuación diferencial lineal es
x g(x1)(x x1) es x x1 ce 1t , donde Ȝ1 g(x1). Por lo que si g(x1) 0, entonces x(t) tiende a x1(OWHRUHPDD¿UPDTXHVHWLHQHHOPLVPRFRPSRUWDPLHQWR
en la ecuación original, suponiendo que x(0) x0HVWiORVX¿FLHQWHPHQWHFHUFDGHx1.
TEOREMA 10.3.1
Criterio de estabilidad para xⴕ ⴝ g(x)
Sea x1 un punto crítico de la ecuación diferencial autónoma x g(x), donde g
es derivable en x1.
a) Si g(x1) 0, entonces x1 es un punto crítico asintóticamente estable.
b) Si g(x1) 0, entonces x1 es un punto crítico inestable.
x
EJEMPLO 3
5π / 4
π /4
t
FIGURA 10.3.5 ʌ兾4 es
asintóticamente estable y 5ʌ兾4 es
inestable.
Estabilidad en una ED de primer orden no lineal
Tanto x ʌ兾4 como x 5ʌ兾4 son puntos críticos de la ecuación diferencial autónoma
x cos x sen x(VGLItFLOUHVROYHUHQIRUPDH[SOtFLWDHVWDHFXDFLyQSHURVHSXHGH
utilizar el teorema 10.3.1 para predecir el comportamiento de las soluciones cerca
de estos dos puntos críticos.
Puesto que g(x) sen x cos x, entonces g ( >4)
12 0 y g (5 >4)
12 0. Por tanto x ʌ兾4 es un punto crítico asintóticamente estable, pero x 5ʌ兾4 es
LQHVWDEOH(QOD¿JXUDXVDPRVXQSURJUDPDGHVROXFLyQQXPpULFDSDUDLQYHVWLJDUODV
soluciones que inician cerca de (0, ʌ兾4) y (0, 5ʌ兾4). Observe que las curvas solución que
inician cerca de (0, 5ʌ兾4) se alejan rápidamente de la recta x 5ʌ兾4, como se predijo.
EJEMPLO 4
Análisis de estabilidad de una ED logística
6LQUHVROYHUODHQIRUPDH[SOtFLWDDQDOLFHORVSXQWRVFUtWLFRVGHODHFXDFLyQGLIHUHQFLDO
r
x(K x) , donde r y K son constantes positivas.
logística (vea la sección 3.2) x
K
SOLUCIÓN Los dos puntos críticos son x 0 y x K, así, de g(x) r(K 2x)兾K
se obtiene g(0) r y g(K) r. Por el teorema 10.3.1 concluimos que x 0 es un
punto crítico inestable y que x K es un punto crítico asintóticamente estable.
MATRIZ JACOBIANA Se puede realizar un análisis similar para un sistema autóQRPRSODQR8QDHFXDFLyQGHOSODQRWDQJHQWHDODVXSHU¿FLHz g(x, y) en X1 (x1, y1) es
z
g(x1, y1)
g
x
(x
(x1, y1)
x1)
g
y
(y
(x1, y1)
y1),
y g(x, y VHSXHGHDSUR[LPDUFRQVXSODQRWDQJHQWHHQXQDYHFLQGDGGHX1.
Cuando X1 es un punto crítico de un sistema autónomo plano, P(x1, y1) Q(x1,
y1) 0 y se tiene que
x
P(x, y)
P
x
(x1, y1)
(x
x1)
P
y
(x1, y1)
y
Q(x, y)
Q
x
(x1, y1)
(x
x1)
Q
y
(x1, y1)
(y
y1)
(y
y1).
10.3
LINEALIZACIÓN Y ESTABILIDAD LOCAL
l
395
El sistema original X g(X VHSXHGHDSUR[LPDUHQXQDYHFLQGDGGHOSXQWRFUtWLFR
X1 con el sistema lineal X A(X – X1), donde
P
x
Q
x
A
P
y (x1, y1)
.
Q
y (x1, y1)
(x1, y1)
(x1, y1)
A esta matriz se le llama matriz Jacobiana en X1 y se denota por g(X1). Si se hace
que H X X1, entonces el sistema lineal X A(X X1) se transforma en H
AH, que es la forma del sistema lineal que analizamos en la sección 10.2. El punto crítico X X1 para X A(X X1) corresponde ahora al punto crítico H 0 para H
AH. Si los eigenvalores de A tienen partes reales negativas, entonces por el teorema
10.2.1, 0 es un punto crítico asintóticamente estable para H AH. Si hay un eigenvalor
con parte real positiva, H 0HVXQSXQWRFUtWLFRLQHVWDEOH(OWHRUHPDD¿UPDTXH
se puede llegar a las mismas conclusiones para el punto crítico X1 del sistema original.
TEOREMA 10.3.2 Criterio de estabilidad para sistemas autónomos planos
Sea X1 un punto crítico del sistema autónomo plano X g(X), donde P(x, y)
y Q(x, y) tienen primeras derivadas parciales continuas en una vecindad de X1.
a) Si los eigenvalores de A g(X1) tienen parte real negativa, entonces X1
es un punto crítico asintóticamente estable.
b) Si A g(X1) tiene un eigenvalor con parte real positiva, entonces X1 es
un punto crítico inestable.
EJEMPLO 5
Análisis de estabilidad de sistemas no lineales
&ODVL¿TXH VL HV SRVLEOH ORV SXQWRV FUtWLFRVGH FDGD XQR GH ORV VLJXLHQWHV VLVWHPDV
autónomos planos como estable o inestable.
a) x x 2 y 2 6
y x 2 y
b) x 0.01x(100 x y)
y 0.05y(60 y 0.2x)
SOLUCIÓN Los puntos críticos de cada sistema se determinaron en el ejemplo 4 de
la sección 10.1.
a) Los puntos críticos son ( 12, 2) y ( 12, 2). La matriz Jacobiana es
g (X)
y así
A1
g
(( 12, 2))
212
212
4
1
y
2x
2x
2y
,
1
A2
g
((
12, 2
))
212
212
4
.
1
Como el determinante de A1 es negativo, A1 tiene un eigenvalor real positivo. Por tanto
( 12, 2) es un punto crítico inestable. La matriz A2 tiene un determinante positivo y
una traza negativa, por lo que ambos eigenvalores tienen partes reales negativas. Por
tanto ( 12, 2) es un punto crítico estable.
b) Los puntos críticos son (0, 0), (0, 60), (100, 0) y (50, 50), la matriz Jacobiana es
g (X)
0.01(100 2x
0.01y
y)
0.05(60
0.01x
,
2y 0.2y)
396
CAPÍTULO 10
l
SISTEMAS AUTÓNOMOS PLANOS
y así
y
2
1
0
A1
g ((0, 0))
A3
g ((100, 0))
0
3
1
0
1
2
A2
g ((0, 60))
A4
g ((50, 50))
0.4
0.6
0.5
0.5
0
3
0.5
.
2.5
Como la matriz A1 tiene un determinante positivo y una traza positiva, ambos
eigenvalores tienen partes reales positivas. Por tanto (0, 0) es un punto crítico inestable.
Los determinantes de las matrices A2 y A3 son negativos, así que en cada caso uno de
los eigenvalores es positivo. Entonces, tanto (0, 60) como (100, 0) son puntos críticos
inestables<DTXHODPDWUL]A4 tiene un determinante positivo y una traza negativa,
(50, 50) es un punto crítico estable.
1
-2
-1
x
( 12, 2) se presenta
como un punto espiral estable.
FIGURA 10.3.6
En el ejemplo 5 no calculamos IJ2 4" (como en la sección 10.2) e intentamos clasi¿FDUORVSXQWRVFUtWLFRVHQQRGRVHVWDEOHVSXQWRVHVSLUDOHVHVWDEOHVSXQWRVVLOODHWF
Por ejemplo, para X1 ( 12, 2) en el ejemplo 5(a), IJ2 4" 0, y si el sistema
fuera lineal, podríamos concluir que X1HUDXQSXQWRHVSLUDOHVWDEOH/D¿JXUD
muestra varias curvas solución cercanas a X1, que se obtuvieron con un programa de
solución numérico y cada solución se presenta en espiral hacia el punto crítico.
CLASIFICACIÓN DE PUNTOS CRÍTICOS Es natural preguntar si se puede inferir
más información geométrica acerca de las soluciones cerca de un punto crítico X1 de
un sistema autónomo no lineal, a partir de un análisis del punto crítico del sistema real
FRUUHVSRQGLHQWH /D UHVSXHVWD VH UHVXPH HQ OD ¿JXUD SHUR GHEH DQDOL]DU ORV
siguientes comentarios.
i)
ii)
En cinco casos separados (nodo estable, punto espiral estable, punto espiral
LQHVWDEOHQRGRLQHVWDEOH\SXQWRVLOOD HOSXQWRFUtWLFRVHSXHGHFODVL¿FDUFRPR
el punto crítico del sistema lineal correspondiente. Las soluciones tienen las
mismas propiedades geométricas generales que las soluciones del sistema lineal
y mientras más pequeña sea la vecindad en torno a X1, el parecido es mayor.
Si IJ2 4" y IJ
0, el punto crítico X1 es inestable, pero en este caso
límite aún no se puede decidir si X1 es una espiral inestable, un nodo
inestable o un nodo inestable degenerado. De la misma manera, si IJ2 4"
∆
Espiral
estable
Nodo estable
?
?
?
?
Estable
?
Nodo inestable
?
?
τ2
?
τ 2 = 4∆
Espiral
inestable
– 4∆ < 0
?
?
Inestable
?
?
?
τ
Punto silla
FIGURA 10.3.7 Resumen geométrico de algunas conclusiones (véase i)) y algunas
preguntas no contestadas (véase ii) y iii)) acerca de sistemas autónomos no lineales.
10.3
iii)
LINEALIZACIÓN Y ESTABILIDAD LOCAL
l
397
y IJ 0, el punto crítico X1 es estable pero puede ser también una espiral
estable, un nodo estable o un nodo estable degenerado.
Si IJ 0 y " 0, los eigenvalores de A g(X) son imaginarios puros y en su
caso límite X1 puede ser una espiral estable, una espiral inestable o un centro.
Por tanto, aún no es posible determinar si X1 es estable o inestable.
EJEMPLO 6
&ODVL¿FDFLyQGHSXQWRVFUtWLFRVGHXQVLVWHPDQROLQHDO
&ODVL¿TXHFDGDSXQWRFUtWLFRGHOVLVWHPDDXWyQRPRSODQRHQHOHMHPSOR E FRPRXQ
nodo estable, un punto espiral estable, un punto espiral inestable, un nodo inestable o
un punto silla.
Para la matriz A1 correspondiente a (0, 0), " 3, IJ 4, así IJ2 4" 4.
Por tanto, (0, 0) es un nodo inestable. Los puntos críticos (0, 60) y (100, 0) son puntos
silla, porque en ambos casos " 0. Para la matriz A4, " 0, IJ 0 y IJ2 4" 0, por
lo que (50, 50) es un nodo estable([SHULPHQWHFRQXQSURJUDPDGHVROXFLyQQXPpULFD
para comprobar estas conclusiones.
SOLUCIÓN
EJEMPLO 7
Análisis de estabilidad para un resorte suave
Recuerde que en la sección 5.3 vimos que la ecuación diferencial de segundo orden
mx kx k1x3 0, para k 0, representa un modelo general de las oscilaciones
libres no amortiguadas, de una masa m¿MDDXQUHVRUWHQROLQHDO6Lk 1 y k1 1,
el resorte se llama suave y el sistema autónomo plano que corresponde a la ecuación
diferencial no lineal de segundo orden x x x3 0 es
x
y
y
x3
x.
(QFXHQWUH\FODVL¿TXH VLHVSRVLEOH ORVSXQWRVFUtWLFRV
Puesto que x3 x x(x2 1), los puntos críticos son (0, 0), (1, 0) y
(1, 0). Las matrices Jacobianas correspondientes son
SOLUCIÓN
A1
g ((0, 0))
0
1
1
,
0
A2
g ((1, 0))
g (( 1, 0))
0 1
.
2 0
<DTXHGHWA2 0, ambos puntos críticos (l, 0) y (1, 0) son puntos silla. Los eigenvalores de la matriz A1 son i y de acuerdo con el comentario iii), el estado del punto
crítico en (0, 0) queda en duda, por lo que puede tratarse de una espiral estable, una
espiral inestable o un centro.
MÉTODO DEL PLANO FASE El método de linealización, cuando se puede aplicar,
proporciona información útil acerca del comportamiento local de las soluciones cerca
de los puntos críticos y es poco útil cuando estamos interesados en soluciones cuya
posición inicial X(0) X0 no está cerca de un punto crítico o si deseamos obtener
una perspectiva global de la familia de curvas solución. El método del plano fase se
basa en el hecho de que
dy
dx
dy>dt
dx>dt
Q(x, y)
P(x, y)
e intenta encontrar y en función de x con uno de los métodos disponibles para resolver
ecuaciones diferenciales de primer orden (capítulo 2). Como se mostró en los ejemplos
8 y 9, este método en ocasiones se puede emplear para decidir si un punto crítico, tal
como (0, 0) en el ejemplo 7, es una espiral estable, una espiral inestable o un centro.
398
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
EJEMPLO 8
Método del plano fase
8VHHOPpWRGRGHOSODQRIDVHSDUDFODVL¿FDUHO~QLFRSXQWRFUtWLFR GHOVLVWHPD
autónomo plano
x
y2
x2.
y
SOLUCIÓN
El determinante de la matriz Jacobiana
0 2y
2x 0
g (X)
es 0 en (0, 0), por lo que la naturaleza del punto crítico (0, 0) queda en duda. Al aplicar
el método del plano fase se obtiene la ecuación diferencial de primer orden
y
2
dy
dx
x2
,
y2
dy>dt
dx>dt
que se puede resolver con facilidad por separación de variables:
−2
2
x
y2 dy
x2 dx
y3
o
x3
c.
Si X(0) (0, y0), se tiene que y3 x3 y30 o y
1x3 y30 /D¿JXUDPXHVtra un conjunto de curvas solución que corresponden a diversas elecciones de y0. La
naturaleza del punto crítico queda claro con este plano fase independientemente de lo
cerca de (0, 0) que inicie la solución, X(t) se aleja del origen conforme t aumenta. Por
tanto el punto crítico en (0, 0) es inestable.
3
−2
FIGURA 10.3.8 Plano fase del
sistema no lineal del ejemplo 8.
EJEMPLO 9
Análisis del plano fase de un resorte suave
Utilice el método del plano fase para determinar la naturaleza de las soluciones de x
x x3 0 en una vecindad de (0, 0).
SOLUCIÓN Si hacemos que dx兾dt y, entonces dy兾dt x3 x. A partir de esto se
obtiene la ecuación diferencial de primer orden
dy
dx
y
dy>dt
dx>dt
x3
y
x
,
que se puede resolver por separación de variables. Integrando
2
(x3
y dy
x
−
FIGURA 10.3.9 Plano fase del
sistema no lineal del ejemplo 9.
y2
2
x4
4
x2
2
c.
Después de completar el cuadrado, podemos escribir la solución como y 2 12(
1 2
(x 2 1) 2 c 0. Si X(0) (x0, 0), donde 0 x0 1, entonces c0
1)2, y así
2 (x0
y2
−2
se obtiene
x) dx
(x2
1)2
2
1)2
(x20
2
(2
x2
x20)(x20
2
x2)
.
Observe que y 0 cuando x x0. Además, el lado derecho es positivo cuando x0
x x0, por lo que cada x tiene dos valores correspondientes de y. La solución X
X(t) que satisface X(0) (x0, 0) es, por tanto, periódica, así que (0, 0) es un centro.
/D¿JXUDPXHVWUDXQDIDPLOLDGHFXUYDVVROXFLyQRSODQRIDVHGHOVLVWHPD
original. Usamos el sistema autónomo plano original para determinar las direcciones
indicadas en cada trayectoria.
10.3
EJERCICIOS 10.3
x
x
y
y2
y
x
y
xy
r)
1
1.
5.
dT
dt
k(T
T0)
dx
dt
k(
dx
8.
dt
k(
dP
9.
dt
P(a
7.
10.
dA
dt
x)
4.
6. m
x)(
dv
dt
y 2x y 15
x
kx ln ,
K
mg
x
0
kv
y
y
5
(QORVSUREOHPDVDFODVL¿TXH VLHVSRVLEOH FDGDSXQWR
crítico de la ecuación diferencial de segundo orden dada como
un nodo estable, un punto espiral estable, un punto espiral
inestable, un nodo inestable o un punto silla.
22. x
dx
dt
20. x 2x y 10
21. ș (cos ș 0.5) sen ș,
(QORVSUREOHPDVDVLQUHVROYHUORVH[SOtFLWDPHQWHFODVL¿TXHORVSXQWRVFUtWLFRVGHODVHFXDFLRQHVGLIHUHQFLDOHVDXWynomas de primer orden en asintóticamente estables o inestables. Se supone que todas las constantes son positivas.
kx (n
)
1
2y
x
0.
Demuestre que (0, 0) es un punto crítico asintóticamente
estable si y sólo si Į 0.
dx
dt
(
x 10
y y(16 y x)
2. &XDQGR VH H[SUHVD HQ FRRUGHQDGDV SRODUHV XQ VLVWHPD
autónomo plano tiene la forma
3.
18. x x(1 x 2 3y 2)
y y(3 x 2 3y 2)
17. x 2xy
y y x xy y 3
19. x
cuando Į 0 y un punto crítico inestable cuando Į
[Sugerencia: Cambie a coordenadas polares].
r(5
399
l
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-17.
1. Demuestre que (0, 0) es un punto crítico asintóticamente
estable del sistema autónomo no lineal
dr
dt
d
dt
LINEALIZACIÓN Y ESTABILIDAD LOCAL
( 12
x
)
3(x )2 x
兩ș兩 ʌ
x2
23. x x(1 x 3) x 2 0
24. x
4
x
1
2x
x2
25. x x &x 3 para &
0
0
26. x x &x兩x兩 0 para &
0
d
x x
2x.
dx
27. Demuestre que la ecuación diferencial no lineal de segundo orden
Sugerencia:
(1 Į2x 2)x (ȕ Į2(x) 2)x 0
tiene un punto silla en (0, 0) cuando ȕ 0.
x),
28. Demuestre que el sistema dinámico
x)(
x)(
x Į[ xy
x),
y 1 ȕ\ x 2
bP)(1
k 1A (K
cP 1), P
1A), A
0, a
bc
0
(QORVSUREOHPDVDFODVL¿TXH VLHVSRVLEOH FDGDSXQWR
crítico del sistema autónomo plano dado, como un nodo estable, un punto espiral estable, un punto espiral inestable, un
nodo inestable o un punto silla.
11. x 1 2xy
y 2xy y
12. x x 2 y 2 1
y 2y
13. x y x 2 2
y x 2 xy
14. x 2x y 2
y y xy
15. x 3x y 2 2
y x 2 y 2
16. x xy 3y 4
y y 2 x 2
tiene un punto crítico único cuando Įȕ
punto crítico es estable cuando ȕ 0.
1 y que este
29. a) Demuestre que el sistema autónomo plano
x x y x 3
y x y y 2
WLHQHGRVSXQWRVFUtWLFRVWUD]DQGRODVJUi¿FDVGHx
y x3 0 y x y y2 &ODVL¿TXHHOSXQWR
crítico en (0, 0).
b) Demuestre que el segundo punto crítico X1
(0.88054, 1.56327) es un punto silla.
30. a) Demuestre que (0, 0) es el único punto crítico de la
ecuación diferencial de Raleigh
x
( 13 (x )3
x
)
x
0.
400
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
b) Demuestre que (0, 0) es inestable cuando &
0.
¿Cuándo es (0, 0) un punto espiral inestable?
c) Demuestre que (0, 0) es estable cuando & 0.
¿Cuándo es (0, 0) un punto espiral estable?
d) Demuestre que (0, 0) es un centro cuando & 0.
31. Use el método del plano fase para mostrar que (0, 0) es
un centro de la ecuación diferencial no lineal de segundo
orden x 2x3 0.
32. Utilice el método del plano fase para demostrar que la
solución de la ecuación diferencial no lineal de segundo
orden x 2x x2 0, que satisface x(0) 1 y x(0),
0 es periódica.
33. a) Determine los puntos críticos del sistema autónomo
plano
x 2xy
y 1 x 2 y 2,
y demuestre que la linealización no aporta información acerca de la naturaleza de estos puntos críticos.
b) Use el método del plano fase para demostrar que
ambos puntos críticos en a) son centros.
[Sugerencia: Sea u y 2兾x y demuestre que
(x c) 2 y 2 c 2 1.]
34. El origen es el único punto crítico de la ecuación diferencial no lineal de segundo orden x (x)2 x 0.
a) Demuestre que el método del plano fase conduce a la
ecuación diferencial de Bernoulli dy兾dx y – xyl.
b) Demuestre que la solución que satisface x(0) 12 y
x(0) 0 no es periódica.
35. Una solución de la ecuación diferencial no lineal de segundo orden x x x3 0 satisface x(0) 0 y x(0)
v0. Aplique el método del plano fase para determinar
cuándo la solución resultante es periódica. [Sugerencia:
Vea el ejemplo 9.]
36. La ecuación diferencial no lineal x x 1 &x 2 surge
en el análisis del movimiento planetario usando teoría de
ODUHODWLYLGDG&ODVL¿TXH VLHVSRVLEOH ORVSXQWRVFUtWLFRV
del sistema plano autónomo correspondiente.
37. Cuando en un circuito RCL hay un capacitor no lineal,
ODFDtGDGHYROWDMH\DQRVHH[SUHVDFRQq兾C sino que se
GHVFULEHFRQPiVH[DFWLWXGFRQĮT ȕT3, donde Į y ȕ son
constantes y Į 0. Entonces, la ecuación diferencial (34)
de la sección 5.1 del circuito libre se reemplaza por
d 2q
dq
L 2
R
q
q3 0.
dt
dt
(QFXHQWUH \ FODVL¿TXH WRGRV ORV SXQWRV FUtWLFRV GH HVWD
ecuación diferencial no lineal. [Sugerencia: Divida en
dos casos: cuando ȕ 0 y cuando ȕ 0.]
38. La ecuación no lineal mx kx k1x3 0 para k 0
representa un modelo general de las oscilaciones libres
no amortiguadas, de una masa m¿MDDXQUHVRUWH6Lk1
0, el resorte se llama duro (vea el ejemplo 1 de la sección
5.3). Determine la naturaleza de las soluciones de x x
x3 0 en una vecindad de (0, 0).
39. La ecuación no lineal ș sen ș 12 se puede interpretar
como modelo para cierto péndulo bajo la acción de una
función de fuerza aplicada constante.
a) Demuestre que (ʌ兾6, 0) y (5ʌ兾6, 0) son puntos críticos del sistema autónomo plano correspondiente.
b) &
ODVL¿TXHHOSXQWRFUtWLFR ʌ兾6, 0) usando linealización.
c) 8
VHHOPpWRGRGHOSODQRIDVHSDUDFODVL¿FDUHOSXQWR
crítico (ʌ兾6, 0).
Problemas para analizar
40. a) Demuestre que (0, 0) es un punto crítico aislado del
sistema autónomo plano
x x 4 2xy 3
y 2x 3y y 4
pero que con la linealización no se obtiene información útil acerca de la naturaleza de este punto crítico.
b) Utilice el método del plano fase para demostrar que
x3 y3 3cxy. A esta curva clásica se le llama hoja
o folium de Descartes. Las ecuaciones paramétricas
de una de estas hojas son
x
3ct
1
,
t3
y
3ct2
.
1 t3
[Sugerencia: La ecuación diferencial en x y y es homogénea.]
c) &
RQXQSURJUDPDSDUDJUD¿FDURXQSURJUDPDGHVRlución numérica, trace las curvas solución. Con base
HQ VXV JUi¿FDV ¢FODVL¿FDUtD HO SXQWR FUtWLFR FRPR
HVWDEOHRFRPRLQHVWDEOH"¢&ODVL¿FDUtDHOSXQWRFUttico como nodo, punto silla, centro o punto espiral?
([SOLTXHSRUTXp
10.4
10.4
SISTEMAS AUTÓNOMOS COMO MODELOS MATEMÁTICOS
l
401
SISTEMAS AUTÓNOMOS COMO MODELOS MATEMÁTICOS
REPASO DE MATERIAL
l Secciones 1.3, 3.3 y 10.3.
INTRODUCCIÓN En muchas aplicaciones de la física surgen ecuaciones diferenciales autónomas no lineales de segundo orden, es decir ED de la forma x g(x, x). Por ejemplo, en el análisis
del movimiento libre amortiguado, en la sección 5.1, supusimos que la fuerza de amortiguamiento
era proporcional a la velocidad x y el modelo resultante fue mx ȕ[ kx que es una ecuación
diferencial lineal. Pero si la magnitud de la fuerza de amortiguamiento es proporcional al cuadrado
de la velocidad, la nueva ecuación diferencial mx ȕ[兩 x兩 kx es no lineal. El sistema autónomo
plano correspondiente es no lineal:
x
y
k
x.
m
m
En esta sección también analizaremos el péndulo no lineal, el movimiento de una cuenta sobre
una curva, los modelos depredador-presa de Lotka-Volterra y el modelo de competencia de LotkaVolterra. En los ejercicios se presentan otros modelos.
y
yy
PÉNDULO NO LINEAL En la ecuación (6) de la sección 5.3 demostramos que el
ángulo ș de desplazamiento de un péndulo simple satisface la ecuación diferencial no
lineal de segundo orden
d2
dt 2
g
sen
l
0.
Cuando hacemos x ș y y ș, esta ecuación diferencial de segundo orden se puede
H[SUHVDUFRPRHOVLVWHPDGLQiPLFR
x
y
y
g
sen x.
l
Los puntos críticos son (Nʌ, 0) y se demuestra con facilidad que la matriz Jacobiana es
0
a) 0, 0 b) , 0
FIGURA 10.4.1 (0, 0) es estable y (ʌ,
0) es inestable.
−π
1
.
g
( 1)k 1
0
l
Si k 2n 1, entonces " 0, por lo que todos los puntos críticos ((2n 1)ʌ, 0) son puntos silla. En particular, el punto crítico en (ʌ, 0) es inestable, como era de esperarse. Vea la
¿JXUD&XDQGRk 2n, los eigenvalores son imaginarios puros y así la naturaleza de
esos puntos críticos queda en duda. Dado que hemos supuesto que no hay fuerzas de amortiguamiento que actúen sobre el péndulo, esperamos que todos los puntos críticos (2Qʌ, 0)
sean centros. Esto se puede comprobar utilizando el método del plano fase. De
y
−3π
g (( k , 0))
π
3π
x
FIGURA 10.4.2 Plano fase de un
péndulo; las curvas onduladas indican
que el péndulo está girando respecto a su
pivote.
dy
dx
dy>dt
dx>dt
g sen x
l y
se tiene que y2 (2g兾l) cos x c. Si X(0) (x0, 0), entonces y 2 (2g兾l)(cos x cos
x 0). Observe que y 0 cuando x x0 y que (2g兾l)(cos x cos x0) 0 para 兩 x 兩
兩x0兩 ʌ. Así, cada x tiene dos valores correspondientes de y, por lo que la solución X
X(t) que satisface X(0) (x0, 0) es periódica. Podemos concluir que (0, 0) es un
centro. Observe que x ș aumenta para soluciones que corresponden a velocidades
LQLFLDOHVJUDQGHVFRPRODGLEXMDGDHQURMRHQOD¿JXUD(QHVWHFDVRHOSpQGXOR
da vuelta o gira en circunferencias completas alrededor de su pivote.
402
CAPÍTULO 10
l
SISTEMAS AUTÓNOMOS PLANOS
EJEMPLO 1 Soluciones periódicas de la ED del péndulo
A un péndulo en una posición de equilibrio con ș 0 se le proporciona una velocidad
angular inicial de Ȧ0 rad兾s. Determine bajo qué condiciones es periódico el movimiento resultante.
SOLUCIÓN 6HQRVSLGHH[DPLQDUODVROXFLyQGHOVLVWHPDDXWyQRPRSODQRTXHVDWLVface X(0) (0, Ȧ0). A partir de y2 (2g兾l) cos x c se tiene que
y2
2g
cos x
l
l
2g
1
2
0
.
Para establecer si la solución X(t) es periódica, basta demostrar que hay dos intersecciones con el eje x, x x0 entre ʌ y ʌ y que el miembro de la derecha es positivo
para 兩 x 兩 兩 [0 兩. Cada x tiene dos valores correspondientes de y.
Si y 0, cos x 1 (l兾2g) 20, y esta ecuación tiene dos soluciones x x0
1. Observe que (2g兾l)(cos x cos
entre ʌ y ʌ, suponiendo que 1 (l兾2g) 20
x0) es entonces positivo para 兩 x 兩 兩 x0 兩. Esta restricción de la velocidad angular se
puede escribir como 0 2 2g>l.
z
mg senθ
z = f (x)
θ W = mg
θ
x
FIGURA 10.4.3 Algunas de las
fuerzas que actúan sobre la cuenta
deslizante.
OSCILACIONES NO LINEALES: LA CUENTA DESLIZANTE Supongamos que,
FRPRVHPXHVWUDHQOD¿JXUDXQDFXHQWDGHPDVDm se desliza a lo largo de un
alambre delgado, cuya forma se describe por la función z f (x). Cambiando la forma
del alambre y haciendo diferentes hipótesis acerca de las fuerzas que actúan sobre la
cuenta se puede obtener gran variedad de oscilaciones no lineales.
La fuerza tangencial F debida al peso W mg tiene la magnitud mg sen ș y por
tanto la componente de F en el eje x es Fx mg sen ș cos ș. Puesto que tan ș f (x),
se pueden usar las identidades 1 tan2ș sec2ș y sen2ș 1 cos2ș para concluir que
f (x)
.
1 [ f (x)]2
Suponemos (como en la sección 5.1) que una fuerza de amortiguamiento D, que actúa
en dirección opuesta al movimiento, es un múltiplo constante de la velocidad de la
cuenta. La componente x de D es, por tanto, Dx ȕ[. Si se desprecia la fuerza de
IULFFLyQHQWUHHODODPEUH\ODFXHQWD\VHVXSRQHTXHQRKD\RWUDVIXHU]DVH[WHUQDVTXH
actúen sobre el sistema, entonces de la segunda ley de Newton se tiene que
Fx
mg sen cos
mx
mg
1
mg
f (x)
[ f (x)]2
x,
y el correspondiente sistema autónomo plano es
x
y
y
g
1
f (x)
[ f (x)]2
m
y.
Si X1 (x1, y1) es un punto crítico del sistema, y1 0 y, por tanto, f (x1) 0. En
consecuencia la cuenta debe estar en reposo en un punto del alambre donde la recta
tangente es horizontal. Cuando f es dos veces derivable, la matriz Jacobiana de X1 es
g (X1)
0
gf (x1)
1
,
>m
por lo que IJ ȕ兾m, " gf (x1) y IJ2 4" ȕ2兾m2 4gf (x1). Utilizando los resultados de la sección 10.3, podemos hacer las siguientes conclusiones:
i)
f (x1) 0:
3RUWDQWRVHSUHVHQWDXQPi[LPRUHODWLYRHQx x1 y puesto que " 0, hay
un punto silla inestable en X1 (x1, 0).
10.4
ii)
iii)
z
3π/ 2
−π/ 2
−π
x
π
FIGURA 10.4.4 ʌ兾2 y 3ʌ兾2 son
estables.
x′
10
(-2 π, 15)
(-2 π, 10)
5
x
-5
-π
π
FIGURA 10.4.5 ȕ 0.01.
x′
10
l
403
f (x1) 0 y ȕ 0:
Por tanto, hay un mínimo relativo en x x1 y puesto que IJ 0 y
"
0, X1 (x1, 0) es un punto crítico estable. Si ȕ2
4gm2f (x1), el
sistema está sobreamortiguado y el punto crítico es un nodo estable. Si
ȕ2 4gm2f (x1) el sistema está subamortiguado y el punto crítico es un
punto espiral estable. Si ȕ2 4gm2f (x1) queda aún en duda la naturaleza
H[DFWDGHOSXQWRFUtWLFRHVWDEOH
f (x1) 0 y el sistema es no amortiguado (ȕ 0):
En este caso, los eigenvalores son imaginarios puros, pero se puede usar
el método del plano fase para demostrar que el punto crítico es un centro.
Por tanto, las soluciones con X(0) (x(0), x(0)) cerca de X1 (x1, 0) son
periódicas.
EJEMPLO 2 Cuenta deslizante a lo largo de una onda senoidal
z = sen x
15
SISTEMAS AUTÓNOMOS COMO MODELOS MATEMÁTICOS
(-2 π, 10)
5
x
-π
FIGURA 10.4.6 ȕ 0.
π
8QDFXHQWDGHJUDPRVUHVEDODSRUODJUi¿FDGHz sen x. De acuerdo con la conclusión
ii), los mínimos relativos en x1 ʌ兾2 y 3ʌ兾2 dan lugar a puntos críticos estables (vea
OD¿JXUD 3XHVWRTXHf (ʌ兾2) f (3ʌ兾2) 1, el sistema estará subamortiguado
cuando ȕ2 4gm2. Si se usan unidades del SI, m 0.0l kg y g 9.8 m兾s2, entonces la
condición para un sistema subamortiguado se convierte en ȕ2 3.92 103.
Si ȕ 0.01 es la constante de amortiguamiento, entonces ambos puntos críticos
son puntos espiral estables. Las dos soluciones que corresponden a las condiciones
iniciales X(0) (x(0), x(0)) (2ʌ, 10) y X(0) (2ʌ, 15), respectivamente, se
REWXYLHURQXVDQGRXQSURJUDPDGHVROXFLyQQXPpULFD\VHPXHVWUDQHQOD¿JXUD
Cuando x(0) ODFXHQWDWLHQHVX¿FLHQWHFDQWLGDGGHPRYLPLHQWRFRPRSDUDUHEDsar la colina en x 3ʌ兾2, pero no la que está en x ʌ兾2. Entonces, la cuenta tiende
al mínimo relativo que está en x ʌ兾2. Si x(0) 15, la cuenta tiene la cantidad de
movimiento para pasar sobre las dos colinas, pero después se pone a oscilar en el valle
que está en x 3ʌ兾2 y tiende al punto (3ʌ兾2, GHODODPEUH3XHGHH[SHULPHQWDUFRQ
otras condiciones iniciales usando su propio programa de solución numérica.
/D¿JXUDPXHVWUDXQFRQMXQWRGHFXUYDVVROXFLyQREWHQLGDVFRQXQSURJUDPD
de solución numérica para el caso no amortiguado. Puesto que ȕ 0, los puntos críticos
que corresponden a x1 ʌ兾2 y 3ʌ兾2 son ahora centros. Cuando X(0) (2ʌ, 10), la
FXHQWDWLHQHODFDQWLGDGVX¿FLHQWHGHPRYLPLHQWRSDUDSDVDUVREUHtodas las colinas. En
OD¿JXUDWDPELpQVHLQGLFDTXHFXDQGRVHVXHOWDODFXHQWD\SDUWHGHOUHSRVRHQXQDSRVLción del alambre entre x 3ʌ兾2 y x ʌ兾2, el movimiento resultante es periódico.
MODELO DEPREDADOR-PRESA DE LOTKA-VOLTERRA Una interacción depredador-presa entre dos especies ocurre cuando una de ellas (el depredador) se alimenta de
ODVHJXQGD ODSUHVD 3RUHMHPSORHOE~KRGHODVQLHYHVTXHVHDOLPHQWDFDVLH[FOXVLYDmente de un roedor común en el Ártico, llamado lemming, mientras que el lemming usa
las plantas de la tundra del Ártico como su alimento. El interés en utilizar las matemátiFDVSDUDD\XGDUDH[SOLFDUODLQWHUDFFLyQGHSUHGDGRUSUHVDHVPRWLYDGRSRUODREVHUYDción de ciclos de población en muchos mamíferos del Ártico. Por ejemplo, en el distrito
del Río MacKenzie, en Canadá, la presa principal del lince es la liebre de las nieves y
DPEDVSREODFLRQHVWLHQHQFLFORVFRQXQSHULRGRDSUR[LPDGRGHDxRV
Hay muchos modelos depredador-presa que conducen a sistemas autónomos
planos, con al menos una solución periódica. El primero de ellos fue elaborado en
forma independiente por los biomatemáticos precursores Arthur Lotka (1925) y Vito
Volterra (1926). Si x denota la cantidad de depredadores y y la cantidad de presas, el
modelo de Lotka-Volterra toma la forma
x
ax
bxy
x( a
y
cxy
dy
y( cx
donde a, b, c y d son constantes positivas.
by)
d),
404
CAPÍTULO 10
l
SISTEMAS AUTÓNOMOS PLANOS
Observe que en ausencia de depredadores (x 0), y dy, por lo que la cantidad
GHSUHVDVFUHFHHQIRUPDH[SRQHQFLDO(QDXVHQFLDGHSUHVDVx ax y por tanto
OD SREODFLyQ GH GHSUHGDGRUHV VH H[WLQJXH (O WpUPLQR cxy representa la razón de
mortandad debida a la depredación. Entonces el modelo supone que esta razón
de mortandad es directamente proporcional a la cantidad posible de encuentros xy
entre depredador y presa a un tiempo t dado y el término bxy representa la contribución
positiva resultante de la población de depredadores.
Los puntos críticos de este sistema autónomo plano son (0, 0) y (d兾c, a兾b) y las
matrices Jacobianas correspondientes son
Presa
y
x
Depredadores
FIGURA 10.4.7
Soluciones cerca de
(0, 0).
F
Gráfica de F(x)
a 0
0
bd>c
y
A2 g ((d>c, a> b))
.
0 d
ac> b
0
(OSXQWRFUtWLFR HVXQSXQWRVLOOD\OD¿JXUDPXHVWUDXQSHU¿OWtSLFR
de soluciones que están en el primer cuadrante y cerca de (0, 0).
1ad i , el
Debido a que la matriz A2 tiene eigenvalores imaginarios puros
punto crítico (d兾c, a兾b) podría ser un centro. Esta posibilidad se puede investigar con
el método del plano fase. Puesto que
dy y( cx d)
,,
dx x( a by)
separando las variables obtenemos
A1
g ((0, 0))
a
x1
d/c
x
x2
a) Máximo de F en x = d/c
G
Gráfica de G( y )
by
cx d
dy
dx
y
x
a ln y by
cx d ln x c1
o
(xde cx )( yae by ) c0.
El siguiente argumento establece que todas las curvas solución que se originan en el
primer cuadrante son periódicas.
(Q OD ¿JXUD VH SUHVHQWDQ ODV JUi¿FDV FDUDFWHUtVWLFDV GH ODV IXQFLRQHV QR
negativas F(x) x d ecx y G(y) y a eby. No es difícil demostrar que F(x) tiene un
Pi[LPRDEVROXWRHQx d兾c, mientras que G(y WLHQHXQPi[LPRDEVROXWRHQy a兾b.
2EVHUYHTXHDH[FHSFLyQGH\GHOPi[LPRDEVROXWRF y G toman todos los valores
GHVXLPDJHQH[DFWDPHQWHGRVYHFHV
&RQHVWDVJUi¿FDVVHSXHGHQHVWDEOHFHUODVVLJXLHQWHVSURSLHGDGHVGHXQDFXUYD
solución que se origine en un punto no crítico (x0, y0) en el primer cuadrante.
i)
y1
y2
a/b
y
ii)
b) Máximo de G en y = a/b
FIGURA 10.4.8 /DVJUi¿FDVGHF y G
ayudan a establecer las propiedades (1)-(3).
Ahora presentaremos la demostración de i) y en los ejercicios esbozaremos los
incisos ii) y iii). Puesto que (x 0, y 0) (d c, a b), F(x 0)G(y 0) F(d c)G(a b). Si y
a兾b, entonces
c0
F(x0)G(y0) F(d>c)G(a>b)
0
F(d>c).
G(a>b)
G(a>b)
G(a>b)
Por tanto, F(x) c0兾G(a兾b WLHQHH[DFWDPHQWHGRVVROXFLRQHVxm y xM que satisfacen que
xm d兾c xM(QOD¿JXUDVHPXHVWUDODJUi¿FDGHXQDVROXFLyQSHULyGLFDWtSLFD
y
X0
a/b
xm
iii)
Si y a兾b, la ecuación F(x)G(y) c0WLHQHH[DFWDPHQWHGRVVROXFLRQHV
xm y xM, que satisfacen que xm d兾c xM.
Si xm x1 xM y x x1, entonces F(x)G(y) c0WLHQHH[DFWDPHQWHGRV
soluciones, y1 y y2, que satisfacen que y1 a兾b y2.
Si x está fuera del intervalo [xm, xM], entonces F(x)G(y) c0 no tiene
soluciones.
d/c
x1
xM x
FIGURA 10.4.9 Solución periódica
del modelo de Lotka-Volterra.
EJEMPLO 3
Ciclos de población depredador-presa
Si hacemos a 0.1, b 0.002, c 0.0025 y d 0.2 en el modelo depredador-presa
de Lotka-Volterra, el punto crítico en el primer cuadrante es (d兾c, a兾b) (80, 50) y
VDEHPRVTXHHVWHSXQWRFUtWLFRHVXQFHQWUR9HDOD¿JXUDHQODTXHKHPRV
usado un programa de solución numérica para generar estos ciclos. Mientras más cerca
10.4
SISTEMAS AUTÓNOMOS COMO MODELOS MATEMÁTICOS
l
405
está la condición inicial X0 a (80, 50), las soluciones periódicas se parecen más a las
soluciones elípticas del sistema lineal correspondiente. Los eigenvalores de g((80,
1ad i
12 10 i , así las soluciones cerca del punto crítico tie50)) son
nen periodo p 10 12 RDSUR[LPDGDPHQWH
y
Presa
100
50
40
80 120 160
Depredador
x
FIGURA 10.4.10 Plano fase del
modelo de Lotka-Volterra cerca del punto
crítico (80, 50).
y
K1/α 12
K2
(x, y)
K1
K2/α 21
x
a) α 12 α 21 1
MODELO DE COMPETENCIA DE LOTKA-VOLTERRA Se presenta una interacción de competencia cuando dos o más especies compiten por los recursos alimenticios, agua, luz y espacio de un ecosistema. Por tanto el uso de uno de esos recursos por
parte de una población inhibe la capacidad de otra población para sobrevivir y crecer.
¢%DMRTXpFRQGLFLRQHVSXHGHQH[LVWLUGRVHVSHFLHVHQFRPSHWHQFLD"6HKDQFRQVWUXLGR
YDULRVPRGHORVPDWHPiWLFRVTXHHYDO~DQODVFRQGLFLRQHVTXHSHUPLWHQODFRH[LVWHQcia. Si x denota la cantidad de la especie I y y la cantidad de la especie II, entonces el
modelo de Lotka-Volterra toma la forma
r1
x
x(K1 x
12 y)
K1
(1)
r2
y
y(K2 y
x).
21
K2
Observe que en ausencia de la especie II (y 0), x (r1兾K1)x(K1 x) y así la
primera población crece en forma logística y tiende a la población K1 de estado estable
(vea la sección 3.3 y el ejemplo 4 de la sección 10.3). Un enunciado similar es válido
para la especie II creciendo en ausencia de la especie I. El término Į2l xy en la segunda ecuación se debe al efecto de competencia de la especie I sobre la especie II. Por
lo que el modelo supone que esta razón de inhibición es directamente proporciona1 a
la cantidad de pares competitivos posibles xy en un tiempo t dado.
Este sistema autónomo plano tiene puntos críticos en (0, 0), (K1, 0) y (0, K2).
Cuando Įl2Į21 0, las rectas K1 x Į12y 0 y K2 – y Į21x 0 se intersecan para
producir un cuarto punto crítico X̂ (x̂, ŷ)/D¿JXUDPXHVWUDODVGRVFRQGLciones bajo las que (x̂, ŷ) está en el primer cuadrante. La traza y el determinante de la
matriz Jacobiana en (x̂, ŷ) son, respectivamente,
r
r
rr
x̂ 1
ŷ 2
y
(1 a12 a21)x̂ŷ 1 2 .
K1
K2
K1K2
(QHOFDVRD GHOD¿JXUDK1兾Į12
IJ 0 y " <DTXH
y
K2
2
K1/α 12
(x, y)
K2/α 21
K1
b) α 12 α 21
1
FIGURA 10.4.11 Dos condiciones
cuando el punto crítico (x̂, ŷ) está en el
primer cuadrante.
x
4
r1
K1
r
x̂ 1
K1
x̂
r2
K2
r
ŷ 2
K2
K1. Se tiene que Įl2Į21 1,
K2 y K2兾Į21
2
4(a12 a21
ŷ
2
4a12 a21 x̂ŷ
1)x̂ŷ
r1r2
K1K2
r1r2
,
K1K2
IJ2 4" 0, por lo que (x̂, ŷ) es( uny)nodo estable. Entonces, si X(0) X0HVWiVX¿FLHQtemente cerca de X̂ (x̂, ŷ), lím t : X(t) X̂, se puede concluir que es posible la coH[LVWHQFLD/DGHPRVWUDFLyQGHOLQFLVRE FRQGXFHDXQSXQWRVLOOD\ODLQYHVWLJDFLyQGH
la naturaleza de los puntos críticos en (0, 0), (K1, 0) y (0, K2) se dejan para los ejercicios.
Cuando las interacciones de competencia entre dos especies son débiles, ambos
FRH¿FLHQWHV Į12 y Į21 son pequeños y entonces se pueden satisfacer las condiciones
K1兾Į12 K2 y K2兾Į21 K1. Esto puede suceder cuando hay un pequeño traslape en
los rangos de dos especies depredadoras que cazan una presa común.
EJEMPLO 4 Un modelo de competencia de Lotka-Volterra
Una interacción de competencia se describe con el modelo de competencia de Lotka–
Volterra
x
0.004x(50 x 0.75y)
y
0.001y(100 y 3.0x)
&ODVL¿TXHWRGRVORVSXQWRVFUtWLFRVGHOVLVWHPD
406
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
SOLUCIÓN Debe comprobar que los puntos críticos están en (0, 0), (50, 0), (0, 100)
y en (20, 40). Puesto que Į12Į21 2.25 VHWLHQHHOLQFLVRE GHOD¿JXUD
por lo que el punto crítico en (20, 40) es un punto silla. La matriz Jacobiana es
0.2
g (X)
0.008x 0.003y
0.003y
0.1
0.003x
,
0.002y 0.003x
y obtenemos
0.2
0
g ((0, 0))
0
,
0.1
g ((50, 0))
0.2
0
0.15
,
0.05
0.1
0.3
g ((0, 100))
0
.
0.1
Por tanto (0, 0) es un nodo inestable, mientras que tanto (50, 0) como (0, 100) son
nodos estables. (¡Compruébelo!)
(QHOPRGHORGHFRPSHWHQFLDGH/RWND9RWHUUDWDPELpQSXHGHKDEHUFRH[LVWHQFLDVLKD\
cuando menos una solución periódica que esté enteramente en el primer cuadrante. Sin
embargo, se puede demostrar que este modelo no tiene soluciones periódicas.
EJERCICIOS 10.4
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-18.
Péndulo no lineal
1. Un péndulo se suelta en ș ʌ兾3 y se le da una velocidad
angular inicial de Ȧ0 rad兾s. Determine bajo qué condiciones el movimiento resultante es periódico.
2. a) Si se suelta un péndulo desde el reposo en ș ș0,
demuestre que la velocidad angular es nuevamente 0
cuando ș ș0,
b) El periodo T del péndulo es el tiempo necesario para
que ș cambie de ș0 a ș0 y regrese a ș0. Demuestre
que
T
2L
Bg
0
0
1cos
1
cos
d .
b) 'HPXHVWUHTXHODDOWXUDPi[LPDzPi[ a la que sube la
2
cuenta está dada por zmáx 12[ev0 /g (1 x20 ) 1].
6. Repita el problema 5 con z cosh x.
Modelos depredador-presa
7. &RQVXOWHOD¿JXUD 6Lxm x1 xM y x x1, demuestre que F(x)G(y) c0WLHQHH[DFWDPHQWHGRVVROXFLRnes, y1 y y2, que satisfacen que y1 a兾b y2. [Sugerencia:
Demuestre primero que G(y) c0兾F(x1) G(a兾b).]
8. De las propiedades i) y ii) del modelo depredador-presa
GH/RWND9ROWHUUDFRQFOX\DTXHODFDQWLGDGPi[LPDGH
depredadores se presenta cuando y a兾b.
0
Cuenta deslizante
3. Una cuenta de masa m se desliza a lo largo de un alambre
delgado, cuya forma está descrita por la función z f (x).
Si X1 (x1, y1) es un punto crítico del sistema autónomo
plano asociado con la cuenta deslizante, compruebe que
la matriz Jacobiana en X1 es
9. En muchos modelos de la ciencia pesquera se supone que
la rapidez con la que se pesca una especie es directamente
proporcional a su abundancia. Si depredadores y presas
se pescan de esta forma, las ecuaciones diferenciales de
Lotka-Volterra toman la forma
x
ax
bxy
y
cxy
dy
1x
2 y,
4. Una cuenta de masa m se desliza a lo largo de un alambre
delgado, cuya forma se describe con la función z f (x).
Cuando f (x1) 0, f (x1) 0 y el sistema es no amortiguado, el punto crítico X1 (x1, 0) es un centro. Estime el periodo de la cuenta cuando x(0) está cerca de x1 y x(0) 0.
donde &1 y &2 son constantes positivas.
a) Cuando &2 d, demuestre que hay un nuevo punto
crítico en el primer cuadrante que es un centro.
b) El principio de Volterra establece que con una cantidad moderada de pesca aumenta la cantidad promedio de presas y disminuye la cantidad promedio de
depredadores. ¿Está de acuerdo este modelo de pesca
con el principio de Volterra?
5. Se suelta una cuenta en la posición x(0) x0, sobre la
curva z x2兾2, con velocidad inicial x(0) v0 cm兾s.
a) Utilice el método del plano fase para demostrar que
la solución resultante es periódica cuando el sistema
es no amortiguado.
10. Una interacción depredador-presa se describe con el modelo de Lotka-Volterra
x
0.1x 0.02xy
y
0.2y 0.025xy.
g (X1)
0
gf (x1)
1
.
>m
10.4
SISTEMAS AUTÓNOMOS COMO MODELOS MATEMÁTICOS
a) Determine el punto crítico en el primer cuadrante y
utilice un programa de solución numérica para bosquejar algunos ciclos de población.
b) Estime el ciclo de las soluciones periódicas que se
acercan al punto crítico del inciso a).
Modelos de competencia
11. Una interacción de competencia se describe con el siguiente modelo de Lotka-Volterra
x
0.08x (20
0.4x
0.3y)
y
0.06y(10
0.1y
0.3x) .
(QFXHQWUH\FODVL¿TXHWRGRVORVSXQWRVFUtWLFRVGHOVLVWHPD
12. En las ecuaciones (1), demuestre que (0, 0) siempre es un
nodo inestable.
13. En las ecuaciones (1) demuestre que (K1, 0) es un nodo
estable cuando K1 K2兾Į21 y un punto silla cuando K1
K2兾Į21.
14. Use los problemas 12 y 13 para establecer que (0, 0), (K1,
0) y (0, K2) son inestables cuando X̂ (x̂, ŷ) es un nodo
estable.
15. En las ecuaciones (1) demuestre que X̂ (x̂, ŷ) es un
punto silla cuando K1兾Į12 K2 y K2兾Į21 K1.
Modelos matemáticos diversos
16. Péndulo amortiguado Si suponemos que actúa una
fuerza de amortiguamiento en dirección opuesta a la del
movimiento de un péndulo, con una magnitud directamente proporcional a la velocidad angular Gș兾dt, el ángulo de desplazamiento ș del péndulo satisface la ecuación diferencial no lineal de segundo orden
ml
d2
dt 2
d
.
dt
mg sen
a) Escriba la ecuación diferencial de segundo orden en
forma de un sistema autónomo plano y determine
todos los puntos críticos.
b) Determine una condición sobre m, l y ȕ que haga que
(0, 0) sea un punto espiral estable.
17. Amortiguamiento no lineal En el análisis del movimiento libre amortiguado de la sección 5.1 supusimos
que la fuerza de amortiguamiento era proporcional a la
velocidad x. Con frecuencia, la magnitud de esta fuerza
de amortiguamiento es proporcional al cuadrado de la velocidad y la nueva ecuación diferencial se convierte en
x
m
x x
k
x.
m
a) Escriba esta ecuación diferencial de segundo orden
como un sistema autónomo y encuentre todos los
puntos críticos.
b) El sistema se llama sobreamortiguado cuando (0, 0) es
un nodo estable y subamortiguado cuando (0, 0)
l
407
es un punto espiral estable. Por consideraciones físicas se supone que (0, 0) debe ser un punto crítico
asintóticamente estable. Demuestre que el sistema
es necesariamente subamortiguado.
d
yy
2y.
dy
Sugerencia:
Problemas para analizar
18. Una cuenta con masa m se desliza por un alambre delgado
cuya forma se puede describir con la función z f (x).
Tramos pequeños de alambre se pueden considerar como
planos inclinados y en mecánica se supone que la magnitud
de la fuerza de fricción entre la cuenta y el alambre es directamente proporcional a mg cos ș YHDOD¿JXUD
a) ([SOLTXHSRUTXpODQXHYDHFXDFLyQGLIHUHQFLDOSDUDOD
coordenada x de la cuenta es
f (x)
x
g
x
1 [ f (x)]2
m
para una constante positiva ȝ.
b) Investigue los puntos críticos del sistema autónomo
plano correspondiente. ¿Bajo qué condiciones un punto
crítico es un punto silla? ¿Un punto espiral estable?
19. Una oscilación no amortiguada satisface una ecuación diferencial no lineal de segundo orden de la forma x f (x) 0,
donde f (0) 0 y xf (x) 0 para x 0 y d x d. Utilice
el método del plano fase para investigar si es posible que el
punto crítico (0, 0) sea un punto espiral estable. [Sugerencia:
x
2
sea F(x)
0 f (u) du y demuestre que y 2F(x) c.]
20. El modelo de depredador-presa de Lotka-Volterra supone
que en ausencia de depredadores, la cantidad de presas
FUHFHH[SRQHQFLDOPHQWH6LVHSODQWHDODKLSyWHVLVDOWHUnativa de que la población de presas crece en forma logística, el nuevo sistema es
x
ax
y
cxy
bxy
r
y(K
K
y),
donde a, b, c, r y K son positivas y K a兾b.
a) Demuestre que el sistema tiene puntos críticos en (0, 0), (0, K) y (x̂, ŷ), donde ŷ a>b y
r
cx̂
(K ŷ).
K
b) Demuestre que los puntos críticos en (0, 0) y (0, K)
son puntos silla, mientras que el punto crítico en (x̂, ŷ)
puede ser un nodo estable o un punto espiral estable.
c) Demuestre que (x̂, ŷ) es un punto espiral si
4bK2
. ([SOLTXH SRU TXp VH GD HVWH FDVR
ŷ
r 4bK
cuando la capacidad de mantenimiento K de la presa
es grande.
408
l
CAPÍTULO 10
SISTEMAS AUTÓNOMOS PLANOS
21. El sistema dinámico
y
x
1
y
y
y
1
y
x
x
x
y
surge en un modelo de crecimiento de microorganismos
en un quimostato, un simple aparato de laboratorio en
HO TXH ÀX\H XQ QXWULHQWH GHVGH XQ DEDVWHFLPLHQWR D
una cámara de crecimiento. En el sistema, x denota la
concentración de los microorganismos en la cámara de
REPASO DEL CAPÍTULO 10
5HVSRQGDORVSUREOHPDVDVLQFRQVXOWDUHOWH[WR&RPSOHWH
los espacios en blanco o conteste cierto o falso.
1. La ecuación diferencial de segundo orden x f (x)
g(x) 0 se puede escribir como un sistema autónomo
plano.
2. Si X X(t) es una solución de un sistema autónomo
plano y X(t1) X(t2) para tl t2, entonces X(t) es una
solución periódica.
3. Si la traza de la matriz A es 0 y det A 0, entonces el
punto crítico (0, 0) del sistema lineal X AX se puede
FODVL¿FDUFRPR
.
4. Si el punto crítico (0, 0) del sistema lineal X AX es un
punto espiral estable, entonces los eigenvalores de A
son
.
5. Si el punto crítico (0, 0) del sistema lineal X AX es un
punto silla y X X(t) es una solución, entonces
lím t : X(t) QRH[LVWH
6. Si la matriz Jacobiana A g(X1) en un punto crítico de un
sistema autónomo plano tiene traza y determinante positivos, entonces el punto crítico X1 es inestable.
7. Es posible demostrar, utilizando la linealización, que un
sistema autónomo plano no lineal tiene soluciones periódicas.
8. Todas las soluciones de la ecuación del péndulo
d2
g
sen
0 son periódicas.
dt 2
l
9. ¿Para qué valor(es) de Į el sistema autónomo plano
x
x
y
tiene soluciones periódicas?
2y
x y
crecimiento y denota la concentración de nutrientes y Į
1 y ȕ 0 son constantes que puede ajustar el investigador. Determine las condiciones de Į y ȕ que aseguren que el sistema tenga un solo punto crítico (x̂, ŷ) en
el primer cuadrante e investigue la estabilidad de este
punto crítico.
22. Utilice los métodos de este capítulo, junto con un programa de solución numérica, para investigar la estabilidad del sistema no lineal resorte/masa modelado por
6x3
8x
x
x5
0.
Vea el problema 8 en los ejercicios 5.3.
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-18.
10. ¿Para qué valores de n es x Qʌ un punto crítico asintóticamente estable de la ecuación diferencial autónoma de
primer orden x sen x?
11. Resuelva el siguiente sistema autónomo plano no lineal
x
x 1x2
(
y
y
y 1x2
(
x
y2
)3
)3
y2 .
al cambiarlo a coordenadas polares. Describa el comportamiento geométrico de la solución que satisface la condición inicial X(0) (1, 0).
12. Analice la naturaleza geométrica de las soluciones del
sistema lineal X AX dado que la solución general es
a)
X(t)
c1
b)
X(t)
c1
1
e
1
t
1
e
1
1
e
2
c2
t
c2
2t
1 2t
e
2
13. &ODVL¿TXHHOSXQWRFUtWLFR GHOVLVWHPDOLQHDOGDGR
calculando la traza IJ y el determinante ".
a) x 3x 4y
y 5x 3y
b) x 3x 2y
y 2x y
14. (QFXHQWUH\FODVL¿TXH VLHVSRVLEOH ORVSXQWRVFUtWLFRV
del sistema autónomo plano
x
x xy 3x2
y
4y
2xy
y 2.
15. Determine el(los) valor(es) de Į para los que (0, 0) es un
punto crítico estable para el sistema autónomo plano (en
coordenadas polares)
r
ar
1.
REPASO DEL CAPÍTULO 10
16. &ODVL¿TXH HO SXQWR FUtWLFR GHO VLVWHPD DXWyQRPR
plano que corresponde a la ecuación diferencial no lineal
de segundo orden
x
(x2
1) x
x
0,
donde ȝ es una constante real.
17. 6LQUHVROYHUODHQIRUPDH[SOtFLWDFODVL¿TXH VLHVSRVLEOH
los puntos críticos de la ecuación diferencial autónoma
de primer orden x (x2 1)ex兾2, como asintóticamente
estable o inestable.
18. Use el método del plano fase para mostrar que las soluciones de la ecuación diferencial no lineal de segundo
2x 1(x )2 1 que satisfacen que x(0)
orden x
x0 y x(0) 0 son periódicas.
19. En la sección 5.1, supusimos que la fuerza F de restitución
del resorte satisface la ley de Hooke F ks, donde s es el
estiramiento del resorte y k es una constante de proporcionalidad positiva. Si se reemplaza esta hipótesis con la ley
no lineal F ks3, la nueva ecuación diferencial del movimiento amortiguado de un resorte duro se convierte en
mx
x
k(s
x)3
20. /DYDULOODGHXQSpQGXORHVWi¿MDGDDXQDXQLyQPyYLOHQ
el punto P, que gira con una rapidez angular de Ȧ rad兾s
HQ HO SODQR SHUSHQGLFXODU D OD YDULOOD 9HD OD ¿JXUD
10.R.1. Como resultado, el contrapeso del péndulo giUDWRULRH[SHULPHQWDXQDIXHU]DFHQWUtSHWDDGLFLRQDO\OD
nueva ecuación diferencial para ș es
ml
d2
dt 2
2
ml sen cos
mg sen
d
.
dt
a) Si Ȧ2 g兾l, demuestre que (0, 0) es un punto crítico
estable y que es el único punto crítico en el dominio ʌ ș ʌ. Describa lo que sucede físicamente
cuando ș(0) ș0, ș(0) 0 y ș0 es pequeño.
b) Si Ȧ2 g兾l, muestre que (0, 0) es inestable y que hay
dos puntos críticos estables más ( ˆ, 0) en el dominio ʌ ș ʌ. Describa qué sucede físicamente
cuando ș(0) ș0, ș(0) 0 y ș0 es pequeño.
Pivote
P
θ
mg,
donde ks3 mg. El sistema se considera sobreamortiguado cuando (0, 0) es un nodo estable y subamortiguado
cuando (0, 0) es un punto espiral estable. Encuentre
nuevas condiciones sobre m, k y ȕ que conduzcan al
sub-amortiguamiento y sobreamortiguamiento.
409
l
ω
FIGURA 10.R.1 Péndulo girando en el problema 20.
11
SERIES DE FOURIER
11.1
11.2
11.3
11.4
11.5
Funciones ortogonales
Series de Fourier
Series de Fourier de cosenos y de senos
Problema de Sturm-Liouville
Series de Bessel y Legendre
11.5.1 Serie de Fourier-Bessel
11.5.2 Serie de Fourier-Legendre
REPASO DEL CAPÍTULO 11
En cálculo ha visto que los vectores distintos de cero son ortogonales cuando su
producto interno (punto) es cero. Más allá del cálculo, los conceptos de vectores,
ortogonalidad y producto interno con frecuencia pierden su interpretación
geométrica. Estos conceptos se han generalizado y es muy común considerar una
función como un vector. Entonces podemos decir que dos funciones distintas son
ortogonales cuando su producto interno es cero. En este capítulo veremos que el
SURGXFWRLQWHUQRGHHVWRVYHFWRUHV IXQFLRQHV HVHQUHDOLGDGXQDLQWHJUDOGH¿QLGD
El concepto de funciones ortogonales y el desarrollo de una función f dada en
términos de un conjunto de funciones ortogonales es fundamental en el estudio de
los temas de los capítulos 12 y 13.
410
11.1
11.1
FUNCIONES ORTOGONALES
411
l
FUNCIONES ORTOGONALES
REPASO DE MATERIAL
l Los conceptos de vectores generalizados y espacios vectoriales se pueden encontrar en cualquier
libro de álgebra lineal.
INTRODUCCIÓN Los conceptos de vectores geométricos en dos y tres dimensiones, vectores
ortogonales o perpendiculares y el producto interno de dos vectores se ha generalizado. Es muy común
en matemáticas considerar una función como un vector. En esta sección analizaremos un producto
LQWHUQRTXHHVGLIHUHQWHGHOHVWXGLDGRHQFiOFXOR8WLOL]DQGRHVWHQXHYRSURGXFWRLQWHUQRGH¿QLUHPRV
las funciones ortogonales y los conjuntos de funciones ortogonales. Otro tema común en un curso de
cálculo es el desarrollo de una función f en series de potencias. En esta sección también veremos cómo
desarrollar una adecuada función fHQWpUPLQRVGHXQFRQMXQWRLQ¿QLWRGHIXQFLRQHVRUWRJRQDOHV
PRODUCTO INTERNO Recuerde que si u y v son dos vectores en R3 o en el espacio tridimensional, entonces el producto interno (u, v) de los vectores (en cálculo éste
se escribe como u v) tiene las propiedades siguientes:
i)
ii)
iii)
iv)
(u, v) (v, u),
(ku, v) k(u, v), k es un escalar,
(u, u) 0 si u 0 y (u, u) 0 si u 0,
(u v, w) (u, w) (v, w).
Esperamos que cualquier generalización del concepto de producto interno debe tener
estas mismas propiedades.
Supongamos que f1 y f2VRQIXQFLRQHVGH¿QLGDVHQXQLQWHUYDOR>a, b].* Puesto que
una LQWHJUDOGH¿QLGDVREUH>a, b] del producto f1(x) f2(x) también tiene las propiedades
anteriores i) a iv) siempre y cuando exista la integral, podemos enunciar la siguiente
GH¿QLFLyQ
DEFINICIÓN 11.1.1
Producto interno de funciones
El producto interno de dos funciones f1 y f2HQXQLQWHUYDOR>a, b] es el número
b
( f1, f 2)
f 1 (x) f 2 (x) dx.
a
FUNCIONES ORTOGONALES Motivados por el hecho de que dos vectores
geométricos u y vVRQRUWRJRQDOHVVLHPSUHTXHVXSURGXFWRLQWHUQRVHDFHURGH¿QLPRV
las funciones ortogonales en una forma similar.
DEFINICIÓN 11.1.2
Funciones ortogonales
Dos funciones f1 y f2 son ortogonales HQXQLQWHUYDOR>a, b] si
b
f 1 (x) f 2 (x) dx
( f1, f 2)
a
EJEMPLO 1
0.
(1)
Funciones ortogonales
a) Las funciones f1(x) x2 y f2(x) x3VRQRUWRJRQDOHVHQHOLQWHUYDOR>1, 1], ya que
*
Los intervalos también podrían ser ( ,
> ), etcétera.
412
l
CAPÍTULO 11
SERIES DE FOURIER
1
1 6
x
6
x 2 x3 dx
( f 1 , f 2)
1
1
0.
1
b) Las funciones f1(x) x2 y f2(x) x4 son noRUWRJRQDOHVHQHOLQWHUYDOR>1, 1], ya que
1
( f 1 , f 2)
1
x 2 x4 dx
1
1 7
x
7
x6 dx
1
1
(1
7
1
1
2
7
( 1))
0.
A diferencia del análisis vectorial, donde la palabra ortogonal es sinónimo de perpendicular, en este contexto el término ortogonal\ODFRQGLFLyQ QRWLHQHQVLJQL¿FDGR
geométrico. Observe que la función cero es ortogonal a toda función.
CONJUNTOS ORTOGONALES 1RVLQWHUHVDQSULQFLSDOPHQWHORVFRQMXQWRVLQ¿QLWRVGHIXQFLRQHVRUWRJRQDOHVTXHHVWiQGH¿QLGRVHQHOPLVPRLQWHUYDOR>a, b].
DEFINICIÓN 11.1.3 Conjunto ortogonal
Un conjunto de funciones de valor real {0(x), 1(x), 2(x), . . .} se dice que es
ortogonalHQXQLQWHUYDOR>a, b] si
b
(
m,
m (x)
n)
n (x)
dx
0,
(2)
m Y n.
a
CONJUNTOS ORTONORMALES La norma o longitud 储u储 de un vector u, se
puede expresar en términos del producto interno. La expresión (u, u) 储u储2 se llama
1(u, u). De igual modo, la norma
norma cuadrada, por lo que la norma es u
cuadrada de una función n es 储n(x)储2 (n, n) y así la norma o su longitud generalizada es f n (x)
1( n , n ). En otras palabras, la norma cuadrada y la norma de
una función n en un conjunto ortogonal {n(x)} son, respectivamente,
b
f n (x)
2
2
n (x)
y
dx
f n (x)
a
B
b
(3)
f2n(x) dx.
a
Si {n(x `HVXQFRQMXQWRRUWRJRQDOGHIXQFLRQHVHQHOLQWHUYDOR>a, b] con la propiedad
de que 储n(x)储 1 para n 0, 1, 2, . . . , entonces se dice que {n(x)} es un conjunto
ortonormal en el intervalo.
EJEMPLO 2
Conjunto ortogonal de funciones
Demuestre que el conjunto {1, cos x, cos 2x`HVRUWRJRQDOHQHOLQWHUYDOR>ʌ, ʌ].
SOLUCIÓN 6LLGHQWL¿FDPRV0(x) 1 y n(x) cos nx, debemos entonces demos-
trar que
0 (x)
en el primer caso,
(
0,
n)
n (x)
dx
0, n
0 (x)
n (x)
1
sen nx
n
y, en el segundo,
0, y
dx
1
[sen n
n
m (x)
n (x)
n. Tenemos,
0, m
dx
cos nx dx
sen( n )]
0,
n
0,
11.1
(
m,
n)
m (x)
n (x)
FUNCIONES ORTOGONALES
l
413
dx
cos mx cos nx dx
1
2
[cos(m
1 sen(m
2
m
EJEMPLO 3
cos(m
n)x
sen(m
m
n)x
n
n)x] dx
n)x
n
; trig ident
identidad
trigonométrica,
0,
m
n.
Normas
Encuentre las normas de cada función en el conjunto ortogonal del ejemplo 1.
SOLUCIÓN
Para 0(x) 1, tenemos de la ecuación (3),
储0 (x)储 2
dx
por lo que 储0(x)储 12 . Para n(x) cos nx, n
储n (x)储2
Así para n
cos2 nx dx
0, 储n(x)储 1 .
1
2
[1
2 ,
0, se tiene que
cos 2 nx] dx
.
NORMALIZACIÓN Cualquier conjunto ortogonal de funciones diferentes de cero
{n(x)}, n 0, 1, 2, . . . , se puede normalizar, es decir, transformarlo en un conjunto
ortonormal dividiendo cada función entre su norma. El próximo ejemplo ilustra la idea.
EJEMPLO 4
Conjunto ortonormal
En el ejemplo 2 se probó que el conjunto {1, cos x, cos 2x, . . .} es ortogonal en el intervalo
>ʌ, ʌ]. En el ejemplo 3, se vio que las normas de las funciones en el conjunto anterior son
0 (x)
1
冪2
n(x)
y
cos nx
冪 , n
1, 2, . . . .
Al dividir cada función entre su norma se obtiene el conjunto
1 cos x cos 2x
,
,
,...
12
1
1
TXHHVRUWRQRUPDOHQHOLQWHUYDOR>ʌ, ʌ].
ANALOGÍA VECTORIAL En la introducción a esta sección se estableció que el
interés en el estudio de funciones ortogonales radicaba en el desarrollo de una función
HQ WpUPLQRV GH XQ FRQMXQWR LQ¿QLWR ^n(x)} de funciones ortogonales. Para motivar
este concepto se hará una analogía más entre vectores y funciones. Suponga que v1, v2
y v3 son tres vectores no nulos mutuamente ortogonales en R3. Tal conjunto ortogonal
se puede emplear como una base para R3HVWRVLJQL¿FDTXHFXDOTXLHUYHFWRUWULGLPHQsional u es una combinación lineal de la forma
(4)
u c1 v1 c2 v2 c3 v3 ,
en donde las ci, i 1, 2, 3, son escalares que representan los componentes del vector u.
Cada componente ci se puede expresar en términos de u y del vector vi correspondiente. Para ver esto tomamos el producto interno de (4) con v1:
(u, v 1) c1(v 1, v1) c2(v 2, v 1) c3(v 3, v 1) c1储v 1储 2 c2 ⴢ 0 c3 ⴢ 0.
Por tanto,
c1
(u, v1)
.
'v1'2
414
l
CAPÍTULO 11
SERIES DE FOURIER
De igual manera podemos encontrar que las componentes c2 y c3 están dadas por
(u, v2 )
'v2'2
c2
y
(u, v3 )
.
'v3'2
c3
Por tanto, la ecuación (4) se puede expresar como:
u
(u, v1 )
v
'v1'2 1
(u, v2 )
v
'v2'2 2
3
(u, v3 )
v
'v3'2 3
n
(u, vn )
vn .
2
1 'vn'
(5)
DESARROLLO EN SERIES ORTOGONALES Suponga que {n(x)} es un conjunto
LQ¿QLWRGHIXQFLRQHVRUWRJRQDOHVHQXQLQWHUYDOR>a, b]. Nos preguntamos: si y f ( x)
HVXQDIXQFLyQGH¿QLGDHQHOLQWHUYDOR>a, b], es posible determinar un conjunto de
FRH¿FLHQWHVcn, n 0, 1, 2, . . . , para el que
cn n (x)
f (x) c0 0 (x) c1 1 (x)
?
(6)
Como en el análisis anterior acerca de encontrar las componentes de un vector poGHPRVGHWHUPLQDUORVFRH¿FLHQWHVcn utilizando el producto interno. Multiplicando la
ecuación (6) por m(x HLQWHJUDQGRHQHOLQWHUYDOR>a, b], se obtiene
b
b
f (x)
m (x)
dx
b
0 (x)
c0
m (x)
dx
a
a
c0 (
b
1 (x)
c1
m (x)
dx
a
0,
m)
c1 ( 1,
n (x)
cn
m (x)
dx
a
m)
cn (
n,
m)
.
Por la ortogonalidad cada término del miembro derecho de la última ecuación es cero
excepto cuando m n. En este caso tenemos
b
b
f (x)
n (x)
dx
cn
a
2
n (x)
dx.
a
6HWLHQHTXHORVFRH¿FLHQWHVTXHEXVFDPRVVRQ
b
a
cn
f (x)
b
a
n (x) dx
2
n (x)dx
Es decir,
,
f (x)
n
cn
0, 1, 2, . . . .
(7)
n (x),
n 0
donde
b
a
cn
f (x) n (x) dx
.
' n (x)'2
(8)
Con la notación de producto interno, la ecuación (7) se convierte en
f (x)
n 0
( f, n )
' n (x)'2
(9)
n (x).
Por lo que vemos que la ecuación (9) es la función análoga del resultado vectorial dado
en la ecuación (5).
DEFINICIÓN 11.1.4
Conjunto ortogonal兾función de peso
Se dice que un conjunto de funciones de valor real {0(x), 1(x), 2(x), . . . } es
ortogonal respecto a una función de peso w(x HQXQLQWHUYDOR>a, b] si
b
w(x)
m (x)
n (x)
dx
0,
m
n.
a
La suposición usual es que w(x) HQHOLQWHUYDORGHRUWRJRQDOLGDG>a, b]. El
conjunto {1, cos x, cos 2x, . . .} del ejemplo 1 es ortogonal respecto a la función de
peso w(x) HQHOLQWHUYDOR>ʌ, ʌ].
Si {n(x)} es ortogonal respecto a una función de peso w(x HQ>a, b], entonces
multiplicando la ecuación (6) por w(x)n(x) e integrando se obtiene que
11.1
b
a
cn
donde
FUNCIONES ORTOGONALES
f (x) w(x) n (x) dx
,
' n (x)'2
(10)
b
f n (x)
2
w(x)
2
n (x)
415
l
(11)
dx.
a
/DVHULH HQTXHORVFRH¿FLHQWHVGDGRV\DVHDSRUODHFXDFLyQ RSRUODHFXDFLyQ
(10) es un desarrollo en series ortogonales de f o una serie de Fourier generalizada.
CONJUNTOS COMPLETOS El procedimiento implementado para determinar los
FRH¿FLHQWHVFQHQ IXHformal; es decir, se ignoraron preguntas fundamentales sobre
si (7) es convergente hacia la función f cuando ésta se desarrolla en series ortogonales.
5HVXOWDTXHSDUDDOJXQRVFRQMXQWRVRUWRJRQDOHVHVSHFt¿FRVHVWDVH[SDQVLRQHVHQVHULHV
tienen dicha convergencia. En las próximas secciones de este capítulo se establecerán
FRQGLFLRQHVVREUHHOWLSRGHIXQFLRQHVGH¿QLGDVHQHOLQWHUYDOR>a, b] de ortogonalidad,
TXH VRQ VX¿FLHQWHV SDUD JDUDQWL]DU TXH XQD VHULH RUWRJRQDO VHD FRQYHUJHQWH KDFLD VX
función f. Para recalcar el tipo de conjunto que es {n(x)} repase la analogía vectorial en
las páginas anteriores. Si {v 1, v2, v3} es un conjunto de vectores no nulos mutuamente
ortogonales en R3, se dice que el conjunto {v 1, v2, v3} es completo en R3 porque tres de
tales vectores es todo lo que se necesita para escribir a cualquier vector u en ese espacio
en la forma (5). No se podría escribir (5) empleando menos de tres vectores; el conjunto
{v1, v2} sería incompleto en R3. De la completez de {v 1, v2, v3}es fácil ver una consecuencia necesaria, que en el espacio tridimensional el único vector u ortogonal a cada uno de
los vectores v 1, v2 y v3 es el vector cero. Si u es ortogonal a v 1, v2 y v3, entonces (u, v 1)
0, (u, v 2) 0, (u, v 3) 0 y (5) implica u 0. De manera similar, en el análisis de
desarrollos en series ortogonales, la función f y cada una de las funciones en {n(x)} son
parte de una clase más amplia, o espacio, S de funciones. La clase S podría ser, por ejemSORHOFRQMXQWRGHIXQFLRQHVFRQWLQXDVHQXQLQWHUYDOR>a, b], o el conjunto de funciones
FRQWLQXDVHQSDUWHVHQ>a, b]. También se desea que el conjunto {n(x)} sea completo en
S en el sentido de que {n(x `WHQJDXQQ~PHURVX¿FLHQWHGHIXQFLRQHVGHPDQHUDTXH
cada función en S se pueda escribir en la forma (7). Al igual que en la analogía vectorial,
HVWRVLJQL¿FDTXHOD~QLFDIXQFLyQRUWRJRQDODFDGDPLHPEURGHOFRQMXQWR^n(x)} es la
función cero. Vea el problema 22 de los ejercicios 11.1.
Para el resto de este capítulo, se supone que cualquier conjunto ortogonal empleado
en un desarrollo en series de una función es completo en alguna clase de funciones S.
EJERCICIOS 11.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-18.
En los problemas 1 a 6, demuestre que las funciones respectivas son ortogonales en el intervalo indicado.
10. sen
1. f 1(x) x, f 2(x) x >2, 2]
2
2. f 1(x) x 3, f 2(x) x 2 >1, 1]
n
x ,n
p
11. 1, cos
n
x ,n
p
12. 1, cos
n
m
x , sen
x , n
p
p
3. f 1(x) e , f 2(x) xe e >@
x
x
1, 2, 3, . . . ; [0, p]
1, 2, 3, . . . ;
[0, p]
x
4. f 1(x) cos x, f 2(x) sen 2x >ʌ]
5. f 1(x) x, f 2(x) cos 2x >ʌ兾2, ʌ兾2]
6. f 1(x) e x, f 2(x) sen x >ʌ兾4, 5ʌ兾4]
En los problemas 7 a 12, demuestre que el conjunto dado de
funciones es ortogonal en el intervalo indicado. Encuentre la
norma de cada función en el conjunto.
7. {sen x, sen 3x, sen 5x` >ʌ兾2]
8. {cos x, cos 3x, cos 5x` >ʌ兾2]
9. {sen nx}, n >ʌ]
m
1, 2, 3, . . . ,
1, 2, 3, . . . ; [ p, p]
Compruebe por integración directa que las funciones de los
problemas 13 y 14 son ortogonales respecto a la función de
peso indicada en el intervalo dado.
13. H 0(x) 1, H 1(x) 2x, H 2(x) 4x 2 2;
2
w(x) e x , (
, )
14. L 0(x) 1, L 1(x) x 1, L 2 (x) 12 x 2
w(x) ex> )
2x
1;
416
l
CAPÍTULO 11
SERIES DE FOURIER
15. Sea {n(x `XQFRQMXQWRRUWRJRQDOGHIXQFLRQHVHQ>a, b]
b
tal que 0(x) 1. Demuestre que a n (x) dx 0 para
n 1, 2, . . .
Problemas para analizar
21. Se dice que una función f de valor real es periódica, con
periodo T si f (x T ) f (x). Por ejemplo, 4ʌ es un periodo de sen x, ya que sen (x 4ʌ) sen x. EI valor mínimo de T para el que es válida f (x T) f (x) se llama
periodo fundamental de f. Por ejemplo, el periodo fundamental de f (x) sen x es T 2ʌ. ¿Cuál es el periodo
fundamental de cada una de las siguientes funciones?
16. Sea {n(x)} un conjunto ortogonal de funciones en
>a, b] tal que 0(x) 1 y 1(x) x. Demuestre que
b
a(
x
) n (x) dx 0 para n 2, 3, . . . y para cualesquier constantes Į y ȕ.
4
x
L
c) f (x) sen x sen 2x d) f (x) sen2x cos 4x
a) f (x) cos 2ʌ[
17. Sea {n(x `XQFRQMXQWRRUWRJRQDOGHIXQFLRQHVHQ>a, b].
Demuestre que 储m(x) n(x)储2 储m(x)储2 储n(x)储2 ,
para m n.
sen
e) f (x) sen 3x cos 2x
18. Del problema 1 sabemos que fl(x) x y f2(x) x2 son orWRJRQDOHVHQHOLQWHUYDOR>2, 2]. Encuentre las constantes c1 y c2 tales que f3(x) x c1x2 c2x3 sea ortogonal
tanto a fl como a f2 en el mismo intervalo.
n
x
p
n 1
A n y B n dependen sólo de n.
f) f (x)
A0
An cos
Bn sen
n
x ,
p
22. En el problema 9 se vio que el conjunto {sen nx}, n 1,
HVRUWRJRQDOHQHOLQWHUYDOR>ʌ]. Demuestre que
HOFRQMXQWRWDPELpQHVRUWRJRQDOHQHOLQWHUYDOR>ʌ, ʌ]
pero no es completo en el conjunto de todas las funciones
FRQWLQXDV GH¿QLGDV HQ >ʌ, ʌ@ >Sugerencia: Considere
f(x) 1.]
19. El conjunto de funciones {sen nx}, n 1, 2, 3, . . . es
RUWRJRQDOHQHOLQWHUYDOR>ʌ, ʌ]. Demuestre que el conjunto no es completo.
20. Suponga que fl, f2 y f3 son funciones continuas en el interYDOR>a, b]. Demuestre que (fl f2, f3) (fl, f3) (f2, f3).
11.2
b) f (x)
SERIES DE FOURIER
REPASO DE MATERIAL
l Lea nuevamente, o mejor repita, el problema 12 de los ejercicios 11.1.
INTRODUCCIÓN Acabamos de ver que si {0(x), 1(x), 2(x), . . .} es un conjunto ortogonal en
XQLQWHUYDOR>a, b] y fHVXQDIXQFLyQGH¿QLGDHQHOPLVPRLQWHUYDORHQWRQFHVVHSXHGHGHVDUUROODU
formalmente f en una serie ortogonal
,
c 0 0 (x) c1 1(x) c 2 2 (x)
GRQGHORVFRH¿FLHQWHVcn se determinan utilizando el concepto de producto interno. El conjunto ortogonal de funciones trigonométricas
1, cos
p
x, cos
2
3
2
3
x, cos
x, . . . , sen x, sen x, sen x, . . .
p
p
p
p
p
(1)
tendrá después especial importancia en la solución de ciertas clases de problemas con valores en la
frontera donde intervienen ecuaciones diferenciales parciales lineales. El conjunto (1) es ortogonal
HQHOLQWHUYDOR>p, p].
UNA SERIE TRIGONOMÉTRICA Suponga que f HV XQD IXQFLyQ GH¿QLGD HQ HO
LQWHUYDOR>p, p] y que se puede desarrollar en una serie ortogonal formada por las
funciones trigonométricas del conjunto ortogonal (1); es decir,
a0
n
n
an cos
x bn sen
x .
(2)
2
p
p
n 1
/RV FRH¿FLHQWHV a0, a1, a2, . . . , b1, b2, . . . se pueden determinar exactamente de la
misma manera que en el análisis general de los desarrollos en series ortogonales de
ODSiJLQD$QWHVGHSURVHJXLUREVHUYHTXHKHPRVHOHJLGRHVFULELUHOFRH¿FLHQWH
de 1 en el conjunto (1) como 12 a0 en lugar de a0. Esto es sólo por conveniencia; la
fórmula de an se reducirá después a a0 para n 0.
f (x)
11.2
SERIES DE FOURIER
417
l
Ahora, integrando ambos miembros de la ecuación (2), desde p hasta p, se obtiene
p
p
a0
2
f (x) dx
p
p
dx
cos
an
p
p
n 1
p
n
x dx
p
sen
bn
p
n
x dx .
p
(3)
Puesto que cos(Qʌ[兾p) y sen(Qʌ[兾p), n 1 son ortogonales a 1 en el intervalo, el
miembro derecho de (3) se reduce a un solo término:
p
p
a0
2
f (x) dx
p
a0
x
2
dx
p
p
pa0.
p
Resolviendo para a0 se obtiene
p
1
p
a0
(4)
f (x) dx.
p
Ahora multiplicando la ecuación (2) por cos(Pʌ[兾p) e integrando:
p
f (x) cos
p
m
x dx
p
a0
2
p
cos
p
m
x dx
p
p
cos
an
p
n 1
p
m
n
x cos x dx
p
p
cos
bn
p
m
n
x sen
x dx . (5)
p
p
Por ortogonalidad, tenemos que
p
cos
p
p
m
x dx
p
0,
cos
p
p
cos
y
0,
m
p
0, m
p, m
n
m
x cos
x dx
p
p
p
f (x) cos
Por lo que la ecuación (5) se reduce a
p
an
y así
1
p
n
m
x sen
x dx
p
p
p
n
x dx
p
0,
n
n.
an p,
n
x dx.
p
f (x) cos
p
(6)
Por último, si multiplicamos (2) por sen(Pʌ[兾p), integramos y utilizamos los resultados
p
sen
p
p
m
x dx
p
0,
encontramos que
sen
p
p
y
0,
m
sen
p
m
n
x sen
x dx
p
p
bn
1
p
p
f (x) sen
p
m
n
x cos
x dx
p
p
0, m
p, m
n
x dx.
p
0,
n
n,
(7)
/DVHULHWULJRQRPpWULFD FRQFRH¿FLHQWHVa0, an y bnGH¿QLGRVSRUODVHFXDFLRQHV
(4), (6) y (7), respectivamente, se dice que es una serie de Fourier de la función f. No
obstante que el físico matemático francés Jean Baptiste Joseph Fourier (1768-1830)
no inventó la serie que lleva su nombre, al menos él es responsable de despertar en
los matemáticos el interés por las series trigonométricas que él aplicó con poco rigor
en sus investigaciones sobre la conducción del calor. Las fórmulas (4), (6) y (7) que
GDQORVFRH¿FLHQWHVHQXQDVHULHGH)RXULHUVHFRQRFHQFRPRODVfórmulas de Euler.
418
l
CAPÍTULO 11
SERIES DE FOURIER
DEFINICIÓN 11.2.1 Series de Fourier
La serie de Fourier de una función fGH¿QLGDHQHOLQWHUYDOR p, p) está dada
por
f (x)
donde
a0
2
n 1
a n cos
1
p
p
a0
1
p
p
an
1
p
p
bn
n
x
p
bn sen
n x
,
p
(8)
f (x) dx
(9)
p
f (x) cos
nπ x
dx
p
(10)
f (x) sen
nπ x
dx.
p
(11)
p
p
CONVERGENCIA DE UNA SERIE DE FOURIER En ausencia de condiciones preFLVDVTXHJDUDQWLFHQODYDOLGH]GHORVSDVRVSDUDGHWHUPLQDUORVFRH¿FLHQWHVa0, an y bn el
signo de igualdad en (8) no se debe tomar en un sentido estricto o literal. Algunos libros
utilizan el símbolo ⬃ para enfatizar que (8) es sólo la correspondiente serie trigonoméWULFDFRQFRH¿FLHQWHVJHQHUDGRVHPSOHDQGRf en las fórmulas (9) a (11). En vista de que
en las aplicaciones la mayoría de las funciones son del tipo que garantiza la convergencia
de la serie, aquí se usará el símbolo de igualdad. ¿Es posible que, en x del intervalo (p, p),
la serie (8) sea convergente pero no al valor f(x)? La respuesta es un contundente Sí.
FUNCIONES CONTINUAS POR PARTES Antes de tratar las condiciones que aseguran la convergencia de una serie de Fourier, es necesario repasar dos temas del primer semestre de cálculo. Se emplearán los símbolos f(x) y f(x) para denotar los límites laterales
f (x )
(QODVHFFLyQVHGH¿QLyFRQWLQXLdad por partes en un intervalo no
DFRWDGR> 9HDOD¿JXUD
lim
í f (x
ho0
h 0
h), f (x )
í f (x
lim
ho0
h 0
h),
llamados, respectivamente, límites de f en x por la derecha y por la izquierda. Se dice
que una función f es continua por partesHQXQLQWHUYDORFHUUDGR>a, b] si
H[LVWHXQQ~PHUR¿QLWRGHSXQWRVx1 x2 … xnHQ>a, b] donde f tiene una
GLVFRQWLQXLGDG VDOWR ¿QLWR
• f es continua en cada intervalo abierto (xk, xk1).
&RPR XQD FRQVHFXHQFLD GH HVWD GH¿QLFLyQ ORV OtPLWHV ODWHUDOHV f(x) y f(x) deben
existir en cada x tal que a x b. Los límites f(a) y f(b) también deben existir pero
no se requiere que fHVWpGH¿QLGDRTXHVHDFRQWLQXDHQa o b.
(OVLJXLHQWHSULPHUWHRUHPDGDFRQGLFLRQHVVX¿FLHQWHVSDUDODFRQYHUJHQFLDGHXQD
serie de Fourier en un punto x.
TEOREMA 11.2.1
Condiciones para la convergencia
Sean f y f´FRQWLQXDVSRUSDUWHVHQHOLQWHUYDOR>p, p]. Entonces para toda x
en el intervalo (p, p), la serie de Fourier de f converge a f(x) en un punto de
continuidad. En un punto de discontinuidad la serie de Fourier converge al
promedio
f (x)
f (x)
2
,
en donde f (x) y f (x) denotan el límite de f en x, por la derecha y por la
izquierda, respectivamente.*
11.2
EJEMPLO 1
SERIES DE FOURIER
419
l
Desarrollo en una serie de Fourier
Desarrolle
0,
f (x)
y
0
x
x
0
x,
(12)
en una serie de Fourier.
π
π
−π
x
FIGURA 11.2.1 )XQFLyQGH¿QLGDSRU
tramos del ejemplo 1.
SOLUCIÓN (QOD¿JXUDVHSUHVHQWDODJUi¿FDGHf. Con p ʌ tenemos de las
ecuaciones (9) y (10) que
a0
1
0
1
f (x) dx
0 dx
(
1
x) dx
x
0
an
1
f (x) cos nx dx
x2
2
0
2
0
1
0 dx
(
x) cos nx dx
0
1
(
x)
sen nx
n
1 cos nx
n
n
1
n
0
sen nx dx
0
( 1) n
1
2
n
0
integración
por partes
,
donde hemos usado cos Qʌ (1)n. En forma similar encontramos de (11) que
bn
1
(
1
.
n
x) sen nx dx
0
Por tanto
f (x)
( 1) n
1
4
2
n
n 1
cos nx
1
sen nx .
n
(13)
Observe que anGH¿QLGDSRUODHFXDFLyQ VHUHGXFHDa0 dada por la ecuación
(9) cuando se hace n 0. Pero como en el ejemplo 1, este quizá no sea el caso después
de evaluar la integral para an.
EJEMPLO 2
Vuelta al ejemplo 1
/DLJXDOGDGHQ VHMXVWL¿FDSRUTXHSRUTXHWDQWRf como f ´ son continuas en partes
HQHOLQWHUYDOR>ʌ, ʌ@9HDODV¿JXUDV\<DTXHf es continua para toda
x en el intervalo (ʌ, ʌ), excepto en x 0, la serie (13) convergerá a f (x). En x 0 la
función es discontinua, por lo que la serie (13) convergerá a
f (0
)
f (0
)
2
y'
π
−π
x
−1
FIGURA 11.2.2 Derivada f´ continua
en partes del ejemplo 2.
0
2
2
.
EXTENSIÓN PERIÓDICA Observe que cada una de las funciones del conjunto básico (1) tiene un periodo fundamental distinto*, en particular 2p兾n, n 1, pero como
un múltiplo entero positivo de un periodo también es un periodo, se ve que todas las
funciones tienen en común el periodo 2p. (Compruebe.) Por tanto, el miembro derecho
de la ecuación (2) tiene periodo 2p; en realidad, 2p es el periodo fundamental de la
suma. Concluimos que una serie de Fourier no sólo representa la función en el intervalo (p, p), sino que también da la extensión periódica de f fuera de este intervalo.
Ahora podemos aplicar el teorema 11.2.1 a la extensión periódica de f o podemos
suponer, desde el principio, que la función dada es periódica, con periodo 2p; esto es,
f (x 2p) f (x). Cuando f es continua por tramos y existen las derivadas derecha e
izquierda en x p y en x p, respectivamente, la serie (8) converge al promedio
f (p )
f( p )
2
en esos extremos y extendiendo este valor periódicamente a 3p, 5p, 7p, etcétera.
*
Vea el problema 21 de los ejercicios 11.1.
420
l
CAPÍTULO 11
SERIES DE FOURIER
EJEMPLO 3
Vuelta al ejemplo 1
La serie de Fourier (13) del ejemplo 1 converge a la extensión periódica de la función
(12) en todo el eje x. En 0, 2ʌ, 4ʌ, . . . y en ʌ, 3ʌ, 5ʌ, . . . la serie converge
a los valores
)
f (0
)
f (0
2
f(
y
2
)
f(
)
0,
2
UHVSHFWLYDPHQWH/RVSXQWRVVyOLGRVGHOD¿JXUDUHSUHVHQWDQHOYDORUʌ兾2.
y
π
−4π −3π −2π − π
π
2π
3π
x
4π
FIGURA 11.2.3 ([WHQVLyQSHULyGLFDGHODIXQFLyQTXHVHPXHVWUDHQOD¿JXUD
SUCESIÓN DE SUMAS PARCIALES Es interesante ver cómo se aproxima la sucesión de sumas parciales {SN(x)} de una serie de Fourier a una función. Por ejemplo,
las tres primeras sumas parciales de la ecuación (13) son
S1 (x)
4
,
S 2 (x)
2
4
cos x
sen x,
y
S 3 (x)
2
4
cos x
1
sen 2x.
2
sen x
(QOD¿JXUDKHPRVXVDGRXQ6$&SDUDWUD]DUODJUi¿FDGHODVVXPDVSDUFLDOHV
S3(x), S8(x) y S15(x) de la ecuación (13) en el intervalo (ʌ, ʌ /D ¿JXUD G
muestra la extensión periódica usando S15(x) en (4ʌ, 4ʌ).
y
y
3
3
2
2
1
1
x
x
1
-3 -2 -1
2
3
1
-3 -2 -1
a) S3(x)
b) S8(x)
y
y
3
3
2
2
1
1
2
3
x
x
-3 -2 -1
1
c) S15(x)
2
3
-10
5
-5
d) S15(x)
FIGURA 11.2.4 Sumas parciales de la serie de Fourier en la ecuación (13).
10
11.2
EJERCICIOS 11.2
1. f (x)
0
1,
2,
2. f (x)
0
x
x
17. La función f del problema 9
18. La función f del problema 14
19. Utilice el resultado del problema 5 para demostrar que
2
0
x
x
0
1
22
1
22
1
6
2
3. f (x)
1,
x,
1
0
x
x
0
1
4. f (x)
0,
x,
1
0
x
x
0
1
5. f (x)
0,
x2,
0
0
x
x
y
x,
9. f (x)
10. f (x)
12. f (x)
0,
2,
1,
0,
13. f (x)
1,
1
14. f (x)
2
2,
>2
0
2
1
0
1
2
0
1
x,
x,
0
x
x
cos
>2
0,
ex
1,
ein
n
x
p
ein
x/p
1
7 9
.
e
in x / p
2
x/p
in x / p
e
,
2i
cn ein
f (x)
0
1
2
x/p
,
n
donde
5
0
x
x
0
5
2
0
x
x
0
2
0
1
5 7
para demostrar que la ecuación (8) se puede expresar
en la forma compleja
0
1
2
x
x
1
3 5
n
x
p
se n
1
x
x
x
x
x
x
x
1
1 3
23. a) Utilice la forma exponencial compleja del coseno y
seno,
0
x
x
1
2
4
c0
a0
,
2
0
En los problemas 17 y 18 trace la extensión periódica de la
función indicada
(an
cn
ibn)
2
,
y
c
(an
n
ibn)
2
,
donde n 1, 2, 3, . . . .
b) Demuestre que c0, cn y cn del inciso a) se pueden
escribir como una integral
ʌ x ʌ
15. f (x) e x,
16. f (x)
0
0
0,
cos x,
0,
x,
1,
0
x
x
ʌ x ʌ
0,
sen x,
11. f (x)
1 1 1
.
4
3 5 7
22. Utilice el resultado del problema 9 para demostrar que
ʌ x ʌ
8. f (x) 3 2x,
.
1
2
7. f (x) x ʌ,
1
42
1
42
21. Utilice el resultado del problema 7 para demostrar que
,
2
1
12
1
32
1
32
20. Utilice el resultado del problema 19 para encontrar una
serie cuya suma sea ʌ2兾8.
2
6. f (x)
421
l
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-18.
En los problemas 1 a 16 encuentre la serie de Fourier de f en
el intervalo dado.
0,
1,
SERIES DE FOURIER
cn
1
2p
p
f (x)e
in x / p
dx,
n
0,
1,
2, . . . .
p
24. Utilice los resultados del problema 23 para encontrar la
forma compleja de la serie de Fourier de f (x) ex en el
LQWHUYDOR>ʌ, ʌ].
422
l
CAPÍTULO 11
11.3
SERIES DE FOURIER
SERIES DE FOURIER DE COSENOS Y DE SENOS
REPASO DE MATERIAL
l Secciones 11.1 y 11.2.
INTRODUCCIÓN (O HVIXHU]R TXH VH LQYLHUWH HQ OD HYDOXDFLyQ GH ODV LQWHJUDOHV GH¿QLGDV TXH
FDOFXODQORVFRH¿FLHQWHVa0, an y bn al desarrollar una función f en una serie de Fourier se reduce signi¿FDWLYDPHQWHFXDQGRf es una función par o impar. Recuerde que se dice que una función f es
par si f (x) f (x) e impar si f (x) f (x).
En un intervalo simétrico tal como (p, p ODJUi¿FDGHXQDIXQFLyQSDUWLHQHVLPHWUtDUHVSHFWRDOHMH
y, mientras que la de una función impar tiene simetría respecto al origen.
FUNCIONES PAR E IMPAR Es muy probable que el origen de los términos par
e imparVHDFRQVHFXHQFLDGHOKHFKRGHTXHODVJUi¿FDVGHIXQFLRQHVSROLQRPLDOHVGH
potencias pares de x son simétricas respecto al eje yPLHQWUDVTXHODVJUi¿FDVGHSROLQRmios de potencias impares de x son simétricas respecto al origen. Por ejemplo,
entero par,
f(x)
x2
f(x)
x3
es par, ya que f(x) (x)2 x2 f(x)
entero impar
y
9pDQVHODV¿JXUDV\/DVIXQFLRQHVWULJRQRPpWULFDVFRVHQR\VHQRVRQ
respectivamente, funciones pares e impares, ya que cos(x) cos x y sen(x)
sen x. Las funciones exponenciales f (x) ex y f (x) ex no son ni pares ni impares.
y = x2
f (−x)
PROPIEDADES
pares e impares.
f (x)
−x
x
es impar, ya que f(x) (x)3 x3 f(x).
El teorema siguiente lista algunas propiedades de las funciones
x
TEOREMA 11.3.1 Propiedades de funciones pares兾impares
FIGURA 11.3.1 )XQFLyQSDUJUi¿FD
simétrica respecto al eje y.
y
y = x3
f (x)
−x
f (−x)
x
a)
b)
c)
d)
e)
f)
g)
El producto de dos funciones pares es par.
El producto de dos funciones impares es par.
El producto de una función impar y una función par es impar.
La suma (diferencia) de dos funciones pares es par.
La suma (diferencia) de dos funciones impares es impar.
Si f es par, entonces a a f (x) dx 2 a0 f (x) dx.
Si f es impar, entonces a a f (x) dx 0.
x
DEMOSTRACIÓN DE b) Supongamos que f y g son funciones impares. En ese caso
tendremos que f (x) f (x) y g(x) g(x 6LGH¿QLPRVHOSURGXFWRGHf y g
FIGURA 11.3.2 )XQFLyQLPSDUJUi¿FD como F (x) f (x)g(x), entonces
simétrica respecto al origen.
F( x)
f ( x) g( x)
( f (x))( g(x))
f (x) g(x)
F(x).
Esto demuestra que el producto F de dos funciones impares es una función par. Las
demostraciones de las demás propiedades se dejan como ejercicios. Vea el problema
48 de los ejercicios 11.3.
SERIES DE COSENOS Y DE SENOS Si f es una función par en (p, p), entonces,
HQYLVWDGHODVSURSLHGDGHVDQWHULRUHVORVFRH¿FLHQWHV \ GHODVHFFLyQ
11.2 se convierten en
11.3
1
an –
p
冕
冕
1
bn –
p
冕
1
a0 –
p
SERIES DE FOURIER DE COSENOS Y DE SENOS
冕
p
2
f(x) dx –
p
p
0
f(x) dx
2
np
f(x) cos ––– x dx –
p
p
p
p
423
p
p
p
l
冕
p
0
np
f (x) cos –––
p x dx
par
np
f(x) sen ––– x dx 0
p
impar
De la misma manera, cuando f es impar en el intervalo (p, p),
an
0,
n
0, 1, 2, . . . ,
bn
2
p
p
f (x) sen
0
n
x dx.
p
5HVXPLUHPRVORVUHVXOWDGRVHQODVLJXLHQWHGH¿QLFLyQ
DEFINICIÓN 11.3.1
i)
Series de Fourier de cosenos y de senos
La serie de Fourier de una función f par en el intervalo (p, p) es la serie
de cosenos
a0
np
f (x)
a cos
x,
2 n 1 n
p
(1)
a0
donde
an
2
p
2
p
p
f (x) dx
(2)
0
p
f (x) cos
0
np
x dx.
p
(3)
ii) La serie de Fourier de una función f impar en el intervalo (p, p) es la
serie de senos
np
f (x)
bn sen x,
(4)
p
n 1
donde
bn
2
p
p
f (x) sen
0
np
x dx.
p
(5)
El término sen(Qʌ[兾p) es 0 en x p, x 0 y x p, entonces la serie de senos (4)
converge a 0 en esos puntos sin importar si fHVWiGH¿QLGDHQHVWRVSXQWRV
EJEMPLO 1
y
Desarrolle f (x) x, 2 x 2 en una serie de Fourier.
x
y = x, −2 < x < 2
FIGURA 11.3.3 Función impar en el
ejemplo 1.
Desarrollo en una serie de senos
SOLUCIÓN (O H[DPHQ GH OD ¿JXUD PXHVWUD TXH OD IXQFLyQ HV LPSDU HQ HO
intervalo (2, 2) así que desarrollamos fHQXQDVHULHGHVHQRV,GHQWL¿FDQGRp 4
tenemos p 2. Por lo que la ecuación (5), después de integrar por partes, es
2
n
4( 1) n 1
bn
x sen
x dx
.
2
n
0
( 1) n 1
n
sen
x.
(6)
n
2
n 1
La función del ejemplo 1 satisface las condiciones del teorema 11.2.1. Por tanto la
serie (6) converge a la función en el intervalo (2, 2) y la extensión periódica (de
SHULRGR VHPXHVWUDHQOD¿JXUD
Por tanto
f (x)
4
424
l
CAPÍTULO 11
SERIES DE FOURIER
y
−10
y
−8
−6
−4
−2
2
4
6
8
10
x
FIGURA 11.3.4 ([WHQVLyQSHULyGLFDGHODIXQFLyQTXHVHPXHVWUDHQOD¿JXUD
1
EJEMPLO 2
−π
Desarrollo en una serie de senos
x
π
1,
x 0
que es impar
1,
0 x
,
en el intervalo (ʌ, ʌ). Con p ʌ tenemos, de la expresión (5) que,
(QOD¿JXUDVHPXHVWUDODIXQFLyQ f (x)
−1
FIGURA 11.3.5 Función impar en el
ejemplo 2.
bn
2
(1) sen nx dx
0
y por tanto
2
f (x)
1
n 1
y
1
1
0.5
x
-0.5
x
-0.5
-1
1
2
3
1
-3 -2 -1
a) S1(x)
b) S2(x)
y
y
1
2
3
1
0.5
0.5
x
x
-0.5
-0.5
-1
-1
1
-3 -2 -1
2
c) S3(x)
FIGURA 11.3.6
3
-3 -2 -1
1
d) S15(x)
( 1) n
sen nx.
n
(7)
2
3
FENÓMENO DE GIBBS (Q OD ¿JXUD
FRQ XQ 6$& KHPRV WUD]DGR ODV JUi¿cas de S1(x), S2(x), S3(x) y S15(x) de las sumas
parciales de los términos distintos de cero de
OD H[SUHVLyQ &RPR VH PXHVWUD HQ OD ¿JXUD G OD JUi¿FD GH OD VXPD SDUFLDO
de S15(x) tiene picos notables cerca de las
discontinuidades en x 0, x ʌ, x ʌ,
etcétera. Este “exceso” de las sumas parciales
SN, respecto a los valores de la función cerca
de un punto de discontinuidad no se empareja,
sino que permanece bastante constante, aunque
el valor de N sea muy grande. A este comportamiento de una serie de Fourier cerca de un punto
en el que f es discontinua se le llama fenómeno
de Gibbs.
La extensión periódica de f en el ejemplo
2, sobre todo el eje x, es una función serpenteante (vea los ejercicios de 7.4.3).
Sumas parciales de la serie seno (ecuación 7).
y
_L
( 1) n
,
n
y
0.5
-3 -2 -1
21
L
x
FIGURA 11.3.7 5HÀH[LyQSDU
DESARROLLOS EN SEMIINTERVALOS En el análisis anterior hemos sobreentendido que una función fHVWiGH¿QLGDHQXQLQWHUYDORFRQHORULJHQHQVXSXQWRPHGLR
es decir, (p, p). Sin embargo, en muchos casos nos interesa representar una función
fTXHHVWiGH¿QLGDVyORSDUD x L con una serie trigonométrica. Esto se puede
hacer de muchas formas distintas dando una GH¿QLFLyQarbitraria de f (x) para L
x 0. Por brevedad consideraremos los tres casos más importantes. Si y f (x) está
GH¿QLGDHQHOLQWHUYDOR L), entonces
i UHÀHMDUODJUi¿FDGHf respecto al eje y en (L, 0); la función ahora es par
en (L, L YHDOD¿JXUD R
ii UHÀHMDUODJUi¿FDGHf respecto al origen (L, 0); la función ahora es impar
en (L, L YHDOD¿JXUD R
iii 'H¿QLUf en (L, 0) con y f (x L YHDOD¿JXUD
11.3
y
_L
L
x
FIGURA 11.3.8 5HÀH[LyQLPSDU
y
_L
L
x
SERIES DE FOURIER DE COSENOS Y DE SENOS
l
425
2EVHUYHTXHHQORVFRH¿FLHQWHVGHODVVHULHV \ VyORVHXWLOL]DODGH¿QLFLyQGH
la función en (0, p) (esto es, la mitad del intervalo (p, p)). Por esta razón, en la práctica
QRKD\QHFHVLGDGGHUHÀHMDUFyPRVHGHVFULELyHQi) y en ii 6LVHGH¿QHf en 0 x
LVLPSOHPHQWHLGHQWL¿FDPRVODPLWDGGHOSHULRGRRVHPLSHULRGRFRPRODORQJLWXGGHO
intervalo p L 7DQWR ODV IyUPXODV \ GH ORV FRH¿FLHQWHV FRPR ODV VHULHV
correspondientes dan una extensión periódica par o impar de periodo 2L de la función
original. Las series de cosenos y senos que se obtienen de esta manera se llaman desarrollos en semiintervalos. Por último, en el caso iii), igualamos los valores de la función en
el intervalo (L, 0) con los del intervalo (0, L). Como en los dos casos anteriores no hay
necesidad de hacerlo. Se puede demostrar que el conjunto de funciones en la ecuación
GHODVHFFLyQHVRUWRJRQDOHQHOLQWHUYDOR>a, a 2p] para todo número real a.
Eligiendo a p, obtenemos los límites de integración en las ecuaciones (9), (10) y (11)
de esa sección. Pero para a 0, los límites de integración son de x 0 a x 2p. Por lo
que si fHVWiGH¿QLGDHQHOLQWHUYDOR L LGHQWL¿FDPRVp L o p L兾2. La serie de
Fourier resultante dará la extensión periódica de f con periodo L. De esta forma los valores
para los que converge la serie serán los mismos en (L, 0) que en (0, L).
f (x) = f (x + L)
FIGURA 11.3.9 5HÀH[LyQLGHQWLGDG
EJEMPLO 3
Desarrollo en tres series
Desarrolle f (x) x2, 0 x L,
a) En una serie de cosenos b) en una serie de senos c) en una serie de Fourier.
y
y = x ,0<x<L
SOLUCIÓN (QOD¿JXUDVHSUHVHQWDODJUi¿FDGHHVWDIXQFLyQ
a) Tenemos
L
x
FIGURA 11.3.10 La función no es
impar ni par.
2
L
a0
L
2 2
L,
3
x2 dx
0
2
L
an
L
x2 cos
0
n
x dx
L
4L 2 ( 1) n
,
n2 2
donde hemos integrado por partes dos veces en la evaluación de an.
Por tanto
L2
3
f (x)
4L 2
2
( 1) n
n
cos
x.
2
n
L
1
n
(8)
b) En este caso debemos nuevamente integrar por partes dos veces:
bn
Por tanto
2
L
L
x 2 sen
0
2L 2
f (x)
2L 2 ( 1) n
n
n
x dx
L
n 1
( 1) n
n
1
2
3
n
2
1
[( 1) n
4L 2
[( 1) n
n3 3
1] sen
1].
n
x.
L
(9)
c) Con p L兾2, 1兾p 2兾L y Qʌ兾p 2Qʌ兾L, tenemos
a0
2
L
y
Por tanto
f (x)
L
x2 dx
0
2 2
L,
3
bn
2
L
2
2
L
3
L
an
L
x 2 sen
0
n 1
2
L
L
x2 cos
0
2n
x dx
L
1
2n
cos
x
n2
L
2n
x dx
L
L2
,
n2 2
L2
.
n
1
2n
sen
x .
n
L
(10)
Las series (8), (9) y (10) convergen hacia la extensión periódica par de periodo 2L de f,
la extensión periódica impar de periodo 2L de f y la extensión periódica de periodo L de
f UHVSHFWLYDPHQWH (Q OD ¿JXUD VH SUHVHQWDQ ODV JUi¿FDV GH HVDV H[WHQVLRQHV
periódicas.
426
l
CAPÍTULO 11
SERIES DE FOURIER
y
−4L −3L −2L −L
L
2L
3L
4L
x
a) Serie del coseno
FUERZA IMPULSORA PERIÓDICA Algunas veces las series de
Fourier son útiles para determinar una solución particular de la ecuación
diferencial que describe un sistema físico en el que la entrada o fuerza
impulsora f (t) es periódica. En el siguiente ejemplo encontraremos una
solución particular de la ecuación diferencial
y
m
−4L −3L −2L −L
L
2L
3L
4L
x
d 2x
dt 2
(11)
f (t)
kx
representando primero f por el desarrollo en serie de senos en un semiintervalo y después suponiendo una solución particular de la forma
b) Serie del seno
y
xp (t)
Bn sen
n 1
− 4L −3L −2L −L
L
2L
3L
4L
x
n
t.
p
(12)
FIGURA 11.3.11 La misma función sobre (0, L) pero
con diferentes extensiones periódicas.
c) Serie de Fourier
EJEMPLO 4
Solución particular de una ED
Un sistema resorte-masa no amortiguado en el que la masa es m 161 slug y la constante
del resorte es k 4 lb兾pie, es impulsado por una fuerza externa f (t) de periodo 2 como se
PXHVWUDHQOD¿JXUD$XQTXHODIXHU]Df (t) actúa sobre el sistema cuando t 0, obVHUYHTXHVLVHH[WLHQGHODJUi¿FDGHODIXQFLyQKDFLDODSDUWHQHJDWLYDGHOHMHt para que su
SHULRGRVHDREWHQHPRVXQDIXQFLyQLPSDU(QWpUPLQRVSUiFWLFRVHVWRVLJQL¿FDTXHVyOR
necesitamos encontrar el desarrollo en una serie de senos en un semiintervalo de f (t) ʌW,
0 t 1. Con p 1 utilizando la ecuación (5) e integrando por partes se tiene que
1
bn
2
2( 1) n 1
.
n
t sen n t dt
0
De la ecuación (11) la ecuación diferencial de movimiento es
1 d 2x
16 dt 2
f (t)
π
4x
n
2( 1) n
n
1
1
(13)
sen n t.
Para encontrar una solución particular xp(t) de la ecuación (13), sustituimos en la ecuaFLyQ HLJXDODPRVORVFRH¿FLHQWHVGHVHQQʌW. Así obtenemos
1
2
3
4
5
t
−π
FIGURA 11.3.12 Función periódica
forzada para el sistema resorte-masa.
1 2
n
16
Por tanto
2
4 Bn
2( 1) n
n
xp (t)
n
1
32( 1) n
n2
1 n(64
o
Bn
32( 1) n
n(64 n2
1
2
)
.
1
2
)
sen n t.
(14)
Observe que en la solución (14) no hay entero n 1 para el cual el denominador de Bn,
que es 64 n2ʌ2, sea cero. En general, si existe un valor de n, digamos N, para el cual
1k>m, entonces el estado del sistema que describe la ecuación
1ʌ兾p Ȧ, donde
(11) es un estado de resonancia pura. Es decir, tenemos resonancia pura si el desarrollo de
la función f (t) de la fuerza impulsora en serie de Fourier contiene un término sen(1ʌ兾L)t
(o cos(1ʌ兾L)t) que tenga la misma frecuencia que la de las vibraciones libres.
Por supuesto, si la extensión de la fuerza impulsora f con periodo 2p sobre el eje
negativo de t da como resultado una función par, entonces desarrollamos f en una serie
de cosenos.
11.3
EJERCICIOS 11.3
1. f (x) sen 3x
2. f (x) x cos x
3. f (x) x 2 x
4. f (x) x 3 4x
5. f (x) e 兩 x兩
6. f (x) e x ex
7. f (x)
8. f (x)
x
x
9. f (x) x 3,
0x2
10. f (x)
1
0
0
1
x
x
5,
5,
2
0
0
2
x
x
x5
En los problemas 11 a 24 desarrolle cada función dada en una
serie adecuada de cosenos o senos.
1,
1,
11. f (x)
12. f (x)
1,
0,
1,
2
1
1
1
x
x
x
1 x 1
x
x
1,
1,
20. f (x)
x
x
1,
1,
21. f (x)
22. f (x)
23. f (x)
1,
x,
x,
1,
2
1
0
1
,
x,
,
2
1
2
x
x
1
2
0
1
1
2
x
x
1
2
1
27. f (x) cos x,
0 x ʌ兾2
28. f (x) sen x,
0xʌ
29. f (x)
0
>2
x,
x,
0,
x
0
31. f (x)
x,
1,
0
1
x
x
1
2
32. f (x)
1,
2
x,
0
1
x
x
x
x
,
>2
x
x
30. f (x)
36. f (x) x,
2
1
2
0x1
0x2
0 x 2ʌ
0xʌ
37. f (x) x 1,
0x1
0x2
0
38. f (x) 2 x,
0
x
x
1
0
x
x
0
1
En los problemas 39 y 40, proceda como en el ejemplo 4 y
encuentre una solución particular xp(t) de la ecuación (11)
cuando m 1, k 10 y la fuerza impulsora f (t) es la que se
indica. Suponga que cuando f (t) se extiende hacia el eje negativo de t en forma periódica, la función resultante es impar.
1
x
x
x
x
0
1
2
x
x
x
39.
f (t)
5,
5,
40. f (t) 1 t,
2
sen x , ʌ x ʌ
24. f (x) cos x,
0,
1,
35. f (x) x 2,
ʌ x ʌ
19. f (x)
26. f (x)
0
En los problemas 35 a 38 desarrolle la función dada en una
serie de Fourier.
16. f (x) x x , 1 x 1
17. f (x) ʌ2 x 2, ʌ x ʌ
18. f (x) x 3,
1,
0,
34. f (x) x(2 x),
13. f (x)
x , ʌ x ʌ
14. f (x) x, ʌ x ʌ
15. f (x) x 2,
25. f (x)
33. f (x) x 2 x,
1
2
427
En los problemas 25 a 34, encuentre los desarrollos en series
de cosenos o senos en un semiintervalo de la función dada.
0
x
x
0
l
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-18.
En los problemas 1 a 10 determine si la función es par, impar
o ni una ni otra.
x 2,
x 2,
SERIES DE FOURIER DE COSENOS Y DE SENOS
ʌ兾2 x ʌ兾2
0
t
t
2
0 t 2;
; f (t
2 )
f (t)
f (t 2) f (t)
En los problemas 41 y 42 proceda como en el ejemplo 4
para encontrar una solución particular xp(t) de la ecuación
(11) cuando m 14, k 12, y la fuerza impulsora f (t) dada.
Suponga que cuando f (t) se extiende a valores negativos de t
en forma periódica, la función resultante es par.
428
l
CAPÍTULO 11
41. f (t) 2ʌW t 2,
42. f (t)
t,
1
0 t 2ʌ;
0
t,
SERIES DE FOURIER
1
2
t
t
1
2
f (t 2ʌ) f (t)
; f (t
1
1)
f (t)
43. a) Resuelva la ecuación diferencial del problema 39,
x
10x f (t), sujeta a las condiciones iniciales
x(0) 0, x(0) 0.
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQx(t)
del inciso a).
44. a) Resuelva la ecuación diferencial del problema 41,
1
12x f (t), sujeta a las condiciones iniciales
4 x
x(0) 1, x(0) 0.
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQx(t)
del inciso a).
45. Suponga que una viga uniforme de longitud L está simplemente apoyada en x 0 y x L. Cuando la carga por
unidad de longitud es w(x) w0x兾L, 0 x L, entonces
ODHFXDFLyQGLIHUHQFLDOGHODÀH[LyQy(x) es
4
d y w0 x
,
dx 4
L
donde E, I y w0 son constantes. (Vea la ecuación (4) de la
sección 5.2).
a) Desarrolle w(x) en una serie de senos en un semiintervalo.
b) Utilice el método del ejemplo 4 para encontrar una
solución particular yp(x) de la ecuación diferencial.
EI
46. 3URFHGD FRPR HQ HO SUREOHPD SDUD HQFRQWUDU OD ÀHxión, yp(x), cuando la carga por unidad de longitud está
GDGDHQOD¿JXUD
w (x)
w0
donde k es el módulo del cimiento. Suponga que la viga
\HOFLPLHQWRHOiVWLFRWLHQHQORQJLWXGLQ¿QLWD HVWRHVTXH
x ) y que la carga por unidad de longitud es la
función periódica
w(x)
0,
w0 ,
0
L
x
x
x
>2
> 2, w(x
2 )
w(x).
Utilice el método del ejemplo 4 para determinar una solución particular yp(x) de la ecuación diferencial.
Problemas para analizar
48. Demuestre las propiedades a), c), d), f) y g) del teorema
11.3.1.
49. Sólo existe una función que es al mismo tiempo par e
impar. ¿Cuál es?
50. Como sabemos del capítulo 4, la solución general de
la ecuación diferencial del problema 47 es y yc yp.
Analice cómo se puede fundamentar en física que la solución del problema 47 es solamente yp >Sugerencia:
Considere y yc yp conforme x → ].
Tarea para el laboratorio de computación
(QORVSUREOHPDV\XVHXQ6$&SDUDWUD]DUODVJUi¿FDV
de las sumas parciales {SN(x)} de la serie trigonométrica respectiva. Experimente con distintos valores de N\FRQJUi¿cas en diferentes intervalos del eje x8WLOLFHVXVJUi¿FDVSDUD
proponer una expresión de forma cerrada para una función f
GH¿QLGDHQ x L que esté representada por la serie.
51. f (x)
L/3 2L/3
>2
>2
4
n 1
( 1) n
n2
1
x
1
cos nx
2( 1) n
sen nx
n
FIGURA 11.3.13 *Ui¿FDGHOSUREOHPD
47. Cuando una viga uniforme está soportada por un cimiento
elástico y sujeta a una carga w(x) por unidad de longitud,
ODHFXDFLyQGLIHUHQFLDOGHVXÀH[LyQy(x) es
EI
d4y
dx 4
ky
w(x),
52. f (x)
1
4
4
2
n
1
1
2
1n
cos
n
2
cos
n
x
2
53. ¿Es única su respuesta del problema 51 o del 52? Dada
una función fGH¿QLGDHQXQLQWHUYDORVLPpWULFRUHVSHFWR
al origen (a, a) que tiene la misma serie trigonométrica
a) como en el problema 51,
b) como en el problema 52.
11.4
11.4
PROBLEMA DE STURM-LIOUVILLE
l
429
PROBLEMA DE STURM-LIOUVILLE
REPASO DE MATERIAL
l En la sección 5.2 se presentaron los conceptos de eigenvalores y eigenvectores. Se le recomienda
mucho que repase esta sección (especialmente el ejemplo 2).
INTRODUCCIÓN En esta sección estudiaremos algunos tipos especiales de problemas con valores en la frontera en los que la ecuación diferencial ordinaria en el problema contiene un parámetro
Ȝ. Los valores de Ȝ para los que el PVF tiene soluciones no triviales llamados eigenvalores y las
soluciones correspondientes se llaman eigenfunciones. Los problemas con valores en la frontera de
esta clase son especialmente importantes en los capítulos 12 y 13. En esta sección también vemos
que existe una conexión entre los conjuntos ortogonales y las eigenfunciones de un problema con
valores en la frontera.
REPASO DE LAS ED Por conveniencia, repasaremos aquí algunas EDO y sus soluciones generales que se presentarán con frecuencia en las secciones y capítulos siguientes. El símbolo Į representa una constante.
(FXDFLRQHVFRQFRH¿FLHQWHVFRQVWDQWHV 6ROXFLRQHVJHQHUDOHV
y Į\ 0
y Į2y 0,
Į
0
y Į2y 0,
Į
0
y c 1eĮ[
y c 1 cos Į[ c 2 sen Į[
y
y
Ecuación de Cauchy-Euler
c1 e a x c 2 ea x, o
c1 cosh x c 2 senh x
Soluciones generales, x
0
c1 x a c 2 x a, a
a
c1 c 2 ln x,
0
0
Ecuación paramétrica de Bessel (v 0)
Solución general, x
0
xy y Į2xy 0,
y c 1J 0(Į[) c 2Y 0(Į[)
Ecuación de Legendre
(n 0, 1, 2, . . .)
Las soluciones particulares
son polinomios
(1 x 2)y 2xy n(n 1)y 0,
y P 0(x) 1,
y P 1(x) x,
y P2 (x) 12 (3x 2
x 2y xy Į2y 0,
Į0
y
y
1), . . .
Considerando las dos formas de la solución general de y Į2y 0, en el ejemplo
1 haremos uso inmediatamente de la siguiente regla informal así como en análisis
futuros:
Esta regla será útil en los capítulos
12 a 14.
Utilice la forma exponencial y c1eĮ[ c2eĮ[ cuando el dominio de x es un interYDORLQ¿QLWRRVHPLLQ¿QLWRXWLOLFHODIRUPDKLSHUEyLFD\ c1FRVKĮ[ c2VHQK
Į[FXDQGRHOGRPLQLRGH[HVXQLQWHUYDOR¿QLWR
EIGENVALORES Y EIGENFUNCIONES Las funciones ortogonales surgen al resolver ecuaciones diferenciales. Además, se puede generar un conjunto ortogonal de
funciones al resolver un problema con valores en la frontera con dos puntos que impli-
430
l
CAPÍTULO 11
SERIES DE FOURIER
que una ecuación diferencial de segundo orden lineal que tenga un parámetro Ȝ. En el
ejemplo 2 de la sección 5.2, vimos que el problema con valores en la frontera
y
0,
y
0,
y(0)
y(L)
0,
(1)
tiene soluciones no triviales sólo cuando el parámetro Ȝ toma los valores Ȝn n2ʌ2兾L2,
n 1, 2, 3, . . . , llamados eigenvalores. Las correspondientes soluciones no triviales
yn c2 sen(Qʌ[兾L) o simplemente yn sen(Qʌ[兾L) se llaman eigenfunciones del problema. Por ejemplo, para el problema con valores en la frontera (1),
no es un eigenvalor
y 2y 0,
PVF:
y(0) 0,
y0
Solución trivial:
y(L) 0
nunca es una eigenfunción
es un eigenvalor (n 3)
9p2
y ––––
y 0, y(0) 0, y(L) 0
L2
Solución no trivial:
y3 sen(3px/L) eigenfunción
PVF:
3DUDQXHVWURV¿QHVHQHVWHFDStWXORHVLPSRUWDQWHUHFRQRFHUTXHHOFRQMXQWR^VHQ Qʌ[兾L)},
n HVHOFRQMXQWRRUWRJRQDOGHIXQFLRQHVHQHOLQWHUYDOR>L] que se usa
como base para la serie de Fourier de senos. Vea el problema 10 de los ejercicios 11.1.
EJEMPLO 1
Eigenvalores y eigenfunciones
Considere el problema con valores en la frontera
y
0,
y
y (0)
0,
y (L)
0.
(2)
Como en el ejemplo 2 de la sección 5.2 hay tres posibles casos para el parámetro Ȝ:
cero, negativo o positivo; esto es, Ȝ 0, Ȝ Į2 0 y Ȝ Į2 0, donde Į 0. La
solución de las ED
0,
y
y
2
a y
0,
y
a2 y
0,
(3)
0,
2
a,
a2,
(4)
(5)
son, respectivamente,
y
c1
y
c1 cosh ax
y
c1 cos ax
(6)
c 2 x,
c 2 senh ax,
c 2 sen ax.
(7)
(8)
Cuando las condiciones en la frontera, y(0) 0, y(L) 0 se aplican a cada una de estas
soluciones, de la ecuación (6) se obtiene y c1, de la ecuación (7) sólo se obtiene y 0 y
de la ecuación (8) se obtiene y c1 cos Į[ suponiendo que Į Qʌ兾L, n 1, 2, 3, . . .
Puesto que y c1 satisface que la ED en (3) y las condiciones de frontera para cualquier
elección de c1 distinta de cero, concluimos que Ȝ 0 es un eigenvalor. Por lo que los eigenvalores y las correspondientes eigenfunciones del problema son Ȝ0 0, y0 c1, c1
2
n2 2 L2, n 1, 2, . . . , yn c1 cos (Qʌ[兾L), c1 0. Se puede, si se
0y n
n
desea, tomar c1 1 en cada caso. Observe también que la eigenfunción y0 1 correspondiente al eigenvalor Ȝ0 0 se puede incorporar a la familia yn cos (Qʌ[兾L) si hacemos
que n 0. El conjunto {cos (Qʌ[兾L)}, n HVRUWRJRQDOHQHOLQWHUYDOR>
L]. En el problema 3 de los ejercicios 11.4 se le pedirá completar los detalles.
11.4
PROBLEMA DE STURM-LIOUVILLE
l
431
PROBLEMA REGULAR DE STURM-LIOUVILLE Los problemas (1) y (2) son
casos especiales de un problema importante con valores en la frontera de dos puntos.
Sean p, q, r y rIXQFLRQHVGHYDORUUHDOFRQWLQXDVHQXQLQWHUYDOR>a, b] y sean r(x)
0 y p(x) 0 para todo x en el intervalo. Entonces
Resuelva:
Sujeto a:
d
[r(x)y ]
dx
(q(x)
p(x))y
0
(9)
A1 y(a)
B1 y (a)
0
(10)
A2 y(b)
B2 y (b)
0
(11)
se dice que es un problema regular de Sturm-Liouville/RVFRH¿FLHQWHVHQODVFRQGLciones de frontera (10) y (11) se suponen reales e independientes de Ȝ. Además, A1 y B1 no
son iguales a cero y A2 y B2 no son iguales a cero. Los problemas con valores en la fronWHUDHQ \ VRQSUREOHPDVUHJXODUHVGH6WXUP/LRXYLOOH'H SRGHPRVLGHQWL¿FDU
r(x) 1, q(x) 0 y p(x) 1 en la ecuación diferencial (9); en la condición frontera (10)
LGHQWL¿FDPRVa 0, A1 1, B1 0, y en (11), b L, A2 1, B2 0. De (2) las identi¿FDFLRQHVVHUiQa 0, A1 0, B1 1 en (10), b L, A2 0, B2 1 en (11).
La ecuación diferencial (9) es lineal y homogénea. Las condiciones de frontera
en (10) y (11), ambas una combinación lineal de y y y son iguales a cero en un punto
y son también homogéneas. Una condición de frontera tal como A2y(b) B2y(b)
C2, donde C2 es una constante diferente de cero, es no homogénea. Un problema con
valores en la frontera que consiste en una ecuación diferencial lineal homogénea y de
condiciones en la frontera homogéneas es, por supuesto, llamado un PVF homogéneo;
de otra manera, es no homogéneo. Las condiciones en la frontera (10) y (11) se llaman
separadas porque cada condición implica sólo un punto en la frontera.
Puesto que un problema regular de Sturm-Liouville es un PVF homogéneo, tiene
siempre la solución trivial y 0. Sin embargo, esta solución no es de interés para nosotros. Como en el ejemplo 1, al resolver uno de estos problemas tratamos de buscar
números Ȝ (eigenvalores) y soluciones no triviales y que dependan de Ȝ (eigenfunciones).
PROPIEDADES El teorema 11.4.1 es una lista de las propiedades más importantes
del problema regular de Sturm-Liouville. Sólo demostraremos la última propiedad.
TEOREMA 11.4.1 Propiedades del problema regular de Sturm-Liouville
a) (
[LVWHXQQ~PHURLQ¿QLWRGHHLJHQYDORUHVUHDOHVTXHVHSXHGHQRUGHQDUHQ
forma creciente, Ȝ1 Ȝ2 Ȝ3 . . . Ȝn . . . tal que Ȝn → conforme n
→ .
b) Para cada eigenvalor existe sólo una eigenfunción (excepto los múltiplos
diferentes de cero).
c) Las eigenfunciones que corresponden a diferentes eigenvalores son linealmente independientes.
d) El conjunto de eigenfunciones que corresponde al conjunto de los eigenvalores es ortogonal respecto a la función de peso p(x) en el intervalo
>a, b].
DEMOSTRACIÓN DE d) Sean ym y yn eigenfunciones correspondientes a los eigenvalores Ȝm y Ȝn, respectivamente. Entonces
d
[r(x)y m ]
dx
d
[r(x)y n ]
dx
(q(x)
(q(x)
m p(x))ym
0
(12)
n p(x))y n
0.
(13)
432
CAPÍTULO 11
l
SERIES DE FOURIER
Multiplicando la ecuación (12) por yn y la ecuación (13) por ym y restando las dos
ecuaciones se obtiene
(
m
n ) p(x) ym yn
ym
d
[r(x)y n ]
dx
yn
d
[r(x)y m ] .
dx
Integrando por partes este último resultado desde x a hasta x b obtenemos
b
(
n)
m
p(x)ym yn dx
r(b)[ym (b)y n (b)
yn (b)y m (b)]
r(a)[ym (a)y n (a)
(14)
yn (a)ym (a)].
a
Ahora las eigenfunciones ym y yn deben satisfacer ambas condiciones a la frontera (10)
y (11). En particular, de (10) se tiene que
A1 ym (a)
B1 y m (a)
0
A1 yn (a)
B1 y n (a)
0.
Para que A1 y B1 satisfagan este sistema, ambas distintas de cero, el determinante de
ORVFRH¿FLHQWHVGHEHVHULJXDODFHUR
ym (a)y n (a)
yn (a)y m (a)
0.
Con un argumento similar aplicado a (11) también se obtiene
ym (b) y n (b)
yn (b) y m (b)
0.
Puesto que los dos miembros del lado derecho de (14) son iguales a cero, hemos establecido la relación de ortogonalidad
b
p(x)ym (x)yn (x) dx
0,
m
n.
(15)
a
EJEMPLO 2
Un problema regular de Sturm-Liouville
Resuelva el problema con valores en la frontera
y
x1
x2
x3
0,
y(0)
0,
y(1)
y (1)
0.
(16)
SOLUCIÓN Procedemos exactamente como en el ejemplo 1 considerando tres casos
en los que el parámetro Ȝ podría ser cero, negativo o positivo: Ȝ 0, Ȝ Į2 0, y
Ȝ Į2 0 donde Į 0. Las soluciones de la ED para estos valores se muestran en
las ecuaciones (3) a (5). Para los casos Ȝ 0, Ȝ Į2 0 encontramos que los PVF
en (16) sólo tienen la solución trivial y 0. Para Ȝ Į2 0 la solución general de la
ecuación diferencial es y c1 cos Į[ c2 sen Į[. Ahora la condición y(0) 0 implica que
en esta solución c1 0, así nos quedamos con y c2 sen Į[. La segunda condición y(1)
y(1) 0 se satisface si
c 2 sen a c 2 a cos a 0.
y = tan x
y
y
x4
x
En vista del requisito que c2 0, la última ecuación se puede escribir como
tan a
y = −x
FIGURA 11.4.1 Raíces positivas x1,
x2, x3, . . . de tan x x.
a.
(17)
Si por un momento consideramos en (17) que tan x xHQWRQFHVHQOD¿JXUD
VHPXHVWUDODIDFWLELOLGDGGHTXHH[LVWDXQQ~PHURLQ¿QLWRGHUDtFHVHQSDUWLFXODUODV
coordenadas xGHORVSXQWRVGRQGHODJUi¿FDGHy xLQWHUVHFDHOQ~PHURLQ¿QLWRGH
UDPDVGHODJUi¿FDGHy tan x. Los eigenvalores del PVF (16) son entonces n a2n ,
donde Įn, n 1, 2, 3, . . . son las raíces positivas consecutivas Į1, Į2, Į3,. . . de (17).
Con ayuda de un SAC se muestra con facilidad que redondeando a cuatro decimales,
Į1 2.0288, Į2 4.9132, Į3 7.9787 y Į4 11.0855 y que las soluciones correspondientes son y1 sen 2.0288x, y2 sen 4.9132x, y3 sen 7.9787x y y4 sen 11.0855x. En
general, las eigenfunciones del problema son {sen Įnx}, n 1, 2, 3, . . .
11.4
PROBLEMA DE STURM-LIOUVILLE
l
433
,GHQWL¿FDQGRr (x) 1, q(x) 0, p(x) 1, A1 1, B1 0, A2 1, B2 1, vemos
que la ecuación (16) es un problema regular de Sturm-Liouville. Concluimos que {sen
Įnx}, n 1, 2, 3, . . . es un conjunto ortogonal respecto a la función de peso p(x) 1
HQHOLQWHUYDOR>@
En algunos casos se puede demostrar la ortogonalidad de las soluciones de (9) sin
QHFHVLGDGGHHVSHFL¿FDUXQDFRQGLFLyQHQODIURQWHUDHQx a y en x b.
PROBLEMA SINGULAR DE STURM-LIOUVILLE Existen otras condiciones importantes bajo las que buscamos las soluciones no triviales de la ecuación diferencial (9):
• r (a) 0, y una condición de frontera del tipo dado en (11) está dada
como x b;
• r (b) 0, y una condición de frontera del tipo dado en (10) está dada
como x a;
• r (a) r (b) 0, y no hay condición de frontera dada en x a o en
x b;
• r (a) r (b), y las condiciones de frontera y(a) y(b), y(a) y(b).
(18)
(19)
(20)
(21)
La ecuación diferencial (9) junto con una de las condiciones (18) a (20), se dice que
es un problema singular con valores en la frontera. La ecuación (9) con las condiciones dadas en (21) se dice que es un problema con valores en la frontera periódico (las
condiciones de frontera también se llaman periódicas). Observe que si decimos que
r(a) 0, entonces x a puede ser un punto singular de la ecuación diferencial y por
tanto, una solución de (9) puede crecer sin límite conforme x → a. Sin embargo, vemos
de (14) que si r(a) 0, no se necesita condición de frontera en x a para demostrar la
ortogonalidad de las eigenfunciones suponiendo que estas soluciones estén limitadas
en ese punto. Este último requisito asegura la existencia de las integrales que intervieQHQ6XSRQLHQGRTXHODVVROXFLRQHVGH HVWpQDFRWDGDVHQXQLQWHUYDORFHUUDGR>a,
b], podemos ver del examen de la ecuación (14) que
• si r(a) 0, entonces la relación de ortogonalidad (15) es válida,
(22)
sin ninguna condición dada en la frontera en x a;
• si r(b) 0, entonces la relación de ortogonalidad (15) es válida
(23)
sin ninguna condición dada en la frontera en x b;*
• si r(a) r(b) 0, entonces la relación de ortogonalidad (15) es válida
(24)
sin ninguna condición dada en la frontera en x a o en x b;
• si r(a) r(b), entonces la relación de ortogonalidad (15) es válida con
(25)
las condiciones en la frontera y(a) y(b), y(a) y(b).
Observe que un problema de Sturm-Liouville es singular cuando el intervalo que se
FRQVLGHUDHVLQ¿QLWR9pDQVHORVSUREOHPDV\GHORVHMHUFLFLRV
FORMA AUTOADJUNTA Realizando la derivación que se indica en (9), vemos
que la ecuación diferencial es igual a
r(x)y
r (x)y
(q(x)
p(x))y
0.
(26)
(OH[DPHQGHODHFXDFLyQ SRGUtDFRQGXFLUDFUHHUTXHHOFRH¿FLHQWHGDGRGHy es la
GHULYDGDGHOFRH¿FLHQWHGHy, y que existen pocas ecuaciones diferenciales que tengan
ODIRUPDGHODHFXDFLyQ 3RUORFRQWUDULRVLORVFRH¿FLHQWHVVRQFRQWLQXRV\a(x) 0
para toda x en algún intervalo, entonces cualquier ecuación diferencial de segundo orden
a(x)y
b(x)y
(c(x)
d(x))y
0
(27)
se puede escribir en la así llamada forma autoadjunta (9). Para esto básicamente procedemos como en la sección 2.3, donde reescribimos una ecuación homogénea lineal
d
de primer orden a1(x)y a0(x)y 0 en la forma
[ y] 0 dividiendo la ecuación
dx
*
Las condiciones (22) y (23) son equivalentes a elegir A1 0, B1 0 y A2 0, B2 0, respectivamente.
434
l
CAPÍTULO 11
SERIES DE FOURIER
entre a1(x) y después multiplicando por el factor integrante ȝ e 兰P(x)dx, donde, se supone que no hay factores comunes, P(x) a0(x)兾a1(x). Así que primero, dividimos
b(x)
la ecuación (27) por a(x). Los primeros dos términos son Y
Y
, donde
a(x)
enfatizamos que hemos escrito Y y. Segundo, multiplicamos esta ecuación por el factor integrante e 兰(b(x)兾a(x))dx, donde a(x) y b(x) se supone que no tienen factores en común:
e
(b (x) / a (x)) d x
Y
b(x)
e
a(x)
(b (x) / a (x)) d x
d
e
dx
Y
144444444244444443
derivada de un producto
(b (x) / a (x)) d x
d
e
dx
Y
(b (x) / a (x)) d x
.
y
En resumen, dividiendo la ecuación (27) entre a(x) y después multiplicando por e 兰(b(x)
, obtenemos
兾a(x))dx
e
(b / a) d x
b(x)
e
a(x)
y
(b / a) d x
c(x)
e
a(x)
y
d(x)
e
a(x)
(b / a) d x
(b / a) d x
y
0.
(28)
La ecuación (28) está en la forma deseada dada en la ecuación (26) y tiene la misma
forma de la ecuación (9):
兰(b/a)dx
d
c(x) 兰(b/a)dx
d(x) 兰(b/a)dx
–– e
y –––– e
l –––– e
y0
dx
a(x)
a(x)
[
] (
)
r(x)
q(x)
p(x)
Por ejemplo, para expresar 2y 6y Ȝ\ 0 en la forma autoadjunta, escribimos
1
3y
0 y después multiplicando por e 兰3dx e 3x. La ecuación resultante es
y
2y
r(x)
r(x)
p(x)
1
e3xy 3e3xy l – e3xy 0
2
o
[ ]
d
1
–– e3xy l – e3xy 0
dx
2
Ciertamente no es necesario escribir una ecuación diferencial de segundo orden
(27) en la forma autoadjunta (9) para resolverOD('3DUDQXHVWURV¿QHVXVDUHPRVOD
forma dada en la ecuación (9) para determinar la función de peso p(x) que se necesita
en la relación de ortogonalidad (15). Los dos ejemplos siguientes ilustran relaciones
de ortogonalidad para funciones de Bessel y para polinomios de Legendre.
EJEMPLO 3
Ecuación paramétrica de Bessel
En la sección 6.4 vimos que la solución general de la ecuación paramétrica de
Bessel de orden n es x2y xy (Į2x2 n2)y 0, donde n HV XQ HQWHUR ¿MR QR
negativo y Į es un parámetro positivo. La solución general de esta ecuación es y
c1Jn(Į[) c2Yn(Į[). Después de dividir la ecuación paramétrica de Bessel entre el
SULPHUFRH¿FLHQWHx2 y multiplicando la ecuación resultante por el factor integrante
e (1/x)dx e ln x x, x 0, obtenemos
xy
y
2
x
n2
y
x
0
o
d
[xy ]
dx
2
x
n2
y
x
0.
&RPSDUDQGRHVWH~OWLPRUHVXOWDGRFRQODIRUPDDXWRDGMXQWD
KDFHPRVODVLGHQWL¿FD2
ciones r (x) x, q(x) nx , Ȝ Į2 y p(x) x. Ahora r (0) 0 y de las dos soluciones
Jn(Į[) y Yn(Į[), sólo Jn(Į[) está acotada en x 0. Por lo que de la ecuación (22), el
11.4
PROBLEMA DE STURM-LIOUVILLE
435
l
conjunto {Jn(Įix)}, i 1, 2, 3, . . . , es ortogonal respecto a la función de peso p(x) x
HQXQLQWHUYDOR>b]. La relación de ortogonalidad es
b
xJn ( i x)Jn ( j x) dx
0,
(29)
j,
i
0
2
suponiendo que los Įi y por tanto los eigenvalores i
i , i VHGH¿QHQ
por medio de una condición en la frontera en x b del tipo dado en la ecuación (11):
El factor extra deĮ viene de la regla de la
cadena: d J (Į x) J (Į x) d Į x
Į Jn (Į x).
dx
n
n
A2 Jn (ab)
dx
0.*
B2 aJ n (ab)
(30)
Para cualquier elección de A2 y B2, ninguna igual a cero, se sabe que la ecuación (30) tiene un número infinito de raíces xi Įi b. Entonces los eigenvalores
2
son i
(xi > b)2. En el siguiente capítulo se tratará más acerca de los eii
genvalores.
EJEMPLO 4
Ecuación de Legendre
La ecuación diferencial de Legendre (1x2)y 2xy n(n l)y 0 es exactamente
de la forma dada en la ecuación (26) con r(x) 1 – x2 y r(x) 2x. Por lo que la
forma autoadjunta (9) es inmediata,
d
(1
dx
x2 )y
n(n
1)y
(31)
0.
'H OD HFXDFLyQ SRGHPRV DGHPiV LGHQWL¿FDU q(x) 0, Ȝ n(n 1) y p(x) 0.
Recuerde de la sección 6.3 que cuando n 0, 1, 2, . . . la ED de Legendre tiene soluciones
polinomiales Pn(x). Ahora se puede expresar la observación de que r (1) r (1) 0
junto con el hecho de que los polinomios de Legendre Pn(x) que son las únicas soluciones
GH TXHWLHQHQOtPLWHHQHOLQWHUYDORFHUUDGR>1, 1] por lo que se concluye de la ecuación (24) que el conjunto {Pn(x)}, n 0, 1, 2, . . . es ortogonal respecto a la función de peso
p(x) 1HQ>1, 1]. La relación de ortogonalidad es
1
Pm (x)Pn (x) dx
0,
m
n.
1
EJERCICIOS 11.4
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-19.
En los problemas 1 y 2, encuentre las eigenfunciones y la ecuaFLyQTXHGH¿QHORVHLJHQYDORUHVGHFDGDSUREOHPDFRQYDORUHV
en la frontera. Use un SAC para calcular el valor aproximado
de los cuatro primeros eigenvalores, Ȝ1, Ȝ2, Ȝ3 y Ȝ4. De las
eigenfunciones que corresponden a esas aproximaciones.
1. y Ȝ\ 0,
y(0) 0, y(1) y(1) 0
2. y Ȝ\ 0,
y(0) y(0) 0, y(1) 0
3. Considere y Ȝ\ 0 sujeta a y(0) 0, y(L) 0.
Demuestre que las eigenfunciones son
2
1, cos x, cos
x, . . . .
L
L
(VWHFRQMXQWRTXHHVRUWRJRQDOHQ>L], es la base de la
serie de Fourier de cosenos.
4. Considere la ecuación y Ȝ\ 0, sujeta a las condiciones periódicas en la frontera y(L) y(L), y(L)
y(L). Demuestre que las eigenfunciones son
1, cos
L
x, cos
2
2
3
x, . . . , sen x, sen
x, sen
x, . . . .
L
L
L
L
(VWHFRQMXQWRTXHHVRUWRJRQDOHQ>L, L], es la base de
las series de Fourier.
5. Encuentre la norma cuadrada de cada eigenfunción del
problema 1.
6. Demuestre que para las eigenfunciones del ejemplo 2,
'sen an x'2
1
[1
2
cos2an ].
436
CAPÍTULO 11
l
SERIES DE FOURIER
7. a) Encuentre los eigenvalores y las eigenfunciones del
problema con valores en la frontera
x2 y
xy
0,
y
0,
y(1)
8. a) Encuentre los eigenvalores y las eigenfunciones del
problema con valores en la frontera
y
y
0, y(0)
0,
y(2)
x2 y
0.
y(5)
b) Escriba la ecuación diferencial en la forma autoadjunta.
c) Dé una relación de ortogonalidad.
y
12. a) (
QFXHQWUHODVHLJHQIXQFLRQHV\ODHFXDFLyQTXHGH¿QH
los eigenvalores del problema con valores en la frontera
0.
b) Escriba la ecuación diferencial en la forma autoadjunta.
c) Dé una relación de ortogonalidad.
10. Ecuación diferencial de Hermite
y 2xy 2ny 0,
n 0, 1, 2, . . .
tiene soluciones polinomiales Hn(x). Escriba la ecuación en
su forma autoadjunta y dé una relación de ortogonalidad.
11. Considere el problema regular de Sturm-Liouville
d
(1
dx
y(0)
x2)y
0, y(1)
1
x2
y
0,
0.
a) Encuentre los eigenvalores y las eigenfunciones del
SUREOHPDFRQYDORUHVHQODIURQWHUD>Sugerencia: Sea
x tan ș y después utilice la regla de la cadena.]
b) Dé una relación de ortogonalidad.
11.5
0,
x
0,
Sea Ȝ Į2, Į 0.
b) Utilice la tabla 6.1 de la sección 6.4, encuentre los valores aproximados de los cuatro primeros eigenvalores, Ȝ1, Ȝ2, Ȝ3 y Ȝ4.
Problemas para analizar
13. Considere el caso especial del problema regular de Sturm/LRXYLOOHHQHOLQWHUYDOR>a, b]:
d
[r(x)y ]
dx
n 0, 1, 2, . . .
tiene soluciones polinomiales L(x). Escriba la ecuación en
su forma autoadjunta y dé una relación de ortogonalidad.
1)y
y está acotada en x 0, y(3) 0.
9. Ecuación diferencial de Laguerre
xy (1 x)y ny 0,
( x2
xy
y (a)
0,
p(x)y
y (b)
0,
0.
¿Es Ȝ XQHLJHQYDORUGHOSUREOHPD"'H¿HQGDVXUHVpuesta.
Tarea para el laboratorio de computación
14. a) Dé una relación de ortogonalidad para el problema de
Sturm-Liouville del problema 1.
b) Utilice un SAC como ayuda para comprobar la relación de ortogonalidad para las eigenfunciones y1 y y2
que corresponden a los dos primeros eigenvalores Ȝ1 y
Ȝ2, respectivamente.
15. a) Dé una relación de ortogonalidad para el problema 2 de
Sturm-Liouville.
b) Utilice un SAC como ayuda para comprobar la relación de ortogonalidad para las eigenfunciones y1 y y2
que correspondan a los dos primeros eigenvalores Ȝ1 y
Ȝ2, respectivamente.
SERIES DE BESSEL Y LEGENDRE
REPASO DE MATERIAL
l Debido a que los resultados de los ejemplos 3 y 4 de la sección 11.4 juegan un importante papel
en el análisis que sigue, se le recomienda que lea nuevamente estos ejemplos en conjunción con
las ecuaciones de la (6) a la (11) de la sección 11.1.
INTRODUCCIÓN La serie de Fourier, la serie de Fourier de cosenos y la serie de Fourier de senos
son tres formas de desarrollar una función en términos de un conjunto ortogonal de funciones. Pero
esos desarrollos de ninguna manera se limitan a conjuntos ortogonales de funciones trigonométricas.
En la sección 11.1 vimos que una función fGH¿QLGDHQXQLQWHUYDOR a, b) se puede desarrollar, al menos
formalmente, en términos de cualquier conjunto de funciones {n(x)} que sea ortogonal respecto a una
IXQFLyQGHSHVRHQ>a, b]. Muchos de estos desarrollos en series ortogonales o series de Fourier generalizadas surgen de problemas de Sturm-Liouville que, a su vez, se originan de intentos para resolver
ecuaciones diferenciales parciales lineales que sirven como modelos de sistemas físicos. Las series de
Fourier y los desarrollos en series ortogonales, así como las dos series que describiremos en esta sección,
reaparecen en consideraciones subsecuentes de estas aplicaciones en los capítulos 12 y 13.
11.5
11.5.1
SERIES DE BESSEL Y LEGENDRE
l
437
SERIE DE FOURIER-BESSEL
(Q HO HMHPSOR GH OD VHFFLyQ YLPRV TXH SDUD XQ YDORU ¿MR GH n funciones de
Bessel {Jn(Įix)}, i 1, 2, 3, . . . , es ortogonal respecto a la función de peso p(x) x
HQXQLQWHUYDOR>b] siempre que los ĮiHVWiQGH¿QLGRVSRUPHGLRGHXQDFRQGLFLyQ
de frontera de la forma
(1)
A2 Jn(ab) B2 aJn(ab) 0.
2
Los eigenvalores del correspondiente problema de Sturm-Liouville son i
i . De
(7) y (8) de la sección 11.1, la serie ortogonal o serie generalizada de Fourier del desarrollo de una función fGH¿QLGDHQ b), en términos de este conjunto ortogonal es
f (x)
(2)
ci Jn(ai x),
i 1
donde
ci
b
0 xJn( i x)
f (x) dx
.
'Jn( i x)'2
(3)
La norma cuadrada de la función Jn(Įix HVWiGH¿QLGDSRU GHODVHFFLyQ
b
'Jn( i x)'2
0
(4)
xJn2 ( i x) dx.
/DVHULH FRQFRH¿FLHQWHVGH¿QLGRVSRUODHFXDFLyQ VHOODPDserie de FourierBessel o simplemente, serie de Bessel.
RELACIONES DE RECURRENCIA DIFERENCIALES Estas relaciones de recurrencia diferenciales que se dieron en las ecuaciones (21) y (20) de la sección 6.3, son
IUHFXHQWHPHQWH~WLOHVHQODHYDOXDFLyQGHORVFRH¿FLHQWHV 3RUFRQYHQLHQFLDUHSURducimos estas relaciones aquí:
d n
[x Jn(x)] x nJn 1(x)
dx
d
[x n Jn (x)]
x n Jn 1(x).
dx
(5)
(6)
NORMA CUADRADA El valor de la norma cuadrada (4) depende de cómo los
2
eigenvalores i
i HVWiQGH¿QLGRV6Ly Jn(Į[), entonces del ejemplo 3 de la sección 11.4 sabemos que
d
n2
[xy ]
a2x
y 0.
dx
x
Despues de multiplicar por 2xy, esta ecuación se puede escribir como sigue:
d
[xy ]2
dx
(a2 x2
n2 )
d
[y]2
dx
0.
,QWHJUDQGRSRUSDUWHVHVWH~OWLPRUHVXOWDGRHQ>b] entonces obtenemos
b
2
2
xy2 dx
([xy ]2
(
2 2
x
b
n2)y2) .
0
0
Puesto que y Jn(Į[), el límite inferior es cero ya que Jn(0) 0 para n
para n ODFDQWLGDG>xy]2 Į2x2y2 es cero en x 0. Por lo que
b
2a2
xJn2 (ax) dx
0
a2 b2[Jn (ab)]2
(a2 b2
n2 )[Jn(ab)]2,
0. Además
(7)
donde hemos utilizado la regla de la cadena para escribir y Į-n(Į[).
Ahora consideremos tres casos de (1).
CASO I: Si elegimos A2 1 y B2 0, entonces (1) es
Jn (ab)
0.
(8)
438
l
CAPÍTULO 11
SERIES DE FOURIER
+D\ XQ Q~PHUR LQ¿QLWR GH UDtFHV SRVLWLYDV xi Įib GH YHD OD ¿JXUD
TXHGH¿QHORVĮi como Įi xi兾b. Los eigenvalores son positivos y están dados por
a2i
xi2>b 2 . No se obtienen eigenvalores nuevos a partir de las raíces negativas
i
de la ecuación (8) porque Jn(x) (l)n Jn(x). (Vea la página 252) El número 0 no
es un eigenvalor para cualquier n porque Jn(0) 0 para n 1, 2, 3, . . . y J0(0) 1.
En otras palabras, si Ȝ 0, llegamos a la función trivial (que nunca es una eigenfunción) para n 1,2, 3, . . . y para n 0, Ȝ 0 (o de forma equivalente,
Į 0) no satisface a la ecuación en (8). Cuando la ecuación (6) se escribe en la forma
xJn (x) nJn(x) xJn 1(x), de (7) y (8) se tiene que la norma cuadrada de Jn(Įix) es
b2 2
J (a b).
2 n 1 i
'Jn (ai x)'2
(9)
Si elegimos A2 K 0, y B2 b, entonces (1) es
CASO II:
abJn (ab)
hJn(ab)
(10)
0.
/D HFXDFLyQ WLHQH XQ Q~PHUR LQ¿QLWR GH UDtFHV SRVLWLYDV xi Įib para cada
entero positivo n 1, 2, 3, . . . Como antes, los eigenvalores se obtienen de
a2i
x2i > b2. l 0 no es eigenvalor para n 1, 2, 3, . . . Al sustituir ĮibJn
i
(Įib) K-n(Įib) en la ecuación (7), encontramos que la norma cuadrada de Jn(Įix)
es ahora
a2i b2
'Jn (ai x)'2
CASO III:
n2
2a2i
h2
(11)
Jn2 (ai b).
Si K 0 y n 0 en (10), los ĮiVHGH¿QHQDSDUWLUGHODVUDtFHVGH
J 0 (ab)
(12)
0.
Aun cuando esta ecuación es sólo un caso especial de (10), es el único caso para el
cual Ȝ 0 es un eigenvalor. Para ver esto, observemos que para n 0 el resultado en
(6) implica que J0(ĮE) 0 es equivalente a J1(ĮE) 0. Puesto que x1 Įib 0 es
una raíz de esta última ecuación, Į1 0 y como J0(0) 1 es no trivial, concluimos de
a21 x21>b2 que Ȝ1 0 es un eigenvalor. Pero obviamente, no podemos utilizar
1
(11) cuando Į1 0, K 0 y n 0. Sin embargo, de la norma cuadrada (4)
b
'1'2
x dx
0
Para Įi
b2
.
2
(13)
0 podemos utilizar (11) con K 0 y n 0:
b2 2
J (a b).
2 0 i
'J0 (ai x)'2
(14)
/D VLJXLHQWH GH¿QLFLyQ UHVXPH ODV WUHV IRUPDV GH OD VHULH FRUUHVSRQGLHQWHV D OD
norma cuadrada.
DEFINICIÓN 11.5.1
Serie de Fourier-Bessel
La serie de Fourier-Bessel de una función fGH¿QLGDHQHOLQWHUYDOR b) está
dada por:
i)
f (x)
ci Jn(ai x)
(15)
i 1
ci
2
2 2
b Jn 1(ai b)
b
xJn(ai x) f (x) dx,
0
donde los ĮiHVWiQGH¿QLGRVSRUJn(ĮE) 0.
(16)
11.5
ii)
SERIES DE BESSEL Y LEGENDRE
f (x)
l
439
(17)
ci Jn(ai x)
i 1
2a2i
ci
a2i b2
2
b
2
n
h
Jn2(ai b)
xJn(ai x)f (x) dx,
(18)
0
donde los ĮiHVWiQGH¿QLGRVSRUK-n(ĮE) ĮE-n(ĮE) 0.
iii)
f (x)
(19)
ci J0(ai x)
c1
i 2
2
b2
c1
b
2
2 2
b J0 (ai b)
x f (x) dx, ci
0
b
xJ0(ai x) f (x) dx,
(20)
0
donde los ĮiHVWiQGH¿QLGRVSRUJ0(ĮE) 0.
CONVERGENCIA DE UNA SERIE DE FOURIER-BESSEL Las condiciones de
VX¿FLHQFLDSDUDODFRQYHUJHQFLDGHXQDVHULHGH)RXULHU%HVVHOQRSUHVHQWDQUHVWULFciones particulares.
TEOREMA 11.5.1 Condiciones para la convergencia
Sean f y f FRQWLQXDVSRUSDUWHVHQHOLQWHUYDOR>b], entonces, para toda x
en el intervalo (0, b) la serie de Fourier-Bessel de f converge a f (x) en cualquier punto de continuidad. En un punto de discontinuidad, la serie de FourierBessel converge al promedio
f (x)
f (x)
2
donde f (x) y f (x) denotan el límite de f en x de derecha a izquierda.
EJEMPLO 1
Desarrollo en serie de Fourier-Bessel
Desarrolle f (x) x, 0 x 3, en una serie de Fourier-Bessel utilizando funciones de
Bessel de primer orden que satisfagan la condición de frontera J1(3Į) 0.
SOLUCIÓN 8VDPRVODHFXDFLyQ GRQGHORVFRH¿FLHQWHVci están dados por la
ecuación (16) con b 3.
ci
2
32 J 22(3ai)
3
x 2J1(ai x) dx.
0
Para evaluar esta integral hacemos t Įi x, dx dt兾Įi, x2
d
ción (5) en la forma [t2J2(t)] t2J1(t):
dt
ci
2
3 2
9ai J 2 (3ai )
3ai
0
d 2
[t J2(t)] dt
dt
t2>a2i , y usando la ecua-
2
.
ai J2(3ai)
Por tanto, el desarrollo deseado es
f (x)
2
i 1
1
J (a x).
ai J2(3ai ) 1 i
Se le pedirá en el problema 1 de los ejercicios 11.5 que encuentre los primeros cuatro
valores de los Įi para la serie de Fourier-Bessel.
440
CAPÍTULO 11
l
SERIES DE FOURIER
EJEMPLO 2
3
2.5
Desarrollo en serie de Fourier-Bessel
6LVHGH¿QHQORVĮi del ejemplo 1 con J1(3Į) Į-1(3Į) 0, entonces lo único que cambia en el desarrollo es el valor de la norma cuadrada. Multiplicando por 3 la condición
en la frontera se obtiene 3J1(3Į) 3Į-1(3Į) 0, que ahora coincide con la ecuación
(10) cuando K 3, b 3 y n 1. Por lo que, de las ecuaciones (18) y (17) se obtiene
respectivamente,
18ai J2(3ai)
ci
9a2i
8 J 12(3ai )
y
y
2
f (x)
18
i
1.5
1
0.5
0.5
1
1.5
2
2.5
x
3
a) S5 (x), 0 x 3
3
y
2
1
x
USO DE COMPUTADORAS Como las funciones de Bessel son “funciones incorporadas” en los SAC, es una tarea directa encontrar los valores aproximados de los
eigenvalores Įi\GHORVFRH¿FLHQWHVci en una serie de Fourier-Bessel. Por ejemplo,
en la ecuación (10) podemos considerar que xi Įib es una raíz positiva de la ecuación K-n(x) xJn(x) 0. Así en el ejemplo 2 hemos usado un SAC para determinar
las cinco primeras raíces positivas, xi de 3J1(x) xJ1(x) 0 y a partir de esas raíces
obtenemos los cinco primeros eigenvalores de Įi: Į1 x1兾3 0.98320, Į2 x2兾3
1.94704, Į3 x3兾3 2.95758, Į4 x4兾3 3.98538 y Į5 x5兾3 5.02078.
Conociendo las raíces xi 3Įi y los Įi, utilizamos nuevamente un SAC para calcular
los valores numéricos de J2(3a i ), J 12(3 i ),\ SRU ~OWLPR ORV FRH¿FLHQWHV ci. De esta
manera encontramos que la quinta suma parcial S5(x) de la representación en serie de
Fourier-Bessel de f (x) x, 0 x 3 en el ejemplo 2, es
S5(x)
-1
10
20
30
40
50
b) S10 (x), 0 x 50
FIGURA 11.5.1 *Ui¿FDVGHGRV
sumas parciales de una serie de FourierBessel.
ai J2(3ai)
J (a x).
8 J 12(3ai ) 1 i
2
1 9ai
4.01844 J1(0.98320x) 1.86937J1(1.94704x)
1.07106 J1(2.95758x) 0.70306 J1(3.98538x)
0.50343 J1(5.02078x).
(QOD¿JXUD D VHSUHVHQWDODJUi¿FDGHS5 [ HQHOLQWHUYDOR (QOD¿JXUD
O E KHPRVWUD]DGRODJUi¿FDGHS10(x) en el intervalo (0, 50). Observe que fuera del
LQWHUYDORGHGH¿QLFLyQ ODVHULHQRFRQYHUJHDXQDH[WHQVLyQSHULyGLFDGHf porque
las funciones de Bessel no son funciones periódicas. Véanse los problemas 11 y 12 de
los ejercicios 11.5.
11.5.2
SERIE DE FOURIER-LEGENDRE
Del ejemplo 4 de la sección 11.4, sabemos que el conjunto de polinomios de Legendre
{Pn(x)}, n 0, 1, 2, . . . , es ortogonal respecto a la función de peso p(x) 1 en el inWHUYDOR>1, 1]. Además, se puede demostrar que la norma cuadrada de un polinomio
Pn(x) depende de n en la siguiente forma:
1
2
.
2n 1
El desarrollo de una función en serie ortogonal en términos de polinomios de Legendre
VHUHVXPHHQODVLJXLHQWHGH¿QLFLyQ
Pn2(x) dx
'Pn(x)'2
1
DEFINICIÓN 11.5.2
Serie de Fourier-Legendre
La serie de Fourier-Legendre de una función f en el intervalo (1, 1) está
dada por
cn Pn(x),
f (x)
(21)
n 0
donde
cn
2n
1
2
1
f (x)Pn(x) dx.
1
(22)
11.5
SERIES DE BESSEL Y LEGENDRE
l
441
CONVERGENCIA DE UNA SERIE DE FOURIER-LEGENDRE En el siguiente teoUHPDVHSUHVHQWDQODVFRQGLFLRQHVGHVX¿FLHQFLDSDUDODFRQYHUJHQFLDGHXQDVHULHGH
Fourier-Legendre.
TEOREMA 11.5.2 Condiciones de convergencia
Sean f y f FRQWLQXDVSRUSDUWHVHQHOLQWHUYDOR>1, 1], entonces, para toda x
en el intervalo (1, 1) la serie de Fourier-Bessel de f converge a f (x) en cualquier punto de continuidad. En un punto de discontinuidad, la serie de FourierBessel converge al promedio
f (x) f (x)
2
donde f (x) y f (x) denotan el límite de f en x de derecha a izquierda.
EJEMPLO 3
Desarrollo en una serie de Fourier-Legendre
Escriba los cuatro primeros términos distintos de cero de la serie de FourierLegendre de
f (x)
0,
1,
1
0
0
1.
x
x
SOLUCIÓN En la sección 6.3.2 se presentaron los primeros cinco polinomios de
Legendre. A partir de éstos y la ecuación (22) encontramos
c0
c1
c2
c3
c4
c5
Por tanto
y
1
0.8
0.6
0.4
0.2
x
-1
-0.5
0.5
1
FIGURA 11.5.2 Suma parcial de S5(x)
de la serie de Fourier-Legendre.
1
2
1
3
2
1
5
2
1
7
2
1
9
2
1
f (x)P0(x) dx
1
f (x)P1(x) dx
1
f (x)P2(x) dx
1
f (x)P3 (x) dx
1
f (x)P4(x) dx
1
11
2
1
f (x)P5(x) dx
1
f (x)
1
P (x)
2 0
1
2
3
2
5
2
7
2
9
2
1
1 1 dx
0
1
2
1
1 x dx
0
1
1
1
(3x2
2
1) dx
1
1
(5x3
2
3x) dx
7
16
1
1
(35x4
8
30x2
3) dx
0
1
0
1
0
11
2
3
P (x)
4 1
3
4
1
1
0
1
(63x5
8
7
P (x)
16 3
0
70x3
0
15x) dx
11
P (x)
32 5
11
.
32
.
Al igual que las funciones de Bessel, los polinomios de Legendre son funciones
incorporadas en programas de cómputo algebraicos como Maple y 0DWKHPDWLFD, por lo
TXHFDGDXQRGHORVFRH¿FLHQWHVTXHDFDEDPRVGHHQOLVWDUVHSXHGHHQFRQWUDUXWLOL]DQGR
la aplicación de integración de esos programas. En realidad, usando un SAC encontra65
mos además que c6 0 y c7
. La quinta suma parcial de la representación en
256
forma de serie de Fourier-Legendre de la función fGH¿QLGDHQHOHMHPSORHVHQWRQFHV
1
3
7
11
65
P (x)
P (x)
P (x)
P (x)
P (x).
S5(x)
2 0
4 1
16 3
32 5
256 7
(QOD¿JXUDVHSUHVHQWDODJUi¿FDGHS5(x) en el intervalo (1, 1).
442
CAPÍTULO 11
l
SERIES DE FOURIER
FORMA ALTERNATIVA DE LA SERIE En sus aplicaciones, la serie de FourierLegendre se presenta en una forma alternativa. Si se hace que x cos ș, entonces
x 1 implica que ș 0, mientras que x 1 implica que ș ʌ. Puesto que dx
sen ș Gș y las ecuaciones (21) y (22) se convierten respectivamente en
F( )
(23)
cn Pn(cos )
n 0
cn
2n
1
2
F( ) Pn(cos ) sen d ,
(24)
0
donde f (cos ș) se ha reemplazado con F(ș).
EJERCICIOS 11.5
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-19.
11.5.1 SERIE DE FOURIER-BESSEL
En los problemas 1 y 2 utilice la tabla 6.1 de la sección 6.4.
1. Encuentre los primeros cuatro términos Įi
por J1(3Į) 0.
GH¿QLGRV
2. Encuentre los primeros cuatro términos Įi GH¿QLGRV
por J0(2Į) 0.
En los problemas 3 a 6, desarrolle f (x) 1, 0 x 2 en una
serie de Fourier-Bessel con funciones de Bessel de orden cero
que satisfagan la respectiva condición en la frontera.
3. J0(2Į) 0
5. J0(2a)
2aJ 0 (2a)
0
4. J 0(2a)
0
6. J0(2a)
aJ 0(2a)
0
En los problemas 7 a 10, desarrolle la función respectiva en
una serie de Fourier-Bessel, usando funciones de Bessel del
mismo orden que el indicado en la condición en la frontera.
7. f (x) 5x, 0 x 4,
3J1 (4a) 4a J 1 (4a)
8. f (x) x , 0 x 1,
2
9. f (x) x2,
t 3 t 2 ⴢ t.]
0
J2(Į) 0
0 x 3,
10. f (x) 1 x2, 0 x 1,
J 0 (3a)
12. a) Utilice los valores de Įi del inciso c) del problema 11
y un SAC para aproximar los valores de los primeros
FLQFRFRH¿FLHQWHVci de la serie de Fourier-Bessel que
obtuvo en el problema 7.
b) 8WLOLFHXQ6$&SDUDWUD]DUODVJUi¿FDVGHODVVXPDV
parciales SN(x), N 1, 2, 3, 4, 5 de la serie de Fourier
en el problema 7.
c) 6
L VH OH LQGLFD WUDFH OD JUi¿FD GH OD VXPD SDUFLDO
S10(x) en el intervalo (0, 4) y en (0, 50).
Problemas para analizar
13. 6LODVVXPDVSDUFLDOHVGHOSUREOHPDVHJUD¿FDQHQXQ
intervalo simétrico tal como ( ¢ODVJUi¿FDVWHQdrían alguna simetría? Explique.
14. a) 'LEXMHDPDQRXQDJUi¿FDGHDGyQGHVXSRQJDTXH
convergería la serie del problema 3 en el intervalo
(2, 2).
b) 'LEXMHDPDQRXQDJUi¿FDGHDGyQGHVXSRQJDTXH
convergería la serie en el intervalo (4, 4) si los valores ĮiHQHOSUREOHPDIXHURQGH¿QLGRVSRUJ2(4Į)
4Į-2(4Į) 0.
0 >Sugerencia:
11.5.2 SERIE DE FOURIER-LEGENDRE
J0(Į) 0
Tarea para el laboratorio de computación
11. a) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHy 3J1(x) x
J1(x) en un intervalo tal, que se muestren las primeras
cinco intersecciones positivas con el eje xGHODJUi¿FD
b) Use la aplicación para determinar raíces de su SAC
para aproximar las cinco primeras raíces xi de la
ecuación 3J1(x) x J1(x) 0.
c) Utilice los datos obtenidos en el inciso b) para encontrar
los cinco primeros valores positivos de Įi que satisfagan
a 3J1(4Į) 4Į-1(4Į) 0. (Vea el problema 7.)
d) Si se le indica, encuentre los diez primeros valores
positivos de Įi.
En los problemas 15 y 16, escriba los primeros cinco términos
distintos de cero en el desarrollo de la función dada como serie
de Fourier-Legendre. Si se le indica, utilice un SAC como una
D\XGDSDUDHYDOXDUORVFRH¿FLHQWHV8VHXQ6$&SDUDWUD]DUOD
JUi¿FDGHODVXPDSDUFLDOS5(x).
15. f (x)
0,
x,
1
0
x
x
0
1
16. f (x) e x, 1 x 1
17. Los tres primeros polinomios de Legendre son P0(x)
1, P1(x) x y P2(x) 12 (3x2 1). Si x cos ș, entonces P0(cos ș) 1 y P1(cos ș) cos ș. Demuestre que
P2(cos ) 14 (3cos 2
1).
REPASO DEL CAPÍTULO 11
18. Utilice los resultados del problema 17 para encontrar un
desarrollo en serie de Fourier-Legendre ecuación (23) de
F(ș) 1 cos 2ș.
19. Un polinomio de Legendre Pn(x) es una función par o impar,
dependiendo de si n es un par o impar. Demuestre que si f es
una función par en el intervalo (1, 1), entonces las ecuaciones (21) y (22) se convierten, respectivamente en
f (x)
(25)
c2n P2n(x)
n 0
1
(4n
c2n
f (x)P2n(x) dx.
1)
(26)
0
La serie (25) se pueden también usar cuando f sólo está de¿QLGDHQHOLQWHUYDOR (QWRQFHVODVHULHUHSUHVHQWDDf
en (0, 1) y en una extensión par de f en el intervalo (1, 0).
20. Demuestre que si f es una función impar en el intervalo
(1, 1), las ecuaciones (21) y (22) se convierten respectivamente en
f (x)
(27)
c2n 1 P2n 1(x)
n 0
1
c2n
1
(4n
f (x)P2n 1(x) dx.
3)
(28)
l
443
La serie (27) también se pueden utilizar cuando f sólo está
GH¿QLGDHQ (QWRQFHVODVHULHUHSUHVHQWDDf en (0, 1) y a
un desarrollo impar de f en el intervalo (1, 0).
En los problemas 21 y 22 escriba los primeros cuatro términos
distintos de cero en el desarrollo indicado de la función dada.
¿Qué función representa la serie en el intervalo (1, 1)? Use
XQ6$&SDUDWUD]DUODJUi¿FDGHODVXPDSDUFLDOS4(x).
21. f (x) x,
0 x 1;
use (25)
22. f (x) 1,
0 x 1;
use (27)
Problemas para analizar
23. Analice: ¿por qué un desarrollo de Fourier-Legendre de
XQDIXQFLyQSROLQRPLDOTXHHVWiGH¿QLGDHQHOLQWHUYDOR
( HVQHFHVDULDPHQWHXQDVHULH¿QLWD"
24. Utilizando sólo sus conclusiones del problema 23, es
decir, sin utilizar la ecuación (22), encuentre la serie de
Fourier-Legendre de f (x) x2<GHODVHULHf (x) x3.
0
REPASO DEL CAPÍTULO 11
En los problemas 1 a 6 complete el espacio en blanco o conteste cierto o falso sin consultar el libro.
1. Las funciones f (x) x 1 y g(x) x son ortogonales
HQHOLQWHUYDOR>ʌ, ʌ]. _______
2
5
2. El producto de una función impar f por otra función impar
g es _______.
3. Para desarrollar f (x) 兩x兩 1, ʌ x ʌ en una serie
trigonométrica adecuada, se usaría una serie _____.
4. y 0 nunca es una eigenfunción de un problema de
Sturm-Liouville. _______
5. Ȝ 0 nunca es un eigenvalor de un problema de SturmLiouville. _______
1 x 0
se desarrolla
x,
0 x 1
en una serie de Fourier, la serie converge a _______ en x
1, a _______ en x 0 y a _______ en x 1.
6. Si la función f (x)
x
1,
7. Suponga que la función f (x) x2 1, 0 x 3 se desarrolla en una serie de Fourier, una serie de cosenos y
una serie de senos. Dé el valor al cual cada serie converge
en x 0.
8. ¿Cuál es la eigenfunción correspondiente para el problema con valores en la frontera y Ȝ\ 0, y(0) 0,
y(ʌ兾2) 0 para Ȝ 25?
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-20
9. Ecuación diferencial de Chebyshev
(1
x2)y
xy
n2y
0
tiene una solución polinomial y Tn(x) para n 0, 1, 2, . . .
(VSHFL¿TXHODIXQFLyQGHSHVRw(x) y el intervalo en el que
el conjunto de polinomios de Chebyshev {Tn(x)} es ortogonal. Dé una relación de ortogonalidad.
10. El conjunto de polinomios de Legendre {Pn(x)}, donde
P0(x) 1, P1(x) x, . . . es ortogonal respecto a la función de peso w(x) HQHOLQWHUYDOR>1, 1]. Explique
por qué 1 1 Pn(x) dx 0 para n 0.
11. Sin hacer operaciones, explique por qué la serie de
cosenos de f (x) cos2x, 0 x ʌ HV OD VHULH ¿QLWD
f (x) 12 12 cos 2x.
12. a) Demuestre que el conjunto
sen
2L
x, sen
3
5
x, sen
x, . . .
2L
2L
HVRUWRJRQDOHQHOLQWHUYDOR>L].
b) Encuentre la norma de cada una de las funciones del
inciso a). Construya un conjunto ortonormal.
13. Desarrolle f (x) 兩x兩 x, 1 x 1 en una serie de
Fourier.
14. Desarrolle f (x) 2x2 1, 1 x 1 en una serie de
Fourier.
444
l
CAPÍTULO 11
REPASO DEL CAPÍTULO 11
SERIES DE FOURIER
l
444
15. Desarrolle f(x) ex, 0 x 1.
a) en una serie de cosenos b) en una serie de senos.
20. Dé una relación de ortogonalidad para las eigenfunciones
del problema 19.
16. En los problemas 13, 14 y 15, dibuje la extensión periódica de f a la que converge cada serie.
21. Desarrolle f (x)
17. Analice: ¿cuál de las dos series de Fourier de f en el problema 15 converge a
f (x),
f ( x),
F(x)
0
1
1
0
x
x
en el intervalo (1, 1)?
18. Considere la parte de la función periódica f que se muesWUDHQOD¿JXUD5'HVDUUROOHf en una serie de Fourier
adecuada.
2
−2
22. Desarrolle la función y x4 – 1, 1 x 1, en una serie
de Fourier-Legendre.
23. Suponga que la función y f (x HVWiGH¿QLGDHQHOLQWHUvalo (– , ).
a) Compruebe la identidad fe(x) fo(x), donde
fe(x)
f (x)
f ( x)
2
y
fo(x)
f (x)
f ( x)
2
.
b) Demuestre que fe es una función par y fo es una función impar.
y
−4
1, 0 x 2
, en una serie de
0, 2 x 4
Fourier-Bessel y utilice funciones de Bessel de orden
cero que satisfagan la condición a la frontera J0(4Į) 0.
2
4
6
x
FIGURA 11.R.1 *Ui¿FDGHOSUREOHPD
19. Encuentre los eigenvalores y las eigenfunciones del problema con valores en la frontera
x2 y
xy
9 y 0, y (1) 0, y(e) 0.
24. La función f(x) ex no es función par ni impar. Utilice el
problema 23 para escribir f como la suma de una función
SDU\GHXQDIXQFLyQLPSDU,GHQWL¿TXHfe y fo.
25. Suponga que f es una función de periodo 2p integrable.
Demuestre que para cualquier número a,
2p
a
f (x) dx
0
2p
f (x) dx.
a
12
PROBLEMAS CON VALORES EN LA
FRONTERA EN COORDENADAS
RECTANGULARES
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
Ecuaciones diferenciales parciales separables
EDP clásicas y problemas con valores en la frontera
Ecuación de calor
Ecuación de onda
Ecuación de Laplace
Problemas no homogéneos con valores en la frontera
Desarrollos en series ortogonales
Problemas dimensionales de orden superior
REPASO DEL CAPÍTULO 12
En éste y en los dos capítulos siguientes trataremos un par de procedimientos que
se utilizan para resolver ecuaciones en derivadas parciales que se presentan con
frecuencia en problemas donde aparecen distribuciones de temperatura, vibraciones
y potenciales. Estos problemas, llamados problemas con valores en la frontera, se
describen con ecuaciones en derivadas parciales de segundo orden relativamente
simples. El objetivo de estos procedimientos es encontrar soluciones de una EDP
reduciéndola a dos o más EDO.
Comenzaremos con un método llamado separación de variables (que no
tiene relación con el visto en la sección 2.2). La aplicación de este método nos
regresa a los importantes conceptos del capítulo 11, en particular, eigenvalores,
HLJHQIXQFLRQHV\HOGHVDUUROORGHXQDIXQFLyQHQXQDVHULHLQ¿QLWDGHIXQFLRQHV
ortogonales.
445
446
l
CAPÍTULO 12
12.1
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
ECUACIONES DIFERENCIALES PARCIALES SEPARABLES
REPASO DE MATERIAL
l Secciones 2.3, 4.3 y 4.4.
l Lea nuevamente “Dos ecuaciones que vale la pena conocer” de la sección 4.3, página 131.
INTRODUCCIÓN Las ecuaciones diferenciales parciales (EDP), al igual que las diferenciales ordinaULDVVHSXHGHQFODVL¿FDUHQOLQHDOHVRQROLQHDOHV'HPDQHUDVLPLODUTXHHQXQD('2ODYDULDEOHGHSHQdiente y sus derivadas parciales sólo se presentan elevadas a la primera potencia en una EDP lineal. En lo
que resta de este libro la mayoría de las veces sólo trataremos con EDP lineales de segundo orden.
ECUACIÓN DIFERENCIAL PARCIAL LINEAL Si hacemos que u denote la variable dependiente y que x y y denoten las variables independientes, entonces la forma
general de una ecuación diferencial parcial lineal de segundo orden está dada por
2
A
2
u
x2
B
u
x y
2
C
u
y2
D
u
x
E
u
y
Fu
G,
(1)
GRQGHORVFRH¿FLHQWHVA, B, C, . . . , G son funciones de x y y. Cuando G(x, y) 0, la
ecuación (1) se llama homogénea; en cualquier otro caso se dice que es no homogénea. Por ejemplo, las ecuaciones lineales
2
u
x2
2
u
y2
2
0
u
x2
y
u
y
xy
son homogéneas y no homogéneas, respectivamente.
SOLUCIÓN DE UNA EDP Una solución de una ecuación diferencial parcial (1)
es una función u(x, y) de dos variables independientes que tiene todas las derivadas
parciales que se presentan en la ecuación y que satisface la ecuación en alguna región
del plano xy.
No es nuestra intención examinar procedimientos para encontrar soluciones generales de ecuaciones diferenciales parciales lineales. Con frecuencia no sólo es difícil
obtener una solución general de la EDP lineal de segundo orden, sino que usualmente
una solución general tampoco es útil en las aplicaciones, por lo que nos concentraremos en encontrar soluciones particulares de algunas de las EDP lineales más importantes, esto es, ecuaciones que se presentan en varias aplicaciones.
SEPARACIÓN DE VARIABLES Aunque hay varios métodos que pueden ensayarse
para encontrar soluciones particulares de una EDP lineal, el que nos interesa por el momento se llama método de separación de variables. Con este método se busca una
solución particular en la forma de producto de una función de x por una función de y:
u(x, y)
X(x)Y( y).
Con esta hipótesis algunas veces es posible reducir una EDP lineal con dos variables
en dos EDO. Así, observamos que
u
x
X Y,
u
y
2
XY ,
u
x2
donde las primas denotan derivación ordinaria.
2
X Y,
u
y2
XY ,
12.1
ECUACIONES DIFERENCIALES PARCIALES SEPARABLES
EJEMPLO 1
447
Separación de variables
2
Encuentre las soluciones producto de
SOLUCIÓN
l
u
x2
u
.
y
4
Sustituyendo u(x, y) X(x)Y(y) en la ecuación diferencial parcial se
obtiene
4XY .
X Y
Después, al dividir ambos lados entre 4XY, hemos separado las variables:
X
Y
.
4X
Y
Puesto que el miembro izquierdo de esta última ecuación es independiente de y e igual
al miembro derecho, que es independiente de x, concluimos que ambos lados son independientes tanto de x como de y. En otras palabras, cada lado de la ecuación debe
ser una constante. En la práctica es conveniente escribir esta constante de separación
real como Ȝ (usando Ȝse obtienen las mismas soluciones).
De las dos igualdades
X
Y
4X
Y
obtenemos las dos ecuaciones diferenciales ordinarias lineales
4 X
X
0
y
Y
(2)
0.
Y
Ahora, como en el ejemplo 1 de la sección 11.4, consideraremos tres casos para Ȝ:
cero, negativo o positivo, es decir Ȝ 0, Ȝ Į2 0, Ȝ Į2 0, donde Į 0.
CASO I Si Ȝ 0, entonces las dos EDO en (2) son
0
X
y
0.
Y
Resolviendo cada ecuación (digamos, por integración), encontramos que X c1 c2x
y Y c3. Por lo que una solución producto particular de la EDP es
u
(c1
XY
c2 x)c3
(3)
B1 x,
A1
donde hemos sustituido c1c3 y c2c3 por A1 y B1, respectivamente.
CASO II
Si Ȝ Į2, entonces las ED en (2) son
X
4a2X
0
y
a2Y
Y
0.
A partir de sus soluciones generales
X
c4 cosh 2 x
c5 senh 2 x
y
Y
2
c6 e
y
obtenemos otra solución producto particular de la EDP,
o
u
XY
u
A2 e
(c4 cosh 2 x
2
y
cosh 2 x
2
c5 senh 2 x)c6 e
B2 e
2
y
y
(4)
senh 2 x,
donde A2 c4c6 y B2 c5c6.
CASO III
Si Ȝ Į2, entonces las ED
X
4
2
0
X
y
Y
2
Y
0
y
Y
c9 e
y sus soluciones generales
X
c7 cos 2 x
c8 sen 2 x
2
y
dan aún otra solución particular
u A3 e
donde A3 c7c9 y B2 c8c9.
2
y
cos 2 x
B3 e
2
y
sen 2 x,
(5)
448
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
Se deja como ejercicio comprobar que las soluciones (3), (4) y (5) satisfacen la EDP
dada. Vea el problema 29 en los ejercicios 12.1.
PRINCIPIO DE SUPERPOSICIÓN El siguiente teorema es similar al teorema 4.1.2
y se conoce como principio de superposición.
TEOREMA 12.1.1 Principio de superposición
Si u1, u2, . . . , uk son soluciones de una ecuación diferencial parcial lineal homogénea, entonces la combinación lineal
c1u1
u
ck uk ,
c2 u2
donde los ci, i 1, 2, . . . , k, son constantes, es también una solución.
(QORTXHUHVWDGHOFDStWXORVXSRQGUHPRVTXHVLHPSUHTXHKD\DXQFRQMXQWRLQ¿nito u1, u2, u3, . . . , de soluciones de una ecuación lineal homogénea, se puede construir
otra solución, uIRUPDQGRODVHULHLQ¿QLWD
ck uk ,
u
k 1
donde los ci, i 1, 2, . . . son constantes.
CLASIFICACIÓN DE LAS ECUACIONES Una ecuación diferencial parcial lineal
GHVHJXQGRRUGHQFRQGRVYDULDEOHVLQGHSHQGLHQWHV\FRQFRH¿FLHQWHVFRQVWDQWHVVH
SXHGHFODVL¿FDUHQXQRGHORVWUHVWLSRV(VWDFODVL¿FDFLyQVyORGHSHQGHGHORVFRH¿cientes de las derivadas de segundo orden. Por supuesto, suponemos que al menos uno
GHORVFRH¿FLHQWHVA, B y C es distinto de cero.
DEFINICIÓN 12.1.1 &ODVL¿FDFLyQGHHFXDFLRQHV
La ecuación diferencial parcial lineal de segundo orden
2
A
2
u
x2
B
u
x y
2
u
y2
C
D
u
x
u
y
E
Fu
0,
G
donde A, B, C, D, E, F y G son constantes reales, se dice que es
hiperbólica si B2 4AC 0,
parabólica si B2 4AC 0,
elíptica
si B2 4AC 0.
EJEMPLO 2
&ODVL¿FDFLyQGH('3OLQHDOHVGHVHJXQGRRUGHQ
&ODVL¿TXHODVHFXDFLRQHVVLJXLHQWHV
2
a) 3
u
x2
SOLUCIÓN
u
y
2
b)
u
x2
2
2
u
y2
c)
u
x2
2
u
y2
0
a) Escribimos la ecuación dada como
2
u
u
0,
3 2
x
y
SRGHPRVKDFHUODVLGHQWL¿FDFLRQHVA 3, B 0 y C 0. Puesto que B2 4AC 0,
la ecuación es parabólica.
b) Reescribimos la ecuación como
2
u
x2
2
u
y2
0,
12.1
ECUACIONES DIFERENCIALES PARCIALES SEPARABLES
vemos que A 1, B 0, C 1, y B2 4AC 4(1)(1)
hiperbólica.
l
449
0. La ecuación es
c) Con A 1, B 0, C 1, y B2 4AC 4(1)(1) 0 la ecuación es elíptica.
COMENTARIOS
i) En el caso de que usted se lo pregunte, la separación de variables no es un
método general para encontrar soluciones particulares; algunas ecuaciones diferenciales parciales lineales son simplemente no separables. Se le propone que
compruebe que la suposición u XY no conduce a una solución para la EDP
u y x.
lineal 2u x 2
ii 8QDH[SOLFDFLyQGHWDOODGDGHSRUTXpTXHUUtDPRVFODVL¿FDUXQD('3OLQHDO
de segundo orden como hiperbólica, parabólica o elíptica está fuera del alcance de este libro, pero al menos usted debería estar consciente que esta claVL¿FDFLyQWLHQHLPSRUWDQFLDSUiFWLFD9DPRVDUHVROYHUDOJXQDV('3VXMHWDV
sólo a condiciones de frontera y otras sujetas tanto a condiciones de frontera
como a condiciones iniciales; las clases de condiciones que son apropiadas
para una ecuación dada dependen de si la ecuación es hiperbólica, parabólica
o elíptica. En relación con este tema, veremos en el capítulo 15 que los métoGRVGHVROXFLyQQXPpULFDSDUDODV('3OLQHDOHVGHVHJXQGRRUGHQGL¿HUHQGH
DFXHUGRFRQODFODVL¿FDFLyQGHODHFXDFLyQ
EJERCICIOS 12.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-20.
En los problemas 1 a 16 utilice separación de variables para
encontrar, de ser posible, soluciones producto para la ecuación diferencial parcial dada.
u
x
1.
u
y
2.
u
x
3
4. u x u y u
u
5. x
x
u
6. y
x
2
2
7.
2
u
9. k 2
x
11. a2
2
12. a
u
y2
u
, k
t
u
2
u
x2
2
2
2
u
8. y
x y
0
2
u
10. k 2
x
0
2
13.
u
x2
u
, k
t
u
y2
0
2
0
15. u xx u yy u
tante
2
0
2
14. x
2
u
u
14. x2 2
2
x
x
16. a 2u xx g u tt,
2
u
y2
u
y2
2
u
x
0
u
x y
9
2
u
x y
u
y2
2
2
2
3
2
u
x2
u
x2
0
g una cons-
(Q ORV SUREOHPDV D FODVL¿TXH OD HFXDFLyQ GLIHUHQFLDO
parcial dada como hiperbólica, parabólica o elíptica.
24.
u
y2
u
2
2
u
x2
u
,
t
u
x2
2
26. k
u
y2
2
u
x2
25. a2
2
u
x y
2
2
2
0
2
u
x y
u
x2
2
21.
23.
u
2k , k
t
u
y2
9
0
22.
u
t2
0
2
u
x y
6
2
u
t2
u
x2
u
y2
2
u
x2
20.
u
2
0
2
2
u
x y
u
x2
u
x
y
0
u
x y
5
2
19.
u
y2
2
u
x2
18. 3
0
2
u
x y
u
x2
2
u
y
3. u x u y u
u
y
y
2
2
17.
u
t2
k
0
0
u
x
6
u
y
0
450
CAPÍTULO 12
l
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
En los problemas 27 y 28 demuestre que la ecuación diferencial parcial dada tiene la solución de producto indicada.
2
u
r2
e
27. k
u
2
u
r2
28.
u
k
1 u
u
;
r r
t
2
t
c1 J0( r) c2Y0( r)
1 u
r r
(c1 cos
1
r2
2
u
2
c2 sen
(x
2y)
u
x y
2
u
y2
xy2 u
0
Problemas para analizar
c4 r )
29. Compruebe que cada uno de los productos u XY en
las ecuaciones (3), (4) y (5) satisfacen la EDP lineal de
segundo orden del ejemplo 1.
30. /D GH¿QLFLyQ JHQHUDOL]D ODV ('3 OLQHDOHV FRQ
FRH¿FLHQWHV TXH VRQ IXQFLRQHV GH x y y. Determine las
regiones del plano xy para las cuales la ecuación
12.2
2
u
x2
1)
es hiperbólica, parabólica o elíptica.
0;
)(c3 r
2
(xy
En los problemas 31 y 32 analice si se pueden encontrar
soluciones producto u X(x)Y(y) para la ecuación diferencial parcial dada. [Sugerencia: Aplique el principio de
superposición.]
2
u
x2
31.
0
u
2
u
x y
32.
u
x
0
EDP CLÁSICAS Y PROBLEMAS CON VALORES EN LA FRONTERA
REPASO DE MATERIAL
l Lea nuevamente el tema de problemas con valores en la frontera en las secciones 4.1, 4.3 y 5.2.
INTRODUCCIÓN No vamos a resolver nada en esta sección. Simplemente vamos a analizar los
tipos de ecuaciones diferenciales parciales y los problemas con valores en la frontera con los que
estaremos trabajando en lo que resta de este capítulo así como en los capítulos 13 a 15. Las palabras
problema con valores en la frontera tienen una connotación ligeramente diferente de la que tuvieron
en las secciones 4.1, 4.3 y 5.2. Si por ejemplo, u(x, t) es una solución de una EDP, donde x representa
una dimensión espacial y t representa al tiempo, entonces podemos determinar el valor de u, o de
u兾x o una combinación lineal de u y u兾x en una x dada, así como determinar la u y u兾t en un
tiempo t dado (en general, t 0). En otras palabras, “un problema con valores en la frontera” puede
consistir en una EDP, con condiciones en la frontera y con condiciones iniciales.
ECUACIONES CLÁSICAS Consideraremos principalmente la aplicación del método de separación de variables para encontrar soluciones producto de las siguientes
ecuaciones clásicas de la física matemática:
2
k
u
x2
u
,
t
2
2
a2
2
u
x2
k
u
t2
u
x2
0
(1)
(2)
2
u
y2
0
(3)
o ligeras variaciones de estas ecuaciones. Las EDP (1), (2) y (3) se conocen, respectivamente, como ecuación de calor unidimensional, ecuación de onda unidimensional y forma bidimensional de la ecuación de Laplace. “Unidimensional” en el caso
GHODVHFXDFLRQHV \ VHUH¿HUHDOKHFKRGHTXHx denota una variable espacial,
mientras que la tUHSUHVHQWDHOWLHPSR³ELGLPHQVLRQDO´HQ VLJQL¿FDTXHWDQWRx
como y son variables espaciales. Si compara las ecuaciones (1) a (3) con la forma
lineal del teorema 12.1.1 (con t jugando el papel del símbolo y), observe que la ecuación de calor (1) es parabólica, la ecuación de onda (2) es hiperbólica y la ecuación de
Laplace es elíptica. Esta observación será importante en el capítulo 15.
12.2
Sección transversal de área A
0
x
x + Δx
L
x
EDP CLÁSICAS Y PROBLEMAS CON VALORES EN LA FRONTERA
l
451
ECUACIÓN DE CALOR /DHFXDFLyQ VHSUHVHQWDHQODWHRUtDGHÀXMRGHFDORU
es decir, transferencia de calor por conducción en una varilla o en un alambre delgado.
La función u(x, t) representa la temperatura en un punto x a lo largo de la varilla en
algún tiempo t. Los problemas en vibraciones mecánicas con frecuencia conducen a la
HFXDFLyQGHRQGD 3DUD¿QHVGHDQiOLVLVXQDVROXFLyQu(x, t) de (2) representará el
desplazamiento de una cuerda idealizada. Por último, una solución u(x, y) de la ecuación
de Laplace (3) se puede interpretar como el estado estable (es decir independiente del
tiempo) de la distribución de temperaturas a través de una placa delgada bidimensional.
,QFOXVRDXQTXHKDJDPRVPXFKDVVXSRVLFLRQHVGHVLPSOL¿FDFLyQYDOHODSHQDYHU
cómo surgen ecuaciones tales como la (1) y la (2).
Suponga una varilla delgada circular de longitud L que tiene una sección transversal A y que coincide con el eje de las x en el intervalo [0, L@9HDOD¿JXUD
Supongamos lo siguiente:
• (OÀXMRGHFDORUGHQWURGHODYDULOODVyORRFXUUHHQODGLUHFFLyQx.
• /DVXSHU¿FLHFXUYDRODWHUDOGHODYDULOODHVWiDLVODGDHVGHFLUQRHVFDSDFDORU
GHHVWDVXSHU¿FLH
• No hay calor generado dentro de la varilla.
• La varilla es homogénea, es decir, su masa por unidad de volumen ȡ es
constante.
• (OFDORUHVSHFt¿FRȖ y la conductividad térmica K del material de la varilla
son constantes.
FIGURA 12.2.1 Flujo de calor
unidimensional.
Para deducir la ecuación diferencial parcial que satisface la temperatura u(x, t),
necesitamos dos leyes empíricas de conducción de calor:
i)
La cantidad de calor Q en un elemento de masa m es
ii)
(4)
mu,
Q
donde u es la temperatura del elemento.
La razón de calor QtTXHÀX\HSRUODVHFFLyQWUDQVYHUVDOTXHVHLQGLFDHQ
OD¿JXUD12.2.1 es proporcional al área A de la sección transversal y a la
derivada parcial respecto a x de la temperatura:
(5)
KAux .
Qt
3XHVWRTXHHOFDORUÀX\HHQODGLUHFFLyQGHODGLVPLQXFLyQGHODWHPSHUDWXUDVHXWLliza el signo menos para asegurar que Qt es positivo para ux ÀXMRGHFDORUDOD
derecha) y negativo para ux ÀXMRGHFDORUDODL]TXLHUGD 6LODSRUFLyQFLUFXODUGH
ODYDULOODPRVWUDGDHQOD¿JXUDHQWUHx y x "x es muy delgada, entonces
u(x, t) se puede considerar la temperatura aproximada en cada punto en el intervalo.
Ahora la masa de la rebanada es m ȡ(A "x), y por tanto se tiene de (4) que la cantidad de calor en ésta es
Q
A x u.
(6)
$GHPiVFXDQGRÀX\HFDORUHQODGLUHFFLyQx positiva, vemos de (5) que el calor aumenta en la porción a la razón neta
KAux (x, t)
[ KAux(x
x, t)]
KA [ux(x
ux (x, t)].
x, t)
(7)
Derivando (6) respecto a t, vemos que la razón neta está también dada por
Qt
(8)
A x ut.
Igualando (7) y (8) se obtiene
K ux (x
x, t) ux (x, t)
(9)
ut .
x
Finalmente, tomando el límite de (9) conforme " x → 0, obtenemos (1) en la forma*
(K兾Ȗȡ)uxx ut. Se acostumbra hacer k K兾Ȗȡ y llamar difusividad térmica a esta
constante positiva.
*
/DGH¿QLFLyQGHODVHJXQGDGHULYDGDSDUFLDOHV ux x
lím
x :0
ux (x
x, t)
x
ux (x, t)
.
452
CAPÍTULO 12
l
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
u
Δs
0
u(x, t)
L x
x x + Δx
a) Segmento de cuerda
u
T2
θ2
Δs
ECUACIÓN DE ONDA Considere una cuerda de longitud L, como una cuerda de
guitarra, tensada entre dos puntos en el eje x, por ejemplo, en x 0 y en x L. Cuando
la cuerda comienza a vibrar, suponemos que el movimiento es en el plano xu de tal manera que cada punto sobre la cuerda se mueve en una dirección perpendicular al eje x
YLEUDFLRQHVWUDQVYHUVDOHV &RPRVHPXHVWUDHQOD¿JXUD D KDJDPRVTXHu(x,
t) denote el desplazamiento vertical de cualquier punto sobre la cuerda medida desde
el eje x para t 0. Además suponemos que:
• /DFXHUGDHVSHUIHFWDPHQWHÀH[LEOH
• La cuerda es homogénea, es decir, su masa por unidad de longitud ȡ es una
constante.
• Los desplazamientos u son pequeños en comparación con la longitud de la
cuerda.
• La pendiente de la curva es pequeña en todos los puntos.
• La tensión T actúa tangente a la cuerda y su magnitud T es igual en todos los
puntos.
• La tensión es grande comparada con la fuerza de la gravedad.
• No actúa otra fuerza externa sobre la cuerda.
$KRUDHQOD¿JXUD E ODVWHQVLRQHVT1 y T2 son tangentes a los extremos de
la curva en el intervalo [x, x "x]. Para ș1 y ș2 pequeñas la fuerza neta vertical que
actúa sobre el elemento correspondiente "s de la cuerda es entonces
θ1
T1
x + Δx
x
T sen
x
2
T sen
1
anclada en x 0 y en x L.
2
T [ux (x
b) Estiramiento de un segmento
FIGURA 12.2.2 &XHUGDÀH[LEOH
T tan
T tan
x, t)
1
ux (x, t)],†
donde T 兩T1兩 兩T2兩. Ahora ȡ "s 艐 ȡ "x es la masa de la cuerda en [x, x "x], por
lo que de la segunda ley de Newton se obtiene
T [ux (x
x, t)
ux (x, t)]
x ut t
ux (x
x, t) ux (x, t)
u .
x
T tt
Si el límite se toma como "x → 0, la última ecuación se convierte en uxx (ȡ兾T) utt.
Ésta desde luego es (2) con a2 T兾ȡ.
o
Temperatura como una
función de la posición
sobre la placa caliente
Termómetro
22
0
20
0
y
18
0
16
0
14
0
12
0
ECUACIÓN DE LAPLACE Aunque no presentamos su deducción, la ecuación de
Laplace en dos y tres dimensiones se presenta en problemas independientes del tiempo
que implican potenciales tales como el electrostático, el gravitacional y la velocidad en
PHFiQLFDGHÀXLGRV$GHPiVXQDVROXFLyQGHODHFXDFLyQGH/DSODFHWDPELpQVHSXHGH
interpretar como una distribución de temperaturas de estado estable. Como se muestra en
OD¿JXUDXQDVROXFLyQu(x, y) de la ecuación (3) podría representar la temperatura
que varía de punto a punto, pero no con el tiempo, de una placa rectangular. La ecuación
de Laplace en dos dimensiones y en tres dimensiones se abrevia como 2 u 0, donde
10
0
80
2
0
–2
0
?F
(x, y)
H
W
x
2
2
2
2
u
u
u
u
u
2
y
u
2
2
2
2
z2
y
y
x
x
se conocen como el Laplaciano en dos y tres dimensiones, respectivamente, de una
función u.
Con frecuencia deseamos encontrar soluciones de las ecuaciones (1), (2) y (3) que
satisfacen ciertas condiciones adicionales.
2
60
40
20
O
FIGURA 12.2.3 Temperaturas de
u
CONDICIONES INICIALES Ya que las soluciones de (1) y (2) dependen del
tiempo t, podemos indicar qué pasa en t 0; es decir podemos dar condiciones inicia-
estado estable en una placa rectangular.
†
tan ș2 ux(x "x, t) y tan ș1 ux(x, t) son expresiones equivalentes para la pendiente.
12.2
l
453
les (CI). Si f (x) denota la distribución inicial de temperaturas en toda la varilla que se
PXHVWUDHQOD¿JXUDHQWRQFHVXQDVROXFLyQu(x, t) de (1) debe satisfacer la única
condición inicial u(x, 0) f (x), 0 x L. Por otra parte, para una cuerda que vibra
SRGHPRVHVSHFL¿FDUVXGHVSOD]DPLHQWRLQLFLDO RODIRUPD f (x) así como su velocidad
inicial g(x). En términos matemáticos buscamos una función u(x, t) que satisface (2) y
las dos condiciones iniciales:
u
u(x, 0) f (x),
g(x),
0 x L.
(10)
t t 0
3RUHMHPSORVHSRGUtDSXOVDUODFXHUGDFRPRVHPXHVWUDHQOD¿JXUD\VROWDUOD
a partir del reposo (g(x) 0).
u
h
0
EDP CLÁSICAS Y PROBLEMAS CON VALORES EN LA FRONTERA
u=0
en x = 0
u=0 L x
en x = L
FIGURA 12.2.4 Cuerda pulsada.
CONDICIONES FRONTERA /DFXHUGDGHOD¿JXUDVH¿MDDOHMHGHODVx en
x 0 y en x L durante todo el tiempo. Interpretamos esto utilizando las dos condiciones de frontera (CF):
u(0, t) 0,
u(L, t) 0, t 0.
Observe que en este contexto la función f en (10) es continua, y por tanto, f (0) 0
y f (L) 0. En general, hay tres tipos de condiciones de frontera asociadas con las
HFXDFLRQHV \ (QXQDIURQWHUDSRGHPRVHVSHFL¿FDUORVYDORUHVGHuno de
los siguientes:
u
u
,
o
iii)
hu,
h una constante.
n
n
Aquí u兾n denota la derivada normal de u (la derivada direccional de u en la dirección perpendicular a la frontera). Una condición de frontera del primer tipo i) se llama
FRQGLFLyQGH'LULFKOHW; una condición de frontera del segundo tipo ii) se llama condición de Neumann; y una condición de frontera del tercer tipo iii) se llama condición
de Robin. Por ejemplo, para t
0 una condición típica del extremo derecho de la
YDULOODHQOD¿JXUDSXHGHVHU
i ) u,
i)
ii)
iii)
ii )
u(L, t)
u
x
x L
u
x
x L
u0 ,
u0 una constante,
0
o bien
h(u(L, t)
um ),
h
0 y um constantes.
La condición i) simplemente establece que la frontera x L se mantiene por algún
medio a una temperatura u0 constante para t 0. La condición ii) indica que la frontera x L está aislada'HODOH\HPStULFDGHWUDQVIHUHQFLDGHFDORUHOÀXMRGHFDORU
a través de la frontera (es decir, la cantidad de calor por unidad de área por unidad
de tiempo conducida a través de la frontera) es proporcional al valor de la derivada
normal u兾n de la temperatura u. Por lo que cuando la frontera x L no está térmiFDPHQWHDLVODGDQRÀX\HFDORUGHQWURRIXHUDGHODYDULOODDVt
u
0.
x x L
Podemos interpretar iii) como que el calor se pierde en el extremo derecho de la varilla por estar en contacto con un medio, tales como aire o agua, que se mantiene a una
WHPSHUDWXUDFRQVWDQWH'HODOH\GHOHQIULDPLHQWRGH1HZWRQHOÀXMRGHFDORUKDFLD
fuera de la varilla es proporcional a la diferencia entre la temperatura u(L, t) en la frontera y la temperatura um del medio circundante. Observamos que si se pierde calor en
el extremo izquierdo de la varilla, la condición de frontera es
u
x
h(u(0, t)
x 0
um ).
El cambio de signo algebraico es consistente con la suposición de que la varilla está a
una temperatura más alta que el medio que rodea a los extremos por lo que u(0, t) um
454
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
y u(L, t) um. En x 0 y en x L las pendientes ux(0, t) y ux(L, t) deben ser positiva y
negativa, respectivamente.
3RUVXSXHVWRHQORVH[WUHPRVGHODYDULOODSRGHPRVHVSHFL¿FDUFRQGLFLRQHVGLIHrentes al mismo tiempo. Por ejemplo, podríamos tener
u
x
0
y
u0 ,
u(L, t)
x 0
0.
t
Observemos que la condición de frontera en i) es homogénea si u0 0; si u0 0,
la condición de frontera es no homogénea. La condición de frontera ii) es homogénea;
iii) es homogénea si um 0 y no homogénea si um 0.
PROBLEMAS CON VALORES EN LA FRONTERA
Problemas tales como
2
2
u
,
t2
u
x2
Resolver:
a2
Sujeto a:
(BC)
u(0, t)
(IC)
u(x, 0)
0
0,
x
L,
0, t
u(L, t)
u
t
f (x),
0
t
(11)
0
g(x), 0
x
L
t 0
y
2
2
Resolver:
Sujeto a:
u
y2
u
x2
0,
u
x x 0
u(x, 0)
(BC)
0
0,
0,
a, 0
x
u
x x a
u(x, b)
0,
y
b
0
y
b
f (x), 0
x
a
(12)
se llaman problemas con valores en la frontera.
MODIFICACIONES Las ecuaciones diferenciales parciales (1), (2) y (3) se deben
PRGL¿FDUSDUDFRQVLGHUDUODVLQÀXHQFLDVLQWHUQDVRH[WHUQDVTXHDFW~DQVREUHHOVLVtema físico. Más formas generales de las ecuaciones de calor unidimensional y de onda
son, respectivamente,
2
k
u
x2
G(x, t, u, ux )
u
t
(13)
2
2
u
u
F(x, t, u, ut )
.
(14)
2
x
t2
3RUHMHPSORVLKD\WUDQVIHUHQFLDGHFDORUGHVGHODVXSHU¿FLHODWHUDOGHXQDYDULOODHQ
un medio circundante que se mantiene a una temperatura constante um, entonces la
ecuación de calor (13) es
y
a2
2
k
u
x2
h(u
um )
u
.
t
En (14) la función F podría representar varias fuerzas que actúan sobre la cuerda.
Por ejemplo, cuando se consideran fuerzas externas de amortiguamiento y fuerzas de
restauración elásticas, (14) toma la forma
∂2u
∂2u
∂u
a2 ––––2 f (x, t) ––––
c ––– ku
∂x
∂t2
∂t
Fuerza
externa
Fuerza de
amortiguamiento
Fuerza de
restauración
(15)
12.2
EDP CLÁSICAS Y PROBLEMAS CON VALORES EN LA FRONTERA
l
455
COMENTARIOS
El análisis de una amplia variedad de diversos fenómenos produce los modelos
matemáticos (1), (2) o (3) o sus generalizaciones que implican una cantidad
mayor de variables espaciales. Por ejemplo, (1) a veces se llama la ecuación
de difusión, ya que la difusión de sustancias disueltas en la solución es simiODU DO ÀXMR GH FDORU HQ XQ VyOLGR /D IXQFLyQ u(x, t) satisface la ecuación diferencial parcial que en este caso representa la concentración de la sustancia
GLVXHOWD$VLPLVPRODHFXDFLyQ VXUJHHQHOHVWXGLRGHOÀXMRGHHOHFWULFLGDG
en un cable largo o en una línea de transmisión. En este contexto (2) se conoce
como la ecuación del telégrafo. Se puede mostrar que bajo ciertas suposiciones
la corriente y el voltaje en la línea son funciones que satisfacen dos ecuaciones idénticas con (2). La ecuación de onda (2) también se presenta en la teoría
GHOtQHDVGHWUDQVPLVLyQGHDOWDIUHFXHQFLDHQPHFiQLFDGHÀXLGRVHQDF~VWLFD
y en elasticidad. La ecuación de Laplace (3) se presenta en el desplazamiento
estático de membranas.
EJERCICIOS 12.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-20.
En los problemas 1 a 6 una varilla de longitud L coincide con
el intervalo [0, L] en el eje x. Establezca el problema con valores en la frontera para la temperatura u(x, t).
1. El extremo izquierdo se mantiene a temperatura cero y el
extremo derecho está aislado. La temperatura inicial es
f (x) en toda la varilla.
2. El extremo izquierdo se mantiene a una temperatura u0 y
el extremo derecho se mantiene a una temperatura u1. La
temperatura inicial es cero en toda la varilla.
3. El extremo izquierdo se mantiene a una temperatura de
100 y hay transferencia de calor del extremo derecho al
medio que lo rodea a temperatura cero. La temperatura
inicial es f (x) en toda la varilla.
4. Los extremos están aislados y hay transferencia de calor
GHVGHODVXSHU¿FLHODWHUDODOPHGLRFLUFXQGDQWHTXHHVWi
a una temperatura de 50. La temperatura inicial es igual a
100 en toda la varilla.
5. El extremo izquierdo está a una temperatura de
sen(ʌW兾L), el extremo derecho se mantiene a temperatura
FHUR \ H[LVWH WUDQVIHUHQFLD GH FDORU GHVGH OD VXSHU¿FLH
lateral de la varilla hacia el medio que la rodea mantenido
a temperatura cero. La temperatura inicial es f(x) en toda
la varilla.
6. Los extremos están aislados, y hay transferencia de calor
GHVGHODVXSHU¿FLHODWHUDOGHODYDULOODKDFLDHOPHGLRFLUcundante mantenido a una temperatura de 50°. La temperatura inicial es 100° en toda la varilla.
En los problemas 7 a 10 una cuerda de longitud L coincide
con el intervalo [0, L] en el eje x. Establezca el problema con
valores en la frontera para el desplazamiento u(x, t).
7. Los extremos están anclados al eje x. La cuerda se libera a
partir del reposo desde el desplazamiento inicial x(L x).
8. Los extremos están anclados al eje x. Inicialmente, la
cuerda no está desplazada pero tiene una velocidad inicial
de sen(ʌ[兾L).
9. El extremo izquierdo está anclado al eje de las x, pero el
extremo derecho se mueve de una manera transversal de
acuerdo con sen ʌW. La cuerda se libera a partir del reposo
del desplazamiento inicial f (x). Para t 0 las vibraciones
transversales están amortiguadas con una fuerza proporcional a la velocidad instantánea.
10. Los extremos están anclados al eje de las x y la cuerda
está inicialmente en reposo sobre este eje. Una fuerza
externa vertical proporcional a la distancia horizontal
a partir del extremo izquierdo actúa sobre la cuerda para
t 0.
En los problemas 11 y 12 establezca el problema con valores
en la frontera para la temperatura de estado estable u(x, y).
11. Una placa delgada rectangular coincide con la región
GH¿QLGDSRU x 4, 0 y 2. El extremo izquierdo
y la parte inferior de la placa están aislados. La parte
superior de la placa se mantiene a temperatura cero y el
extremo derecho de la placa se mantiene a temperatura
f (y).
12. 8QD SODFD VHPLLQ¿QLWD FRLQFLGH FRQ OD UHJLyQ GH¿QLGD
por 0 x ʌ, y 0. El extremo izquierdo se mantiene
a una temperatura ey y el extremo derecho se mantiene a
una temperatura de 100 para 0 y 1 y a temperatura
cero para y 1. La parte inferior de la placa se mantiene
a una temperatura f (x).
456
l
CAPÍTULO 12
12.3
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
ECUACIÓN DE CALOR
REPASO DE MATERIAL
l Sección 12.1.
l Se le recomienda leer nuevamente el ejemplo 2 de la sección 5.2 y el ejemplo 1 de la sección 11.4.
INTRODUCCIÓN Considere una varilla delgada de longitud L con una temperatura inicial f (x)
en toda la varilla y cuyos extremos se mantienen a temperatura cero durante todo el tiempo t 0. Si
ODYDULOODTXHVHPXHVWUDHQOD¿JXUDVDWLVIDFHODVKLSyWHVLVGDGDVHQODSiJLQDHQWRQFHVOD
temperatura u(x, t) en la varilla se determina del problema con valores en la frontera
2
u
,
t
0
u(0, t)
0,
u(L, t)
u(x, 0)
f (x), 0
k
u
x2
x
L,
0,
x
(1)
0
t
(2)
0
t
(3)
L.
En esta sección resolveremos este PVF.
u=0
0
SOLUCIÓN DEL PVF Para comenzar, usaremos el producto u(x, t) X(x)T(t) para
separar variables en (1). Entonces, si Ȝ es la constante de separación, las dos igualdades
u=0
L
FIGURA 12.3.1 Temperatura en una
varilla de longitud L.
X
X
x
T
kT
(4)
conducen a las dos ecuaciones diferenciales ordinarias
X
X
0
(5)
T
k T
0.
(6)
Antes de resolver (5), observamos que las condiciones de frontera (2) aplicadas a
u(x, t) X(x)T(t) son
u(0, t)
0
X(0)T(t)
y
u(L, t)
X(L)T(t)
0.
Puesto que tiene sentido esperar que T(t) 0 para toda t, las igualdades anteriores
valen sólo si X(0) 0 y X(L) 0. Estas condiciones frontera homogéneas junto con
las ED homogéneas (5) constituyen un problema regular de Sturm-Liouville:
X
X
0, X(0)
0,
(7)
0.
X(L)
La solución de este PVF ya se analizó en el ejemplo 2 de la sección 5.2. En este ejemplo consideramos tres casos posibles para el parámetro Ȝ: cero, negativo o positivo.
Las soluciones correspondientes de las ED están, respectivamente, dadas por
X(x)
c1
X(x)
c1 cosh ax
X(x)
c1 cos ax
(8)
0
c2 x,
a2
c2 senh ax,
c2 sen ax,
2
a
0
0.
(9)
(10)
Cuando las condiciones de frontera X(0) 0 y X(L) 0 se aplican a (8) y (9), estas
soluciones son válidas sólo si X(x) 0 y por tanto concluiríamos que u 0. Pero
cuando X(0) 0 se aplica a (10), encontramos que c1 0 y X(x) c2 sen Į[. Entonces
la segunda condición de frontera implica que X(L) c2 sen Į/ 0. Para obtener una
solución no trivial, debemos tener c2 0 y sen Į/ 0. Esta última ecuación se satisface cuando Į/ Qʌ o Į Qʌ兾L. Por tanto (7) tiene soluciones no triviales cuando
12.3
ECUACIÓN DE CALOR
l
457
a2n n2 2 / L2, n 1, 2, 3, . . . Estos valores de Ȝ son los eigenvalores del problema; las eigenfunciones son
n
X(x) c2 sen
x,
n 1, 2, 3, . . .
(11)
L
n
De (6) tenemos que T(t)
c3 e
k(n2
2
/L2 )t
, por tanto
n
x,
(12)
L
donde hemos reemplazado la constante c2c3 por An. Cada una de las funciones producto
un(x, t) dadas en (12) es una solución particular de la ecuación diferencial parcial (1) y cada
un(x, t) también satisface ambas condiciones de frontera (2). Sin embargo, para que (12)
VDWLVIDJDODFRQGLFLyQLQLFLDO WHQGUtDPRVTXHHOHJLUHOFRH¿FLHQWHAn de manera que
n
(13)
un(x, 0) f (x) An sen
x.
L
En general, no esperaríamos que la condición (l3) se satisfaga para una arbitraria pero
razonable elección de f. Por lo que nos vemos forzados a admitir que un(x, t) no es una
solución del problema dado. Ahora por el principio de superposición (teorema 12.1.1)
la función u(x, t)
n 1 un o
n
2 2
2
(14)
u(x, t)
An e k(n /L )t sen
x
L
n 1
un
X(x)T(t)
An e
k(n2
2
/L2 )t
sen
debe también, aunque formalmente, satisfacer la ecuación (1) y las condiciones en (2).
Sustituyendo t 0 en (14) se implica que
n
x.
L
n 1
Esta última expresión se reconoce como el desarrollo en un semiintervalo de f en una
VHULHGHVHQRV6LLGHQWL¿FDPRVAn bn, n 1, 2, 3, . . . , se tiene de la ecuación (5)
de la sección 11.3 que
u(x, 0)
u
t=0
100
80
t=0.05
t=0.35
60
t=0.6
40
t=1
20
t=1.5
0.5
1
1.5
u(x, t)
2
2.5
x
3
40
2
3
L
f (x) sen
0
n
x dx.
L
(15)
4
L
f (x) sen
1
0
n
x dx e
L
k(n2
2
/L2 )t
sen
n
x.
L
(16)
En el caso especial en que la temperatura inicial es u(x, 0) 100, L ʌ y k 1,
FRPSUXHEHTXHORVFRH¿FLHQWHV HVWiQGDGRVSRU
200 1
( 1) n
n
y que (16) es
u(x, t)
200
1
n
20
1
2
Ln
An
x= /2
x= /4
x= /6
x= /12
x=0
60
An sen
Concluimos que una solución del problema con valores en la frontera descrita en (1),
\ HVWiGDGDSRUODVHULHLQ¿QLWD
u
80
2
L
An
a) La gráfica de u(x, t) como una
función de x para diferentes
tiempos fijos.
100
f (x)
5
6
t
b) La gráfica de u(x, t) como una
función de t para diferentes
posiciones fijas.
FIGURA 12.3.2 *Ui¿FDVGH
FXDQGRXQDYDULDEOHVHPDQWLHQH¿MD
1
( 1) n
e
n
n2 t
sen nx.
(17)
USO DE COMPUTADORAS Puesto que u es una función de dos variables, la grá¿FDGHODVROXFLyQ HVXQDVXSHU¿FLHWULGLPHQVLRQDO3RGUtDPRVXWLOL]DUODDSOLFDFLyQ
'SORWGHXQVLVWHPDDOJHEUDLFRFRPSXWDUL]DGRSDUDDSUR[LPDUHVWDVXSHU¿FLHDOWUD]DUOD
JUi¿FDGHODVVXPDVSDUFLDOHVSn(x, t HQXQDUHJLyQUHFWDQJXODUGH¿QLGDSRU x ʌ, 0
t T. Alternativamente, con ayuda de la aplicación 2D-plot de un SAC podemos trazar
ODJUi¿FDGHODVROXFLyQu(x, t) en el intervalo en el eje x [0, ʌ], para valores crecientes del
tiempo t9HDOD¿JXUD D (QOD¿JXUD E VHKDWUD]DGRODJUi¿FDGHODVROXción u(x, t) en el intervalo en el eje t [0, 6], para valores crecientes de x (x 0 es el extremo
izquierdo y x ʌ兾2 es el punto medio de la varilla de longitud L ʌ). Ambos conjuntos
GHJUi¿FDVFRPSUXHEDQORTXHHVREYLRHQ HQSDUWLFXODUu(x, t) → 0 , cuando t → .
458
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
EJERCICIOS 12.3
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-21.
En los problemas 1 y 2 resuelva la ecuación de calor (1) sujeta
a las condiciones dadas. Suponga una varilla de longitud L.
0, u(L, t) 0
1. u(0, t)
1, 0
x L>2
u(x, 0)
0, L>2 x L
0, u(L, t) 0
2. u(0, t)
u(x, 0) x(L x)
3. Encuentre la temperatura u(x, t) en una varilla de longitud
L si la temperatura inicial es f (x) en toda la varilla y si los
extremos x 0 y x L están aislados.
4. Resuelva el problema 3 si L 2 y
x, 0 x 1
f (x)
0, 1 x 2.
5. 6XSRQJDTXHVHSLHUGHFDORUGHVGHODVXSHU¿FLHODWHUDOGH
una varilla delgada de longitud L dentro del medio circundante a temperatura cero. Si se aplica la ley lineal de transferencia de calor, entonces la ecuación de calor toma la forma
2
u
u
hu
,
x2
t
0 x L, t 0, h una constante. Encuentre la temperatura u(x, t) si la temperatura inicial es f (x) en toda la
varilla y los extremos x 0 y x L están aislados. Vea
OD¿JXUD
6. Resuelva el problema 5 si los extremos x 0 y x L se
mantienen a temperatura cero.
k
Aislado
0
7. Un alambre delgado que coincide con el eje x en el intervalo [L, L] se dobla en forma de un círculo tal que los
extremos x L y x L se juntan. Bajo ciertas condiciones, la temperatura u(x, t) en el alambre satisface el
problema con valores en la frontera
2
u
u
,
L x L, t
x2
t
u( L, t) u(L, t), t 0
u
u
, t 0
x x L
x x L
u(x, 0) f(x),
L x L.
k
Encuentre la temperatura u(x, t)
8. Encuentre la temperatura u(x, t) del problema con valores
en la frontera dado en (1) a (3) cuando f (x) 10 sen(5ʌ[兾L).
Problemas para analizar
9. /D ¿JXUD E SUHVHQWD OD JUi¿FD GH u(x, t) para
0 t 6 para x 0, x ʌ兾12, x ʌ兾6, x ʌ兾4 y
x ʌ兾 'HVFULED R GLEXMH ODV JUi¿FDV GH u(x, t) en el
PLVPR LQWHUYDOR GH WLHPSR SHUR SDUD ORV YDORUHV ¿MRV
x 3ʌ兾4, x 5ʌ兾6, x 11ʌ兾12 y x ʌ.
Tarea para el laboratorio de computación
10. a) Resuelva la ecuación de calor (1) sujeta a
u(0, t)
0,
u(100, t) 0, t 0
0.8x,
0.8(100
u(x, 0)
Aislado
0
x), 50
x
x
50
100.
b) Utilice la aplicación 3D-plot de su SAC para trazar
ODJUi¿FDGHODVXPDSDUFLDOS5(x, t) que consiste en
los primeros cinco términos distintos de cero de la
solución del inciso a) para 0 x 100, 0 t 200.
Suponga que k 1.6352. Experimente con diferentes
SHUVSHFWLYDVWULGLPHQVLRQDOHVGHODVXSHU¿FLH XVHOD
opción ViewPoint en Mathematica).
L x
0
Transferencia de calor
de la superficie
lateral de la varilla
0
FIGURA 12.3.3 Pérdida de calor de la varilla del
problema 5.
12.4
0,
ECUACIÓN DE ONDA
REPASO DE MATERIAL
l Lea nuevamente las páginas 452 a 454 de la sección 12.2.
INTRODUCCIÓN Ahora podemos resolver el problema con valores en la frontera (11) que se
analizó en la sección 12.2. El desplazamiento vertical u(x, t) de la cuerda vibratoria de longitud L que
VHPXHVWUDHQOD¿JXUD D VHGHWHUPLQDDSDUWLUGH
2
a2
u
x2
2
u
,
t2
0
u(0, t)
0, u(L, t)
u(x, 0)
f (x),
u
t
x
L, t
0,
t
(2)
0
g(x), 0
t 0
(1)
0
x
L.
(3)
12.4
ECUACIÓN DE ONDA
459
l
SOLUCIÓN DEL PVF Con la suposición usual de que u(x, t) X(x)T(t), la separación de variables en (1) conduce a:
X
X
por lo que
T
a2 T
X
X
T
2
(4)
0
(5)
0.
a T
Como en la sección anterior, las condiciones de frontera (2) se traducen en X(0) 0
y X(L) 0. La ecuación (4) junto con estas condiciones de frontera es el problema
regular de Sturm-Liouville
X
0, X(0)
X
0,
X(L)
(6)
0.
De las tres posibilidades usuales para el parámetro, Ȝ 0, Ȝ Į 0 y Ȝ Į
0,
sólo la última elección conduce a soluciones no triviales. Correspondiendo a Ȝ Į2, Į
0, la solución general de (4) es
2
c1 cos ax
X
2
c2 sen ax.
X(0) 0 y X(L) 0 indican que c1 0 y c2 sen Į/ 0. Nuevamente la última
ecuación implica que Į/ Qʌ o Į Qʌ兾L. Los eigenvalores y las correspondienn
tes eigenfunciones de (6) son l n n2p 2 L2 y X(x) c2 sen
x, n 1, 2, 3, . . .
L
La solución general de la ecuación de segundo orden (5) es entonces
n a
n a
T(t) c3 cos
t c4 sen
t.
L
L
Reescribiendo c2c3 como An y c2c4 como Bn, las soluciones que satisfacen tanto la ecuación de onda (1) como las condiciones de frontera (2) son
un
y
An cos
n a
t
L
An cos
u(x, t)
n 1
Bn sen
n a
t
L
n a
n
t sen
x
L
L
Bn sen
n a
n
t sen
x.
L
L
(7)
(8)
Haciendo t 0 en (8) y utilizando la condición inicial u(x, 0) f (x) se obtiene
f (x)
u(x, 0)
An sen
n 1
n
x.
L
Puesto que la última serie es un desarrollo en un semiintervalo de f en una serie de
senos, podemos escribir An bn;
2
L
An
L
f (x) sen
0
n
x dx.
L
(9)
Para determinar Bn, derivamos la ecuación (8) respecto a t y después hacemos t 0:
u
t
u
t
An
n 1
n a
n a
sen
t
L
L
g(x)
t 0
Bn
n 1
Bn
n a
n a
n
cos
t sen
x
L
L
L
n a
n
sen
x.
L
L
Para esta última serie que es el desarrollo en un semiintervalo de senos de la velocidad
inicial gHQHOLQWHUYDORHOFRH¿FLHQWHtotal BnQʌD兾L debe estar dado por la forma bn en
la ecuación (5) de la sección 11.3, es decir,
Bn
n a
L
2
L
L
g(x) sen
0
n
x dx
L
460
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
de lo que se obtiene
2
L
n
g(x) sen
x dx.
(10)
n a 0
L
La solución del problema con valores en la frontera (1) a (3) consiste en la serie
FRQFRH¿FLHQWHVAn y BnGH¿QLGRVSRU \ UHVSHFWLYDPHQWH
Observamos que cuando la cuerda se libera a partir del reposo, entonces g(x) 0
para toda x en el intervalo [0, L], y por tanto, Bn 0.
Bn
CUERDA PULSADA Un caso especial del problema con valores en la frontera en
(1) a (3) es el modelo de la cuerda pulsada. Podemos ver el movimiento de la cuerda
DOWUD]DUODJUi¿FDGHODVROXFLyQRGHVSOD]DPLHQWRu(x, t) para valores crecientes del
tiempo t\XWLOL]DUODDSOLFDFLyQGHDQLPDFLyQGHXQ6$&(QOD¿JXUDVHSUHVHQWDQDOJXQRVPDUFRVGHXQ³YLGHR´JHQHUDGRGHHVWDPDQHUDHQOD¿JXUDDVH
presenta la forma inicial de la cuerda. Se le pide que intente reproducir los resultados
TXHVHSUHVHQWDQHQOD¿JXUDWUD]DQGRXQDVHFXHQFLDGHODVVXPDVSDUFLDOHVGH
Véanse los problemas 7 y 22 en los ejercicios 12.4.
u
u
1
0
-1
u
1
x
0
-1
1
2
1
x
0
-1
3
1
a) t = 0 forma inicial
2
3
1
b) t = 0.2
u
2
3
u
1
x
0
-1
1
x
0
-1
1
2
c) t = 0.7
u
1
0
-1
x
3
1
d) t = 1.0
2
x
3
1
e) t = 1.6
2
3
f) t = 1.9
FIGURA 12.4.1 Marcos de un “video” de un SAC.
ONDAS ESTACIONARIAS Recuerde de la deducción de la ecuación de onda unidimensional en la sección 12.2, que la constante a que se encuentra en la solución del
problema con valores en la frontera en las ecuaciones (1), (2) y (3) está dada por 1T> ,
donde ȡ es la masa por unidad de longitud y T es la magnitud de la tensión en la cuerda.
Cuando THVVX¿FLHQWHPHQWHJUDQGHODFXHUGDYLEUDQGRSURGXFHXQVRQLGRPXVLFDO(VWH
sonido es el resultado de ondas estacionarias. La solución (8) es una superposición de las
soluciones producto llamada ondas estacionarias o modos normales:
u(x, t)
u1(x, t)
u2(x, t)
u3(x, t)
.
En vista de las ecuaciones (6) y (7) de la sección 5.1 las soluciones producto (7) se
puede escribir como
n a
n
un(x, t) Cn sen
t
x,
(11)
n sen
L
L
1A2n B2n y n VH GH¿QH SRU VHQ n An兾Cn y cos n Bn兾Cn. Para
donde Cn
n ODVRQGDVHVWDFLRQDULDVVRQHVHQFLDOPHQWHODVJUi¿FDVGHVHQ Qʌ[兾L),
con una amplitud que varía con el tiempo dada por
n a
t
n .
L
$OWHUQDWLYDPHQWH YHPRV GH TXH D XQ YDORU ¿MR GH x cada función producto
un(x, t) representa un movimiento armónico simple con amplitud Cn兩sen(Qʌ[兾L)兩 y frecuencia fn na兾2L. En otras palabras, cada punto en una onda estacionaria vibra con
una amplitud diferente pero con la misma frecuencia. Cuando n 1,
Cn sen
u1(x, t)
C1 sen
a
t
L
1
sen
L
x
12.4
a) Primera onda estacionaría
Nodo
0
L x
L
2
461
l
se llama primera onda estacionaria, primer modo normal o modo fundamental
de vibración(QOD¿JXUDVHPXHVWUDQODVSULPHUDVWUHVRQGDVHVWDFLRQDULDVR
PRGRVQRUPDOHV/DVJUi¿FDVSXQWHDGDVUHSUHVHQWDQODVRQGDVHVWDFLRQDULDVHQGLIHrentes valores del tiempo. Los puntos en el intervalo (0, L), para el cual sen(Qʌ兾L)x 0,
corresponden a puntos en una onda estacionaria donde no hay movimiento. Estos
puntos se llaman nodos&RPRHMHPSORHQODV¿JXUDV E \ F YHPRV
que la segunda onda estacionaria tiene un nodo en L兾2 y la tercer onda estacionaria
tiene dos nodos en L兾3 y 2L兾3. En general, el n-ésimo modo normal de vibración tiene
n 1 nodos.
La frecuencia
L x
0
ECUACIÓN DE ONDA
b) Segunda onda estacionaría
1
T
2L B
a
2L
f1
Nodos
0
2L
3
L
3
del primer modo normal se llama frecuencia fundamental o primer armónico y
está directamente relacionado con la altura del sonido que produce un instrumento de
cuerda. Es evidente que entre mayor sea la tensión en la cuerda, más alto será el sonido
que produce. Las frecuencias fn de los modos normales, que son múltiplos enteros de
la frecuencia fundamental, se llaman sobretonos. El segundo armónico es el primer
sobretono y así sucesivamente.
L x
c) Tercera onda estacionaría
FIGURA 12.4.2 Primeras tres ondas
estacionarias.
EJERCICIOS 12.4
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-21.
En los problemas 1 a 8 resuelva la ecuación de onda (1) sujeta
a las condiciones dadas.
1. u(0, t)
0, u(L, t) 0
1
u
0
u(x, 0)
x (L x),
4
t t 0
2. u(0, t)
u(x, 0)
0, u(L, t)
u
0,
t t 0
3. u(0, t) 0,
7. u(0, t)
u(x, 0)
0, u(L, t)
2hx
,
L
0
x
,
L
2h 1
0
x (L
x)
8.
u(L, t) 0
u(x GDGRHQOD¿JXUD
u
t
u
x
0
t 0
f (x)
1
u
x
u
t
0,
x 0
u(x, 0)
0
x,
L
2
L
2
x
x
L
0
0
t 0
Este problema podría describir el desplazamiento longitudinal u(x, t) de una varilla elástica vibratoria. Las condiciones de frontera en x 0 y x L se llaman condiciones
de extremo libre9HDOD¿JXUD
u(x, t)
FIGURA 12.4.3 Desplazamiento inicial en el problema 3.
u(x, 0)
5. u(0, t)
u(x, 0)
0, u( , t)
1
6 x(
2
0, u( , t)
u
0,
t t 0
6. u(0, t) 0,
0
u
t
0
FIGURA 12.4.4 Varilla elástica vibratoria del problema 8.
9. Una cuerda se estira y se ancla al eje x en x 0 y en x
ʌ para t 0. Si las vibraciones transversales se presentan
en un medio con resistencia al movimiento proporcional
a la velocidad instantánea, entonces la ecuación de onda
toma la forma
0
sen x
u
t
L
t 0
u(1, t) 0
u(x, 0) 0.01 sen 3ʌ[,
x
0
x 2 ),
0
t 0
x L
L/3 2L/3 L x
4. u(0, t)
u
t
,
2
0
t 0
u
x2
2
u
t2
2
u
,
t
0
1,
t
0.
462
CAPÍTULO 12
l
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
Encuentre el desplazamiento u(x, t) si la cuerda parte del
reposo desde un desplazamiento inicial f (x).
10. Muestre que una solución del problema con valores en la
frontera
2
2
u
t2
u
x2
es
u(x, t)
4
k 1
x,
0,
0
0,
0
>2
x,
u(x, 0)
, t
x
0, u( , t)
u(0, t)
u
t
0
u,
0
0
t
>2
x
x
x
t 0
( 1) k 1
sen(2k
(2k 1)2
1) x cos 1(2k
1) 2
1 t.
11. El desplazamiento transversal u(x, t) de una viga vibratoria de longitud L está determinado por una ecuación diferencial parcial de cuarto orden
2
4
u
u
0,
0 x L, t 0.
a2 4
t2
x
Si la viga está simplemente apoyada, como se muestra en
OD¿JXUDODVFRQGLFLRQHVHQODIURQWHUDLQLFLDOVRQ
u(0, t)
0,
u(L, t)
2
u
x2
0,
t
0
0,
t
0
2
u
x2
0,
x 0
u(x, 0)
f (x),
u
t
x L
g(x), 0
x
L.
t 0
Resuelva para u(x, t). [Sugerencia: Por conveniencia
utilice Ȝ Į4 al separar las variables.]
positivas de la ecuación
cosh x cos x 1.
b) 'HPXHVWUHHQIRUPDJUi¿FDTXHODHFXDFLyQGHOLQFLVRD WLHQHXQQ~PHURLQ¿QLWRGHUDtFHV
c) Utilice una calculadora o un SAC para encontrar
aproximaciones a los primeros cuatro eigenvalores.
Utilice cuatro decimales.
13. Considere el problema con valores en la frontera dado en
las ecuaciones (1), (2) y (3) de esta sección. Si g(x) 0
para 0 x L, demuestre que la solución del problema
se puede escribir como
1
u(x, t)
[ f (x at) f (x at)].
2
[Sugerencia: Utilice la identidad
2 sen u 1 cos u 2 sen(u 1 u 2 ) sen(u 1 u 2 ).]
14. El desplazamiento vertical u(x, t GHXQDFXHUGDLQ¿QLWDmente larga está determinado por el problema con valores
iniciales
2
2
u
u
,
x
, t 0
a2 2
t2
x
(12)
u
g(x).
t t 0
Este problema se puede resolver sin separar las variables.
u(x, 0)
a) Demuestre que la ecuación de onda se puede expresar
en la forma 2u h j 0 haciendo las sustituciones
ȟ x at y Ș x at.
b) Integre la ecuación diferencial parcial del inciso a),
primero respecto a Ș y después respecto a ȟ, para demostrar que u(x, t) F(x at) G(x at) donde
F y G son funciones arbitrarias derivables dos veces,
es una solución de la ecuación de onda. Utilice esta
solución y las condiciones iniciales dadas para demostrar que
F(x)
u
x
0
L
FIGURA 12.4.5 Viga simplemente apoyada del problema 11.
12. Si los extremos de la viga del problema 11 están incrustados en x 0 y x L, las condiciones de frontera se
convierten, para t 0, en:
u(0, t)
u
x
0, u(L, t)
0,
x 0
u
x
0
0.
x L
a) Demuestre que los eigenvalores del problema son
x2n>L2, donde xn, n 1, 2, 3, . . . , son las raíces
n
f (x),
y
G(x)
1
f (x)
2
1
2a
1
f (x)
2
1
2a
x
g(s)ds
c
g(s)ds
c,
x0
x
x0
donde x0 es arbitraria y c es una constante de integración.
c) Utilice los resultados del inciso b) para demostrar que
1
1 x at
u(x, t)
[ f (x at) f (x at)]
g(s) ds. (13)
2
2a x at
Observe que cuando la velocidad inicial g(x) 0, obtenemos
1
[ f (x at) f (x at)],
x
.
2
Esta última solución se puede interpretar como una
superposición de dos ondas viajeras, una moviéndose hacia la derecha (esto es, 12 f (x at)) y la otra
u(x, t)
12.5
g(x) 1
16. f (x) sen x,
g(x) cos x
18. f (x)
e
x2
,
0
g(x)
f (x)
Tarea para el laboratorio de computación
12.5
x,
x
x
1
1
y
0.
g(x)
y
g(x)
1,
0,
x
x
0.1
0.1.
22. El modelo de la cuerda vibratoria en el problema 7 se
llama de cuerda pulsada /D FXHUGD VH ¿MD DO HMH x en
x 0 y en x L y se sujeta en x L兾2 a h unidades
arriba del eje x9HDOD¿JXUD,QLFLDQGRHQt 0 la
cuerda se libera a partir del reposo.
a) 8WLOLFHXQ6$&SDUDWUD]DUODJUi¿FDGHODVXPDSDUcial S6(x, t), esto es, los primeros seis términos distintos de cero de su solución, para t 0.lk, k 0, 1, 2,
. . . , 20. Suponga que a 1, h 1 y L ʌ.
b) Utilice la aplicación de animación de su sistema algebraico computarizado para hacer un video de la solución del problema 7.
20. 8QPRGHORSDUDXQDFXHUGDLQ¿QLWDPHQWHODUJDVHVXMHWD
de los tres puntos (1, 0), (1, 0) y (0, 1) y después se
libera simultáneamente de esos tres puntos al tiempo que
t 0 está dado por (12) con
1
0,
0
a) 8
WLOLFHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQGH
d’Alembert (13) en [6, 6] para t 0.2k, k 0, 1, 2,
. . . , 25. Suponga que a 1.
b) Utilice la aplicación de animación de su sistema algebraico computarizado para hacer un video de la solución. Describa el movimiento de la cuerda al transcurrir el tiempo.
19. a) 8WLOLFHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQGH
dAlembert del problema 18 en el intervalo [5, 5] en
los tiempos t 0, t 1, t 2, t 3 y t 4. Coloque
WRGDVODVJUi¿FDVHQXQVLVWHPDFRRUGHQDGR6XSRQJD
que a 1.
b) Utilice la aplicación 3D-plot de su SAC para trazar la
JUi¿FDGHODVROXFLyQGHGAlembert u(x, t) en el problema 18 para 5 x 5, 0 t 4. Experimente
con distintas perspectivas tridimensionales de esta
VXSHU¿FLH(OLMDODSHUVSHFWLYDGHODVXSHU¿FLHHQOD
TXHXVWHGFRQVLGHUHTXHODVJUi¿FDVGHOLQFLVRD VRQ
más evidentes.
f (x)
ECUACIÓN DE LAPLACE
REPASO DE MATERIAL
l
463
21. 8QDFXHUGDGHORQJLWXGLQ¿QLWDTXHFRLQFLGHFRQHOHMHx
se golpea en el origen con un martillo cuya cabeza tiene
0.2 pulgadas de diámetro. Un modelo para el movimiento
de la cuerda está dado por (12) con
g(x) sen 2x
17. f (x) 0,
l
a) 7
UDFHODJUi¿FDGHODSRVLFLyQLQLFLDOGHODFXHUGDHQ
el intervalo [6, 6].
b) 8WLOLFHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQGH
d’Alembert (13) en [6, 6] para t 0.2k, k 0, 1, 2,
. . . , 25. Suponga que a 1.
c) Utilice la aplicación de su sistema algebraico computarizado para hacer un video de la solución. Describa
el movimiento de la cuerda al transcurrir el tiempo.
moviéndose hacia la izquierda ( 12 f (x at)). Ambas
ondas viajan con rapidez a y tienen la misma forma
básica que la del desplazamiento inicial f (x). La forma de u(x, t) dado en (13) se llama solución de dAlembert.
En los problemas 15 a 18 utilice la solución de d’Alembert
(13) para resolver el problema con valores iniciales del problema 14 sujeto a las condiciones iniciales dadas.
15. f (x) sen x,
ECUACIÓN DE LAPLACE
Lea nuevamente la sección 12.2 y el ejemplo 1 de la sección 11.4.
INTRODUCCIÓN Suponga que deseamos encontrar la temperatura de estado estable u(x, y) en
una placa rectangular cuyas aristas verticales x 0 y x a están aislados, como se muestra en la
¿JXUD&XDQGRQRVHHVFDSDFDORUGHODVFDUDVODWHUDOHVGHODSODFDUHVROYHPRVHOVLJXLHQWH
problema con valores en la frontera:
2
2
u
y2
u
x2
u
x
0,
x 0
u(x, 0)
0,
0,
0
u
x
a, 0
x
0,
0
y
y
b
(1)
(2)
b
x a
u(x, b)
f (x), 0
x
a
(3)
464
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
SOLUCIÓN DEL PVF Haciendo u(x, y) X(x)Y(y), la separación de variables en la
ecuación (1) conduce a
y
u = f (x)
(a, b)
Aislado
X
X
Aislado
u=0
x
FIGURA 12.5.1 Temperaturas de
estado estable en una placa rectangular.
Y
Y
X
X
0
(4)
Y
Y
0.
(5)
Las tres condiciones homogéneas en (2) y (3) se traducen en X(0) 0, X(a) 0
y Y(0) 0. El problema de Sturm-Liouville asociado con la ecuación en (4) es
entonces
X
0,
X
X (0)
0,
X (a)
(6)
0.
Examinando los casos correspondientes a Ȝ 0, Ȝ Į2 0 y Ȝ Į2 0, donde Į
0, ya se han realizado en el ejemplo 1 de la sección 11.4.* Aquí presentamos un breve
resumen del análisis.
Para Ȝ 0, la ecuación (6) se convierte en
0,
X
X (0)
0,
X (a)
0.
La solución de la ED es X c1 c2x. Las condiciones de frontera implican que X
c1. Haciendo c1 0, este problema tiene una solución no trivial. Para Ȝ Į2 0, (6)
sólo tiene la solución trivial. Para Ȝ Į2 0, (6) se convierte en
a2 X
X
0,
X (0)
0, X (a)
0.
La solución de la ED en este problema es X c1 cos Į[ c2 sen Į[. La condición de
frontera X(0) 0 implica que c2 0, por tanto X c1 cos Į[. Derivando esta última expresión y después haciendo x a se obtiene c1 sen Į[ 0. Como hemos supuesto que
Į 0, esta última condición se satisface cuando ĮD Qʌ o Į Qʌ兾a, n 1, 2, . . .
Los eigenvalores de la ecuación (6) son entonces Ȝ0 0 y n 2n n2 2/ a2,
n 1, 2, . . . Si se corresponde Ȝ0 0 con n 0, las eigenfunciones de (6) son
X
c1,
n
0,
y
X
c1 cos
n
x,
a
n
1, 2, . . .
Ahora resolvemos la ecuación (5) sujeta a la única condición de frontera homogénea Y(0) 0. Hay dos casos. Para Ȝ0 0, la ecuación (5) es simplemente Y 0; por
tanto su solución es Y c3 c4y. Pero Y(0) 0 que implica que c3 0, por tanto Y c 4 y.
n2 2
Y 0. Debido a que 0 y bGH¿QH
Para Ȝn n2ʌ2兾a2, la ecuación (5) es Y
a2
XQLQWHUYDOR¿QLWRXVDPRV GHDFXHUGRFRQODUHJODLQIRUPDOLQGLFDGDHQODSiJLQD
429) la forma hiperbólica de la solución general:
Y
c3 cosh (n y>a)
c4 senh (n y>a).
Y(0) 0 nuevamente implica que c3 0, por lo que queda Y c4 senh (Qʌ\兾a).
Las soluciones producto un X(x)Y(y) que satisfacen la ecuación de Laplace (1)
y las tres condiciones de frontera homogéneas en (2) y (3) son
A 0 y, n
0,
y
A n senh
n
n
y cos
x,
a
a
n
1, 2, . . . ,
donde hemos reescrito c1c4 como A0 para n 0 y como An para n 1, 2, . . .
*
En ese ejemplo los símbolos y y L juegan el papel de X y a en este análisis.
12.5
ECUACIÓN DE LAPLACE
l
465
Con el principio de superposición se obtiene otra solución:
n
n
y cos
x.
a
a
An senh
A0 y
u(x, y)
n 1
(7)
Ahora podemos aplicar la última condición de frontera en (3). Sustituyendo x b en
la ecuación (7) se obtiene
u(x, b)
f (x)
n
n
b cos
x,
a
a
An senh
A0 b
n 1
que es un desarrollo en un semiintervalo de f en una serie de cosenos. Al hacer las
LGHQWL¿FDFLRQHVA0b a0兾2 y An senh(QʌE兾a) an, n 1, 2, 3, . . . se tiene de
las ecuaciones (2) y (3) de la sección 11.3 que
2A 0 b
A0
y
An senh
n
b
a
An
a
2
a
f (x) dx
0
a
1
ab
a
2
a
(8)
f (x) dx
0
f (x) cos
0
n
x dx
a
a
2
f (x) cos
n
a senh
b
a
0
n
x dx.
a
(9)
La solución del problema con valores en la frontera (1) a (3) consiste en la serie
FRQFRH¿FLHQWHVA0 y AnGH¿QLGDVHQ \ UHVSHFWLYDPHQWH
PROBLEMA DE DIRICHLET Un problema con valores en la frontera en el que
se busca una solución de una ecuación diferencial parcial de tipo elíptico tal como
la ecuación de Laplace, 2 u 0, dentro de una región R acotada (en el plano o en
el espacio tridimensional) tal que u tome los valores prescritos en toda la frontera de
la región se llama SUREOHPDGH'LULFKOHW. En el problema 1 de los ejercicios 12.5 se
pide demostrar que la solución del problema de Dirichlet, para una región rectangular
2
u
x2
2
u
y2
0,
0
x
a,
u(0, y)
0,
u(a, y)
0,
0
u(x, 0)
0,
u(x, b)
f (x),
0
0
y
y
b
b
x
a
es
u(x, y)
An senh
n 1
n
n
y sen
x,
a
a
donde
An
a
2
a senh
n
b
a
f (x) sen
0
n
x dx.
a
(10)
En el caso especial cuando f (x) 100, a 1 y b ORVFRH¿FLHQWHVAn en (10) están da1 ( 1) n
dos porAn 200
. &RQD\XGDGHXQ6$&VHWUD]DODJUi¿FDGHODVXSHU¿FLH
n senh n
GH¿QLGDSRUu(x, y) en la región R: 0 x 1, 0 y HQOD¿JXUD D VHYH
que se satisfacen las condiciones en la frontera; en especial, observe que a lo largo de
y 1, u 100 para 0 x 1. Las isotermas o curvas en la región rectangular a lo
largo de las cuales la temperatura u(x, y) es constante se pueden obtener con la apliFDFLyQSDUDWUD]RGHJUi¿FDVGHFXUYDVGHQLYHOGHXQ6$&FRPRVHPXHVWUDQHQOD
¿JXUD E (VWDVLVRWHUPDVWDPELpQVHSXHGHQFRQVLGHUDUFRPRODVFXUYDVGHLQtersección (proyectadas en el plano xy) de los planos horizontales u 80, u 60 y así
466
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
u(x, y)
100
50
0
1
0.5
y
0
1
0.5
x
a) Superficie
1
VXFHVLYDPHQWHFRQODVXSHU¿FLHGHOD¿JXUD D 2EVHUYHTXHHQWRGDODUHJLyQ
la temperatura máxima es u 100 y está en la parte de la frontera que corresponde a
y 1. Esto no es coincidencia. Hay un principio del máximo que establece que una
solución u de la ecuación de Laplace dentro de una región R acotada con frontera B
(como un rectángulo, círculo, esfera, etc.) tiene sus valores máximo y mínimo en B.
Además, se puede demostrar que u no puede tener extremos (máximos o mínimos)
relativos en el interior de R(VWH~OWLPRHQXQFLDGRVHYHFRQFODULGDGHQODVXSHU¿FLH
GHOD¿JXUD D
y
0.8
80
60
0.6
40
0.4
20
0.2
10
0.2
0.4
PRINCIPIO DE SUPERPOSICIÓN El problema de Dirichlet para un rectángulo se
SXHGHUHVROYHUFRQIDFLOLGDGVHSDUDQGRODVYDULDEOHVFXDQGRVHHVSHFL¿FDQFRQGLFLRnes homogéneas para dos fronteras paralelas. Sin embargo, el método de separación
de variables no se aplica a un problema de Dirichlet cuando las condiciones en la fronWHUDHQORVFXDWURODGRVGHOUHFWiQJXORVRQQRKRPRJpQHDV3DUDVDOYDUHVWDGL¿FXOWDG
separamos el problema
2
2
0.6
0.8
1
x
b) Isotermas
FIGURA 12.5.2 /DVXSHU¿FLHHVOD
JUi¿FDGHODVVXPDVSDUFLDOHVFXDQGRf (x)
100 y a b 1 en (10).
u
y2
u
x2
0,
0
u(0, y)
F(y),
u(x, 0)
f (x), u(x, b)
x
a,
u(a, y)
0
y
0
G( y),
g(x), 0
b
y
x
b
(11)
a
en dos problemas, cada uno con condiciones homogéneas en la frontera, en lados paralelos, como se muestra a continuación:
Problema 1
Problema 2
∂2u1 ∂2u1
––––2 ––––2 0, 0 x a, 0 y b
∂x
∂y
u1(0, y) 0, u1(a, y) 0, 0 y b
∂2u2 ∂2u2
––––2 ––––2 0, 0 x a, 0 y b
∂x
∂y
u2(0, y) F(y), u2(a, y) G(y), 0 y b
u1(x, 0) f (x), u1(x, b) g(x), 0 x a
u2(x, 0) 0, u2(x, b) 0, 0 x a
Suponga que u1 y u2 son las soluciones de los problemas 1 y 2, respectivamente. Si
GH¿QLPRVu(x, y) u 1(x, y) u 2(x, y), veremos que u satisface todas las condiciones
en la frontera del problema original (11); por ejemplo,
u(0, y)
u1(0, y)
u2 (0, y)
0
u(x, b)
u1 (x, b)
u2 (x, b)
g(x)
F(y)
F( y),
0
g(x),
y así sucesivamente. Además, u es una solución de la ecuación de Laplace por el teorema 12.1.1. En otras palabras, al resolver los problemas 1 y 2 y sumar las soluciones,
ya hemos resuelto el problema original. Esta propiedad aditiva de las soluciones se
llama principio de superposición9HDOD¿JXUD
Dejaremos como ejercicio (véanse los problemas 13 y 14 de los ejercicios 12.5)
demostrar que una solución del problema 1 es
u1(x, y)
An cosh
n 1
donde
An
2
a
a
f (x) sen
0
n
y
a
Bn senh
np
x dx
a
1
2 a
n
g(x) sen
x dx
n
a 0
a
senh
b
a
y que una solución del problema 2 es
Bn
n
n
y sen
x,
a
a
An cosh
n
b ,
a
12.5
An cosh
n 1
2
b
An
Δ
F( y)
g(x)
2
u=0
f (x)
F( y) sen
0
1
2
n
b
senh
a
b
Bn
y
b
b
G(y) sen
0
y
=
467
n
n
x sen
y,
b
b
0
x
2
n
y dy
b
An cosh
n
a .
b
y
g(x)
(a, b)
G( y)
Bn senh
l
n
y dy
b
Δ
donde
n
x
b
0
(a, b)
u2 = 0
G( y)
(a, b)
u1 = 0
+
0
Δ
u2 (x, y)
ECUACIÓN DE LAPLACE
F( y)
x
f (x)
2
0
x
FIGURA 12.5.3 Solución u solución u 1 del problema 1 solución u 2 del problema 2.
EJERCICIOS 12.5
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-21.
En los problemas 1 a 10, resuelva la ecuación de Laplace (1) para
una placa rectangular sujeta a las condiciones de frontera dadas
1. u(0, y) 0, u(a, y) 0
u(x, 0) 0, u(x, b) f (x)
2. u(0, y) 0, u(a, y) 0
u
0, u(x, b) f (x)
y y 0
u
1
x x 1
u(x, 0) 0,
u(x, 1) 0
En los problemas11 y 12 resuelva la ecuación de Laplace (1) para
ODSODFDVHPLLQ¿QLWDTXHVHHQFXHQWUDHQODGLUHFFLyQSRVLWLYDGHO
eje y. En cada caso suponga que u(x, y) está acotada cuando y → .
y
11.
10. u(0, y)
3. u(0, y) 0,
u(a, y) 0
u(x, 0) f (x), u(x, b) 0
10y,
u=0
u
u
0,
0
4.
x x 0
x x a
u(x, 0) x, u(x, b) 0
5. u(0, y) 0,
u
y
0,
y 0
6. u(0, y)
u
y
7.
g( y),
0,
y 0
π
0
u = f (x)
u(1, y) 1 y
u
y
0
u
x x
u
y y
x
FIGURA 12.5.4 Placa del problema 11.
y
12.
y 1
u=0
0
1
Aislada
Aislada
0
u
u(0, y), u( , y) 1
x x 0
u(x, 0) 0,
u(x, ʌ) 0
8. u(0, y) 0,
u(1, y) 0
u
u(x, 0), u(x, 1) f (x)
y y 0
9. u(0, y) 0,
u(1, y) 0
u(x, 0) 100, u(x, 1) 200
π
0
u = f (x)
x
FIGURA 12.5.5 Placa del problema 12.
En los problemas 13 y 14 resuelva la ecuación de Laplace (1) para
una placa rectangular sujeta a las condiciones de frontera dadas.
13. u(0, y) 0,
u(a, y) 0
u(x, 0) f (x), u(x, b) g(x)
14. u(0, y) F( y), u(a, y) G( y)
u(x, 0) 0,
u(x, b) 0
468
CAPÍTULO 12
l
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
En los problemas 15 y 16 aplique el principio de superposición y resuelva la ecuación de Laplace (1) para una placa
cuadrada sujeta a las condiciones en la frontera dadas.
15. u(0, y) 1, u(ʌ, y) 1
u(x, 0) 0, u(x, ʌ) 1
16. u(0, y) 0,
u(x, 0)
Explique por qué una condición necesaria para una solución u es que g satisfaga
b
Esta condición se denomina la condición de compatibilidad. Haga un poco de investigación por su parte y explique la condición de compatibilidad en la tierra física.
20. Considere el problema con valores en la frontera
u(2, y) y(2 y)
0,
x,
2
u(x, 2)
0
x, 1
x
x
1
2
Problemas para analizar
17. a) En el problema 1 suponga que a b ʌ y f (x)
100x(ʌ x). Sin utilizar la solución u(x, y) dibuje, a
PDQR FyPR VH YHUtD OD VXSHU¿FLH VREUH XQD UHJLyQ
UHFWDQJXODUGH¿QLGDSRU x ʌ, 0 y ʌ.
b) ¿Cuál es el máximo valor de la temperatura u para 0
x ʌ, 0 y ʌ?
c) Utilice la información del inciso a) para calcular los
FRH¿FLHQWHVGHVXUHVSXHVWDGHOSUREOHPD'HVSXpV
use la aplicación 3D-plot de su SAC para trazar la
JUi¿FDGHODVXPDSDUFLDOS5(x, y) que consiste en los
primeros cinco términos distintos de cero de la solución del inciso a) para 0 x ʌ, 0 y ʌ. Utilice
perspectivas diferentes y después compárelas con su
dibujo del inciso a).
18. En el problema 16 ¿cuál es el valor máximo de la temperatura u para 0 x 2, 0 y 2?
19. Resuelva el problema de Neumann para un rectángulo
2
u
x2
u
y y
u
x
x
12.6
2
0
0
0,
0
0,
0
y
b
0
x
a
g(y), 0
y
b.
x
0,
u
y
y
b
0,
u
x
x
a
0,
2
u
x2
u
y2
u
y
y
0,
0
u0 cos y,
u(0, y)
u
y
0,
0
1,
x
u(1, y)
y
ʌ
0
u0(1
ʌ
y
cos 2y)
0.
Discuta cómo se ha obtenido la respuesta siguiente:
u(x, y)
u0 x
u0
senh(1 x)
cos y
senh 1
u0
senh 2x cos 2y.
senh 2
Desarrolle sus ideas.
Tarea para el laboratorio de computación
21. a) Use la aplicación de trazo de curvas de nivel de su
6$&SDUDWUD]DUODVJUi¿FDVGHODVLVRWHUPDVu 170,
140, 110, 80, 60, 30 para la solución del problema 9.
Use la suma parcial S5(x, y) que consiste en los primeros cinco términos distintos de cero de la solución.
b) 8WLOLFHODDSOLFDFLyQGHJUi¿FDWULGLPHQVLRQDOGHVX
SAC para trazar la suma parcial S5(x, y).
2
u
y2
0.
g(y)dy
0
22. Use la aplicación 3D-plot de su SAC para trazar las
isotermas u 2, 1, 0.5, 0.2, 0.1, 0.05, 0, 0.05 de la
solución del problema 10. Utilice la suma parcial S5(x,
y) formada por los cinco primeros términos distintos de
cero de la solución.
PROBLEMAS NO HOMOGÉNEOS CON VALORES EN LA FRONTERA
REPASO DE MATERIAL
l Secciones 12.3 a 12.5.
INTRODUCCIÓN Se dice que un problema con valores en la frontera es no homogéneo si la ecuación diferencial parcial o las condiciones de frontera son no homogéneas. El método de separación
de variables que se ha empleado en las tres secciones anteriores no puede aplicarse directamente a un
problema con valores en la frontera. Sin embargo, en las dos primeras técnicas que analizamos en esta
sección empleamos un cambio de variable que transforma un problema con valores en la frontera en
dos problemas; un PVF relativamente simple para una EDO y los otros PVF homogéneos para una
EDP. El último problema se puede resolver con separación de variables. La segunda técnica es básicamente un procedimiento directo del PVF utilizando desarrollos en series ortogonales.
PVF NO HOMOGÉNEOS Cuando se genera calor a una razón constante r en una
YDULOODGHORQJLWXG¿QLWDODIRUPDGHODHFXDFLyQGHFDORUHV
2
k
u
x2
r
u
,
t
0
x
L, t
0.
(1)
12.6
PROBLEMAS NO HOMOGÉNEOS CON VALORES EN LA FRONTERA
l
469
La ecuación (1) es no homogénea y se observa con facilidad que no es separable. Por
otro lado, supongamos que se desea resolver la ecuación de calor homogénea kuxx ut
cuando las condiciones de frontera en x 0 y x L son no homogéneas, por ejemplo, que las fronteras se mantengan a temperaturas distintas de cero: u(0, t) u0 y
u(L, t) u1. Aun cuando la sustitución u(x, t) X(x)T(t) separa a kuxx ut, encontramos rápidamente un obstáculo en la determinación de los eigenvalores y las eigenfunciones porque lo que no podemos concluir nada acerca de de X(0) y de X(L) de u(0, t)
X(0)T(t) u0 y de u(L, t) X(L)T(t) u1.
A continuación mostraremos dos métodos de solución distintos para los diferentes
tipos de PVF no homogéneos.
MÉTODO 1 Considere un PVF que implica una ecuación no homogénea con condiciones de frontera independientes del tiempo tales como
2
k
u
x2
u
,
t
F(x)
u(0, t)
u 0,
u(x, 0)
f (x), 0
0
u(L, t)
x
x
u1,
0
L, t
t
(2)
0
L,
donde u0 y u1 son constantes. Cambiando la variable dependiente u a una nueva variable dependiente v sustituyendo u(x, t) v(x, t) ȥ(x), el problema en (2) se puede
reducir a dos problemas:
{k
Problema A:
F(x)
2
v
x2
v(0, t)
v(x, 0)
(0)
u0,
(L)
u1
v
,
t
0, v(L, t) 0
f (x)
(x)
k
Problema B:
0,
Observe que el problema A implica una EDO que se puede resolver por integración,
mientras que el problema B es un PVF homogéneo que se puede resolver por la separación de variables común. Una solución del problema original (2) es la suma de las
soluciones de los problemas A y B.
El siguiente ejemplo ilustra este primer método.
EJEMPLO 1
Uso del método 1
Suponga que r es una constante positiva. Resuelva la ecuación (1) sujeta a
u(0, t)
0,
u(x, 0)
f (x), 0
u(1, t)
x
u 0,
t
0
1.
SOLUCIÓN Ambas ecuaciones diferenciales parciales en la condición de frontera en
x 1 son no homogéneas. Si hacemos u(x, t) v(x, t) ȥ(x), entonces
2
u
v
v
u
y
.
2
t
t
x2
x
Sustituyendo estos resultados en la ecuación (1) se obtiene
2
v
v
k 2 k
r
.
(3)
x
t
La ecuación (3) se reduce a una ecuación homogénea si pedimos que ȥ satisfaga
r
k
r 0
o
.
k
Integrando la última ecuación dos veces se obtiene que
r 2
(4)
(x)
x
c1 x c 2.
2k
2
470
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
Además,
u(0, t)
v(0, t)
(0)
0
u(1, t)
v(1, t)
(1)
u0.
Se tiene que v(0, t) 0 y v(1, t) 0, suponiendo que
(0)
0
y
(1)
u0.
Aplicando estas dos últimas condiciones a la ecuación (4) se obtiene, respectivamente,
c2 0 y c1 r兾2k u0. Por tanto,
r 2
x
2k
(x)
r
2k
u0 x.
Por último, la condición inicial u(x, 0) v(x, 0) ȥ(x) implica que v(x, 0) u(x, 0)
ȥ(x) f (x) ȥ(x). Entonces, para determinar v(x, t), resolvemos el nuevo problema con valores en la frontera
2
v
v
k 2
,
0 x 1, t 0
x
t
v(0, t)
0, v(1, t)
v(x, 0)
f (x)
0, t
r 2
x
2k
0
r
2k
0
u0 x,
x
1
por separación de variables. De la manera usual encontramos que
v(x, t)
An e
k n2
2
t
sen n x,
n 1
donde
1
2
An
f (x)
0
r
2k
r 2
x
2k
(5)
u 0 x sen n x dx.
Sumando ȥ(x) y v(x, t) obtenemos una solución del problema original:
r 2
x
2k
u(x, t)
r
2k
u0 x
An e
k n2
2
t
sen n x,
(6)
n 1
GRQGHORVFRH¿FLHQWHVAnHVWiQGH¿QLGRVHQODHFXDFLyQ
Observe en la ecuación (6) que u(x, t) → ȥ(x) cuando t → . En el contexto de las
formas de solución de la ecuación de calor, ȥ se llama solución de estado estable. Ya
que v(x, t) → 0 cuando t → , ésta se llama solución transitoria.
MÉTODO 2 Otro tipo de problemas implica una ecuación homogénea dependiente
del tiempo y condiciones frontera homogéneas. A diferencia del método 1, en el que
u(x, t) se encontró al resolver dos problemas separados, es posible encontrar la solución completa de un problema tal como
2
u
x2
k
F(x, t)
u
,
t
u(0, t)
0, u(L, t)
u(x, 0)
f (x), 0
0
x
0,
x
t
L,
0
t
(7)
0
L,
KDFLHQGRODVXSRVLFLyQGHTXHORVFRH¿FLHQWHVGHSHQGLHQWHVGHOWLHPSRun(t) y Fn(t) se
pueden encontrar tanto u(x, t) como F(x, t) en la ecuación (7) se puede desarrollar en
las series
u(x, t)
un (t) sen
n 1
n
x
L
y
F(x, t)
Fn (t) sen
n 1
n
x,
L
(8)
12.6
PROBLEMAS NO HOMOGÉNEOS CON VALORES EN LA FRONTERA
l
471
donde sen(Qʌ[兾L), n 1, 2, 3 . . ., son las eigenfunciones de X Ȝ; 0, X(0) 0, X(L)
2
n2 2>L 2. El último problema se ob 0 correspondientes a los eigenvalores n
n
tendría aplicando separación de variables a la EPD homogénea asociada en (7). En (8) note
que la forma supuesta para u(x, t) ya satisface las condiciones de frontera en (7). La idea
básica aquí es sustituir la primera serie de la ecuación (8) en la EDP no homogénea en la
ecuación (7), agrupando términos e igualando la serie resultante con el desarrollo en serie
encontrado para F(x, t).
El siguiente ejemplo ilustra este método.
EJEMPLO 2
Uso del método 2
2
u
x2
Resuelva
(1
u
,
t
x) sen t
u(0, t)
0,
u(1, t)
0,
u(x, 0)
0,
0
1.
x
0
1, t
x
0
0,
t
SOLUCIÓN Con k 1, L 1, los eigenvalores y las eigenfunciones de X Ȝ; 0,
X(0) 0, X(1) 0 se encuentra que son
Si suponemos que
n2
an2
n
2
y sen Qʌ[, n 1, 2, 3, . . .
(9)
un(t) sen n x,
u(x, t)
n 1
entonces las derivadas parciales formales de u son
2
u
x2
un (t)( n2
2
) sen n x
u
t
y
n 1
u n (t) sen n x.
(10)
n 1
Ahora suponiendo que podemos escribir F(x, t) (1 – x) sen t como
(1
Fn (t) sen n x
x)sen t
n 1
implica que
Fn (t)
2
1
1
1
(1
x) sen t sen n x dx
2 sen t
0
(1
x) sen n x dx
0
Por tanto,
(1
x)sen t
n
2
sen t sen n x.
1n
2
sen t.
n
(11)
Sustituyendo las series de las ecuaciones (10) y (11) en ut uxx (1 x) sen t, obtenemos
u n (t)
n2
2
un (t) sen n x
n 1
n
2 sen t
sen n x.
1 n
Para determinar un(t LJXDODPRVORVFRH¿FLHQWHVGHVHQQʌ[ en cada miembro de la
igualdad anterior:
u n (t)
n2
2
un (t)
2 sen t
.
n
Esta última ecuación es una EDO lineal de primer orden cuya solución es
un (t)
2
n
n2
2
sen t
n4 4
cos t
1
Cn e
n2
2
t
,
472
CAPÍTULO 12
l
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
donde Cn denota la constante arbitraria. Por tanto, la forma supuesta de u(x, t) en la
ecuación (9) se puede escribir como la suma de dos series:
u(x, t)
n
2
n
1
n2
2
sen t
n4 4
cos t
sen n x
1
n2
Cn e
2
t
sen n x.
(12)
n 1
Por último, aplicamos la condición inicial u(x, 0) 0 en la ecuación (12). Reescribiendo
la expresión resultante como una serie,
2
0
n 1
n (n4
4
Cn sen n x,
1)
FRQFOXLPRVGHHVWDLGHQWLGDGTXHHOFRH¿FLHQWHWRWDOGHVHQQʌ[ debe ser cero, por lo que
2
Cn
4
4
n (n
1)
.
Por tanto, de la ecuación (12) vemos que una solución del problema dado es
n2
2
u(x, t)
n 1
EJERCICIOS 12.6
2
sen t
n(n4 4
cos t
sen n x
1)
n
2
k
u(1, t) 100
2. u(0, t) u 0, u(1, t) 0
u(x, 0) f (x)
En los problemas 3 y 4 resuelva la ecuación diferencial parcial
(1) sujeta a las condiciones dadas.
u
x2
u
,
t
hu
0, u( , t)
u(x, 0)
0,
u
x2
h(u
u(x, 0)
f (x), 0
u
,
t
u(0, t)
0, u(1, t)
u(x, 0)
f (x), 0
0, 0
0,
x
t
t
sen n x.
x
1, t
0
0
1.
La ecuación diferencial parcial es una forma de la ecuación de calor cuando el calor se genera dentro de una varilla delgada a partir de un decaimiento radioactivo del
material.
, t
x
u0 ,
0
0
t
.
x
u
,
t
u0 )
5. Resuelva el problema con valores en la frontera
x
0
2
k
u0 ,
Ae
2
7. Encuentre una solución de estado estable ȥ(x) del problema con valores en la frontera
u(0, t)
u
x2
n2
e
La ecuación diferencial parcial es una forma de la ecuación de calor cuando hay pérdida de calor por radiación
GHODVXSHU¿FLHODWHUDOGHXQDYDULOODGHOJDGDHQXQPHGLR
a temperatura cero.
u(1, t) u 0
2
1)
0
u(0, t)
4. u(0, t) u 0, u(1, t) u 1
u(x, 0) f (x)
k
4
6. Resuelva el problema con valores en la frontera
En los problemas 1 y 2 resuelva la ecuación de calor kuxx ut,
0 x 1, t 0, sujeto a las condiciones dadas.
3. u(0, t) u 0,
u(x, 0) 0
1
4
1 n(n
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-22.
En los problemas 1 a 12 utilice el método 1 de esta sección
para resolver el problema con valores en la frontera dado.
1. u(0, t) 100,
u(x, 0) 0
2
0
0,
u(1, t)
x
t
x
1, t
0
0
1.
8. Encuentre una solución de estado estable ȥ(x) si la varilla
GHOSUREOHPDHVVHPLLQ¿QLWD\VHHQFXHQWUDVREUHODGLrección positiva de las xHLUUDGLDGHVXVXSHU¿FLHODWHUDO
hacia un medio a temperatura cero y
u(0, t)
u 0,
u(x, 0)
f (x), x
lím u(x, t)
x:
0, t
0
0.
9. Cuando una cuerda vibratoria se somete a una fuerza vertical externa que varía con la distancia horizontal desde el
12.7
DESARROLLOS EN SERIES ORTOGONALES
extremo izquierdo, la ecuación de onda tiene la forma
2
2
u
u
a2 2 Ax
,
x
t2
donde A es una constante. Resuelva esta ecuación diferencial parcial sujeta a
0, u(1, t)
u(0, t)
u(x, 0)
u
t
0,
0,
t
0,
0
2
u
x2
1.
t 0
u
,
t2
0
x
1, t
1,
u(x, 0)
0,
0
.
x
0
y
0,
donde g es la aceleración de la gravedad. Determine u(x, t).
11. Encuentre la temperatura de estado estable u(x, y) en
OD SODFD VHPLLQ¿QLWD TXH VH PXHVWUD HQ OD ¿JXUD
Suponga que la temperatura está acotada conforme
x → . [Sugerencia: Pruebe u(x, y) v(x, y) ȥ(y).]
u
u
xe 3t
,
0 x
, t
x2
t
u(0, t) 0, u(ʌ, t) 0, t 0
u(x, 0) 0, 0 x ʌ
0
2
14.
2
g
u( , y)
En los problemas 13 a 16 utilice el método 2 de esta sección
para resolver el problema con valores en la frontera dado.
13.
10. Una cuerda inicialmente en reposo sobre el eje x está anclada en x 0 y en x 1. Si la cuerda se deja caer bajo su
propio peso para t 0, el desplazamiento u(x, t) satisface
a2
0,
2
0
x
u(0, y)
473
l
u
u
xe 3t
,
0 x
x2
t
u
u
0,
0, t
x x 0
x x
u(x, 0) 0, 0 x ʌ
, t
0
0
2
15.
y
u
u
1 x x cos t
,
0
2
x
t
u(0, t) 0, u(1, t) 0, t 0
u(x, 0) x(1 x), 0 x 1
1, t
2
u = u0
1
16.
u=0
0
u = u1
x
2
u
u
cos
t
sen
x
,
2
x
t2
u(0, t) 0, u(ʌ, t) 0,
x
u(x, 0)
u
t
0,
FIGURA 12.6.1 Placa del problema 11.
u
x2
2
2
u
y2
h,
donde h 0 es una constante, se conoce como ecuación
de Poisson y se presenta en diversos problemas que implican potencial eléctrico. Resuelva la ecuación sujeta a
las condiciones
12.7
, t
x
0
0,
t
0
x
p
t 0
17. Aplique la sustitución u(x, t) v(x, t) (1 x)sen t
para resolver el problema con valores en la frontera:
12. La ecuación diferencial parcial
2
0,
0
u
x2
u(0, t)
u(x, 0)
u
,
t
0
x
1,
t
0
sin t, u(1, t) 0, t
0, 0 x 1
0
DESARROLLOS EN SERIES ORTOGONALES
REPASO DE MATERIAL
l Los resultados de las ecuaciones (7) a (11) de la sección 11.1 constituyen la base del análisis
siguiente. Se recomienda una revisión de este tema.
INTRODUCCIÓN Para ciertos tipos de condiciones en la frontera el método de separación de
variables y el principio de superposición conducen al desarrollo de una función en forma de serie trigonométrica que no es una serie de Fourier. Para resolver los problemas de esta sección utilizaremos
el concepto de desarrollos en series ortogonales o serie generalizada de Fourier.
0
474
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
EJEMPLO 1
Uso de desarrollo de series ortogonales
La temperatura en una varilla de longitud unitaria en la que existe transferencia de
calor desde su extremo derecho hacia un ambiente a temperatura constante cero, se
determina a partir de
2
u
x2
k
u
,
t
0
u
x
0,
u(0, t)
u(x, 0)
1,
1, t
x
0
0, t
hu(1, t), h
0
x 1
0
1.
x
Determine u(x, t).
SOLUCIÓN Procediendo como en la sección 12.3 con u(x, t) X(x)T(t) y utilizando
Ȝ como la constante de separación, encontramos que las ecuaciones separadas y las
condiciones de frontera son, respectivamente,
X(0)
X
X
0
(1)
T
k T
0
(2)
0
y
X (1)
(3)
hX(1).
La ecuación (1) y las condiciones de frontera homogéneas (3) forman un problema
regular de Sturm-Liouville:
X
X
0,
0, X(0)
X (1)
(4)
0.
hX(1)
Analizando los tres casos usuales en los que Ȝ es 0, negativa o positiva, encontramos
que sólo en el último caso se obtienen las soluciones no triviales. Por tanto, con Ȝ Į2
0, Į 0, la solución general de la ED en (4) es
c1 cos ax
X(x)
(5)
c 2 sen ax.
La primera condición en (4) da inmediatamente que c1 0. Aplicando la segunda
condición en (4) a X(x) c2 sen Į[ se obtiene
cos
h sen
0
o
tan
h
(6)
.
Del análisis del ejemplo 2 de la sección 11.4, sabemos que la última de las ecuaciones
WLHQHXQQ~PHURLQ¿QLWRGHUDtFHV6LODVUDtFHVSRVLWLYDVFRQVHFXWLYDVVHGHQRWDQ
por Įn, n 1, 2, 3, . . . , entonces los eigenvalores del problema son n a2n , y las
eigenfunciones correspondientes son X(x) c2 sen Įn x, n 1, 2, 3, . . . La solución de
2
la ED de primer orden (2) es T(t) c3 e k a n t , por tanto
un
XT
An e
k
2
nt
sen
y
nx
u(x, t)
An e
k
2
nt
sen
n x.
n 1
Ahora en t 0, u(x, 0) 1, 0 x 1, por tanto
1
An sen
n x.
(7)
n 1
La serie (7) no es una serie de senos de Fourier; más bien, es un desarrollo de
u(x, 0) 1 en términos de las funciones ortogonales que surgen del problema regular
de Sturm-Liouville (4). Por tanto, el conjunto de eigenfunciones propias {sen Įnx},
n 1, 2, 3, . . . , donde las ĮVHGH¿QHQFRQWDQĮ Į兾h, es ortogonal respecto a la
función de peso p(x) 1 en el intervalo [0, 1]. Acoplando (7) con (7) de la sección
11.1, se tiene de la ecuación (8) de esa sección, con f (x) 1 y n(x) sen Įnx, que los
FRH¿FLHQWHVAn están dados por
12.7
DESARROLLOS EN SERIES ORTOGONALES
l
1
0 sen n x dx
.
1
2
n x dx
0 sen
An
475
(8)
Para evaluar la norma cuadrada de cada una de las eigenfunciones, utilizamos una
identidad trigonométrica:
1
sen 2
nx
1
2
dx
0
1
(1
1
1
1
2
cos 2 x) dx
0
2
sen 2
n
.
(9)
n
Utilizando la fórmula del ángulo doble sen 2Įn 2 sen Įn cos Įn y la primer ecuación
en (6) en la forma Įn cos Įn h sen ĮnVLPSOL¿FDPRV FRPR
1
sen 2
nx
1
h
2h
(
dx
0
1
También
sen
n
1
1
x dx
0
cos2
cos
1
nx
0
n
n
).
(1
cos
n ).
n
Por tanto, la ecuación (8) se convierte en
2h(1
n (h
An
cos
cos2
n)
n)
.
Por último, una solución del problema con valores en la frontera es
1
n (h
2h
u(x, t)
n 1
EJEMPLO 2
cos n
e
cos2 n )
kan2 t
sen
n x.
Uso del desarrollo en series ortogonales
El ángulo de torsión ș(x, t) de un eje de longitud unitaria que vibra torsionalmente se
determina a partir de
a2
θ
0
2
2
x2
t2
(0, t)
1
FIGURA 12.7.1 Torsión de un eje.
,
0,
(x, 0)
x,
0
1, t
x
x
x 1
t
t 0
0
0,
t
0
0,
0
x
1.
9HDOD¿JXUD/DFRQGLFLyQGHIURQWHUDHQx 1 se llama condición de extremo
libre. Determine ș(x, t).
Procediendo como en la sección 12.4 con ș(x, t) X(x)T(t) y utilizando
Ȝ una vez más como la constante de separación, las ecuaciones separadas y las condiciones de frontera son:
SOLUCIÓN
X
X(0)
X
2
T
a
0
y
T
(10)
0
(11)
0
X (1)
(12)
0.
Un problema regular de Sturm-Liouville en este caso consiste en la ecuación (10) y en
las condiciones de frontera homogéneas en (12):
X
X
0,
X(0)
0, X (1)
0.
(13)
476
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
Como en el ejemplo 1, la ecuación (13) tiene soluciones no triviales para Ȝ Į2 0, Į
0. Las condiciones de frontera X(0) 0 y X(1) 0 aplicadas a la solución general
c1 cos ax
X(x)
(14)
c 2 sen ax
dan, respectivamente, c1 0 y c2 cos Į 0. Puesto que la función coseno es cero
en múltiplos impares de ʌ兾2, Į (2n 1)ʌ兾2, y los eigenvalores de (13) son
an2 (2n 1) 2 2> 4, n 1, 2, 3, . . . La solución de la ED de segundo orden
n
(11) es T(t) c3 cos DĮnt c4 sen DĮnt. La condición inicial T(0) 0 da c4 0, por
lo que
2n 1
2n 1
XT An cos a
t sen
x.
n
2
2
Para satisfacer la ecuación inicial restante, formamos
(x, t)
An cos a
2n
1
t sen
2
n 1
2n
1
2
(15)
x.
Cuando t 0, debemos tener, para 0 x 1,
(x, 0)
An sen
x
2n
1
2
n 1
(16)
x.
1
x , n 1, 2,
2
3, . . . , es ortogonal respecto a la función de peso p(x) 1 en el intervalo [0, 1].
Aunque la serie en la ecuación (16) parece una serie de Fourier de senos, no lo es
porque el argumento de la función seno no es múltiplo entero de ʌ[兾L (aquí L 1).
Nuevamente la serie es un desarrollo en serie ortogonal o una serie de Fourier generaOL]DGD3RUWDQWRGH GHODVHFFLyQORVFRH¿FLHQWHVHQ VRQ
Como en el ejemplo 1, el conjunto de eigenfunciones sen
1
x sen
2n
An
1
sen 2
0
1
2
0
2n
1
2
2n
x dx
.
x dx
Realizando las dos integraciones, obtenemos que
An
8( 1) n 1
.
(2n 1)2 2
El ángulo de torsión es entonces
(x, t)
10
8
6
t 4
2
1
0 (x,t)
-1
1
0.8
0.6
0.4 x
0.2
00
FIGURA 12.7.2 /DVXSHU¿FLHHVOD
JUi¿FDGHXQDVXPDSDUFLDOGH
8
2
n
( 1) n 1
2n 1
cos a
2
1)
2
1(2n
t sen
2n
1
2
x.
(17)
3RGHPRVXWLOL]DUXQ6$&SDUDWUD]DUODJUi¿FDGHș(x, t GH¿QLGDHQ \DVHDFRPR
XQD VXSHU¿FLH WULGLPHQVLRQDO R FRPR FXUYDV ELGLPHQVLRQDOHV FRQVHUYDQGR XQD GH
ODV YDULDEOHV FRQVWDQWH (Q OD ¿JXUD KHPRV WUD]DGR OD JUi¿FD GH ș sobre la
región rectangular 0 x 1, 0 t 10. Las secciones transversales de esta super¿FLH VRQ LQWHUHVDQWHV (Q OD ¿JXUD KHPRV WUD]DGR D ș como una función del
tiempo t HQ HO LQWHUYDOR > @ XVDQGR FXDWUR YDORUHV HVSHFt¿FRV GH x y una suma
parcial de la ecuación (17) (con a 1). Como se puede ver en las cuatro partes de
OD¿JXUDHOiQJXORGHWRUVLyQGHFDGDVHFFLyQWUDQVYHUVDOGHODYDULOODRVFLOD
hacia adelante y hacia atrás (valores positivos y negativos de ș) conforme el tiempo
DXPHQWD/D¿JXUD G PXHVWUDORTXHVHHVSHUDUtDLQWXLWLYDPHQWHFXDQGRQRKD\
amortiguamiento, el extremo de la varilla en x 1 inicialmente se desplaza 1 radian
(ș(1, 0) FXDQGRHVWiHQPRYLPLHQWRHVWHH[WUHPRRVFLODLQGH¿QLGDPHQWHHQWUH
su desplazamiento máximo de 1 radián y su desplazamiento mínimo de 1 radián. Las
JUi¿FDVGHODV¿JXUDV D F SUHVHQWDQORTXHSDUHFHVHUXQFRPSRUWDPLHQWRGH
“pausa” de ș en su desplazamiento máximo (mínimo) de cada una de las secciones
12.7
DESARROLLOS EN SERIES ORTOGONALES
l
477
WUDQVYHUVDOHVHVSHFL¿FDGDVDQWHVGHFDPELDUGHGLUHFFLyQ\KDFLDGHODQWHGHVXPtQLPR
(máximo). Este comportamiento disminuye conforme x → 1.
(0.2, t)
(0.5, t)
1
1
0.5
0.5
t
0
-0.5
-0.5
-1
-1
0
2
4
6
8
t
0
0
10
2
4
a) x = 0.2
8
6
10
b) x = 0.5
(0.8, t)
(1, t)
1
1
0.5
0.5
t
0
-0.5
-0.5
-1
-1
0
2
4
6
8
t
0
10
0
2
4
c) x = 0.8
6
8
10
d) x = 1
FIGURA 12.7.3 Desplazamiento angular ș como una función del tiempo en diferentes
secciones transversales de la varilla.
EJERCICIOS 12.7
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-22.
1. En el ejemplo 1, encuentre la temperatura u(x, t) cuando
el extremo izquierdo de la varilla está aislado.
2. Resuelva el problema con valores en la frontera
2
u
x2
u
,
t
u(0, t)
0,
k
u(x, 0)
0
u
x
1,
x
0
t
h(u(1, t)
x 1
f (x), 0
u 0),
h
0,
t
0
u
x
0,
u(x, 0)
0,
u(0, t)
hu(a, y), 0
y
b
x a
f (x), 0
u(x, b)
x
a.
4. Resuelva el problema con valores en la frontera
2
2
u
y2
u
x2
u(0, y)
u
y
0,
u 0,
0,
y 0
0
y
lím u(x, y)
x:
u
y
6. Resuelva el problema con valores en la frontera
2
2
u
u
a2 2
,
0 x L, t 0
t2
x
1.
x
3. Encuentre la temperatura de estado estable en una placa
rectangular cuyas condiciones en la frontera son
u(0, y)
5. Encuentre la temperatura u(x, t) en una varilla de longitud L si la temperatura inicial en toda la varilla es f (x),
el extremo x 0 se mantiene a la temperatura cero y el
extremo x L está aislado.
1, x
0
0,
y
0
hu(x, 1), h
y 1
0, x
0.
u
x
x
F0 ,
L
t
0
u
0, 0 x L.
t t 0
La solución u(x, t) representa el desplazamiento longitudinal
de una varilla elástica vibratoria anclada en su extremo izquierdo y sujeta a una fuerza constante de magnitud F0 en
VX H[WUHPR GHUHFKR 9HD OD ¿JXUD GH ORV HMHUFLFLRV
12.4. E es una constante que se llama módulo de elasticidad.
7. Resuelva el problema con valores en la frontera
2
2
u
u
0,
0 x 1, 0 y 1
2
x
y2
u(x, 0)
u
x
1
0, E
0,
0,
u(1, y)
x 0
u(x, 0)
0,
u
y
y 1
u0 ,
0
y
1
0,
0
x
1.
478
CAPÍTULO 12
l
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
8. La temperatura inicial en una varilla de longitud unitaria
es f (x) en toda la varilla. Hay transferencia de calor en sus
dos extremos, x 0 y x 1, hacia el ambiente mantenido
a una temperatura constante de cero. Demuestre que
u(x, t)
k
An e
2
nt
(
n
cos
h sen
nx
valores en la frontera
2
4
u
t2
u
x4
0
u
x
0,
u(0, t)
n x),
0,
n 1
donde
An
(
2
1
2
2h
2
n
u
x2
f (x)(
h2)
n cos
h sen
nx
n x)
2
u
x2
u(0, t)
u(x, 0)
xe
u
,
t
2t
u
x
0,
0,
0
0
x
1, t
u
t
f (x),
0,
0
t
x 1
g(x), 0
x
1.
t 0
u
0
1 x
u(1, t), t
0
x 1
x
FIGURA 12.7.4 Viga en voladizo vibrando del problema 10.
1.
Tarea para el laboratorio de computación
10. Una viga vibratoria en voladizo está incrustada en su extremo izquierdo (x 0) y libre en su extremo derecho
(x 9HD OD ¿JXUD (O GHVSOD]DPLHQWR WUDQVversal u(x, t) de la viga se determina del problema con
12.8
0
t
x 0
Utilice un SAC para encontrar aproximaciones de los
dos primeros eigenvalores del problema. [Sugerencia:
Véanse los problemas 11 y 12 en los ejercicios 12.4.]
9. Utilice el método 2 de la sección 12.6 para resolver el
problema con valores en la frontera
k
u
x3
x 1
u(x, 0)
Los eigenvalores son n a2n , n 1, 2, 3, . . . , donde
los Įn son las raíces positivas consecutivas de tan Į
2ĮK兾(Į2 h2).
0,
0
3
0,
dx.
0
1, t
x
11. a) (
QFXHQWUHXQDHFXDFLyQTXHGH¿QDORVHLJHQYDORUHV
cuando los extremos de la viga del problema 10 están
incrustados en x 0 y en x 1.
b) Utilice un SAC para determinar las aproximaciones
de los primeros dos eigenvalores positivos.
PROBLEMAS DIMENSIONALES DE ORDEN SUPERIOR
REPASO DE MATERIAL
l
Secciones 12.3 y 12.4.
INTRODUCCIÓN Hasta ahora hemos resuelto problemas con valores en la frontera que implican
las ecuaciones unidimensionales de calor y de onda. En esta sección mostraremos cómo extender el
método de separación de variables a problemas que implican las versiones bidimensionales de esas
ecuaciones diferenciales parciales.
ECUACIONES DE CALOR Y DE ONDA EN DOS DIMENSIONES Suponga que
ODUHJLyQUHFWDQJXODUGHOD¿JXUD D HVXQDSODFDGHOJDGDHQODTXHODWHPSHratura u es una función de tiempo t y de posición (x, y). Entonces, bajo condiciones
adecuadas, u(x, y, t) se puede demostrar que satisface la ecuación de calor en dos
dimensiones
2
k
u
x2
2
u
y2
u
.
t
(1)
3RURWURODGRVXSRQJDTXHOD¿JXUD E UHSUHVHQWDXQPDUFRUHFWDQJXODUVREUH
HO TXH VH KD H[WHQGLGR XQD PHPEUDQD ÀH[LEOH GHOJDGD XQ WDPERU UHFWDQJXODU 6L
se pone en movimiento a la membrana rectangular, entonces su desplazamiento u,
12.8
y
c
PROBLEMAS DIMENSIONALES DE ORDEN SUPERIOR
medido desde el plano xy (vibraciones transversales), es también una función de t y
de posición (x, y). Cuando las vibraciones son pequeñas, libres y no amortiguadas,
u(x, y, t) satisface la ecuación de onda en dos dimensiones
(b, c)
2
2
x
2
(2)
2
u
x2
u
c
y
EJEMPLO 1
b)
FIGURA 12.8.1 a) Placa rectangular y
u
y2
X YT,
u
t
y
XY T
XYT .
Como veremos en el siguiente ejemplo, con condiciones de frontera adecuadas, los
problemas con valores en la frontera que implican (1) y (2) conducen a los conceptos
de series de Fourier en dos variables.
x
b) membrana rectangular.
u
.
t2
Para separar las variables en (1) y (2), suponemos una solución producto de la
forma u(x, y, t) X(x)Y(y)T(t). Observe que
a)
b
2
u
y2
u
x2
a2
b
479
l
Temperaturas en una placa
Encuentre la temperatura u(x, y, t GHODSODFDTXHPXHVWUDOD¿JXUD D VLODWHPperatura inicial es f (x, y) en toda la varilla y si los bordes se mantienen a la temperatura
cero para el tiempo t 0.
Debemos resolver
SOLUCIÓN
2
2
k
sujeta a
u
y2
u
x2
u
,
t
0
x
b, 0
y
c,
t
0
u(0, y, t)
0, u(b, y, t)
0,
0
y
c,
t
0
u(x, 0, t)
0,
0, 0
x
b,
t
0
u(x, y, 0)
f (x, y), 0
u(x, c, t)
b, 0
x
y
c.
Sustituyendo u(x, y, t) X(x)Y(y)T(t), obtenemos
X
Y
T
(3)
.
X
Y
kT
Puesto que el miembro izquierdo de la última ecuación en (3) depende sólo de x y en el
miembro derecho depende sólo de y y de t, igualamos ambos lados a una constante Ȝ:
k(X YT
XY T)
por tanto,
o
XY T
X
X
Y
Y
X
X
T
kT
(4)
0
Y
T
.
(5)
Y
kT
Usando el mismo razonamiento, si introducimos otra constante de separación ȝ en
la ecuación (5), entonces
Y
Y
entonces
Y
0
Y
y
T
kT
y
T
k(
)T
(6)
0.
Ahora las condiciones de frontera homogéneas
u(0, y, t)
u(x, 0, t)
0, u(b, y, t)
0, u(x, c, t)
0
0
implican que
X(0)
Y(0)
0, X(b)
0, Y(c)
0
0.
Por tanto, tenemos dos problemas de Sturm-Liouville:
y
X
X
0, X(0)
0,
X(b)
0
(7)
Y
Y
0, Y(0)
0,
Y(c)
0.
(8)
480
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
Los casos usuales a considerar son (Ȝ 0, Ȝ Į2 0, Ȝ Į2 0, ȝ 0, etc.) que
conducen a los conjuntos independientes de eigenvalores,
m2 2
y
b2
Las eigenfunciones correspondientes son
m
c 2 sen
x, m 1, 2, 3 . . . ,
y
Y(y)
b
m
X(x)
n2 2
.
c2
n
c 4 sen
n
y,
c
n
1, 2, 3, . . .
(9)
Después de sustituir los valores conocidos de Ȝn y ȝn en la ED de primer orden en (6),
2
2
se encuentra que su solución general es T(t) c5 e k [(m / b) (n / c) ]t. Una solución
producto de la ecuación de calor en dos dimensiones que satisface las cuatro ecuaciones homogéneas es entonces
u mn (x, y, t)
k [(m /b) 2
A mn e
(n /c) 2 ]t
sen
m
n
x sen
y,
b
c
donde Amn es una constante arbitraria. Puesto que tenemos dos conjuntos de eigenvalores, esto nos motiva a intentar el principio de superposición en la forma de una doble
suma
m
n
2
2
(10)
A mn e k [(m /b) (n / c) ]t sen
x sen
y.
u(x, y, t)
b
c
m 1n 1
En t 0 tenemos que
u(x, y, 0)
f (x, y)
A mn sen
m 1n 1
m
n
x sen
y.
b
c
(11)
3RGHPRVHQFRQWUDUORVFRH¿FLHQWHVAmn multiplicando la doble suma (11) por el producto sen(Pʌ[兾b) sen(Pʌ\兾c HLQWHJUDQGRVREUHHOUHFWiQJXORGH¿QLGRSRUODVGHVigualdades 0 x b, 0 y c. Se tiene que
A mn
4
bc
c
b
f (x, y) sen
0
0
m
n
x sen
y dxdy.
b
c
(12)
Por lo que la solución del PVF consiste en (10) con los AmnGH¿QLGRVHQ
/DVHULH FRQFRH¿FLHQWHV VHOODPDserie de senos con dos variables o doble
serie de senos. Resumimos la siguiente serie de cosenos con dos variables.
La doble serie de cosenos de una función f (x, y GH¿QLGDVREUHXQDUHJLyQUHFWDQJXODUGH¿QLGDSRU x b, 0 y c está dada por
f (x, y)
A m 0 cos
A 00
m 1
m
x
b
A mn cos
1n 1
m
donde
A 00
Am 0
A 0n
A mn
1
bc
2
bc
2
bc
4
bc
c
A 0n cos
n 1
n
y
c
m
n
x cos
y,
b
c
b
f (x, y) dx dy
0
0
c
b
f (x, y) cos
0
c
0
b
f (x, y) cos
0
c
0
b
f (x, y) cos
0
0
m
x dx dy
b
n
y dx dy
c
m
n
x cos
y dx dy.
b
c
Para un problema que conduce a una doble serie de cosenos vea el problema 2 de los
ejercicios 12.8.
REPASO DEL CAPÍTULO 12
EJERCICIOS 12.8
u(ʌ, y, t) 0
u(x, ʌ, t) 0
u
x
u
y
481
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-22.
En los problemas 1 y 2 resuelva la ecuación de calor (1) sujeta
a las condiciones dadas.
1. u(0, y, t) 0,
u(x, 0, t) 0,
u(x, y, 0) u 0
u
0,
2.
x x 0
u
0,
y y 0
l
La temperatura de estado estable u(x, y, z) del paralelepípedo
UHFWDQJXODU TXH VH PXHVWUD HQ OD ¿JXUD VDWLVIDFH OD
ecuación de Laplace en tres dimensiones:
2
2
2
u
u
u
0.
(13)
2
2
z2
y
x
0
z
x 1
0
y 1
(a, b, c)
u(x, y, 0) xy
En los problemas 3 y 4 resuelva la ecuación de calor (2) sujeta
a las condiciones dadas.
3. u(0, y, t) 0, u(ʌ, y, t) 0
u(x, 0, t) 0, u(x, ʌ, t) 0
u(x, y, 0) xy(x ʌ)(y ʌ)
u
0
t t 0
x
FIGURA 12.8.2
5. Resuelva la ecuación de Laplace (13). La cara superior
(z c) del paralelepípedo se conserva a la temperatura
f (x, y) y las caras restantes a temperatura cero.
6. Resuelva la ecuación de Laplace (13). La cara inferior
(z 0) del paralelepípedo se conserva a temperatura
f (x, y) y las caras restantes a temperatura cero.
REPASO DEL CAPÍTULO 12
1. Utilice separación de variables para encontrar las soluciones producto de
2
u
u.
x y
2. Use separación de variables para determinar las soluciones producto de
u
y2
u
2
x
u
2
y
3. Encuentre una solución de estado estable ȥ(x) del problema con valores en la frontera
2
u
u
k 2
,
0 x
, t 0,
x
t
u(x, 0)
u
x
u 0,
0,
0
5. En t 0 una cuerda de longitud unitaria se encuentra
tensa sobre el eje x positivo. Los extremos de la cuerda
están anclados en el eje x, en x 0 y en x 1 para t 0.
Determine el desplazamiento u(x, t) si la velocidad inicial
g(x HVODTXHVHSUHVHQWDHQOD¿JXUD5
g(x)
0.
¿Es posible elegir una constante de separación tal que
tanto X como Y sean funciones oscilatorias?
u(0, t)
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-22.
h
2
u
x2
Paralelepípedo rectangular de los
problemas 5 y 6.
4. u(0, y, t) 0, u(b, y, t) 0
u(x, 0, t) 0, u(x, c, t) 0
u(x, y, 0) f (x, y)
u
g(x, y)
t t 0
2
y
x
u( , t)
x
u1,
t
0
.
4. Dé una interpretación física de las condiciones de frontera del problema 3.
1
4
1
2
3
4
1
x
FIGURA 12.R.1 Velocidad inicial g(x) del problema 5.
6. La ecuación diferencial parcial
2
u
x2
2
x2
u
t2
es una forma de la ecuación de onda cuando se aplica
una fuerza vertical externa proporcional al cuadrado de la
distancia horizontal en el extremo izquierdo de la cuerda.
La cuerda está anclada en x 0, una unidad arriba del
eje x y en el eje x en x 1 para t 0. Encuentre el desplazamiento u(x, t) si la cuerda parte del reposo desde un
desplazamiento f (x).
482
l
CAPÍTULO 12
PROBLEMAS CON VALORES EN LA FRONTERA EN COORDENADAS RECTANGULARES
7. Encuentre la temperatura u(x, y) de estado estable en la
SODFDFXDGUDGDGHOD¿JXUD5
11. Resuelva el problema con valores en la frontera
2
u
x2
y
u = 0 (π, π)
u=0
u = 50
x
u=0
u
,
t
0
,
x
u(0, t)
0, u( , t)
u(x, 0)
sen x, 0
0
t
0,
0
t
.
x
12. Resuelva el problema con valores en la frontera
FIGURA 12.R.2 Placa cuadrada del problema 7.
2
u
x2
8. Determine la temperatura de estado estable u(x, y) en la
SODFDVHPLLQ¿QLWDTXHVHPXHVWUDHQOD¿JXUD5
y
Aislada
u
,
t
sen x
0
u(0, t)
400, u( , t)
u(x, 0)
400
, t
x
200,
sen x, 0
0
0
t
.
x
13. Encuentre la solución formal en serie para el problema
π
2
u
x2
u = 50
0
x
Aislada
FIGURA 12.R.3 Placa cuadrada del problema 8.
9. Resuelva el problema 8 cuando las fronteras y 0 y y ʌ
se conservan a temperatura cero durante todo el tiempo.
10. Encuentre la temperatura u(x, t HQ OD SODFD LQ¿QLWD GH
ancho 2L TXH VH PXHVWUD HQ OD ¿JXUD 5 VL OD WHPperatura inicial en toda la placa es u0 en toda la placa.
[Sugerencia: u(x, 0) u0, L x L es una función par
de x.]
2
u(0, t)
u
t
u=0
u
t2
u
t
2
0,
u( , t)
0,
0
0
u,
0,
, t
x
0
t
.
x
14. La concentración c(x, t) de una sustancia que se difunde en
un medio y que es arrastrada por las corrientes de convección del medio satisface la ecuación diferencial parcial
2
k
c
x2
h
c
x
c
,
t
k y h constantes.
Resuelva la EDP sujeta a
c(0, t)
0, c(1, t)
0, t
c(x, 0)
c0,
1,
0
x
0
donde c0 es una constante.
15. Resuelva el problema con valores en la fronteral
−L
L
x
FIGURA 12.R.4 3ODFDLQ¿QLWDGHOSUREOHPD
0
t 0
y
u=0
2
u
x
2
u
x2
u
, 0
t
x
u(0, t)
u0,
u
x
u(x, 0)
u0, 0
1,
t
0
u(1, t)
1
x
x
1,
donde u0 y u1 son constantes.
u1, t
0
13
PROBLEMAS CON VALORES EN LA
FRONTERA EN OTROS SISTEMAS
COORDENADOS
13.1 Coordenadas polares
13.2 Coordenadas polares y cilíndricas
13.3 Coordenadas esféricas
REPASO DEL CAPÍTULO 13
Todos los problemas con valores en la frontera que hemos considerado hasta el
momento sólo se han expresado en términos de un sistema coordenado rectangular.
Pero si se desea encontrar, por ejemplo, temperaturas en una placa circular, en un
cilindro circular o en una esfera, naturalmente trataríamos de describir el problema
en términos de coordenadas polares, coordenadas cilíndricas o coordenadas
esféricas, respectivamente. En este capítulo veremos que al tratar de resolver
PVF en estos tres últimos sistemas coordenados por el método de separación de
variables, se aplica en forma práctica la teoría de la serie de Fourier-Bessel y de la
serie de Fourier-Legendre.
483
484
CAPÍTULO 13
l
13.1
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
COORDENADAS POLARES
REPASO DE MATERIAL
l ED de Cauchy-Euler en la sección 4.7
l 5HSDVRGHODV('HQODVHFFLyQ
INTRODUCCIÓN Debido a que en esta sección sólo se consideran problemas de temperatura
de estado estable en coordenadas polares, lo primero que debemos hacer es convertir la ecuación de
Laplace conocida de coordenadas rectangulares a coordenadas polares.
LAPLACIANO EN COORDENADAS POLARES La relación entre las coordenadas polares en el plano y las coordenadas rectangulares está dada por:
(x, y) o
(r, θ )
y
r
r cos ,
x
y
r sen
r2
y
x2
y2,
tan
y
.
x
9HD OD ¿JXUD (O SULPHU SDU GH HFXDFLRQHV WUDQVIRUPD ODV FRRUGHQDGDV SRODUHV
(r, ș) en coordenadas rectangulares (x, y); el segundo par de ecuaciones nos permite
transformar coordenadas rectangulares a coordenadas polares. Esas ecuaciones también
permiten convertir el Laplaciano bidimensional ' 2u 2u兾x 2 2u兾y 2 a coordenadas
polares. Se le recomienda aplicar con cuidado la regla de la cadena para demostrar que
y
θ
x
x
FIGURA 13.1.1 Las coordenadas
polares de un punto (x, y) son (r, ș).
2
u
x2
2
cos2
2
u
y2
u
r2
2
sen 2
u
r2
u
x
u r
r x
u
u
y
u r
r y
u
2 sen cos
r
2 sen cos
r
x
y
2
r
sen
r
u
sen
u
r
cos
r
u
sen 2
r
u
r
2 sen cos
r2
u
cos2
r
u
r
2 sen cos
r2
u
.
(2)
2
cos2
r2
2
r
u
u
r
sen 2
r2
u
2
cos
u
2
u
2
6XPDQGRODVHFXDFLRQHV \ \VLPSOL¿FDQGRVHREWLHQHHO/DSODFLDQRGHu en
coordenadas polares:
2
u = f (θ )
y
2
u
c
x
u
r2
Dirichlet para un círculo.
1 u
r r
1
r2
2
u
2
.
En esta sección sólo consideraremos problemas que impliquen la ecuación de
Laplace ' 2u 0 en coordenadas polares:
2
FIGURA 13.1.2 Problema de
u
r2
1 u
r r
1
r2
2
u
2
0
Nuestro primer ejemplo es el problema de Dirichlet para un disco circular. Queremos
UHVROYHUODHFXDFLyQGH/DSODFH SDUDODWHPSHUDWXUDGHHVWDGRHVWDEOHu(r, ș) en un disco
circular o plato de radio c cuando la temperatura de la circunferencia es u(c, ș) f (ș), 0
ș 2ʌ9HDOD¿JXUD6HVXSRQHTXHODVGRVFDUDVGHODSODFDHVWiQDLVODGDV(VWH
problema aparentemente simple no es como los que encontramos en el capítulo anterior.
EJEMPLO 1
Temperaturas estables en un disco circular
5HVXHOYDODHFXDFLyQGH/DSODFH VXMHWDDu(c, ș) f (ș), 0 ș 2ʌ.
13.1
COORDENADAS POLARES
l
485
SOLUCIÓN Antes de intentar la separación de variables, observamos que la única
condición de frontera es no homogénea. En otras palabras, no hay condiciones explíciWDVHQHOHQXQFLDGRGHOSUREOHPDTXHQRVSHUPLWDQGHWHUPLQDU\DVHDORVFRH¿FLHQWHV
en las soluciones de las EDO separadas o los eigenvalores necesarios. Sin embargo,
hay algunas condiciones implícitas.
En primer lugar, nuestra intuición física nos lleva a esperar que la temperatura
u(r, ș) debe ser continua y, por tanto, acotada dentro del círculo r c. Además, la
temperatura u(r, ș GHEHVHUXQLYDOXDGDHVWRVLJQL¿FDTXHHOYDORUGHu debe ser el
mismo en cualquier punto del círculo, independientemente de la descripción polar de
ese punto. Debido a que (r, ș 2ʌ) es una descripción equivalente del punto (r, ș),
debemos tener u(r, ș) u(r, ș 2ʌ). Es decir, u(r, ș) debe ser periódica en ș con periodo 2ʌ. Si buscamos una solución producto u R(r)((ș), entonces ((ș) tiene que
ser necesariamente periódica con periodo 2ʌ.
Tomando todo esto en cuenta decidimos escribir la constante de separación en la
separación de variables como Ȝ:
r 2R
rR
.
R
Las ecuaciones separadas son entonces
r 2R
rR
(4)
0
R
(5)
0.
Estamos buscando una solución del problema
0,
( )
(
(6)
2 ).
La ecuación (6) no es un problema regular de Sturm-Liouville; sin embargo, el problema
genera eigenvalores y eigenfunciones. Estos últimos forman un conjunto ortogonal en
el intervalo [0, 2ʌ].
De las tres posibles soluciones generales de (5),
( )
c1
( )
c1 cosh
( )
Por ejemplo, observe que cos n(ș
2ʌ) cos(Qș Qʌ) cos Qș.
c2 ,
c2 senh
c1 cos
(7)
0
c2 sen
2
,
2
,
(8)
0
(9)
0
podemos descartar a (8) como intrínsecamente no periódica a menos que c c2 0.
'HLJXDOPDQHUDODVROXFLyQ HVQRSHULyGLFDDPHQRVTXHGH¿QDPRVc2 0. A la
solución que resta ((ș) c c 0, se le puede asignar algún periodo y, por tanto,
Ȝ 0 es un eigenvalor. Por último, la solución (9) tendrá periodo 2ʌ si tomamos
Į n, donde n /RVHLJHQYDORUHVGH VRQHQWRQFHVȜ0 0 y Ȝn n2, n
6LFRUUHVSRQGHȜ0 0 con n 0, las eigenfunciones de (6) son
( )
c1,
0,
n
y
( )
c1 cos n
c2 sen n , n
1, 2, . . .
Cuando Ȝn n2, n ODVVROXFLRQHVGHOD('GH&DXFK\(XOHU VRQ
R(r) c3 c4 ln r,
n 0,
R(r)
c3 r n
c4r n,
n
1, 2, . . .
$KRUDREVHUYHHQ TXHrn l兾r n(QFXDOTXLHUDGHODVVROXFLRQHV X GHEHPRVGH¿QLUc4 0 para garantizar que la solución u está acotada en el centro de la
placa (que es r 0). Por tanto, las soluciones producto un R(r)((ș) para la ecuación
de Laplace en coordenadas polares son
u0
A0 ,
n
0,
y
un
r n(An cos n
Bn sen n ), n
1, 2, . . . ,
donde se han reemplazado cc por A0 para n 0 y por An para n ODFRPbinación cc2 se ha sustituido por Bn. Entonces el principio de superposición da
486
l
CAPÍTULO 13
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
u(r, )
Bn sen n ).
rn(An cos n
A0
n 1
Aplicando la condición frontera en r cD UHFRQRFHPRV
f( )
c n (An cos n
A0
Bn sen n )
n 1
como un desarrollo de fHQVHULHGH)RXULHUFRPSOHWD3RUWDQWRKDFHPRVODVLGHQWL¿caciones
a0
A0
,
cnAn an
y
cnBn bn .
2
Esto es
1
2p
A0
2
2
1
An
cn
c
n
f ( ) cos n d
f ( ) sen n d .
0
2
1
Bn
f ( ) d
0
0
/DVROXFLyQGHOSUREOHPDFRQVLVWHHQODVHULHGDGDHQ GRQGHORVFRH¿FLHQWHVA0,
An y BnHVWiQGH¿QLGRVSRUODVHFXDFLRQHV \
2EVHUYHHQHOHMHPSORTXHSDUDFDGDHLJHQYDORUSRVLWLYRȜn n2, n KD\
dos diferentes eigenfunciones, en particular, cos Qș y sen Qș. En este caso los eigenvalores son algunas veces llamados eigenvalores dobles.
EJEMPLO 2 Temperaturas de estado estable en una placa semicircular
Encuentre la temperatura de estado estable u(r, ș) en la placa semicircular que se
PXHVWUDHQOD¿JXUD
SOLUCIÓN El problema con valores en la frontera es
2
u
r2
y
u = u0
c
u(c, )
u0 ,
u(r, 0)
0,
1
r2
2
u
0,
2
0
0
, 0
r
c
,
u(r, )
0,
0
r
c.
'H¿QLHQGRu R(r)((ș) y separando variables se obtiene
θ =π
r 2R
x
u = 0 en
θ =π
1 u
r r
u = 0 en
θ=0
FIGURA 13.1.3 Placa semicircular
rR
R
\
rR
r 2R
del ejemplo 2.
0
R
0.
Las condiciones homogéneas establecidas en las fronteras ș 0 y ș ʌ se traducen
en ((0) 0 y ((ʌ) (VWDVFRQGLFLRQHVMXQWRFRQODHFXDFLyQ FRQVWLWX\HQXQ
problema regular de Sturm-Liouville:
Este es el ejemplo 2 de la sección
5.2 con L ʌ.
0,
(0)
0,
( )
0.
Este problema conocido tiene eigenvalores Ȝn n y eigenfunciones ((ș) c2 sen Qș,
n7DPELpQDOVXVWLWXLUȜ por n2ODVROXFLyQGH HVR(r) cr n c4rn. El
UD]RQDPLHQWRTXHVHXVyHQHOHMHPSORHQSDUWLFXODUQRVKDFHHVSHUDUXQDVROXFLyQ
u del problema que está acotada en r ORTXHQRVFRQGXFHDGH¿QLUTXHc4 0.
Por tanto, un R(r)((ș) Anr n sen Qș y
2
13.1
COORDENADAS POLARES
l
487
Anr n sen n .
u(r, )
n 1
La condición de frontera que resta en r c da la serie de senos
Ancn sen n .
u0
n 1
Por tanto,
An cn
2
u0 sen n d ,
0
2u0 1 ( 1)n
.
cn
n
Por tanto, la solución del problema está dada por
y así
An
u(r, )
2u0
( 1)n r n
sen n .
n
c
1
n 1
EJERCICIOS 13.1 Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-23.
(QORVSUREOHPDVDGHWHUPLQHODWHPSHUDWXUDGHHVWDGR
estable u(r, ș) en una placa circular de radio r VLODWHPperatura en la circunferencia es la que se indica.
u0 ,
0,
1. u(1, )
2
4. u(1, )
,
u(c, )
0
2
2
,
0
/2
0
>4
>2.
0
>4
1,
0,
8. Encuentre la temperatura de estado estable en la placa in¿QLWDHQIRUPDGHFXxDTXHVHPXHVWUDHQOD¿JXUD
[Sugerencia: Suponga que la temperatura está acotada
cuando r → 0 y cuando r → .]
2
2
5. Resuelva el problema exterior de Dirichlet para un disco
circular de radio c, si u(c, ș) I ș), 0 ș 2ʌ. En
otras palabras, determine la temperatura de estado estable
u(r, ș) en una placa que coincide con todo el plano xy en
el que se ha hecho un agujero circular de radio c, alrededor del origen y la temperatura de la circunferencia del
agujero es I ș). [Sugerencia: Suponga que la temperatura
está acotada cuando r → .]
6. Determine la temperatura de estado estable en la placa de
XQFXDUWRGHFtUFXORTXHVHPXHVWUDHQOD¿JXUD
7. Si las condiciones ș 0 y ș ʌ兾GHOD¿JXUD
están aisladas, entonces se tiene, respectivamente, que
y
y=x
u = 30
x
u=0
FIGURA 13.1.5 3ODFDHQIRUPDGHFXxDGHOSUREOHPD
9. Encuentre la temperatura de estado estable u(r, ș) en el
DQLOORFLUFXODUGHOD¿JXUD>Sugerencia: Proceda
FRPRHQHOHMHPSOR@
y
y
u = f (θ )
u = f (θ )
u =0
a
c
u =0
b
x
x
u= 0
FIGURA 13.1.4 Placa de un cuarto de círculo del
problema 6.
0.
0
2
,
3. u(1, )
u
0,
Encuentre la temperatura de estado estable si
0
,
2. u(1, )
u
FIGURA 13.1.6
Placa en forma de anillo del problema 9.
488
l
CAPÍTULO 13
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
10. Si las condiciones frontera para el anillo circular de la
¿JXUDVRQu(a, ș) u0, u(b, ș) u, 0 ș 2ʌ,
donde u0 y u son constantes, demuestre que la temperatura de estado estable está dada por
u0 ln(r>b) u1ln(r>a)
.
ln(a>b)
u(r, )
[Sugerencia: Intente una solución de la forma u(r, ș)
v(r, ș) ȥ(r).]
11. Encuentre la temperatura de estado estable u(r, ș) en el
DQLOORFLUFXODUGHOD¿JXUDVLa b 2 y
u 75senș, u(2, ș) 60cosș, 0 ș 2ʌ
12. Encuentre la temperatura de estado estable u(r, ș) en la
SODFDVHPLFLUFXODUPRVWUDGDHQOD¿JXUDVL
u(a, )
(
), u(b, )
u(r, 0)
0,
u(r, )
0, 0
0,
a
r
b.
13. Encuentre la temperatura de estado estable u(r, ș) en la
SODFDVHPLFLUFXODUPRVWUDGDHQOD¿JXUDVLa
b2y
u ș) 0, u(2, ș) u0, 0 ș ʌ
u(r, 0) 0, u(r, ʌ) r 2
donde u0 es una constante.
Problemas para analizar
17. &RQVLGHUH HO DQLOOR FLUFXODU GH OD ¿JXUD $QDOLFH
cómo se puede calcular la temperatura de estado estable
u(r, ș) cuando las condiciones en la frontera son u(a, ș)
f (ș), u(b, ș) g(ș), 0 ș 2ʌ.
18. 'HVDUUROOH VXV LGHDV DFHUFD GHO SUREOHPD SDUD
encontrar la temperatura de estado estable u(r,
ș HQ HO DQLOOR FLUFXODU TXH VH PXHVWUD HQ OD ¿JXUD FXDQGR ODV FRQGLFLRQHV GH IURQWHUD VRQ
u( 12, ) 0.5 cos ș), u ș) 200, 0 ș 2ʌ.
19. Considere la temperatura de estado estable u(r, ș) en la
SODFDVHPLFLUFXODUPRVWUDGDHQOD¿JXUDFRQa
b2y
u ș) 0, u(2, ș) 0, 0 ș ʌ
u(r, 0) 0, u(r, ʌ) r r 2
Demuestre que en este caso la elección de Ȝ como la
constante de separación junto con Ȝ Į2 en (4) y (5) conduce a eigenvalores y a eigenfunciones. Indique cómo
determinar u(r, ș). Implemente sus ideas.
Tarea para el laboratorio de computación
20. a) Encuentre la solución en serie de u(r, ș) del ejemplo
FXDQGR
u(1, )
y
a
b
x
FIGURA 13.1.7 3ODFDVHPLFLUFXODUGHOSUREOHPD
14. Encuentre la temperatura de estado estable u(r, ș) en una
placa semicircular de radio r VL
u(1, )
u0 ,
u(r, 0)
0,
0
u(r, )
u0 ,
0
r
1,
u0 es constante.
15. Encuentre la temperatura de estado estable u(r, ș) en una
placa semicircular de radio r 2, si
u(2, )
u0 ,
0,
0
>2
>2
,
u0 es una constante y los bordes ș 0 y ș ʌ están aislados.
16. /DSODFDHQHOSULPHUFXDGUDQWHTXHVHPXHVWUDHQOD¿JXUDHVXQRFWDYRGHODQLOORFLUFXODUGHOD¿JXUD
(QFXHQWUHODWHPSHUDWXUDGHHVWDGRHVWDEOHu(r, ș).
100,
0,
0
2 .
b) 8VHXQ6$&RXQDDSOLFDFLyQJUD¿FDGRUDSDUDWUD]DU
ODJUi¿FDGHODVXPDSDUFLDOS5(r, ș) formada por los
cinco primeros términos distintos de cero de la solución del inciso a) para r 0.9, r 0.7, r 0.5, r
\r 6REUHSRQJDODVJUi¿FDVHQORVPLVPRV
ejes coordenados.
c) Calcule las temperaturas aproximadas u
u(0.7, 2), u u u 'HVSXpV
calcule aproximadamente u(0.9, 2ʌ u(0.7, 2ʌ
2), u(0.5, 2ʌ u ʌ 4) y u ʌ
5.5).
d) ¿Cuál es la temperatura en el centro de la placa circular?
Describa por qué es adecuado llamar a este valor temperatura promedio en la placa. [Sugerencia: Analice las
JUi¿FDVGHOLQFLVRE \ORVQ~PHURVGHOLQFLVRF @
y
y=x
u=0
u = 100
u=0
a
b
x
u=0
FIGURA 13.1.8 3ODFDGHOSUREOHPD
13.2
13.2
COORDENADAS POLARES Y CILÍNDRICAS
l
489
COORDENADAS POLARES Y CILÍNDRICAS
REPASO DE MATERIAL
l Ecuación diferencial paramétrica de Bessel en la sección 6.4
l )RUPDVGHODVHULHGH)RXULHU%HVVHOHQODGH¿QLFLyQ
INTRODUCCIÓN En esta sección consideraremos problemas con valores en la frontera que
implican formas de la ecuación de calor y de onda en coordenadas polares y una forma de la ecuación de Laplace en coordenadas cilíndricas. Hay concordancia en los ejemplos y ejercicios: cada
problema con valores en la frontera de esta sección tiene simetría radial.
SIMETRÍA RADIAL Las ecuaciones bidimensionales de calor y de onda
2
2
u
y2
u
x2
k
y
u
t2
u
y2
u
x2
a2
2
2
2
u
t
expresadas en coordenadas polares son, respectivamente,
2
2
u 1 u
1 2u
u
u
u 1 u
1 2u
2
,
y
a
2
2
2
2
2
2
r
r r r
t
t2
r
r r r
donde u u(r, ș, t). Para resolver por separación de variables un problema con vaORUHVHQODIURQWHUDGRQGHLQWHUYHQJDDOJXQDGHHVWDVHFXDFLRQHVGH¿QLUHPRVu R(r)
((ș)T(t &RPRHQODVHFFLyQHVWDVXSRVLFLyQFRQGXFHDYDULDVVHULHVLQ¿QLWDV
P~OWLSOHV9HDHOSUREOHPDGHORVHMHUFLFLRV(QHODQiOLVLVTXHVHSUHVHQWD
a continuación, consideraremos una clase más sencilla, pero también importante, de
problemas que tienen simetría radial, es decir, problemas en los que la función desconocida u es independiente de la coordenada angular ș. En este caso las ecuaciones
FDORU\GHRQGDHQ WRPDQUHVSHFWLYDPHQWHODVIRUPDV
2
k
2
k
u
r2
1 u
r r
2
u
t
y
2
1 u
r r
u
r2
a2
u
,
t2
(2)
donde u u(r, t). Las vibraciones descritas por la segunda de las ecuaciones en (2) se
llaman vibraciones radiales.
El primer ejemplo tiene que ver con las vibraciones radiales libres de una memEUDQDFLUFXODUGHOJDGD6HVXSRQHTXHORVGHVSOD]DPLHQWRVVRQSHTXHxRV\TXHHOPRvimiento es tal que cada punto de la membrana se mueve en dirección perpendicular al
plano xy (vibraciones transversales), es decir, el eje u es perpendicular al plano xy. Un
modelo físico que se puede recordar cuando se trabaja con este ejemplo es la vibración
de la membrana de un tambor.
EJEMPLO 1
u
u = f(r) en t = 0
y
x
Encuentre el desplazamiento u(r, t) de una membrana circular de radio c sujeta a lo
largo de su circunferencia si su desplazamiento inicial es f (r) y su velocidad inicial es
g(r 9HDOD¿JXUD
SOLUCIÓN El problema con valores en la frontera que hay que resolver es
u = 0 en r = c
FIGURA 13.2.1 Desplazamiento
inicial de una membrana circular del
HMHPSOR
Vibraciones radiales de una membrana circular
2
2
u
r2
1 u
r r
u(c, t)
0, t
0
u(r, 0)
f (r),
u
t
a2
u
,
t2
t 0
0
r
c,
g(r), 0
r
0
t
c.
490
l
CAPÍTULO 13
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
Sustituyendo u R(r)T(t) en la ecuación diferencial parcial y separando las variables
obtenemos
1
R
R
r
T
.
R
a2T
2EVHUYH TXH HQ OD HFXDFLyQ KHPRV UHJUHVDGR D QXHVWUD FRQVWDQWH GH VHSDUDFLyQ
usual Ȝ/DVGRVHFXDFLRQHVREWHQLGDVGHODHFXDFLyQ VRQ
rR
y
R
2
T
(4)
0
rR
(5)
0.
a T
Debido a la naturaleza vibracional del problema, la ecuación (5) sugiere que sólo se
use Ȝ Į2 0, Į 0, ya que esta elección conduce a funciones periódicas. También
observe que la ecuación (4) no es una ecuación de Cauchy-Euler sino que es la ecuación diferencial paramétrica de Bessel de orden # 0, es decir, rR R Į2rR 0.
'HOSUREOHPD GHODVHFFLyQODVROXFLyQJHQHUDOGHOD~OWLPDHFXDFLyQHV
c1J0( r)
R
(6)
c2Y0( r).
La solución general de la ecuación conocida (5) es
c3 cos a t
T
9HDOD¿JXUD.
c4 sen a t.
Ahora, recordemos que Y0(ĮU) → cuando r → 0, por lo que la suposición implícita de que el desplazamiento u(r, t) debe estar acotado en r QRVFRQGXFHDGH¿QLU
c2 0 en la ecuación (6). Así R cJ0(ĮU).
Puesto que la condición de frontera u(c, t) 0 es equivalente a R(c) 0, se debe
cumplir que cJ0(Į c) 0. Se excluye c 0 (porque conduciría a una solución trivial
de la EDP) por lo que
J0( c) 0.
(7)
Si xn Įnc son las raíces positivas de la ecuación (7), entonces Įn xn兾c, así los eigenvalores del problema son Ȝn Į2n x2n兾c2, y las eigenfunciones son cJ0(ĮU). Las soluciones
producto que satisfacen la ecuación diferencial parcial y la condición a la frontera son
un
Bn sen a nt) J0( nr),
(An cos a nt
R(r)T(t)
(8)
donde hemos etiquetado las constantes en la forma usual. Con el principio de superposición se obtiene
Bn sen a n t) J0( n r).
(An cos a n t
u(r, t)
(9)
n 1
/DVFRQGLFLRQHVLQLFLDOHVGDGDVGHWHUPLQDQORVFRH¿FLHQWHVAn y Bn.
Haciendo t 0 en la ecuación (9) y usando u(r, 0) f (r) se obtiene
An J0(
f (r)
n r).
n 1
Este último resultado se reconoce como el desarrollo de Fourier-Bessel de la función
f en el intervalo (0, c 3RUWDQWRFRPSDUDQGRGLUHFWDPHQWHODVHFXDFLRQHV \
FRQOD \OD GHODVHFFLyQVHSXHGHQLGHQWL¿FDUORVFRH¿FLHQWHVAn como
ORVGDGRVHQODHFXDFLyQ GHODVHFFLyQ
An
c
2
c2J12( nc)
rJ0( nr) f (r) dr.
0
A continuación, derivamos la ecuación (9) respecto a t, haciendo t 0 y usando
ut(r, 0) g(r):
a n Bn J0( nr).
g(r)
n 1
Esto es ahora un desarrollo de Fourier-Bessel de la función g,GHQWL¿FDQGRHOFRH¿ciente total DĮnBnFRQHOGHODHFXDFLyQ GHODVHFFLyQSRGHPRVHVFULELU
13.2
COORDENADAS POLARES Y CILÍNDRICAS
2
a n c2J21( n c)
Bn
l
491
c
rJ0( nr)g(r) dr.
0
Por último, la solución del problema con valores en la frontera original es la serie (9)
FRQFRH¿FLHQWHVAn y BnGH¿QLGRVHQODVHFXDFLRQHV \
ONDAS ESTACIONARIAS 'H PDQHUD DQiORJD D OD HFXDFLyQ GH OD VHFFLyQ
ODVVROXFLRQHVUHVXOWDQWHV VHOODPDQondas estacionarias. Para n
ODVRQGDVHVWDFLRQDULDVVRQEiVLFDPHQWHODJUi¿FDGHJ0(Įnr) con amplitud variable en
el tiempo
Ancos a n t Bn sen a n t.
(Q OD ¿JXUD VH UHSUHVHQWDQ FRQ OtQHDV SXQWHDGDV ODV RQGDV HVWDFLRQDULDV FRQ
distintos valores de tiempo. Las raíces de cada onda estacionaria en el intervalo (0, c)
son las raíces de J0(Įnr) 0 y corresponden al conjunto de los puntos en una onda
estacionaria donde no hay movimiento. Este conjunto de puntos se llama línea nodal.
6LFRPRHQHOHMHPSORODVUDtFHVSRVLWLYDVGHJ0(Įnc) 0 se representan por xn,
entonces xn Įnc lo que implica que Įn xn兾c y, por tanto, las raíces de las ondas
estacionarias se determinan con
n =1
J0( nr)
a)
J0
xn
r
c
0.
$KRUDGHODWDEODODVWUHVSULPHUDVUDtFHVSRVLWLYDVGHJ0 son (aproximadamente) x
2.4, x2 5.5 y x 8.7. Así, para n ODSULPHUDUDt]SRVLWLYDGH
J0
x1
r
c
0
2.4
r
c
es
2.4
o
r
c.
Como lo que se busca son las raíces de las ondas estacionarias en el intervalo abierto
(0, c), el último resultado indica que la primera onda estacionaria no tiene línea nodal.
Para n 2 las dos primeras raíces positivas de
n=2
b)
J0
x2
r
c
0
se determinan de
5.5
r
c
2.4
5.5
r
c
y
5.5.
$Vt OD VHJXQGD RQGD HVWDFLRQDULD WLHQH XQD OtQHD QRGDO GH¿QLGD SRU r xc兾x2
2.4c兾5.5. Observe que r ⬇ 0.44c c. Para n FRQXQDQiOLVLVSDUHFLGRVHGHPXHVWUDTXHKD\GRVOtQHDVQRGDOHVGH¿QLGDVSRUr xc兾x 2.4c兾8.7 y r x2c兾x
5.5c兾8.7. En general, la n-ésima onda estacionaria tiene n OtQHDVQRGDOHVr xc兾xn,
r x2c兾xn, . . . , r xn c兾xn. Puesto que r constante es la ecuación de una circunIHUHQFLDHQFRRUGHQDGDVSRODUHVYHPRVHQOD¿JXUDTXHODVOtQHDVQRGDOHVGH
una onda estacionaria son circunferencias concéntricas.
n=3
c)
FIGURA 13.2.2 Ondas estacionarias.
USO DE COMPUTADORAS Es posible ver el efecto de un simple toque de tambor
SDUDHOPRGHORUHVXHOWRHQHOHMHPSORPHGLDQWHODDSOLFDFLyQGHDQLPDFLyQGHXQ
VLVWHPDDOJHEUDLFRFRPSXWDUL]DGR(QHOSUREOHPDGHORVHMHUFLFLRVVHOHSLGH
encontrar la solución dada en la ecuación (9) cuando
c
1,
f (r)
0
y
g(r)
v0,
0,
0
b
r
r
b
1.
(QOD¿JXUDVHSUHVHQWDQDOJXQRVFXDGURVGHXQ³YLGHR´GHOWRTXHGHWDPERU
FIGURA 13.2.3 &XDGURVGHXQ³YLGHR´GHXQ6$&
492
l
CAPÍTULO 13
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
LAPLACIANO EN COORDENADAS CILÍNDRICAS (QOD¿JXUDVHSXHGH
ver que la relación entre las coordenadas cilíndricas de un punto en el espacio y sus
coordenadas rectangulares está dada por
r cos ,
x
r sen ,
y
z
z.
'HODGHGXFFLyQGHO/DSODFLDQRHQFRRUGHQDGDVSRODUHV YHDODVHFFLyQ VHWLHQH
de inmediato que el Laplaciano de una función u en coordenadas cilíndricas es
2
2
(x, y, z ) o
(r, θ , z)
z
1 u
r r
u
r2
u
1
r2
2
2
u
.
z2
u
2
EJEMPLO 2 Temperaturas de estado estable en un cilindro circular
Determine la temperatura de estado estable u en el cilindro circular que se muestra en
OD¿JXUD
z
θ
y
r
SOLUCIÓN Las condiciones en la frontera indican que la temperatura u tiene simetría radial. Por tanto, u(r, z) se determina de
2
x
FIGURA 13.2.4 Las coordenadas
cilíndricas de un punto (x, y, z) son
(r, ș, z).
2
1 u
r r
u
r2
u
z2
u(2, z)
0, 0
u(r, 0)
0,
0,
0
r
2, 0
0
r
2.
z
4
4
z
u(r, 4)
u0 ,
Utilizando u R(r)Z(z) y separando variables se obtiene
z
u = u0 en z = 4
1
R
r
R
u=0
en r = 2
y
x
u = 0 en z = 0
FIGURA 13.2.5 Cilindro circular del
ejemplo 2.
R
\
Z
Z
R lrR
rR
Z
0.
Z
0
Al considerar los casos Ȝ 0, Ȝ Į2 y Ȝ Į2 se determina que la elección Ȝ Į2
FRQGXFHDHLJHQYDORUHV\HLJHQIXQFLRQHV(QWRQFHVODVROXFLyQGHODHFXDFLyQ HV
c1J0( r)
R(r)
c2Y0( r),
3XHVWRTXHODVROXFLyQGH VHGH¿QHHQHOLQWHUYDOR¿QLWR>@ODVROXFLyQJHQHUDO
se escribe como
Z(z) c3 cosh az c4 senh az.
&RPRHQHOHMHPSORODVXSRVLFLyQGHTXHODWHPSHUDWXUDu está acotada en r
0 impone que c2 0. La condición u(2, z) 0 implica que R(2) 0. Esta ecuación,
J0(2a)
0,
GH¿QHDORVHLJHQYDORUHVSRVLWLYRVȜn Į del problema. Por último, Z(0) 0 implica
que c 0. Por lo que tenemos que R(r) cJ0(Įnr), Z(z) c4 senh Įnz, y
2
n
un
R(r)Z(z)
An senh
u(r, z)
An senh
n
zJ0( nr)
n zJ0( nr).
n 1
La condición de frontera que resta en z 4 determina entonces la serie de FourierBessels
An senh 4
u0
n 1
n J0( nr),
13.2
COORDENADAS POLARES Y CILÍNDRICAS
493
l
SRUORTXHGHDFXHUGRFRQODHFXDFLyQGHGH¿QLFLyQ ORVFRH¿FLHQWHVVHGH¿QHQSRU
ODHFXDFLyQ GHODVHFFLyQ
2
2u0
2 2
2 J1 (2an)
An senh 4an
rJ0(an r) dr.
0
Para evaluar la última integral, primero se usa la sustitución t Įnr y después
d
[tJ (t)] tJ0(t) . A partir de
dt 1
2an
u0
d
u0
An senh 4an
[tJ1(t)] dt
2 2
2an J 1 (2an ) 0 dt
an J1(2an)
obtenemos
u0
.
n senh 4 n J1(2 n )
An
Por lo que la temperatura en el cilindro es
1
senh an z J0(anr).
u(r, z) u0
a
senh
4a
n J1(2an)
n 1 n
(QORVSUREOHPDVFRQYDORUHVHQODIURQWHUDTXHLQYROXFUDQXQFLOLQGURFLUFXODU¿QLWR
FRPRHQHOHMHPSORQRHVSRFRFRP~QHQFRQWUDUIXQFLRQHV%HVVHOPRGL¿FDGDV9HD
ORVSUREOHPDV\GHORVHMHUFLFLRV
EJERCICIOS 13.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-23.
1. Determine el desplazamiento u(r, t HQ HO HMHPSOR VL
f (r) 0 y a la membrana circular se le transmite una velocidad inicial unitaria dirigida hacia arriba.
2. Se sujeta por su circunferencia a una membrana circular
GHUDGLR'HWHUPLQHHOGHVSOD]DPLHQWRu(r, t) si la membrana parte del reposo desde el desplazamiento inicial
f (r) r2, 0 r >Sugerencia: Vea el problema
HQORVHMHUFLFLRV@
3. Encuentre la temperatura de estado estable u(r, z) del cilindro del ejemplo 2, si las condiciones en la frontera son
u(2, z) 0, 0 z 4, u(r, 0) u0, u(r, 4) 0, 0 r 2.
4. 6LODVXSHU¿FLHODWHUDOGHOFLOLQGURGHOHMHPSORHVWiDLVlada, entonces
u
r
0,
0
z
4.
7. Encuentre las temperaturas de estado estable u(r, z) en el
FLOLQGURFLUFXODUGH¿QLGRSRU r z VLODV
condiciones de frontera son
u z) z, 0 z
u(r, 0) 0, u(r 0, 0 r
Con ȜFRPRODFRQVWDQWHGHVHSDUDFLyQHQ GHPXHVWUH
que el caso Ȝ Į2HQ \ FRQGXFHDHLJHQYDORUHV
y eigenfunciones. [Sugerencia: Repase el análisis de la
IXQFLyQ %HVVHO PRGL¿FDGD GH OD VHFFLyQ \ OD ¿JXUD
6.4.4.]
8. Determine las temperaturas de estado estable u(r, z) en el
FLOLQGURFLUFXODUGH¿QLGRSRU r z VLODV
condiciones de frontera son
u(1, z)
r 2
a) Encuentre la temperatura de estado estable u(r, z)
cuando u(r, 4) f (r), 0 r 2.
b) Demuestre que la temperatura de estado estable del
inciso a) se reduce a u(r, z) u0z兾4 cuando f (r) u0.
[Sugerencia: 8WLOLFH OD HFXDFLyQ GH OD VHFFLyQ
@
5. Encuentre la temperatura de estado estable u(r, z) en el
FLOLQGURGHOD¿JXUDVLODVXSHU¿FLHODWHUDOVHPDQtiene a temperatura 0, la parte superior z 4 se mantiene
a temperatura 50 y la base z 0 está aislada.
6. Determine la temperatura de estado estable u(r, z) en el
FLOLQGURGHOD¿JXUDVLODVXSHU¿FLHODWHUDOVHPDQtiene a temperatura 50 y la parte superior z 4 y la base
z 0 están aisladas.
u
z
z, 0
u
z
0,
z 0
1
z
0,
z 1
0
r
1.
9. La temperatura u(r, t) en una placa circular de radio c se
determina con el problema con valores en la frontera
2
k
u
r2
1 u
r r
u
,
t
u(c, t)
0,
u(r, 0)
f (r), 0
t
0
r
c, t
0
0
r
c.
Determine u(r, t).
10. Resuelva el problema 9 si la orilla r c de la placa está
aislada.
494
CAPÍTULO 13
l
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
11. &XDQGRKD\WUDQVIHUHQFLDGHFDORUGHVGHODVXSHU¿FLHODWHUDO GH XQ FLOLQGUR FLUFXODU GH ORQJLWXG LQ¿QLWD \ UDGLR
XQR YHD OD ¿JXUD KDFLD HO PHGLR FLUFXQGDQWH D
temperatura cero, la temperatura dentro del cilindro se
determina a partir de
2
u
r2
k
u
r
1 u
r r
u
,
t
0
hu(1, t),
h
r
1, t
0, t
0
0
r 1
u(r, 0)
f (r), 0
z
y
1
13. Una placa circular está compuesta por dos materiales disWLQWRV HQ IRUPD GH FtUFXORV FRQFpQWULFRV 9HD OD ¿JXUD
/DWHPSHUDWXUDHQODSODFDVHGHWHUPLQDFRPRXQ
problema con valores en la frontera
u(r, 0)
u
,
t
100, t
0
r
r
r
1
2.
2, t
0
0
200, 0
100, 1
1.
r
x
f (x),
x
L
u
0
FIGURA 13.2.8 &DGHQDRVFLODWRULDGHOSUREOHPD
16. En este problema considere el caso general, es decir, con
dependencia de ș, de la membrana circular vibratoria de
radio c:
2
u 1 u
1
r2
r r r2
u(c, , t)
0, 0
u(r, , 0)
u
t
u = 100
2
1
x
u
2
f (r, ), 0
g(r, ), 0
u
,
t2
2 , t
0
c, t
0
0
c, 0
r
c, 0
r
r
2
2 .
t 0
a) Suponga que u R(r)((ș)T(t) y que las constantes
de separación son Ȝ y #. Demuestre que las ecuaciones diferenciales separadas son
T
FIGURA 13.2.7 3ODFDFRPSXHVWDFLUFXODUGHOSUREOHPD
2
2
a2
Determine u(r, t). [Sugerencia: Sea u(r, t) v(r, t) ȥ(r).]
y
0
u
0, 0 x L.
t t 0
[Sugerencia: Suponga que las oscilaciones en el extremo libre x VRQ¿QLWDV@
12. Determine la temperatura de estado estable u(r, z) de un
FLOLQGURVHPLLQ¿QLWRGHUDGLRXQR z 0) si hay transfeUHQFLD GH FDORU SRU VX VXSHU¿FLH ODWHUDO KDFLD HO PHGLR
circundante a temperatura cero y si la temperatura de la
base z 0 se mantiene a la temperatura constante u0.
u(2, t)
0,
u(x, 0)
FIGURA 13.2.6 &LOLQGURLQ¿QLWRGHOSUREOHPD
1 u
r r
u(r, 0)
0
Suponga que ȕ es una constante.
15. El desplazamiento horizontal u(x, t) de una pesada cadena
de longitud L que oscila en un plano vertical satisface la
ecuación diferencial parcial
x
u
r2
0, t
g
Determine para u(r, t).
2
u(1, t)
2
u
u
,
0 x L, t 0.
t2
x
x
9HDOD¿JXUD
a) Utilice Ȝ como constante de separación para demostrar que la ecuación diferencial ordinaria en la
variable espacial x es xX X Ȝ; 0. Resuelva
esta ecuación con la sustitución x IJ2兾4.
b) Utilice el resultado del inciso a) para resolver la ecuación diferencial parcial dada, sujeta a
u(L, t) 0, t 0
1.
r
14. Resuelva el problema con valores en la frontera
2
u 1 u
u
,
0 r 1, t 0
r2
r r
t
r2R
a2 T
rR
0,
( r2
0
)R
0.
13.3
b) Haciendo Ȝ Į2 y # ȕ2 resuelva las ecuaciones separadas.
c) Determine los eigenvalores y eigenfunciones del problema.
d) Utilizando el principio de superposición determine
una solución en series múltiples. No intente evaluar
ORVFRH¿FLHQWHV
Tarea para el laboratorio de computación
17. Considere un tambor ideal formado por una membrana
delgada tensada sobre un marco circular de radio uno.
Cuando se golpea ese tambor en su centro, se oye un sonido que con frecuencia se considera un retumbo más
que un tono melódico. Se puede modelar un solo golpe
mediante el problema con valores en la frontera que se
UHVROYLyHQHOHMHPSOR
a) Determine la solución u(r, t) dada en la ecuación (9)
cuando c l, f (r) 0 y
g(r)
v 0,
0,
0
b
r
r
b
1.
b) Demuestre que la frecuencia de la onda estacionaria
un(r, t) es fn DĮn兾2ʌ, donde Įn es la n-ésima raíz
positiva de J0(x). A diferencia de la solución de la
ecuación de onda en una dimensión, en la sección
ODV IUHFXHQFLDV QR VRQ P~OWLSORV HQWHURV GH
la frecuencia fundamental f. Demuestre que f2 ⬇
2.295f y que f ⬇ f. Se dice que las vibraciones del tambor producen sobretonos anarmónicos.
Como resultado, la función de desplazamiento u(r, t)
no es periódica, por lo que el tambor ideal no puede
sostener un tono.
c) Sean a b 14, y v0 HQVXVROXFLyQGHOLQFLVR
D 8WLOLFHXQ6$&SDUDJUD¿FDUODTXLQWDVXPDSDUcial S5(r, t), en los tiempos t
13.3
COORDENADAS ESFÉRICAS
l
495
5.9, 6.0 en el intervalo r 8WLOLFHODDSOLFDción de animación de su SAC para obtener un video
de esas vibraciones.
d) &RPRXQGHVDItRPD\RUXWLOLFHODDSOLFDFLyQ'SORW
de su SAC para hacer un video del movimiento de la
parte superior de su tambor circular que se presenta
en sección transversal en el inciso c). [Sugerencia:
Hay varias formas de hacerlo. Para un tiempo
¿MR WUDFH OD JUi¿FD u en función de x y y usando
r
1x2 y2 o bien utilice el equivalente a la instrucción CylindricalPlot3D de Mathematica.]
18. a) &
RQVLGHUHHOHMHPSORFRQa c g(r) 0 y
f (r) r兾 r 8WLOLFHXQ6$&FRPR
ayuda para calcular los valores numéricos de los tres
primeros eigenvalores Ȝ, Ȝ2, Ȝ del problema con valoUHVHQODIURQWHUD\ORVWUHVSULPHURVFRH¿FLHQWHVA, A2,
A de la solución u(r, t) dada en la ecuación (9). Escriba
la tercera suma parcial S(r, t) de la solución en serie.
b) 8WLOLFHXQ6$&SDUDWUD]DUODJUi¿FDGHS(r, t) para
t
19. Resuelva el problema 7 con las condiciones de frontera
u(c, t) 200, u(r, 0) 0. Con las condiciones de frontera dadas, se podría esperar en forma intuitiva que en cualquier punto interior de la placa, u(r, t) → 200 cuando
t → . Suponga que c \TXHODSODFDHVGHKLHUURFRlado de tal modo que k DSUR[LPDGDPHQWH 8VHXQ
SAC para ayudarse a calcular los valores numéricos de los
primeros cinco eigenvalores Ȝ, Ȝ2, Ȝ, Ȝ4, Ȝ5 del problema con
YDORUHVHQODIURQWHUD\ORVFLQFRSULPHURVFRH¿FLHQWHVA,
A2, A, A4, A5 en la solución u(r, t). Denote la solución aproximada correspondiente por S5(r, t 7UDFHODJUi¿FDGHS5(5, t)
y de S5(0, t HQXQLQWHUYDORGHWLHPSRVX¿FLHQWHPHQWHJUDQGH
0 t T8WLOLFHODVJUi¿FDVGHS5(5, t) y S5(0, t) para estimar los tiempos (en segundos) para los que u(5, t) ⬇
y u(0, t) ⬇5HSLWDSDUDu(5, t) ⬇ 200 y u(0, t) ⬇ 200.
COORDENADAS ESFÉRICAS
REPASO DE MATERIAL
l Ecuación diferencial de Legendre en la sección 6.4
l )RUPDVGHODVHULHGH)RXULHU/HJHQGUHHQODGH¿QLFLyQ
INTRODUCCIÓN Concluiremos nuestro análisis de problemas con valores en la frontera en diferentes sistemas coordenados considerando problemas que impliquen las ecuaciones de calor, de onda
y de Laplace en coordenadas esféricas.
LAPLACIANO EN COORDENADAS ESFÉRICAS &RPRVHPXHVWUDHQOD¿JXUD
XQSXQWRHQHOHVSDFLRWULGLPHQVLRQDOHVWiGHVFULWRHQFRRUGHQDGDVUHFWDQJXODUHV
y en coordenadas esféricas. Las coordenadas rectangulares x, y y z del punto están relacionadas con sus coordenadas esféricas r, ș y por medio de las ecuaciones:
x
r sen cos ,
y
r sen sen ,
z
r cos .
496
CAPÍTULO 13
l
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
z
(x, y, z) o
(r, φ , θ )
θ
r
y
φ
x
FIGURA 13.3.1 Las coordenadas
esféricas de un punto (x, y, z) son (r, ș).
8WLOL]DQGRODVHFXDFLRQHV VHSXHGHGHPRVWUDUTXHHO/DSODFLDQR' 2u en el sistema
coordenado esférico es
2
2
u
1 2u cot u
u 2 u
1
2
.
u
(2)
2
2
2
2
r2
r2 2
r
r r r sen
Como ya podrá imaginarse, los problemas que involucran la ecuación (2) pueden ser
muy complicados. Por tanto, sólo consideraremos algunos de los problemas más sencillos independientes del ángulo azimutal .
El siguiente ejemplo es un problema de Dirichlet para una esfera.
EJEMPLO 1 Temperaturas de estado estable en una esfera
Determine la temperatura de estado estable u(r, ș HQODHVIHUDTXHPXHVWUDOD¿JXUD
SOLUCIÓN La temperatura se determina a partir de
z
2
2 u
r r
u
r2
c
u(c, )
y
2
1
r2
cot
r2
u
2
f ( ), 0
u
0,
0
c, 0
r
.
Si u R(r)((ș), la ecuación diferencial parcial se separa como
x
u = f (θ )
en r = c
FIGURA 13.3.2 Problema de
Dirichlet para una esfera.
r 2R
2rR
cot
,
R
\SRUWDQWR
2rR
r 2R
sen
cos
R
0
sen
0.
(4)
Después de sustituir x cos ș, 0 ș ʌ, la ecuación (4) se convierte en
d2
d
(5)
2x
0,
1 x 1.
2
dx
dx
Esta última ecuación es una forma de la ecuación de Legendre (vea el problema 46 en
los ejercicios 6.4). Ahora las únicas soluciones de la ecuación (5) que son continuas
y tienen derivadas continuas en el intervalo cerrado [ @ VRQ ORV SROLQRPLRV GH
Legendre Pn(x) que corresponden a Ȝ n(n n 3RUWDQWRVXSRQGUHmos que las soluciones de (4) son
x 2)
(1
Pn(cos ).
Además, cuando Ȝ n(n ODVROXFLyQJHQHUDOGHODHFXDFLyQGH&DXFK\-(XOHU HV
R c1rn c2r (n 1).
Puesto que nuevamente es de esperarse que u(r, ș) esté acotada en r GH¿QLPRV
c2 0. Por tanto, un Anr nPn (cos ș) y
Anr nPn(cos ).
u(r, )
n 0
En r c,
Anc nPn(cos ).
f( )
n 0
Por tanto AncnVRQORVFRH¿FLHQWHVGHODVHULHGH)RXULHU/HJHQGUH GHODVHFFLyQ
2n 1
2cn
An
f ( )Pn(cos ) sen d .
0
Por lo que la solución es
2n
u(r, )
n
0
1
2
f ( ) Pn(cos ) sen d
0
r n
P (cos ).
c n
13.3
EJERCICIOS 13.3
COORDENADAS ESFÉRICAS
l
497
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-23.
1. 5HVXHOYDHO39)HQHOHMHPSORVL
50,
0
>2
f( )
0, > 2
.
Escriba los primeros cuatro términos distintos de cero de
la solución en serie. [Sugerencia: 9HD HQ HO HMHPSOR
HQODVHFFLyQ@
2. La solución u(r, ș GHO HMHPSOR WDPELpQ VH SXHGH LQterpretar como el potencial en el interior de la esfera debido a una distribución de cargas f (ș HQ VX VXSHU¿FLH
Determine el potencial fuera de la esfera.
3. 'HWHUPLQH OD VROXFLyQ GHO SUREOHPD HQ HO HMHPSOR VL
f (ș) cos ș, 0 ș ʌ. [Sugerencia: P(cos ș) cos ș.
Utilice la ortogonalidad.]
4. 'HWHUPLQH OD VROXFLyQ GHO SUREOHPD HQ HO HMHPSOR VL
f (ș) cos 2ș, 0 ș ʌ. [Sugerencia: Vea el proEOHPDHQORVHMHUFLFLRV@
5. Determine la temperatura de estado estable u(r, ș) en
el interior de una esfera hueca a r bVLVXVXSHU¿FLH
interna r a se conserva a la temperatura f (ș) y su suSHU¿FLHH[WHUQDr b se conserva a la temperatura cero.
(QOD¿JXUDVHYHHOSULPHURFWDQWHGHHVDHVIHUD
9. La temperatura en el interior de una esfera de radio uno,
en función del tiempo, se determina a partir de
2
u 2 u
u
,
0 r 1, t 0
r2
r r
t
u(1, t)
100, t
u(r, 0)
0,
0
0
r
1.
Determine u(r, t). [Sugerencia: Compruebe que el miembro izquierdo de la ecuación diferencial parcial se puede
1 2
(ru). Sea ru(r, t) v(r, t) ȥ(r). Sólo
escribir como
r r2
utilice funciones que estén acotadas cuando r → 0.]
10. 8QDHVIHUDPDFL]DXQLIRUPHGHUDGLRDXQDWHPSHUDWXUD
inicial constante u0 en toda la esfera se deja caer en un gran
recipiente de líquido que se conserva a una temperatura
constante u (u
u0 GXUDQWHWRGRHOWLHPSR9HDOD¿JXUD3XHVWRTXHKD\WUDQVIHUHQFLDGHFDORUDWUDYpV
de la frontera r OD WHPSHUDWXUD u(r, t) en la esfera
se determina con el problema con valores en la frontera
2
2 u
r r
u
r2
u = f(θ )
en r = a z
u
r
u
,
t
0
h(u(1, t)
r 1
1, t
r
u1), 0
h
0
1
u(r, 0) u0, 0 r 1.
Determine u(r, t). [Sugerencia: Proceda como en el problema 9.]
y
1
u =0
en r = b
x
FIGURA 13.3.3 Esfera hueca del problema 5.
6. La temperatura de estado estable de un hemisferio de
radio r c se determina a partir de
2
2 u
r r
u
r2
0
u r,
1
r2
2
u
2
cot
r2
0,
2
0
0,
FIGURA 13.3.4 5HFLSLHQWHGHXQÀXLGRGHOSUREOHPD
c, 0
r
u
u1
2
r
11. Resuelva el problema con valores en la frontera que implica vibraciones esféricas:
c
2
u(r, )
f ( ), 0
.
2
Determine u(r, ș). [Sugerencia: Pn(0) 0 sólo si n es
LPSDU9HDWDPELpQHOSUREOHPDHQORVHMHUFLFLRV@
7. Resuelva el problema 6 cuando la base del hemisferio
está aislada; es decir,
u
0,
0 r c.
/2
8. Resuelva el problema 6 para r
c.
u
r2
2 u
r r
u(c, t)
0, t
a2
2
u
,
t2
0
r
c, t
0
0
u
g(r), 0 r c.
t t 0
[Sugerencia: Compruebe que el miembro izquierdo de la
1 2
ecuación diferencial parcial es a2
(ru). Sea v(r, t)
r r2
ru(r, t).]
u(r, 0)
f (r),
498
CAPÍTULO 13
l
PROBLEMAS CON VALORES EN LA FRONTERA EN OTROS SISTEMAS COORDENADOS
12. Una esfera conductora de radio r c se conecta a tierra
y se coloca dentro de un campo eléctrico uniforme cuya
intensidad en la dirección z es E. El potencial u(r, ș) fuera
de la esfera se determina a partir del problema con valores en la frontera
2
u 2
r2 r
u(c, )
lím u(r,
u
1 2u
r r2 2
0, 0
)
Ez
cot
r2
u
0, r
c, 0
13. En coordenadas esféricas, la forma tridimensional
de la ecuación diferencial parcial de Helmholtz es
'2u k2u 0 donde el Laplaciano está dado en (2).
3URFHGD FRPR HQ HO HMHPSOR SHUR XVH u(r, ș, )
R(r) ((ș))( )y la constante de separación n(n SDUD
demostrar que la dependencia radial de la solución u está
GH¿QLGDSRUODHFXDFLyQ@
r2
Er cos .
d 2R
dr 2
2r
dR
dr
[k2r2
1)]R
n(n
0.
r:
Resuelva esta ecuación diferencial. [Sugerencia: Vea el
problema 54 de los ejercicios 6.4.]
Demuestre que
3
u(r, )
Er cos
E
c
cos .
r2
[Sugerencia: Explique por qué
cos Pn(cos ) sen d
0
para todos los enteros no negativos, excepto n 9HD
ODHFXDFLyQ HQODVHFFLyQ@
0
REPASO DEL CAPÍTULO 13
1. Determine la temperatura de estado estable u(r, ș) en una
placa circular de radio c, si la temperatura en la circunferencia está dada por
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-24.
6. Determine la temperatura de estado estable u(r, ș) en la
SODFDLQ¿QLWDTXHVHPXHVWUDHQOD¿JXUD5
u0 , 0
u0 ,
2 .
2. Determine la temperatura de estado estable en la placa
FLUFXODUGHOSUREOHPDVL
y
u(c, )
1,
0
>2
u(c, )
0,
>2
3 >2
1, 3 >2
2 .
3. Determine la temperatura de estado estable u(r, ș) en una
SODFDVHPLFLUFXODUGHUDGLRVL
2
u(1, )
u0(
),
u(r, 0)
0, u(r, )
0
0,
0
r
1.
4. Determine la temperatura de estado estable u(r, ș) en la
SODFDVHPLFLUFXODUGHOSUREOHPDVLu ș) sen ș, 0 ș
ʌ.
5. Determine la temperatura de estado estable u(r, ș) en la
SODFDGHOD¿JXUD5
u = f(θ )
1
u=0
u=0
FIGURA 13.R.2 3ODFDLQ¿QLWDGHOSUREOHPD
7. Suponga que se pierde calor de las caras de un disco circular
muy delgado de radio uno hacia el medio que lo circunda
que está a temperatura cero. Si se aplica la ley lineal de
transferencia de calor, la ecuación de calor toma la forma:
2
u 1 u
u
hu
,
h 0, 0 r 1, t 0.
2
r
r r
t
9HDOD¿JXUD5'HWHUPLQHODWHPSHUDWXUDu(r, t) si
la orilla r VHFRQVHUYDDWHPSHUDWXUDFHUR\VLDOSULQcipio la temperatura en toda la placa es igual a uno.
0
y
y=x
u=0
u=0
u = u0
1
1
2
FIGURA 13.R.1
x
u=0
1
aislada
x
3ODFDHQIRUPDGHFXxDGHOSUREOHPD
0
FIGURA 13.R.3 Placa circular del problema 7.
REPASO DEL CAPÍTULO 13
8. Suponga que xk es una raíz positiva de J0. Demuestre que
una solución del problema con valores en la frontera
499
l
b
xum(x)un(x) dx
0,
m
n.
a
2
2
u
r2
1 u
r r
u(1, t)
0, t
u(r, 0)
u0 J0(xkr),
a2
u
,
t2
0
1, t
r
[Sugerencia:6LJDHOSURFHGLPLHQWRGHO7HRUHPD@
0
14. 8VH ORV UHVXOWDGRV GHO SUREOHPD SDUD UHVROYHU HO VLguiente problema con valores en la frontera, para la temperatura u(r, t) en un anillo circular:
0
u
t
0,
0
1
r
2
t 0
es u(r, t) u0J0(xkr) cos axkt.
9. Determine la temperatura de estado estable u(r, z) en el
FLOLQGURGHOD¿JXUDVLODVXSHU¿FLHODWHUDOVHPDQtiene a temperatura 50, la tapa superior z 4 se mantiene a
temperatura 0 y la base z 0 está aislada.
10. Resuelva el problema con valores en la frontera
2
u
r
2
1 u
r r
u
r2
u
z2
0,
0
0,
z
0
1, 0
r
z
1
1 u
r r
u
,
t
u(a, t)
0,
u(r, 0)
f (r), a
a
r
b, t
0,
t
0
r
c,
u(b, t)
r
0
b.
15. Analice cómo resolver
2
u
r2
1 u
r r
2
u
z2
0,
0
0
z
L
FRQ ODV FRQGLFLRQHV IURQWHUD GDGDV HQ OD ¿JXUD 5
Lleve a cabo sus ideas y determine u(r, z). [Sugerencia:
5HSDVHODHFXDFLyQ GHODVHFFLyQ@
1
r 1
u(r, 0)
u
r2
f (r), u(r, 1)
g(r), 0
r
1.
u = f (r )
en z = L
11. Determine la temperatura de estado estable u(r, ș) en una
esfera de radio uno, si la temperatura se conserva a
100,
0
>2
100,
>2
.
[Sugerencia:9HDHOSUREOHPDGHORVHMHUFLFLRV@
u(1, )
u = h(z )
en r = c
∇2 u = 0
12. Resuelva el problema con valores en la frontera
2
u
r
2
2 u
r r
u
r2
0,
u
,
t2
t
0
r
1, t
0
u = g(r )
en z = 0
0
FIGURA 13.R.4
r 1
u
g(r), 0 r 1.
t t 0
[Sugerencia:3URFHGDFRPRHQORVSUREOHPDV\GH
ORV HMHUFLFLRV SHUR KDJD v (r, t) ru(r, t). Vea la
VHFFLyQ@
u(r, 0)
f (r),
13. La función u(x) Y0(ĮD)J0(Į[) J0(ĮD)Y0(Į[), a
una solución de la ecuación paramétrica de Bessel
d 2u
du
2 2
x2 2 x
xu 0
dx
dx
0 es
en el intervalo [a, b]. Si los eigenvalores Ȝn Į2nVHGH¿nen como las raíces positivas de la ecuación
Y0( a)J0( b)
J0( a)Y0( b)
0,
demuestre que las funciones
um(x)
Y0(
m a)J0( m x)
un(x)
Y0( n a)J0(
n x)
J0(
m a)Y0( m x)
J0( n a)Y0(
n x)
son ortogonales respecto a la función de peso p(x) x en
el intervalo [a, b]; esto es,
&LOLQGURGHOSUREOHPD
16. Encuentre la temperatura de estado estable u(r, ș) en la
SODFD VHPLDQXODU TXH VH PXHVWUD HQ OD ¿JXUD VL
a b 2 y las condiciones de frontera son
u(1, )
u(r, 0)
0,
u(2, )
f (r), u(r, )
0, 0
0, 1
r
2.
[Sugerencia: Use –Ȝ como la constante de separación en
\ GHODVHFFLyQ@
17. Determine la temperatura de estado estable u(r, z) en un
FLOLQGUR¿QLWRGH¿QLGRSRU r z VLODV
condiciones de frontera son
u(1, z)
u0,
0
z
u(r, 0)
0,
u
z
z 1
1
0,
0
r
1.
[Sugerencia: Utilice Ȝ como la constante de separación en
GHODVHFFLyQ@
14
TRANSFORMADA INTEGRAL
14.1
14.2
14.3
14.4
Función error
Transformada de Laplace
Integral de Fourier
Transformadas de Fourier
REPASO DEL CAPÍTULO 14
El método de separación de variables para resolver problemas con valores en
la frontera es muy poderoso pero no tiene aplicación universal. Si la ecuación
diferencial parcial es no homogénea, si las condiciones de frontera dependen del
WLHPSRRVLHOGRPLQLRGHODYDULDEOHHVSDFLDOHVXQLQWHUYDORLQ¿QLWR , )
RVHPLLQ¿QLWR a, ), puede ser posible resolver problemas que impliquen a las
ecuaciones de calor y de onda mediante la conocida transformada de Laplace. En la
sección 14.4 se introducen tres nuevas transformadas integrales, las transformadas
de Fourier.
500
14.1
14.1
FUNCIÓN ERROR
l
501
FUNCIÓN ERROR
REPASO DE MATERIAL
l 9HDODHFXDFLyQ \HOHMHPSORGHODVHFFLyQ
INTRODUCCIÓN (QPDWHPiWLFDVKD\QXPHURVDVIXQFLRQHVTXHVHGH¿QHQFRQXQDLQWHJUDO
3RU HMHPSOR HQ PXFKRV WH[WRV WUDGLFLRQDOHV GH FiOFXOR VH GH¿QH DO ORJDULWPR QDWXUDO FRPR
x
ln x
0 (Q ORV FDStWXORVDQWHULRUHVH[SOLFDPRVDXQTXH HQ IRUPDEUHYH ODIXQFLyQ
1 dt>t, x
HUURUHUI x ODIXQFLyQHUURUFRPSOHPHQWDULDHUIF x ODIXQFLyQLQWHJUDOGHOVHQR6L x), la integral
seno de Fresnel S x) y la función gamma, $ Į WRGDVHVDVIXQFLRQHVVHGH¿QHQHQWpUPLQRVGHXQD
integral. Antes de aplicar la transformada de Laplace a problemas con valores en la frontera, necesitamos conocer un poco más acerca de la función de error y la función de error complementaria. En
HVWDVHFFLyQH[DPLQDUHPRVODVJUi¿FDV\DOJXQDVSURSLHGDGHVREYLDVGHHUI x \HUIF x).
PROPIEDADES Y GRÁFICAS /DVGH¿QLFLRQHVGHfunción errorHUI x) y la función error complementariaHUIF x) son, respectivamente,
x
2
2
2
e u du
y
erfc(x)
1 0
1
Con la ayuda de coordenadas polares se puede demostrar que
erf(x)
e
u2
1
2
du
0
2
1
o
e
u2
du
u2
e
1
0.8
0.6
0.4
0.2
1
1.
e
1
u2
du
e
0
x
0
x
u2
du
1.
x
erfc(x)
erf(x)
1.5
2
x
FIGURA 14.1.1 *Ui¿FDVGHHUI x) y
HUIF x) para x
1.
(QOD¿JXUDVHSUHVHQWDQODVJUi¿FDVGHHUI x \HUIF x) para x 2EVHUYHTXH
HUI HUIF \TXHHUI x) →HUIF x) →FXDQGRx → . Se pueden obtener
RWURVYDORUHVQXPpULFRVGHHUI x \HUIF x) de un SAC o de tablas. En las tablas, a la función error con frecuencia se le llama integral de probabilidad(OGRPLQLRGHHUI x) y de
HUIF x HV , (QHOSUREOHPDGHORVHMHUFLFLRVVHOHSHGLUiREWHQHUODJUi¿FD
de cada función en este intervalo y deducir algunas propiedades adicionales.
/DWDEODGHODVWUDQVIRUPDGDVGH/DSODFHQRVVHUYLUiHQORVHMHUFLFLRVGHOD
siguiente sección. Las demostraciones de estos resultados son complicadas y no las
presentaremos.
TABLA 14.1 Transformadas de Laplace.
f t), a
{ f (t)}
1.
1
e
1 t
2.
a
e
2 1 t3
3. erfc
, el
(VWRGHPXHVWUDTXHHUI x \HUIF x) se relacionan mediante la identidad
erfc (x)
0.5
0
x
2
erf (x)
0
$VtGHODSURSLHGDGDGLWLYDGHLQWHUYDORVGHODVLQWHJUDOHVGH¿QLGDV
último resultado se puede escribir como
y
du.
x
a2/4t
a
2 1t
a2/4t
e
1s
F(s)
a1s
e
a1s
e
a1s
s
f t), a
4. 2
B
t
e
{ f (t)}
a2/4t
a erfc
5. eabeb t erfc b 1t
2
6.
2
eabeb t erfc b1t
a
2 1t
e a1s
s1s
a
2 1t
a
2 1t
F(s)
e a1s
1s 1s b
erfc
a
2 1t
be a1s
s 1s b
502
l
CAPÍTULO 14
TRANSFORMADA INTEGRAL
EJERCICIOS 14.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-24.
t
1
e
1. a) Demuestre que erf( 1t )
d .
1 0 1
b) Use el teorema de convolución y los resultados del
SUREOHPDGHORVHMHUFLFLRVSDUDGHPRVWUDUTXH
7. Sean C, G, R y x constantes. Use la tabla 14.1 para demostrar que
1
.
s 1s 1
2. Utilice el resultado del problema 1 para demostrar que
8. Sea a una constante. Demuestre que
Cs
{erf(1t)}
1
1
s
{erfc(1t)}
1s
1
.
1
3. Utilice el resultado del problema 1 para demostrar que
{et erf(1t)}
1
1s (s
1)
C
1
1
senh a 1s
s senh 1s
G
(1
x1RCs
e
2n
erf
n 0
RG
)
1 a
21t
1)
.
1
y(t)
0
冪s
1
6. Encuentre la transformada inversa
1
1
1
冪s
1
[Sugerencia: Racionalice un denominador y después
efectúe una racionalización de un numerador.]
14.2
11. Demuestre que
e
u2
du
a
1
et erfc (冪t )
erf
2n
1 a
.
21t
y( )
1t
d .
10. Utilice el tercero y el quinto elemento de la tabla 14.1
SDUDGHGXFLUHOVH[WRHOHPHQWR
b
5. Use el resultado del problema 4 para demostrar que
1
冪ʌ t
x RC
.
2B t
erf
9. Use la transformada de Laplace y la tabla 14.1 para resolver la ecuación integral
.
4. 8VHHOUHVXOWDGRGHOSUREOHPDSDUDGHPRVWUDUTXH
1
1s ( 1s
Gt/C
[Sugerencia:8WLOLFHODGH¿QLFLyQH[SRQHQFLDOGHOVHQRKLperbólico. Desarrolle 1 (1 e 21s) en una serie geométrica].
t
{et erfc(1t )}
e
a
12. Demuestre que
e
u2
du
1
[erf(b)
2
erf(a)].
1 erf(a).
a
Tarea para el laboratorio de computación
13. /DVIXQFLRQHVHUI x \HUIF x HVWiQGH¿QLGDVSDUDx
8VHXQ6$&SDUDVREUHSRQHUODVJUi¿FDVGHHUI x) y erIF x HQORVPLVPRVHMHVSDUD x ¢7LHQHQ
DOJXQDVLPHWUtDHVDVJUi¿FDV"¢$TXpVRQLJXDOHVOtPx→
HUI x) y límx→ HUIF x "
TRANSFORMADA DE LAPLACE
REPASO DE MATERIAL
l 3UREOHPDVFRQYDORUHVLQLFLDOHVOLQHDOHVGHVHJXQGRRUGHQ VHFFLRQHV\
l 3URSLHGDGHVRSHUDFLRQDOHVGHODWUDQVIRUPDGDGH/DSODFH VHFFLRQHVD
INTRODUCCIÓN La transformada de Laplace de una función f t), t VH GH¿QH FRPR
st
{ f (t)}
f (t) dt VLHPSUHTXHODLQWHJUDOLPSURSLDFRQYHUMD/DLQWHJUDOWUDQVIRUPDODIXQ0 e
ción f t) en una función F del parámetro transformado s, es decir, { f (t)} F(s). De la misma
IRUPDTXHHQHOFDStWXORGRQGHODWUDQVIRUPDGDGH/DSODFHVHXVySULQFLSDOPHQWHSDUDUHVROYHU
ecuaciones diferenciales ordinarias lineales, en esta sección utilizamos la transformada de Laplace
SDUDUHVROYHUHFXDFLRQHVGLIHUHQFLDOHVSDUFLDOHV3HURDGLIHUHQFLDGHOFDStWXORGRQGHODWUDQVIRUPDGDGH/DSODFHUHGXFHDXQD('2OLQHDOFRQFRH¿FLHQWHVFRQVWDQWHVDXQDHFXDFLyQDOJHEUDLFDHQ
HVWDVHFFLyQYHPRVTXHXQD('3FRQFRH¿FLHQWHVFRQVWDQWHVVHFRQYLHUWHHQXQD('2
14.2
TRANSFORMADA DE LAPLACE
503
l
TRANSFORMADA DE UNA FUNCIÓN DE DOS VARIABLES Los problemas
con valores en la frontera que consideramos en esta sección implicarán ya sea ecuaciones de onda unidimensional o de calor o ligeras variantes de estas ecuaciones. Las
EDP implican una función desconocida de dos variables independientes u x, t) donde
la variable t representa al tiempo t /D WUDQVIRUPDGD GH /DSODFH GH OD IXQFLyQ
u x, t) respecto a tHVWiGH¿QLGDSRU
{u(x, t)}
e
st
u(x, t) dt,
0
donde x se trata como un parámetro. Continuamos con la convención de usar letras
mayúsculas para indicar la transformada de Laplace de una función escribiendo
{u(x, t)}
U(x, s).
TRANSFORMADA DE DERIVADAS PARCIALES Las transformadas de las derivadas parciales u兾t y u兾tVRQVLPLODUHVDODVHFXDFLRQHV \ GHODVHFFLyQ
u
t
sU(x, s)
u
t2
s2U(x, s)
u(x, 0),
2
ut (x, 0).
su(x, 0)
Debido a que estamos transformando respecto a t, además suponemos que es válido
intercambiar la integración y la derivación en la transformada de u兾x
2
u
x2
2
2
e
0
st
u
dt
x2
0
[e
x2
st
u(x, t)] dt
2
e
st
d2
dx 2
u(x, t) dt
0
{u(x, t)};
d 2U
.
dx 2
u
x2
es decir,
d2
dx 2
'HODVHFXDFLRQHV \ YHPRVTXHODWUDQVIRUPDGDGH/DSODFHHVDGHFXDGD
para problemas con condiciones iniciales, en particular, con problemas asociados con
la ecuación de calor o con la ecuación de onda.
EJEMPLO 1
Transformada de Laplace de una EDP
2
2
Determine la transformada de Laplace de la ecuación de onda a
u
x2
2
u
,t
t2
0.
SOLUCIÓN 'HODHFXDFLyQ \
2
2
se convierte en
o
a2
a2
d2
{u(x, t)}
dx 2
d 2U
dx 2
s2U
u
t2
u
x2
a2
s2 {u(x, t)}
su(x, 0)
su(x, 0)
ut (x, 0).
ut(x, 0)
La transformada de Laplace respecto a t de la ecuación de onda o de la ecuación de
calor elimina esa variable y para ecuaciones unidimensionales las ecuaciones transformadas son entonces ecuaciones diferenciales ordinarias en la variable espacial x. Al
resolver una ecuación transformada, consideraremos a s un parámetro.
504
l
CAPÍTULO 14
TRANSFORMADA INTEGRAL
EJEMPLO 2
Uso de la transformada de Laplace para resolver un PVF
2
2
u
,
t2
Resuelva
u
x2
VXMHWDD
u(0, t)
0, u(1, t)
u(x, 0)
0,
0
u
t
1, t
x
0, t
0
0
sen x, 0
1.
x
0
t
SOLUCIÓN Se reconoce a la ecuación diferencial parcial como la ecuación de onda
con a $SDUWLUGHODHFXDFLyQ \GHODVFRQGLFLRQHVLQLFLDOHVGDGDODHFXDFLyQ
transformada es
d 2U
dx 2
sen x,
s 2U
{u(x, t)} . Como las condiciones en la frontera son funciones de t,
donde U(x, s)
WDPELpQKDEUiTXHGHWHUPLQDUVXVWUDQVIRUPDGDVGH/DSODFH
{u(0, t)}
0
U(0, s)
y
{u(1, t)}
0.
U(1, s)
/RVUHVXOWDGRVHQODHFXDFLyQ VRQFRQGLFLRQHVHQODIURQWHUDSDUDODHFXDFLyQGLIHUHQFLDORUGLQDULD 3XHVWRTXHODHFXDFLyQ HVWiGH¿QLGDHQXQLQWHUYDOR¿QLWRVX
función complementaria es
Uc(x, s) c1 cosh sx c2 senh sx.
&RQHOPpWRGRGHORVFRH¿FLHQWHVLQGHWHUPLQDGRVVHREWLHQHXQDVROXFLyQSDUWLFXODU
1
Up(x, s)
Por lo que
s2
c1 cosh sx
U(x, s)
2
sen x.
c2 senh sx
1
2
s
2
sen x.
Pero las condiciones U s) \U s) KDFHQTXHDVXYH]c1 \c
Se concluye que,
U(x, s)
u(x, t)
1
2
2
s
1
1
2
2
s
Por tanto
EJEMPLO 3
sen x
u(x, t)
1
sen x
1
sen x
1
s2
2
.
sen x sen t.
Uso de la transformada de Laplace para resolver un PVF
8QDFXHUGDPX\ODUJDHVWiLQLFLDOPHQWHHQUHSRVRVREUHODSDUWHQRQHJDWLYDGHOHMH
x. La cuerda está anclada en x \ VX GLVWDQWH H[WUHPR GHUHFKR VH GHVOL]D KDFLD
DEDMRSRUXQVRSRUWHYHUWLFDOVLQIULFFLyQ/DFXHUGDVHSRQHHQPRYLPLHQWRGHMiQGROD
caer por su propio peso. Determine el desplazamiento u x, t).
SOLUCIÓN Puesto que se considera la fuerza de gravedad se puede demostrar que la
ecuación de onda tiene la forma
2
a2
u
x2
2
g
u
,
t2
x
0, t
0.
14.2
TRANSFORMADA DE LAPLACE
l
505
Aquí g representa la aceleración constante debida a la gravedad. Las condiciones frontera e iniciales son, respectivamente,
u
u(0, t) 0, lím
0, t 0
x:
x
u(x, 0)
u
t
0,
0,
0
t
0.
x
La segunda condición en la frontera, límx : u兾 x 0 , indica que la cuerda está hori]RQWDOPHQWHDXQDJUDQGLVWDQFLDGHVXH[WUHPRL]TXLHUGR$KRUDGHODVHFXDFLRQHV \
2
2
u
x2
a2
d 2U g
s2U
dx 2
s
o, en vista de las condiciones iniciales,
se convierten en
u
t2
{g}
a2
d 2U
dx 2
su(x, 0)
s2
U
a2
ut (x, 0)
g
.
a2s
Las transformadas de las condiciones en la frontera son
{u(0, t)}
0
U(0, s)
y
u
x
lím
x:
lím
x:
dU
dx
0.
&RQD\XGDGHOPpWRGRGHORVFRH¿FLHQWHVLQGHWHUPLQDGRVVHYHTXHODVROXFLyQJHQHUDO
de la ecuación transformada es
g
U(x, s) c1e (x/a)s c2 e(x/a)s
.
s3
La condición en la frontera límx : dU兾dx 0 implica que c \TXHU s)
lo que da como resultado que c1 g兾s. Por tanto
g
e
s3
U(x, s)
(x/a)s
g
.
s3
Ahora, de acuerdo con el segundo teorema de traslación, tenemos que
u(x, t)
u
at
Soporte
vertical
“en ∞”
o
1
g
e
s3
u(x, t)
x
(a t,− 12 gt 2)
FIGURA 14.2.1 Cuerda
³LQ¿QLWDPHQWHODUJD´FD\HQGREDMRVX
propio peso.
1
g t
2
g
s3
(x/a)s
1 2
gt ,
2
g
(2axt
2a2
x
a
2
x
a
t
0
t
x2 ), t
x
.
a
1 2
gt
2
x
a
Para interpretar la solución, supongamos que t HVWi¿MR3DUD x at, la
1
FXHUGDWLHQHODIRUPDGHXQDSDUiERODTXHSDVDSRU \SRU (at, 2 gt2). Para x at,
1 2
la cuerda se describe con la recta horizontal u
2 gt 9HDOD¿JXUD
2EVHUYHTXHHOSUREOHPDGHOVLJXLHQWHHMHPSORVHSRGUtDUHVROYHUFRQHOSURFHGLPLHQWRGH
ODVHFFLyQ/DWUDQVIRUPDGDGH/DSODFHSURSRUFLRQDXQPpWRGRDOWHUQDWLYR
EJEMPLO 4
Una solución en términos de erf(x)
Resuelva la ecuación de calor
2
u
x2
u
,
t
0
x
1, t
0
506
l
CAPÍTULO 14
TRANSFORMADA INTEGRAL
VXMHWDD
u(0, t)
0, u(1, t)
u0,
u(x, 0)
0,
1.
0
x
0
t
SOLUCIÓN 'HODVHFXDFLRQHV \ \GHODFRQGLFLyQLQLFLDOGDGD
2
u
x2
u
t
d 2U
dx 2
se convierte en
0.
sU
La transformada de las condiciones en la frontera es
u0
.
s
3XHVWRTXHQRVRFXSDXQLQWHUYDOR¿QLWRHQHOHMHx, optamos por escribir la solución
JHQHUDOGHODHFXDFLyQ HQODIRUPD
0
U(0, s)
U(x, s)
y
U(1, s)
c2 senh (1sx).
c1 cosh (1sx)
$SOLFDQGRODVGRVFRQGLFLRQHVHQODIURQWHUDGHODHFXDFLyQ VHREWLHQHUHVSHFWL
vamente, c1 0 y c 2 u0 (s senh 1s)., Así
senh (1sx)
.
s senh 1s
Ahora, la transformada inversa de esta última función no aparece en la mayor
parte de las tablas. Sin embargo, si escribimos
U(x, s)
u0
e1 sx
s(e1s
senh (1sx)
s senh 1s
e
1sx
e
e(x
1s
)
1)1s
s(1
e
(x 1)1s
21s
)
e
y usando la serie geométrica
1
e
1
encontramos
senh (1sx)
s senh 1s
e
21s
e
2n1s
n 0
(2n 1 x)1s
e
(2n 1 x)1s
s
n 0
.
s
Si suponemos que se puede hacer la transformada inversa de Laplace término a térPLQRHQWRQFHVGHDFXHUGRFRQODHQWUDGDGHODWDEODWHQHPRVTXH
u(x, t)
1
u0
senh (1sx)
s senh 1s
1
u0
e
(2n 1 x)1s
e
(2n 1 x)1s
s
n 0
erfc
u0
1
2n
n 0
1
21t
s
x
erfc
2n
1
x
.
21t
/DVROXFLyQ VHSXHGHH[SUHVDUHQWpUPLQRVGHODIXQFLyQHUIF x) 1 HUI x
u(x, t)
erf
u0
n 0
2n
1
21t
x
erf
2n
1
21t
x
.
/D ¿JXUD D TXH VH REWXYR FRQ OD D\XGD GH OD DSOLFDFLyQ 'SORW GH XQ 6$&
PXHVWUDODVXSHU¿FLHVREUHODUHJLyQUHFWDQJXODU x t GH¿QLGDSRUOD
suma parcial S x, t GHODVROXFLyQ FRQu 6HYHGHODVXSHU¿FLH\GHODV
JUi¿FDVELGLPHQVLRQDOHVDGMXQWDVTXHSDUDXQYDORU¿MRGHx ODFXUYDGHLQWHUVHFFLyQ
GHXQSODQRTXHFRUWDODVXSHU¿FLHSHUSHQGLFXODUPHQWHDOHMHxHQHOLQWHUYDOR>@OD
temperatura u x, t) aumenta con rapidez hasta un valor constante conforme se incrementa
14.2
TRANSFORMADA DE LAPLACE
507
l
HOWLHPSR9pDQVHODV¿JXUDV E \O F 3DUDXQWLHPSR¿MR ODFXUYDGHLQWHUVHFFLyQGHXQSODQRTXHFRUWDODVXSHU¿FLHSHUSHQGLFXODUPHQWHDOHMHt) la temperatura
u x, t DXPHQWDHQIRUPDQDWXUDOGHD9pDQVHODV¿JXUDVO G \ H
u ( 0.7,t )
100
80
60
40
20
u ( 0.2,t )
100
80
60
40
20
u (x, t)
100
75
50
25
0
1
6
0
0.2
0.4
x 0.6 0.8 0
1
2 3 4 5 6
t
1
4
2 t
u ( x,0.1)
120
100
80
60
40
20
a)
2 3 4 5 6
t
c) x 0.7
b) x 0.2
0.2 0.4 0.6 0.8 1
x
u ( x,4)
120
100
80
60
40
20
0.2 0.4 0.6 0.8 1
x
e) t 4
d) t 0.1
FIGURA 14.2.2 *Ui¿FDGHODVROXFLyQGDGDHQODHFXDFLyQ (QODV¿JXUDVE \F x se
FRQVHUYDFRQVWDQWH(QODV¿JXUDVG \H t se conserva constante.
EJERCICIOS 14.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-24.
1. 6HHVWLUDXQDFXHUGDDORODUJRGHOHMHxHQWUH \ L
Determine el desplazamiento u x, t) si la cuerda parte del
reposo en la posición inicial A VHQ ʌ[兾L).
5. (QHOHMHPSORHQFXHQWUHHOGHVSOD]DPLHQWRu x, t) cuando
DOH[WUHPRL]TXLHUGRGHODFXHUGDHQx VHOHFRPXQLFDXQ
movimiento oscilatorio que se describe con f t) A sen ȦW.
2. Resuelva el problema con valores en la frontera
6. El desplazamiento u x, t) de una cuerda impulsada por
XQDIXHU]DH[WHUQDVHGHWHUPLQDGH
2
2
u
,
t2
u
x2
0,
u(0, t)
u(x, 0)
0
1, t
x
0,
2 sen x
4 sen 3 x.
t 0
3. (OGHVSOD]DPLHQWRGHXQDFXHUGDHOiVWLFDVHPLLQ¿QLWDVH
determina a partir de
2
u
x2
u(0, t)
a2
u(x, 0)
2
u
,
t2
f (t),
0,
0, t
x
0
lím u(x, t)
0,
x:
u
t
t
0
u(x, 0)
t
0
0.
x
f (t)
sen t,
0,
0
t
t
'LEXMHHOGHVSOD]DPLHQWRu x, t) para t
1
1.
1.
0
0,
x
0
0
x
1, t
0
1.
t 0
7. 8QDEDUUDXQLIRUPHHVWiVXMHWDHQx \HVWiLQLFLDOPHQWH
en reposo. Si se aplica una fuerza constante FDOH[WUHPR
libre en x L, el desplazamiento longitudinal u x, t) de una
sección transversal de la barra se determina de
u
x2
2
u(0, t)
0,
u(x, 0)
0,
2
u
,
t2
Determine u x, t).
4. 5HVXHOYDHOSUREOHPDFRQYDORUHVHQODIURQWHUDFXDQGR
u
t
0,
u
,
t2
0, t
Determine u x, t).
a2
0,
2
u
sen x sen t
x2
u(0, t) 0, u(1, t)
0
u(1, t)
u
t
2
0
0
E
u
t
u
x
x
F0 ,
x L
t 0
0,
0
L, t
0
E constante,
x
t
0
L.
Determine u x, t). [Sugerencia: Desarrolle 1兾 esL/a)
en una serie geométrica.]
8. 8QDYLJDHOiVWLFDVHPLLQ¿QLWDTXHVHPXHYHDORODUJRGHO
HMHx con una velocidad constante –v se detiene al golpear
508
CAPÍTULO 14
l
TRANSFORMADA INTEGRAL
una pared al tiempo t 9HDOD¿JXUD(OGHVSODzamiento longitudinal u x, t) se determina a partir de
u
x2
2
u(0, t)
0,
2
a2
u
,
t2
u(x, 0)
0, t
x
u
x
lím
x:
u
t
0,
0
0, t
v0 ,
t 0
u
x
f (t),
x
Resuelva para u x, t).
0,
lím u(x, t)
u(x, 0)
17. u(0, t)
60
u(x, 0)
60
40 (t
18. u(0, t)
20,
0,
u(x, 0)
100
0,
x:
0
0.
x
lím u(x, t)
x:
0
[Sugerencia: Utilice el teorema de convolución.]
16.
0
f (t),
15. u(0, t)
0
2),
0
lím u(x, t)
60,
x:
1
,
1
t
t
u(x, 0)
lím u(x, t)
100,
x:
19. Resuelva el problema con valores en la frontera
2
u
x2
Viga
Pared
v0
x=0
u
x
x
FIGURA 14.2.3 9LJDHOiVWLFDHQPRYLPLHQWRGHOSUREOHPD
u
,
t
x
u(x, 0)
0,
u(0, t)
lím u(x, t)
x:
u
t
xe x,
u(x, 0)
0, t
x
0,
t
k
0
0, t
0
0.
x
0
u
x2
1,
u(x, 0)
e x,
0, t
0
lím u(x, t)
0, t
x:
u
t
0,
t
0
0.
x
0
12. u(0, t)
u0 ,
x
0
14.
u
x
x
0
lím u(x, t)
u1, u(x, 0)
u1
u(x, t)
x
u1, u(x, 0)
u1x
lím
x:
u(0, t),
u(0, t)
u(0, t)
0,
u(x, 0)
0,
lím
x:
x
0, t
0
u
x
0, t
0
x
21k
d .
0,
x
rt
erfc
r
22. 6LKD\WUDQVIHUHQFLDGHFDORUHQODVXSHU¿FLHODWHUDOGHXQ
alambre delgado de longitud L, hacia un medio a temperatura constante umODHFXDFLyQGHFDORUWRPDODIRUPD
2
k
x:
lím u(x, t)
x:
50,
u0, u(x, 0)
lím u(x, t)
x:
0
21. Una varilla de longitud L se mantiene a temperatura constante uHQVXVH[WUHPRVx \x L. Si la temperatura
inicial de la varilla es u uVHQ [ʌ兾L), resuelva la ecuación de calor uxx ut x L, t SDUDODWHPSHUDtura u x, t).
(QORVSUREOHPDVDXWLOLFHODWUDQVIRUPDGDGH/DSODFH
para resolver la ecuación de calor uxx ut, x t VXMHWD
a las condiciones dadas.
u0 ,
u
,
t
r
0
x
t
1.
t
2
u(0, t)
11. u(0, t)
u
x2
u(x, t)
u
,
t2
0,
donde r es constante, está dada por
10. Resuelva el problema con valores en la frontera
2
x:
x
2
u
,
t2
u
x2
lím u(x, t)
u(1, t),
0,
2
2
u
x
100
0
20. Demuestre que una solución del problema con valores en
la frontera
9. Resuelva el problema con valores en la frontera
13.
1
1, t
x
u
x2
h(u
um )
u
,
t
0
x
L, t
0,
donde h es constante. Determine la temperatura u x, t) si
la temperatura inicial es una constante u en todo el alamEUH\VLORVH[WUHPRVHVWiQDLVODGRVHQx \HQx L.
u0
0 , u(x, 0)
0
23. Una varilla de longitud uno está aislada en x \VHFRQVHUYD
a temperatura cero en x 1. Si la temperatura inicial de la
varilla es constante e igual a u, determine para la temperatura u x, t) al resolver kuxx ut x 1, t >Sugerencia:
Desarrolle 1 (1 e 21s/k) en una serie geométrica.]
14.2
24. 8QDORVDSRURVDLQ¿QLWDGHDQFKRXQRVHVXPHUJHHQXQD
solución de concentración constante c. En el interior de
la losa se difunde una sustancia disuelta en la solución. La
concentración c x, t) en la losa se determina a partir de
2
c
x2
c
,
t
0
c(0, t)
c0 ,
c(1, t)
c0 ,
c(x, 0)
0,
0
1,
D
1,
x
x
t
0
t
0
donde D es una constante. Determine c x, t).
25. Una línea de transmisión telefónica muy larga está inicialmente a un potencial constante u. Si el conductor se
conecta a tierra en x \VHDtVODHQHOGLVWDQWHH[WUHPR
derecho, entonces el potencial u x, t) en un punto x a lo
largo de la línea al tiempo t se determina a partir de
2
u
x2
RGu
u(0, t)
0,
u
lím
x:
x
u(x, 0)
u0,
x
0,
0, t
x
0,
0
0
t
0,
donde R, C y G son constantes conocidas como resistencia, capacitancia y conductancia, respectivamente.
Determine u x, t). [Sugerencia9HDHOSUREOHPDHQORV
HMHUFLFLRV@
26. Demuestre que una solución del problema con valores en
la frontera
2
u
x2
u
,
t
hu
u(0, t)
u0 ,
u(x, 0)
0,
es
u(x, t)
0, t
x
lím u(x, t)
0, h constante
0, t
x:
0
0
x
t
u0 x
21
0
e
x2/4
h
d .
3/2
27. (QHOSUREOHPDGHORVHMHUFLFLRVVHOHSLGLyREWHQHU
las temperaturas dependientes del tiempo u r, t) dentro de
una esfera unitaria. La temperaturas externas a la esfera
están descritas por el problema con valores en la frontera
2
u 2 u
u
, r 1,
2
r
r r
t
u(1, t) 100, lím u(r, t)
ro
u(r, 0)
0, r
t
0
0, t
0
1.
Utilice la transformada de Laplace para determinar
u r, t). [Sugerencia: Después de transformar la EDP, use
v r, t) ru r, t).]
28. Comenzando en t XQDFDUJDFRQFHQWUDGDGHPDJQLtud F se mueve con una velocidad constante v a lo largo
l
509
GHXQDFXHUGDVHPLLQ¿QLWD(QHVWHFDVRODHFXDFLyQGH
onda se convierte en
2
u
x
u
F0 t
,
2
2
t
v0
x
donde į t x兾v) es la función delta de Dirac. Resuelva
OD('3VXMHWDD
2
a2
u(0, t)
0,
u(x, 0)
0,
a) cuando v a
lím u(x, t)
x:
0,
0
t
u
0, x 0
t t 0
b) cuando v a.
Tarea para el laboratorio de computación
29. a) /DWHPSHUDWXUDHQXQVyOLGRVHPLLQ¿QLWRVHPRGHOD
por el problema con valores en la frontera
2
k
u
RC
t
TRANSFORMADA DE LAPLACE
u
x2
u
,
t
u(0, t)
u0 ,
u(x, 0)
0,
0, t
0
lím u(x, t)
0,
x
x:
x
t
0
0.
Determine u x, t). Utilice la solución para determinar
analíticamente el valor de límt : u(x, t), x 0.
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHu x, t) sobre la
UHJLyQUHFWDQJXODUGH¿QLGDSRU x t
6XSRQJDTXHu \TXHk 1. Indique las dos
condiciones en la frontera y la condición inicial en su
JUi¿FD8WLOLFHJUi¿FDVGHu x, t HQ\GLPHQVLRQHV
para comprobar su respuesta del inciso a).
30. a) (
QHOSUREOHPDVLKD\XQÀXMRFRQVWDQWHGHFDORU
que entra al sólido en su frontera izquierda, entonces la
u
condición en la frontera es
A, A 0, t 0 .
x x 0
Determine u x, t). Utilice la solución para determinar
analíticamente el valor de lím t : u(x, t), x 0 .
b) 8VHXQ6$&SDUDWUD]DUODJUi¿FDGHu x, t) sobre la reJLyQUHFWDQJXODU x t 6XSRQJDTXH
u \TXHk 8VHJUi¿FDVHQ\GLPHQVLRQHV
de u x, t) para comprobar su respuesta del inciso a).
31. Los humanos buscan la mayor parte de su información sobre
HOPXQGRH[WHULRUDWUDYpVGHODYLVWD\HORtGR3HURPXFKDV
criaturas usan señales químicas como su medio principal de
FRPXQLFDFLyQSRUHMHPSORODVDEHMDVDOHVWDUDODUPDGDV
emiten una sustancia y agitan sus alas en forma febril para
PDQGDUODVHxDOGHDGYHUWHQFLDDODVDEHMDVTXHDWLHQGHQD
ODUHLQD(VRVPHQVDMHVPROHFXODUHVHQWUHPLHPEURVGHOD
misma especie se llaman feromonas. Las señales se pueden
conducir por aire o agua en movimiento o por un proceso de
difusión en el que el movimiento aleatorio de las moléculas
GHO JDV DOHMD OD VXVWDQFLD TXtPLFD GH VX IXHQWH /D ¿JXUD
PXHVWUD XQD KRUPLJD HPLWLHQGR XQD VXVWDQFLD GH
alarma hacia el aire en calma dentro de un túnel. Si c x, t)
denota la concentración de la sustancia a x centímetros de la
fuente al tiempo t, entonces c x, t) satisface
510
l
CAPÍTULO 14
TRANSFORMADA INTEGRAL
b) 8
VHXQ6$&SDUDWUD]DUODJUi¿FDGHODVROXFLyQHQ
el inciso a), para x HQORVWLHPSRV¿MRVt
t t 1, t \t
c) 3
DUD FXDOTXLHU WLHPSR ¿MR t, demuestre que
Ak. Así Ak representa la cantidad
0 c(x, t) dx
total de sustancia descargada.
2
c
c
k 2
,
x 0, t 0
x
t
y k es una constante positiva. La emisión de feromonas en
forma de un impulso discreto origina una condición en la
frontera de la forma
c
A (t),
x x 0
donde į t) es la función delta de Dirac.
a) Resuelva el problema con valores en la frontera si además se sabe que
c x x \ lím x : c(x, t) 0, t
14.3
x
0
FIGURA 14.2.4 Hormiga respondiendo a una señal
TXtPLFDGHOSUREOHPD
INTEGRAL DE FOURIER
REPASO DE MATERIAL
l La integral de Fourier tiene diferentes formas que son análogas a las cuatro formas de la serie de
)RXULHUGDGDVHQODVGH¿QLFLRQHV\\HQHOSUREOHPDGHORVHMHUFLFLRV6H
recomienda un repaso de estas formas.
INTRODUCCIÓN (QORVFDStWXORVDXVDPRVVHULHVGH)RXULHUSDUDUHSUHVHQWDUXQDIXQFLyQ
fGH¿QLGDHQXQLQWHUYDOR¿QLWRWDOFRPR p, p R L). Cuando f y f son continuas por tramos
en ese intervalo, una serie de Fourier representa a la función en el intervalo y converge hacia una
H[WHQVLyQSHULyGLFDGHfIXHUDGHOLQWHUYDOR'HHVWDIRUPDSRGHPRVGHFLUMXVWL¿FDGDPHQWHTXHODV
series de Fourier están asociadas sólo con funciones periódicas. Ahora deduciremos, en forma no
rigurosa, un medio de representar ciertas clases de funciones no periódicasTXHHVWiQGH¿QLGDV\D
VHDHQXQLQWHUYDORLQ¿QLWR , RHQXQLQWHUYDORVHPLLQ¿QLWR ).
DE LA SERIE DE FOURIER A LA INTEGRAL DE FOURIER Supongamos que
una función f HVWi GH¿QLGD HQ p, p 6L XVDPRV ODV GH¿QLFLRQHV LQWHJUDOHV GH ORV
FRH¿FLHQWHVHQ \ GHODVHFFLyQHQODHFXDFLyQ GHHVDVHFFLyQ
entonces la serie de Fourier de f en el intervalo es
f (x)
1
2p
p
1
pn
f (t) dt
p
p
f (t) cos
p
1
p
n
n
t dt cos
x
p
p
f (t) sen
p
n
n
t dt sen
x .
p
p
Si hacemos Įn Qʌ兾p, "Į Įn 1 Įn ʌ兾pHQWRQFHVODHFXDFLyQ VHFRQYLHUWH
en
f (x)
1
2
p
f (t) dt
p
1
p
p
f (t) cos
n
nt
dt cos
p
1
f (t) sen
nx
nt
dt sen
n
x
.
p
$KRUDDPSOLDQGRHOLQWHUYDOR p, p) haciendo que p → . Puesto que p → im, que suplica que "Į → HO OtPLWH GH WLHQH OD IRUPD lím : 0 n 1 F(an )
JLHUHODGH¿QLFLyQGHODLQWHJUDO 0 F( ) d . Por lo que si
f (t) dt H[LVWHHOOtPLWH
GHOSULPHUWpUPLQRGHODHFXDFLyQ HVFHUR\HOOtPLWHGHODVXPDVHFRQYLHUWHHQ
f (x)
1
f (t) cos t dt cos x
f (t) sen t dt sen x d .
0
(OUHVXOWDGRGHODHFXDFLyQ VHOODPDintegral de Fourier de fHQ , ). Como se
muestra en el siguiente resumen, la estructura básica de la integral de Fourier recuerda
la de una serie de Fourier.
14.3
INTEGRAL DE FOURIER
511
l
DEFINICIÓN 14.3.1 Integral de Fourier
La integral de Fourier de una función fGH¿QLGDHQHOLQWHUYDOR , ) está
dada por
f (x)
1
[ A( ) cos x
0
donde
B( ) sen x] d ,
A( )
f (x) cos x dx
B( )
f (x) sen x dx.
CONVERGENCIA DE UNA INTEGRAL DE FOURIER /DVFRQGLFLRQHVVX¿FLHQWHV
SDUDTXHXQDLQWHJUDOGH)RXULHUFRQYHUMDDf x) se parecen a las de una serie de Fourier,
pero son ligeramente más restrictivas que las condiciones para una serie de Fourier.
TEOREMA 14.3.1
Condiciones para la convergencia
Sean f y f FRQWLQXDVSRUWUDPRVHQWRGRLQWHUYDOR¿QLWR\VHDf absolutamente
LQWHJUDEOH HQ , ).* Entonces la integral de Fourier de f en el intervalo
converge a f x) en un punto de continuidad. En un punto de discontinuidad, la
integral de Fourier converge al promedio
(x ) ff (x
)
f fx)
x)
,
2
donde f x) y f x) representan el límite de f en x, desde la derecha y desde
la izquierda, respectivamente.
EJEMPLO 1
Representación de la integral de Fourier
Encuentre la representación integral de Fourier de la función
f (x)
0,
1, 0
0,
x
x
x
0
2
2.
SOLUCIÓN /DIXQFLyQFX\DJUi¿FDVHSUHVHQWDHQOD¿JXUDVDWLVIDFHODKLSyWHVLVGHOWHRUHPD3RUWDQWRGHODVHFXDFLRQHV \ VHWLHQHTXH
y
1
A( )
2
f (x) cos x dx
0
x
2
f (x) cos x dx
f (x) cos x dx
0
FIGURA 14.3.1 La función continua
2
HQWUDPRVGH¿QLGDHQ , ).
cos x dx
f (x) cos x dx
2
sen 2
0
2
B( )
f (x) sen x dx
sen x dx
0
*
(VWRVLJQL¿FDTXHODLQWHJUDO
f (x) dx converge.
1
cos 2
.
512
l
CAPÍTULO 14
TRANSFORMADA INTEGRAL
(QWRQFHVVXVWLWX\HQGRHVWRVFRH¿FLHQWHVHQ VHWLHQHTXH
1
f (x)
sen 2
1
cos x
cos 2
sen x d .
0
&XDQGRXWLOL]DPRVODVLGHQWLGDGHVWULJRQRPpWULFDVOD~OWLPDLQWHJUDOVHVLPSOL¿FDFRPR
2
f (x)
sen
cos (x
1)
d .
0
/DLQWHJUDOGH)RXULHUVHSXHGHXWLOL]DUSDUDHYDOXDUODVLQWHJUDOHV3RUHMHPSORVH
WLHQHGHDFXHUGRFRQHOWHRUHPDTXHODHFXDFLyQ FRQYHUJHDf O 1; esto es,
2
sen
1
d
sen
así
0
d
0
2
.
Este último resultado merece una nota especial porque no se puede obtener de la maQHUD ³XVXDO´ \D TXH HO LQWHJUDQGR VHQ x)兾x no tiene una antiderivada que sea una
función elemental.
INTEGRALES COSENO Y SENO Cuando f es una función par en el intervalo
, ), entonces el producto f x) cos Į[ también es una función par, mientras que
f x) sen Į[HVXQDIXQFLyQLPSDU&RPRFRQVHFXHQFLDGHODSURSLHGDG g) del teorema
B Į) \DVtODHFXDFLyQ VHFRQYLHUWHHQ
f (x)
2
f (t) cos t dt cos x d .
0
0
$TXtKHPRVXWLOL]DGRODSURSLHGDG f GHOWHRUHPDSDUDHVFULELU
f (t) cos t dt
2
f (t) cos t dt.
0
De igual manera, cuando fHVXQDIXQFLyQLPSDUHQ , ), los productos f x) cos Į[
y f x) sen Į[ son funciones impar y par, respectivamente. Por tanto, A Į) \
f (x)
2
f (t) sen t dt sen x d .
0
0
6HUHVXPHHQODVLJXLHQWHGH¿QLFLyQ
DEFINICIÓN 14.3.2 Integrales de Fourier del coseno y del seno
i /
DLQWHJUDOGH)RXULHUGHXQDIXQFLyQSDUHQHOLQWHUYDOR ,
integral coseno
f (x)
2
0
donde
A( )
) es la
A( ) cos x d ,
f (x) cos x dx.
0
ii /
DLQWHJUDOGH)RXULHUGHXQDIXQFLyQLPSDUHQHOLQWHUYDOR , ) es la
integral seno
f (x)
2
B( ) sen x d ,
f (x) sen x dx.
0
donde
B( )
0
14.3
EJEMPLO 2
INTEGRAL DE FOURIER
513
l
Representación integral del coseno
Determine la representación integral de Fourier de la función
1,
0,
f (x)
x
x
a
a.
SOLUCIÓN 6HYHHQOD¿JXUDTXHf es una función par. Por lo que representaremos a fSRUODLQWHJUDOFRVHQRGH)RXULHU 'HODHFXDFLyQ REWHQHPRV
a
A( )
f (x) cos x dx
0
a
f (x) cos x dx
f (x) cos x dx
0
cos x dx
sen a
,
0
a
y
1
por lo que
2
f (x)
sen a cos x
d .
0
−a
x
a
FIGURA 14.3.2 Función par continua
HQWUDPRVGH¿QLGDHQ , ).
6HSXHGHQXVDUODVLQWHJUDOHV \ FXDQGRfQRHVSDUQLLPSDU\HVWiGH¿QLGDVyOR
SRUODVHPLUUHFWD (QHVWHFDVR UHSUHVHQWDDfHQHOLQWHUYDOR ) y a su desarroOORSDU SHURQRSHULyGLFR HQ PLHQWUDVTXHODHFXDFLyQ UHSUHVHQWDDfHQ )
\DVXGHVDUUROORLPSDUHQHOLQWHUYDOR (OVLJXLHQWHHMHPSORLOXVWUDHVWHFRQFHSWR
EJEMPLO 3
Representaciones integrales del coseno y del seno
Represente f x) ex, x
a) con una integral coseno
y
1
b) con una integral seno.
SOLUCIÓN (QOD¿JXUDVHSUHVHQWDODJUi¿FDGHODIXQFLyQ
a) Usando integración por partes, se encuentra que
x
FIGURA 14.3.3
).
A( )
)XQFLyQGH¿QLGDHQ
e
x
cos x dx
0
1
1
2
.
Por tanto, la integral coseno de f es
2
f (x)
cos x
d .
2
1
0
y
b) Del mismo modo, tenemos que
x
B( )
e
x
sen x dx
0
1
2
.
Entonces, la integral seno de f es
f (x)
a) Integral coseno
2
sen x
1
0
2
d .
/D¿JXUDPXHVWUDODVJUi¿FDVGHODVIXQFLRQHV\GHVXVGHVDUUROORVUHSUHVHQWDGDVSRUODVGRVLQWHJUDOHVHQODVHFXDFLRQHV \
y
x
b) Integral seno
FIGURA 14.3.4 a) HVODH[WHQVLyQ
par de fE HVODH[WHQVLyQLPSDUGHf.
USO DE COMPUTADORAS 3RGHPRVH[DPLQDUODFRQYHUJHQFLDGHXQDLQWHJUDOGH
XQDPDQHUDVLPLODUDWUD]DUODVJUi¿FDVGHODVVXPDVSDUFLDOHVGHXQDVHULHGH)RXULHU
3DUDLOXVWUDUHVWRXVDUHPRVHOLQFLVRE GHOHMHPSOR(QWRQFHVSRUGH¿QLFLyQGHXQD
integral impropia, la representación integral seno de Fourier de f x) ex, x HQ
se puede escribir como f (x)
límb : Fb(x), donde x se considera un parámetro en
Fb(x)
2
b
0
sen x
1
2
d .
514
l
CAPÍTULO 14
TRANSFORMADA INTEGRAL
$KRUDODLGHDHVHVWDSXHVWRTXHODLQWHJUDOGH)RXULHU FRQYHUJHSDUDXQYDORU
dado de b ODJUi¿FDGHODintegral parcial Fb x HQ VHUiXQDDSUR[LPDFLyQ
DODJUi¿FDGHfHQOD¿JXUDE(QOD¿JXUDVHSUHVHQWDQODVJUi¿FDVGH
Fb x) para b \b TXHVHREWXYLHURQXWLOL]DQGRMathematica y su aplicación
NIntegrate9HDHOSUREOHPDGHORVHMHUFLFLRV
y
1.5
1
1
0.5
0.5
x
0
-0.5
_1
-1
_2
_1
0
1
2
x
0
_0.5
_3
y
1.5
3
_3
_2
_1
0
1
2
3
b) F20(x)
a) F5(x)
FIGURA 14.3.5 Convergencia de Fb x) a f x GHOHMHPSOR E FXDQGRb → .
FORMA COMPLEJA /DLQWHJUDOGH)RXULHU HFXDFLyQ WDPELpQWLHQHXQDforma
compleja equivalente o forma exponencial TXH HV VLPLODU D OD IRUPD FRPSOHMD GH
XQDVHULHGH)RXULHU YHDHOSUREOHPDHQORVHMHUFLFLRV 6LVHVXVWLWX\HQODV
HFXDFLRQHV \ HQOD HQWRQFHV
f (x)
1
f (t) [cos t cos x
sen t sen x] dt d
0
1
f (t) cos (t
x) dt d
0
1
2
f (t) cos (t
1
2
f (t)[cos (t
1
2
f (t)ei
1
2
(t
x)
x) dt d
i sen (t
x)
x)] dt d
dt d
f (t)ei t dt e
i x
d .
2EVHUYHTXHODHFXDFLyQ HVFRQVHFXHQFLDGHOKHFKRGHTXHHOLQWHJUDQGRHVXQD
función par de Į(QODHFXDFLyQ VyORKHPRVDJUHJDGRFHURDOLQWHJUDQGR
f (t) sen (t
i
0
x) dt d
porque el integrando es una función impar de Į/DLQWHJUDOHQ VHSXHGHH[SUHVDU
en la forma
donde
f (x)
1
2
C( )
C( )e
i x
d ,
f (x)ei x dx.
Esta última forma de la integral de Fourier se usará en la siguiente sección, cuando
regresemos a la solución de problemas con valores en la frontera.
14.3
INTEGRAL DE FOURIER
515
l
EJERCICIOS 14.3 Las respuestas a los problemas seleccionados con número impar comienzan en la páginae RES-24.
(QORVSUREOHPDVDHQFXHQWUHODUHSUHVHQWDFLyQLQWHJUDOGH
Fourier de la función dada.
1.
2.
3.
4.
0,
1,
2,
0,
f (x)
1
x
x
x
x
1
0
17.
x
x
x
2
2
f (x)
0,
x, 0
0,
x
x
x
0
3
3
f (x)
0,
sen x, 0
0,
18.
x
0,
x
e , x
0
0
6. f (x)
ex,
0,
1
1
0
0
0
0
1
1
sen kx
dx
x
2
.
20. 8WLOLFHODIRUPDFRPSOHMD SDUDKDOODUODUHSUHVHQWDción integral de Fourier de f x) e*x*. Demuestre que el
UHVXOWDGRHVHOPLVPRTXHHOREWHQLGRGH
Tarea para el laboratorio de computación
(QORVSUREOHPDVDUHSUHVHQWHODIXQFLyQGDGDPHGLDQWH
una integral coseno o seno apropiada.
1
x
x
x
x
1
0
1,
0,
f (x) sen x dx
sen 2x
dx
.
x
2
0
[Sugerencia: Į es una variable muda de integración.]
b) Demuestre que en general, para k
x
x
x
5. f (x)
7. f (x)
e
19. a) 8VHODHFXDFLyQ SDUDGHPRVWUDUTXH
0,
4,
0,
0,
5,
5,
0,
f (x) cos x dx
0
0
1
1
f (x)
x
x
(QORVSUREOHPDV\UHVXHOYDODHFXDFLyQLQWHJUDOFRUUHVpondiente y determine f.
0
1
1
21. 0LHQWUDVTXHODLQWHJUDO VHSXHGHWUD]DUGHODPLVPD
PDQHUD FRPR VH DQDOL]y HQ ODV SiJLQDV \ SDUD
REWHQHUOD¿JXUDWDPELpQVHSXHGHH[SUHVDUHQWpUminos de una función especial que está incorporada en un
SAC.
a) Utilice una identidad trigonométrica para demostrar
que una forma alternativa de la representación inWHJUDOGH)RXULHU GHODIXQFLyQfGHOHMHPSOR
FRQa 1) es
f (x)
1
sen (x
1)
sen (x
1)
d .
0
8. f (x)
0,
,
0,
9. f (x)
x,
0,
1
2
2
x
x
x
1
x
x
b) Como una consecuencia del inciso a), f (x)
donde
10. f (x)
11. f x) e| x | sen x
x,
0,
x
x
Fb(x)
14. f x) ex ex,
15. f x) xex,
x
16. f x) ex cos x,
x
x
sen (x
1)
sen (x
1)
d .
Demuestre que la última integral se puede escribir
como
12. f x) xe| x |
x
k
b
0
(QORVSUREOHPDVDHQFXHQWUHODVUHSUHVHQWDFLRQHVGH
integrales de cosenos y senos de la función dada.
13. f x) ekx,
1
lím Fb(x),
b:
Fb(x)
1
[Si(b(x
1))
Si(b(x
1))],
GRQGH6L x) es la función seno integral. Vea el proEOHPDGHORVHMHUFLFLRV
c) Utilice un SAC y la forma integral del seno de Fb x)
HQHOLQFLVRE SDUDREWHQHUODVJUi¿FDVHQHOLQWHUYDOR
[@SDUDb \'HVSXpVWUDFHODJUi¿FD
de Fb x) para valores grandes de b
516
l
CAPÍTULO 14
14.4
TRANSFORMADA INTEGRAL
TRANSFORMADAS DE FOURIER
REPASO DE MATERIAL
l 'H¿QLFLyQ
l (FXDFLRQHV \ HQODVHFFLyQ
INTRODUCCIÓN Hasta el momento, en este libro hemos estudiado y utilizado sólo una transforPDGDLQWHJUDOODWUDQVIRUPDGDGH/DSODFH3HURHQODVHFFLyQYLPRVTXHODLQWHJUDOGH)RXULHU
WLHQHWUHVIRUPDVDOWHUQDWLYDVHOFRVHQRLQWHJUDOHOVHQRLQWHJUDO\ODIRUPDFRPSOHMDRH[SRQHQFLDO
En esta sección tomaremos estas tres formas de la integral de Fourier y las desarrollaremos en tres nuevas transformadas de integrales, llamadas, como es de esperar, transformadas de Fourier. Además,
desarrollaremos el concepto de transformada de un par, que es una transformada integral y su inversa.
También veremos que la inversa de una transformada integral es en sí misma otra transformada integral.
PARES DE TRANSFORMADAS La transformada de Laplace F s) de una función
f t VHGH¿QHFRQXQDLQWHJUDOSHURKDVWDDKRUDKHPRVXVDGRODUHSUHVHQWDFLyQVLP
1
{F(s)} para denotar la transformada inversa de Laplace de F s). En
bólica f (t)
realidad, la transformada inversa de Laplace también es una transformada integral.
st
Si { f (t)}
f (t) dt F(s), entonces la transformada inversa de Laplace
0 e
es
1
{F(s)}
i
1
2 i
i
estF(s) ds
f (t).
La última integral se llama integral de contorno; para evaluarla se necesita usar vaULDEOHVFRPSOHMDVORTXHYDPiVDOOiGHODOFDQFHGHHVWHOLEUR(OSXQWRHVpVWHODV
transformadas integrales aparecen en pares de transformadas. Si f x) se transforma
en F Į) con una transformada integral
b
f (x)K( , x) dx,
F( )
a
entonces se puede recuperar la función f mediante otra transformada integral
d
F( )H( , x) d ,
f (x)
c
llamada transformada inversa. Las funciones K y H se llaman kernels Q~FOHRV GHVXV
WUDQVIRUPDGDVUHVSHFWLYDV,GHQWL¿FDPRVK s, t) est como kernel de la transformada
de Laplace y H s, t) est兾ʌL como el kernel de la transformada inversa de Laplace.
PARES DE TRANSFORMADAS DE FOURIER La integral de Fourier es el origen de
WUHVQXHYDVWUDQVIRUPDGDVLQWHJUDOHV/DVHFXDFLRQHV \ GH
ODVHFFLyQQRVFRQGXFHQDGH¿QLUORVVLJXLHQWHVpares de transformadas de Fourier.
DEFINICIÓN 14.4.1
i)
Transformada de
)RXULHU
Transformada
LQYHUVDGH)RXULHU
Pares de transformadas de Fourier
{ f (x)}
1
{F( )}
f (x)ei x dx
1
2
F( )e
F( )
i x
d
f (x)
14.4
ii) Transformada de
)RXULHUGHOVHQR
s{ f (x)}
f (x) sen x dx
l
517
F( )
0
Transformada inversa
GH)RXULHUGHOVHQR
s
2
1
{F( )}
F( ) sen x da
f (x)
0
iii) Transformada de
)RXULHUGHOFRVHQR
TRANSFORMADAS DE FOURIER
c{ f (x)}
f(x) cos x dx
F( )
0
Transformada inversa
GH)RXULHUGHOFRVHQR
c
2
1
{F( )}
F( ) cos x da
f (x)
0
EXISTENCIA /DVFRQGLFLRQHVEDMRODVTXHH[LVWHQ \ VRQPiVHVWULFWDV
TXHODVGHODWUDQVIRUPDGDGH/DSODFH3RUHMHPSORGHEHFRPSUREDUTXHᏲ{1}, Ᏺs{1}
y Ᏺc^`QRH[LVWHQ/DVFRQGLFLRQHVVX¿FLHQWHVSDUDODH[LVWHQFLDVRQTXHf sea absolutamente integrable en el intervalo adecuado y que f y f sean continuas por tramos
HQWRGRLQWHUYDOR¿QLWR
PROPIEDADES OPERACIONALES &RPRQXHVWURREMHWLYRLQPHGLDWRHVDSOLFDU
estas nuevas transformadas a problemas con valores en la frontera, necesitamos
H[DPLQDUODVWUDQVIRUPDGDVGHODVGHULYDGDV
TRANSFORMADA DE FOURIER Supongamos que f es continua y absolutamente
LQWHJUDEOHHQHOLQWHUYDOR , ), y que f es continua por tramos en todo intervalo
¿QLWR6Lf x) →FXDQGRx → , entonces la integración por partes da
f (x)ei x dx
{ f (x)}
f (x) ei
x
i
esto es
i
f (x)ei x dx
f (x)ei x dx,
{ f (x)}
i F( ).
De igual manera, con las hipótesis adicionales de que f HVFRQWLQXDHQ , ), f x)
HVFRQWLQXDSRUWUDPRVHQWRGRLQWHUYDOR¿QLWR\TXHf x) →FXDQGRx → , se
tiene que
{ f (x)}
( i )2
{ f(x)}
F( ).
2
Es importante observar que las transformadas seno y coseno no son adecuadas
SDUD WUDQVIRUPDU OD SULPHUD GHULYDGD R HQ UHDOLGDG FXDOTXLHU GHULYDGD GH RUGHQ
impar). Se demuestra con facilidad que
y
f (0).
s {f (x)}
c { f (x)}
c {f (x)}
s {f (x)}
/D GL¿FXOWDG HV HYLGHQWH OD WUDQVIRUPDGD GH f x QR VH H[SUHVD HQ WpUPLQRV GH OD
transformada integral original.
TRANSFORMADA SENO DE FOURIER Supongamos que f y f son continuas, f
HVDEVROXWDPHQWHLQWHJUDEOHHQHOLQWHUYDOR> ) y f es continua por tramos en todo
LQWHUYDOR¿QLWR6Lf →\f →FXDQGRx → , entonces
518
l
CAPÍTULO 14
TRANSFORMADA INTEGRAL
s{ f
(x)}
f (x) sen x dx
0
f (x) sen x
f (x) cos x dx
0
0
f (x) cos x
f (x) sen x dx
0
2
f (0)
esto es,
s{ f
0
s{ f (x)},
f (0).
2
(x)}
F( )
TRANSFORMADA COSENO DE FOURIER %DMR ODV PLVPDV VXSRVLFLRQHV TXH
FRQGXMHURQDODHFXDFLyQ VHYHTXHODWUDQVIRUPDGDFRVHQRGH)RXULHUGHf x) es
8QDGXGDQDWXUDOHVODVLJXLHQWH³¢&yPRVHVDEHFXiOWUDQVIRUPDGDVHGHEHXVDUHQ
GHWHUPLQDGRSUREOHPDFRQYDORUHVHQODIURQWHUD"´(VFODURTXHSDUDXVDUXQDWUDQVIRUPDGDGH)RXULHUHOGRPLQLRGHODYDULDEOHTXHVHYDDHOLPLQDUGHEHVHU , ). Para
utilizar una transformada seno o coseno, el dominio de al menos una de las variables del
SUREOHPDGHEHVHU> ). Pero el factor determinante para elegir entre la transformada seno
\ODWUDQVIRUPDGDFRVHQRHVHOWLSRGHFRQGLFLyQHQODIURQWHUDTXHVHHVSHFL¿TXHHQFHUR
(Q ORV HMHPSORV TXH VLJXHQ VXSRQGUHPRV VLQ YROYHU D PHQFLRQDUOR TXH WDQWR
u como u兾x Ru兾y) tienden a cero cuando x → . Ésta no es una restricción
mayor, porque estas condiciones son válidas en la mayor parte de las aplicaciones.
c{f
5HFXHUGHHVWRFXDQGRWUDEDMH
FRQORVHMHUFLFLRV.
EJEMPLO 1
f (0).
2
(x)}
F( )
Uso de la transformada de Fourier
2
Resuelva la ecuación de calor k
u(x, 0)
u
x2
u
, x ,t
t
donde
f (x),
VXMHWDD
u0 ,
0,
f (x)
1
1.
x
x
SOLUCIÓN El problema se puede interpretar como encontrar la temperatura u x, t)
HQXQDYDULOODLQ¿QLWD3XHVWRTXHHOGRPLQLRGHxHVHOLQWHUYDORLQ¿QLWR , ), usaUHPRVODWUDQVIRUPDGDGH)RXULHUHFXDFLyQ \GH¿QLUHPRV
u(x, t) ei x dx
{u(x, t)}
U( , t).
6LWUDQVIRUPDPRVODHFXDFLyQGLIHUHQFLDOSDUFLDO\XWLOL]DPRVODHFXDFLyQ
2
k
se obtiene
k 2U( , t)
u
x2
dU
dt
o
u
t
dU
dt
Resolviendo la última ecuación se obtiene U( , t)
de la condición inicial es
k 2U( , t)
ce
k 2t
. Ahora, la transformada
1
{u(x, 0)}
f (x)ei x dx
u0 ei x dx
1
Este resultado es igual a U( , 0)
2u0
sen
u0
ei
e
i
i
.
. Aplicando esta condición a la solución
a U Į, t) se obtiene U Į c u sen Į)兾Į, por lo que
sen
2
U( , t) 2u0
e k t.
3RUORTXHGHODLQWHJUDOGHLQYHUVLyQ
0.
14.4
sen
u0
u(x, t)
TRANSFORMADAS DE FOURIER
k
e
2
t
i x
e
519
l
d .
/D~OWLPDH[SUHVLyQVHSXHGHVLPSOL¿FDUXQSRFRXVDQGRODIyUPXODGH(XOHUeLĮ[
cos Į[ – i sen Į[ y observando que
sen
k
e
2
t
0,
sen x d
ya que el integrando es una función impar de Į3RUWDQWR¿QDOPHQWHWHQHPRVTXH
sen cos x
u0
u(x, t)
k
e
2
t
d .
6HGHMDFRPRHMHUFLFLRPRVWUDUTXHODVROXFLyQ VHSXHGHH[SUHVDUHQWpUPLQRVGH
ODIXQFLyQGHHUURU9HDHOSUREOHPDHQORVHMHUFLFLRV
EJEMPLO 2
Uso de la transformada coseno
/DWHPSHUDWXUDHVWDEOHHQXQDSODFDVHPLLQ¿QLWDVHGHWHUPLQDDSDUWLUGH
2
2
u
y2
u
x2
u(0, y)
u
y
y
0,
0
x
, y
0, u( , y)
e y,
y
0,
.
0
x
0
0
0
Determine u x, y).
SOLUCIÓN El dominio de la variable y y la condición prescrita en y LQGLFDQTXH
ODWUDQVIRUPDGDFRVHQRGH)RXULHUHVDGHFXDGDSDUDHVWHSUREOHPD'H¿QLUHPRV
c{u(x,
u(x, y) cos y dy
y)}
U(x, ).
0
2
2
(QYLVWDGHODHFXDFLyQ
c
u
x2
u
y2
c
c{0}
d 2U
d 2U
2
2
U(x,
)
u
(x,
0)
0
o
U 0.
y
dx 2
dx 2
Puesto que el dominio de xHVXQLQWHUYDOR¿QLWRRSWDUHPRVSRUHVFULELUODVROXFLyQGH
la ecuación diferencial ordinaria como
se convierte en
U(x, )
Ahora, a su vez
tivamente a
c{u(0,
c1 cosh x
c{0}
y)}
U(0, )
0
y
y
c{u(
c2 senh x.
, y)}
U( , )
c{e
1
1
} equivalentes respec-
y
.
2
&XDQGR VH DSOLFDQ HVWDV ~OWLPDV FRQGLFLRQHV OD VROXFLyQ GD FRPR UHVXOWDGR
c1 \c 1兾> Į) senh Įʌ]. Por tanto,
senh x
U(x, )
,
2
(1
) senh
3RUORTXHGH WHQHPRVTXH
senh x
cos y d .
2
(1
) senh
0
6LHQHOHMHPSORVHKXELHUDGDGRu x HQOXJDUGHuy x HQWRQFHVORDGHcuado hubiera sido la transformación seno.
u(x, y)
2
520
CAPÍTULO 14
l
TRANSFORMADA INTEGRAL
EJERCICIOS 14.4
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-25.
(QORVSUREOHPDVDXVHODVWUDQVIRUPDGDVLQWHJUDOHVGH
Fourier de esta sección para resolver el problema con valores
en la frontera dado. Haga hipótesis acerca de los acotamientos
donde sean necesarios.
2
u
x2
u(x, 0)
u
,
t
e
2
u
,
t
1. k
2. k
u
x2
x
,
0
, t
x
1
0
0
0
1
1
3. Encuentre la temperatura u x, t HQXQDYDULOODVHPLLQ¿nita si u t) u, t \u x x
sen x
, x 0, para demos2
WUDUTXHODVROXFLyQGHOSUREOHPDVHSXHGHHVFULELUFRPR
4. Use el resultado
d
0
u(x, t)
2u0
u0
sen x
0
2
k
t
d .
1
1.
x
x
A, t
15.
8. Encuentre la temperatura u x, t HQXQDYDULOODVHPLLQ¿nita si u t) 1, t \u x ex, x
2
u
x2
u(x, 0)
2
u
,
t2
f (x),
, t
x
50, 0
0,
1
1.
x
x
0
y
2
x
0
u
y2
u(0, y)
0,
x
u
x
f ( y),
0,
y
0
0
, y
0,
y
0
0
x
x
0
(QORVSUREOHPDV\GHWHUPLQHODWHPSHUDWXUDu x, y) de
HVWDGRHVWDEOHHQODSODFDGHOD¿JXUDGDGD>Sugerencia: Una
IRUPDGHSURFHGHUHVH[SUHVDUORVSUREOHPDV\HQIRUPD
de dos y tres problemas con valores en la frontera, respectivamente. Utilice el principio de superposición. Vea la sección
@
y
u
t
g(x),
0
2
u
x2
u
y
0,
7. 5HVXHOYDHOSUREOHPDVLHOH[WUHPRx HVWiDLVODGR
a2
0, x
t 0
2
u
u
0, x 0, 0
2
y2
x
u(0, y) 0, 0 y 2
u(x, 0) f (x), u(x, 2) 0,
2
donde A es una constante.
9. a)
u
t
14. 5HVXHOYDHOSUREOHPDVLODFRQGLFLyQHQODIURQWHUDHQ
x HVu y) y
16.
0
x
xe x,
2
e
6. 5HVXHOYDHOSUREOHPDVLODFRQGLFLyQHQODIURQWHUDL]quierda es
u
x
u(x, 0)
u(x, 0)
5. Determine la temperatura u x, t HQXQDYDULOODVHPLLQ¿nita si u t) t \
1,
0,
0
13. Determine la temperatura de estado estable u x, y) en una
SODFDGH¿QLGDSRUx y VLODIURQWHUDx HVWi
aislada y en y
0
u(x, 0)
0, t
12. 5HVXHOYDHOSUREOHPDGHOHMHPSORVLODFRQGLFLyQHQOD
frontera en y HVu x x ʌ.
1
x
x
x
x
u(0, t)
11. 5HVXHOYDHOSUREOHPDGHOHMHPSORVLODVFRQGLFLRQHVHQ
la frontera en x \HQx ʌHVWiQLQYHUWLGDVu y)
ey, u ʌ, y) y
x
0,
100,
100,
0,
u(x, 0)
, t
x
10. Determine el desplazamiento u x, t) de una cuerda sePLLQ¿QLWDVL
x
t 0
b) Si g x) GHPXHVWUH TXH OD VROXFLyQ GHO LQciso a) se puede escribir como u(x, t)
1
at)
f (x at)].
2 [ f (x
u = e −y
u = e −x
FIGURA 14.4.1 3ODFDGHOSUREOHPD
x
14.4
17.
u=0
u = e −y
1
u = 100
x
0
π
u = f (x)
FIGURA 14.4.2 3ODFDGHOSUREOHPD
19. Utilice el resultado {e x /4p } 2 1 pe p
solver el problema con valores en la frontera
2
l
521
22. La solución del problema 14 se puede integrar. Use los
HOHPHQWRV\GHODWDEODGHODSpQGLFH,,,SDUDGHPRVtrar que
100
x 1
x 1 1
x 1
u(x, y)
arctan
arctan
arctan
.
y 2
y
2
y
y
18.
TRANSFORMADAS DE FOURIER
2
2
2
para re-
23. 8WLOLFHODVROXFLyQGDGDHQHOSUREOHPDSDUDUHVFULELUOD
VROXFLyQ GHO HMHPSOR HQ XQD IRUPD LQWHJUDO DOWHUQDWLYD
) 2 1kt
Después utilice el cambio de variable v (x
\ORVUHVXOWDGRVGHOSUREOHPDGHORVHMHUFLFLRVSDUD
GHPRVWUDUTXHODVROXFLyQGHOHMHPSORVHSXHGHH[SUHVDU
como
x 1
x 1
u0
erf
erf
.
2
21kt
21kt
24. Las temperaturas de estado estable u r, z) en un cilindro
VHPLLQ¿QLWRHVWiQGHVFULWDVSRUHOSUREOHPDFRQYDORUHV
en la frontera
u(x, t)
2
u
x2
u
,
t
u(x, 0)
e
k
x
, t
x
.
x2
,
0
2
u 1
r2
r
u(1, z)
u(r, 0)
20. Si Ᏺᐎ{ f (x)} F( ) y Ᏺᐎ{g(x)} G( ), entonces
el teorema de convolución para la transformada de
Fourier está dada por
f ( )g(x
1
{F( )G( )}.
)d
Utilice este resultado y Ᏺᐎ{e x /4p } 2 1 pe p para
demostrar que una solución del problema con valores en
la frontera
2
2
es
2
2
2
2
u
u
0, 0
r
z2
0, z 0
u0, 0 r 1.
u
,
t
x
u(x, 0)
f (x),
x
u(x, t)
1
v2 冪k t
, t
1, 0
0, z
0
(x
f ( )e
)2/4kt
d .
2
21. Utilice la transformada Ᏺᐎ{e x /4p } dada en el problema
SDUDGHWHUPLQDUODWHPSHUDWXUDGHHVWDGRHVWDEOHHQ
ODEDQGDLQ¿QLWDTXHVHPXHVWUDHQOD¿JXUD
Suponga que
0
y
u = e −x
1
z
1.
2
x
Aislada
FIGURA 14.4.3 %DQGDLQ¿QLWDGHOSUREOHPD
f (x)cos D xdx
1
0,
F(D)
F(D ), donde
D
D, 0
D
1
1.
Encuentre f (x).
b) Use el inciso a) para demostrar que
0
1
0
Problemas para analizar
26. a)
2
z
Aplique una transformada de Fourier apropiada para encontrar u r, z). [Sugerencia: Vea el problema 4 y la forma
SDUDPpWULFD GH OD HFXDFLyQ GH %HVVHO PRGL¿FDGD GH OD
VHFFLyQ@
25. Determine las temperaturas de estado estable u r, z) en el
FLOLQGURVHPLLQ¿QLWRGHOSUREOHPDVLODEDVHGHOFLOLQdro está aislada y
u(1, z)
u
k 2
x
1,
r
sin2 x
dx
x2
S
.
2
Tarea para el laboratorio de computación
27. Suponga que u \TXHk 1 en la solución del proEOHPD8WLOLFHXQ6$&SDUDWUD]DUODJUi¿FDGHu x, t)
VREUHXQDUHJLyQUHFWDQJXODUGH¿QLGDSRU4 x
t 8VHXQDJUi¿FDHQGRVGLPHQVLRQHVSDUDVREUHSRQHU
ODVJUi¿FDVGHu x, t) para t
\HQHOLQWHUYDOR>@8WLOLFHODVJUi¿FDVSDUDLQIHrir los valores de límt : u(x, t) y límx : u(x, t). Después
demuestre estos resultados analíticamente usando las proSLHGDGHVGHHUI x).
522
CAPÍTULO 14
l
TRANSFORMADA INTEGRAL
REPASO DEL CAPÍTULO 14
(QORVSUREOHPDVDUHVXHOYDHOSUREOHPDFRQYDORUHVHQOD
frontera dado, mediante una transformada integral adecuada.
Donde sea necesario haga suposiciones acerca de los acotamientos.
u
x2
u
x x
0,
0, 0
x
0,
0
y
10.
u
y
0,
e x,
0
x
y
u
u
, 0 x 1, t 0
2
x
t
u(0, t) 0, u(1, t) 0, t 0
u(x, 0) 50 sen 2 x, 0 x 1
u
, h
t
hu
0, x
u
0, lím
x:
x
u0, x 0
u(0, t)
u(x, 0)
2
u
u
e
t
x2
u(x, 0) 0,
x
0, t
0, t
u
y
0
6.
,
, t
x
2
u
x2
0
0
u
y2
u
x2
u(0, y)
0, 0
0,
0,
0
y
0
x
, y
0, 0
1, 1
0,
x
1
2
0
y
y
y
u
,
t
0,
x
e x, x
, t
x
0
x
0
0
0
u
u
, x 0, t 0
x2
t
u
50, lím u(x, t)
x:
x x 0
u(x, 0) 100, x 0
0
0
x
u( , y)
0
Be x,
y
2
15. k
x
x
x
u
x2
u(x, 0)
14.
2
2
u
y
, t
x
0,
u0 ,
0,
u(x, 0)
8.
2
>Sugerencia:8WLOLFHHOWHRUHPD@
u
,
t
0
u
u
, 0 x 1, t 0
2
x
t
u(0, t) u0 , u(1, t) u0 , t 0
u(x, 0) 0, 0 x 1
[Sugerencia: Utilice la identidad
VHQK x y) senh x cosh y cosh x senh y,
\GHVSXpVXWLOLFHHOSUREOHPDGHORVHMHUFLFLRV@
13. k
u
u
, 0 x 1, t 0
t2
x2
u(0, t) 0, u(1, t) 0, t 0
u
u(x, 0) sen x,
sen x,
t t 0
7. k
y
2
2
2
u
y
0,
y
12.
u
u
, x 0, t 0
2
x
t
u(0, t) t, lím u(x, t) 0
u x x
2
u
u
0, x 0, 0
2
y2
x
u(0, y) A, 0 y
0
x
x:
u
u
r
, 0 x 1, t 0
2
x
t
u
0, u(1, t) 0, t 0
x x 0
u(x, 0) 0, 0 x 1
2
11.
2
5.
0
2
2
4.
0, y
x
50, 0 y 1
0,
y 1
100, 0 x 1
0,
x 1
u(x, 0)
0
u
x2
0,
y
2
3.
u
y2
u
x2
u(0, y)
u
y2
u(x, 0)
2.
2
2
9.
2
2
1.
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-25.
1
2
2
u
x2
u
,
t
0, t
x
100,
0
t
0
u
0, t 0
x x 0
u(x, 0) e x, x 0
16. Demuestre que una solución de un PVF
2
2
u
u
0,
x
, 0
y2
x2
u
y
0,
y
u(x, 1)
f (x),
y
1
x
0
es u(x, y)
1
f (t)
0
cosh y cos (t
cosh
x)
dt d .
REPASO DEL CAPÍTULO 14
17.
2
u
x2
u
,
t
u(0, t)
u(x, 0)
x
0,
t
u0, 0 t
0, t 1
0, x 0
,
523
mediante el uso de una transformada de Fourier apropiada.
0
1
l
lím u(x, t)
xo
0,
18. Resuelva el problema con valores en la frontera
t
0
19. Resuelva el problema con valores en la frontera del proEOHPDXWLOL]DQGRODWUDQVIRUPDGDGH/DSODFH,QGLTXH
dos formas distintas de la solución u x, t).
2
u
u
, x 0, t 0
2
x
t
u
100, lím u(x, t)
xo
x x 0
u(x, 0) 0, x 0,
0,
t
0,
20. 'HPXHVWUHTXHODVROXFLyQGHOSUREOHPDHVHTXLYDlente a una de las dos formas de u x, t) del problema
6HSXHGHQHFHVLWDUXQ6$&SDUDHIHFWXDUXQDLQWHgración.
15
SOLUCIONES NUMÉRICAS DE
ECUACIONES DIFERENCIALES
PARCIALES
15.1 Ecuación de Laplace
15.2 Ecuación de calor
15.3 Ecuación de onda
REPASO DEL CAPÍTULO 15
En la sección 9.5 vimos que una forma de aproximar una solución de un
problema con valores en la frontera de segundo orden es trabajar sustituyendo
ODHFXDFLyQGLIHUHQFLDORUGLQDULDSRUXQDHFXDFLyQHQGLIHUHQFLDV¿QLWDV/D
ecuación en diferencias se construyó reemplazando las derivadas d2y兾dx2 y
dy兾dx por cocientes de diferencias. El mismo concepto se aplica a problemas
con valores en la frontera donde intervienen ecuaciones diferenciales parciales.
En las secciones subsecuentes de este capítulo formularemos una ecuación en
diferencias para reemplazar la ecuación de Laplace, la ecuación de calor y la
ecuación de onda al reemplazar las derivadas parciales 2u兾x2, 2u兾y2, 2u兾t2
y u兾t, por cocientes de diferencias.
524
15.1
15.1
ECUACIÓN DE LAPLACE
l
525
ECUACIÓN DE LAPLACE
REPASO DE MATERIAL
l Secciones 9.5, 12.1, 12.2 y 12.5.
INTRODUCCIÓN En la sección 12.1 vimos que las EDP de segundo orden de dos variables
LQGHSHQGLHQWHVVHFODVL¿FDQFRPRelípticas, parabólicas e hiperbólicas. En general, las EDP sólo
implican derivadas parciales respecto a las variables espaciales y por tanto, las soluciones de
esas ecuaciones sólo se determinan por las condiciones en la frontera. Las ecuaciones parabólicas
e hiperbólicas involucran derivadas parciales respecto a las variables espaciales así como al tiempo,
por lo que las soluciones de esas ecuaciones generalmente se determinan a partir de las condiciones de frontera e iniciales. Una solución de una EDP elíptica (tal como la ecuación de Laplace) puede
describir un sistema físico cuyo estado está en equilibrio (estado estable); una solución de una EDP
(tal como la ecuación de calor) puede describir un estado difusional, mientras que una EDP hiperbólica (tal como la ecuación de onda) puede describir un estado vibracional.
En esta sección comenzaremos nuestro análisis con métodos aproximados para las ecuaciones elípticas. Nos concentraremos en la más simple, pero probablemente más importante EDP de
tipo elíptico: la ecuación de Laplace.
REEMPLAZO POR UNA ECUACIÓN DE DIFERENCIAS
buscando una solución u(x, y) de la ecuación de Laplace
y
Suponga que estamos
C
2
2
2u
u
y2
u
x2
R
(1)
0
en una región plana R que está acotada por alguna curva C9HDOD¿JXUD$O
igual que en la ecuación (6) de la sección 9.5, utilizando diferencias centrales
=0
Δ
u(x
x
FIGURA 15.1.1 Región plana R con
h, y)
2u(x, y)
u(x
y
h, y)
u(x, y
2u(x, y)
h)
u(x, y
h),
se pueden obtener aproximaciones para las segundas derivadas parciales uxx y uyy utilizando cocientes de diferencias
2
frontera C.
u
x2
1
[u(x
h2
2
1
[u(x, y
h2
u
y2
h, y)
2u(x, y)
u(x
h)
2u(x, y)
u(x, y
(2)
h, y)]
(3)
h)].
Si sumamos (2) y (3) obtendremos una aproximación con cinco puntos del Laplaciano:
2
2
u
y2
u
x2
1
[u(x
h2
h, y)
u(x, y
h)
u(x
h, y)
u(x, y
h)
4u(x, y)].
Por tanto, podemos reemplazar la ecuación de Laplace (1) por la ecuación en diferencias
u(x
h, y)
u(x, y
h)
u(x
h, y)
u(x, y
4u(x, y)
h)
0.
(4)
Si adoptamos la notación u(x, y) uij y
u(x
h, y)
ui
1, j ,
u(x, y
h)
ui, j
u(x
h, y)
ui
1, j ,
u(x, y
h)
ui, j 1,
1
entonces la ecuación (4) se convierte en
ui
1, j
ui, j
1
ui
1, j
ui, j
1
4uij
0.
(5)
526
CAPITULO 15
l
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
Para comprender mejor la ecuación (5), supongamos que se coloca sobre una región R
una rejilla rectangular formada por rectas horizontales espaciadas h unidades y rectas
verticales espaciadas h unidades. El número h se llama tamaño de la malla. Vea la
¿JXUD D /RVSXQWRVGHLQWHUVHFFLyQVREUHODVUHFWDVPij P(ih, jh), con i y j
enteros, se llaman puntos de la malla o puntos de la red. Un punto de la malla es un
punto interior si sus cuatro puntos de la malla vecinos más cercanos son puntos de R.
Los puntos en R o en C que no son puntos interiores se llaman puntos frontera. Por
HMHPSORHQOD¿JXUD D WHQHPRVTXH
y
7h
C
6h
R
5h
4h
P13
3h
P12 P22
2h
P20
P11 P21 P31
h
P20
h
2h 3h 4h 5h 6h x
P(2h, 0),
P11
1
u
4 i
uij
Pi, j + 1
h
Pi − 1, j Pi j
Pi + 1, j
Pi, j − 1
b)
FIGURA 15.1.2 Malla rectangular
sobrepuesta sobre la región R.
P21
P(2h, h),
P22
P(2h, 2h),
etcétera. De los puntos que se indican, P21 y P22 son puntos interiores, mientras que
P20 y P11VRQSXQWRVIURQWHUD(QOD¿JXUDDORVSXQWRVLQWHULRUHVVHPXHVWUDQHQ
URMR\ORVSXQWRVIURQWHUDVHPXHVWUDQHQQHJUR$KRUDGHODHFXDFLyQ VHYHTXH
a)
h
P(h, h),
1, j
ui, j
ui
1
ui, j
1, j
1
(6)
,
SRUORTXHFRPRVHSXHGHYHUHQOD¿JXUDEHOYDORUGHuij en un punto de malla
interior de R es el promedio de los valores de u en cuatro puntos de malla vecinos. Los
puntos vecinos Pi l, j , Pi , j l , Pi 1 , j y Pi , j 1 corresponden a los cuatro puntos de una
brújula E, N, O y S, respectivamente.
PROBLEMA DE DIRICHLET Recuerde que en el problema de Dirichlet para la
ecuación de Laplace ' 2u 0 los valores de u(x, y) están determinados en la frontera
de una región R. La idea básica es determinar una solución aproximada de la ecuación de
Laplace en puntos de malla interiores, reemplazando la ecuación diferencial parcial
en estos puntos por la ecuación en diferencias (5). Por tanto, los valores aproximados
de u en los puntos de malla, en particular, los uij, se relacionan entre sí y posiblemente
con valores conocidos de u si un punto de malla está en la frontera. De esta manera se
obtiene un sistema de ecuaciones lineales algebraicas que se resuelve para determinar
la incógnita uij. El siguiente ejemplo ilustra el método para una región cuadrada.
EJEMPLO 1 Revisión de un PVF
En el problema 16 de los ejercicios 12.5 se pidió al lector resolver el problema con
valores en la frontera
2
2
u
y2
u
x2
y
0
0
2
3
2
3
P12 P22
P11 P21
0
0
8
9
8
9
x
FIGURA 15.1.3 Región cuadrada R
del ejemplo 1.
0,
0
u(0, y)
0, u(2, y)
u(x, 0)
0,
u(x, 2)
x
y(2
x,
2
2, 0
y),
0
x, 1
y
0
y
x
x
2
2
1
2.
utilizando el principio de superposición. Para aplicar el método numérico del que
nos ocupamos comencemos con un tamaño de malla de h 23 . Como vemos en la
¿JXUD HVD RSFLyQ SURGXFH FXDWUR SXQWRV LQWHULRUHV \ RFKR SXQWRV IURQWHUD
Los números que se enlistan junto a los puntos frontera son los valores exactos de u,
REWHQLGRV FRQ OD FRQGLFLyQ HVSHFL¿FDGD D OR ODUJR GH HVD IURQWHUD 3RU HMHPSOR HQ
P31 P(3h, h) P(2, 23) se tiene x 2 y y 23 , por lo que la condición u(2, y) da
u(2, 23) 23(2 23) 89. Del mismo modo, en P13 P( 23, 2) la condición u(x,2) produce u( 23, 2) 23 $KRUDDSOLFDPRVODHFXDFLyQ HQFDGDSXQWRLQWHULRU3RUHMHPSOR
en P11 tenemos i 1 y j 1, por lo que la ecuación (5) se convierte en
u21
u12
u01
u10
4u11
0.
15.1
ECUACIÓN DE LAPLACE
l
527
2
Puesto que u01 u(0, 3) 0 y u10 u( 23, 0) 0, la ecuación anterior se transforma
en 4u11 u21 u12 0. Si esto se repite en P21, P12 y P22 se obtienen otras tres
ecuaciones más:
4u11
u21
u11
4u21
u11
0
u12
u22
8
9
4u12
u22
2
3
u12
4u22
u21
(7)
14
9.
Con un sistema algebraico computarizado resolvemos el sistema y encontramos que
los valores aproximados en los cuatro puntos interiores son
u 11
7
36
0.1944, u 21
5
12
0.4167, u 12
13
36
0.3611, u 22
7
12
0.5833.
Como en el análisis de las ecuaciones diferenciales ordinarias, esperamos que un
valor menor de h mejore la exactitud de la aproximación. Sin embargo, usar un tamaño
PHQRUGHPDOODVLJQL¿FDSRUVXSXHVWRTXHKD\PiVSXQWRVLQWHULRUHVGHPDOOD\SRUWDQWR
hay un sistema de ecuaciones mucho más grande para resolver. Para una región cuadrada
de lado L, un tamaño de malla de h L兾n produciría un total de (n 1)2 puntos interiores de malla. En el ejemplo 1, para n 8, un tamaño de malla razonable es h 28 14 ,
pero el número de puntos interiores es (8 1)2 49. Por lo que tenemos 49 ecuaciones
con 49 incógnitas. En el siguiente ejemplo usaremos un tamaño de malla de h 12 .
EJEMPLO 2 Ejemplo 1 con más puntos de malla
y
0
0
0
1
2
1
1
2
P13 P23 P33
P12 P22 P32
P11 P21 P31
0
0
&RPRVHPXHVWUDHQOD¿JXUDFRQn 4, un tamaño de malla h 24 12 para
el cuadrado del ejemplo 1 da 32 SXQWRVLQWHULRUHVGHPDOOD$SOLFDQGRODHFXDFLyQ
(5) en esos puntos y utilizando las condiciones en la frontera indicadas, se obtienen
QXHYHHFXDFLRQHVFRQQXHYHLQFyJQLWDV3DUDTXHSXHGDYHUL¿FDUHVWRVUHVXOWDGRVSUHVHQWDUHPRVHOVLVWHPDHQVXIRUPDQRVLPSOL¿FDGD
0
3
4
1
3
4
u21
u12
0
0
4u11
0
u31
u22
u11
0
4u21
0
3
4
u32
u21
0
4u31
0
u22
u13
u11
0
4u12
0
u32
u23
u12
u21
4u22
0
1
u33
u22
u31
4u32
0
0
u12
4u13
0
x
FIGURA 15.1.4 Región R del ejemplo
1 con más puntos de malla.
u23
1
2
u33
1
u13
u22
4u23
0
1
2
u23
u32
4u33
0.
3
4
(8)
(QHVWHFDVRFRQXQ6$&VHREWLHQH
u11
7
64
u12
47
224
u13
145
448
u21
51
224
0.2098,
u22
13
32
0.3237,
u23
131
224
0.1094,
0.2277,
0.4063,
0.5848,
u31
177
448
0.3951
u32
135
224
0.6027
u33
39
64
0.6094.
528
l
CAPITULO 15
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
'HVSXpVGHVLPSOL¿FDUODVHFXDFLRQHV HVLQWHUHVDQWHKDFHUQRWDUTXHODPDWUL]
GHFRH¿FLHQWHV 9 es
(
)
4
1
0
1
0
0
0
0
0
1 4
1
0
1
0
0
0
0
0
1 4
0
0
1
0
0
0
1
0
0 4
1
0
1
0
0
0
1
0
1 4
1
0
1
0 .
0
0
1
0
1 4
0
0
1
0
0
0
1
0
0 4
1
0
0
0
0
0
1
0
1 4
1
0
0
0
0
0
1
0
1 4
(9)
Este es un ejemplo de una matriz dispersa en la que un gran porcentaje de los elementos son cero. También la matriz (9) es un ejemplo de matriz banda. Esta clase de
matrices se caracterizan por la propiedad de que los elementos de la diagonal principal
y en las diagonales (o bandas) paralelas a la principal, todos son distintos de cero.
ITERACIÓN DE GAUSS-SEIDEL Los problemas que requieren aproximaciones a
soluciones de ecuaciones diferenciales parciales invariablemente conducen a grandes
sistemas de ecuaciones algebraicas lineales. No es raro tener que resolver sistemas de
FLHQWRVGHHFXDFLRQHV$XQTXHXQPpWRGRGLUHFWRGHVROXFLyQWDOFRPRODHOLPLQDFLyQ
de Gauss deja inalterados los elementos cero fuera de las bandas de una matriz como
la (9), se llenan las posiciones entre las bandas con elementos distintos de cero. Debido a que para almacenar matrices muy grandes se usa gran parte de la memoria de la
computadora, se acostumbra resolver los sistemas grandes en una forma indirecta. Un
método indirecto muy popular se llama iteración de Gauss-Seidel.
,OXVWUDUHPRVHVWHPpWRGRSDUDHOVLVWHPDGHODVHFXDFLRQHV 3DUDVLPSOL¿car reemplazaremos las variables con doble subíndice u11, u21, u12 y u22 por x1, x2,
x3 y x4, respectivamente.
EJEMPLO 3 Iteración de Gauss-Seidel
Paso 1: Despeje de cada ecuación las variables en la diagonal principal del sistema. Esto es, en el sistema (7) se despeja x1 de la primera ecuación, x2 de la segunda
y así sucesivamente:
0.25x2
x1
0.25x3
x2
0.25x1
0.25x4
0.2222
x3
0.25x1
0.25x4
0.1667
x4
0.25x2
0.25x3
(10)
0.3889.
Estas ecuaciones se pueden obtener en forma directa usando la ecuación (6) más que
la (5) en los puntos interiores.
Paso 2: Iteraciones. Se comienza haciendo una aproximación inicial para los valores de x1, x2, x3 y x4. Si fuera un sistema de ecuaciones lineales y no supiéramos nada
sobre la solución, podríamos iniciar con x1 0, x2 0, x3 0, x4 0. Pero puesto
que la solución de (10) representa aproximaciones a una solución de un problema con
valores en la frontera, parecería razonable utilizar como valores aproximados para
los valores de x1 u11, x2 u21, x3 u12 y x4 u22 el promedio de todas las condiciones en la frontera. En este caso, el promedio de los números de los ocho punWRVIURQWHUDTXHVHPXHVWUDQHQOD¿JXUDHVDSUR[LPDGDPHQWH3RUWDQWR
nuestra estimación inicial será x1 0.4, x2 0.4, x3 0.4 y x4 0.4. En las iteraciones con el método de Gauss-Seidel se usan los valores de x tan pronto como
15.1
ECUACIÓN DE LAPLACE
l
529
se calculan. Observe que la primera ecuación en (10) sólo depende de x2 y de x3;
por lo que al sustituir x2 0.4 y x3 0.4, se obtiene x1 0.2. Puesto que la segunda y tercera ecuaciones dependen de x1 y x4, se usan los valores recién calculados
x1 0.2 y x4 0.4 para obtener x2 0.3722 y x3 0.3167. La cuarta ecuación depende de x2 y x3, por lo que se usan los nuevos valores x2 0.3722 y x3 0.3167 para
obtener x4 0.5611. En resumen, con la primera iteración se han obtenido los valores
x1 0.2,
x2 0.3722,
x3 0.3167,
x4 0.5611.
Observe lo cerca que están esos números de los valores reales que se mencionan al
¿QDOGHOHMHPSOR
La segunda iteración comienza sustituyendo x2 0.3722 y x3 0.3167 en la primera
ecuación. El resultado es x1 $SDUWLUGHx1 0.1722 y del último valor calculado de x4 (en particular, x4 0.5611), los resultados para la segunda y la tercera ecuación
son, respectivamente, x2 0.4055 y x3 0.3500. Utilizando estos dos valores, encontramos de la cuarta ecuación que x4 $O¿QDOGHODVHJXQGDLWHUDFLyQWHQHPRVTXH
x1 0.1722,
x2 0.4055,
x3 0.3500,
x4 0.5678.
En la tabla 15.1 se pueden ver los resultados de la tercera a la séptima iteración.
TABLA 15.1
Iteración
3a.
4a.
5a.
6a.
7a.
x1
x2
x3
x4
0.1889
0.4139
0.3584
0.5820
0.1931
0.4160
0.3605
0.5830
0.1941
0.4165
0.3610
0.5833
0.1944
0.4166
0.3611
0.5833
0.1944
0.4166
0.3611
0.5833
NOTA Para aplicar la iteración de Gauss-Seidel a un sistema general de n ecuaciones lineales con n incógnitas, la variable xi debe aparecer realmente en la i-ésima
HFXDFLyQGHOVLVWHPD$GHPiVGHVSXpVGHGHVSHMDUxi, i 1, 2, . . . , n de cada ecuación, el sistema resultante tiene la forma X AX B, donde todos los elementos de
la diagonal principal de A son cero.
COMENTARIOS
x=1
y
0
y = 12
0
0
0
P11 P21 P31
100 100 100
0
x
FIGURA 15.1.5 Región rectangular R.
i) En los ejemplos presentados en esta sección se determinaron los valores de
uij usando valores conocidos de u en los puntos frontera. ¿Pero qué se hace si la
región es tal que los puntos frontera no coinciden con la frontera real C de la región R? En este caso, los valores buscados se pueden obtener por interpolación.
ii) En ocasiones es posible bajar la cantidad de ecuaciones a resolver usando
simetrías. Consideremos la región rectangular 0 x 2, 0 y 1, que se
PXHVWUDHQOD¿JXUD/DVFRQGLFLRQHVHQODIURQWHUDVRQu 0 a lo largo
de las fronteras x 0, x 2, y 1 y u 100 a lo largo de y 0. La región
es simétrica respecto a las rectas x 1 y y 12 , y los puntos interiores P11 y
P31 equidistan de los puntos frontera vecinos en los que son iguales los valores
HVSHFL¿FDGRVGHu. En consecuencia, suponemos que u11 u31, por lo que el sistema de tres ecuaciones con tres incógnitas se reduce a dos ecuaciones con dos
incógnitas. Vea el problema 2 de los ejercicios 15.1.
iii) En el contexto de la aproximación de una solución de la ecuación de Laplace,
la técnica de iteración que se ilustra en el ejemplo 3 con frecuencia se conoce
como el método de Liebman.
iv $XQTXHHQXQDFRPSXWDGRUDORVLJXLHQWHSRGUtDSDVDULQDGYHUWLGRSXHGHVHUTXH
la convergencia de la iteración de Gauss-Seidel o método de Liebman no sea particu-larmente rápida. También, en un caso más general, puede ser que esa iteración no
FRQYHUMD3DUDFRQGLFLRQHVTXHVRQVX¿FLHQWHVSDUDJDUDQWL]DUODFRQYHUJHQFLDGHOD
iteración de Gauss-Seidel, se le pide que consulte libros de métodos numéricos.
530
l
CAPITULO 15
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
EJERCICIOS 15.1
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-25.
En los problemas 1 a 8 utilice una computadora como ayuda.
En los problemas 1 a 4 utilice la ecuación (5) para aproximar
la solución de la ecuación de Laplace en los puntos interiores
de la región dada. Cuando sea posible, considere simetría.
1. u(0, y) 0, u(3, y) y(2 y), 0 y 2
u(x, 0) 0, u(x, 2) x(3 x), 0 x 3
tamaño de malla: h 1
2. u(0, y) 0, u(2, y) 0, 0 y 1
u(x, 0) 100, u(x, 1) 0, 0 x 2
tamaño de malla: h 12
3. u(0, y) 0, u(1, y) 0, 0 y 1
u(x, 0) 0, u(x, 1) sen ʌ[, 0 x 1
tamaño de malla: h 13
4. u(0, y) 108y 2(1 y), u(1, y) 0, 0 y 1
u(x, 0) 0, u(x, 1) 0, 0 x 1
tamaño de malla: h 13
En los problemas 5 y 6 utilice la ecuación (6) y la iteración
de Gauss-Seidel para aproximar la solución de la ecuación de
Laplace en los puntos interiores de un cuadro unitario. Utilice
el tamaño de malla h 14 . En el problema 5, las condiciones
en la frontera están dadas; en el problema 6 los valores de u en
ORVSXQWRVIURQWHUDVHSUHVHQWDQHQOD¿JXUD
5. u(0, y) 0, u(1, y) 100y, 0 y 1
u(x, 0) 0, u(x, 1) 100x, 0 x 1
6.
y
10 20 40
20
40
20
P13 P23 P33
P12 P22 P32
P11 P21 P31
10 20 30
70
60
50
2
u
u
f(x, y). Demuestre
2
2
y
x
que la ecuación que la sustituye es
ui 1, j ui, j 1 ui 1, j ui, j 1 4uij h2 f (x, y).
2
ecuación de Poisson
b) Utilice el resultado del inciso a) para aproximar la
2
2
u
u
solución de la ecuación de Poisson 2
2
y2
x
HQORVSXQWRVLQWHULRUHVGHOD¿JXUD(OWDPDxR
de malla es h 12 , u 1 en cada punto a lo largo de
ABCD y u 0 en cada punto a lo largo de DEFGA.
Utilice la simetría y, si es necesario, la iteración de
Gauss-Seidel.
y
F
G
A
B
C
D
E x
FIGURA 15.1.7 Región del problema 7.
8. Utilice el resultado del inciso a) del problema 7 para
aproximar la solución de la ecuación de Poisson
2
u
x2
2
u
y2
64
HQORVSXQWRVLQWHULRUHVGHODUHJLyQHQOD¿JXUD(O
tamaño de malla es h 18 y u 0 en todos los puntos de
la frontera de la región. Si es necesario, utilice la iteración
de Gauss-Seidel.
y
x
FIGURA 15.1.6 Región del problema 6.
7. a) En el problema 12 de los ejercicios 12.6 resolvió un
problema de potencial usando una forma especial de la
15.2
x
FIGURA 15.1.8 Región del problema 8.
ECUACIÓN DE CALOR
REPASO DE MATERIAL
l Secciones 9.5, 12.1, 12.2, 12.3 y 15.1.
INTRODUCCIÓN La idea básica en el análisis que se presenta a continuación es la misma que
HQODVHFFLyQ$SUR[LPDPRVXQDVROXFLyQGHOD('3HVWDYH]XQD('3SDUDEyOLFDVXVWLWX\HQGRODHFXDFLyQFRQXQDHFXDFLyQHQGLIHUHQFLDV¿QLWDV3HURDGLIHUHQFLDGHODVHFFLyQDQWHULRU
consideraremos dos métodos de aproximación para las ecuaciones diferenciales parciales parabólicas: uno llamado método explícito y el otro llamado método implícito.
&RQREMHWRGHGH¿QLUORVFRQVLGHUDUHPRVVyORODHFXDFLyQXQLGLPHQVLRQDOGHWUDQVPLVLyQGHFDORU
15.2
ECUACIÓN DE CALOR
l
531
REEMPLAZO POR UNA ECUACIÓN EN DIFERENCIAS Para aproximar una solución u(x, t) de una ecuación unidimensional de transmisión de calor
2
u
u
(1)
c 2
x
t
nuevamente reemplazaremos cada derivada por un cociente de diferencias. Utilizando
la aproximación por diferencias centrales (2) de la sección 15.1.
2
u
1
[u(x h, t) 2u(x, t) u(x h, t)]
x2 h2
y la aproximación por diferencias hacia adelante (3) de la sección 9.5.
u 1
[u(x, t h) u(x, t)]
t
h
la ecuación (1) se convierte en
c
1
(2)
[u(x h, t) 2u(x, t) u(x h, t)]
[u(x, t k) u(x, t)].
2
h
k
Si hacemos Ȝ ck兾h2 y
u(x, t) uij , u(x h, t) ui 1, j , u(x h, t) ui 1, j , u(x, t k) ui, j 1,
HQWRQFHVGHVSXpVGHVLPSOL¿FDUODHFXDFLyQ HV
ui, j 1
ui 1, j (1 2 ) uij
...
t
T
3k
2k
k
0
h
2h
3h
...
a x
FIGURA 15.2.1 Región rectangular
del plano xt.
(3)
En el caso de la ecuación de calor (1), las condiciones en la frontera típicas son
u(0, t) u1, u(a, t) u2, t 0 y una condición inicial es u(x, 0) f (x), 0 x a. La
función f se puede interpretar como la distribución de temperatura inicial de temperaturas
en una varilla homogénea que va de x 0 a x a; u1 y u2 se pueden interpretar como
ODVWHPSHUDWXUDVFRQVWDQWHVHQORVSXQWRVH[WUHPRVGHODYDULOOD$XQTXHQRORGHPRVWUDremos, este problema con valores en la frontera que consiste en la ecuación (1), de estas
dos condiciones en la frontera y de una condición inicial, tiene una solución única cuando
f es continua en el intervalo cerrado [0, a]. Se supondrá esta última condición por lo que
reemplazaremos la condición inicial por u(x, 0) f (x), 0 x a$GHPiVHQOXJDUGH
WUDEDMDUFRQODUHJLyQVHPLLQ¿QLWDHQHOSODQRxtGH¿QLGDSRUODVGHVLJXDOGDGHV x a,
t XWLOL]DUHPRVXQDUHJLyQUHFWDQJXODUGH¿QLGDSRU x a, 0 t T, donde T es
XQYDORUHVSHFt¿FRGHOWLHPSR6REUHHVWDUHJLyQVHFRORFDXQDPDOODUHFWDQJXODUIRUPDGD
por rectas verticales distanciadas h unidades y rectas horizontales distanciadas k unidades.
9HDOD¿JXUD6LVHHOLJHQGRVHQWHURVSRVLWLYRVn y m\VHGH¿QH
ui
1, j.
a
T
y
k
,
n
m
HQWRQFHVODVUHFWDVYHUWLFDOHV\KRUL]RQWDOHVGHODPDOODVHGH¿QHQSRU
h
( j + 1)-ésima
recta del
tiempo
j-ésima
recta del
tiempo
u i, j + 1
xi
k
u i − 1, j
ui j
u i + 1, j
h
FIGURA 15.2.2 u en t j 1 se
determina de los tres valores de u
en t j.
ih, i
0, 1, 2, . . . , n
y
tj
0, 1, 2, . . . , m.
jk, j
&RPRVHPXHVWUDHQOD¿JXUDODLGHDDTXtHVXWLOL]DUODIyUPXOD SDUD
estimar los valores de la solución u(x, t) en los puntos de la recta del (j 1)-ésimo
tiempo usando sólo los valores de la recta del j-ésimo tiempo. Por ejemplo, los valores
en la primera recta de tiempo (j 1) dependen de la condición inicial ui,0 u(xi, 0)
f (xi) que están en la recta del tiempo cero (j $HVWDFODVHGHSURFHGLPLHQWR
numérico se le llama PpWRGRH[SOtFLWRGHGLIHUHQFLDV¿QLWDV.
EJEMPLO 1
8VRGHOPpWRGRGHGLIHUHQFLDV¿QLWDV
Considere el problema con valores en la frontera
2
u
x2
u
,
t
0
u(0, t)
0,
u(x, 0)
sen
x
u(1, t)
x, 0
1, 0
t
0.5
0,
t
0.5
x
0
1.
532
CAPITULO 15
l
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
3ULPHURLGHQWL¿FDPRVc 1, a 1 y T 0.5. Si elegimos, por ejemplo n 5 y m
50, entonces h 1兾5 0.2, k 0.5兾50 0.01, Ȝ 0.25,
xi
1
i , i
5
0, 1, 2, 3, 4, 5,
tj
Por lo que la ecuación (3) se convierte en
ui, j 1 0.25(ui 1, j
j
1
, j
100
2uij
0, 1, 2, . . . , 50.
1, j).
ui
Haciendo j 0 en esta fórmula, se obtiene una fórmula de las aproximaciones a la
temperatura u en la primera recta del tiempo:
ui,1
0.25(ui
1,0
2ui,0
ui
1,0).
Entonces, si hacemos i 1, . . . , 4 en la última ecuación, se obtienen, respectivamente,
u11
0.25(u20
2u10
u00)
u21
0.25(u30
2u20
u10)
u31
0.25(u40
2u30
u20)
u41
0.25(u50
2u40
u30).
La primera ecuación de esta lista se interpreta como
u11 0.25(u(x2, 0) 2u(x1, 0) u(0, 0))
0.25(u(0.4, 0)
2u(0.2, 0)
u(0, 0)).
De la condición inicial u(x, 0) sen ʌ[ la última ecuación se convierte en
u11
0.25(0.951056516
2(0.587785252)
0)
0.531656755.
Este número representa una aproximación a la temperatura u(0.2, 0.01).
Puesto que se requiere una larga tabla de más de 200 elementos para resumir todas
las aproximaciones sobre una malla rectangular determinada por h y k, en la tabla 15.2
sólo presentamos algunos valores seleccionados.
TABLA 15.2 $
SUR[LPDFLyQH[SOtFLWDGHODHFXDFLyQHQGLIHUHQFLDVFRQh 0.2,
k 0.001, Ȝ 0.025.
Tiempo
0.00
0.10
0.20
0.30
0.40
0.50
TABLA 15.3
5HDO
$SUR[LPDGR
u(0.4, 0.05) 0.5806
u(0.6, 0.06) 0.5261
u(0.2, 0.10) 0.2191
u(0.8, 0.14) 0.1476
u25 0.5758
u36 0.5208
u1,10 0.2154
u4,14 0.1442
x 0.20
x 0.40
x 0.60
x 0.80
0.5878
0.2154
0.0790
0.0289
0.0106
0.0039
0.9511
0.3486
0.1278
0.0468
0.0172
0.0063
0.9511
0.3486
0.1278
0.0468
0.0172
0.0063
0.5878
0.2154
0.0790
0.0289
0.0106
0.0039
Debe comprobar, utilizando los métodos del capítulo 12, que la solución exacta del
2
problema con valores en la frontera del ejemplo 1 está dada por u(x, t) e t sen x.
Usando esta solución, comparamos en la tabla 15.3 una muestra de los valores reales
con sus correspondientes aproximaciones.
ESTABILIDAD Estas aproximaciones son comparables con los valores exactos y
WLHQHQODSUHFLVLyQVX¿FLHQWHFRPRSDUDXVDUVHHQDOJXQRVFDVRV3HURHVWHPpWRGRWLH
QH XQD GL¿FXOWDG 5HFXHUGH TXH XQ PpWRGR QXPpULFR HV inestable si los errores de
redondeo o de cualquier otra clase crecen con demasiada rapidez conforme avanzan
los cálculos. El procedimiento numérico que se muestra en el ejemplo 1 puede presentar esta clase de comportamiento. Se puede demostrar que el procedimiento es estable
si Ȝ es menor o igual a 0.5 pero es inestable en cualquier otro caso. Para obtener Ȝ
0.25 0.5 en el ejemplo 1 tuvimos que elegir el valor de k 0.01. La necesidad de
15.1
ECUACIÓN DE CALOR
l
533
utilizar tamaños de paso muy pequeños en la dirección del tiempo es la falla principal
de este método. Le sugerimos que trabaje con el problema 12 de los ejercicios 15.2 y
YHUL¿TXHODLQHVWDELOLGDGSUHGHFLEOHFXDQGRȜ 1.
MÉTODO DE CRANK-NICHOLSON Hay PpWRGRVLPSOtFLWRVGHGLIHUHQFLDV¿nitas para resolver ecuaciones diferenciales parciales parabólicas. Esos métodos requieren que se resuelva un sistema de ecuaciones para determinar los valores aproximados de u en la recta del (j 1)-ésimo tiempo. Sin embargo, los métodos implícitos
no tienen problemas de inestabilidad.
El algoritmo que introdujeron J. Crank y P. Nicholson en 1947, se usa más que
nada para resolver la ecuación de calor. El algoritmo consiste en reemplazar la segunda
2
u
u
por un promedio de los cocientes en diferencias
derivada parcial en c 2
x
t
centrales, uno se evalúa en t y el otro en t k:
2u(x, t)
h2
2u(x, t k) u(x h, t k)
h2
1
(4)
[u(x, t k) u(x, t)].
k
.
6LGHQXHYRGH¿QLPRVDȜ ck兾h2, entonces, después de reordenar los términos,
la ecuación (4) se puede escribir como
u(x
ui
h, t)
u(x
h, t
1, j 1
aui, j
k)
ui
1
1, j 1
ui
1, j
uij
1, j ,
ui
(5)
donde Į 2(1 1兾Ȝ) y ȕ 2(1 1兾Ȝ), j 0, 1, . . . , m 1, e i 1, 2, . . . , n 1.
Para cada elección de j la ecuación de diferencias (5) para i 1, 2, . . . , n – 1 da
n 1 ecuaciones con n 1 incógnitas ui, j 1. Debido a las condiciones indicadas en
la frontera, se conocen los valores de ui, j 1 para i 0 y para i n. Por ejemplo, en el
caso n 4, el sistema de ecuaciones para determinar los valores aproximados de u en
la recta del (j 1)-ésimo tiempo es
u0, j
1
au1, j
1
u2, j
1
u2, j
u1, j
u0, j
u1, j
1
au2, j
1
u3, j
1
u3, j
u2, j
u1, j
u2, j
1
au3, j
1
u4, j
1
u4, j
u3, j
u2, j
o
u1, j
1
u1, j
donde
1
u2, j
1
au2, j
1
u3, j
1
b2
u2, j
1
u3, j
1
b3,
b1
u2, j
u1, j
u0, j
b2
u3, j
u2, j
u1, j
b3
u4, j
u3, j
u2, j
b1
u0, j
(6)
1
u4, j 1.
En general, si usamos la ecuación en diferencias (5) para determinar valores de u
en la recta del (j 1)-ésimo tiempo, necesitamos resolver un sistema lineal AX B,
GRQGHODPDWUL]GHFRH¿FLHQWHVA es una matriz tridiagonal,
(
.
0
0
0 . . .
a 1
0
0
0
1
a 1
0
0
0 1
a 1
0
A 0
0 1
a 1
0 ,
.
.
.
.
.
.
0
0
0
0
a 1
0
0
0
0
0 . . . 1
a
0
.
h, t)
.
c u(x
2
)
534
CAPITULO 15
l
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
y los elementos de la matriz columna B son
b1 u2, j
u1, j u0, j
b2 u3, j
u2, j u1, j
b3 u4, j
u3, j u2, j
bn
EJEMPLO 2
1
un, j
un
un
1, j
u0, j
2, j
1
un, j 1.
Uso del método de Crank-Nicholson
Utilice el método de Crank-Nicholson para aproximar la solución del problema con
valores en la frontera
2
u
u
0.25 2
,
0 x 2, 0 t 0.3
x
t
u(0, t) 0, u(2, t) 0, 0 t 0.3
u(x, 0) sen x, 0 x 2,
utilizando n 8 y m 30.
SOLUCIÓN ,GHQWL¿FDQGRa 2, T 0.3, h
1
0.25, k 100
0.01, y c 0.25
se obtiene Ȝ 0.04. Con ayuda de una computadora se obtienen los resultados de la tabla
15.4. Como en el ejemplo 1, los elementos de esta tabla representan una cantidad seleccionada de las 210 aproximaciones sobre la malla rectangular determinada por h y k.
Método de Crank-Nicholson con h 0.025, k 0.01 y Ȝ 0.25.
TABLA 15.4
Tiempo
x 0.25
x 0.50
x 0.75
x 1.00
x 1.25
x 1.50
x 1.75
0.7071
0.6289
0.5594
0.4975
0.4425
0.3936
0.3501
1.0000
0.8894
0.7911
0.7036
0.6258
0.5567
0.4951
0.7071
0.6289
0.5594
0.4975
0.4425
0.3936
0.3501
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7071
0.6289
0.5594
0.4975
0.4425
0.3936
0.3501
1.0000
0.8894
0.7911
0.7036
0.6258
0.5567
0.4951
0.7071
0.6289
0.5594
0.4975
0.4425
0.3936
0.3501
0.00
0.05
0.10
0.15
0.20
0.25
0.30
TABLA 15.5
5HDO
$OLJXDOTXHHQHOHMHPSORHOSUREOHPDFRQYDORUHVHQODIURQWHUDGHOHMHPSOR
2
tiene una solución exacta dada por u(x, t) e t/4 sen x. Las comparaciones de la
muestra se listan en la tabla 15.5 donde se ve que los errores absolutos son del orden 102
o 103. Se pueden obtener errores más pequeños disminuyendo ya sea h o k.
$SUR[LPDGR
u(0.75, 0.05) 0.6250
u(0.50, 0.20) 0.6105
u(0.25, 0.10) 0.5525
u35 0.6289
u2, 20 0.6259
u1, 10 0.5594
EJERCICIOS 15.2
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-26.
En los problemas 1 a 12 utilice una computadora como ayuda.
1. Utilice la ecuación en diferencias (3) para aproximar la
solución del problema con valores en la frontera
2
u
x2
u(0, t)
u(x, 0)
u
,
t
0
x
0, u(2, t)
1, 0
0, 1
Utilice n 8 y m 40.
1
4
x
x
2, 0
t
1
0,
t
1
1
2.
0
2. Utilizando la solución en serie de Fourier que se obtuvo
en el problema 1 de los ejercicios 12.3, con L 2, se
pueden sumar los 20 primeros términos para estimar los
valores de u(0.25, 0.1), u(l, 0.5) y u(1.5, 0.8), de la solución u(x, t) del problema 1 anterior. Un alumno escribió un programa de cómputo para hacer esto y obtuvo
los resultados u(0.25, 0.1) 0.3794, u(l, 0.5) 0.1854
y u(l.5, 0.8) 0.0623. Suponga que estos valores son
precisos con todos los decimales dados. Compare estos
valores con las aproximaciones obtenidas en el problema
1 anterior. Encuentre los errores absolutos en cada caso.
3. Resuelva el problema 1 con el método de CrankNicholson con n 8 y m 40. Utilice los valores de
15.3
ECUACIÓN DE ONDA
l
535
u(0.25, 0.1), u(l, 0.5) y u(1.5, 0.8) que se dieron en el
problema 2 para calcular los errores absolutos.
8. Repita el problema 6 para el caso en el que las temperaturas
en los extremos son u(0, t) 0, u(L, t) 20, 0 t 10.
4. Repita el problema 1 usando n 8 y m 20. Utilice los
valores de u(0.25, 0.1), u(l, 0.5) y u(1.5, 0.8) mencionados en el problema 2 para calcular los errores absolutos.
¿Por qué son tan imprecisas las aproximaciones en este
caso?
9. Resuelva el problema 8 con el método de Crank-Nicholson.
5. Resuelva el problema 1 con el método de Crank-Nicholson con n 8 y m 20. Utilice los valores de u(0.25,
0.1), u(l, 0.5) y u(1.5, 0.8) dados en el problema 2 para
calcular los errores absolutos. Compare estos errores con
los obtenidos en el problema 4.
6. En la sección 12.2 se mostró que si una varilla de longitud L es de un material con conductividad térmica K,
FDORUHVSHFt¿FRȖ y densidad ȡ, la temperatura u(x, t) satisface la ecuación diferencial parcial
K
2
u
x2
u
,
t
0
x
f (x), 0
x
L.
Utilice la ecuación en diferencias (3) en esta sección, con
n 10 y m 10, para aproximar la solución del problema con valores en la frontera cuando
a) L 20, K 0.15, ȡ 8.0, Ȗ 0.11, f (x) 30
b) L 50, K 0.15, ȡ 8.0, Ȗ 0.11, f (x) 30
c) L 20, K 1.10, ȡ 2.7, Ȗ 0.22,
f (x) 0.5x(20 x)
d) L 100, K 1.04, ȡ 10.6, Ȗ 0.06,
f (x)
0.8x,
0.8(100
0
x), 50
x
x
50
100
7. Resuelva el problema 6 con el método de Crank-Nicholson con n 10 y m 10.
15.3
11. Considere una varilla cuya longitud es L 20 para la que
K 1.05, ȡ 10.6 y Ȗ 0.056. Suponga que
L.
Considere el problema con valores en la frontera consistente en la ecuación anterior y en las siguientes condiciones:
u(0, t) 0, u(L, t) 0, 0 t 10
u(x, 0)
10. Examine el problema con valores en la frontera del ejemplo 2. Suponga que n 4.
a) Encuentre el nuevo valor de Ȝ.
b) Utilice la ecuación en diferencias (5) de CrankNicholson para encontrar el sistema de ecuaciones para
u11, u21 y u31, esto es, los valores aproximados de u en la
primera recta de tiempo. [Sugerencia: Iguale j 0 en
la ecuación (5) y haga que i tome los valores 1, 2, 3.]
c) Resuelva el sistema de tres ecuaciones sin computadora. Compare sus resultados con los elementos
correspondientes de la tabla 15.4.
u(0, t)
20,
u(x, 0)
50.
30
u(20, t)
a) Utilice el método explicado en la sección 12.6 para
encontrar la solución de estado estable ȥ(x).
b) Utilice el método de Crank-Nicholson para aproximar las temperaturas u(x, t) para 0 t Tmáx.
Seleccione un Tmáx OR VX¿FLHQWHPHQWH JUDQGH SDUD
permitir que las temperaturas se aproximen a sus valores de estado estable. Compare las aproximaciones
para t Tmáx con los valores de ȥ(x) que se encontraron en el inciso a).
12. Utilice la ecuación en diferencias (3) para aproximar la
solución del problema con valores en la frontera
2
u
x2
u
,
t
0
x
1, 0
t
1
t
1
u(0, t)
0, u(1, t)
0,
u(x, 0)
sen x, 0
x
0
1.
Utilice n 5 y m 25.
ECUACIÓN DE ONDA
REPASO DE MATERIAL
l Secciones 9.5, 12.1, 12.2, 12.4 y 15.2.
INTRODUCCIÓN En esta sección aproximaremos una solución de la ecuación de onda unidimenVLRQDOXVDQGRHOPpWRGRGHGLIHUHQFLDV¿QLWDVTXHKHPRVXWLOL]DGRHQODVGRVVHFFLRQHVDQWHULRUHV/D
ecuación de onda unidimensional es el modelo de una ecuación diferencial parcial hiperbólica.
REEMPLAZO POR UNA ECUACIÓN EN DIFERENCIAS Suponga que u(x, t) representa una solución de la ecuación de onda unidimensional
2
c2
u
x2
2
u
.
t2
(1)
536
l
CAPITULO 15
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
Utilizando dos diferencias centrales,
2
1
[u(x
h2
u
x2
h, t)
2u(x, t)
u(x
k)
2u(x, t)
u(x, t
h, t)]
2
u
1
[u(x, t
2
t
k2
sustituyendo la ecuación (1) por
c2
[u(x
h2
h, t)
2u(x, t)
u(x
1
[u(x, t
k2
h, t)]
k)],
2u(x, t)
k)
u(x, t
k)]. (2)
Resolviendo la ecuación (2), se encuentra u(x, t k), que es ui,j 1. Si Ȝ ck兾h, entonces se puede expresar la ecuación (2) como
2
2
2
(3)
ui, j 1
ui 1, j 2(1
)uij
ui 1, j ui, j 1
para i 1, 2, . . . , n 1 y j 1, 2, . . . , m 1.
En este caso, en el que la ecuación de onda (1) es un modelo para los desplazamientos verticales u(x, t) de una cuerda vibrando, las condiciones en la frontera típicas
son u(0, t) 0, u(a, t) 0, t 0 y las condiciones iniciales son u(x, 0) f (x), u兾t|t 0
g(x),, 0 x a. Las funciones f y g se pueden interpretar como la posición inicial
y la velocidad inicial de la cuerda. El método numérico basado en la ecuación (3),
al igual que el primer método explicado en la sección 15.2, es un método explícito de
GLIHUHQFLDV¿QLWDV&RPRDQWHVXVDUHPRVODHFXDFLyQHQGLIHUHQFLDVSDUDDSUR[LPDUOD
solución u(x, t) de (1), utilizando las condiciones frontera e iniciales, sobre una región
rectangular en el plano xtGH¿QLGRSRUODVGHVLJXDOGDGHV x a, 0 t T, donde
THVDOJ~QYDORUHVSHFt¿FRGHOWLHPSR6Ln y m son enteros positivos y
a
T
y
k
,
n
m
ODVUHFWDVGHODPDOODKRUL]RQWDOHV\YHUWLFDOHVHQHVWDUHJLyQHVWiQGH¿QLGDVFRPR
h
( j + 1)-ésima
recta de tiempo
j-ésima
recta de tiempo k
( j − 1)-ésima
recta de tiempo
xi ih, i 0, 1, 2, . . . , n
y
tj jk, j 0, 1, 2, . . . , m.
&RPRVHPXHVWUDHQOD¿JXUDODHFXDFLyQ QRVSHUPLWHREWHQHUODDSUR[LPDción ui,j 1 en la recta del (j l)-ésimo tiempo a partir de los valores indicados en las
rectas del j-ésimo y del (j pVLPRWLHPSRV$GHPiVXVDUHPRV
u i, j + 1
u i − 1, j
ui j
u i + 1, j
u i, j − 1
h
FIGURA 15.3.1 u en t j 1 se
determina a partir de los tres valores de u
en t j y un valor en t j 1.
u0, j
0,
u(0, jk)
y
ui,0
un, j
0-
u(a, jk)
f (xi ).
u(xi , 0)
←condición de frontera
←condiciones iniciales
Hay un pequeño problema para comenzar. En la ecuación (3) se puede ver que
para j 1 es necesario conocer los valores de ui,1 (es decir, las estimaciones de u en
la primer recta de tiempo) para determinar ui,23HURHQOD¿JXUDFRQj 0, se
ve que los valores de ui,1 en la primer recta de tiempo dependen de los valores de ui,0,
en la recta cero de tiempo y de los valores de ui,1. Para calcular estos últimos valores,
se utiliza la condición de la velocidad inicial ut(x, 0) g(x). En t 0 se tiene de la
ecuación (5) de la sección 9.5 que
u(xi , k) u(xi , k)
g(xi ) ut (xi , 0)
.
(4)
2k
Para que tenga sentido el término u(xi,k) ui,l en la ecuación (4) tenemos que imaginar que u(x, t) se prolonga hacia atrás en el tiempo. De la ecuación (4) se tiene que
u(xi , k) u(xi , k) 2kg(xi ).
(VWH~OWLPRUHVXOWDGRVXJLHUHTXHVHGH¿QD
(5)
ui,1 2kg(xi )
ui, 1
en la iteración de la ecuación (3). Sustituyendo la ecuación (5) en la ecuación (3)
cuando j 0 obtenemos el caso especial
2
ui,1
2
(ui
1,0
ui
1,0)
(1
2
)ui,0
kg(xi ).
(6)
15.3
EJEMPLO 1
ECUACIÓN DE ONDA
l
537
8VRGHOPpWRGRGHGLIHUHQFLDV¿QLWDV
$SUR[LPHODVROXFLyQGHOSUREOHPDFRQYDORUHVHQODIURQWHUD
2
2
u
,
t2
u
x2
4
0
1, 0
x
u(0, t)
0, u(1, t)
u(x, 0)
sen px,
0,
u
t
0
1
t
1
t
0,
0
1,
x
0
t
utilizando la ecuación (3) con n 5 y m 20.
,GHQWL¿FDQGRc 2, a 1 y T 1. Con n 5 y m 20 se obtiene
h 15 0.2, k 201
0.05, y Ȝ 0.5. Por lo que, con g(x) 0, las ecuaciones (6) y
(3) se convierten, respectivamente en
SOLUCIÓN
0.125(ui
ui,1
ui, j
0.25ui
1
1, j
ui
1,0
1,0)
1.5uij
(7)
0.75ui,0
0.25ui
1, j
ui, j 1.
(8)
Para i 1, 2, 3, 4, la ecuación (7) produce los siguientes valores de las ui,l en la primera
recta del tiempo:
u11
0.125(u20
u00)
0.75u10
0.55972100
u21
0.125(u30
u10)
0.75u20
0.90564761
u31
0.125(u40
u20)
0.75u30
0.90564761
u41
0.125(u50
u30)
0.75u40
0.55972100.
(9)
Observe que los resultados dados en (9) se obtuvieron a partir de la condición inicial
u(x, 0) sen ʌ[. Por ejemplo, u20 sen(0.2ʌ HWFpWHUD$KRUDKDFLHQGRj 1 en la
ecuación (8) se obtiene
ui,2 0.25ui 1,1 1.5ui,1
por lo que para i 1, 2, 3, 4, se obtienen
u12 0.25u21 1.5u11
0.25ui
1,1
ui,0 ,
0.25u01
u10
u22
0.25u31
1.5u21
0.25u11
u20
u32
0.25u41
1.5u31
0.25u21
u30
u42
0.25u51
1.5u41
0.25u31
u40.
Utilizando las condiciones en la frontera, las condiciones iniciales y los datos obtenidos
en (9), obtenemos de esas ecuaciones las aproximaciones de u para la segunda recta de tiempo. En la tabla 15.6 se presentan estos resultados y una síntesis de los cálculos restantes.
TABLA 15.6 $
SUR[LPDFLyQH[SOtFLWDSRUPHGLRGHODHFXDFLyQHQGLIHUHQFLDV
con h 0.2, k 0.05, Ȝ 0.5.
Tiempo
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
x 0.20
0.5878
0.4782
0.1903
0.1685
0.4645
0.5873
0.4912
0.2119
0.1464
0.4501
0.5860
x 0.40
0.9511
0.7738
0.3080
0.2727
0.7516
0.9503
0.7947
0.3428
0.2369
0.7283
0.9482
x 0.60
0.9511
0.7738
0.3080
0.2727
0.7516
0.9503
0.7947
0.3428
0.2369
0.7283
0.9482
x 0.80
0.5878
0.4782
0.1903
0.1685
0.4645
0.5873
0.4912
0.2119
0.1464
0.4501
0.5860
538
CAPITULO 15
l
SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES PARCIALES
Con facilidad se comprueba que la solución exacta del problema en el ejemplo 1
es u(x, t) sen ʌ[ cos 2ʌW. Con esta función podemos comparar los valores reales con
las aproximaciones. Por ejemplo, en la tabla 15.7 se presentan algunas comparaciones
seleccionadas. Como se puede ver en la tabla las aproximaciones están en la misma
“zona” que los valores reales, pero la exactitud no es particularmente impresionante.
Sin embargo, se pueden obtener resultados más exactos. La exactitud de este algoritmo
depende de la elección de Ȝ. Por supuesto, Ȝ está determinada por la elección de los enteros n y m, que a su vez determinan los valores de los tamaños de paso h y k. Se puede
demostrar que la mejor exactitud se obtiene siempre con este método cuando la proporción Ȝ kc兾h es igual a uno, en otras palabras, cuando el paso en la dirección del
tiempo es k h兾c. Por ejemplo, si se eligen n 8 y m 16 se obtiene h 18, k 161 ,
y Ȝ 1. Los valores que se presentan en la tabla 15.8 muestran con claridad la mejora
en la exactitud.
TABLA 15.7
TABLA 15.8
5HDO
$SUR[LPDGR
5HDO
$SUR[LPDGR
u(0.4, 0.25) 0
u(0.6, 0.3) 0.2939
u(0.2, 0.5) 0.5878
u(0.8, 0.7) 0.1816
u25 0.0185
u36 0.2727
u1,10 0.5873
u4,14 0.2119
u(0.25, 0.3125) 0.2706
u(0.375, 0.375) 0.6533
u(0.125, 0.625) 0.2706
u25 0.2706
u36 0.6533
u1,10 0.2706
ESTABILIDAD En conclusión, observamos que este método explícito de diferencias
¿QLWDVSDUDODHFXDFLyQGHRQGDHVHVWDEOHFXDQGRȜ 1 e inestable cuando Ȝ 1.
EJERCICIOS 15.3
Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-29.
En los problemas 1, 3, 5 y 6 utilice una computadora como
ayuda.
1. Utilice la ecuación en diferencias (3) para aproximar la
solución del problema con valores en la frontera
u
x2
2
u(0, t)
0,
u(x, 0)
f (x),
2
c2
u
,
t2
0
0,
u(a, t)
u
t
a, 0
x
0
0,
t
t
t
T
T
0
x
a
0
cuando
a) c 1, a 1, T 1, f (x) x(1 x); n 4 y m 10
b) c 1, a 2, T 1, f (x)
m 10
c) c
12, a
f (x)
n
10 y m
1, T
16(x 1) 2
1,
0,
0
0.5, 0.5
25.
e
; n5 y
2. Considere el problema con valores en la frontera
2
2
u
u
,
0 x 1, 0 t 0.5
2
t2
x
0.5
1
0,
u(1, t)
0
0.5
t
u
0, 0 x 1.
t t 0
a) Utilice los métodos del capítulo 12 para comprobar que
la solución del problema es u(x, t) sen ʌ[ cos ʌW.
b) Utilice el método de esta sección para aproximar la
solución del problema sin ayuda de un programa de
cómputo. Utilice n 4 y m 5.
c) Calcule el error absoluto en cada punto interior de la
malla.
u(x, 0)
sen x,
3. $SUR[LPHODVROXFLyQGHOSUREOHPDFRQYDORUHVHQODIURQWHUD
en el problema 2 por medio de un programa de cómputo con
a) n 5, m 10
b) n 5, m 20.
4. Para el problema con valores en la frontera
2
x
x
0,
u(0, t)
u
x2
2
u
,
t2
u(0, t)
0,
u(x, 0)
x (1
0
x
1, 0
u(1, t)
0,
x),
u
t
0
t
0
1
t
t
1
0,
0
x
1,
REPASO DEL CAPÍTULO 15
utilice h k 15 en la ecuación (6) para calcular a mano
los valores de ui,l.
5. Como se demostró en la sección 12.2 la ecuación de una
cuerda vibrando es
T
2
2
u
,
t2
u
x2
0.01x,
f (x)
0.30
x
0
x
30
30
, 30
100
x
60.
REPASO DEL CAPÍTULO 15
6. Repita el problema 5 usando
f (x)
y h 10, k
u
x2
0,
0
x
u(0, y)
0,
u(2, y)
50,
u(x, 0)
0,
u(x, 1)
0,
2, 0
0
y
0
1
y
x
1
2.
$SUR[LPHODVROXFLyQGHODHFXDFLyQGLIHUHQFLDOHQORVSXQtos interiores de la región, con tamaño de malla h 12 .
Utilice la eliminación de Gauss o la iteración de GaussSeidel.
2. Resuelva el problema 1 usando un tamaño de malla de
h 14 . Utilice la iteración de Gauss-Seidel.
3. Se tiene el siguiente problema con valores en la frontera:
2
u
x2
u
,
t
0
x
1, 0
t
0
u(0, t)
0, u(1, t)
0,
u(x, 0)
x, 0
1.
x
t
0.05
a) Observe que la temperatura inicial u(x, 0) x indica
que la temperatura en la frontera derecha x 1 debe ser
u(1, 0) 1, mientras que las condiciones de frontera implican que u(l, 0) 0. Escriba un programa de cómputo
SDUD HO PpWRGR H[SOtFLWR GH GLIHUHQFLDV ¿QLWDV GH WDO
0
15
, 15
150
x
15
x
60
2.51 >T . Utilice m 50.
modo que las condiciones en la frontera prevalezcan
para todos los tiempos que se consideren, incluyendo
t 0. Utilice el programa para completar la tabla 15.9.
2
u
y2
0.30
x
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-29.
1. Considere el problema con valores en la frontera
2
539
Utilice la ecuación en diferencias (3) en esta sección
para aproximar la solución del problema con valores en
la frontera cuando h 10, k 51 >T y donde ȡ
0.0225 g兾cm, T 1.4 107 dinas. Utilice m 50.
0.2x,
donde T es la magnitud constante de la tensión en la
cuerda y ȡ es su masa por unidad de longitud. Suponga
que una cuerda de 60 centímetros de largo se ancla en sus
extremos al eje x y se suelta a partir del reposo desde su
desplazamiento inicial
l
b) 0
RGL¿TXHVXSURJUDPDGHFyPSXWRSDUDTXHODFRQdición inicial prevalezca en las fronteras en t 0.
Utilice este programa para completar la tabla 15.10.
c) ¿Están relacionadas de alguna manera las tablas 15.9
y 15.10? Si es necesario, utilice un intervalo mayor de
tiempo.
TABLA 15.9
Tiempo x 0.00
0.00
0.01
0.02
0.03
0.04
0.05
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
x 0.20
x 0.40
x 0.60
x 0.80
x 1.00
0.2000
0.4000
0.6000
0.8000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
TABLA 15.10
Tiempo x 0.00
0.00
0.01
0.02
0.03
0.04
0.05
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
x 0.20
x 0.40
x 0.60
x 0.80
x 1.00
0.2000
0.4000
0.6000
0.8000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
APÉNDICE I
FUNCIÓN GAMMA
/DGH¿QLFLyQLQWHJUDOGH(XOHUGHODfunción gamma es
(1)
tx 1 e t dt.
(x)
0
/DFRQYHUJHQFLDGHODLQWHJUDOUHTXLHUHTXH x 1
UHFXUUHQFLD
(x
1)
OR x
/DUHODFLyQGH
(2)
x (x),
FRPRYLPRVHQODVHFFLyQVHSXHGHREWHQHUGH DOLQWHJUDUSRUSDUWHV$KRUD
t
1, \SRUWDQWRGHODHFXDFLyQ VHREWLHQH
FXDQGR x 1, (1)
0 e dt
Γ(x)
x
(2)
1 (1)
1
(3)
2 (2)
2 1
(4)
3 (3)
3 2 1
\DVtVXFHVLYDPHQWH$VtGHHVWDPDQHUDYHPRVTXHFXDQGRnHVXQHQWHURSRVLWLYR
$(n 1) n!.3RUHVWRDODIXQFLyQJDPPDVHOHOODPDFRQIUHFXHQFLDfunción factorial generalizada.
$XQTXHODIRUPDLQWHJUDO QRFRQYHUJHFXDQGRx VHSXHGHGHPRVWUDUSRU
PHGLRGHGH¿QLFLRQHVDOWHUQDWLYDVTXHODIXQFLyQJDPPDHVWiGH¿QLGDSDUDWRGRV
ORVQ~PHURVUHDOHV\FRPSOHMRVexcepto x nn &RPRXQDFRQVHFXHQFLDODHFXDFLyQ VyORHVYiOLGDSDUDx n/DJUi¿FDGH$(x FRQVLGHUDGD
FRPRXQDIXQFLyQGHXQDYDULDEOHUHDOxVHSUHVHQWDHQOD¿JXUD,2EVHUYHTXHORV
HQWHURVQRSRVLWLYRVFRUUHVSRQGHQDODVDVtQWRWDVYHUWLFDOHVGHODJUi¿FD
(QORVSUREOHPDV\GHORVHMHUFLFLRVKHPRVXVDGRHOKHFKRGHTXH
1
1 .(VWHUHVXOWDGRVHSXHGHGHGXFLUDSDUWLUGH \KDFLHQGR x 12 :
2
()
( 12)
FIGURA ,.1 *Ui¿FDGH$(x SDUDx
GLVWLQWRGHFHUR\TXHQRVHDXQHQWHUR
QHJDWLYR
1/ 2
t
e t dt.
0
&XDQGRVHKDFHt u2ODHFXDFLyQ VHSXHGHHVFULELUFRPR
2
v2
3HUR 0 e u du
dv,SRUORTXH
0 e
[ ( 12)]2
2
e
u2
du
2
0
v2
e
4
dv
0
e
0
(12)
(u 2 v 2 )
2
0
e
u2
du.
du dv.
0
(OFDPELDUDFRRUGHQDGDVSRODUHVu rFRVșv rVHQșQRVSHUPLWHHYDOXDUOD
LQWHJUDOGREOH
/2
4
e
0
3RUWDQWR
(u 2 v 2 )
du dv
4
0
e
0
[ ( 12)] 2
o
0
( 12)
r2
r dr d
1 .
.
APE-1
APE-2
APÉNDICE I
l
FUNCIÓN GAMMA
EJEMPLO 1
(YDO~H
Valor de
( 12)
( 12).
SOLUCIÓN 8VDQGRODVHFXDFLRQHV \ FRQ x
( 12)
( 12)
3RUWDQWR
EJERCICIOS PARA EL APÉNDICE I
1
2
2
1
2,
( 12).
( 12)
21 .
Las respuestas a los problemas seleccionados con número
impar comienzan en la página RES-17.
1. (YDO~H
a) $(5)
c)
5. 8WLOLFHHOKHFKRGHTXH
b) $(7)
(32)
d)
HYDOXDU
x5 e
x5
WUDUTXH$(x QRHVWiDFRWDGDFXDQGRx → 0.
(65)
0.92 SDUD
dx. [Sugerencia: +DJD t x 5.]
0
3. 8WLOLFH OD HFXDFLyQ \ HO KHFKR GH TXH
SDUD HYDOXDU
x4 e
x3
(53)
0.89
dx.
0
4. (YDO~H
1
3
x3 ln
0
t x 1 e t dt SDUDGHPRV-
0
(52)
2. 8WLOLFHODHFXDFLyQ \HOKHFKRGHTXH
1
(x)
1
dx.[Sugerencia: +DJD t OQx.]
x
6. 8WLOLFH SDUDGHGXFLU FXDQGRx
0.
7. 8QDGH¿QLFLyQGHODIXQFLyQJDPPDTXHVHOHGHEHD&DUO
)ULHGULFK*DXVVTXHHVYiOLGDSDUDWRGRVORVQ~PHURVUHDOHVH[FHSWRx HVWiGDGDSRU
n! n x
1)(x 2) . . . (x
n)
8VHHVWDGH¿QLFLyQSDUDPRVWUDUTXH (x
1)
(x)
lim
no
x(x
x (x) .
APÉNDICE II
MATRICES
II.1
DEFINICIONES BÁSICAS Y TEORÍA
DEFINICIÓN II.1 Matriz
Una matriz A es cualquier arreglo rectangular de números o funciones:
a11 a12 . . . a1n
a21 a22 . . . a2n
. .
A ..
.
.
.
am1 am2 . . . amn
(
)
(1)
Si una matriz tiene m renglones y n columnas, se dice que su tamaño es m por
n (se escribe como m n). Una matriz n n se llama matriz cuadrada de orden n.
El elemento, o entrada del i-ésimo renglón y la j-ésima columna de una matriz
A m n se representa por aij. Una matriz A m n se representa en la forma A
(aij)m n o simplemente A (aij). Una matriz 1 1 es sólo una constante o función.
DEFINICIÓN II.2 Igualdad de matrices
Dos matrices m n A y B son iguales si aij bij para toda i y j.
DEFINICIÓN II.3 Matriz columna
Una matriz columna X es cualquier matriz que tenga n renglones y una
columna:
()
b11
X
b21
. (b ) .
i1 n1
.
.
bn1
Una matriz columna también se llama vector columna o simplemente vector.
DEFINICIÓN II.4 Múltiplos de matrices
Un múltiplo de una matriz AVHGH¿QHFRPR
ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n
. (ka ) ,
kA ..
ij mn
.
.
.
kam1 kam2 . . . kamn
(
)
donde k es una constante o una función.
APE-3
APE-4
l
APÉNDICE II
MATRICES
EJEMPLO 1
2
a) 5 4
1
5
3
1
6
Múltiplos de matrices
10
20
1
15
5
30
et
2et
4et
1
2
4
t
b) e
Observamos que para toda matriz A el producto kA es igual al producto Ak. Por
ejemplo,
e
DEFINICIÓN II.5
3t
2
5
2e
5e
3t
2
e
5
3t
3t
.
Suma de matrices
La suma de dos matrices A y B m nVHGH¿QHFRPRODPDWUL]
B
A
(a i j
b i j ) m n.
En otras palabras, cuando se suman dos matrices del mismo tamaño se suman los elementos correspondientes.
EJEMPLO 2
Suma de matrices
2
0
6
La suma de A
A
2
0
6
B
EJEMPLO 3
1
4
10
4
9
1
3
6 y B
5
1
4
10
7
3
( 1)
4
9
1
3
6
5
7
3
1
( 8)
5
2
8
5 es
2
6
9
5
6
7
9
5
11 .
3
Una matriz escrita como una suma de matrices columna
3t 2
La matriz sola t 2
2et
7t se puede escribir como la suma de tres vectores columna:
5t
3t 2
t2
2et
7t
5t
3t 2
t2
0
0
7t
5t
2et
0
0
3
1 t2
0
0
7 t
5
2
0 et.
0
La diferencia de dos matrices m nVHGH¿QHHQODIRUPDXVXDOA – B A
(B), donde –B (1)B.
APÉNDICE II
MATRICES
l
APE-5
DEFINICIÓN II.6 Multiplicación de matrices
Sea A una matriz con m renglones y n columnas y B una matriz con n renglones y p columnas. El producto ABVHGH¿QHFRPRODPDWUL]m p
a11 a12 . . . a1n
a21 a22 . . . a2n
.
AB ..
.
.
.
am1 am2 . . . amn
(
)(
b12 . . . b1p
b22 . . . b2p
.
.
.
bn2 . . . bnp
b11
b21
.
.
.
bn1
)
a11b11 a12b21 . . . a1nbn1 . . . a11b1p a12b2p . . . a1nbnp
a21b11 a22b21 . . . a2nbn1 . . . a21b1p a22b2p . . . a2nbnp
.
.
.
.
.
.
.
.
.
.
.
.
am1b1p am2b2p . . . amnbnp
am1b11 am2b21
amnbn1
(
)
n
(兺 )
.
aikbkj
k1
mp
2EVHUYHFRQFXLGDGRHQODGH¿QLFLyQ,,TXHHOSURGXFWRAB CHVWiGH¿QLGR
sólo cuando el número de columnas en la matriz A es igual al número de renglones en
B. El tamaño del producto se determina de
Am
n Bn
q
p
Cm p.
q
También reconocerá que los elementos en, digamos, el i-ésimo renglón de la matriz
producto ABVHIRUPDQDSOLFDQGRODGH¿QLFLyQHQFRPSRQHQWHVGHOSURGXFWRLQWHULRU
o punto, del i-ésimo renglón de A con cada una de las columnas de B.
EJEMPLO 4
a) Para A
4
3
Multiplicación de matrices
7
5
4 9
3 9
AB
b) Para A
AB
5
1
2
9
6
y B
8
0
7
5 ( 4)
1 ( 4)
2 ( 4)
2
,
8
7 6
5 6
y B
8 2
0 2
7 2
4
2
4 ( 2)
3 ( 2)
7 8
5 8
78
57
48
.
34
3
,
0
5 ( 3)
1 ( 3)
2 ( 3)
8 0
0 0
7 0
4
4
6
15
3 .
6
En general, la multiplicación de matrices no es conmutativa; es decir, AB BA.
30 53
, mientras que en el inciso
Observe en el inciso a) del ejemplo 4, que BA
48 82
b) el producto BA QR HVWi GH¿QLGR SRUTXH HQ OD GH¿QLFLyQ ,, VH UHTXLHUH TXH OD
primera matriz, en este caso B, tenga el mismo número de columnas como renglones
tenga la segunda.
Nos interesa en particular el producto de una matriz cuadrada por un vector columna.
APE-6
l
APÉNDICE II
MATRICES
EJEMPLO 5
2
0
1
a)
4
3
b)
1
4
7
3
5
9
2
8
x
y
Multiplicación de matrices
3
6
4
2 ( 3)
0 ( 3)
1 ( 3)
4x
3x
( 1) 6
4 6
( 7) 6
3 4
5 4
9 4
0
44
9
2y
8y
IDENTIDAD MULTIPLICATIVA Para un entero positivo n, la matriz n n
1 0 0 . . . 0
0 1 0 . . . 0
.
I ..
.
.
.
0 0 0 . . . 1
(
)
se llama matriz de identidad multiplicativa3RUODGH¿QLFLyQ,,SDUDWRGDPDWUL]
A n n.
AI IA A.
También se comprueba con facilidad que si X es una matriz columna n 1, entonces IX X.
MATRIZ CERO Una matriz formada sólo por elementos cero se conoce como matriz cero y se representa por 0. Por ejemplo,
0 0
0
0
0
0 0 ,
0 0
y así sucesivamente. Si A y 0 son matrices m n, entonces
0
,
0
0
0
A
0
0
,
0
0
A
A.
LEY ASOCIATIVA Aunque no lo demostraremos, la multiplicación de matrices es asociativa. Si A es una matriz m p, B una matriz p r y C una matriz r n, entonces
A(BC)
(AB)C
es una matriz m n.
LEY DISTRIBUTIVA 6L WRGRV ORV SURGXFWRV HVWiQ GH¿QLGRV OD PXOWLSOLFDFLyQ HV
distributiva respecto de la suma:
A(B
C)
AB
AC
y
C)A
(B
BA
CA.
DETERMINANTE DE UNA MATRIZ Asociado a toda matriz cuadrada A de constantes hay un número llamado determinante de la matriz, que se denota por det A.
EJEMPLO 6
3
2
1
Para A
det
A
p
3
2
1
Determinante de una matriz cuadrada
6
5
2
2
1 desarrollamos det A por cofactores del primer renglón:
4
6
5
2
2
1p
4
3
5
2
3(20
1
4
2)
6
6(8
2
1
1
4
2
1)
2(4
2
1
5
2
5)
18.
APÉNDICE II
MATRICES
l
APE-7
Se puede demostrar que un determinante det A se puede desarrollar por cofactores
usando cualquier renglón o cualquier columna. Si det A tiene un renglón (o una columna) con muchos elementos cero, el sentido común aconseja desarrollar el determinante por ese renglón (o columna).
DEFINICIÓN II.7 Transpuesta de una matriz
La transpuesta de la matriz (1) m n es la matriz AT de n m dada por
a11 a21 . . . am1
a12 a22 . . . am2
. .
AT ..
.
.
.
a1n a2n . . . amn
(
)
Es decir, los renglones de una matriz A se convierten en las columnas de su
transpuesta AT.
EJEMPLO 7
Transpuesta de una matriz
a) La transpuesta de A
b) Si X
3
2
1
6
5
2
2
1 es AT
4
3
6
2
2
5
1
1
2 .
4
5
0 , entonces XT (5 0 3).
3
DEFINICIÓN II.8 Inversa multiplicativa de una matriz
Sea A una matriz n n. Si existe una matriz B n n tal que
AB
BA
I,
en donde I es la identidad multiplicativa, se dice que B es la inversa multiplicativa de A y se denota por B A1.
DEFINICIÓN II.9 Matrices no singular/singular
Sea A una matriz n n. Si det A 0, entonces se dice que A es no singular.
Si det A 0, entonces A es singular.
(OVLJXLHQWHWHRUHPDHVSHFL¿FDXQDFRQGLFLyQQHFHVDULD\VX¿FLHQWHSDUDTXHXQD
matriz cuadrada tenga inversa multiplicativa.
TEOREMA II.1 La no singularidad implica que A tiene una inversa
Una matriz A n n tiene una inversa multiplicativa A1 si y sólo si A es no
singular.
El siguiente teorema describe un método para determinar la inversa multiplicativa
de una matriz no singular.
APE-8
l
APÉNDICE II
MATRICES
TEOREMA II.2 Una fórmula para la inversa de una matriz
Sea A una matriz no singular n n y sea Cij (l)ij Mij, donde Mij es el determinante de la matriz de (n 1) (n 1) obtenido al eliminar el i-ésimo
renglón y la j-ésima columna de A, entonces
1
(C ) T.
det A ij
1
A
(2)
Cada CijHQHOWHRUHPD,,HVVLPSOHPHQWHHOcofactor (el menor con signo) del elemento aij en A. Observe que en la fórmula (2) se utiliza la transpuesta.
Para futuras referencias observe que en el caso de una matriz no singular 2 2
a 11
a 21
A
a 12
a 22
que C11 a 22, C12 a 21, C 21 a 12, y C 22 a 11. Por tanto
A
1
1
det A
a 22
a 12
T
a 21
a 11
1
det A
a 22
a 21
a 12
.
a 11
C13
a 21
a 31
(3)
Para una matriz no singular 3 3
a 11
a 21
a 31
A
C11
a 22
a 32
a 23
,
a 33
C12
a 12
a 22
a 32
a 21
a 31
a 13
a 23 ,
a 33
a 23
,
a 33
a 22
,
a 32
y así sucesivamente. Al realizar la transposición se obtiene
A
EJEMPLO 8
C11
1
C12
det A
C13
1
C 21
C 22
C 23
C31
C32 .
C33
(4)
Inversa de una matriz 2 ⴛ 2
1
2
Encuentre la inversa multiplicativa de A
4
.
10
Puesto que det A 10 8 2 0, A es no singular. De acuerdo con
HOWHRUHPD,,A1 existe. Utilizando la ecuación (3) encontramos que
SOLUCIÓN
A
1
1
2
10
2
4
1
5
1
2
1
2
.
No toda matriz cuadrada tiene inversa multiplicativa. La matriz A
es singular, porque det A 0. Por tanto, A1 no existe.
EJEMPLO 9
Inversa de una matriz 3 ⴛ 3
Encuentre la inversa multiplicativa de A
2
2
3
2
1
0
0
1 .
1
2
3
2
3
APÉNDICE II
MATRICES
l
APE-9
SOLUCIÓN Puesto que det A 12 0, la matriz dada es no singular. Los cofactores
correspondientes a los elementos de cada renglón de det A son
C11
1
0
2
0
C 21
C 31
1
1
2
1
1
0
1
2
0
1
2
3
C12
2
3
C 22
2
1
1
0
1
2
2
2
C 32
5
0
1
2
C13
2
3
1
0
C 23
2
3
2
0
6
C 33
2
2
2
1
6.
3
Utilizando la ecuación (4) se tiene que
A
1
1
5
3
1
12
2
2
6
1
12
5
12
1
4
2
2
6
1
6
1
6
1
2
1
6
1
6
1
2
.
Le pedimos que compruebe que A1A AA1 I.
/DIyUPXOD SUHVHQWDGL¿FXOWDGHVREYLDVFXDQGRODVPDWULFHVQRVLQJXODUHVVRQPDyores de 3 3. Por ejemplo, para aplicarla a una matriz 4 4 necesitaríamos calcular
dieciséis determinantes 3 3.*3DUDXQDPDWUL]JUDQGHKD\PpWRGRVPiVH¿FLHQWHVSDUD
calcular A1. El lector interesado puede consultar cualquier libro de álgebra lineal.
Puesto que nuestra meta es aplicar el concepto de una matriz a sistemas de ecuaFLRQHVGLIHUHQFLDOHVOLQHDOHVGHSULPHURUGHQQHFHVLWDUHPRVODVGH¿QLFLRQHVVLJXLHQWHV
DEFINICIÓN II.10 Derivada de una matriz de funciones
Si A(t) (aij(t))m n es una matriz cuyos elementos son funciones derivables en
un intervalo común, entonces
dA
dt
d
a
dt i j
.
m
n
DEFINICIÓN II.11 Integral de una matriz de funciones
Si A(t) (aij(t))m n es una matriz cuyos elementos son funciones continuas en
un intervalo que contiene a t y t0, entonces
t
t
A(s) ds
t0
ai j (s) ds
t0
.
m
n
Para derivar o integrar una matriz de funciones, sólo se deriva o integra cada uno
de sus elementos. La derivada de una matriz también se denota por A(t).
EJEMPLO 10
Si
X(t)
Derivada/integral de una matriz
sen 2t
e3t ,
8t 1
entonces
X (t)
d
sen 2t
dt
d 3t
e
dt
d
(8t 1)
dt
2 cos 2t
3e3t
8
*
Estrictamente hablando, un determinante es un número, pero a veces conviene manejarlo como si fuera
un arreglo.
APE-10
l
APÉNDICE II
MATRICES
t
0 sen2s ds
t 3s
0 e ds
t
y
X(s) ds
0
t
0 (8s
1) ds
1
2 cos 2t
1
1 3t
3
3e
2
4t
1
2
.
t
II.2 ELIMINACIÓN DE GAUSS Y DE GAUSS-JORDAN
Las matrices son una ayuda insustituible para resolver sistemas algebraicos de n ecuaciones lineales con n incógnitas
a11 x1 a12 x2
a1n xn b1
a21 x1 a22 x2
a2n xn b2
(5)
M
M
an1 x1 an2 x2
ann xn bn.
Si AGHQRWDDODPDWUL]GHORVFRH¿FLHQWHVHQ VDEHPRVTXHHVSRVLEOHXVDUODUHJOD
de Cramer para resolver el sistema, siempre que det A 0. Sin embargo, para seguir esa
regla se necesita realizar un gran trabajo si A es mayor de 3 3. El procedimiento que
GHVFULELUHPRVDFRQWLQXDFLyQWLHQHODSDUWLFXODUYHQWDMDGHQRVyORVHUXQPpWRGRH¿FLHQWH
para manejar sistemas grandes, sino también una forma de resolver sistemas consistentes
(5), en los que det A 0 y para resolver m ecuaciones lineales con n incógnitas.
DEFINICIÓN II.12 Matriz aumentada
La matriz aumentada del sistema (5) es la matriz n (n 1)
(
a11
a21
.
.
.
an1
冟)
a12 . . . a1n b1
a22 . . . a2n b2
. .
.
.
.
.
.
an2
ann bn
Si B es la matriz columna de las bi , i 1, 2, . . . , n, la matriz aumentada de (5)
se denota por (A兩B).
OPERACIONES ELEMENTALES DE RENGLÓN Recuerde de álgebra que podemos transformar un sistema algebraico de ecuaciones en un sistema equivalente (es
decir, un sistema que tenga la misma solución) multiplicando una ecuación por una
constante distinta de cero, intercambiando el orden de dos ecuaciones cualesquiera del
sistema y sumando un múltiplo constante de una ecuación a otra. A estas operaciones,
VREUHXQVLVWHPDGHHFXDFLRQHVVHOHVGH¿QHFRPRoperaciones elementales de renglón en una matriz aumentada:
i)
Multiplicar un renglón por una constante distinta de cero.
ii ,QWHUFDPELDUGRVUHQJORQHVFXDOHVTXLHUD
iii) Sumar un múltiplo constante, distinto de cero, de un renglón a cualquier
otro renglón.
MÉTODOS DE ELIMINACIÓN Para resolver un sistema como el (5), con una matriz
aumentada, se emplea la eliminación de Gauss o el método de eliminación de GaussJordan. En el primero de los métodos se realiza una secuencia de operaciones elementales
de renglón hasta llegar a una matriz aumentada que tenga la forma renglón escalón.
i)
El primer elemento distinto de cero en un renglón distinto de cero es 1.
ii)
En los renglones consecutivos distintos de cero el primer elemento 1, en el
renglón inferior, aparece a la derecha del primer 1 en el renglón superior.
iii) Los renglones formados únicamente con ceros están en la parte inferior de
la matriz.
APÉNDICE II
MATRICES
l
APE-11
En el método de Gauss-Jordan se continúa con las operaciones de renglón hasta obtener
una matriz aumentada que esté en la forma escalonada reducida. Una matriz escalonada reducida presenta las mismas tres propiedades de arriba, además de la siguiente:
iv) Una columna que contiene un primer elemento 1 tiene ceros en todos sus
demás lugares.
EJEMPLO 11
Formas escalonada/escalonada reducida
a) Las matrices aumentadas
1
0
0
5
1
0
p
0
0
0
2
1
0
0
0
y
0
0
1
0
6
0
2
1
2
4
están en su forma escalonada. Debe comprobar que se satisfacen los tres criterios.
b) Las matrices aumentadas
1
0
0
0
1
0
0
0
0
p
7
1
0
y
0
0
0
0
1
0
6
0
0
1
6
4
están en su forma escalonada reducida. Observe que los elementos restantes en las columnas contienen un 1 como entrada principal y que los elementos son iguales a 0.
Observe en la eliminación de Gauss que nos detenemos una vez obtenida una
matriz aumentada en su forma escalonada. En otras palabras, al usar operaciones consecutivas de renglón llegaremos a formas escalonadas distintas. Este método requiere
entonces del uso de sustitución regresiva. En la eliminación de Gauss-Jordan nos detenemos cuando se ha llegado a la matriz aumentada en su forma escalonada reducida.
Cualquier orden de operaciones de renglón conduce a la misma matriz aumentada
en su forma escalonada reducida. Este método no necesita sustitución regresiva; la
VROXFLyQGHOVLVWHPDVHFRQRFHUiH[DPLQDQGRODPDWUL]¿QDO(QWpUPLQRVGHODVHFXDciones del sistema original, nuestra meta con ambos métodos es simplemente hacer el
FRH¿FLHQWHGHx1 en la primera ecuación* igual a 1 y después utilizar múltiplos de esa
ecuación para eliminar x1 de las otras ecuaciones. El proceso se repite con las otras
variables.
Para mantener el registro de las operaciones de renglón, que se llevaron a cabo en
una matriz aumentada, se utilizará la siguiente notación:
6tPEROR
6LJQL¿FDGR
Rij
cR i
,QWHUFDPELRGHORVUHQJORQHVi y j
Multiplicación del i-ésimo renglón por la constante c, distinta
de cero
Multiplicación del i-ésimo renglón por c y suma del
resultado al j-ésimo renglón
cR i R j
EJEMPLO 12
Resuelva
Solución por eliminación
2x1
6x2
x3
x1
2x2
x3
5x1
7x2
4x3
7
1
9
utilizando a) eliminación de Gauss y b) eliminación de Gauss-Jordan.
*
Siempre se pueden intercambiar ecuaciones de tal forma que la primera ecuación contenga a la variable x1.
APE-12
l
APÉNDICE II
MATRICES
SOLUCIÓN a) Usando operaciones de renglón en la matriz aumentada del sistema,
obtenemos
1
_
2
R2
(
(
2
1
5
冟
冟
6
1
7
2 1 1
7 4
9
1
2 1 1
9_
3_
0
1
2
2
0 3
1 14
) (
) (
R12
3R2 R3
冟
冟
1 2 1 1
2 6
1
7
5 7 4
9
1 2 1 1
9_
3_
0 1
2
2
55
11
__
__
0 0
2
2
)
)
2R1 R2
5R1 R3
2
__
11
R3
(
(
冟
冟
1
2 1 1
0
2
3
9
0 3
1 14
)
)
2 1 1
9_
3_
1
2 .
2
0
1
5
1
0
0
La última matriz está en la forma renglón-escalón y representa al sistema
x1 2x2
x3
1
x2
3
x
2 3
9
2
x3
5.
Sustituyendo x3 5 en la segunda ecuación se obtiene x2 3. Sustituyendo ambos
YDORUHVHQODSULPHUDHFXDFLyQ¿QDOPHQWHVHREWLHQH x1 10.
b) Comenzamos con la última de las matrices anteriores. Como los primeros elementos en el segundo y tercer renglones son 1, debemos hacer que los elementos restantes
en las columnas dos y tres sean iguales a 0:
(
冟
1 2 1 1
9_
3_
0 1
2
2
0 0
1
5
)
(
2R2 R1
冟
1 0 4 10
9_
3_
0 1
2
2
0 0
1
5
)
4R3 R1
3
_2 R3 R2
(
冟
)
1 0 0 10
0 1 0 3 .
0 0 1
5
La última matriz ya se encuentra en su forma escalonada reducida. Debido al signi¿FDGRGHHVWDPDWUL]HQWpUPLQRVGHODVHFXDFLRQHVTXHUHSUHVHQWDVHYHTXHODVROXción del sistema es x1 10, x2 3, x3 5.
EJEMPLO 13
Eliminación de Gauss-Jordan
Resuelva
SOLUCIÓN
x
3y
2z
7
4x
y
3z
5
2x
5y
7z
19.
Resolveremos este sistema con la eliminación Gauss-Jordan:
1
__
11
R2
1
__
11
R3
(
(
冟
冟
1
3 2 7
4
1
3
5
2 5
7 19
1
0
0
3 2 7
1 1 3
1 1 3
)
)
4R1 R2
2R1 R3
3R2 R1
R2 R3
(
(
冟
冟
1
3 2 7
0 11 11 33
0 11 11 33
1
0
0
)
)
0
1
1
1 1 3 .
0
0
0
En este caso, la última matriz, en su forma escalonada reducida, implica que el sistema
original de tres ecuaciones con tres incógnitas es equivalente, en realidad, a dos ecuaciones con tres incógnitas. Puesto que sólo z es común a ambas ecuaciones (los renglones distintos de cero), le podemos asignar valores arbitrarios. Si hacemos z t, donde
tUHSUHVHQWDFXDOTXLHUQ~PHURUHDOYHUHPRVTXHHOVLVWHPDWLHQHXQDFDQWLGDGLQ¿QLWD
APÉNDICE II
MATRICES
APE-13
l
de soluciones: x 2 t, y 3 t, z t. Geométricamente, esas ecuaciones son
las ecuaciones paramétricas de la recta de intersección de los planos x 0y z 2 y
0x y z 3.
USO DE OPERACIONES DE RENGLÓN PARA ENCONTRAR UNA INVERSA
Debido a la cantidad de determinantes que hay que evaluar, casi no se usa la fórmula
GHOWHRUHPD,,SDUDGHWHUPLQDUODLQYHUVDFXDQGRODPDWUL]A es grande. En el
caso de matrices de 3 3 o mayores, el método que se describe en el siguiente teoUHPDHVSDUWLFXODUPHQWHH¿FLHQWHSDUDGHWHUPLQDUA1.
TEOREMA II.3 Determinación de A1 usando las operaciones elementales
de renglón
Si una matriz A n n se puede transformar en la matriz identidad I n n con
una secuencia de operaciones elementales de renglón, entonces A es no singular. La misma secuencia de operaciones que transforma a A en la identidad I
también transforma a I en A1.
Es conveniente realizar estas operaciones de renglón en forma simultánea en A
y en I, mediante una matriz n 2n obtenida aumentando A con la identidad I, como
aquí se muestra:
a11 a12 . . . a1n
a21 a22 . . . a2n
.
(A 冟 I) ..
.
.
.
.
.
.
an1 an2
ann
(
冟
1 0 . . . 0
1 0 . . . 0
.
. .
.
.
.
.
.
.
.
0 0
1
)
En el diagrama siguiente se indica el procedimiento para encontrar A1:
Realice las operaciones de renglón
en A hasta que obtenga I. Esto
significa que A es no singular.
(A冟 I )
(I 冟 A1).
Simultáneamente aplique las
mismas operaciones sobre I,
para obtener A1.
EJEMPLO 14
Inversa por operaciones elementales de renglón
Determine la inversa multiplicativa de A
2
2
5
0
3
5
1
4 .
6
SOLUCIÓN Usaremos la misma notación que cuando redujimos una matriz aumentada a la forma renglón escalón:
(
冟
2 0 1 1 0 0
2 3 4 0 1 0
5 5 6 0 0 1
) (
1_
2
R1
冟
1 0 1_2 1_2 0 0
2 3 4 0 1 0
5 5 6 0 0 1
) (
2R1 R2
5R1 R3
冟
1 0 1_2 1_2 0 0
0 3 5 1 1 0
5_
__
0 5 17
0 1
2
2
)
APE-14
l
APÉNDICE II
MATRICES
1_
3
1_
5
30R3
(
R2
R3
1
冟
(
1 0
0 1
0 1
1_
2
5_
3
17
__
10
冟
1 0 _2 1_2
0 0
1_
1_
5_
0 1 3 3
0
3
0 0 1 5 10 6
) (
) ( 冟
1_
2
1_
3
1_
2
0 0
1_
0
3
0 1_5
R2 R3
1_3 R3 R1
5_3 R3 R2
1 0
0 1
0 0
1_
2
5_
3
1
__
30
冟
1_
2
1_
3
1_
6
)
)
0 0
1_
0
3
1_
3 1_5
1 0 0 2
5 3
0 1 0 8
17 10 .
0 0 1
5 10
6
Puesto que I se presenta a la izquierda de la recta vertical, concluimos que la matriz a
la derecha de la recta es
A
2
8
5
1
5
17
10
3
10 .
6
Si la reducción de renglones (A兩I) conduce a la situación
Operaciones entre
renglones
(A 冟 I)
(B 冟 C),
donde la matriz B contiene un renglón de ceros, entonces A es necesariamente singular. Como una reducción adicional de B siempre produce otra matriz con un renglón
de ceros, nunca se transformará A en I.
II.3
EL PROBLEMA DE EIGENVALORES
La eliminación Gauss-Jordan se puede emplear para determinar los eigenvectores
(vectores propios) de una matriz cuadrada.
DEFINICIÓN II.13 Eigenvalores y eigenvectores
Sea A una matriz n n. Se dice que un número Ȝ es un eigenvalor de A si
existe un vector solución K distinto de cero del sistema lineal
K.
AK
El vector solución K es un eigenvector que corresponde al eigenvalor propio Ȝ.
La palabra eigenvalor es una combinación de alemán y español adaptada de la
palabra alemana eigenwert que, traducida literalmente, es “valor propio”. A los eigenvalores y eigenvectores se les llama también valores característicos y vectores
característicos, respectivamente.
EJEMPLO 15
Compruebe que K
Eigenvector de una matriz
1
1 es un eigenvector de la matriz
1
A
0
2
2
1
3
1
3
3 .
1
APÉNDICE II
MATRICES
l
APE-15
SOLUCIÓN Al realizar la multiplicación AK vemos que
(
)( ) ( ) ( )
eigenvalor
0 1 3
1
2
1
AK 2
3
3 1 2 (2) 1 (2)K.
2
1
1
1
2
1
9HPRVGHODGH¿QLFLyQ,,\GHOUHQJOyQDQWHULRUTXHȜ 2 es un eigenvalor de A.
8VDQGRODVSURSLHGDGHVGHOiOJHEUDPDWULFLDOSRGHPRVH[SUHVDUODHFXDFLyQ
en la forma alternativa
I)K
(A
(7)
0,
donde I es la identidad multiplicativa. Si hacemos
K
k1
k2
,
M
kn
entonces (7) es igual que
a12k2 . . .
a1n k n 0
.
.
.
a21k1 (a22 l)k2
a2n k n 0
.
.
.
.
.
.
an1k1
an2k2 . . . (ann l)kn 0.
(a11 l)k1
(8)
Aunque una solución obvia de la ecuación (8) es k1 0, k2 0, . . . , kn 0, sólo nos
interesan las soluciones no triviales. Se sabe que un sistema homogéneo de n ecuaciones
lineales con n incógnitas (esto es, bi 0, i 1, 2, . . . , n en la ecuación (5)) tiene una soOXFLyQQRWULYLDOVL\VyORVLHOGHWHUPLQDQWHGHODPDWUL]GHFRH¿FLHQWHVHVLJXDODFHUR3RU
tanto, para determinar una solución K distinta de cero de la ecuación (7) se debe tener que
det(A
I)
(9)
0.
Examinando la ecuación (8) se ve que el desarrollo del det(A ȜI) por cofactores
da como resultado un polinomio en Ȝ de grado n. La ecuación (9) se llama ecuación
característica de A. Por lo que, los eigenvalores de A son las raíces de la ecuación
característica. Para encontrar un vector propio que corresponde a un eigenvalor Ȝ, sólo
se resuelve el sistema de ecuaciones (A ȜI)K 0 aplicando la eliminación GaussJordan a la matriz aumentada (A ȜI兩0).
EJEMPLO 16
Eigenvalores/eigenvectores
1
6
1
Determinar los eigenvalores propios y los eigenvectores de A
2
1
2
1
0 .
1
SOLUCIÓN Para desarrollar el determinante y formar la ecuación característica usaremos los cofactores del segundo renglón:
det(A
I)
p
1
2
6
1
1
0
1
2
1
p
3
2
12
0.
Puesto que Ȝ3 Ȝ2 12Ȝ Ȝ(Ȝ 4)(Ȝ 3) 0 vemos que los valores propios
son Ȝ1 0, Ȝ2 4 y Ȝ3 3. Para determinar los eigenvectores debemos reducir tres
veces (A ȜI兩0), que corresponden a los tres diferentes eigenvalores.
APE-16
l
APÉNDICE II
MATRICES
Para Ȝ1 0 tenemos
冟)
(
6R1 R2
R1 R3
1
2
1 0
(A 0I 冟 0) 6 1
0 0
1 2 1 0
1
__
13
R2
(
1
13 k 3
Por lo que vemos que k1
eigenvector*
冟)
1 2 1 0
6
__
0 1 13
0
0 0 0 0
y k2
(
(
2R2 R1
6
13 k 3.
冟)
冟)
1
2
1 0
0 13 6 0
0
0
0 0
1
__
1 0 13
0
6
__
0 1 13 0 .
0 0 0 0
Eligiendo k3 13, obtenemos el
1
6 .
13
K1
Para Ȝ2 4,
(
冟)
5
2 1 0
(A 4I 冟 0) 6
3 0 0
1 2 3 0
6R1 R2
5R1 R3
(
冟)
1
2 3 0
0 9 18 0
0 8 16 0
1_9 R2
1_8 R3
(
冟)
1 2 3 0
0 1 2 0
0 1 2 0
R3
R31
2R2 R1
R2 R3
(
(
冟)
冟)
1 2 3 0
6 3
0 0
5 2
1 0
1 0
1 0
0 1 2 0
0 0
0 0
lo que implica que k1 k3 y k2 2k3. Eligiendo k3 1 se obtiene el segundo
eigenvector
1
2 .
1
K2
Finalmente, para Ȝ3 3 con la eliminación de Gauss se obtiene
冟)
(
2
2
1 0
(A 3I 冟 0) 6 4
0 0
1 2 4 0
por lo que k1 k3 y k 2
vector:
3
2 k 3.
operación
entre renglones
(
冟)
1 0 1 0
0 1 3_2 0 ,
0 0 0 0
La elección de k3 2 conduce al tercer eigen-
K3
2
3 .
2
Cuando una matriz A n n tiene n eigenvalores distintos Ȝ1, Ȝ2, . . . ,Ȝn, se puede
demostrar que es posible determinar un conjunto de n eigenvectores linealmente
independientes† K1, K2, . . . , Kn. Sin embargo, cuando la ecuación característica
tiene raíces repetidas, tal vez no se puedan determinar n eigenvectores de A linealmente independientes.
*
Por supuesto k3 pudo ser cualquier número distinto de cero. En otras palabras, un múltiplo constante distinto
de cero de un eigenvector también es un eigenvector.
†
/DLQGHSHQGHQFLDOLQHDOGHORVYHFWRUHVFROXPQDVHGH¿QHLJXDOTXHODGHODVIXQFLRQHV
APÉNDICE II
EJEMPLO 17
MATRICES
Eigenvalores/eigenvectores
3
1
4
.
7
5) 2
0
Determine los eigenvalores y los eigenvectores de A
SOLUCIÓN
APE-17
l
De la ecuación característica
I)
det(A
3
4
1
(
7
vemos que Ȝ1 Ȝ2 5 es un eigenvalor de multiplicidad dos. En el caso de una matriz
de 2 2 no se necesita usar la eliminación Gauss-Jordan. Para determinar los eigenvectores que corresponden a Ȝ1 5, recurriremos al sistema (A – 5I兩0) en su forma
equivalente
2k1
4k 2
0
k1
2k 2
0.
En este sistema se ve que k1 2k2. Por lo que si elegimos k2 1, encontraremos un
solo eigenvector:
2
.
1
K1
EJEMPLO 18
Eigenvalores/eigenvectores
Determine los eigenvalores y eigenvectores de A
SOLUCIÓN
det(A
9
1
1
1
9
1
1
1 .
9
La ecuación característica
I)
p
9
1
1
1
1
1
9
1
9
p
(
11)(
8) 2
0
muestra que Ȝ1 11 y que Ȝ2 Ȝ3 8 es un eigenvalor de multiplicidad dos.
Para Ȝ1 11, usando la eliminación Gauss-Jordan se obtiene
冟)
(
2
1
1 0
(A 11I 冟 0) 1 2
1 0
1
1 2 0
operaciones
entre renglones
(
冟)
1 0 1 0
0 1 1 0 .
0 0
0 0
Por tanto, k1 k2 y k2 k3. Si k3 1, entonces
K1
1
1 .
1
Ahora para Ȝ2 8 tenemos que
( 冟)
1 1 1 0
(A 8I 冟 0) 1 1 1 0
1 1 1 0
operaciones
entre renglones
(
冟)
1 1 1 0
0 0 0 0 .
0 0 0 0
APE-18
APÉNDICE II
l
MATRICES
En la ecuación k1 k2 k3 0 seleccionamos libremente dos de las variables.
Eligiendo, por un lado, que k2 1, k3 0 y, por otro, k2 0, k3 1, obtendremos dos
eigenvectores linealmente independientes:
1
1
0
K2
EJERCICIOS DEL APÉNDICE II
II.1
Las respuestas a los problemas seleccionados con número impar
comienzan en la página RES-17.
DEFINICIONES BÁSICAS Y TEORÍA
1
2
8. Si A
4
6
1. Si A
a) A B
2
4
7
2. Si A
a) A B
5
yB
9
b) B A
2
6
, determine
8
10
c) 2A 3B
0
1 yB
3
3
0
4
a) AB
3
yB
4
4. Si A
a) AB
4
10 y B
12
4
1
d) B 2 BB
6
3
3
, determine
2
b) BA
1
2
5. Si A
2
,B
4
6
2
3
,yC
1
b) A(BC)
6. Si A
C
(5
1
0
3
a) AB
7. Si A
a) ATA
6
2
1
2
c) C(BA)
0
3
2
, de4
d) A(B C)
3
4 ,y
1
7), B
4
8 yB
10
b) BT B
c) (BA)C
(2
4
10
, determine
5
9
yB
6
3
7
11
, determine
2
b) (A B) T
En los problemas 11 a 14 escriba la suma en forma de una sola
matriz columna:
11. 4
1
2
12. 3t
2
t
1
2
8
2
(t
2
1
3
4
2
5
14.
1
2
0
3
5
4
4
1
2
2
3
3
1
t
3
1)
13.
15. A
3
2
17. A
4
3
19. A
2
1
1
d) (AB)C
5), determine
c) A BT
5
2
c) AT(A B)
b) BTAT
5
4
10. Si A
3
, determine
7
1
2
t
2t
1
t
3t
4
5t
2
6
3
7
2
2
8
6
t
1
4
En los problemas 15 a 22 determine si la matriz dada es singular o no singular. Si es no singular, determine A1 usando
HOWHRUHPD,,
4
1 , determine
1
b) BA
4
yB
1
a) (AB) T
termine
a) BC
3
8
9. Si A
2
5
b) 2AT BT
a) AT BT
6
, determine
2
c) A2 AA
b) BA
1
5
8
1
3
2
yB
4
a) A BT
c) 2(A B)
b) B A
2
5
3. Si A
1
2 , determine
2
1
0 .
1
K3
y
6
4
8
5
1
2
2
0
1
1
16. A
2
1
5
4
18. A
7
2
10
2
20. A
3
4
2
2
1
5
1
0
1
APÉNDICE II
2
1
3
21. A
1
2
2
1
3
4
4
6
2
22. A
1
2
1
1
3
2
En los problemas 23 y 24 demuestre que la matriz dada es
no singular para todo valor real de t. Encuentre Al(t) con el
WHRUHPD,,
e4t
3e4t
t
2e
4e
23. A(t)
t
t
2e cos t
et sent
En los problemas 25 a 28 determine dX冒dt.
5e
2e
7e
25. X
27. X
2
t
t
t
1 2t
e
1
29. Sea A(t)
a)
1
2 sen
26. X
dA
dt
4
e 4t
2t
2
e
1
37.
39.
2t
3 sen 2t
4 cos 2t
5 cos 2t
28. X
5te 2t
t sen 3t
3t
2
t
A(t) dt
b)
36.
x 1 x 2 x 3 x 4 1
x1 x2 x3 x4 3
x1 x2 x3 x4 3
4x 1 x 2 2x 3 x 4 0
38. 2x 1 x 2 x 3 0
x 1 3x 2 x 3 0
7x 1 x 2 3x 3 0
x 2y 4z 2
2x 4y 3z 1
x 2y z 7
1
t2
dA
dt
4
2
1
2
1
2
3
0
0
42. A
2
4
8
4
2
10
3t
43. A
1
1
0
3
2
1
0
1
2
44. A
1
0
0
2
1
0
3
4
8
t
6t
1>t
y B(t)
2
.
4t
45. A
1
1
2
1
46. A
1
0
0
0
0
0
0
1
0
1
0
0
b)
dB
dt
2
A(t) dt
f)
d
A(t)B(t)
dt
1
1
0
1
0
0
1
0
II.3
EL PROBLEMA DE LOS EIGENVALORES
En los problemas 47 a 54 encuentre los eigenvalores y los
eigenvectores de la matriz dada.
t
A(s)B(s) ds
g)
1
II.2 ELIMINACIÓN DE GAUSS Y DE
GAUSS-JORDAN
En los problemas 31 a 38 resuelva el correspondiente sistema
de ecuaciones, por eliminación de Gauss o por eliminación de
Gauss-Jordan.
33.
3
2
3
2
1
e) A(t)B(t)
2
0
1
1
B(t) dt
d)
0
31.
2
2
6
0
1
c)
40. x 1 x 2 x 3 3x 4 1
x 2 x 3 4x 4 0
x 1 2x 2 2x 3 x 4
4x 1 7x 2 7x 3
9
41. A
Determine
a)
x
2z 8
x 2y 2z 4
2x 5y z
(QORVSUREOHPDVDDSOLTXHHOWHRUHPD,,SDUDGHWHUminar A1 para la matriz dada o demuestre que no existe la
inversa.
A(s) ds
c)
0
t2
APE-19
2x y z 4
10x 2y 2z 1
x 2y 4z 8
cos t
. Determine
3t 2 1
1
30. Sea A(t)
l
En los problemas 39 y 40 utilice la eliminación de GaussJordan para demostrar que el sistema dado de ecuaciones no
tiene solución.
t
2e sent
et cos t
24. A(t)
35.
MATRICES
x y 2z 14
2x y z 0
x 3y 4 z 1
32. 5x 2y 4z 10
x y z9
4x 3y 3z 1
y z 5
5x 4y z 10
x y 5z 7
34. 3x y z 4
4x 2y z 7
x y 3z
47.
1
7
49.
8
16
51.
53.
5
0
5
2
8
1
0
1
5
1
0
1
0
2
2
1
1
1
1
4
1
1
52.
3
0
4
0
2
0
0
0
1
54.
1
0
0
6
2
1
0
1
2
48.
50.
0
9
0
4
4
0
0
0
2
APE-20
APÉNDICE II
l
MATRICES
(Q ORV SUREOHPDV \ GHPXHVWUH TXH FDGD PDWUL] WLHQH
eigenvalores complejos. Encuentre los eigenvectores respectivos de la matriz:
55.
1
5
2
1
2
5
0
56.
1
2
1
0
4
2
Problemas diversos
57. Si A(t) es una matriz de 2 2 de funciones derivables y
X(t) es una matriz columna de 2 1 de funciones derivables, demuestre la regla de la derivada de un producto
d
[A(t)X(t)]
dt
A(t)X (t)
A (t)X(t).
58. Demuestre la fórmula (3). [Sugerencia: Encuentre una
matriz
B
b11
b 21
b12
b 22
para la que AB I. Despeje b11, b12, b21 y b22. Después
demuestre que BA I].
59. Si A es no singular y AB AC, demuestre que B C.
60. Si A y B son no singulares, demuestre que (AB)1
B1A1.
61. Sean A y B matrices n n. En general, ¿es
(A
B) 2
A2
2AB
B2 ?
62. Se dice que una matriz cuadrada es una matriz diagonal
si todos sus elementos fuera de la diagonal principal son
cero, esto es, aij 0, i j. Los elementos aii en la diagonal principal pueden ser cero o no. La matriz identidad
multiplicativa I es un ejemplo de matriz diagonal.
a) Determine la inversa de la matriz diagonal de 2 2
A
a11
0
0
a 22
cuando a11 0, a22 0.
b) Encuentre la inversa de una matriz diagonal A 3 3
cuyos elementos aii en la diagonal principal son todos
distintos de cero.
c) En general, ¿cuál es la inversa de una matriz diagonal
A n n cuyos elementos de la diagonal principal aii
son distintos de cero?
APÉNDICE III
TRANSFORMADAS DE LAPLACE
f (t)
{ f (t)}
F(s)
1. 1
1
s
2. t
1
s2
3. t n
n!
, n un entero positivo
sn 1
4. t
1/2
5. t 1/2
Bs
1
2s3/2
(
6. t a
7. senkt
8. cos kt
9. sen 2 kt
10. cos2 kt
11. e at
12. senh kt
13. cosh kt
14. senh2 kt
15. cosh2 kt
16. te at
17. t n e at
1)
1
s
,
a
1
k
s2
k2
s
s2
k2
2k 2
s(s
4k2)
2
s2
s(s2
2k2
4 k2)
1
s
a
k
s2
k2
s
s2
k2
s(s2
2k2
4k2)
s2
s(s2
2k2
4k2)
1
(s
(s
a)2
n!
,
a)n 1
n un entero positivo
APE-21
APE-22
l
APÉNDICE III
TRANSFORMADAS DE LAPLACE
{ f (t)}
f (t)
18. e at senkt
s
20. e at senhkt
21. e at cosh kt
22. t senkt
23. t cos kt
24. senkt
kt cos kt
25. senkt
kt cos kt
26. t senhkt
27. t cosh kt
28.
eat
a
29.
aeat
a
k
a)2
(s
19. e at cos kt
ebt
b
bebt
b
F(s)
k2
a
(s
a)2
k2
(s
k
a)2
k2
s
a
(s
a)2
(s2
2ks
k2)2
s2
(s2
k2
k2)2
k2
2 ks2
(s2 k2)2
(s2
2 k3
k2)2
(s2
2 ks
k2)2
s2
(s2
k2
k2)2
(s
1
a)(s
b)
(s
s
a)(s
b)
2
30. 1
cos kt
31. kt
senkt
k
s(s2
k2)
k3
s2 (s2 k2)
32.
a sen bt b sen at
ab (a2 b2)
(s2
1
a2)(s2
b2)
33.
cos bt
a2
(s2
s
a2)(s2
b2)
cos at
b2
34. senkt senhkt
s4
2 k2s
4k4
35. senkt cosh kt
k(s2
s4
2 k2 )
4k4
36. cos kt senhkt
k(s2
s4
2k2 )
4k4
37. cos kt cosh kt
s3
4
s
4k4
APÉNDICE III
TRANSFORMADAS DE LAPLACE
{ f (t)}
f (t)
1
1s2 k2
s a
ln
s b
38. J 0 (kt)
39.
40.
41.
ebt
eat
t
2(1
2(1
F(s)
cos kt)
t
ln
cosh kt)
t
ln
s2
k2
s2
s2
k2
2
s
42.
senat
t
arctan
43.
senat cos bt
t
1
a b
arctan
2
s
44.
1
e
1 t
e
45.
a
e
2 1 t3
B
a2 /4t
e
a
2 1t
46. erfc
47. 2
a2 /4t
t
e
e
a2 /4t
a erfc
2
ea b eb t erfc b 1t
2
erfc
(t
52. f (t
a 1s
1s
a1s
a1s
a
2 1t
a
2 1t
a
2 1t
e a1s
s 1s
e a1s
1s(1s b)
be a1s
s( 1s b)
a
2 1t
50. e at f (t)
51.
F(s
e
a)
a)
as
s
a) (t
53. g(t) (t
a)
a)
54. f (n) (t)
e
as
e
as
F(s)
{ g(t
s(n
sn F(s)
n
55. t n f(t)
( 1)n
f ( )g(t
)d
F(s)G(s)
0
57. d(t)
58. d(t
1
t 0)
e
st0
a)}
1)
d
F(s)
ds n
t
56.
1
a b
arctan
2
s
s
48. ea b eb t erfc b 1t
49.
a
s
f (0)
f (n
1)
(0)
l
APE-23
RESPUESTAS A LOS PROBLEMAS
SELECCIONADOS CON NÚMERO IMPAR
EJERCICIOS 1.2 (PÁGINA 17)
1. y 1兾 4ex)
3.
5. y 1兾 x 2 , ) 7.
9. x
13
4
cos t
1
4
sen t
y 1兾 x 2 )
x cos t 8 sen t
11. y
3 x
2e
1
x
2e .
13. y 5ex1
15. y 0, y x 3
17. VHPLSODQRVGH¿QLGRVSRUy 0 o y 0
19. VHPLSODQRVGH¿QLGRVSRUx 0 o x 0
21. ODVUHJLRQHVGH¿QLGDVSRUy 2, y 2, o
2 y 2
23. FXDOTXLHUUHJLyQTXHQRFRQWHQJD
25. sí
27. no
29. a) y cx
b) cualquier región rectangular que no toque el eje y
c) No, la función no es derivable en x 0.
31. b) y 1兾 x HQ , 1);
y 1兾 x HQ 1, );
c) y HQ , )
39. y 3sen 2x
41. y 0
43. sin solución
EJERCICIOS 1.3 (PÁGINA 27)
dP
dP
kP r;
kP r
1.
dt
dt
dP
k1 P k2 P2
3.
dt
dx
kx (1000 x)
7.
dt
dA
1
A 0; A(0) 50
9.
dt
100
dA
7
dh
A 6
13 13.
11.
dt
600 t
dt
di
Ri E(t)
dt
d 2x
m 2
kx
dt
dv
dm
m
v
kv
dt
dt
d 2r gR 2
0
dt 2
r2
dx
kx r, k 0
dt
15. L
19.
21.
23.
27.
17. m
mg
dv
dt
R
dA
dt
dy
29.
dx
25.
k(M
0
A), k
1x2
y
x
y2
REPASO DEL CAPÍTULO 1 (PÁGINA 32)
1.
5.
9.
13.
15.
17.
19.
dy
10y
3. y k 2 y 0
dx
y 2y y 0
7. a), d)
b)
11. b)
y c 1 y y c 2e x, c 1 y c 2 constantes
y x 2 y 2
a) El dominio es el conjunto de todos los números reales.
b) \DVHD R )
Para x 0 HOLQWHUYDORHV , 0) y para x 0 2 el
LQWHUYDORHV ).
21. c)
x2,
x2,
y
25. )
33. y 32 e3x
3
9
x
2e
35. y 0 3, y 1 0
dP
k(P 200
37.
dt
0
0
x
x
1
23. (
, )
31. y
1 3x
2e
1
2
e
x
2x
2x.
10t)
EJERCICIOS 2.1 (PÁGINA 41)
21. HVDVLQWyWLFDPHQWHHVWDEOH DWUDFWRU HVLQHVWDEOH
UHSXOVRU
23. 2 es semiestable.
25. HVLQHVWDEOH UHSXOVRU HVVHPLHVWDEOHHV
DVLQWyWLFDPHQWHHVWDEOH DWUDFWRU
27. HVDVLQWyWLFDPHQWHHVWDEOH DWUDFWRU HVLQHVWDEOH
UHSXOVRU
39. 0 P0 h兾k
41. 1mg>k
EJERCICIOS 2.2 (PÁGINA 50)
1
c
1. y
3. y
5 cos 5x
1
3x
3e
c
7. 3e 2e c
5. y cx
1 2
1 3
1 3
y
2y
ln
y
c
x
ln
x
x
9. 3
2
9
11. 4 cos y 2x sen 2x c
13. e x 1) 2 e y 1) 1 c
4
c
1h
450
kv2
mg
2y
3x
RES-1
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 2
EJERCICIOS 1.1 (PÁGINA 10)
1. lineal, segundo orden
3. lineal, cuarto orden
5. no lineal, segundo orden 7. lineal, tercer orden
9. lineal en x pero no lineal en y
15. el dominio de la función es [2, ); el intervalo más
JUDQGHGHGH¿QLFLyQSDUDODVROXFLyQHV 2, )
17. el dominio de la función es el conjunto de números
reales excepto en x 2 y x 2; los intervalos de
GH¿QLFLyQPiVJUDQGHVSDUDODVROXFLyQVRQ , 2),
R )
et 1
GH¿QLGDHQ OQ RHQ OQ )
19. X
et 2
27. m 2
29. m 2, m 3
31. m 0, m 1
33. y 2
35. ninguna solución es constante
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 2
RES-2
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
l
15. S ce kr
17. P
cet
1 cet
19. y 3) 5 e x c x 4) 5 e y
21. y
sen 12 x2
(
23. x
tan 4t
27. y
1
2x
x2
,
, ln2)
)
c
(1 1/x)
e
x e-t2dt
4
冪5
1
2
4x 1
3 e
3 e4 x 1
37. y 1 y y 1 son soluciones singulares del problema
21; y 0 del problema 22
1
1
39. y 1
41. y 1 10 tan 10 x
35. a) y
2, y
2, y
2
( )
45. y
tan x
sec x
47. y
[ 1
c(1
49. y
2 冪 冪xe 冪x
c
冪x)]2
e 冪x
57. y x) h兾L2)x 2 a
4
EJERCICIOS 2.4 (PÁGINA 67)
1. x2
11.
13.
15.
17.
19.
5. y
e3x
ce x, (
ce
x
3
,(
, ); ce
, ); ce
3
x
x
es transitoria
es transitoria
7. y x 1 ln x cx 1 ); la solución es transitoria
9. y cx x cos x, )
1
5x
11. y
1 3
7x
13. y
1
2 x
2x e
cx 4, (0, ); cx
4
es transitoria
cx 2 e x, (0, ); cx 2e
x
es transitoria
15. x 2y 6 cy 4 )
17. y sen x c cos x ʌ兾2, ʌ兾2)
19. x 1)e xy x 2 c 1, ); la solución es transitoria
21. VHFș tan ș)r ș cos ș c ʌ兾2, ʌ兾2)
23. y e3x cx 1e3x ); la solución es transitoria
1
1
76 5x
, )
25. y
5x
25
25 e ; (
1 x
27. y x e e)x 1, )
E
E
29. i
i0
e Rt /L , (
, )
R
R
31. y 2x 1 5兾x; )
33. x 1)y x ln x x )
35. y 2 3ecos x; , )
37. y
39. y
41. y
43. y
1
2 (1
1 6
2 (e
1
2
(
1
2e
2x
e ),
1)e 2 x,
3
x2
,
2e
3
x2
,
2 e
)
2x 1
4x2 ln x
ex
2
1
1
2
4e
(1
0
x
0
x
x
1
2x
,
4e 2 )x2,
1 ex (erf(x)
2
3
x
3
c
3.
21.
23.
25.
27.
31.
35.
5 2
2x
4 xy
c
1 3
3x
x2 y
xy2
c
4
3
y
4ty t 2 5t 3y 2 y 8
y 2 sen x x 3 y x 2 y ln y y 0
k 10
29. x 2 y 2 cos x c
2 2
3
x y x c
33. 3x 2 y 3 y 4 c
10
3x
2ye3x
x c
3 e
2
37. ey (x2
4)
20
y1 (x)
x2
1x4
x3
4
y2 (x)
2
4
3
4
8
45. a) v(x)
x
1x
x
B3
9
x2
x
b) 12.7 pies/s
EJERCICIOS 2.5 (PÁGINA 72)
x ln x
1. y
3. (x
cx
y)ln x
y
y ln x
5. x
y
c(x
y)
cy
7. OQ x 2 y 2) 2 tan1 y兾x) c
9. 4x y OQ兩y兩 c) 2
11. y 3 3x 3 ln兩x兩 8x 3
13. ln兩x兩 e y/x 1
15. y 3 1 cx3
1
17. y 3 x 3 ce3x
19. e t/y ct
21. y
3
9
5
x
1
49
5
x
6
23. y x 1 WDQ x c)
25. 2y 2x VHQ x y) c
27. y 2x 3) x c) 2
29. cot(x y) csc(x y)
2
1
cx 3
35. b) y
4 x
x
(
)
x
12
1
EJERCICIOS 2.6 (PÁGINA 77)
1
0
x
x
1
erf(1))
1
2y4
7. no exacta
ln cos x
cos x sen y
t 4 y 5t 3 ty y 3 c
1. y ce 5x , )
1
4
1
3
7y
no exacta
xy 2xe x 2e x 2x 3 c
x 3y 3 tan1 3x c
39. c)
EJERCICIOS 2.3 (PÁGINA 59)
3. y
3 2
2y
x
5. x 2 y 2 3x 4y c
9. xy3 y2 cos x 12 x2
x
29. y
x 1;
ex ); (
ln(2
e
25. y
11
13
2
冪x 2
31. y
33. y
)
3
4
(
53. E t) E 0 e t4)/RC
1.
3.
5.
7.
9.
13.
y 2 2.9800, y 4 3.1151
y10 2.5937, y 20 2.6533; y e x
y5 0.4198, y10 0.4124
y5 0.5639, y10 0.5565
y5 1.2194, y10 1.2696
Euler: y10 3.8191, y 20 5.9363
RK4: y10 42.9931, y 20 84.0132
1
c
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
25. y
1
4
c(x2
4)
4
27. y csc x ʌ, 2ʌ)
1
4
29. b) y
(x
2 1y0
x0) 2, (x0
2 1y0, )
EJERCICIOS 3.1 (PÁGINA 88)
1. 7.9 años; 10 años
3. 760; aproximadamente 11 personas/año
5. 11 h
7. 136.5 h
9. I 0.00098I0 o aproximadamente 0.1% de I0
11. 15 600 años
13. T 36.67° F; aproximadamente 3.06 min
15. aproximadamente 82.1 s; aproximadamente 145.7 s
17. 390°
19. aproximadamente 1.6 horas antes de descubierto el
cuerpo
21. A t) 200 170et/50
23. A (t)) 1000 1000et/100
25. A(t) 1000 10t 101 (100 t) 2; 100 min
27. 64.38 lb
29. i(t) 35 35 e 500t ; i : 35 como t :
31. q(t)
1
100
1
50t
;
100 e
60 60e t /10,
60(e2 1)e t /10,
33. i(t)
1
50t
2e
i(t)
0
t
t
c)
39. a) v(t)
g k
t
4k
c) 33 13 segundos
r0
9. 29.3 g; X : 60 como t :
1H
11. a) h(t)
;
; 0 g de A y 30 g de B
4Ah 2
t ; I es 0
Aw
t
1HAw 4Ah
b) 576 110 s o 30.36 min
13. a) aproximadamente 858.65 s o 14.31 min
b) 243 s o 4.05 min
15. a) v(t)
mg
kg
tanh
t
Bk
Bm
donde c1
b)
c)
mg
k
gr0
r0
4k k
t r0
5
13
13
2P 0 5
tan
t tan 1
2
2
2
13
el tiempo en que desaparecerá es
2
5
2P 0 5
t
tan 1
tan 1
13
13
13
7. P(t)
tanh
1
c1
k
v0
Bmg
mg
Bk
m
kg
ln cosh
t c1
c2,
k
Bm
donde c2 m兾k)ln cosh c1
dv
mg kv2
V,
17. a) m
dt
donde ȡ es la densidad del agua
mg
V
1kmg k V
b) v(t)
tanh
t
k
m
B
mg
mg
v0
e kt /m
k
k
mg
como t :
v:
k
mg
m
mg
s(t)
t
v0
e kt/m
k
k
k
m
v
k 0
EJERCICIOS 3.2 (PÁGINA 98)
1. a) N 2000
2000 et
b) N(t)
; N(10) 1834
1999 et
3. 1 000 000; 5.29 meses
4(P0 1) (P0 4)e 3t
5. b) P(t)
(P0 1) (P0 4)e 3t
c) Para 0 P0 1, el tiempo en que desaparecerá es
1 4(P0 1)
t
ln
.
3
P0 4
c) s(t)
20
20
35. a) v(t)
b)
41. a) P(t) P0 e(k1 k 2 )t
43. a) Como t : , x(t) : r>k.
b) x t) r兾k r兾k)ekt OQ 兾k
47. c) 1.988 pies
3
19. a)
b)
c)
21. (a)
(b)
(b)
mg
V
k
B
W0yW2
W x) 2 sech2 x c1)
W x) 2 sech2 x
1
P(t)
( 0.001350t 10 0.01)100
aproximadamente 724 meses
aproximadamente 12 839 y 28 630 966
c1
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 3
REPASO DEL CAPÍTULO 2 (PÁGINA 78)
1. A兾k, un repulsor para k 0, un repulsor para k 0
3. verdadero
d 3y
5.
x sen y
7. verdadero
dx 3
dy
x
11.
(sen x)y x
9. y c1ee
dx
dy
13.
( y 1) 2 ( y 3) 3
dx
15. semiestable para n par e inestable para n impar;
semiestable para n par y asintóticamente estable para n
impar.
19. 2x sen 2 x OQ y 2 1) c
21. x 1)y 3 3x 3 c
1
23. Q ct 1 25 t4 ( 1 5 ln t )
RES-3
l
RES-4
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
l
EJERCICIOS 3.3 (PÁGINA 108)
1. x(t) x0 e 1 t
x0
y(t)
1
(e
2
2
2
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 4
e
2t
e
1t
)
1
x0 1
z(t)
1t
EJERCICIOS 4.1 (PÁGINA 124)
1
2
1
e
2
t
1
3. 5, 20, 147 días. El tiempo cuando y t) y z t) son iguales
tiene sentido porque se ha ido la mayor parte de A y
la mitad de B han desparecido así que se debe haber
formado la mitad de C.
dx1
6 252 x1 501 x2
5.
dt
dx2
2
2
25 x1
25 x2
dt
dx1
x2
x1
3
2
dt
100 t
100 t
dx2
x1
x2
2
3
dt
100 t
100 t
b) x1 t) x 2 t) 150; x 2 ⬇ 47.4 lb
7. a)
di2
(R1 R2 )i2 R1 i3
E(t)
dt
di
L2 3 R1 i2 (R1 R3 ) i3 E(t)
dt
15. i i 0 , s n i 0 , r 0
13. L1
EJERCICIOS 4.2 (PÁGINA 128)
1. y 2 xe 2x
3. y 2 sen 4x
5. y 2 senh x
7. y 2 xe 2x/3
9. y 2 x 4 ln兩x兩
11. y 2 1
13. y 2 xFRV OQx)
15. y 2 x 2 x 2
1
5
17. y2 e2x, yp
19. y2 e2x, yp 2 e3x
2
REPASO DEL CAPÍTULO 3 (PÁGINA 111)
1. dP兾dt 0.15P
3. P 8.99 miles de millones
10
1100 y2
5. x 10 ln
y
7. a)
BT1
1
b) T(t)
T2 BT1 T2
,
B
1 B
BT1 T2 T1
1 B
1
4t
20,
9. i(t)
1 2
5t ,
0
ac1eak1 t
,
1 c1eak1t
11. x(t)
1100
T2 k(1
e
B
C(t)
A(t)
(b) 1.3
EJERCICIOS 4.3 (PÁGINA 133)
1. y c1 c2ex/4
3. y c1e 3x c 2e2x
4x
4x
5. y c1e c2 xe
7. y c1e 2x/3 c 2ex/4
9. y c1 cos 3x c 2 sen 3x
11. yy e 2x (c1 cos x c 2 sen x) )
13. y e x /3 c1 cos 13 12 x c2 sen 13 12 x
15. y c1 c 2 ex c 3 e 5x
17. y c1ex c 2 e 3x c 3 xe 3x
19. u c1 e t et c2 cos t c3 sen t)
21. y c1ex c2 xex c3 x 2 ex
23. y c1 c2 x e x /2 c3 cos 12 13 x c4 sen 12 13 x
25. y c1 cos 12 13 x c2 sen 12 13 x
(
c3 x cos 12 13 x
(O 1 O 2)t
K0e
,
O1
K 1
O1 O2 0
O2
K 1
O1 O2 0
109 años
(c) 89%, 11%
B)t
c1 eak1 t ) k2 /k1
c2 (1
y(t)
13. x y 1 c 2ey
15. (a) K(t)
y2
10
10
t
t
1
1
1. y 2 ex 2 e x
3. y 3x 4x ln x
9. , 2)
e
senhx
(ex e x )
b) y
11. a) y
2
e
1
senh 1
13. a) y e x cos x e x sen x
b) ninguna solución
c) y e x cos x eʌ/2e x sen x
d) y c2e x sen x, donde c2 es arbitraria
15. dependiente
17. dependiente
19. dependiente
21. independiente
23. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W e3x,
e 4x ) 7e x 0; y c1 e3x c2 e 4x.
25. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W e x cos 2x, e x sen
2x) 2e 2x 0; y c1e x cos 2x c2 e x sen 2x.
27. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W x 3, x 4 )
x 6 0; y c1 x 3 c2 x 4.
29. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W x, x2, x2 ln x)
9x6 0; y c1 x c2 x2 c3 x2 ln x.
2x2 6x 13 e2x
35. b) yp x 2 3x 3e 2x; y p
[
e
(O 1 O 2)t
],
[
e
(O 1 O 2)t
]
27.
29.
31.
33.
35.
37.
)
(
c4 x sen 12 13 x
u c1e r c 2re r c 3er c4rer c5e5r
y 2 cos 4 x 12 sen 4x
1 5(t 1)
1
(t 1)
y
3 e
3 e
y0
1
5
6x
6x
y 365
6 xe
36 e
y e 5x xe 5x
39. y 0
)
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
y
49. y
53. y
57. y
1
1
2
5
e
13
cosh 13x
6y
9y
8y
13x
5
e13x;
13
1
1
2
5
senh 13x
13
5y
0
0
0
2y
2y
51. y
55. y
0
2y
39. y
41. y
43. y
0
EJERCICIOS 4.4 (PÁGINA 143)
1. y c 1e x c 2e 2x 3
3. y c1 e5 x c 2 xe5x 65 x 35
5. y c1 e 2x c2 xe 2x x2 4x 72
7. y c1 cos 13x c2 sen 13x
4x2 4x
9. y c 1 c2e x 3x
11. y c1 ex/2 c 2 xex/2 12 12 x2 ex/2
13. y c1 cos 2x c2 sen 2 x 34 x cos 2x
15. y c1 cos x c2 sen x 12 x2 cos x 12 x sen x
17. y c1 ex cos 2x c2 ex sen 2x 14 xex sen 2x
19. y c1 e x c2 xe x 12 cos x
4
3
9
25 cos 2x
c2 x c3 e6x 14 x2
c2 xex c3 x2 ex
sen 2x
6
1
21. y c1
37 cos x
37 sen x
23. y c1 ex
x 3 32 x3 ex
25. y c1 cos x c 2 sen x c 3x cos x c 4x sen x
x 2 2x 3
12 sen 2 x 12
27. y
29. y 200 200ex/5 3x 2 30x
31. y 10e2x cos x 9e2x sen x 7e4x
F0
F0
33. x
sen t
t cos t
2 2
2
35. y 11 11ex 9xex 2x 12x2 ex
37. y 6 cos x FRW VHQx x 2 1
39. y
41. y
4 sen 13x
sen 13
13 cos 13
cos 2x
2
3 cos 2x
5
6
sen 2x
5
6 sen 2x,
1
3
EJERCICIOS 4.5 (PÁGINA 150)
59.
61.
63.
65.
67.
69.
71.
1 5x
2e
x
x
1. D D 2)y sen x
3. D D 2)y x 6
5. D D 5) 2y e x
7. D D D 5)y xex
9. D D D 2 2D 4)y 4
15. D 4
17. D D 2)
19. D 2 4
21. D 3 D 2 16)
23. D D 1) 3
25. D D 2 2D 5)
2
3
4
27. 1, x, x , x , x
29. e 6x, e3x/2
33. 1, e 5x, xe 5x
31. cos 15x, sen 15x
3x
3x
35. y c 1e c 2 e 6
37. y c 1 c 2ex 3x
8x2
1
7 xe
4x
c2 e
y
y
y
c1 e 3x c2 xe
c1 e x c2 ex
ex (c1 cos 2x
1
4 sen x
2 4x
1
4x
3x
343 e
49 xe
1 3 x
1 2 x
1
x
6x e
4x e
4 xe
c2 sen 2x) 13 ex sen x
13
13
x c2 sen
x
2
2
sen x 2 cos x x cos x
11 2
7 3
c1 c2 x c3 e 8x 256
x
32 x
c1 ex c2 xex c3 x2 ex 16 x3 ex x
5
y c 1 cos 5x c 2 sen 5x 2x cos 5x
y
y
y
y
y
y
y
e
x/2
c1 cos
x
x
c1 c2 x c3 e
c4 xe
5 8x
1
5
8x
e
e
8
4
8
9
1 2
41
41 5x
e
25 x
10 x
125
125
cos x 113 sen x 83 cos
2e2x cos 2x 643 e2x sen 2x
1 4
16 x
13
1 2 x
2x e
2x
1 2
2x
2x cos x
3 2
16 x
1 3
8x
3
32 x
EJERCICIOS 4.6 (PÁGINA 156)
1. y c1 cos x c2 sen x x sen x cos x ln cos x
3. y c1 cos x c2 sen x 12 x cos x
5. y c1 cos x c2 sen x 12 16 cos 2x
7. y c1 ex c2 e x 12 x senh x
x
9. y
11.
13.
15.
17.
>2
>2
8 3
3x
y c 1e c 2e 3x e x 3
y c1 cos 5x
c2 sen 5x
c1 e2x
1
4
2x
c2 e
e2x ln x
e
2x
x0
0
x0
2x
sen x, 0
) e3x
c1 e
3x
1
x
57. y
(
12
25
45.
47.
49.
51.
53.
55.
1
2x
2 4
3x
4x
c1 e 2x c2 x e 2x
c1 c2 x c3 e x
y c 1ex c 2e2x ex e2x OQ e x)
y c 1e2x c 2 ex e2x sen e x
y c1 e t c2 te t 12 t2 e t ln t 34 t2 e t
y c1 ex sen x c2 ex cos x 13 xex sen x
1 x
3 e cos x ln cos x
19. y
1
x/2
4e
3 x/2
4e
21. y
4
4x
9e
25 2x
36 e
1 2 x/2
8x e
1
x/2
4 xe
1
2x
4e
1
x
9e
23. y c 1x 1/2 cos x c 2x 1/2 sen x x 1/2
25. y
c1
27. y
c1 ex
c2 cos x c3 sen x
sen x ln sec x tan x
c2 e
x
c3 e2x
1
30
ln cos x
e4x
EJERCICIOS 4.7 (PÁGINA 162)
1. y c 1x 1 c 2 x 2
3. y c 1 c 2 ln x
5. y c 1FRV OQx) c 2VHQ OQx)
7. y
c1 x(2
9. y
c1 cos
16)
c2 x(2
( 15 ln x)
16)
c2 sen
( 15 ln x)
e4t
dt ,
t
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 4
41. y
RES-5
l
RES-6
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
l
11. y c 1x 2 c 2x 2 ln x
[c1 cos(16 13 ln x)
c1 x3 c2 cos( 12 ln x )
13. y
x
15. y
c2 sen 16 13 ln x
(
)]
c3 sen ( 12 ln x )
1/2
17. y c 1 c 2 x c 3 x 2 c 4 x 3
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 4
19. y
c1
c2 x
1 5
5x
5
ln x
21. y c 1x c 2 x ln x x OQx)
23. y c 1x 1 c 2 x ln x
25. y 2 2x 2
27. y FRV OQx) VHQ OQx)
2
29. y
3
4
1 2
4x
ln x
33. y
c1 x
1
35. y
x2 [c1 cos(3 ln x)
31. yy cc11xx
31.
2
1 2
30 x
8
c2 x
cc2 x2 x
2
10
10
3
10 x
37. y x) x) OQ x), x 0
39. y c1(x 3)2 c2(x 3)7
1/2
c1 cos[ln(x
41. y
2)]
c2 sen[ln(x
2)]
x
1
4
senh 4(x
3. yp(x)
(x
9. y
11. y
t)e
1
3
f(t)dt
sen3(x
t) f(t)dt
c1e
4x
c1e
x
1
4
4x
c2e
c2 xe
c1 cos3x
15. yp (x)
1 2 5x
2x e
senh4(x
t)te
2t
t)e
(x
2x 2
4x
29. y
46 3
45 x
e tdt
1
3
1
16 e
31. y(x)
5ex
3e
donde yp (x)
33. y
cos x
sinx
1
36
x
1
2 ln x
1. x c 1e t c 2 te t
y c 1 c 2)e t c 2 te t
3. x c 1 cos t c 2 sen t t 1
y c 1 sen t c 2 cos t t 1
5. x 12 c1 sen t 12 c2 cos t 2c3 sen 16t
c1 sen t
sen3(x
t)(t
sent)dt
x0
2x
yp (x),
1 cosh x, x
1 cosh x, x
yp(x),
0
0
c3 sen 16t
c2 cos t
c4 cos 16t
c1 e2t
c2 e
2t
c3 sen 2t
c4 cos 2t
1 t
5e
y
c1 e2t
c2 e
2t
c3 sen 2t
c4 cos 2t
1 t
5e
9. x
c1
c2 cos t
c3 sen t
17 3t
15 e
y
c1
c2 sen t
c3 cos t
4 3t
15 e
15. x
y
1
6 ln x
2c4 cos 16t
7. x
c1 et
(
c2 e
3
2 c2
1
2
( 12 13c2
3
4t
4 c1 e
cos 12 13t
c3 e
13c3 e
sen 12 13t
5et
c1
c2 t
c3 et
(c1
c2
2)
c1 et
c2 e
y
c1 et
(
t/2
1
2 c2
( 12 13c2
c1 et ( 12 c 2
( 12 13c2
c4 e
(c 2
1 2
2t
t
1)t
sen 12 13t
1
2
13c3 e
)
)e
1
2 c3
1
2
t/2
13c3 e
)
)e
1
2 c3
1
2
2 gt
2t
c3 t
c4
c4 e
t/2
t/2
cos 12 13t
sen 12 13t
cos 12 13t
3t
1 2
2t
sen 12 13t
c3 e
t/2
t/2
t
cos 12 13t
19. x 6c 1e 3c 2 e 2c 3e
y c 1e t c 2 e 2t c 3e 3t
z 5c 1e t c 2 e2t c 3 e 3t
21. x e 3t3 te 3t3
y e 3t3 2te 3t3
23. mx 0
my mg;
x c 11t c 22
t
y
t/2
) t / 2 cos 12 13t
3
t/2
sen 12 13t
2 c3) e
c2
17. x
z
t/2
4 t
3e
c1 e4t
y
x
x ln x
1
2
20 x
1
2x
1
2
2 (ln x)
13. x
t)
S
yp(x)
cos x
sen x x sen x cos x ln senx
2
25
9 2x
1
2x
2x
y 16 e
16 e
4 xe
y
e 5x 6xe 5x 12 x2 e5x
y
x sen x cosx ln sen x
y (cos1 2)e x (1 sen1 cos1)e 2x e 2x sen e x
27. y
x
43. yp(x)
dt
x0
1 2x
16 e
1)f (t)dt
(t
x
41. yp(x)
x0
(x
c2 sen3x
tf (t)dt
sen(x 1) sen x
1
sen1
sen1
ex cos x e x sen x ex
y
x
x
x
1)
0
39. yp(x)
11. x
x0
1
2x
4 xe
19.
21.
23.
25.
t)
1 2
2x
x
13. yp (x)
17.
(x
x0
5. yp(x)
7. y
t)f(t)dt
x0
x
37. yp(x)
y
EJERCICIOS 4.8 (PÁGINA 173)
1. yp(x)
(x
3
1
x
35. yp(x)
0
x
3
EJERCICIOS 4.9 (PÁGINA 177)
4
13
c2 sen(3 ln x)]
1/2
0,
x
10 10 cos x, 0
20cos x,
x
donde yp(x)
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
c1 y
9. y
2
3 (x
11. y
tan
17. y
c2
1)3兾2
(14
1
1
),
1
2
b)
c21 x2
c2
c)
x
1 3
2x
1 4
6x
1 5
10 x
x
1 2
2x
2 3
3x
1 4
4x
7 5
60 x
7. a)
b)
c)
x2
REPASO DEL CAPÍTULO 4 (PÁGINA 183)
1. y 0
3. falso
5. y
9. yp
c1 cos5x
2
x
7. x2y
c2 sen5x
2
x
11. (
3xy
4y
0
c1 e(1
13) x
c2 e(1
, 0); (0, )
13) x
19. y
21. y
c1 e
x/3
e
3x / 2
(c2 cos 12 17x
e3x / 2 c2 cos 12 111x
(
46
125 x
c2 e2x
c1
25. y
e x (c1 cos x
c3 e3x
)
)
1
5 sen x
c2 sen x)
1
;
4
4 3
5x
1
5 cos
x
e x cos x ln sec x
27. y c 1x 1/3 c 2 x 1/2
29. y c 1x 2 c 2x 3 x 4 x 2 ln x
31. a) y c1 cos x c2 sen x A cos x
B sen x,
;
y c1 cos x c2 sen x Ax cos x
Bx sen x,
;
b) y c1 e x c2e x Ae x ,
x
x
x
y c1 e
c2e
Axe ,
33. a) y c 1cosh x c 2 senh x c 3 x cosh x
c 4 x senh x
b) y p Ax 2 cosh x Bx 2 senh x
35. y e xʌ cos x
37. y 134 ex 54 e x x 12 sen x
39. y x 2 4
c1 et 32 c2 e2t 52
43. x
y c 1e t c 2 e 2t 3
45. x c 1e t c 2 e 5t te t
y c 1e t 3c 2 e 5t te t 2e t
2t
b) x(t)
sin(2t
0.588)
x(t)
冪13
4
cos(2t
0.983)
2
3 cos
1
2 sen
10t
5
6 sen(10t
c3 sen 12 17x
c3 sen 12 111x
3
4 sen
2t
冪13
4
c)
10t
0.927)
5
pies;
6
5
c) 15 ciclos
d) 0.721 s
(2n 1)
0.0927, n 0, 1, 2, . . .
e)
20
f) x 0.597 pies
g) x 5.814 pies/s
h) x 59.702 pies/s2 i)
8 13 pies/s
n
n
j) 0.1451
; 0.3545
, n 0, 1, 2, . . .
5
5
n
k) 0.3545
, n 0, 1, 2, . . .
5
13
120 lb/pies; x(t)
sen 813 t
12
a) arriba
b) apuntando hacia arriba
a) abajo
b) apuntando hacia arriba
1
1
1
e 2; esto es, la pesa está
4 s; 2 s, x 2
aproximadamente 0.14 pies debajo de la posición de
equilibrio.
1
4
a) x(t) 3 e 2t 3 e 8t
b)
36 2
25 x
222
625
23. y
1
2 cos
11. a) x(t)
17. y c 1 c 2 e5x c 3xe5x
1
;x
2
6
1
9
12
;x
4
2
32
4
4 pies/s; hacia abajo
(2n 1)
t
, n 0, 1, 2, . . .
16
la masa de 20 kg
la masa de 20 kg; la masa de 50 kg
t Qʌ, n 0, 1, 2, . . . ; en la posición de equilibrio; la
masa de 50 kg se está moviendo hacia arriba mientras
que la masa de 20 kg se está moviendo hacia arriba
cuando n es par y hacia abajo cuando n es impar.
9. a) x(t)
13. y c1e3x c2e5x c3xe5x c4ex c5xex c6x2ex;
y c1x3 c2 x5 c3 x5 ln x c4 x c5 x ln x c6 x OQx)2
15. y
1
;x
4
8
12
x
3
2
x
1 2
2x
11
19. y
5. a) x
4
3
1
2x
1
11
c1
13. y
15. y
x
4
3x
tan x
13.
17.
19.
21.
23.
()
25. a) x(t)
e
2t
(
15
e
2
c) t 1.294 s
5
b)
27. a)
2
b) x(t)
5
8t
3e
2
2t
3e
b) x(t)
cos 4t
2t
1
2
)
sen 4t
(
4.249
5
2
c) 0
sen 4t
)
5
2
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 5
1 3
3y
RES-7
EJERCICIOS 5.1 (PÁGINA 199)
12
1.
8
1
3. x(t)
4 cos 4 16 t
EJERCICIOS 4.10 (PÁGINA 182)
c2
3. y ln cos (c1 x)
1
1
ln c1 x 1
x c2
5. y
c21
c1
7.
l
RES-8
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
l
29. x(t)
4
147
cos
t
3
2
t/2
e
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 5
1
4t
4e
33. x(t)
1
2
9
4
cos 4t
2t
2e
1
4
1
2t
2e
sen 4t
d x
dt 2
k(x
15.
dx
o
dt
h)
(
2t
e
32
13
72
13
sen 2t
sen 2t
3
4t
sen 2t
56
13
cos t
1
8
5
4t
cos 2t
F0
t sen t
2
45. 4.568 C; 0.0509 s
47. q t) 10 10e3t FRVt sen 3t)
i t) 60e3t sen 3t; 10.432 C
150
49. q p 100
13 sen t
13 cos t
53. q(t)
57. q(t)
100
13
150
13
cos t
1
10t
2e
(cos 10t
2
1
1LCi0 sen
i(t)
i0 cos
t
1LC
2
cos
t
1LC
LC
3 3
2; 2
E0 C
2
1
LC
cos t
E0 C
t
sen
2
LC
1LC
sen t
7. y(x)
P
w0 EI
L
senh
P2
BEI
w0 2
x
2P
25.
n
n 1T
,n
L1
w0 EI
P2
u0
b
27. u(r)
x
sen
n x
5
1, 2, 3, . . . ; y
u1 ab
a r
u1 b
b
sen
n x
L
u0 a
a
w0 L 1EI
P 1P
t
3
8
110; 7.5 pies
ar
1 r2
Cuando r 1,
1 1 2
1 a
y(x)
(x
a 2)
ln
2 2a
a x
c) Las trayectorias se intersecan cuando r 1.
Ȧ0
19. a) ș(t)
EJERCICIOS 5.2 (PÁGINA 209)
w0
1. a) y(x)
(6L2x2 4Lx3 x4)
24EI
w0
3. a) y(x)
(3L2 x2 5Lx3 2x4)
48EI
w0
5. a) y(x)
(7L4 x 10L2 x3 3x5 )
360EI
c) x ⬇ 0.51933, ymáx ⬇ 0.234799
w0 EI
P
cosh
x
2
P
BEI
e
Cuando t 0, x a, y 0, dy兾dx 0.
b) Cuando r 1,
a
1
x 1 r
1
x 1 r
y(x)
2 1 r a
1 r a
C
t
1LC
1
y
d 2x
x 0
dt 2
15. a) 5 pies b) 4 110 pies/s c) 0
17. a) xy
r 11 (y )2.
sen 10t)
1
q
1LC 0
E0C
1
LC
1, 2, 3, . . . ;
7.
sen t
E0C
q0
n2 2
,n
25
y cos nx
EJERCICIOS 5.3 (PÁGINA 218)
39. b)
ip
n
sen t
cos 2t
37. x(t)
)
cos 2t
56
13
1, 2, 3, . . . ;
17. Ȝn n 2, n 1, 2, 3, . . . ; y VHQ n ln x)
19. Ȝn n4ʌ4, n 1, 2, 3, . . . ; y sen Qʌ[
21. x L 兾4, x L 兾2, x 3 L 兾4
d 2x
dx
2
2
2
x
h(t),
dt 2
dt
donde 2Ȝ ȕ兾m y Ȧ2 k兾m
b) x(t)
y sen nx
13. Ȝn n 2, n 0, 1, 2, . . . ;
cos 4t
sen 4t
2
35. a) m
y
cos 4t
1)2 2
,n
4L2
(2n 1) x
cos
2L
(2n
n
sen 3t)
4t
te
9. Ȝn n 2, n 1, 2, 3, . . . ;
11.
10
(cos 3t
3
31. x(t)
64
147
sen
t
3147
2
冪gl sen冪gl t
b) utilice, enșmax, sen 冪g兾l t 1
1 12 ș 2max
c) utilice cos șmax
21,797 cm/s
d) vb
REPASO DEL CAPÍTULO 5 (PÁGINA 222)
senh
P
x
BEI
cosh
P
L
BEI
1. 8 pies
3. 54 m
5. Falso; podría existir una fuerza aplicada que impulsa al
sistema.
7. sobreamortiguado
9. y 0 puesto que Ȝ 8 no es un eigenvalor
1
2
2t
4t
11. 14.4 lb
13. x(t)
3 e
3 e
15. 0 m 2
19. x(t)
e
(
4t 26
17
cos 2 12 t
8
3
17.
28
17
13
12 sen 212 t
)
8
t
17 e
1
150
21. a) q(t)
2
3
b) i(t)
2
3
cos 100t
n
,n
50
c) t
1
75
sen 100t
sen 50t
0, 1, 2, . . .
d x
dt 2
kx
27.
mx
fk sgn(x )
0
0
kx
EJERCICIOS 6.1 (PÁGINA 231)
3. [ 12, 12), R
7. [0, 23 ], R 13
( 1)n n
11.
x
n
n 0 n!2
1 n
15.
x
n
n 1
1. ( 1,1], R 1
5. ( 5, 15), R 10
9. (
13.
n
17.
n
75 75
32 , 32 ),
75
32
R
( 1)n n
x
n 1
02
( 1)n
(x
1)!
0 (2n
2S ) 2n
2 5
15 x
4 7
315 x
...
21. 1
1 2
2x
5 4
24 x
61 6
720 x
. . ., ( S 兾2, S 兾2)
k
2)ck
3
27. 2c1
k
2c2
c0
k
[(k
1)ck
0
6ck 1]x
2)(k
1)ck
1
1
(5x)k
0 k!
7. y1(x)
c1 x
37. y
c0 1
1
3 2
1 3
x
3!
x
3
ck ]x k
1
c0
1 x2
0 k! 2
6 5 3 2
1 4
x
4 3
5 5
x
5!
45 7
x
7!
11. y1 (x)
c0 1
1 3
x
3!
42 6
x
6!
72 42 9
x
9!
y2 (x)
c1 x
22 4
x
4!
52 22 7
x
7!
y2 (x)
(2k
1
9 8 6 5 3 2
c1 x
1 3
x
3!
15. y1 (x)
2
1 4
x
4!
1
y2 (x)
c1 x
x
...
...
...
x
6
9
1
x7
7 6 4 3
1)ck]x k
[
c1 [x
c0 1
1 2
2x
1 3
6x
1 4
6x
1 2
2x
1 3
2x
1 4
4x
c0 1
1 2
x
4
4 4!
x4
23 7 6
x
8 6!
y2 (x)
c1 x
1 3
x
6
14 5
x
2 5!
34 14 7
x
4 7!
1 2
x
2!
2 1
19. y(x)
7
]
]
17. y1 (x)
k
23. y1(x)
y2 (x)
1 3
x
3!
1 4
x
4!
[
c1 [x
6x
]
]
1 5
120 x
1 3
6x
c0 1
1 6
180 x
1 4
12 x
EJERCICIOS 6.3 (PÁGINA 248)
1. x 0, punto singular irregular
3. x 3, punto singular regular;
x 3, punto singular irregular
5. x 0, 2i, 2i, puntos singulares regulares
7. x 3, 2, puntos singulares regulares
9. x 0, punto singular irregular;
x 5, 5, 2, puntos singulares regulares
x (x 1)2
11. para x 1: p(x) 5, q(x)
x 1
5(x 1)
para x
1: p(x)
, q(x) x2
x 1
13. r1 13, r2
1
15. r1
y(x)
RES-9
82 52 22 10
x
10!
1 n
c0 ; y2 (x) c1
x
n 1n
21. y x) 3 12x 2 4x 4
k
1 2
x
2!
y2 (x)
8x 2e x
EJERCICIOS 6.2 (PÁGINA 240)
1. 5; 4
1 2
1 4
1 6
x
x
x
3. y1(x) c 0 1
2!
4!
6!
1 3
1 5
1 7
y2(x) c1 x
x
x
x
3!
5!
7!
5. y1(x) c0
y2(x)
21 6
x
6!
13. y1 (x)
k
1
1)ck
1
k
[(k
25.
k
[2(k
k
29. c0
35. y
2x
3 4
x
4!
1
2 3
3x
(k
1 2
x
2!
1
2
19. x
23.
c0 1
cos 50t
2
25. m
9. y1(x)
l
3
2 , r2
0
C1 x3/2 1
2
x
5
22
x2
7 5 2
23
x3
9 7 5 3!
1
x10
10 9 7 6 4 3
C2 1
2x
2 x2
23 3
x
3 3!
x
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 6
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
RES-10
17. r1
y(x)
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
l
7
8 , r2
0
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 6
c2 1
y2(t)
2x
y(x)
1
x
3
1
3
3
3!
1
x
2
C2 1
sen 1 t
1 t
(
)
cos 1 t
t
)
(
)2n
C2 x cos
1
x
EJERCICIOS 6.4 (PÁGINA 260)
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
0
C1 x1/3 1
(
1
x
x2
9 2
)2n
( 1)n
1 t
0 (2n)!
C1 x sen
c) y
22
1
t
n
23
x3
17 9 3!
1
3 , r2
(
n
22
x2
23 15 2
2
x
15
c1 x7/8 1
23
x3
31 23 15 3!
19. r1
( 1)n
1 t
1)!
0 (2n
33. b) y1(t)
1 2
x
32 2
x3
1 2
x
5 2
1
x3
8 5 2
y c1J1/3 x) c 2J1/3 x)
y c1J5/2 x) c 2J5/2 x)
y c1J0 x) c 2Y 0 x)
y c1J 2 x) c 2Y 2 x)
y c1J2/3 x) c 2 J2/3 x)
y c1x1/2 J 1/2 Į[) c2 x1/2 J1/2 Į[)
y x1/2 [c1 J1 x 1/2) c 2 Y1 x 1/2)]
y x [c1J1 x) c 2 Y1 x)]
y x1/2 [c1 J3/2 x) c 2 Y 3/2 x)
y
x
[c1 J1/2(12 x2)
1
c2 J
( )]
1 2
1/2 2 x
23. y x [c1 J1/2 x) c2 J1/2 x)]
C1 sen x C2 cos x
1/2
21. r1
y(x)
5
2 , r2
0
22 3 2
x
9 7
2 2
x
7
C1 x5/2 1
23 4 3
x
11 9 7
C2 1
23. r1
y(x)
2
3 , r2
1
x
3
1 2
x
6
1 3
x
6
[
1
2x
5 2
28 x
1 3
21 x
1/3
C2 x
[1
1
2x
]
53. y
]
7 3
120 x
1 2
5x
25. r1 0, r2 1
y(x)
1
C1
n 0
C1 x
(2 n
1)!
x2n
n
0 (2 n
1
n 0
1
1
C2 x
1)!
x2n
1
C2 x
1 2n
x
(2 n)!
1 2n
x
(2
n)!
0
1
n
1
[C senh x C2 cosh x]
x 1
27. r1 1, r2 0
y(x) C1 x C2 x ln x 1 12 x2
C2 y1(x) ln x
1
3 3!
donde y1 (x)
n
1 n
x
0 n!
ex
y1 (x)
[
c0 [1
c1 [x
C2 1
3 2
2x
1 3
2x
x
3
1 2
x
4
1
4 4!
x
y2 (x)
15. y(x)
[
C2 1
[
[
4
2 x
1
6
1
4x
x
x2
31
1 3
2x
1 4
4x
1 2
20 x
]
]
]
1 3
90 x
1 2
6x
x
13. r1 3, r2 0
y1 (x) C1 x3 1
x
3/2
16 5
5 x
4x3
[
C1 y(x)
( )]
C2 x
cos(18 x2)
c2 x1/2 J 1/3(32 ax3/2)
1 2
1/2 8 x
c2 J
[
y2 (x)
]
1 4
72 x
1/2
REPASO DEL CAPÍTULO 6 (PÁGINA 263)
1. Falso
3. [ 12, 12]
7. x 2 x 1)y
y y
y yy 0
9. r1 12, r2 0
1 3
y1(x) C1 x1/2 1 13 x 301 x2 630
x
11. y1 (x)
29. r1 r2 0
y(x)
x
y2 (x)
[
1 3
12 x
x
35. y
45. P2 x), P3 x), P4 x) yyP5 x) están dados en el texto,
P6 (x) 161 (231x6 315x4 105x2 5),
P7 (x) 161 (429x7 693x5 315x3 35x)
47. Ȝ1 2, Ȝ2 12, Ȝ3 30
1
3
C1 x2/3 1
[c1 J1/2(18 x2)
C1 x 3/2 sen (18 x2)
c1 x1/2 J1/3(32 ax3/2)
25. y
5 4
8x
]
]
1 3
120 x
]
1 2
2x
1 4
1 6
3x
15 x
1 5
1 7
1 3
8x
48 x
2x
17.
19. x 0 es un punto ordinario
]
]
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
1 3
x
3
c0 1
1
32 2!
1 4
x
4
c1 x
1
x6
33 3!
1 7
x
4 7
1
x10
4 7 10
1
5 2
x
2
1
x6
32 2!
33 3!
EJERCICIOS 7.1 (PÁGINA 272)
2 s 1
e
s
s
1 e s
5.
s2 1
1
1
1
e
9.
s s2 s2
1
13.
(s 4)2
s
s2 1
(s2 1)2
4
10
21. 2
s
s
6
6
3
1
25. 4
3
2
s
s
s
s
1
2
1
29.
s s 2 s 4
39.
2)
4 cos 5
s2
9.
48
s5
2
6
3
23. 3
s
s2 s
1
1
27.
s s 4
8
15
31. 3
s
s2 9
e
kt
para mostrar que
2
k
{senh kt}
2(s
5.
x9
19.
e kt
33. Utilice senh kt
1
1
2s
37.
(sen 5)s
16
s2
5. 1
9.
3t
3 2
2t
1 3
6t
1
t/4
4e
13. cos
t
2
2
3 冪ʌ
45.
4s5兾2
7. t 1 e 2t
5
7 sen
15. 2 cos 3t 2 sen 3t
1 t
4e
23.
1 2t
2e
25.
27. 4 3et cos t 3 sen t
29.
33.
1
1
5 cos 15t
5
1
1
6 sen 2t
3 sen t
19
1 4t
6t
y 10 e
10 e
1)2
3
25
4
t
3e
1
4t
3e
2)4
(s
3
1)2
4)2
2t
3
e
2
33. x(t)
37.
41.
7t/2
cos
25
3 2
t
2t e
23. y et 2tet
3 3t
27. y
2 e sen 2t
10 3t
9 te
115
t
2
e s
s2
39.
s
s
2
4
45. sen t (t
49. c)
53. a)
)
55. f (t)
2
4 (t
57. f (t)
t2
(t
59. f (t)
t
t
7115
e
10
2s
e
2)2
(t
2)
47. (t
51. f)
1)
e
(t 1)
s
{f (t)}
67. y
[5
2
71. x(t)
(t 1)
5e
5
4t
(t
1)
(t
e s
s
e 2s
s2
e
2
as
s
2 )
(t
(t
(t
1)
2 )
2 )
5
16 sen
25
4 cos
5
4 (t
4t
5)
4(t
5)
(t
5)
4(t
5)
(t
5)
(t
5)
25
4
(t
s
bs
s
[1 cos(t
)] (t
)
cos(t 2 )] (t 2 )
5
16 sen
2s
e
e
1)
1
2(t 1)
4e
1)
3s
e s
s2
{f (t)}
(t
1)
2(t
2 )
(t
1)
1
4
(t
1
6 sen
2
1
s2
b);
1
2t
4e
cos 2 t
sen t
[1
]
4
e
s
e s
s3
{ f (t)}
(t
a)
1
1
4
2t
1
2 (t
1
3 sen
2);
s
2
s
{f (t)}
115
t
2
2s
e
43. 12 (t
1);
(t
sen
2
3);
(t
7t/2
2
s
e
9
4
s
(s
29. y 12 12 et cos t 12 et sen t
31. y e 1)tet e 1)et
69. y
t
(s
13. e3t sen t
17. et tet
e cos t 2e sen t
5 t 5e t 4te t
y te4t 2e4t
2 3t
y 19 t 272
27 e
1 6t
2e
e 3t
31. y 1 e
35. y
4)
1
s
2t
7t
21. 0.3e0.1t 0.6e0.2t
1
3t
3e
(s
(s
7.
7.
2
1 2
2t
2t e
63. y
65. y
3
3t
4e
1
3
25
3)
s
s2
61. f (t)
19.
17.
(s
2)
1
2
2
s
16
冪ʌ
43. 1兾2
s
11.
(s
2
2
.
3. t 2t 4
1 2
2t
11.
15.
19.
21.
25.
1
6
3.
3.
k2
EJERCICIOS 7.2 (PÁGINA 280)
1.
EJERCICIOS 7.3 (PÁGINA 289)
1
1.
(s 10)2
3.
17.
35.
1 3
x
3
1
1 s
e
s 2 s2
1
1 s
7. e s
e
s
s2
e7
11.
s 1
1
15. 2
s
2s 2
1.
10 cos t 2 sen t
12 sen 12 t
5 t
1
1
8
t
2t
t /2
e
e
2e
9
18 e
9
1
1
1
3t
3t
t
cos 2t 4 e sen 2t
4e
4e
37. y
39. y
41. y
x9
5)
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 7
21. y(x)
RES-11
l
RES-12
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
l
2
5
73. q(t)
(t
1
e
101
75. a) i(t)
(t
1
cos t
101
10t
10
e
101
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 7
2
5(t 3)
5e
3)
10(t 3 /2)
t
3)
45. y(t)
10
sen t
101
47. i(t)
3
2
49.
1
s(1
3
2
t
3
2
51.
a 1
s bs
1
sen t
101
3
2
t
3
2
53.
coth ( s> 2)
s2 1
2
w0 L 2
x
16EI
77. y(x)
w0 L 3
x
12EI
w0
x
24EI
w0 L 2 2
x
48EI
79. y(x)
L
2
4
L
2
x
5
x
L
2
x
5
L
2
x
4
4)2
1
1.
(s 10)2
s
3. 2
(s
6s2
5. 2
(s
12s 24
7.
[(s 2)2 36]2
11. y
2 cos 3t
13. y
1
4
5
3 sen
1
8t
sen 4t
1
8 (t
2 3
3t
17. y
21.
25.
s
s[(s
29.
3s
s2(s2
33. et
39. f (t)
43. f (t)
1
6t
1
2t
3 2t
8e
)
( 1)n (1
R(t n)/L
) (t
e
1
t
3 e sen
e t cos 3t
[
( 1)n 1
(t n )
e
n)
3t)
cos 3(t
23.
23.
1]
27.
27.
n )
3
t
4 te
1
2t
8e
1
2 cos
1 2 t
4t e
2t
1
4 sen
2)
(t
(t
n )
7. y
9. y
e
e
2)
sen t
(t
cos t
1
2
1
1. x
1)
s(s
1
s2(s
y
5. x
1)
y
9. x
y
41.
41. f t) et
11. x
2t
n )
2 )
)
cos t
2
1
2
[
1
2t
2e
2(t 2 )
sen t
2t
(t
1
2(t
2e
(t
3
2
)
(t
1)
2 )
2
2t
sen
3e
cos 3t
(t
1)
]
3t
)
3 )
w00 L 2 1 3
P
x
x , 0
EI 4
6
w
P0 L 2 1
L
L
x
,
4EI 2
12
2
(t
)
(t
3 )
x
L
2
x
L
EJERCICIOS 7.6 (PÁGINA 311)
37.
37. f t) sen t
1
1 t
8e
sen t
)
6
19.
19. 5
s
]
3(t
1
2(t )
sen 3(t
3e
1
2(t 3 )
sen 3(t
3e
31.
31. et 1
1
t
8e
3. y
13. y(x)
) (t
1]
t
e3(t
sen 3t
1
1)2
1 2
2t
1. y
11. y
sen 4t
1
1)2
2)
EJERCICIOS 7.5 (PÁGINA 307)
sen t
c1 t2
1
1)2
2
3t
cos t
) sen 4(t
s
1)[(s
(s
1
2t
t
] (t
Rt/L
1
(t n )
sen
3e
5. y
2
1
2 cos
e
1)
n 1
EJERCICIOS 7.4 (PÁGINA 301)
1
t
2e
] (t
20(t 2)
n 1
4
dT
k T 70 57.5t 57.5t)ᐁ t 4))
dt
9. y
e
2 (1
w0 L 3
x
24EI
2
1)3
20(t 1)
1
e
(
57. x(t)
e
2)
1
bs
1
1
R
2
R
55. i(t)
w0 4
x
24EI
w0
5L 4
x
60EIL 2
81. a)
100[e 10(t 1)
100[e 10(t
e as
e as )
10
cos t
101
b) imáx ⬇ 0.1 en t ⬇ 1.7, imín ⬇ 0.1 en t ⬇ 4.7
1
2 t sen t
sen t
y
1 t
1
2t
3e
3e
2 t
1
2t
3e
3e
2e3t 52 e2t 12
5 2t
1
8 3t
2e
6
3e
2 3
t
3!
8
2 3
t
3!
1 2
2t
1
3
t
1
t
3e
y
2 cos 3t
y
1 4
t
4!
e
cos 3t
7. x
1 4
t
4!
1
3. x
t
1
t
3 te
1
2t
1
2t
3
4
3
4
5
3
7
3
sen 3t
sen 3t
12 sen 12t
12 sen 12t
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
216
sen 16 t
15
16
sen 16 t
15
x2
2
cos 16 t
5
1
cos 16 t
5
2
cos t
5
4
cos t
5
145
113 cos
250
15t
1469 e
30
2t
13 e
i3
19. i1
6
5
6
e
5
100t
i2
6
5
6
e
5
100t
280
113 cos
13.
17.
19.
21.
25.
29.
cosh 50 12 t
senh 50 12 t
100t
612
e
5
11.
4
1 5
6 t
5t
15.
e cos 2t 52 e 5t sen 2t
cos (t 1) (t 1)
5
f (t) (t
f (t) t
100t
47. a)
senh 50 12 t
35. y
37. y(t)
[
2t
e
[
1
4
2
[
1
4
1
2
1 2 5t
2t e
1
4
1
2
(t
(t
2)
3)
9.
1
2(t
4e
2(t 2)
]
L
2
0
2
0
2
(t
2)
(t
2)
]
]
1)
(t
(t
(t 1)
2)
3)
3
4
5
0
cos t
0
L3 2
x
4
L
2
x
cos t
5
X,
8
3
6
10
0
2
0
2
cos 1
cos 1
2
2K t
2
2K t
0
1
1
1
donde X
x
y
z
dx
dt
dy
dt
dx
dt
dy
dt
dz
dt
9
0 X, donde X
3
1
1 X
1
4x
2y
et
x
3y
et
x
2z
y
3x
2x
4y
5y
x
y
donde X
4
1
4
1
2
1
5. X
2(s 1)
1
4e
1
2(t 3)
4e
0
3. X
7.
2)
1)
2 (t)
1
x
5
L2 3
x
2
1
2
(v0 cos ) t, y(t)
(v0 sen )t
2 gt
g
sen
2
x
x; resuelva y(x)
b) y(x)
2v20 cos2
cos
y utilice la fórmula de ángulo doble para sen 2
1. X
13
4
5t
50 e
25
2) 14 e (t 2)
1
2 (t
0
L 4
x
2
EJERCICIOS 8.1 (PÁGINA 324)
4)2
1 2 t
2t e
6
1
3
t
25
5t
2e
1
2) (t
5 (t
9
5(t 2)
(t
100 e
1 (t)
1 5
x
5
d) aprox. 2729 pies; aprox. 11.54 segundos
sen (t 1) (t 1)
23. ek sa)F s a)
27. f (t t0) (t t0)
1)
(t 4);
1 4s
e ;
s
1
e (s 1)
(s 1)2
t0)
(t
1
s2
5te t
w0
12EIL
49. a) x(t)
4s
(s2
1) (t
1 s
{ f (t)}
e
s2
1
{et f (t)}
(s 1)2
1
e 4(s 1)
s 1
31. f (t) 2 (t 2) (t 2);
2
1 2s
{ f (t)}
e ;
s s2
2
1
{et f (t)}
e
s 1 (s 1)2
33. y
t
810
113 sen t
t
9 12
e
10
cosh 5012 t
2
s2
1 2t
9
2t
8e
8e
1 2t
9
2t
4 e
4 e
1
4
85
113 sen t
t
REPASO DEL CAPÍTULO 7 (PÁGINA 312)
1
2 s
e
3. falso
1. 2
s
s2
1
5. verdadero
7. s 7
9.
1 2
2t
t
45. y(x)
375
15t
1469 e
20
2t
13 e
41. x
y
1
43. i t) 9 2t 9et/5
100
900t
15. b) i2 100
9
9 e
80
900t
i3 809
9 e
c) i1 20 20e900t
17. i2
39. y
e
0
3t2
t2
t
2e
z
6z
x
y
z
t
0
t
1
0 ,
2
3t
t
2e
t
t
t
17. Si; W X 1, X 2 ) 2e 8t 0 implica que X 1 y X 2 son
OLQHDOPHQWHLQGHSHQGLHQWHVHQ , ).
19. No; W X1, X2, X3) 0 para toda t. Los vectores solución
VRQOLQHDOPHQWHGHSHQGLHQWHVHQ , ) Observe que
X 3 2X 1 X 2.
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 8
1
sen t
5
2
sen t
5
13. x1
RES-13
l
RES-14
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
l
EJERCICIOS 8.2 (PÁGINA 338)
1. X
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR • CAPÍTULO 8
3. X
5. X
7. X
1 5t
e
2
c1
2
e
1
c1
3t
c1
5 8t
e
2
c1
1
0 et
0
c2
c1
t
11. X
c1
4
0 e
1
t
13. X
3
19. X
c1
21. X
1 2t
c1
e
1
23. X
1
c1 1 et
1
25. X
c1
4
5
2
1
4 e3t
3
c2
12
6 e
5
0
e
1
t/2
c2
c2
0 2
t t
1
e
2
1
t
c3
1
1 e
3
2t
c3
4
2 e
1
t/2
3t / 2
sen t
e4t
2 sen t cos t
35. X
c1
cos t
e4t
cos t sen t
c2
sen t
e4t
sen t cos t
37. X
c1
5 cos 3t
4 cos 3t 3 sen 3t
c2
5 sen3t
4 sen 3t 3 cos 3t
39. X
1
c1 0
0
41. X
0
c1 2 et
1
43. X
c1
1
4
1
4
1
3
1
1 e2t
0
0
c3
e
2t
cos t
cos t
sen t
c2
28
5 e2t
25
c2
sen t
sen t
cos t
c3
sen t
c 2 cos t et
cos t
cos t
sen t et
sen t
c3
4 cos 3t 3 sen 3t
5 cos 3t
e
0
3 cos 3t 4 sen 3t
5 sen 3t
e
0
2t
2t
cos 5t 5 sen 5t
cos 5t
cos 5t
25
7 et
6
45. X
1
0 e2t
1
5 cos 5t sen 5t
6
sen 5t
sen 5t
EJERCICIOS 8.3 (PÁGINA 346)
2
0 e5t
1
1
2
1
2
e5t
1. X
c1
1
e
1
t
3. X
c1
1
e
1
2t
1
0
1 tet
1
0
1 tet
0
0
1 et
0
1
2
0 et
0
2 4t
2t 1 4t
e
13
e
1
t 1
31. Correspondiendo al eigenvalor Ȝ1 2 de multiplicidad
5, los eigenvectores son
1
0
0
0
0
0
K1
0 ,
K2
1 ,
K3
0 .
0
0
1
0
0
0
29. X
c2
c3
2
0 te5t
1
c2
1
0 e
2
1 2t
te
1
c2
0
c1 1 et
1
c3
c3
1
t
3
c2
c3
27. X
2
cos t
e4t
2 cos t sen t
10t
2
3 e2t
1
c2
1 t/2
e
1
1
3
1
e
4
c2
c1
t
2 t
e
5
c2
1
0 e
1
9. X
1
e
1
c2
33. X
1
4
1
4
c1
7. X
1
c1 0 et
0
7
c2
13
11. X
c1
1
1
13. X
c1
2 t/2
e
1
1
4
3
4
1 4t
e
1
t2
3
4
1
1 e2t
0
c2
c2
c3
4 2t
e
6
2
3 t
e
2
c2
55
36
19
4
1 7t
e
9
c2
1 t
e
1
9. X
1
3
2
t
1 3t
e
3
5. X
3 t
e
1
c2
3
2
7
2
1
2 e5t
2
e4t
2
9
6
11
t
11
10 3t / 2
e
3
et
15
10
13
2
13
4
tet / 2
15
2
9
4
et / 2
RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NÚMERO IMPAR
17. X
19. X
21. X
c1
2 t
e
1
c1
4 3t
e
1
1
2
t
1
2
et
e
2
23. X
25. X
c1
sen t
cos t
c2
sen t
sen t tan t
27. X
cos t
t
sen t
c2
2 cos t t
e
sen t
cos t
et ln sen t
1
2 sen t
29. X
1
1
0
c1
c2
cos t
tet
sen t
sen t
ln cos t
cos t
2 sen t t
c1
e
cos t
1
1 e2t
0
3 sen t t
te
3
2 cos t
2 cos t t
e ln cos t
sen t
0
0 e3t
1
c3
1 2t
1 2t
2 te
4e
1 2t
1 2t
t
e
2 te
4e
1 2 3t
t
e
2
31. X
33.
i1
i2
2 2t
te
2
2
1
e
3
6
29
2 4t
te
2
3
e
1
2 4t
e
0
4 19
cos t
29 42
12t
4 83
sen t
29 69
c3
11. X
c1
cosh t
senh t
t
1
et 0
;
0 e2t
t
3. eAt
5. X
1
t
2t
1 t
c1
e
0
e
t
t
1
2t
c2
e
0
At
0 2t
e
1
t
t
2t
t
t
2t
c3
0 2t
e
1
c4
1
3
1
2
4 t
c1
X
c3
1
2t
2e
2t
e
e
3 2t
e
2
c4
3te2t
te
1
2t
2t
e
3t
X
c1
23. X
c1
3 3t
2e
3 3t
2e
X
c3