VishikaClasses
VishikaClasses
VishikaClasses
VishikaClasses
VISHIKA CLASSES
A free of cost educational consultant of online/offline
studies for any students in the world.
SET THEORY
Class 11th
Mathematics
By Vinayak Kushwaha
M.Sc. Mathematics, Physics
Powered by Vishika Group of Companies
vishikaclasses@gmail.com
7505630111
SET THEORY
11th
Definition: A set is a collection of well-defined objects or elements. Sets are always denoted by
capital letter of English alphabets and enclosed within braces { }.
Well-defined: A collection of objects is said to be well-defined, if it is possible to tell beyond
doubt whether a particular given object is a member of the collection or not.
Example: 1. The set of vowels in English alphabet. ðð. ðð. ðð = {ðð, ðð, ðð, ðð, ð¢ð¢}
2. A set of natural numbers less 7. ðð. ðð. ðð = {1,2,3,4,5,6}
3. Tea-set, Dinner-set.
4. Set of Indian rivers.
etc.
Representation of sets: There are three types to represent a set;
1. Roster form: In roster form, all the elements are being separated by commaâs and are
enclosed within braces { }. It is also known as tabular form.
Example: ðð = {ðð, ðð, ðð, ðð, ð¢ð¢}
2. Set-builder form: In set-builder form, all the elements of a set are possess a single
common property which is not possessed by any element outside the set.
Example: ðð = {ð¥ð¥: ð¥ð¥ ðððð ðð ð£ð£ððð£ð£ððð£ð£ ðððð ðžðžðððžðžð£ð£ððððâ ððð£ð£ððâðððððððð} where â:â mean âis such thatâ
3. Venn diagram: Venn diagram is a type of geometrical
representation of a set. It consists of a rectangle, represent
the universal set and some closed figures (like circle)
represent the set of universal set.
Example: Let ðŽðŽ = {1,2,3,4} and ðµðµ = {3,4,5,6} then, their
Venn diagram will be
ðšðš
1,2
3
4
ð©ð©
5,6
Types of sets: In general, there are five types of sets;
1. Empty set: A set which does not contain any element is called empty set, null set or void
set. It is denoted by { } or ðð.
Example: 1. ðð = {ð¥ð¥: 1 < ð¥ð¥ < 2, ð¥ð¥ ðððð ðð ððððð¢ð¢ððððð£ð£ ððð¢ð¢ðððððððð} ðð. ðð. ðð = ðð
2. ðð = {ð¥ð¥: ð¥ð¥ ðððð ðððð ððð£ð£ðððð ðððððððððð ððð¢ð¢ðððððððð ðžðžðððððððððððð ððâðððð 2} ðð. ðð. ðð = ðð
2. Singleton set: A set which contain only one element is call singleton set.
Example: 1. ðžðž = {ð¥ð¥: ð¥ð¥ ðððð ðððð ððð£ð£ðððð ðððððððððð ððð¢ð¢ðððððððð} ðð. ðð. ðžðž = {2}
2. ðð = {ð¥ð¥: ð¥ð¥ ðððð ðð ðððððð ðððð ð£ð£âððð£ð£ðð ððð¢ð¢ðððððððð ð£ð£ðððððð ððâðððð 1} ðð. ðð. ðð = {0}
3. Finite set: A set which is consists a definite number of elements (may be empty) is called
finite set.
Example: 1. ðŽðŽ = {ð¥ð¥: ð¥ð¥ ðððð ðð ðððððð ðððð ðžðžðððžðžð£ð£ððððâ ððð£ð£ððâðððððððð}
2. ðð = {ð¥ð¥: 1 < ð¥ð¥ < 9, ð¥ð¥ ðððð ðð ððððð¢ð¢ððððð£ð£ ððð¢ð¢ðððððððð}
4. Infinite set: A set which is consists an indefinite number of elements is called infinite set.
1
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
11th
Example: 1. ð·ð· = {ð¥ð¥: ð¥ð¥ ðððð ðð ðððððððððð}
2. ðð+ = {ð¥ð¥: ð¥ð¥ ðððð ðð ðððððð ðððð ððððððððððððð£ð£ðð ðððððððððžðžðððððð}
5. Universal set: A set which is consists some sets (may be finite or infinite) is called
universal set.
Example: 1. ðŽðŽ = { {ðððððð ðððð ð£ð£ððð£ð£ððð£ð£ }, {ðððððð ðððð ðððððððððððððððððð} }
2. ð¹ð¹ = { {ðððððð ðððð ððððððððððððððð£ð£}, {ðððððð ðððð ððððððððððððððððððð£ð£} }
Some other types of sets: On comparison of two sets, there are six types of sets;
1. Subset: Let ðŽðŽ and ðµðµ be two sets such that every element of ðŽðŽ is an element of ðµðµ. Then, we
say that ðŽðŽ is a subset of ðµðµ and denoted by ðŽðŽ â ðµðµ. There are two types of subsets;
i.
ii.
Proper subset: Let ðŽðŽ and ðµðµ be two sets such that every element of ðŽðŽ is an element of
ðµðµ, but there exists at least one element of ðµðµ which are not an element of ðŽðŽ. Then, we
say that ðŽðŽ is a proper subset of ðµðµ and denoted by ðŽðŽ â ðµðµ.
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {1,2,3,4,5,6}
Improper subset: Let ðŽðŽ and ðµðµ be two sets such that every element of ðŽðŽ is an element
of ðµðµ and every element of ðµðµ is an element of ðŽðŽ. Then, we say that ðŽðŽ is an improper
subset of ðµðµ and denoted by ðŽðŽ â ðµðµ.
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {4,3,2,1}
2. Super set: Let ðŽðŽ and ðµðµ be two sets such that every element of ðŽðŽ is an element of ðµðµ. Then,
we say that ðµðµ is a super set of ðŽðŽ and denoted by ðµðµ â ðŽðŽ. There are two types of super sets;
i.
ii.
Proper super set: Let ðŽðŽ and ðµðµ be two sets such that every element of ðŽðŽ is an element
of ðµðµ, but there exists at least one element of ðµðµ which is not an element of ðŽðŽ. Then, we
say that ðµðµ is a proper super set of ðŽðŽ and denoted by ðµðµ â ðŽðŽ.
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {1,2,3,4,5,6}
Improper super set: Let ðŽðŽ and ðµðµ be two sets such that every element of ðŽðŽ is an
element of ðµðµ and every element of ðµðµ is an element of ðŽðŽ. Then, we say that ðµðµ is an
improper super set of ðŽðŽ and denoted by ðµðµ â ðŽðŽ.
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {4,3,2,1}
3. Equal set: Two sets ðŽðŽ and ðµðµ are said to be equal if every element of ðŽðŽ is an element of ðµðµ
and every element of ðµðµ is an element of ðŽðŽ. It is denoted by ðŽðŽ = ðµðµ .
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {4,3,2,1}
4. Equivalent sets: Two sets ðŽðŽ and ðµðµ are said to be equivalent if the number of the elements
of ðŽðŽ is equal to the number of the elements of ðµðµ. It is denoted by ðð(ðŽðŽ) = ðð(ðµðµ).
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {ðð, ðð, ðð, ðð }
2
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
11th
5. Power set: The collection of all subsets of a set ðŽðŽ is called the power set of ðŽðŽ. It is denoted
by ðð(ðŽðŽ) ðððð 2ðŽðŽ and if ðŽðŽ has ðð element then, the number of subsets of ðŽðŽ is 2ðð .
Example: ðŽðŽ = {ðð, ðð, ðð }, then ðð(ðŽðŽ) = { {ðð}, {ðð}, {ðð }, {ðð, ðð}, {ðð, ðð }, {ðð, ðð }, {ðð, ðð, ðð }, ðð }
6. Disjoint sets: Two sets ðŽðŽ and ðµðµ are said to be disjoint if they have no common element.
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {ðð, ðð, ðð, ðð }
Subsets of set of real numbers
a. Set of natural numbers ðµðµ = {1,2,3,4,5,6, ⊠⊠}
b. Set of whole numbers ðŸðŸ = {0,1,2,3,4,5,6, ⊠⊠}
c. Set of integers numbers ðð = {0, ±1, ±2, ±3, ±4, ±5, ±6, ⊠⊠}
d. Set of rational numbers ðžðž = {ð¥ð¥: ð¥ð¥ =
ðð
ðð
such that ðð, ðð â ðð and ðð â 0}
e. Set of irrational numbers ð°ð° = {ð¥ð¥: ð¥ð¥ â ð¹ð¹ ðððððð ð¥ð¥ â ðžðž}, symbol âââ read as âbelong toâ and
symbol âââ read as âdoes not belong toâ.
Or ðµðµ â ðŸðŸ â ðð â ðžðž â ð¹ð¹, ð°ð° â ð¹ð¹, ðð â ð°ð° and ð¹ð¹ = {ðžðž, ð°ð°}
Intervals as subsets of ð¹ð¹: Let ðð, ðð â ð¹ð¹ and ðð < ðð. Then the set of real numbers;
i. {ð¥ð¥: ðð < ð¥ð¥ < ðð} is called an open interval, denoted by (ðð, ðð) ðð. ðð. all those points who lying
between ðð and ðð belongs to (ðð, ðð) but ðð and ðð does not belongs to (ðð, ðð).
ii. {ð¥ð¥: ðð †ð¥ð¥ †ðð} is called a closed interval, denoted by [ðð, ðð] ðð. ðð. all those points who lying
between ðð and ðð belongs to [ðð, ðð] and the points ðð, ðð also belongs to [ðð, ðð].
iii. {ð¥ð¥: ðð < ð¥ð¥ †ðð} is called left half open interval, denoted by (ðð, ðð] ðð. ðð. all those points who
lying between ðð and ðð belongs to (ðð, ðð] and the point ðð also belongs to (ðð, ðð].
iv. {ð¥ð¥: ðð †ð¥ð¥ < ðð} is called right half open interval, denoted by [ðð, ðð) ðð. ðð. all those points
who lying between ðð and ðð belongs to [ðð, ðð) and the point ðð also belongs to [ðð, ðð).
ðð
(ðð, ðð)
Some useful results;
ðð
ðð
[ðð, ðð]
ðð
ðð
(ðð, ðð]
ðð
ðð
[ðð, ðð)
ðð
Theorem 1: Every set is a subset of itself.
Proof 1: Let ðŽðŽ be any set.
âµ Every element of ðŽðŽ is in ðŽðŽ.
⎠ðŽðŽ â ðŽðŽ
Hence, every set is a subset of itself.
3
Theorem 2: The empty set is a subset of any set.
Proof 2: Let ðŽðŽ be any set and let ðð be the empty set.
âµ ðð contains no element at all
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
11th
⎠there is no element of ðð which is not contained in ðŽðŽ. ðð. ðð., ðð â ðŽðŽ.
Hence, the empty set is a subset of any set.
Theorem 3: The total number of subsets of a set containing ðð elements is 2ðð .
Proof 3: Let ðŽðŽ be any finite set containing ðð elements then,
If ðŽðŽ containing no element, the number of subsets of ðŽðŽ = ððð¶ð¶0 = 1.
If ðŽðŽ containing one element, the number of subsets of ðŽðŽ = ððð¶ð¶0 + ððð¶ð¶1 = 2.
If ðŽðŽ containing two elements, the number of subsets of ðŽðŽ = ððð¶ð¶0 + ððð¶ð¶1 + ððð¶ð¶2 = 4.
If ðŽðŽ containing ðð elements, the number of subsets of ðŽðŽ = ððð¶ð¶0 + ððð¶ð¶1 + ððð¶ð¶2 + ⯠+ ððð¶ð¶ðð .
Using binomial theorem, we have
ðð
ð¶ð¶0 + ððð¶ð¶1 + ððð¶ð¶2 + ⯠+ ððð¶ð¶ðð = (1 + 1)ðð = 2ðð
Hence, the total number of subsets of a set containing ðð elements is 2ðð .
Further, the number of subsets of ðŽðŽ, each containing no element is ððð¶ð¶0 = 1.
the number of subsets of ðŽðŽ, each containing one element is ððð¶ð¶1 = ðð.
ðð(ðð â 1)
the number of subsets of ðŽðŽ, each containing two elements is ððð¶ð¶2 =
2
ðð
the number of subsets of ðŽðŽ, each containing ðð elements is ð¶ð¶ðð = 1.
Theorem 4: Let ðŽðŽ and ðµðµ be two sets. Then, prove that ðŽðŽ = ðµðµ if and only if ðŽðŽ â ðµðµ and ðµðµ â ðŽðŽ.
Proof 4: Let ðŽðŽ = ðµðµ
Then, by the definition of equal sets, every element of ðŽðŽ is an element of ðµðµ and every element
of ðµðµ is an element of ðŽðŽ.
This implies, ðŽðŽ â ðµðµ and ðµðµ â ðŽðŽ
Thus, ðŽðŽ = ðµðµ â¹ ðŽðŽ â ðµðµ and ðµðµ â ðŽðŽ
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ðŽðŽ â ðµðµ and ðµðµ â ðŽðŽ
Then, by the definition of subsets, if ðŽðŽ â ðµðµ implies every element of ðŽðŽ is an element of ðµðµ and
if ðµðµ â ðŽðŽ implies every element of ðµðµ is an element of ðŽðŽ. We have, ðŽðŽ = ðµðµ
Thus, ðŽðŽ â ðµðµ and ðµðµ â ðŽðŽ â¹ ðŽðŽ = ðµðµ
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
ðŽðŽ = ðµðµ ⺠ðŽðŽ â ðµðµ and ðµðµ â ðŽðŽ
Operation on two sets: There are three types of operations;
a) Union: Let ðŽðŽ and ðµðµ be two sets, the union of ðŽðŽ and ðµðµ is the set
which consists of all the elements of ðŽðŽ and ðµðµ, but the common
elements being taken only once. It is denoted by
ðŽðŽâðµðµ ðððððððð ðððð â²ðŽðŽ ð¢ð¢ðððððððð ðµðµâ².
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {3,4,5,6}, then, ðŽðŽâðµðµ = {1,2,3,4,5,6}
U
A
Properties of union: Let ðŽðŽ and ðµðµ be two subsets of universal set ðð then;
i.
4
ðŽðŽâðŽðŽ = ðŽðŽ
©Copyright Vishika Group of Companies. All Rights Reserved.
B
SET THEORY
ii.
iii.
iv.
v.
5
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðŽðŽ. Then,
ð¥ð¥ â ðŽðŽâðŽðŽ â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ (using idempotent law)
⎠ðŽðŽâðŽðŽ â ðŽðŽ
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽ. Then,
ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽâðŽðŽ (using idempotent law)
⎠ðŽðŽ â ðŽðŽâðŽðŽ
Hence, from equation (1) and (2) we have,
ðŽðŽâðŽðŽ = ðŽðŽ
ðŽðŽâðð = ðð
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðð. Then,
ð¥ð¥ â ðŽðŽâðð â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðð â ð¥ð¥ â ðð (using universal law)
⎠ðŽðŽâðð â ðð
Conversely, let ð¥ð¥ be an arbitrary element of ðð. Then,
ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽâðð (using universal law)
⎠ðð â ðŽðŽâðð
Hence, from equation (1) and (2) we have,
ðŽðŽâðð = ðð
ðŽðŽâðð = ðŽðŽ
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðð. Then,
ð¥ð¥ â ðŽðŽâðð â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ (using identity law)
⎠ðŽðŽâðð â ðŽðŽ
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽ. Then,
ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽâðð (using identity law)
⎠ðŽðŽ â ðŽðŽâðð
Hence, from equation (1) and (2) we have,
ðŽðŽâðð = ðŽðŽ
11th
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
ðŽðŽâðµðµ = ðµðµâðŽðŽ
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðµðµ. Then,
ð¥ð¥ â ðŽðŽâðµðµ â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðµðµ ðððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðµðµâðŽðŽ (using commutative law)
⎠ðŽðŽâðµðµ â ðµðµâðŽðŽ
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ð¥ð¥ be an arbitrary element of ðµðµâðŽðŽ. Then,
ð¥ð¥ â ðµðµâðŽðŽ â ð¥ð¥ â ðµðµ ðððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðŽðŽâðµðµ (using commutative law)
⎠ðµðµâðŽðŽ â ðŽðŽâðµðµ
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
ðŽðŽâðµðµ = ðµðµâðŽðŽ
(ðŽðŽâðµðµ)âð¶ð¶ = ðŽðŽâ(ðµðµâð¶ð¶)
Let ð¥ð¥ be an arbitrary element of (ðŽðŽâðµðµ)âð¶ð¶. Then,
ð¥ð¥ â (ðŽðŽâðµðµ)âð¶ð¶ â ð¥ð¥ â (ðŽðŽâðµðµ) ðððð ð¥ð¥ â ð¶ð¶ â (ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ) ðððð ð¥ð¥ â ð¶ð¶
Using associative law, we have
ð¥ð¥ â ðŽðŽ ðððð (ð¥ð¥ â ðµðµ ðððð ð¥ð¥ â ð¶ð¶ ) â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â (ðµðµâð¶ð¶) â ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶)
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
11th
⎠(ðŽðŽâðµðµ)âð¶ð¶ â ðŽðŽâ(ðµðµâð¶ð¶)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽâ(ðµðµâð¶ð¶). Then,
ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶) â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â (ðµðµâð¶ð¶) â ð¥ð¥ â ðŽðŽ ðððð (ð¥ð¥ â ðµðµ ðððð ð¥ð¥ â ð¶ð¶ )
Using associative law, we have
(ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ) ðððð ð¥ð¥ â ð¶ð¶ â ð¥ð¥ â (ðŽðŽâðµðµ) ðððð ð¥ð¥ â ð¶ð¶ â ð¥ð¥ â (ðŽðŽâðµðµ)âð¶ð¶
⎠ðŽðŽâ(ðµðµâð¶ð¶) â (ðŽðŽâðµðµ)âð¶ð¶
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
(ðŽðŽâðµðµ)âð¶ð¶ = ðŽðŽâ(ðµðµâð¶ð¶)
b) Intersection: Let ðŽðŽ and ðµðµ be two sets, the intersection of ðŽðŽ and
ðµðµ is the set of all elements which are common in both ðŽðŽ and ðµðµ.
It is denoted by ðŽðŽâðµðµ read as âðŽðŽ ðððððððððððððððððððððððð ðµðµâ.
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {3,4,5,6}, then, ðŽðŽâðµðµ = {3,4}
U
Properties of intersection: Let ðŽðŽ and ðµðµ be two subsets of ðð then;
i.
ii.
iii.
6
ðŽðŽâðŽðŽ = ðŽðŽ
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðŽðŽ. Then,
ð¥ð¥ â ðŽðŽâðŽðŽ â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ (using idempotent law)
⎠ðŽðŽâðŽðŽ â ðŽðŽ
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽ. Then,
ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽâðŽðŽ (using idempotent law)
⎠ðŽðŽ â ðŽðŽâðŽðŽ
Hence, from equation (1) and (2) we have,
ðŽðŽâðŽðŽ = ðŽðŽ
ðŽðŽâðð = ðŽðŽ
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðð. Then,
ð¥ð¥ â ðŽðŽâðð â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ (using universal law)
⎠ðŽðŽâðð â ðŽðŽ
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽ. Then,
ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽâðð (using universal law)
⎠ðŽðŽ â ðŽðŽâðð
Hence, from equation (1) and (2) we have,
ðŽðŽâðð = ðŽðŽ
ðŽðŽâðð = ðð
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðð. Then,
ð¥ð¥ â ðŽðŽâðð â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðð â ð¥ð¥ â ðð (using identity law)
⎠ðŽðŽâðð â ðð
Conversely, let ð¥ð¥ be an arbitrary element of ðð. Then,
ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽâðð (using identity law)
⎠ðð â ðŽðŽâðð
Hence, from equation (1) and (2) we have,
B
A
ðšðšâð©ð©
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
iv.
v.
vi.
vii.
7
11th
ðŽðŽâðð = ðð
ðŽðŽâðµðµ = ðµðµâðŽðŽ
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðµðµ. Then,
ð¥ð¥ â ðŽðŽâðµðµ â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðµðµ ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðµðµâðŽðŽ (commutative law)
⎠ðŽðŽâðµðµ â ðµðµâðŽðŽ
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ð¥ð¥ be an arbitrary element of ðµðµâðŽðŽ. Then,
ð¥ð¥ â ðµðµâðŽðŽ â ð¥ð¥ â ðµðµ ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðŽðŽâðµðµ (commutative law)
⎠ðµðµâðŽðŽ â ðŽðŽâðµðµ
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
ðŽðŽâðµðµ = ðµðµâðŽðŽ
(ðŽðŽâðµðµ)âð¶ð¶ = ðŽðŽâ(ðµðµâð¶ð¶)
Let ð¥ð¥ be an arbitrary element of (ðŽðŽâðµðµ)âð¶ð¶. Then,
ð¥ð¥ â (ðŽðŽâðµðµ)âð¶ð¶ â ð¥ð¥ â (ðŽðŽâðµðµ) ðððððð ð¥ð¥ â ð¶ð¶ â (ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ) ðððððð ð¥ð¥ â ð¶ð¶
Using associative law, we have
ð¥ð¥ â ðŽðŽ ðððððð (ð¥ð¥ â ðµðµ ðððððð ð¥ð¥ â ð¶ð¶ ) â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â (ðµðµâð¶ð¶) â ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶)
⎠(ðŽðŽâðµðµ)âð¶ð¶ â ðŽðŽâ(ðµðµâð¶ð¶)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽâ(ðµðµâð¶ð¶). Then,
ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶) â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â (ðµðµâð¶ð¶) â ð¥ð¥ â ðŽðŽ ðððððð (ð¥ð¥ â ðµðµ ðððððð ð¥ð¥ â ð¶ð¶ )
Using associative law, we have
(ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ) ðððððð ð¥ð¥ â ð¶ð¶ â ð¥ð¥ â (ðŽðŽâðµðµ) ðððððð ð¥ð¥ â ð¶ð¶ â ð¥ð¥ â (ðŽðŽâðµðµ)âð¶ð¶
⎠ðŽðŽâ(ðµðµâð¶ð¶) â (ðŽðŽâðµðµ)âð¶ð¶
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
(ðŽðŽâðµðµ)âð¶ð¶ = ðŽðŽâ(ðµðµâð¶ð¶)
ðŽðŽâ(ðµðµâð¶ð¶ ) = (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
Let ð¥ð¥ be an arbitrary element of ðŽðŽâ(ðµðµâð¶ð¶). Then,
ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶ ) â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â (ðµðµâð¶ð¶ ) â ð¥ð¥ â ðŽðŽ ðððð { ð¥ð¥ â ðµðµ ðððððð ð¥ð¥ â ð¶ð¶ }
Using distributive law, we have
(ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ) ðððððð (ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ð¶ð¶ ) â ð¥ð¥ â (ðŽðŽâðµðµ) ðððððð ð¥ð¥ â (ðŽðŽâðµðµ)
â ð¥ð¥ â (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
⎠ðŽðŽâ(ðµðµâð¶ð¶ ) â (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ð¥ð¥ be an arbitrary element of (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶). Then,
ð¥ð¥ â (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶ ) â ð¥ð¥ â (ðŽðŽâðµðµ) ðððððð ð¥ð¥ â (ðŽðŽâð¶ð¶ )
â (ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ) ðððððð (ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ð¶ð¶ )
Using distributive law, we have
ð¥ð¥ â ðŽðŽ ðððð { ð¥ð¥ â ðµðµ ðððððð ð¥ð¥ â ð¶ð¶ } â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â (ðµðµâð¶ð¶ ) â ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶ )
⎠(ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶) â ðŽðŽâ(ðµðµâð¶ð¶ )
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
ðŽðŽâ(ðµðµâð¶ð¶ ) = (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
ðŽðŽâ(ðµðµâð¶ð¶ ) = (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
Let ð¥ð¥ be an arbitrary element of ðŽðŽâ(ðµðµâð¶ð¶). Then,
ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶ ) â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â (ðµðµâð¶ð¶ ) â ð¥ð¥ â ðŽðŽ ðððððð { ð¥ð¥ â ðµðµ ðððð ð¥ð¥ â ð¶ð¶ }
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
11th
Using distributive law, we have
(ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ) ðððð (ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ð¶ð¶ ) â ð¥ð¥ â (ðŽðŽâðµðµ) ðððð ð¥ð¥ â (ðŽðŽâðµðµ)
â ð¥ð¥ â (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
⎠ðŽðŽâ(ðµðµâð¶ð¶ ) â (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ð¥ð¥ be an arbitrary element of (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶). Then,
ð¥ð¥ â (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶ ) â ð¥ð¥ â (ðŽðŽâðµðµ) ðððð ð¥ð¥ â (ðŽðŽâð¶ð¶ )
â (ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ) ðððð (ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ð¶ð¶ )
Using distributive law, we have
ð¥ð¥ â ðŽðŽ ðððððð { ð¥ð¥ â ðµðµ ðððð ð¥ð¥ â ð¶ð¶ } â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â (ðµðµâð¶ð¶ ) â ð¥ð¥ â ðŽðŽâ(ðµðµâð¶ð¶ )
⎠(ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶) â ðŽðŽâ(ðµðµâð¶ð¶ )
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
ðŽðŽâ(ðµðµâð¶ð¶ ) = (ðŽðŽâðµðµ)â(ðŽðŽâð¶ð¶)
c) Difference: Let ðŽðŽ and ðµðµ be two sets, the difference of ðŽðŽ and ðµðµ is
the set of all elements which are a member of ðŽðŽ but not a
member of ðµðµ. It is denoted by ðŽðŽ â ðµðµ.
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {3,4,5,6}, then, ðŽðŽ â ðµðµ = {1,2} and
ðµðµ â ðŽðŽ = {5,6}.
Properties of difference: Let ðŽðŽ and ðµðµ be two subsets of ðð then;
i.
ii.
iii.
iv.
v.
8
ðŽðŽ â ðµðµ â ðµðµ â ðŽðŽ
(ðŽðŽ â ðµðµ) â ð¶ð¶ â ðŽðŽ â (ðµðµ â ð¶ð¶)
ðŽðŽ â ðð = ðŽðŽ
Let ð¥ð¥ be an arbitrary element of (ðŽðŽ â ðð). Then,
ð¥ð¥ â (ðŽðŽ â ðð) â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ
⎠(ðŽðŽ â ðð) â ðŽðŽ
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽ
ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðð â ð¥ð¥ â (ðŽðŽ â ðð)
⎠ðŽðŽ â (ðŽðŽ â ðð)
Hence, from equation (1) and (2) we have,
ðŽðŽ â ðð = ðŽðŽ
ðŽðŽ â ðŽðŽ = ðð (Do yourself)
Let ð¥ð¥ be an arbitrary element of (ðŽðŽ â ðŽðŽ). Then,
ð¥ð¥ â (ðŽðŽ â ðŽðŽ) â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðð
⎠(ðŽðŽ â ðŽðŽ) â ðð
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽ
ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â (ðŽðŽ â ðŽðŽ)
⎠ðð â (ðŽðŽ â ðŽðŽ)
Hence, from equation (1) and (2) we have,
ðŽðŽ â ðŽðŽ = ðð
ðð â ðŽðŽ = ðŽðŽâ² (Do yourself)
A
B
ðšðš â ð©ð©
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
11th
Let ð¥ð¥ be an arbitrary element of (ðð â ðŽðŽ). Then,
ð¥ð¥ â (ðð â ðŽðŽ) â ð¥ð¥ â ðð ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðð ðððððð ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ððâðŽðŽâ² â ð¥ð¥ â ðŽðŽâ²
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
⎠(ðð â ðŽðŽ) â ðŽðŽâ²
Conversely, let ð¥ð¥ be an arbitrary element of ðŽðŽâ²
ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ððâðŽðŽâ² â ð¥ð¥ â ðð ðððððð ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ðð ðððððð ð¥ð¥ â ðŽðŽ â ð¥ð¥ â (ðð â ðŽðŽ)
⎠ðŽðŽâ² â (ðð â ðŽðŽ)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
Hence, from equation (1) and (2) we have,
ðð â ðŽðŽ = ðŽðŽâ²
Symmetric difference: The symmetric difference of two sets ðŽðŽ and ðµðµ is defined as,
ðŽðŽâðµðµ = (ðŽðŽ â ðµðµ)â(ðµðµ â ðŽðŽ)
Example: ðŽðŽ = {1,2,3,4} , ðµðµ = {3,4,5,6}, then, ðŽðŽâðµðµ = {1,2,5,6}
Complement of a set: Let ðð be a universal set and ðŽðŽ â ðð, then ðŽðŽâ is
said to be the complement of the set ðŽðŽ, if ðŽðŽâ² â ðð but ðŽðŽâ is consists
all the elements which are not an element of ðŽðŽ.
A
Aâ
Example: ðð = {ðð, ðð, ðð, ðð, ðð, ðð} , ðŽðŽ = {ðð, ðð, ðð } , ðŽðŽâ² = {ðð, ðð, ðð}
Properties of complement: Let ðŽðŽ and ðŽðŽâ² be two subsets of ðð such that ðŽðŽâ² is the complement of
the set ðŽðŽ then;
i.
ii.
iii.
9
ðŽðŽâðŽðŽâ² = ðð
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðŽðŽâ² . Then,
ð¥ð¥ â ðŽðŽâðŽðŽâ² â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ðð
⎠ðŽðŽâðŽðŽâ² â ðð
Conversely, let ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ðŽðŽâðŽðŽâ²
⎠ðð â ðŽðŽâðŽðŽâ²
Hence, from equation (1) and (2) we have,
ðŽðŽâðŽðŽâ² = ðð
ðŽðŽâðŽðŽâ² = ðð
Let ð¥ð¥ be an arbitrary element of ðŽðŽâðŽðŽâ² . Then,
ð¥ð¥ â ðŽðŽâðŽðŽâ² â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ðð
⎠ðŽðŽâðŽðŽâ² â ðð
Conversely, let ð¥ð¥ â ðð â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ðŽðŽâðŽðŽâ²
⎠ðð â ðŽðŽâðŽðŽâ²
Hence, from equation (1) and (2) we have,
ðŽðŽâðŽðŽâ² = ðð
(ðŽðŽâ² )â² = ðŽðŽ
Let ð¥ð¥ be an arbitrary element of (ðŽðŽâ² )â².Then,
ð¥ð¥ â (ðŽðŽâ² )â² â ð¥ð¥ â ðŽðŽâ² â ð¥ð¥ â ðŽðŽ
⎠(ðŽðŽâ² )â² â ðŽðŽ
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
â²
iv.
v.
vi.
11th
â² )â²
Conversely, let ð¥ð¥ â ðŽðŽ â ð¥ð¥ â ðŽðŽ â ð¥ð¥ â (ðŽðŽ
⎠ðŽðŽ â (ðŽðŽâ² )â²
Hence, from equation (1) and (2) we have,
(ðŽðŽâ² )â² = ðŽðŽ
ððâ² = ðð and ððâ² = ðð
Let ð¥ð¥ be an arbitrary element of ððâ².Then,
ð¥ð¥ â ððâ². â ð¥ð¥ â ðð â ð¥ð¥ â ðð
⎠ððâ² â ðð
Conversely, let ð¥ð¥ â ðð â ð¥ð¥ â ðð â ð¥ð¥ â ðð â²
⎠ðð â ððâ²
Hence, from equation (1) and (2) we have,
ððâ² = ðð
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
(ðŽðŽâðµðµ)â² = ðŽðŽâ²âðµðµâ²
Let ð¥ð¥ be an arbitrary element of (ðŽðŽâðµðµ)â² . Then,
ð¥ð¥ â (ðŽðŽâðµðµ)â² â ð¥ð¥ â ðŽðŽâðµðµ â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðŽðŽâ² ðððððð ð¥ð¥ â ðµðµâ² â ð¥ð¥ â ðŽðŽâ²âðµðµâ²
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
⎠(ðŽðŽâðµðµ)â² â ðŽðŽâ²âðµðµâ²
â²
â²
Conversely, let ð¥ð¥ â ðŽðŽ âðµðµ
â ð¥ð¥ â ðŽðŽâ² ðððððð ð¥ð¥ â ðµðµâ² â ð¥ð¥ â ðŽðŽ ðððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðŽðŽâðµðµ â ð¥ð¥ â (ðŽðŽâðµðµ)â²
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
⎠ðŽðŽâ²âðµðµâ² â (ðŽðŽâðµðµ)â²
Hence, from equation (1) and (2) we have,
(ðŽðŽâðµðµ)â² = ðŽðŽâ²âðµðµâ²
(ðŽðŽâðµðµ)â² = ðŽðŽâ²âðµðµâ²
Let ð¥ð¥ be an arbitrary element of (ðŽðŽâðµðµ)â² . Then,
ð¥ð¥ â (ðŽðŽâðµðµ)â² â ð¥ð¥ â ðŽðŽâðµðµ â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðŽðŽâ² ðððð ð¥ð¥ â ðµðµâ² â ð¥ð¥ â ðŽðŽâ²âðµðµâ²
⎠(ðŽðŽâðµðµ)â² â ðŽðŽâ²âðµðµâ²
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (1)
Conversely, let ð¥ð¥ â ðŽðŽâ²âðµðµâ²
â ð¥ð¥ â ðŽðŽâ² ðððð ð¥ð¥ â ðµðµâ² â ð¥ð¥ â ðŽðŽ ðððððð ð¥ð¥ â ðµðµ â ð¥ð¥ â ðŽðŽâðµðµ â ð¥ð¥ â (ðŽðŽâðµðµ)â²
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
⎠ðŽðŽâ²âðµðµâ² â (ðŽðŽâðµðµ)â²
Hence, from equation (1) and (2) we have,
(ðŽðŽâðµðµ)â² = ðŽðŽâ² âðµðµâ²
Some useful results; for any set ðŽðŽ, ðµðµ and ð¶ð¶, we have
ðŽðŽ â ðµðµ = ðµðµâ² â ðŽðŽâ²
(ðŽðŽ â ðµðµ)âðµðµ = ðð
(ðŽðŽ â ðµðµ) = ðŽðŽ ⺠(ðŽðŽâðµðµ) = ðð
(ðŽðŽâðµðµ) = (ðŽðŽâðµðµ) ⺠ðŽðŽ = ðµðµ
10
âŠâŠâŠâŠâŠâŠâŠâŠâŠ (2)
ðŽðŽâ(ðŽðŽâðµðµ) = ðŽðŽ
ðŽðŽâ(ðŽðŽâðµðµ) = ðŽðŽ
(ðŽðŽâðµðµ)â(ðŽðŽ â ðµðµ) = ðŽðŽ
ðŽðŽâ(ðµðµ â ðŽðŽ) = (ðŽðŽâðµðµ)
ðŽðŽ â (ðµðµâð¶ð¶ ) = (ðŽðŽ â ðµðµ)â(ðŽðŽ â ð¶ð¶ )
ðŽðŽ â ðµðµ = ðŽðŽâðµðµâ²
ðµðµ â ðŽðŽ = ðµðµâðŽðŽâ²
ðð(ðŽðŽâðµðµ) = ðð(ðŽðŽ)â ðð(ðµðµ)
ðð(ðŽðŽ)âðð(ðµðµ) â ðð(ðŽðŽâðµðµ)
ðŽðŽ â (ðµðµâð¶ð¶ ) = (ðŽðŽ â ðµðµ)â(ðŽðŽ â ð¶ð¶ )
©Copyright Vishika Group of Companies. All Rights Reserved.
SET THEORY
(ðŽðŽâðµðµ) â ð¶ð¶ = (ðŽðŽ â ð¶ð¶ )â(ðµðµ â ð¶ð¶ )
(ðŽðŽ â ðµðµ)â(ðµðµ â ðŽðŽ) = (ðŽðŽâðµðµ) â (ðŽðŽâðµðµ)
11th
(ðŽðŽâðµðµ) â ð¶ð¶ = (ðŽðŽ â ð¶ð¶ )â(ðµðµ â ð¶ð¶ )
(ðŽðŽ â ðµðµ)â(ðµðµ â ðŽðŽ) = (ðŽðŽâðµðµ) â (ðŽðŽâðµðµ)
Application of sets: There are two applications of sets;
a) In general, let ðŽðŽ and ðµðµ be two finite sets, then
ðð(ðŽðŽâðµðµ) = ðð(ðŽðŽ) + ðð(ðµðµ) â ðð(ðŽðŽâðµðµ)
Example: In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many
like tennis only and not cricket? How many like tennis?
Solution: Let ðŽðŽ be the set of people who like cricket and let ðµðµ be the set of people who like
tennis. Then, the set of people who like both cricket and tennis will be ðŽðŽâðµðµ and the set of
people who like tennis only and not cricket will be ðð â ðŽðŽ.
Therefore, ðð(ðŽðŽ) = 40, ðð(ðŽðŽâðµðµ) = 65, ðð(ðŽðŽâðµðµ) = 10, ðð(ðµðµ) =?
ðð(ðð â ðŽðŽ) = ðð(ðŽðŽâðµðµ) â ðð(ðŽðŽ)
= 65 â 40 = 25
Now,
ðð(ðŽðŽâðµðµ) = ðð(ðŽðŽ) + ðð(ðµðµ) â ðð(ðŽðŽâðµðµ)
65 = 40 + ðð(ðµðµ) â 10
ðð(ðµðµ) = 35
b) In general, let ðŽðŽ, ðµðµ and ð¶ð¶ be three finite sets, then
ðð(ðŽðŽâðµðµâð¶ð¶ ) = ðð(ðŽðŽ) + ðð(ðµðµ) + ðð(ð¶ð¶ ) â ðð(ðŽðŽâðµðµ) â ðð(ðµðµâð¶ð¶ ) â ðð(ðŽðŽâð¶ð¶ ) + ðð(ðŽðŽâðµðµâð¶ð¶)
Example: In a survey of 60 people, it was found that 25 people read newspaper H, 26 read
newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T
and I, 3 read all three newspapers. Find the number of people who read at least one of the
newspapers and the number of people who read exactly one newspaper.
Solution: Let us consider that ðð be the universal set then, ðð(ðð) = 60, ðð(ð»ð») = 25, ðð(ðð) = 26,
ðð(ðŒðŒ ) = 26, ðð(ð»ð»âðð) = 11, ðð(ððâðŒðŒ ) = 8, ðð(ð»ð»âðŒðŒ ) = 9, ðð(ð»ð»âððâðŒðŒ ) = 3
⎠ðð(ð»ð»âððâðŒðŒ ) = ðð(ð»ð») + ðð(ðð) + ðð(ðŒðŒ ) â ðð(ð»ð»âðð) â ðð(ððâðŒðŒ ) â ðð(ð»ð»âðŒðŒ ) + ðð(ð»ð»âððâðŒðŒ)
= 25 + 26 + 26 â 11 â 9 â 8 + 3
ðð(ð»ð»âððâðŒðŒ ) = 52
The number of people who read exactly one newspaper is
= ðð(ð»ð»âððâðŒðŒ ) â {ðð(ð»ð»âðð) + ðð(ððâðŒðŒ ) + ðð(ð»ð»âðŒðŒ ) â 2ðð(ð»ð»âððâðŒðŒ )}
= 52 â {11 + 9 + 8 â 6}
= 30
11
©Copyright Vishika Group of Companies. All Rights Reserved.