Ingeniería y Ciencia
ISSN:1794-9165
ISSN-e: 2256-4314
ing. cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
http://www.eafit.edu.co/ingciencia
This a open-access article distributed under the terms of the Creative Commons Attribution
License.
Properties and Applications of Extended
Hypergeometric Functions
Daya K. Nagar1 , Raúl Alejandro Morán-Vásquez2
Arjun K. Gupta3
and
Received: 25-08-2013, Accepted: 16-12-2013, Online: 30-01-2014
MSC:33C90
doi:10.17230/ingciencia.10.19.1
Abstract
In this article, we study several properties of extended Gauss hypergeometric and extended confluent hypergeometric functions. We derive several
integrals, inequalities and establish relationship between these and other
special functions. We also show that these functions occur naturally in
statistical distribution theory.
Key words: Beta distribution; extended beta function; extended confluent hypergeometric function; extended Gauss hypergeometric function;
gamma distribution; Gauss hypergeometric function.
1
Ph.D. in Science, dayaknagar@yahoo.com, Universidad de Antioquia, Medellín,
Colombia.
2
Magíster en Matemáticas, alejandromoran77@gmail.com, Universidade de São
Paulo, São Paulo, Brasil.
3
Ph.D. in Statistics, gupta@bgsu.edu, Bowling Green State University, Bowling
Green, Ohio, USA.
Universidad EAFIT
11|
Properties and Applications of Extended Hypergeometric Functions
Propiedades y aplicaciones de Funciones Hipergeométricas Extendida
Resumen
En este artículo estudiamos varias propiedades de las funciones hipergeométrica de Gauss extendida e hipergeométrica confluente extendida. Derivamos varias integrales, desigualdades y establecemos relaciones entre
estas y otras funciones especiales. También mostramos que estas funciones
ocurren naturalmente en la teoría de distribuciones estadísticas.
Palabras clave: Distribución beta; función beta extendida; función hipergeométrica confluente extendida; función hipergeométrica de Gauss extendida; distribución gamma; función hipergeométrica de Gauss.
1
Introduction
The classical beta function, denoted by B(a, b), is defined (see Luke [1])
by the Euler’s integral
Z 1
ta−1 (1 − t)b−1 dt,
B(a, b) =
0
=
Γ(a)Γ(b)
,
Γ(a + b)
Re(a) > 0,
Re(b) > 0.
(1)
Based on the beta function, the Gauss hypergeometric function, denoted by F (a, b; c; z), and the confluent hypergeometric function, denoted by Φ(b; c; z), for Re(c) > Re(b) > 0, are defined as (see Luke [1]),
Z 1 b−1
t (1 − t)c−b−1
1
dt, | arg(1 − z)| < π,
F (a, b; c; z) =
B(b, c − b) 0
(1 − zt)a
(2)
and
Z 1
1
Φ(b; c; z) =
tb−1 (1 − t)c−b−1 exp(zt) dt.
(3)
B(b, c − b) 0
Using the series expansions of (1 − zt)−a and exp(zt) in (2) and (3),
respectively, the series representations of F (a, b; c; z) and Φ(b; c; z),
|12
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
for Re(c) > Re(b) > 0, are obtained as
F (a, b; c; z) =
∞
X
(a)n B(b + n, c − b) z n
n=0
B(b, c − b)
n!
,
|z| < 1,
(4)
and
Φ(b; c; z) =
∞
X
B(b + n, c − b) z n
n=0
B(b, c − b)
n!
,
(5)
respectively.
In 1997, Chaudhry et al. [2] extended the classical beta function
to the whole complex plane by introducing in the integrand of (1)
the exponential factor exp [−σ/t(1 − t)], with Re(σ) > 0. Thus, the
extended beta function is defined as
Z 1
σ
a−1
b−1
t (1 − t) exp −
B(a, b; σ) =
dt, Re(σ) > 0. (6)
t(1 − t)
0
If we take σ = 0 in (6), then for Re(a) > 0 and Re(b) > 0 we
have B(a, b; 0) = B(a, b). Further, replacing t by 1 − t in (6), one
can see that B(a, b; σ) = B(b, a; σ). The rationale and justification
for introducing this function are given in Chaudhry et al. [2] where
several properties and a statistical application have also been studied.
Miller [3] further studied this function and has given several additional
results.
In 2004, Chaudhry et al. [4] gave definitions of the extended Gauss
hypergeometric function and the extended confluent hypergeometric
function, denoted by Fσ (a, b; c; z) and Φσ (b; c; z), respectively. These
definitions were developed by considering the extended beta function
(6) instead of beta function (1) that appear in the general term of
the series (4) and (5). Thus, for Re(c) > Re(b) > 0, Fσ (a, b; c; z) and
Φσ (b; c; z) are defined by
Fσ (a, b; c; z) =
∞
X
(a)n B(b + n, c − b; σ) z n
n=0
B(b, c − b)
n!
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
,
σ ≥ 0,
|z| < 1, (7)
13|
Properties and Applications of Extended Hypergeometric Functions
and
Φσ (b; c; z) =
∞
X
B(b + n, c − b; σ) z n
B(b, c − b)
n=0
n!
,
σ ≥ 0,
(8)
respectively. Further, using the integral representation of the extended beta function (6) in (7) and (8), Chaudhry et al. [4] obtained
integral representations, for σ ≥ 0 and Re(c) > Re(b) > 0, of the
extended Gauss hypergeometric function (EGHF) and the extended
confluent hypergeometric function (ECHF) as
Z 1 b−1
1
σ
t (1 − t)c−b−1
Fσ (a, b; c; z) =
dt,
exp −
B(b, c − b) 0
(1 − zt)a
t(1 − t)
| arg(1 − z)| < π,
(9)
and
1
Φσ (b; c; z) =
B(b, c − b)
Z
1
t
0
b−1
(1 − t)
c−b−1
σ
exp zt −
dt,
t(1 − t)
(10)
respectively.
For σ = 0 in (9), we have F0 (a, b; c; z) = F (a, b; c; z), that is,
the classical Gauss hypergeometric function is a special case of the
extended Gauss hypergeometric function. Likewise, taking σ = 0
in (10) yields Φ0 (b; c; z) = Φ(b; c; z), which means that the classical
confluent hypergeometric function is a special case of the extended
confluent hypergeometric function. Chaudhry et al. [4] and Miller [3]
found that extended forms of beta and hypergeometric functions are
related to the beta, Bessel and Whittaker functions, and also gave
several alternative integral representations.
In this article, we give several interesting results on extended beta,
extended Gauss hypergeometric and extended confluent hypergeometric functions and show that they occur in a natural way in statistical
distribution theory.
This paper is divided into five sections. Section 2 deals with some
well known definitions and results on special functions . In Section 3,
|14
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
several properties of the extended beta, the extended Gauss hypergeometric and the extended confluent hypergeometric functions have
been studied. Section 4 deals with the integrals involving EGHF
and ECHF. Finally, applications of the extended Gauss hypergeometric and the extended confluent hypergeometric functions are demonstrated in Section 5.
2
Some Known Definitions and Results
An integral representation of the type 2 modified Bessel function
(Gradshteyn and Ryzhik [5, Eq. 3.471.9]) is given by
ν/2Z ∞
√
b
1 a
ν−1
Kν (2 ab) =
t
exp − at +
dt,
(11)
2 b
t
0
where Re(a) > 0 and Re(b) > 0.
If we make the transformation t = (1 + u)−1 u in (2) and (3) with
the Jacobian J(t → u) = (1 + u)−2 , we obtain alternative integral
representations for F (a, b; c; z) and Φ(b; c; z) as
Z ∞ b−1
1
u (1 + u)a−c
F (a, b; c; z) =
du,
(12)
B(b, c − b) 0 [1 + (1 − z)u]a
and
1
Φ(b; c; z) =
B(b, c − b)
Z
∞
0
ub−1 exp[z(1 + u)−1 u]
du,
(1 + u)c
(13)
respectively.
Putting z = 1 in (2) and evaluating the resulting integral using
(1), one obtains
F (a, b; c; 1) =
Γ(c)Γ(c − a − b)
,
Γ(c − a)Γ(c − b)
Re(c − a − b) > 0.
(14)
In the remainder of this section we give several properties of extended beta, extended Gauss hypergeometric, and extended confluent hypergeometric functions, most of them have been derived by
Chaudhry et al. [2],[4].
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
15|
Properties and Applications of Extended Hypergeometric Functions
Using the transformation t = (1 + u)−1 u in (6), with the Jacobian
J(t → u) = (1 + u)−2 , we arrive at
B(a, b; σ) = exp(−2σ)
Z
∞
0
ua−1 exp[−σ(u + u−1 )]
du.
(1 + u)a+b
(15)
For σ = 0 with Re(a) > 0 and Re(b) > 0, the above expression gives
the well-known integral representation of B(a, b) as
B(a, b) =
Z
∞
0
ua−1
du.
(1 + u)a+b
(16)
If we take b = −a in (15) and compare the resulting expression with
(11) we obtain an interesting relationship between the extended beta
function and the type 2 modified Bessel function as
(17)
B(a, −a; σ) = 2 exp(−2σ)Ka (2σ).
If we consider z = 1 in (9) and compare the resulting expression
with the representation (6), we find that the extended beta function
and EGHF are related by the expression
Fσ (a, b; c; 1) =
B(b, c − b − a; σ)
,
B(b, c − b)
Re(c) > Re(b) > 0.
(18)
Further, substituting c = a in (18) and using (17), we obtain, for
σ > 0,
Fσ (a, b; a; 1) =
B(b, −b; σ)
2 exp(−2σ)
=
Kb (2σ),
B(b, a − b)
B(b, a − b)
(19)
where Re(a) > Re(b) > 0.
Note that (19) can also be obtained by taking z = 1 and a = c in
(20), and then using the integral representation (11).
In the integral representation of EGHF and ECHF given in (9)
and (10), respectively, substituting t = (1 + u)−1 u, with the Jacobian
|16
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
J(t → u) = (1+u)−2 , alternative integral representations are obtained
as
Z
exp(−2σ) ∞ ub−1 exp[−σ(u + u−1 )]
Fσ (a, b; c; z) =
du (20)
B(b, c − b) 0 (1 + u)c−a [1 + (1 − z)u]a
and
Z
1
zu
exp(−2σ) ∞ ub−1
du.
exp
−σ u+
Φσ (b; c; z) =
B(b, c − b) 0 (1 + u)c
1+u
u
(21)
If we take σ = 0 in (20) and (21), we arrive at the representations
(12) and (13) of the classical Gauss hypergeometric function and the
classical confluent hypergeometric function, respectively.
For | arg(1 − z)| < 1, the transformation formula is given by
z
−a
Fσ (a, b; c; z) = (1 − z) Fσ a, c − b; c; −
.
(22)
1−z
It is noteworthy that σ = 0 in (22) gives the well-known transformation formula
z
−a
.
F (a, b; c; z) = (1 − z) F a, c − b; c; −
1−z
Also, putting c = b in the above expression, one obtains
F (a, b; b; z) = (1 − z)−a .
In the integral representation of the ECHF (10) consider the substitution 1 − u = t, whose Jacobian is given by J(t → u) = 1, to
obtain
Z 1
exp(z)
σ
b−1 c−b−1
Φσ (b; c; z) =
(1−u) u
exp −zu −
du.
B(b, c − b) 0
u(1 − u)
(23)
By evaluating the integral in (23) using (10), Kummer’s relation for
extended confluent hypergeometric function is derived as
Φσ (b; c; z) = exp(z)Φσ (c − b; c; −z).
(24)
For σ = 0, the expression (24) reduces to the well known Kummer’s
first formula for the classical confluent hypergeometric function.
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
17|
Properties and Applications of Extended Hypergeometric Functions
3
Properties of the EGHF and ECHF
This section gives several properties of the the EGHF and ECHF.
Writing Fσ (a, b; c; z/a) in terms of integral representation using (9)
and taking a → ∞, we obtain
z
lim Fσ a, b; c;
= Φσ (b; c; z).
a→∞
a
Replacing exp(−σ/t) and exp[−σ/(1 − t)] by their respective se(0)
ries expansions involving Laguerre polynomials Ln (σ) ≡ Ln (σ) (n =
0, 1, 2, . . .) given in Miller [3, Eq. 3.4a, 3.4b], namely,
∞
σ
X
exp −
= exp(−σ)t
Ln (σ)(1 − t)n ,
t
n=0
|t| < 1,
and
σ
exp −
1−t
= exp(−σ)(1 − t)
∞
X
m=0
Lm (σ)tm ,
|t| < 1,
in (9) and (10), and integrating with respect to t using (2) and (3),
EGHF and ECHF can also be expressed as
Fσ (a, b; c; z) =
∞
exp(−2σ) X
B(b + m + 1, c + n + 1 − b)
B(b, c − b) m,n=0
× Lm (σ)Ln (σ)F (a, b + m + 1; c + m + n + 2; z)
and
∞
exp(−2σ) X
B(b + m + 1, c + n + 1 − b)
Φσ (b; c; z) =
B(b, c − b) m,n=0
× Lm (σ)Ln (σ)Φ(b + m + 1; c + m + n + 2; z),
respectively.
|18
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
Theorem 3.1. If z is such that z < 1, σ > 0 and c > b > 0, then
|Fσ (a, b; c; z)| ≤ exp(−4σ)F (a, b; c; z) ≤
exp(−1)
F (a, b; c; z). (25)
4σ
Proof. It follows that for u > 0 and σ > 0, σ(u + u−1 − 2) ≥ 0 implies
that σ(u + u−1 ) ≥ 2σ and exp[−σ(u + u−1 )] ≤ exp(−2σ). Now, using
this inequality in the representation given in (20), we get
Z
exp(−4σ) ∞ ub−1 (1 + u)a−c
du
|Fσ (a, b; c; z)| ≤
B(b, c − b) 0 [1 + (1 − z)u]a
= exp(−4σ)F (a, b; c; z),
where the last line has been obtained by using (12). Further, the
inequality ln v ≤ v − 1, v > 0, for v = 4σ, yields
exp(−4σ) ≤
exp(−1)
,
4σ
which gives the second part of the inequality.
Using special cases of the Gauss hypergeometric function in (25),
several inequalities for EGHF can be obtained. For example, application of
2a
1
2
√
F a, a + ; 2a + 1; z =
2
1+ 1−z
and
F
Fσ
1 1
a, a + ; ; z
2 2
yield
=
√
√
1
(1 + z)−2a + (1 − z)−2a
2
1
a, a + ; 2a + 1; z
2
2
√
≤ exp(−4σ)
1+ 1−z
2a
and
Fσ
1 1
a, a + ; ; z
2 2
≤
√
√
exp(−4σ)
(1 + z)−2a + (1 − z)−2a .
2
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
19|
Properties and Applications of Extended Hypergeometric Functions
Further, using the Clausen’s identity
2
1
1
= 3 F2 2a, 2b, a + b; 2a + 2b, a + b + ; z
F a, b; a + b + ; z
2
2
in (25), one gets
2
1
Fσ a, b; a + b + ; z
2
1
≤ exp(−8σ) 3 F2 2a, 2b, a + b; 2a + 2b, a + b + ; z .
2
If we put z = 1 in (25), and then use (18) and (14) in the resulting
expression, we obtain
exp(−1)
B(b, d),
4σ
where d = c − a − b > 0. If we replace z = 0 in (10) and compare the
resulting expression with (6), we see that the ECHF and the extended
beta function have the relationship
|B(b, d; σ)| ≤ exp(−4σ)B(b, d) ≤
Φσ (b; c; 0) =
B(b, c − b; σ)
.
B(b, c − b)
Theorem 3.2. If α and β are two scalars such that β − α > 0, then
Z
(β − α)−c+1 β
z(u − α)
b−1
c−b−1
Φσ (b; c; z) =
(u − α) (β − u)
exp
B(b, c − b) α
β−α
2
σ(β − α)
du.
(26)
× exp −
(u − α)(β − u)
Proof. Using the transformation t = (u−α)/(β−α) with the Jacobian
(β − α)−1 in the representation (10), we obtain the result.
If we consider β = 1 and α = −1 in (26), we have another integral
representation of extended confluent hypergeometric function as
Φσ (b; c; z) =
|20
2−c+1 exp(z/2)
B(b, c − b)
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
×
Z
1
(1+u)
b−1
(1−u)
c−b−1
exp
−1
4σ
zu
−
2 1 − u2
du.
Theorem 3.3. If σ > 0 and c > b > 0, then
|Φσ (b; c; z)| ≤ exp(−4σ)Φ(b; c; z) ≤
exp(−1)
Φ(b; c; z).
4σ
Proof. Similar to the proof of Theorem 3.1.
4
Integrals involving EGHF and ECHF
In this section we evaluate some integrals that are related to EGHF
and ECHF.
Theorem 4.1. If σ ≥ 0, α > β > 0, Re(c) > Re(b) > 0 and
Re(a) > 0, then
Z ∞
exp(−αx)xa−1 Φσ (b; c; βx) dx = Γ(a)α−a Fσ (a, b; c; βα−1 ). (27)
0
Proof. Using the integral representation (10) and changing the order
of integration, we have
Z ∞
xa−1 exp(−αx)Φσ (b; c; βx) dx
0
Z 1
1
σ
b−1
c−b−1
=
t (1 − t)
exp −
B(b, c − b) 0
t(1 − t)
Z ∞
xa−1 exp[−(α − βt)x] dx dt.
×
0
Now, integrating with respect to x using Euler’s gamma integral and
then t using the representation (9), we get the desired result.
Corollary 4.1. If σ > 0, α > 0, Re(c) > Re(b) > 0 and Re(a) > 0,
then
Z ∞
Γ(a)B(b − a, c − b; σ) −a
xa−1 Φσ (b; c; −αx) dx =
α
(28)
B(b, c − b)
0
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
21|
Properties and Applications of Extended Hypergeometric Functions
and
Z
∞
exp(−x)xa−1 Φσ (b; c; x) dx =
0
Γ(a)B(b, c − b − a; σ)
.
B(b, c − b)
(29)
Proof. Application of Kummer’s relation (24) yields
Z ∞
Z ∞
a−1
exp(−αx)xa−1 Φσ (c − b; c; αx) dx.
x Φσ (b; c; −αx) dx =
0
0
Evaluating the above integral by applying (27) and then using the
relation (18), we get (28). To prove (29) just take α = β = 1 in (27)
and use (18).
Corollary 4.2. If σ > 0 and Re(c) > Re(b) > 0, then
Z ∞
2Γ(c) exp(−2σ)Kb (2σ)
exp(−x)xc−1 Φσ (b; c; x) dx =
.
B(b, c − b)
0
Proof. Just take a = c in (29), and then use (17).
Theorem 4.2. For σ ≥ 0, α < 1, Re(a) > Re(d) > 0 and Re(c) >
Re(b) > 0, we have
Z 1
xd−1 (1−x)a−d−1 Fσ (a, b; c; αx) dx = B(d, a−d)Fσ (d, b; c; α). (30)
0
Proof. Using (9) and changing the order of integration
Z 1
xd−1 (1 − x)a−d−1 Fσ (a, b; c; αx) dx
0
Z 1
1
σ
b−1
c−b−1
=
t (1 − t)
exp −
B(b, c − b) 0
t(1 − t)
Z 1 d−1
a−d−1
x (1 − x)
×
dx dt
(1 − αtx)a
0
Z
σ
B(d, a − d) 1 tb−1 (1 − t)c−b−1
dt,
exp −
=
B(b, c − b) 0
(1 − αt)d
t(1 − t)
|22
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
where the integral involving x has been evaluated using (2). Finally,
using the representation (9), we arrive at the desired result.
Corollary 4.3. For σ > 0 and Re(a) > Re(c) > Re(b) > 0, we have
Z 1
2B(c, a − c) exp(−2σ)Kb (2σ)
xc−1 (1 − x)a−c−1 Fσ (a, b; c; x) dx =
.
B(b, c − b)
0
Proof. Just take α = 1 and c = d in (30), and then use (19).
Theorem 4.3. For σ > 0, Re(c) > Re(b) > 0 and Re(a) > Re(d) > 0,
we have
Z 1
xd−1 (1 − x)a−d−1 Fσ (a, b; c; 1 − x) dx
0
=
B(d, a − d)B(b, c + d − a − b; σ)
.
B(b, c − b)
Proof. Using (30), one gets
Z 1
(1 − x)d−1 xa−d−1 Fσ (a, b; c; 1 − x) dx = B(d, a − d)Fσ (d, b; c; 1).
0
Now, replacing d and a − d by a − d and d, respectively, in the above
expression, one gets
Z 1
(1 − x)a−d−1 xd−1 Fσ (a, b; c; 1 − x) dx = B(a − d, d)Fσ (a − d, b; c; 1).
0
Finally, substituting for Fσ (a − d, b; c; 1) from (18), we get the desired
result.
Theorem 4.4. If σ > 0, α > 0, Re(a) > Re(d) > 0 and Re(c) >
Re(b) > 0, then
Z ∞
α−d B(a − d, d)B(b − d, c − b; σ)
xd−1 Fσ (a, b; c; −αx) dx =
. (31)
B(b, c − b)
0
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
23|
Properties and Applications of Extended Hypergeometric Functions
Proof. Replacing Fσ (a, b; c; −αx) by its integral representation (9)
and changing the order of integration, we get
Z ∞
xd−1 Fσ (a, b; c; −αx) dx
0
Z ∞
Z 1
xd−1
σ
1
b−1
c−b−1
=
dx dt.
t (1 − t)
exp −
B(b, c − b) 0
t(1 − t) 0 (1 + αtx)a
Now, we integrate x using (16) and then t using (6) to obtain the
result.
Corollary 4.4. If σ > 0, α > 0 and Re(a) > Re(c) > Re(b) > 0,
then
Z ∞
2B(a − c, c)α−c exp(−2σ)Kb−c (2σ)
xc−1 Fσ (a, b; c; −αx) dx =
.
B(b, c − b)
0
Proof. Just take c = d in (31) and use the relation (17).
5
Statistical Distributions
In this section, we define the extended Gauss hypergeometric function and the extended confluent hypergeometric function distributions. We study several properties of these new distributions and
their relationships with other known distributions. We also show that
these distributions occur naturally as the distribution of the quotient
U/V , where U and V are independent, U has a gamma or beta type 2
distribution and the random variable V has an extended beta type 1
distribution. In the end, we derive results on products and quotients
of independent random variables.
First, we define the gamma, beta type 1 and beta type 2 distributions. These definitions can be found in Johnson, Kotz and Balakrishnan [6], and Gupta and Nagar [7].
A random variable X is said to have a gamma distribution with
parameters θ (> 0), κ (> 0), denoted by X ∼ Ga(κ, θ), if its probabil|24
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
ity density function (pdf) is given by
x
−1 κ−1
κ
{θ Γ(κ)} x
exp −
, x > 0.
(32)
θ
Note that for θ = 1, the above distribution reduces to a standard
gamma distribution and in this case we write X ∼ Ga(κ).
A random variable X is said to have a beta type 1 distribution
with parameters (a, b), a > 0, b > 0, denoted as X ∼ B1(a, b), if its
pdf is given by
{B(a, b)}−1 xa−1 (1 − x)b−1 ,
0 < x < 1,
where B(a, b) is the beta function.
A random variable X is said to have a beta type 2 distribution
with parameters (a, b), denoted as X ∼ B2(a, b), a > 0, b > 0, if its
pdf is given by
{B(a, b)}−1 xa−1 (1 + x)−(a+b) ,
(33)
x > 0.
A random variable X is said to have an extended beta (type 1) distribution with parameters α, β and λ, denoted by X ∼ EB1(α, β; λ),
if its pdf is given by (Chaudhry et al. [2]),
λ
−1 α−1
β−1
{B(α, β; λ)} x (1 − x)
exp −
, 0 < x < 1, (34)
x(1 − x)
where B(α, β; λ) is the extended beta function defined by (6), λ > 0,
and −∞ < α, β < ∞.
For λ = 0 with α > 0 and β > 0, the density (34) reduces to a
beta type 1 density.
Definition 5.1. A random variable X is said to have an extended
Gauss hypergeometric function distribution with parameters ν, α, β,
γ and σ, denoted by X ∼ EGH(ν, α, β, γ; σ), if its pdf is given by
B(β, γ − β)
xν−1 Fσ (α, β; γ; −x),
B(ν, α − ν)B(β − ν, γ − β; σ)
x > 0,
where α > ν > 0, γ > β > 0 if σ > 0 and α > ν > 0, γ > β > ν > 0
if σ = 0.
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
25|
Properties and Applications of Extended Hypergeometric Functions
The following theorem derives the extended Gauss hypergeometric
function distribution as the distribution of the ratio of two independent random variables distributed as beta type 2 and extended beta
type 1.
Theorem 5.1. Suppose that the random variables U and V are
independent, U ∼ B2(ν, γ) and V ∼ EB1(α, β; σ). Then U/V ∼
EGH(ν, ν + γ, ν + α, ν + α + β; σ).
Proof. As U and V are independent, by (33) and (34), the joint density of U and V is given by
ν−1 α−1
v (1 − v)β−1
σ
−1 u
{B(ν, γ)B(α, β; σ)}
,
exp −
(1 + u)ν+γ
v(1 − v)
where u > 0 and 0 < v < 1. Using the transformation X = U/V ,
with the Jacobian J(u → x) = v, we obtain the joint density of V
and X as
ν−1 ν+α−1
v
(1 − v)β−1
σ
−1 x
{B(ν, γ)B(α, β; σ)}
,
exp −
(1 + xv)ν+γ
v(1 − v)
where 0 < v < 1 and x > 0. Now, integration of the above expression
with respect to v using (9) yields the desired result.
If X ∼ EGH(ν, α, β, γ; σ), then
B(β, γ − β)
E(X ) =
B(ν, α − ν)B(β − ν, γ − β; σ)
h
Z
∞
0
xν+h−1 Fσ (α, β; γ; −x) dx.
Now, evaluation of the above integral by using (31) yields
E(X h ) =
B(ν + h, α − ν − h)B(β − ν − h, γ − β; σ)
.
B(ν, α − ν)B(β − ν, γ − β; σ)
where −ν < Re(h) < α − ν if σ > 0, and −ν < Re(h) < α − ν and
Re(h) < β − ν if σ = 0.
Next, we define and study the extended confluent hypergeometric
function distribution.
|26
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
Definition 5.2. A random variable X is said to have an extended
confluent hypergeometric function distribution with parameters
(ν, α, β, σ), denoted by X ∼ ECH(ν, α, β; σ), if its pdf is given by
B(α, β − α)xν−1 Φσ (α; β; −x)
,
Γ(ν)B(α − ν, β − α; σ)
(35)
x > 0,
where ν > 0, β > α > 0 if σ > 0 and β > α > ν > 0 if σ = 0.
The extended confluent hypergeometric function distribution can
be derived as the distribution of the quotient of independent gamma
and extended beta type 1 variables as given in the following theorem.
Theorem 5.2. If U ∼ Ga(a) and V ∼ EB1(b, c; σ) are independent,
then X = U/V ∼ ECH(a, a + b, a + b + c; σ).
Proof. As U and V are independent, from (32) and (34), the joint
density of U and V is given by
ua−1 v b−1 (1 − v)c−1 exp[−u − σ/v(1 − v)]
,
Γ(a)B(b, c; σ)
u > 0,
0 < v < 1.
Making the transformation X = U/V , with the Jacobian J(u → x) =
v, we find the joint density of V and X as
xa−1 v a+b−1 (1 − v)c−1 exp[−vx − σ/v(1 − v)]
,
Γ(a)B(b, c; σ)
0 < v < 1,
x > 0.
Now, the density of X is obtained by integrating the above expression
with respect to v using the integral representation (10).
By using (28), the expected value of X h , when X ∼ ECH(ν, α, β; σ),
is derived as
E(X h ) =
Γ(ν + h)B(α − ν − h, β − α; σ)
,
Γ(ν)B(α − ν, β − α; σ)
where Re(ν + h) > 0 if σ > 0 and β > α > Re(ν + h) > 0 if σ = 0.
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
27|
Properties and Applications of Extended Hypergeometric Functions
In the remainder of this section we derive results on products
and quotients of independent random variables. The derivation and
final result in each case involves extended forms of beta, confluent
hypergeometric, Gauss hypergeometric or generalized hypergeometric
functions showing ample applications of these functions and further
advancing statistical distribution theory.
Theorem 5.3. Suppose that the random variables X and Y are independent, X ∼ Ga(λ) and Y ∼ ECH(ν, α, β; σ). Then, the pdf of
R = Y /(Y + X) is given by
B(α, β − α)
rν−1 (1 − r)λ−1 Fσ (ν + λ, β − α; β; r),
B(ν, λ)B(α − ν, β − α; σ)
where 0 < r < 1.
Proof. Since X and Y are independent, from (32) and (35), we write
the joint density of X and Y as
B(α, β − α)
xλ−1 y ν−1 exp(−x)Φσ (α; β; −y),
Γ(ν)Γ(λ)B(α − ν, β − α; σ)
where x > 0 and y > 0. Now, making the transformation S = Y + X
and R = Y /(Y + X) with the Jacobian J(x, y → r, s) = s and using
(24), we obtain the joint density of S and R as
B(α, β − α)
rν−1 (1 − r)λ−1
Γ(ν)Γ(λ)B(α − ν, β − α; σ)
× sν+λ−1 exp(−s)Φσ (β − α; β; rs), s > 0,
0 < r < 1.
Clearly, R and S are not independent. Integrating the previous
expression with respect to s by using (27) the density of R is obtained.
Corollary 5.1. The density of W = X/Y is given by
B(α, β − α)
1
wλ−1
Fσ ν + λ, β − α; β;
,
B(ν, λ)B(α − ν, β − α; σ) (1 + w)ν+λ
1+w
where w > 0.
|28
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
Theorem 5.4. Suppose that the random variables U and V are independent, U ∼ B2(ν, γ) and V ∼ EB1(α, β; σ). Then Y = U V has
the density
1
B(α + γ, β)
y ν−1
, y > 0.
Fσ ν + γ, β; α + β + γ;
B(ν, γ)B(α, β; σ) (1 + y)ν+γ
1+y
Proof. As U and V are independent, from (33) and (34), the joint
density of U and V is given by
ν−1 α−1
v (1 − v)β−1
σ
−1 u
{B(ν, γ)B(α, β; σ)}
,
exp −
(1 + u)ν+γ
v(1 − v)
where u > 0 and 0 < v < 1. Using the transformation Y = U V , with
the Jacobian J(u → y) = 1/v, we obtain the joint density of V and
Y as
{B(ν, γ)B(α, β; σ)}−1
y ν−1 v α+γ−1 (1 − v)β−1 exp [−σ/v(1 − v)]
,
(1 + y)ν+γ
[1 − (1 − v)/(1 + y)]ν+γ
where 0 < v < 1 and y > 0. The marginal density of Y is obtained
by integrating the above expression with respect to v using (9).
Corollary 5.2. Suppose that the random variables U and V are
independent, U ∼ B2(ν, γ) and V ∼ B1(α, β). Then Y = U V has the
density
y ν−1
1
B(α + γ, β)
, y > 0.
F ν + γ, β; α + β + γ;
B(ν, γ)B(α, β) (1 + y)ν+γ
1+y
The above corollary has also been derived in Nagar and Zarrazola [8] and Morán-Vásquez and Nagar [9].
6
Conclusion
We have given several interesting properties of extended beta, extended Gauss hypergeometric and extended confluent hypergeometric functions. We have also evaluated a number of integrals involving
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
29|
Properties and Applications of Extended Hypergeometric Functions
these function. Finally, we have shown that these functions occur in
a natural way in statistical distribution theory.
In a series of papers Castillo-Pérez and his co-authors [10],[11],[12],[13]
have studied a generalization of the Gauss hypergeometric function
defined by
∞
X
B(b + τ n, c − b) z n
R(a, b; c; τ ; z) =
,
B(b, c − b)
n!
n=0
Re(c) > Re(b) > 0.
Replacing B(b + τ n, c − b) by B(b + τ n, c − b; σ), an extended form
of the above function can be defined as
∞
X
B(b + τ n, c − b; σ) z n
, Re(c) > Re(b) > 0.
Rσ (a, b; c; τ ; z) =
B(b, c − b)
n!
n=0
The function defined above is a generalization of the extended Gauss
hypergeometric function and will be considered for further research.
Acknowledgements
The research work of DKN was supported by the Sistema Universitario de Investigación, Universidad de Antioquia under the project
no. IN10182CE.
References
[1] Y. L. Luke, The special functions and their approximations, Vol. I, ser. Mathematics in Science and Engineering, Vol. 53. New York: Academic Press,
1969. 12
[2] M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, “Extension of
Euler’s beta function,” J. Comput. Appl. Math., vol. 78, no. 1, pp. 19–32,
1997. [Online]. Available: http://dx.doi.org/10.1016/S0377-0427(96)00102-1
13, 15, 25
[3] A. R. Miller, “Remarks on a generalized beta function,” J. Comput.
Appl. Math., vol. 100, no. 1, pp. 23–32, 1998. [Online]. Available:
http://dx.doi.org/10.1016/S0377-0427(98)00121-6 13, 14, 18
[4] M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris,
“Extended hypergeometric and confluent hypergeometric functions,” Appl.
Math. Comput., vol. 159, no. 2, pp. 589–602, 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.amc.2003.09.017 13, 14, 15
|30
Ingeniería y Ciencia
Daya K. Nagar, Raúl A. Morán-Vásquez and Arjun K. Gupta
[5] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products,
7th ed. Elsevier/Academic Press, Amsterdam, 2007, translated from the
Russian, Translation edited and with a preface by Alan Jeffrey and Daniel
Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX). 15
[6] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions. Vol. 2, 2nd ed., ser. Wiley Series in Probability and Mathematical
Statistics: Applied Probability and Statistics. New York: John Wiley &
Sons Inc., 1995, a Wiley-Interscience Publication. 24
[7] A. K. Gupta and D. K. Nagar, Matrix variate distributions, ser. Chapman
& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics.
Chapman & Hall/CRC, Boca Raton, FL, 2000, vol. 104. 24
[8] D. K. Nagar and E. Zarrazola, “Distributions of the product and the
quotient of independent Kummer-beta variables,” Sci. Math. Jpn., vol. 61,
no. 1, pp. 109–117, 2005. [Online]. Available: http://www.jams.or.jp/scm/
contents/e-2004-1/2004-4.pdf 29
[9] R. A. Morán-Vásquez and D. K. Nagar, “Product and quotients of independent Kummer-gamma variables,” Far East J. Theor. Stat., vol. 27, no. 1, pp.
41–55, 2009. 29
[10] J. A. Castillo Pérez and C. Jiménez Ruiz, “Algunas representaciones
simples de la función hipergeométrica generalizada 2 r1 (a, b; c; τ ; x),”
Ingeniería y Ciencia, vol. 2, no. 4, pp. 75–94, 2006. [Online]. Available:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/464 30
[11] J. A. Castillo Pérez, “Algunas integrales impropias con límites de integración
infinitos que involucran a la generalizaciï¿ 12 n τ de la función hipergeométrica
de gauss,” Ingeniería y Ciencia, vol. 3, no. 5, pp. 67–85, 2007.
[Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/
article/view/456 30
[12] ——, “Algunas integrales que involucran a la función hipergeométrica
generalizada,” Ingeniería y Ciencia, vol. 4, no. 7, pp. 7–22, 2008.
[Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/
article/view/224 30
[13] J. A. Castillo Pérez and L. Galué, “Algunas integrales indefinidas
que contienen a la función hipergeométrica generalizada,” Ingeniería
y Ciencia, vol. 5, no. 9, pp. 45–54, 2009. [Online]. Available:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/467 30
ing.cienc., vol. 10, no. 19, pp. 11–31, enero-junio. 2014.
31|