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Abstract. The current tuning process of parameters in globalmodel could be significantly reduced when five optimal pa-
climate models is often performed subjectively or treated agameters identified by the MVFSA algorithm were used. The
an optimization procedure to minimize model biases basednodel performance was found to be sensitive to downdraft-
on observations. While the latter approach may provide moreand entrainment-related parameters and consumption time of
plausible values for a set of tunable parameters to approx€onvective Available Potential Energy (CAPE). Simulated
imate the observed climate, the system could be forced t@onvective precipitation decreased as the ratio of downdraft
an unrealistic physical state or improper balance of budgetso updraft flux increased. Larger CAPE consumption time
through compensating errors over different regions of theresulted in less convective but more stratiform precipitation.
globe. In this study, the Weather Research and Forecastinihe simulation using optimal parameters obtained by con-
(WRF) model was used to provide a more flexible frame- straining only precipitation generated positive impact on the
work to investigate a number of issues related uncertaintyother output variables, such as temperature and wind. By
quantification (UQ) and parameter tuning. The WRF modelusing the optimal parameters obtained at 25-km simulation,
was constrained by reanalysis of data over the Southern Gredioth the magnitude and spatial pattern of simulated precipi-
Plains (SGP), where abundant observational data from varitation were improved at 12-km spatial resolution. The opti-
ous sources was available for calibration of the input paramemal parameters identified from the SGP region also improved
ters and validation of the model results. Focusing on five keythe simulation of precipitation when the model domain was
input parameters in the new Kain-Fritsch (KF) convective pa-moved to another region with a different climate regime (i.e.
rameterization scheme used in WRF as an example, the puthe North America monsoon region). These results suggest
pose of this study was to explore the utility of high-resolution that benefits of optimal parameters determined through vig-
observations for improving simulations of regional patternsorous mathematical procedures such as the MVFSA process
and evaluate the transferability of UQ and parameter tun-are transferable across processes, spatial scales, and climatic
ing across physical processes, spatial scales, and climatiegimes to some extent. This motivates future studies to fur-
regimes, which have important implications to UQ and pa-ther assess the strategies for UQ and parameter optimization
rameter tuning in global and regional models. A stochasticat both global and regional scales.

importance sampling algorithm, Multiple Very Fast Simu-
lated Annealing (MVFSA) was employed to efficiently sam-
ple the input parameters in the KF scheme based on a skili
score so that the algorithm progressively moved toward re-

gions of the parameter space that minimize model errors.  gqynd strategies and decisions making in climate change

The results based on the WRF simulations with 25-km gridmitigation and adaptation require not only robust projections
spacing over the SGP showed that the precipitation bias in thef the mean or most likely scenario but also the occurrence of
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low probability but high-impact events (IPCC, 2007). Uncer- Simulated Annealing (MVFSA) (Ingber, 1989; Jackson et
tainty quantification (UQ) is the science of quantitative char-al., 2004), among others (Tierney and Mira, 1999; Haario
acterization and reduction of uncertainties in applications. Itet al., 2001). Grid search is a straightforward method to
determines how likely certain outcomes are if some aspectsest the sensitivity of parameters by subdividing each pa-
of the system are not exactly known. UQ of predicted futurerameter space into equally spaced intervals and evaluating
climate is usually based on the ability of models to produceuncertainty arising from those combinations. However, this
the current climate (Allen et al., 2000; Tebaldi et al., 2005). method may require huge computational resources. For ex-
The full probability density functions (PDFs) of occurrence ample, around 10simulations are needed if five parameters
for both present climate and future prediction are needed tavith 10 intervals for each parameter are to be explored. Thus,
predict the probability of extreme weather or climate events.high-efficiency sampling methods are needed for applica-
Different approaches have been applied to generate ertions related to climate modeling. MVFSA is a stochastic
semble simulations and construct PDFs for variables of cli-importance sampling algorithm that can progressively move
mate model output. These approaches include perturbingoward regions of the parameter space that minimize model
the initial conditions, perturbing the input parameters of theerrors and more efficiently provide useful information for
model, ensemble simulations with multiple parameterizationoptimizing or generating accurate measures of the posterior
schemes, or ensemble simulations with multiple models, andlistribution (Villagran et al., 2008). Jackson et al. (2008) ap-
so on (Allen et al., 2000; Giorgi and Mearns, 2002; Stain- plied MVFSA to optimize six parameters related to the cloud
forth et al., 2005; Lopez et al., 2006). Covey et al. (2011) process in a Global Climate Model (GCM) because cloud
found that the variability of globally averaged upwelling processes play a critical role in the hydrological cycle and
longwave radiation and surface temperature induced by perdncertainty of climate response to doubling of £0rcing
turbation of initial condition is much smaller than that in- (Colman, 2003; Webb et al., 2006; Medeiros and Stevens,
duced by perturbation of model input parameters. Hawkins2011). Constrained by different sets of observations, their
and Sutton (2009) estimated the contributions to the total cli-work provided a six-member ensemble of optimized model
mate change prediction uncertainty from internal variabil- configurations with a narrower range of future temperature
ity, model uncertainty, and scenario uncertainty and foundchange projection.
that their relative contributions depend on the prediction lead Currently, UQ and parameter tuning in climate study are
times. Furthermore, for the decadal time scales and regionalypically applied in GCMs, with more focus on global cli-
spatial scales~2000km), model uncertainty is of greater mate sensitivity and large-scale climatic features. Equal
importance than internal variability. Quantifying and reduc- weighting of the state fidelity globally could compromise pa-
ing the uncertainty of tunable input parameters in climaterameter tuning in GCMs because the processes being tuned
models can improve our understanding of the physical proimay only be relevant for particular regimes. Furthermore,
cess in climate systems as well as reduce the uncertainty faglobal tuning may produce parameter settings that approxi-
projecting future climate change. mate the observed global climate, but at the expense of yield-
Parameterizations in climate models typically containing unphysical states or improper balance of budgets at the
many input parameters that are determined based on thiecal or regional scales. Even if the calibration produces real-
physical processes being parameterized or estimated basésgtic regional means, important spatial variability may not be
on tuning to obtain qualitative agreement between the simfyeproduced if observed spatial patterns from high-resolution
ulations and observations from limited local measurementsneasurements are not utilized in the global tuning. Hacker
or global observations. Larger number or ranges of input paet al. (2011) evaluated the impacts of initial condition and
rameters usually result in higher uncertainties in climate sim-model parameterization uncertainties on a WRF-based en-
ulations because of nonlinear interactions and compensatingemble prediction system and found that different combina-
errors of parameters (Gilmore et al., 2004; Molders, 2005;tions of parameterization schemes associated with perturbed
Min et al., 2007; Murphy et al., 2007). Perturbed-Parameterparameters could generate the most skillful ensemble predic-
Ensembles (PPE) with the same climate model but differention.
combinations of several key input parameters, within reason- This study applies UQ and parameter tuning to a Regional
able ranges, have been employed to assess future climate u@limate Model (RCM), which offers more flexibility in terms
certainty (Murphy et al., 2004; Jackson et al., 2003, 2008;of model configuration and is computationally more econom-
Collins et al., 2011). ical, allowing some of the above issues to be explored in
To approximate the posterior probability distribution of in- more details. More specifically, we explore the utility of
put parameters in physical parameterizations, many samplingigh-resolution observations for improving simulations of re-
strategies have been proposed, such as grid search methagipnal patterns. We further investigate three important ques-
Metropolis/Gibbs algorithm (Metropolis et al., 1953; Kirk- tions. First, can calibration of specific physical parameter-
patrick et al., 1983; Sen and Stoffa, 1996), Monte Carlo orizations lead to improvements in aspects not directly influ-
Quasi Monte Carlo (QMC), (Moskowitz and Caflisch, 1996), enced by the parameterizations? Second, can model cali-
Latin Hypercube selection (Stein, 1987), Multiple Very Fast bration performed at a coarser scale improve simulations at
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a finer scale? Lastly, can optimal parameters obtained by Parameters, approach and experiment design
calibration in one climate regime lead to improvements in

other climate regimes? These questions aim at evaluatingth.1  The new KF CPS and five key parameters
transferability of UQ and parameter tuning across physical

processes, spatial scales, and climatic regimes, which havepss are appropriate for use in RCMs with a moderate grid
important implications to UQ and parameter tuning in global spacing of 10-100 km. This spacing is large enough so that
and regional models. . . a cloud ensemble within the grid can be treated as a statis-
With the rapid growth of computing resources in the pastjica| entity but small enough to keep the uniform character-
decades, some climate models can now be applied at gyics of the cloud environment. The new KF CPS, which is
cloud-resolving scale (Khalroutdln(_)v et gl., 2001; Tao et commonly used in many mesoscale models including WRF,
al., 2009). However, because of simulation length and th&yas developed based on a mass flux parameterization (Kain,
negd f(_)r ens_emble modelmg,_ climate models _bemg used Im004). Using a Lagrangian parcel method (Simpson and
projecting climate change still use grid spacing of 25km Wiggert, 1969; Kreitzberg and Perkey, 1976), the new KF
or Iarger' where cumplus processes hgve to bf«' parametegps operates by searching for the Updraft Source Layer
ized. Since convective process contributes disproportionyysy ), which has a potential for inducing shallow or deep
ately to the magnitude and intensity of precipitation, andconyection, starting from the surface upward to within the
the diabatic heating from convective process is an imporjoyest 300 hPa of the atmosphere. When the USL is iden-
tant driver of global and regional c_|rculat|on, Itis Important tified, updraft flux is initialized with a velocity based on at-
to better understand and constrain the convective parameggspheric instability and grid-scale vertical motion at USL
terizations used in climate and weather forecasting mOdeliKain and Fritsch, 1990). Air mass is exchanged between
(Warner and Hsu, 2000; Liu et al., 2001). Many different the ypdraft and the environment through entrainment and de-
Convective Parameterization Schemes (CPS) have been dguinment at each layer. The rate of entrainment flux is re-
veloped over the past decades (Janjic, 1994; Emanuel andteq to the cloud radius that varies from 1000 to 2000 m de-
Zivkovic-Rothman, 1999; Gregory et al., 2000; Grell and penging on the large-scale vertical velocities. The intensity
Devenyi, 2002). Among them, the Kain-Fritsch (KF) scheme of pgratt flux decreases with altitude as the thermal contrast
(Kain and Fritsch, 1993; Bechtold et al., 2001), including petween the cloud and the environment is reduced by mixing.
more recent updates (Kain, 2004), is commonly used in reconyective downdrafts, which play an essential role in deter-
gional models including the Weather Research and Forecashyining the heating profile and humidity features in the lower
ing (WRF) model (Skamarock et al., 2001). - troposphere (Johnson, 1976; Cheng, 1989), are driven by the
This study applies UQ and model calibration to the WRF gyaporation of condensate generated within the updrafts. The
regional model to address the questions discussed aboveyrength of the downdraft mass flux is related to the relative
Simulations were performed with WRF constrained by re-hmidity of environmental air (Knupp and Cotton, 1985; Fer-
analysis data over the Southern Great Plains (SGP), wherger et al., 1996; Shepherd et al., 2001). The fluxes of updraft,
abundant observational data from various sources are availsntrainment/detrainment. downdraft. as well as of grid-scale
able for calibration of the input parameters and Va'idationcompensating subsidence are parameterized and used to cal-
of the model results. The MVFSA importance sampling al- o jate the convective temperature, water vapor and cloud wa-

gorithm was applied to quantify the uncertainty ranges andig tendencies that are used to advance the respective large-
identify the optimal values of five key input parameters in g-5je fields.

the new KF CPS used in the WRF model. Because of its Five key parameters related to the downdraft flux rate and

:?ngglcse ti?endc;r?srlfgilx% t/c;r?;g?eelinp?gslgf)’ﬂrari(;;'t?c')tnat;)?g_startir!g height, environmental entrainment flux rate, turbu-
cess. The impact of precipitation-based optimization on aIent kmetl_c energy (TKE) in _the sut_)-cloud Iayer_, and the
fow (;ther variables, such as temperature and wind, was a c_onsumptlon time of Conve_ctlve Available Potential Ene_rgy

' . ' . (CAPE) in the new KF CPS in the WRF are thought to be im-
alyzed. Furthermore, parameter transferability across spatl;é

scales and climate regimes was investigated using sensitivit ortantin the KF CPS, but the range of their possible values
experiments 9 9 9 s quite wide (J. Kain, personal communications, 2011).

This paper is organized as follows. Parameter selection in The intensities of both downdraft and entrainment fluxes
the new KF CPS, the MVFSA sampling algorithm, observa- 27 proportional to the updraft mass flux at the top of USL

tional data, and the WRF model configuration are describeddn ;he dKF CPde._I_n th||s stuldy,f wo parametg?(?and ﬁ edare .
in Sect. 2 and the optimization results, sensitivities of modeld€'N€d as additional scale factors to modulate the rates o

performance, precipitation and other output variables to pa_downdraft and entrainment fluxes from 1/2 to 2 times of their

rameters in the KF scheme, and dependence of op'[imizatiof?rlglnal values, respectively.
on model configurations are presented in Sect. 3. The con-
clusion is discussed in the last section. Myt

- P,
ML&JSL_Zx(l—RH)XZ 4, Pge(—1,1), (1)
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In Egs. (1) and (2)MYS" and MJSt are the updraft and
downdraft mass fluxes at the top of USL, respectively. RH is
the mean relative humidity of environment air from the start-
ing layer of downdraft to cloud baser is the cloud radius,
3p is the pressure thickness of a model layer amf} is the
maximum possible entrainment rate of this layer. More de-
tails can be found in Kain and Fritsch (1990).

Downdraft is assumed to start from 150 hPa above USL in
the standard KF CPS. The starting height of downdraft
controls the downdraft structures and also affects the atmo-
spheric properties in the sub-cloud layer. We set the range of
Py as 50-350 hPa to allow a larger degree of freedom in the
downdraft structures from tall and narrow to short and wide.

Shallow or deep convection are based on different closure
assumptions. For shallow convection, the intensity of updraft
mass flux at USL is assumed to be a function of TKE in the
sub-cloud layer. For deep convection, the KF scheme incre-
mentally rearranges the updraft, downdraft and other mass
flux until the CAPE is reduced by at least 90 % within a
specified time, called CAPE consumption time. The CAPE
consumption time is related to the vertical shear defined as
the difference between horizontal wind at the cloud base and
500 hPa level (Bechtold et al., 2001). The TKE and average
CAPE consumption time are referred to Bsand P, with
values of 5ms~2 and 2700s in the standard KF CPS. We
allowed a range from 3 to 12%s2 for P; and from 900 to
7200 s forP.. The default value in the standard KF scheme
and range of value for each parameter are shown in Table 1.

2.2 MVFSA optimization approach

Very Fast Simulated Annealing (VFSA) is a stochastic im-
portance sampling algorithm with high converging efficiency
toward the optimal results (Ingber, 1989; Jackson et al.,
2004). For most optimization applications, multiple extreme
values (i.e. local minimum/maximum) may exist and the se-
lected parameter values may be trapped by some local mini-
mums within the parameter space in one VFSA procedure.
Repeating the VFSA multiple times with different initial
starting parameter set (i.e. MVFSA) can help prevent such
local trapping and identify the global minimum (Jackson et
al., 2008; Villagran et al., 2008). The steps in the MVFSA
algorithm, which is adapted from Jackson et al. (2004, 2008),
are the following;

1. Take random points in the parameter spaces and run a
simulation at each step. At the first step, an initial start-
ing parameter sen’) is randomly selected to run the
first WRF simulation.

2. Quantify the differences between simulation and obser-
vation in terms of a scalar skill score or “cost,” referred
to asE(m), wherem is the parameter set. If Gaussian

Atmos. Chem. Phys., 12, 2402427, 2012
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errors exist in the model resultg(m) is usually de-
fined as

N
1
E(m):Z N { [dobs—g(m)] T'x C_l[dobs—g(m)] }

=

®)

i

N refers to different sets of observations/variabtbsgs
refers to observations ang{m) refers to simulations
with a specific parameter set C~1 is the inverse of the
data covariance matrix, which could include a weight
coefficient for different variables. In this study, only
one set of observation (precipitation) is used with equal
weight at each grid point in the observation constraint
in Eq. (3), soE(m) is simplified as:

K I J
ﬂm=222%mer$M4/

k=1i=1;=1
(IxJxK), (4)

wherei, j are the horizontal grid points in the model
domain, andk represents the number of time steps. In
Eq. (4), the model biases are assumed to be spatially or
temporally uncorrelated (i.e. the data covariance matrix
C~1lin Eq. (3) only contains nonzero elements along the
diagonal). The frequency of precipitation rate tends to
have an exponential distribution rather than a Gaussian
distribution, which indicates that the score function of
the model based on Egs. (3) and (4) is dominated by
the upper range in the observation. Given that our case
study has strong convection over a limited region during
a short time period, the use of Eq. (4) is appropriate in
this study (see Sect. 2.3).

3. Reselect the parameter values based on the skill score so

that the algorithm progressively moves toward regions
of the parameter space that minimize modeling errors.
Starting from the second round of the procedure, the
parameters will be perturbed to a new setno®V as
follows:

m®" = mf+ yi (mP*—m]"), (5)
yie(_lvl)v (6)
mlmin < mlnewi m;nax’ (7)

wherem™" andm™ represent the possible minimum
and maximum values of each parameter, gnd drawn
from a Cauchy distribution which is dependent on an
annealing coefficient':

|2RND-1]
)qzsngND—QSH}[(1+5:> —1]. ®)
k
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Table 1. The short name, default, minimum and maximum values, and the descriptions of the five parameters in the KF convective parame-

terization scheme in WRF 3.2.1.

2413

Parameter Default Minimum Maximum Description

Py 0 -1 1 coefficient related to downdraft mass flux rate
Pe 0 -1 1 coefficient related to entrainment mass flux rate
Ph 150 50 350 starting height of downdraft above USL (hPa)
P 5 3 12 maximum TKE in sub-cloud layer fs—2)

Pc 2700 900 7200 average consumption time of CAPE (s)

Within Egs. (5)—(8), subscript, k are the parameter 120
number and iteration number, respectively. sgn is the @
sign operator and RND represents a random number
from a uniform distribution between 0 and 1. At itera-
tion k, the annealing coefficiert is lowered according
to

110
100
90
80

Best Vaule (Low

Ty = Toexp—0.9 x (k — 1)*/?]. (9)

UL LN RS =iy R

70
If the results with a new set of parameters show an im- 10 20 30 40 50

provement over the old one, in effedt E = E (m"®"W) —
E(m°) < 0, then the new set oh is accepted as the ba-
sis for the next iteration, that isno =m"eW, |f not, the Fig. 1. The best values obtained using MVFSA method as a func-
new set of parameters can still possibly be accepted witHion of the number of model evaluations.

a probability

Number of Model Evaluations

also the similarity of spatial pattern (e.g. spatial correlation

pP= exp( _AE> ] (10)  coefficient) between observed and modeled large-scale fields
Ty (Taylor, 2001). We define

With a lower T, the VFSA algorithm moves progres- _ N

sively toward regions of the parameter space that min—C (m) = ;Sc[d"bs"’g" (m)] N, (11)

imize model errors since the width of the Cauchy dis-
tribution will be incrementally focused on the current Where SQdobs g(m)] refers to the spatial correlation coeffi-
accepted parameter set, facilitating the VFSA algorithmcient between the observation and simulation, amépre-
to converge more efficiently. In this study, we lowr  sents the time series. Bo#i(m) and C(m) are normalized

every two steps with an initial value @ as 10. so they can be considered togetheE&¥m), EC(m) = E(m)
— C(m). Doing so accounts for both the magnitude of bias

4. To get global optimal values, we repeat the VFSA pro- and similarity of spatial pattern. For brevit§(m), C(m) and
cedure three times with different starting parameter setC(m) are denoted aB, C, andEC, respectively hereafter.
(i.e. three chains). We conducted 50 experiments in  The University of Washington (UW) 1/8 gridded meteoro-
each chain. Only 148 simulations are valid because in{ogical data set includes daily precipitation, maximum and
stability occurred in two of the simulations. The three minimum 2-m temperature and 10-m wind speed (Maurer
chains nearly converge to the same region within the paet al., 2002). Only the daily precipitation data are used in
rameter spaces (not shown), indicating that three chainshe observation constraint in Eq. (4). The maximum and
are probably enough for this case study. minimum temperatures at 2-m height and wind speed at 10-

m height are used to evaluate the WRF simulation perfor-

_ Figure 1 shows the best values averaged for three iteraq,jnces that used the optimal parameters derived by con-
tions based on three independent MVFSA chains. As See'gtraining the precipitation alone

in Fig. 1, the averaged best values monotonically decrease as
the number of model integrations increases and finally reactp 3 Model configuration
convergence after 28 integrations.
In climate model calibration, we are interested in not only The Advanced Research Weather Research and Forecast-
the magnitudes of model bias (e.g. standard deviation) buing model Version 3.2.1 (WRF Version 3.2.1, Skamarock et

www.atmos-chem-phys.net/12/2409/2012/ Atmos. Chem. Phys., 12, 240127, 2012
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50°N

scheme is slightly better than with WSM6. Finally, RRTMG
radiation and Morrison microphysics schemes, as well as the
Mellor-Yamada-Janjic (MYJ, Janjic, 2002) PBL scheme and
the Noah Land Surface Model (LSM) (Chen and Dudhia,
2001) were used in all simulations in this study.

We selected 1 May to 30 June 2007 for our simulations
to focus on a wet month (June) with mostly convective-type
precipitation. To isolate the influence of the convective pa-
rameterization, all model simulations, including those iden-
tifying the best configuration, were initialized every three
days to minimize errors in the large-scale circulation that can
also affect precipitation. Each simulation was initialized two
120w 1o°w 100°W 90°W go°w days after the previous simulation. Discarding the first day as
model spin-up, the results of the last two days of each simu-
lation were concatenated to form a continuous time series for
analysis. Unlike the atmospheric state, which was initialized
every three days using the NARR data, the land surface state
(soil moisture and temperature) was initialized based on sim-
. L ) ulation of the previous three days to produce better spun-up
al., 2008) is used in this study. WRF is a fully compress-|anqg surface conditions for realistic land-atmosphere inter-
ible and non-hydrostatic model that uses a terrain-following 5 tions. As described in Sects. 3.4 and 3.5, the same experi-
hydrostatic-pressure vertical coordinate and an Arakawa Ciental design was used to conduct simulations with different

grid staggering spatial discretization for variables. The sim-y,4izontal resolutions and over different regions.
ulation domain is located within 25-2#l and 112-90W

over the SGP region (see Fig. 2), with horizontal grid spac-
ing of 25 km and 36 sigma levels from the surface to 100hPag  Resuits
Wind, temperature, water vapor, pressure, and underlying
surface variables used to generate initial and boundary corg 1 Model response to five parameters
ditions are derived from the North American Regional Re-
analySiS (NARR) data with 32-km horizontal resolution and The top pane] of F|g 4 shows the response of model per-
3-htime intervals. formance (quantified ag as introduced in Sect. 2.2) to five
To obtain a reasonable simulation result for precipitationinput parameters based on the 148 simulations through the
over the SGP region before starting the optimization pro-MVFSA procedure E is equal to 137 in the simulation with
cess, we compared two different radiation schemes, RRTMGlefault parameters in the KF CPS. Figure 4 shows fhat
(Rapid Radiative Transfer Model for GCMs, Barker et al., varies from 74 to 225, with loweE than 137 in the ma-
2003; Pincus et al., 2003) vs. CAM (Community Atmo- jority of experiments. We found that model response is
sphere Model 3.0, Collins et al., 2004), and two different mi- more sensitive to the changes Bf (downdraft flux rate re-
crophysics schemes, WSM6 (WRF Single-Moment 6-class)ated coefficient),Pe (entrainment rate related coefficient),
Hong and Lim, 2006) vs. Morrison 2-Moment (Morrison and P. (CAPE consumption time) than to the other two pa-
et al., 2005). Figure 3 shows the observed and simulatedameters. For example, the model bi&ssignificantly de-
monthly mean precipitations for June 2007 with different ra- creases with the increase 8§ or decrease oPe. The op-
diation (RRTMG vs. CAM) and microphysical parameteri- timal values forPy, Pe, and P that minimizeE are around
zation schemes (WSM6 vs. Morrison) while the standard KF0.9, —0.9, and 4600s, respectively. The optimal value for
CPS was used in both simulations. The results show thaPs and P; are around 280 hPa and ¢s12, both larger than
more than 70 % of the rainfall is contributed by convective the default values in the standard KF scheme for the starting
precipitation, indicating the importance of the CPS in simu- height of downdraft above USL and the maximum TKE in
lating precipitation for the region in the summer. We find that the sub-cloud layer in this study. The responseB ¢ vari-
the simulated precipitation is more sensitive to different ra-ations in P, and P; are not as evident as those of the other
diation schemes than different microphysical schemes in thishree parameters.
study. While the CAM radiation scheme tends to underesti- Among the 148 valid simulations derived from the
mate the amount of precipitation, the RRTMG seems to pro-MVFSA procedure, there were 114 simulations with lower
duce a more realistic magnitude and spatial pattern of precip£ (better performance) than the standard KF scheme with
itation. However the RRTMG scheme produces larger areaslefault parameters. These 114 simulations are defined as
of precipitation than observed, especially over the northeastgood” experiments. The middle panel of Fig. 4 shows
corner of the domain. Simulation result with the Morrison the frequency distributions of the “good” experiments as a

45°N

40°N —

30°N —

25°N —

20°N

Fig. 2. WRF model domain (Southern Great Plain/SGP, 25-M4
and 112-90W) with grid spacing of 25km. Shades indicate the
terrain (Unit: m).
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Fig. 3. Spatial distributions of observed and simulated (25 km) monthly mean precipitation over SGP for June 2007, with different radiation
(RRTMG vs. CAM) and microphysics schemes (WSM6 vs. Morrison). Solid box highlighted in top panel shows the sub-region for later
analysis.

function of each parameter value. We found that around 51 %nstead of the admitted samples to avoid the heavily biased
of the “good” experiments were produced Byfrom 0.6 to  admitted samples towards the mode. Similar to the middle
1.0, indicating that the ratio of downdraft to updraft mass panel of Fig. 4, large probabilities are located at around 0.8,
fluxes shown in Eq. (1) is too small in the standard KF CPS.—0.7, 320, 9.5 and 3200, respectively for the five parameters
Approximately 60.5 % of the “good” experiments were pro- of Py, Pe, Pn, Py and Pg.

duced byPe from —1.0 to—0.4, indicating that the ratio of  Figyre 5 shows the observed and simulated monthly mean
maximum possible entrainment rate to updraft mass fluxegyrecipitation for June 2007 with default and optimal param-

shown in Eq. (2) is too large in the standard KF CPSHAS  eters (see Table 2) in the simulations. Overall, the model
P, and P are within the range from 230 to 320hPa, 9 10 yjith default parameters captures the spatial pattern but over-
11n?s 2, and 3000 to 6000, respectively, there are bettefpredicts the amount of precipitation, especially over the

chances to obtain relatively lowér (better performance). northeastern part of the domain. The simulation with

The marginal posterior probability distributions (PPD) for bgsed optimal parameters has significantly reduced the wet

the five parameters derived from kernel density estimationfias of the model, a& decreases from 137 to 74.

are also shown in the bottom panel of Fig. 4. In statistics, ker- Skill scoresC describing the spatial pattern of precipita-
nel density estimation, a non-parametric way of estimatingtion (see Eq. 11) were calculated for all of the 148 experi-
the PDF of a random variable, is a fundamental data smoothments. The variations af andC with perturbed parameters
ing problem where inferences about the population are madegre closely correlated, with a correlation coefficient of 0.79,
based on a finite data. Different from the upper two panelsimplying that the spatial pattern of the precipitation would
of Fig. 4, the PPD was calculated using the proposed samplékely be improved if the magnitude of the model’s bias was

www.atmos-chem-phys.net/12/2409/2012/ Atmos. Chem. Phys., 12, 240127, 2012
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Fig. 4. (Top) The response of model performance (quantified &s introduced in Sect. 2.2) to five input parameters based on the 148
simulations (25 km) over SGP through the MVFSA procedure. Red curves represent an average of results at each bin. Default number
of each parameter is marked as red crosses. (Middle) The frequency distributions of “good” experiments as a function of each parameter.
“Good” experiments are defined as those with logbetter performance) than that using the standard KF scheme with default parameters.
(Bottom) The marginal probability density functions (PDF) for the five input parameters derived by kernel density estimation.

reduced through the MVESA process. Among the five InputTable 2. The values of five identified parameters in the KF scheme,
parameters, entrainment related paramétehas the most gy scoresE andC, used or obtained in the simulations with de-

significant impact or€ (not shown). fault or optimized (based of or EC, respectively) parameters.
EC is calculated to represent the model performance in
both magnitude and spatial pattern of precipitation. The bot- Py Pe Py P Pe E c

tom panel of Fig. 5 shows the simulations with optimal pa- Sofaul 5 0 150 5 2700 137 03
rameters based o andEC, respectively. Thet values for Oe ault '

. . ; . ptmalE  0.89 -0.91 292 854 4615 74 0.34
;lmulatlons with optimalE andEC are 74 and _79, respec-  opimalEC 057 -0.72 321 89 3597 79 0.36
tively. TheC values are 0.34 and 0.36, respectively, indicat-
ing that the spatial pattern in the simulation with optire&l
is more similar to the observation than that of the default or

with optimal E.. e L . .
Figure 6 shows the observed and simulated frequencies o§-2  Sensitivity of precipitation and correlation with
daily precipitation as a function of rain rate. Compared to the other variables

observation, the WRF with the standard KF CPS evidently

overestimates the frequency of precipitation across all rairFigure 7 shows the responses of convective, explicit and total

rates and the model wet bias becomes larger for heavy rairprecipitation to each of the five parameters. As mentioned

By applying the optimal parameters basedm(not shown)  previously, total precipitation is contributed largely by the

or EC, the model markedly reduced the overestimated oc-convective precipitation in this case study. The amount of

currence frequency for rainy events larger than 3mnrday explicit precipitation is around 0.2 to 1.5 mm ddy while

The improvement is more evident for the heavy precipitationconvective precipitation varies between 3.8 and 9 mnrday

with rain rate larger than 20 mm da. Because of the competition for moisture and physical inter-
action between the grid and sub-grid scale processes, the ex-
plicit precipitation is also affected by the CPS in the model

Atmos. Chem. Phys., 12, 2402427, 2012 www.atmos-chem-phys.net/12/2409/2012/
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Fig. 5. Spatial distributions of observed and simulated (25 km) monthly mean precipitations over SGP for June 2007, with default and
optimized (based o' or EC) parameters in the KF scheme.

ment and decreases the intensity of convection, thus reducing
= Observation the convective precipitation. Stronger entrainment rate usu-
= Default ally produces less convective precipitation because it dilutes
mm Optimal EC . . K

the moist convective core, which tends to suppress the up-
draft (Kain and Fritsch, 1990; Zhang and McFarlane, 1995).
The impact of TKE on convective precipitation is relatively
small.

The change of explicit precipitation is often anti-correlated
with the convective precipitation. When the convective pre-
cipitation is suppressed with the perturbed parameters, more
moisture will be available in the atmosphere, favoring the
02 3 6 9 12 16 20 25 30 35 42 50 75 200 formation of explicit precipitation calculated based on the
microphysics scheme in the model. The top panel of Fig. 7
shows that the explicit precipitation is more sensitive to the
Fig. 6. The observed and simulated (25 km) frequency distributionsParameters related to entrainment and CAPE consumption
of daily precipitation over SGP as a function of rain rates, with de- time than the other three parameters. Since total precipita-
fault and optimized (based diC) parameters in the KF scheme. tion is mainly contributed by the convective precipitation, the
The result is derived from daily precipitation at all grids within the responses of total precipitation to the five parameters are con-
model domain as shown in Fig. 2 for June 2007. sistent with that of convective precipitation.

Figures 8 and 9 demonstrate how the changes of two pa-
rameters,Py and Pe, physically affect the convective pro-
(Kain, 2004), although the convective precipitation is more cess and other subsequent meteorological variables such as
sensitive to the parameters. air temperature and humidity, cloud, and surface heat flux.

From the middle panel of Fig. 7 we found that downdraft In Fig. 8 we see clear response of the low-level cloud, water
related parametePy and CAPE consumption tim&; have  vapor, temperature and surface energy flux to the downdraft-
larger impact on the convective precipitation. With a largerrelated parametePy. While the downdraft flux became
ratio of downdraft to updraft flux (largePy), more con-  stronger with the increase &%, it enhanced the evaporation
densed water would be evaporated associated with a strongef condensate, increasing the humidity and decreasing the
downdraft process, resulting in less precipitation. The largetemperature in the lower troposphere (900-800 hPa), which
CAPE consumption time (largét;) slows down the develop- favors the formation of a low cloud. Consequently, increased

24
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Fig. 7. The response of simulated explicit (top), convective (middle) and total (bottom) precipitation averaged over the sub-domain shown in
Fig. 3 to the five parameters in the KF scheme. The meaning of red curves is same as in Fig. 4.

clouds reflect larger amounts of solar radiation back intorate. LH increases primarily due to the increased downward
space and reduce the solar radiation flux at the surface. Desolar radiation at the surface.
creased surface shortwave radiation, together with decreased The impact of the downdraft starting height on the con-

precipitation, suppressed the evaporation and reduced the Igzction process is similar to that of the downdraft rate (not
tent heat flux (LH) at the surface. Meanwhile, the soil mois- shown). Downdraft flux initiating at a higher level can pro-

ture also showed a decreasing trend whigtpartly due tothe  qyce a tall and narrow downdraft, which has effects similar
decreased precipitation. Different from the low troposphere.iq g jarger downdraft rate.

the PBL (1000-900 hPa) air moisture is less affected by the . s
. . . . The relative sensitivities of the response of the meteoro-
increasing downdraft flux because the PBL moisture is moreE

influenced by the surface evapotranspiration. Increasing o gical variables 1o the five CPS parameters are shown in
y b P ' 9 ig. 10. The sensitivity ranking is calculated based on the

correlation coefficients between output variables (y-axis) and
input CPS parameters (x-axis) from 148 simulations, repre-
The ratio of entrainment to updraft flug) also showed senting'the variability of output variables again;t the per-
a remarkable impact on the convection process and weathdfrbed input parameters (e.g. the slope of the fitted curve
system (see Fig. 9). With a larger entrainment rate, efficienhown in Figs. 7-9). Figure 10 shows thaf and Pe have
mixing can suppress the development of updraft and increasgore impact on the.output variables than the. other three in-
the environmental air humidity at the middle (800—600 hPa)Put parameters, while most of the output variables are least
atmosphere, so that deep convection is weakened and tr€nsitive toPt, the maximum TKE in the sub-cloud layer.
cloud top height decreases (i.e. outgoing longwave radiation’ "€ impact of CAPE consumption timéd) on precipitation
increases). In the lower atmosphere, the weaker condensate Significant as discussed in Sects. 3.1 and 3.2, becayse
or evaporation that results from weaker updraft can increasé&fficiently controls the development of the convection. As
temperature and produce fewer clouds. Consequently, théhown in Fig. 10, cloud water content, PBL specific humid-
downward surface solar radiation and skin temperature sigity, 0utgoing longwave radiation (OLR) and downward long-
nificantly increase. Since the skin temperature and low-levelvave radiation are very sensitive f.
air temperature increase consistently, a clear trend of sensible A total of 148 simulations with perturbed parameter sets
heat flux (SH) was not seen with the change of entrainmentvere completed in this study, providing an opportunity to

SH is contributed by both cooling of PBL and decreasing of
surface LH release.

Atmos. Chem. Phys., 12, 2402427, 2012 www.atmos-chem-phys.net/12/2409/2012/
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Fig. 8. The response of 14 model output variables (see Table 3) to the downdraft mass flux related pd@gbseted on the 148 simulations

(25 km) over SGP.

investigate not only the response of various model variables3.3
to the CPS parameters but also the correlation and interac-

Impact of optimization on temperature and wind
speed

tion among different model variables. As summarized in

Table 3, strong positive correlations can be found between
monthly mean convective precipitation and soil moisture,
skin temperature and downward solar radiation flux, LH an
air temperature, as well as LH and downward solar radi-
ation flux. We found significant negative correlations be-
tween lower/mid-level air humidity and soil moisture, lower-
level air humidity and convective precipitation, OLR and soi
moisture, SH and air temperature, as well as LH and low-

layer cloud water content.

www.atmos-chem-phys.net/12/2409/2012/

Because only observed precipitation is used to constrain the
OIMVFSA algorithm, the question arises as to how other sim-

ulated variables vary with the five CPS parameters when the
model converges to the optimal results for precipitation. Ta-

ble 4 shows the correlation coefficients of model skill scores

| between precipitation and 2-m temperature and 10-m wind
speed. The correlation coefficient is 0.31 betw&g&@mean

and Epreg and 0.76 betweef (Tmean andCpreg, indicat-

ing that the bias of model temperature is more correlated with
spatial pattern than the bias of magnitude of simulated pre-
cipitation. The correlation coefficient betwe&hwing) and

Atmos. Chem. Phys., 12, 240127, 2012
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Fig. 9. Same as Fig. 8 except for the entrainment rate related parafmeter

Epreg is 0.86 and betweeR (wing) and Cpreg is 0.87, im- are more significant when using optimal parameters based
plying a consistent performance in simulating wind speedon EC than based o' (not shown), which suggests that in-
and precipitation (i.e. simulations with better precipitation cluding precipitation pattern in the skill score metrics may be
are also more likely to have better wind speed). important in the optimization process.

Figure 11 shows the differences of model biases for tem-
peratures and wind speed between the simulations with de3-4 Dependence of optimized parameters on model grid
fault and optimized parameters. Here, the value on each  SPacing
grid point is calculated as@ptimal-Observatiop- |Default-
Observatiof), so negative value represents a positive impactlt is well known that the performance of CPS may vary
by using the optimized parameters. It can be seen that, exceptith model resolution as current convective parameteriza-
for the maximum temperature, all variables have reduced abtions generally exhibit scale dependence (Arakawa et al.,
solute biases with the optimized parameters than with the de2011). Retuning of model parameters for high-resolution
fault parameters, especially over regions with strong precipi-applications can be very time consuming and computation-
tation, even though the optimal parameters are obtained onlglly intensive. In this study, the MVFSA procedure was per-
based on precipitation. The improvements for temperature$ormed based on WRF simulations at 25-km grid spacing. To

Atmos. Chem. Phys., 12, 2402427, 2012 www.atmos-chem-phys.net/12/2409/2012/
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Table 3. Correlations among different model output variables in 148 WRF simulations (25-km, SGP) with perturbed parameters in the
KF scheme. The correlation coefficients are calculated based on the domain average as shown in Fig. 3. TS: skin temperature; SM:
soil moisture; QC: cloud liquid water content at layers from 900 to 800 ifR&): air specific humidity for 2000-900 hP&;(P): air
temperature for 1000900 hP@y(L): air specific humidity for 900—-800 hP&;(L): air temperature for 900—-800 hP@(M): air humidity

for 800—600 hPaT (M): air temperature for 800-600 hPa; SWD: short-wave radiation at surface; LWD: downward long-wave radiation at
surface; OLR: outward long-wave radiation at top of the atmosphere; SH: sensible heat flux at surface; LH: latent heat flux at surface; EP:
explicit precipitation; CP: convective precipitation.

TS -
SM —-0.42 -
QC —-0.31 -0.58 -

O(P) 023 044 -0.26 -

T(P) 096 -016 -049 0.36 -

QL) 002 -086 075 -048 -0.23 -

T(L) 075 028 —074 056 089 -0.63 -

o(M) 038 -083 019 -0.64 016 067 -0.2 -

T(M) 043 059 -081 06 063 -079 089 -0.46 -

SWD 08 -014 -07 -004 081 -019 072 044 054 -

LWD 029 -052 065 039 016 049 -0.07 002 -026 -0.32 -

OLR 076 -0.86 02 -021 056 058 018 075-011 052 046 -

SH -0.18 -0.75 06 -0.69 -0.44 0.85 -0.73 0.77 -0.82 -0.18 0.15 0.44 -

LH 0.66 0.35 -0.86 0.37 0.82 -0.62 0.93 -0.13 0.86 0.82 -0.32 0.11 -0.71 -

EP 0.69 -0.77 0.35 -0.05 0.54 0.56 0.17 0.45 -0.16 0.3 0.64 0.84 0.25 0.05 -

CP —0.29 097 -0.71 0.37 -0.04 -0.91 039 -0.71 0.65 0.04 -0.64 -0.79 -0.76 0.48 -0.76 -

TS SM QC Q(P) T(P) Q) T() QM) TM) SWD LWD OLR SH LH EP CP

Table 4. Correlations of model performance between the precipita- CP 1
tion and the mean/maximum/minimum 2-m temperature and 10-m EP +
wind speed. The correlation coefficients are calculated on the basis LH 1
of skill scores for the precipitation (based BrandC, respectively) SH
and for the temperature and wind speed (based pof the 148 OLR 7
simulations (25-km) over SGP. LWD +
SWD 4
TM)
E(Tmean E(Tmax) E(Tmin) E(Wind) QM) -
E(pr 0.31 -0.18 0.51 0.86 T(L) ~
C(przg 0.76 0.17 0.78 0.87 (%Eii 1 [
QP) A .
QC A
SM A
assess the transferability of model calibration across spatial TS 1
scales, we completed two simulations with a higher resolu- Pd Pe Ph Py Pe
tion (12-km) with default and optimal parameters obtained . | ‘ | |
from the 25-km simulations. Identical model configurations Least Sensitive Most Sensitive
and domain size were used between the 25km and 12 km
resolution simulations. Fig. 10. Relative sensitivities of the response of the 16 meteoro-

Figure 12 shows the spatial distributions of observed andegical variables (see Table 3) to the five CPS parameters (see Ta-
simulated precipitation with default and optimal parameters,P€ 1) based on the 148 simulations (25km) over SGP. The sensi-
respectively. We found that with default CPS parameters inthlty ranking is cglculated ba_sed on Fhe correlation coefficients b(_e-

tween output variables (y-axis) and input CPS parameters (x-axis)
the standard KF, the model can reasonably capture the SP& . m 148 simulations.
tial pattern of precipitation but significantly overestimates
the maximum precipitation, especially over Oklahoma, the
Kansas-Missouri border, and the Texas-Louisiana border. BY).37. These results suggest that quantitative optimization
using the optimal parameters obtained from the 25-km sim-may yield more robust model parameters that can improve
ulations, both the magnitude and spatial pattern of precipprecipitation simulation across a range of spatial scales.
itation are improved at 12-km spatial resolution, with
decreasing from 148 to 89 amd increasing from 0.3 to

www.atmos-chem-phys.net/12/2409/2012/ Atmos. Chem. Phys., 12, 240127, 2012
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Fig. 11. The spatial distributions of the differences of model biases for temperatures and wind speed between the simulations (25-km) with
the default and optimized parameters. Here, the value on each grid point is calculgt@dtasa]l-Observation— |Default-Observatiop,
S0 negative value represents a positive impact by using optimized parameters.

3.5 Dependence of optimized parameters on climate Great Plain Low-Level Jet. Figure 13 shows the spatial distri-
regime butions of observed and simulated precipitation with default
and optimal parameters over the NAM region for July 1991.

Inthe previous sections, optimization was performed for a re-The model with default CPS parameters overestimates the

gional model applied to a specific region (i.e. the SGP). How-Maximum precipitation over coastal areas in northern Mex-
ever, the physical process and mechanism of convection ani§©: Precipitation over easf[ern New Mexico and the southern
precipitation may differ in different climatic regimes (Knupp Colorado-Kansas border is also largely overestimated. As
and Cotton, 1985; Grant, 2001; Kain et al., 2001). For exam-OPtimal parameters are applied, the precipitation over those
ple, Liang et al. (2004) showed that simulations of summer€gions is obviously improved, with’ decreasing from 110
rainfall in the U.S. could be very sensitive to the CPS usedt0 65 andC increasing from 0.26 to 0.31. _
because relative influence of large-scale tropospheric forc- Similar to Fig. 6, Fig. 14 shows the observed and simu-
ing and boundary layer forcing in triggering convection may lated frequencies of da!Iy precipitation as a function of rain
vary in different CPSs. A critical question is how parametersfaté over the NAM region for July 1991. Compared with

optimized based on application in one regimes transfer to 4€ observation, the WRF with default CPS parameters in
different climate regime. the standard KF evidently overestimates the frequency of

h precipitation across all rain rates. By applying the optimal

America Monsoon (NAM) region (2340, 121100 W) parameters based &C over SGP, the model markedly re-
9 ’ duces the overestimated occurrence frequency for all rainy

using 25-km grid spacing on bOt.h simulations with default events except for light rain smaller than 3 mm dagpver the

and_ o_ptlmal parameters, respec_t lvely. The NAM represent%AM region. The improvement is particularly evident for

a distinctly different climate reglme compared to the SGPthe moderate and heavy precipitation rain rates of more than

in the cenral US (Berbery, .2091’ Englehart_ and Dougllas,lz mmdayl. These results suggest the optimal parameters

2006). For example, convection in the semi-arid NAM reglonldetermined based on one regime are transferable and lead to

is associated with strong surface heating, with a dominant, " : : : .
N ; . obvious improvements in model performance in a different
late afternoon precipitation maxima related to the buildup Ofregime

CAPE during the day. In the central US, on the other hand,
precipitation maxima shows a distinct nocturnal maxima as-
sociated with increased nighttime moisture brought in by the

We completed two additional simulations over the Nort

Atmos. Chem. Phys., 12, 2402427, 2012 www.atmos-chem-phys.net/12/2409/2012/
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Fig. 12. The spatial distributions of observed and WRF simulated gy 13 The spatial distributions of observed and simulated (25-km)

(with 12-km spatial resolution) monthly mean precipitations over oy mean precipitation with default and optimal parameters ob-
SGP for June 2007, with default and optimal parameters based Ofhined at the SGP, respectively, over the North America Monsoon

25-km simulation. (NAM) region for July of 1991.

4 Summary and discussion or large-scale features, it is possible that the latter may be

achieved by forcing the system to an unrealistic physical state
Currently, Uncertainty Quantification (UQ) and parameter or improper balance of budgets through compensating errors
tuning in climate study are mostly applied in Global Cli- over different regions in the globe. In this study, regional cli-
mate Models (GCM). This may compromise the tuning by mate model, the Weather Research and Forecasting (WRF)
equal weighting of the state fidelity globally, even though model, was used to provide a more flexible framework to in-
the processes being tuned may only be relevant for particuvestigate a number of issues related UQ and parameter tun-
lar regimes. The tuning process of parameters is often pering. The WRF model was constrained by reanalysis data over
formed subjectively, although some studies have also appliethe Southern Great Plains (SGP), where abundant observa-
an optimization procedure to minimize the difference be-tional data from various sources were available for calibra-
tween model fields and observations. While the latter ap-tion of input parameters and validation of model results. Fo-
proach may provide more plausible values for a set of tun-cusing on five key input parameters in the new Kain-Fritsch
able parameters to approximate the observed global climaté<F) convective parameterization scheme (CPS) used in the
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other output variables, such as temperature and wind. By
== Observation using the optimal parameters obtained at 25-km simulation,
20 = Default both the magnitude and spatial pattern of precipitation are
mm Optimal (based on sgp) . . . .

also improved at 12-km spatial resolution. When moving the
model domain to the North American Monsoon region, the
optimal parameters identified from the SGP region also im-
proved the simulation of precipitation, especially those with
moderate and heavy precipitation with rain rates of more than
12mmday®. These results suggest that benefits of optimal
parameters determined through vigorous mathematical pro-
cedures such as the MVFSA process are transferable across
processes, spatial scales, and climatic regimes to some ex-
tent. While our findings are preliminary, they motivate future
studies to further assess the strategies for UQ and parameter

Fig. 14. The observed and simulated (25-km) frequency distribu- OPtimization at both global and regional scales. _
tions of daily precipitation over NAM for July 1991 as a functionof A number of limitations should be taken into account in
rain rates, with default and optimized (based=in SGP) param-  €valuating the results of this study and in planning future
eters in the KF scheme. studies. The primary limitation is that we assessed the model

performance and tunable parameters based on differences in
observed and modeled daily precipitation. Although most of

WRF model as an example, our goal was to explore the utilitythe total rainfall was contributed by convective precipitation
of high-resolution observations for improving simulations of generated from the CPS in our case, the tuning process may
regional patterns and evaluate the transferability of UQ andktill produce parameter settings that approximate the total
parameter tuning across physical processes, spatial scaleshserved rainfall, although the balance of different physical
and climatic regimes, which have important implications to processes to achieve the total precipitation amount is not di-
UQ and parameter tuning in global models. The five paramerectly constrained. It is possible that the optimal parameters
ters identified in the KF scheme are related to downdraft fluxmay only work well with the particular cloud microphysical
rate and starting height, environment flux rate, turbulent ki-scheme selected for this study. Furthermore, it may be more
netic energy (TKE) in the sub-cloud layer, and the consump-appropriate and beneficial to calibrate model parameters by
tion time of Convective Available Potential Energy (CAPE), constraining the behavior of physical processes (i.e. the tur-
respectively. A stochastic sampling algorithm, Multiple Very pulence, shallow and deep convection process in this study)
Fast Simulated Annealing (MVFSA), was employed to effi- rather than precipitation, which is a product of many inter-
ciently sample the input parameters in the KF scheme basegcting processes with large numbers of sources and sinks.
on a skill score so that the algorithm progressively moves Second, the two regions (SGP and NAM) selected in this
toward regions of the parameter space that minimize modestudy are both convection-dominated climate regimes and
errors. precipitation are overestimated using the default model pa-

The WRF simulation period was from 1 May to 30 June rameters in both regions. It is not clear whether optimization
2007, and was reinitialized every three days, with 25-kmperformed for one region is also transferable to another re-
grid spacing over the SGP. The results show the modebion if model biases with the default parameters are of op-
bias for precipitation can be significantly reduced by us-posite sign in the two regions. The issue of transferabil-
ing five optimal parameters identified by the MVFSA al- ity of the benefits of optimization across different climate
gorithm, especially for heavy precipitation with rain rates regimes and different spatial resolutions is being investigated
over 20 mmday*. The model response to precipitation and further along with optimization of other physical parameter-
other model variables was more sensitive to the changegation schemes, which will be reported in a follow on paper.
of downdraft- and entrainment-related parameters and conThird, how to define the skill metrics for evaluating model
sumption time of CAPE than to the other two parameters.performance can be improved. In future studies, we would
Utilizing high-resolution observations, the simulated spatial construct an auto-tuning procedure to minimize the bias in
pattern of precipitation was improved when the magnitudenot only precipitation but also process-level variables, such
of model biases was reduced through the MVFSA processas eddy diffusivities, PBL height, shallow convective mass
The simulated convective precipitation decreases as the ratiffuxes, radiative heating rates, and so forth. In addition, fu-
of downdraft to updraft flux increases. Larger CAPE con- ture studies should also explore the use of spatial correlation
sumption time results in less convective but more stratiformcoefficient, in addition to mean bias, in the skill score metrics
precipitation. for the optimization process, as this study already showed

The simulation using optimal parameters obtained by con-that spatial correlation provides useful information for model
straining precipitation alone generated positive impacts orevaluation. In addition, uncertainties in the observations are

Frequecy (%)

02 3 6 9 12 16 20 25 30 35 42 50 75 200
Rain rate (mm day™)

Atmos. Chem. Phys., 12, 2402427, 2012 www.atmos-chem-phys.net/12/2409/2012/



B. Yang et al.: Some issues in uncertainty quantification and parameter tuning 2425

not considered in this study, which may impact the shape oBechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.:
the posterior PDF of the input parameters and the model out- A mass-flux convection scheme for regional and global models,
puts including extreme events (Jackson et al., 2003). Fourth, Q.J. Roy. Meteorol. Soc., 127, 869-886, 2001.

different optimization approaches may affect the results andBerbery, E. H.. Mgsoscale moisture analysis of the North American
conclusions, but this issue has not been investigated in this mensoon, J. Climate, 14,121-137, 2001. _
study. We are currently comparing the MVFSA method EY'€: J S., Wiliamson, D., Cederwall, R., Fiorino, M., Hilo,
and another sampling algorithm, the Annealing Evolutionary J., Olson, J., Phillips, T, Potter, G., and Xie, S.: Diag-

. . - ! . nosis of Community Atmospheric Model 2 (CAM2) in nu-
StOChaSt'(,: Appr_OX|mat|on Monte Carlo (A_E_SAMC) (L'ang' merical weather forecast configuration at Atmospheric Radi-
2010), to investigate the convergence efficiency and the im-  4tion Measurement sites, J. Geophys. Res., 110, D15S15
pact on the resullts. doi:10.1029/2004JD005042005.

Finally, the simulations conducted in this study were ini- Chen, F. and Dudhia, J.: Coupling an advanced land surface-
tialized every three days by reanalysis data. This weather hydrology model with the Penn State-NCAR MM5 modeling
forecast mode of simulation minimizes potential discrepancy system. Part I: Model implementation and sensitivity, Mon.
between observed and simulated large scale circulation so Weather Rev., 129, 569-585, 2001.
model biases can be more directly related to the convectivéneng, M. D.: Effects of Downdrafts and Mesoscale Convective
parameterization and its parameters. In future studies, we g{gsg'é?sggrsnpﬁfll'_"é;;:t‘g?)f'\C":g':\t/:::‘;viugg:ltesDongrgg?tzl
will compare model response and performance based on op- o : i ;
timizatiorr)1 process in frge runningpsimulations (i.e climatep J. Afmos. Scl., 46, 1540-1564, 1989.

. . . . . T Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,
Slmulathn mode) SIr'C'_[ly ConStra',neq (driven) by Iarge-'s.cale Williamson, D. L., Kiehl, J. T., and Briegleb, B.: Description of
observations/reanalysis. Establishing the transferability of o NCAR Community Atmosphere Model (CAM 3.0), NCAR
optimized parameters between weather and climate simu- Technical Note, NCAR/TN-464+STR, 226 pp., 2004.
lations would provide indirect evidence further supporting Collins, M., Booth, B. B. B., Bhaskaran, B., Harris, G. R., Mur-
the seamless prediction strategy (Hurrell et al., 2009) and phy, J. M., Sexton, D. M. H., and Webb, M. J.: Climate
the transpose method of evaluating and diagnosing climate model errors, feedbacks and forcings: a comparison of perturbed
model biases through hindcast weather forecast simulations Physics and multi-model ensembles, Climate Dyn., 36, 1737—
(e.g. Boyle et al., 2005). 1766,d0i:10.1007/s00382-010-0808-2011.
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