[スポンサーリンク]

化学者のつぶやき

天然にある中間体から多様な医薬候補を創り出す

[スポンサーリンク]

 

古典的な天然物化学は、創薬の歴史において欠かせない貢献を果たしてきました。

しかしその王道たる「天然資源(植物・動物・微生物など)から採取したサンプルに生物活性を見いだし、その活性成分を薬に仕上げる」という創薬スキームは、現代にあって頭打ち感を出しつつあります。

有望な化合物を求めて化学者たちが世界中を探し回った結果、身近に取れる活性天然物は「どこかで見たような構造」だったり、既知物質のそのものであるケースが増えてきたのです。ジャングルや深海といったよほどの僻地に行かない限り、もはやイノベーティブな化合物は見つけ辛い現状ともいえます。また近年の主流である、ハイスループットスクリーニング法との親和性が低いことも一因です。

しかし他方では後述するように、天然物様医薬骨格には大きな魅力があるとされています。

このような背景から、天然に頼るばかりではなく「人工反応をうまく絡ませる」ことによってリード創出を行う方法論が検討されてきています。

今回は東北大学薬学部の浅井・大島らによって、先日Nature Chemistry誌に報告された手法[1]を紹介したいと思います。著者へのインタビューも行いましたので合わせて御覧ください。

 

医薬候補としての天然物:魅力と問題

現代でも新規医薬候補化合物の探索には不断の努力が注がれていますが、難治性疾患を主たる標的とする現代においては、良い医薬リードを見つけ出すこと自体のハードルが上がっています。その渦中にあって、医薬創出率の向上に寄与する基礎研究は、大きな価値を持ちえます。

さて上述のとおり探索効率に難はあるものの、天然物医薬は未だに創薬ポートフォリオから切り捨てられてはいません。

天然物が有する骨格特性(縮環、sp3豊富、高度酸素化など)が、創薬観点から魅力的であることがその理由です。この特性はすなわち、医薬として有利に働く特性(生体適合性、標的特異性、水溶性など)に強く関連すると考えられています[2]。

その本質を反映してでしょう、天然起源の医薬は、毎年新しく承認される医薬のうち20-50%もの割合を占めています。

 

DOSS_5

天然物を起源とする低分子医薬の承認数比率(論文[3]より)

ただ、採取されてきた天然物そのままでは、医薬にならないことも多くあります。そのものがいつも完璧な医薬特性をもつ、というわけではないからです。

そこで「とれてきた天然物を、人工的に加工してより良いものにしてやろう」という考え方が出てきます。これが半合成(semi-synthesis)、もしくは誘導体化(derivatization)という考え方です。

とはいえこれらは化合物表面をワンポイントで修飾するだけ、というケースが大多数です。骨格レベルで手を加えることは困難とされてきました。そのようなことができる人工化学反応が、世の中にそうそう無いからです。

「ならば骨格も一から人工的に作ってしまえば良いじゃないか?」・・・まさしくごもっともですが、こちらも全く簡単ではありません。1 mgでも合成できれば相応の成果となる「天然物の全合成研究」が未だに継続されている現実からも、想像は容易でしょう。数十工程かかる複雑骨格をえっちらおっちら合成して、一つ一つ生物活性を評価する・・・・これを創薬現場でやってしまうと、探索効率とコスト面でやはり全く見合わなくなってしまうのです。

まとめると、「天然物に似た複雑骨格をもつ化合物がいろいろ欲しい!(なぜなら薬になりやすいから)」というニーズはあるのですが、それを簡単に供給できる技術や方法に乏しい、という問題があるのです。

 

「多様性指向型半合成」

今回の報告は、その問題に対する解決策の一つと言えます。基本となる考え方はごくシンプルで、天然物の前駆体である「反応性中間体」をとってきて人工的に変換してやる、というものです。前駆体とはいえ天然物の中継点ですから、それでも必要十分に複雑な構造をしています。人工変換が凝ったものでなくとも、複雑な「天然物様骨格」に容易に誘導してもいけそうですし、自然界ではアクセスできない骨格に導けるかもしれません。また、こういったものは未探索ゾーンにある医薬骨格(ケミカルスペース)に関する示唆を与えてくれるかも知れません。

そのようなアイデアを実証すべく、著者らはケタマカビが産生するポリケタイド天然物の前駆体[4]、とりわけo-キノンメチド活性種を生じうるに着目しました。もともとの反応性が高いため、きわめて簡単な反応でいろんな骨格に誘導できるポテンシャルを持っています。

 

DOSS_3

 

 

ただしあくまで前駆体ですから、素直に培養しても菌内で消費されるばかり、そのままでは人工変換に必要な量のは取れません。

そこで一工夫して、この生合成に必要な酵素系(NR-PKS)をコウジカビに異種発現させ、望みの活性中間体を多量製造できる系を別途組んでいます。

こうしてして得られたを様々な人工反応に伏し、多種多様な骨格に誘導しています。この過程で、収率が必ずしも高くない新規化合物40種の単離構造決定を行っています。こういったことは表に出ない地道な点ですが、途轍もない労力が必要だったと推測されます。このあたりからも天然物化学者としての矜恃が感じられます。

そしてこのようにして作られた新規化合物から、抗アデノウイルス活性を持つものを見いだしています(EC50 = 4.6 μM)。アデノウィルスに対しては現在よい薬がないらしく、これに有効なものを見つけたということです。医薬探索法としての実効性を示す成果と言えるでしょう。

DOSS_4

 

 

この方法の利点は、天然の医薬候補をみつけようとしたとき、ジャングルの奥地や深海に行って毎度サンプルを採取するという手間が要らない点です!

・・・というのは半ば冗談ですが(笑)、遺伝子組換え菌に好きな反応性中間体を製造させ、好きな人工反応をかけてやるフレームワークなので、「天然物っぽい生物活性化合物」を素早く沢山もってくる方法としてみれば、シンプルで実効性のある方法でしょう。現在並走する合成生物学の進歩次第では、より一層の発展が見込めそうに思えます。応用先もいろいろと考えられるでしょう。

骨格レベルでの構造多様性を生み出す考え方(多様性指向型合成)が提案されて久しいですが、著者らは異種発現を組み合わせる形でこれを踏襲しているわけです。この自らのアプローチを、「多様性指向型半合成(Diversity-oriented semi-synthesis)」と命名しています。

また、これを創薬化学の文脈に沿って眺めると、全合成と天然物化学と合成生物学の中間に位置する手法と取れるように思います。ありそうでなかったやり方?といえるかも知れません。

天然物創薬という分野にも、まだまだやれることは多くありそうだ、と感じさせてくれる報告に思いました。最後に著者からの本研究に関するコメントとメッセージをいただきましたので御覧ください。

 

著者からのメッセージ

私たちは、ケミカルエピジェネティクスを用いた天然物探索研究のなかで、HDAC阻害剤を添加してChaetomium indicumを培養することで、多様な構造を持つ新規な芳香族ポリケタイドchaetophenol類を得ました。様々なところで

「HDAC阻害剤による二次代謝活性化がエピジェネティック制御を介しているのですか?」

と良く聞かれます。そこで、一度はそのことを確認してみなければと思いchaetophenol類の生産に関わる非還元型ポリケタイド合成酵素 (NR-PKS)をコードする遺伝子pksCH-2の同定を行うことにしました。

これまで私たちは生合成工学的な実験をしたことがありませんでしたので、pksCH-2は麹カビで異種発現した記念すべき最初の遺伝子ということになります。当初私たちは、pksCH-2過剰発現株からは最も単純な構造のベンズアルデヒド誘導体が得られると予想していました。しかし、いつもの癖でPDB 培地で培養したところ、予想に反してポリケタイド二量体が得られました。この偶然の発見から、この研究の鍵となる麹カビ内在酵素によるベンズアルデヒドからイソクロメンへの還元的環化、その非酵素的な二量化という一連の変換を見いだすことができました。また、二量体の生成比は培地のpHに依存していることもわかりました。麹カビの培養で通常用いられるCDS培地を初めに選択していたら、この変換に気づくことはできませんでした。その後、生合成中間体であるイソクロメンの潜在的な反応性の高さを活用して多様なpseudo-natural productの創生へと展開しました。この過程では、有機反応には素人だとよくわかるような、過激な反応もあちらこちらで用いています。合理的な反応は不得意なものの、私たちは「ものとり」を本業としていますので、複雑な反応混合物から微量な生成物を取り出して、その構造を決めることはできます。その強みを生かして、収率数パーセントでも物ともせず突っ走った結果として多様な非天然型のポリケタイド分子を創ることができました。

偶然の発見は自らの能力を超えた成果につながると信じ、素人同然の生合成工学と有機反応を結びつけ、そこから強みである「ものとり」の力で押すというスタイルでこの研究を作り上げていきました。

振り返ってみると、最初からゴールを見据えたスマートな研究とは決して言えません。しかし、様々な分野に飛び込み、無知が故に結果を一つ一つ真摯に受け止めることで道が開け、私たちはこの研究を通じて多くのことを学ぶことができたと感謝しています。

本文を読んでいる学生さんも、考えてもいない結果が出た時こそ、実はビッグチャンスの到来かもしれません。偶然の出会いを大切にして、研究を存分に楽しんでください。

また、共同研究者はすべて東北地方所属というチーム東北の研究成果であり、東北から日本の天然物化学を少しでも活性化できたなら幸せに感じます。

 

東北大学 浅井禎吾、大島吉輝

 

 

関連論文

  1. “Use of a biosynthetic intermediate to explorethe chemical diversity of pseudo-natural fungal polyketides” Asai, T.; Tsukada, K.; Ise, S.; Shirata, N.; Hashimoto, M.: Fujii, I.; Gomi, K.; Nakagawara, K.; Kodama, E. N.; Oshima, Y. Nat. Chem. 2015, DOI: 10.1038/NCHEM.2308
  2. “The evolving role of natural products in drug discovery”, Koehn, F. E.; Carter, G. T. Nat. Rev. Drug. Discov. 2005, 4, 206. doi:10.1038/nrd1657
  3. “Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010” Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311. DOI: 10.1021/np200906s
  4. “Structurally Diverse Chaetophenol Productions Induced by Chemically Mediated Epigenetic Manipulation of Fungal Gene Expression” Asai, T.; Yamamoto, T.; Shirata, N.; Taniguchi, T.; Monde, K.; Fujii, I.; Gomi.K.; Oshima, Y. Org. Lett. 2013, 15, 3346. DOI: 10.1021/ol401386w

 

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 燃えないカーテン
  2. 化学でもフェルミ推定
  3. AI翻訳エンジンを化学系文章で比較してみた
  4. アメリカの大学院で受ける授業
  5. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  6. 知られざる法科学技術の世界
  7. プラスチック類の選別のはなし
  8. ありふれた試薬でカルボン酸をエノラート化:カルボン酸の触媒的α-…

注目情報

ピックアップ記事

  1. これからの研究開発状況下を生き抜くための3つの資質
  2. 塩化ラジウム223
  3. Ni(0)/SPoxIm錯体を利用した室温におけるCOの可逆的化学吸着反応
  4. 平尾一郎 Ichiro Hirao
  5. 汝ペーハーと読むなかれ
  6. 二量化の壁を超えろ!β-アミノアルコール合成
  7. グレーサー反応 Glaser Reaction
  8. ケトンを配向基として用いるsp3 C-Hフッ素化反応
  9. フェノールのC–O結合をぶった切る
  10. 「消えるタトゥー」でヘンなカユミ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP