[スポンサーリンク]

スポットライトリサーチ

CO酸化触媒として機能する、“無保護”合金型ナノ粒子を担持した基板を、ワンプロセスで調製する手法を開発

[スポンサーリンク]

第515回のスポットライトリサーチは、富山高等専門学校・物質化学工学科の迫野 奈緒美(さこの なおみ)准教授にお願いしました。

本プレスリリースの研究は、合金型ナノ粒子担持触媒についてです。これまでに、複数種類の元素から成る金属ナノ粒子の作製法やナノ粒子の担体固定法は、多く報告されていますが、粒子作製から担体固定までをワンプロセスで実現する方法はありませんでした。そこで本研究グループでは、2 種類の金属元素で構成される合金型金属ナノ粒子を担持した基板の作製に成功し、CO酸化反応の触媒として機能することを明らかにしました。本手法は粒子合成からナノ触媒担持基板の作製を、およそ 2 時間程度と非常に短時間かつワンプロセスで完了することができます。

この研究成果は、「ACS Applied Nano Materials」誌に掲載され、Supplementary Coverにも選出されました。またプレスリリースにも成果の概要が公開されています。

Molar-Fraction-Tunable Synthesis of Ag–Au Alloy Nanoparticles via a Dual Evaporation–Condensation Method as Supported Catalysts for CO Oxidation

Naomi Sakono, Yuto Ishida, Kazuki Ogo, Nobuko Tsumori, Haruno Murayama, Masafumi Sakono

ACS Appl. Nano Mater. 2023, 6, 4, 3065–3074

DOI: doi.org/10.1021/acsanm.3c00089

共同研究者であり旦那様でもある迫野 昌文 准教授より迫野 准教授ついてコメントを頂戴いたしました!

この論文は、オーサーの全員の協力と頑張りで完成できたと思います。特に、休日返上で何度も粒子合成をしてくれた石田君と大郷君には心から感謝です。また、研究当初より物性評価の相談に乗っていただいた村山先生, 触媒評価で本当に無理をお願いした津森先生のご協力なしにはここまでのクオリティに仕上げることはできませんでした。もともとChemistry of Materials誌に投稿したのですが、査読まで回ったもののあえなくリジェクトの判定でした。ただ、査読者の評価は、論文のコンセプトは認めてくれており、こういうデータを増やしては?という建設的なコメントが主でした。残念な結果ではありましたが、多くのヒントをいただけてとても励みになったのを覚えています。再投稿に向けて大幅なデータの追加とほぼゼロベースでの書き直しとなり、大変苦労しましたが、この査読コメントが転機だったと感じます。(身内のことをお話しするのは恥ずかしいですが、、)最後までやり切ろうと必死に食らいつく妻の姿勢に、学生や先生方、北陸先端大の技術者の皆さんが応援してくれたのだと思います。ご協力いただいた皆様にあらためて感謝を申し上げ、妻にはおめでとうと伝えたいと思います。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

金属ナノ粒子は、表面プラズモン共鳴に代表される特徴的な光学特性を持つ材料として有名ですが、近年はナノスケール触媒としての活用も注目されています。特に、複数の金属元素で構成されるコンポジットナノ粒子は、バルク金属や単一元素ナノ粒子よりも優れた触媒活性を示すことが報告されています。コンポジットナノ粒子の調製は、単一元素ナノ粒子よりも複雑な工程を必要とするため、簡便な作製法の開発が求められています。

私たちは、ナノ粒子の気相合成法である蒸発濃縮法(EC法)に着目しました。EC法は、バルク状の金属の加熱により金属元素を蒸発し、蒸発した元素の再凝縮によりナノ粒子を得る方法です。市販の安価な管型電気炉を用いて、加熱のみでナノ粒子が作製できるため、低コストかつ簡便なナノ粒子作製手法となります。我々は、2台の電気炉を接続した二重蒸発濃縮法(DEC法)を考案し、金及び銀で構成されるコンポジット粒子の作製を行いました。

ナノ粒子合成装置の前で研究室メンバーと(向かって左が迫野, 真ん中が大郷君)

本研究の特筆すべき成果として、以下の3つが挙げられます。

バルク状の金属から合金型コンポジット粒子を作製可能

バルク状態の金及び銀をそれぞれ電気炉で加熱することで、合金型ナノ構造のコンポジット粒子が得られました。また、還元剤や粒子安定化剤などを用いないため、粒子表面に有機物の無い純粋なコンポジット粒子を得ることができました。

合金型ナノ構造を維持したまま、元素モル分率を変えられる

電気炉の加熱温度を変えることで、ナノ粒子に含まれる金と銀のモル分率が変化することを発見しました。モル分率の変化はLSPR波長の変化としても観察されました。

生成粒子を直接基板に固定し、そのまま触媒反応に適応できる

気相で生成したナノ粒子は、窒素ガスの流れに乗り、そのまま下流に設置した基板に積層しました。この粒子が積層した基板を一酸化炭素と酸素の混合ガス中に設置し加熱すると、二酸化炭素の顕著な増加が確認されました。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

この研究は、2020年度の秋に、研究室に配属されたばかりの石田悠人君の卒業研究として始まりました。はじめは漠然と、『電気炉組み合わせただけで合金が出来たらいいな』という甘い期待からのスタートでした。条件の違いにより光吸収スペクトルが規則的に変化する結果を石田君が出したところから、これは本当にできたのかもしれないと思い、粒子の構造解析へと進んでいきました。様々な種類の測定を行ったため、データの解釈に大変苦労しましたが、石田君がコツコツと解析してくれたおかげで整合性のとれた結果を得ることができました。石田君の卒業後は、専攻科生の大郷和暉くんが、この研究を引き継いでくれました。論文の査読対応は、ほぼ大郷君が一人でこなし、査読者のほとんどの要求に応えることができました。彼ら2人の努力がなければ、この論文は完成しませんでした。現在、石田くんは東北大学工学部化学・バイオ工学科に進学し、大郷くんは専攻科2年生になり大学院進学に向けて準備を進めているところです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

合成したナノ粒子構造の詳細な解析が難しかったです。EDS解析の可能な電子顕微鏡やAFM測定など富山高専にない装置を使う必要があり、自分の身の周りだけで研究を進めるのは困難でした。幸運なことに、北陸先端大のマテリアル先端リサーチインフラの技術者の方に相談する機会を得て、これらの課題が一気に解消されました。査読者対応においても、快く相談に応じていただき、私の想定よりもはるかに素晴らしい改訂ができました。また、作製した粒子の触媒反応は当初本論文に含める予定になかったのですが、査読で入れるように強いリクエストがありました。これも幸いなことに富山高専でナノ粒子の触媒反応を専門に研究されている津森展子先生に相談する機会を得ました。年末大みそかの差し迫る時期に無理をお願いして実験をさせていただきました。皆さんのご協力なしに、この論文は完成しなかったと思います。あらためて感謝申し上げます。

Q4. 将来は化学とどう関わっていきたいですか?

あまり特定の分野にとらわれず、自分の好奇心を一番大事にしたいと思います。学生や研究仲間とのディスカッションを大切にし、『この研究の面白さ』『この研究の1番のアピールポイント』を常に意識しながら、少しずつでも、成果を世界に発信していきたいです。私の所属する高専は、学生の「大学への連結」と「企業への人材輩出」がミッションとなります。私の研究活動を通じて、アカデミアとしても企業人としても、質の高い人材の育成につながれば何よりも幸せだと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私の研究課題の着想は、荒唐無稽な、こうなったらいいなという楽観的なアイデアからスタートします。データを積み重ねるにつれて、現実を思い知らされ、立案の際は楽しかったアイデアも、次第に悲観的な気分になります。不格好なデータしかなくても、学会発表を通じて多くの方に前向きなサジェストをいただき、少しずつ前に勧められました。ACSのレビュアーも、非常に厳しい追加実験の要求でしたが、それに応えることで自分の研究のアピールポイントが明確になりました。国内外の多くの方に研究をブラッシュアップしていただいたという感謝の気持ちでいっぱいです。これからも研究者の皆さまとの交流を大事にしたいと思います。今後ともよろしくお願いいたします。

研究者の略歴

迫野奈緒美(さこの なおみ)

富山高等専門学校・物質化学工学科 准教授

新規ナノ粒子の合成と構造評価、触媒やバイオセンシングへの応用

趣味:マラソン

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. チオール架橋法による位置選択的三環性ペプチド合成
  2. Chemistry Reference Resolverをさらに…
  3. もう入れたよね?薬学会年会アプリ
  4. 炭素繊維は鉄とアルミに勝るか? 番外編 ~NEDOの成果について…
  5. 二重マグネシウム化アルケンと二重アルミニウム化アルケンをアルキン…
  6. 生物発光のスイッチ制御でイメージング
  7. 無限の可能性を合成コンセプトで絞り込むーリアノドールの全合成ー
  8. 始めよう!3Dプリンターを使った実験器具DIY:3Dスキャナー活…

注目情報

ピックアップ記事

  1. 有機・無機材料の相転移ダイナミクス:数理から未来のマテリアル開発まで
  2. 亜鉛トリフラート触媒:Zinc Triflate
  3. ここまで進んだ次世代医薬品―ちょっと未来の薬の科学
  4. 株式会社ユーグレナ マザーズに上場
  5. 野依さん講演を高速無線LAN中継、神鋼が実験
  6. 第45回BMSコンファレンス参加者募集
  7. 香りの化学2
  8. フタロシアニン phthalocyanine
  9. 【温泉を化学する】下呂温泉博物館に行ってきた
  10. 5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年5月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP