
TCP
Tahoe, Reno, NewReno,

SACK, and Vegas



cwnd: congestion window
swnd: usable sending window
rwnd: advertised receiver’s window
ssthresh: slow-start threshold



RFC793



No cwnd
On timeout: retransmit
swnd = rwnd



TCP Tahoe







new ack:
if (cwnd < sstresh)
   cwnd += 1
else
   cwnd += 1/cwnd



timeout/3rd dup ack:
retransmit all unacked
ssthresh = cwnd/2
cwnd = 1



Improving TCP Tahoe:

Packets still getting
through in dup ack -- no
need to reset the clock!



TCP Reno



new ack:
if (cwnd < sstresh)
   cwnd += 1
else
   cwnd += 1/cwnd



timeout:
retransmit 1st unacked
ssthresh = cwnd/2
cwnd = 1



3rd dup ack:
retransmit 1st unacked
ssthresh = cwnd/2
cwnd = cwnd/2 + 3



Fast Recovery:
the pipe is still

almost full -- no
need to restart



subsequent dup ack:
cwnd++

new ack:
cwnd = ssthresh



…

U U+W-1

Suppose U is lost (oldest unacked) and all
other packets are not. At time t, cwnd is
W, and packets [U, U+W-1] are in the
pipe.



Between time t and t+RTT, we would have
retransmitted U and received W-1
duplicate ACK.

…

U U+W-1



Between time t and t+RTT, the cwnd
becomes W/2 + W-1.  So we get to send
W/2 new packets during the time. (Soon
cwnd is going to become W/2 anyway..)

…

U U+W-1 U+W/2+W-1



At time t+RTT, we receive ACK for
packets [U,U+W-1], set cwnd to W/2.

…

U U+W-1 U+W/2+W-1





Simulation
of TCP

Tahoe/Reno



R1S1 S2



Entering
queue

Exiting
queue

ACKed















Improving TCP Reno:

Timeout if multiple losses
in a window



TCP NewReno



Fast recovery starts.

    are the outstanding
packets at this time.

Partial ACK

Idea: stays in fast recovery until all    have
been ACKed.



Perhaps the next
packet is lost?



3rd dup ack:
retransmit 1st unacked
ssthresh = cwnd/2
cwnd = cwnd/2 + 3
remember highest



subsequent dup ack:
cwnd++

“complete” ack:
(all        are acked)
cwnd = ssthresh



“partial” ack:
retransmit
cwnd = ssthresh (?)





Note: RFC2581/RFC2582 give the
accurate/gory details.  Simplified
version is presented here (eg. cwnd vs
FlightSize, update of cwnd upon partial
ACK).



TCP SACK



Coarse Feedback



Go-Back-N
vs

Selective Repeat



Use TCP header
options to report
received segments.



SACK Blocks:

1st block - report most
recently received segments

subsequent blocks - repeat
most recent previous blocks



pipe: num of outstanding
packets in the path.

send only if pipe < cwnd



scoreboard: which
packets have been
received?



3rd dup ack:
pipe = cwnd - 3
retransmit 1st unacked
ssthresh = cwnd/2
cwnd = cwnd/2 + 3



subsequent dup ack:
cwnd++
pipe--

(if send new packet, pipe++)



“partial” ack:
retransmit
cwnd = ssthresh
pipe -= 2







Power of SACK:
Which packet has left the network?
Where is the gap?
Decouple when to send and what to
send.



TCP Vegas



So far,

packet loss as
signal of congestion.



But, already over
congested when

packets are dropped



What other signals
are there?



RTT

Load



Expected Sending Rate

E = cwnd/BaseRTT



BaseRTT: RTT when
no congestion

(take min measured RTT in
practice)



Actual Sending Rate

A = cwnd/RTT

RTT
:



If (E-A) < alpha
cwnd++

else if (E-A) > beta
cwnd--



Intuition:
(E-A) x BaseRTT
represents extra
buffers occupied in
the network



Picking alpha/beta

alpha: small but non-zero
to take advantage of
available bandwidth
immediately.  ( = 1/BaseRTT)



Picking alpha/beta

beta: beta-alpha should
not be too small to
prevent oscillation.
( = 3/BaseRTT)



Deployment



Feb 2004



70%
SACK capable



Where is TCP Vegas?



Problem 1.
Can’t compete with

TCP Reno.



Problem 2.
Sensitive to RTT

estimation.



TCP BIC/CUBIC
Linux 2.6.x



Compound TCP
MS Windows Vista


