
HyperFlow: A Processor Architecture for Nonmalleable,
Timing-Safe Information Flow Security

Andrew Ferraiuolo

Cornell University

Ithaca, NY, USA

Mark Zhao

Cornell University

Ithaca, NY, USA

Andrew C. Myers

Cornell University

Ithaca, NY, USA

G. Edward Suh

Cornell University

Ithaca, NY, USA

ABSTRACT
This paper presents HyperFlow, a processor that enforces secure

information flow, including control over timing channels. The de-

sign and implementation of HyperFlow offer security assurance

because it is implemented using a security-typed hardware descrip-

tion language that enforces secure information flow. Unlike prior

processors that aim to enforce simple information-flow policies

such as noninterference, HyperFlow allows complex information

flow policies that can be configured at run time. Its fine-grained,

decentralized information flow mechanisms allow controlled com-

munication among mutually distrusting processes and system calls

into different security domains. We address the significant chal-

lenges in designing such a processor architecture with contributions

in both the hardware architecture and the security type system. The

paper discusses the architecture decisions that make the processor

secure and describes ChiselFlow, a new secure hardware description

language supporting lightweight information-flow enforcement.

The HyperFlow architecture is prototyped on a full-featured pro-

cessor that offers a complete RISC-V instruction set, and is shown

to add moderate overhead to area and performance.

ACM Reference Format:
Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Edward Suh. 2018.

HyperFlow: A Processor Architecture for Nonmalleable, Timing-Safe Infor-

mation Flow Security . In 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada.
ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3243734.3243743

1 INTRODUCTION
Hardware plays a central role in modern software security. Pro-

tection rings are widely used to isolate supervisor processes from

user processes. Recent hardware security architectures such as Intel

SGX [11, 12] aim to protect critical software even when the oper-

ating system is malicious or compromised. However, the security

of these processors relies on the assumption that the underlying

hardware properly enforces necessary security properties.

Unfortunately, microprocessors often contain vulnerabilities that

allow security-critical software to be compromised by untrusted

software. Software-exploitable vulnerabilities have already been

The first two authors are now at Google and Stanford University respectively.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243743

found in SGX [40] and also in the implementations of Intel VT-d [62]

and system management mode (SMM) [61]. Moreover, the recent

Spectre [32] and Meltdown [37] vulnerabilities show that even if

the hardware is correct in a conventional sense — it implements

its specification — correctness is not enough to ensure security.

Timing channels in microprocessors do not violate the processor

specification but can be used to leak information, and in the case

of Meltdown, to read the entire memory of the kernel [37].

This paper presents HyperFlow, a processor architecture and

implementation designed for timing-safe information-flow security.

It is implemented as a full-featured processor with a complete (RISC-

V) instruction set, extended with instructions for information flow

control. TheHyperFlow architecture is carefully designed to remove

all disallowed information flows between security levels, including

timing channels. The implementation of HyperFlow is verified at

design time with a security-typed hardware description language

(HDL), providing strong assurance about the security of its design

and implementation.

The HyperFlow architecture is designed to support the rich

software-level information-flow policies needed to build practical

systems. It is standard for label models for information flow security

to represent policies as lattices [16], which may change dynami-

cally. HyperFlow uses a novel representation of lattices that can be

implemented in hardware efficiently yet supports the full generality

of many prior label models used in operating systems [8, 21, 67] and

programming languages [1, 42, 47]. HyperFlow permits communi-

cation across security levels through controlled downgrading in its

instruction-set architecture (ISA). Downgrading weakens noninter-

ference but its potential for harm is limited by restrictions. These

new features enable the HyperFlow ISA and prototype to support

practical OS functionality such as interprocess communication and

system calls.

While previous studies on tagged architectures have proposed

to enforce information flow security at the hardware level [20, 68],

these architectures do not prevent timing channels. Further, their

implementations have not been statically checked with a security-

typed HDL, and their ISAs have not been designed to be amenable

to information-flow verification. On the other hand, prior proces-

sors with verified information flow security [26, 35, 36, 56–58] only

support simple, fixed security policies, and do not support the ex-

pressive security policies needed for practical applications. Further,

none of these prior processors support cross-domain communica-

tion, needed for interprocess communication (IPC) and system calls,

and none constrain the use of downgrades.

We implemented HyperFlow as an extension to the RISC-V

Rocket processor, which supports a complete RISC-V ISA with

the features necessary to run an operating system. Our prototype

implementation shows that the HyperFlow architecture and the

https://doi.org/10.1145/3243734.3243743
https://doi.org/10.1145/3243734.3243743

security type system in ChiselFlow can be scaled to complex, full-

featured processors. The prototype implementation shows that the

new security features in HyperFlow add moderate area overhead,

largely due to the additional storage for security tags, and moderate

performance overhead due to timing-channel protection.

Some core technical contributions enable high-assurance con-

struction of a practical processor with timing-safe information-flow

security:

Security policies and hypercube labels. Prior processors with veri-

fied information flow [26, 35, 36, 56–58] only support simple, fixed

2-point or 4-point policy lattices. However, work on information-

flow security in operating systems and programming languages sug-

gests that real applications need rich lattice policies that can capture

complex trust relationships relating mutually distrusting principals

and involving both confidentiality and integrity [8, 21, 42, 67].

Most prior label models for information flow security represent

policies using lattices of information flow labels. To support such

rich software labels, we introduce a novel representation of lattices

over bit vectors, which we call the hypercube label model. In this

model, software-level labels are mapped to points in a hypercube.

Hypercube labels enable efficient comparisons and computations

of security levels directly in hardware, and they are amenable to

static checking in the security-typed HDL.

We also show how to use the hypercube label model to encode

policies expressed in the recently proposed FLAM label model [1]

for decentralized information flow control. By translating FLAM la-

bels into hypercube labels, we show that the hypercube label model

can flexibly enforce software-defined information flow policies.

Controlled downgrading. To be practical, systems based on informa-

tion-flow security must allow exceptions to noninterference [28].

Downgrading can usefully relax information-flow restrictions, but

uncontrolled downgrading is dangerous. HyperFlow therefore pro-

vides controlled downgrading. Downgrading of confidentiality poli-

cies (declassification) is permitted only when it is robust [64] —
secrets can be released only if the downgrade can be influenced

only by their owners. Dually, downgrading of integrity policies (en-

dorsement) is permitted only when it is transparent [6] — endorsed

data must be readable by its provider. Together, these conditions

ensure that information flow is nonmalleable. Nonmalleable infor-

mation flow [6] is enforced not only at the ISA level but also at the

HDL level, strengthening assurance about the implementation.

Secure interprocess communication. Another novel and challenging

feature of HyperFlow is its support for secure communication across

trust domains. HyperFlow allows but constrains IPC via shared

memory. It also supports the secure communication via registers

for arguments and return values of system calls.

System calls and shared function libraries present another chal-

lenge that HyperFlow addresses — both scenarios require a mecha-

nism by which untrusted code can invoke trusted code. HyperFlow

provides secure cross-domain control transfers by extending call
gates [51, 60] with information flow control.

Tagged architecture for memory protection. Conventionally, virtual

memory isolates pages belonging to different applications. However,

hardware support for virtual memory is complex and its correctness

also depends on other mechanisms such as cache coherence, which

is notoriously difficult to implement correctly. HyperFlow augments

conventional memory protection with security tags associated with

each physical page (or frame) of memory. Security tags are mapped

to hypercube labels using a mapping defined by the operating

system; accesses to memory are then mediated using hypercube

labels. The security of this mechanism is checked in the HDL code

at design time.

ChiselFlow security-typed HDL. To provide strong information-

flow assurance for the construction of HyperFlow, we designed a

security-typed HDL called ChiselFlow. ChiselFlow is embedded in

Scala, so it inherits the expressiveness of a complex, full-featured

language. But ChiselFlow compiles to a small intermediate lan-

guage that is responsible for the enforcement of security policies,

so its trusted component is small. Unlike prior secure HDLs, Chi-

selFlow provides label inference that reduces programmer effort.

The hardware designer provides security labels for the inputs and

outputs of hardware modules, but labels of internal signals can be

omitted. ChiselFlow also supports multiple mechanisms for describ-

ing heterogeneously labeled data structures, which are crucial for

practical designs. ChiselFlow also permits downgrades in the HDL

syntax, yet constrains them to be robust and transparent, like the

ISA of HyperFlow. ChiselFlow is the first HDL for information flow

control with controlled downgrading.

In summary, HyperFlow offers a new approach to processor

design, in which protection is based on flexible information flow

policies rather than standard memory protection, and in which

microarchitectural side channels are controlled by implementation

using an expressive HDL.

2 SECURITY GOALS AND THREAT MODEL
The goal of HyperFlow is to provide strong timing-safe information

flow security in hardware while supporting flexible application-

defined information flow policies. A software-defined security pol-

icy is expressed as a lattice of security labels that encode informa-

tion flow constraints for both confidentiality and integrity. The

HyperFlow ISA allows security labels to be assigned to software

processes running on a processor as well as to state elements such

as registers and memory pages. HyperFlow constrains informa-

tion flow according to the label lattice, but to be practical, it al-

lows downgrading that weakens noninterference, while making all

downgrading explicit and nonmalleable [6].

HyperFlow aims to enforce timing-safe information flow security

by preventing microarchitectural timing channels that influence

the number of CPU clock cycles taken between events observable

by the adversary. It therefore considers a strong adversary that can

measure timing at cycle granularity. However, we do not consider

attacks that require physical proximity, such as physical tampering

with hardware or side/covert channels through physical media such

as power consumption, electromagnetic fields, or sound.

We assume that there is a trusted label manager that assigns

security labels to processes and storage in a way that prevents un-

trusted applications from harming other applications. A malicious

application may execute arbitrary instructions in the HyperFlow

ISA but should not be able to violate the nonmalleable information

flow control (NMIFC) policy set by the trusted label manager.

The eventual goal of the HyperFlow project is to provide strong

formal security assurance for the instruction set architecture (ISA).

Ideally, we would prove formally that programs written in the

HyperFlow ISA enforce an extensional security property such as

noninterference [28] or nonmalleable information flow [6]. To ob-

tain a theorem regarding adversaries that can exploit timing chan-

nels, this proof would need to consider not only the ISA, but also

low-level details of the microarchitecture implementation. As a

first step toward a proof about the ISA and its implementation, we

have implemented the HyperFlow processor using an HDL that

enforces hardware-level information flow security. We have proved

that aside from downgrades, hardware implemented in this HDL

enforces a gate-level formulation of noninterference. We leave as

future work a proof that the secure HDL enforces nonmalleable

information flow at the gate level, and extending this proof to the

ISA level.

This paper shows how different aspects of the design and im-

plementation of HyperFlow combine to meet this security goal.

The hypercube labels (Section 3) show how arbitrary lattice-model

policies can be encoded and expressed in hardware. Section 4 de-

scribes the HyperFlow ISA, which specifies how these policies are

presented to and enforced by hardware. Section 6 shows how the

ISA can be realized while eliminating microarchitectural timing

channels. To provide strong assurance that this microarchitecture

is timing-safe, it is constructed in the ChiselFlow HDL, which is

described in Section 5.

3 SECURITY POLICIES IN HYPERFLOW
HyperFlow enforces information flow security policies directly in

hardware. Prior work on label models for information flow security

in software support rich policies allowing mutually distrusting prin-

cipals to communicate [8, 21, 42, 67]. These label models represent

policies using lattices of information flow labels. Here, we discuss

how general lattice-based policies can be expressed with bit vectors

in a way that allows efficient computations and comparisons of

labels in hardware.

3.1 Confidentiality and integrity policies
An information-flow label ℓ = (c, i) in HyperFlow is a pair of a

confidentiality level c and an integrity level i . Confidentiality and

integrity levels in HyperFlow both form lattices that are ordered

by ⊑C and ⊑I respectively. The ordering on confidentiality levels

specifies constraints on secrecy; if c ⊑C c ′, then c is no more confi-

dential than c ′. Similarly, if i ⊑I i
′
, then i is at least as trustworthy

as i ′. The ordering of integrity levels and confidentiality levels is

dual: high confidentiality levels are more restrictive than low ones,

whereas low integrity levels are more restrictive than high ones.

The orderings on confidentiality and integrity levels are lifted to

a lattice of labels ⊑; if c ⊑C c ′ and i ⊑I i
′
then (c, i) ⊑ (c ′, i ′). We

write C (ℓ) and I (ℓ) to denote just the confidentiality or integrity

part of the label respectively.

3.2 Lattices via bit vectors
To support efficient computations and comparisons of labels in

hardware, HyperFlow represents lattices over bit vectors. We first

explain the ordering of confidentiality levels. Levels are mapped to

b1 ⊑C b2 ≜ ∀d ∈ [1,D],b1 (d) ≤ b2 (d)

(b1 ⊔C b2) (d) ≜ max{b1 (d),b2 (d)}

(b1 ⊓C b2) (d) ≜ min{b1 (d),b2 (d)}

Figure 1: Confidentiality ordering over bit vectors.

b1 ⊑I b2 ≜ ∀d ∈ [1,D],b1 (d) ≥ b2 (d)

(b1 ⊔I b2) (d) ≜ min{b1 (d),b2 (d)}

(b1 ⊓I b2) (d) ≜ max{b1 (d),b2 (d)}

Figure 2: Integrity ordering over bit vectors.

a point in a hypercube, expressed using a bit vector. A bit vector

b is split into D dimensions, each of K bits. Bit vectors are then

functions from [1,D] to [0, 2K −1], and the notation b (i) represents

the value in the ith dimension of b. Bit vectors b1 and b2 are ordered
in the confidentiality lattice, written b1 ⊑C b2 if each dimension of

b1 is numerically less than or equal to the corresponding element

of b2, as shown in Figure 1. As an example, if b1 and b2 are each
bit vectors of four 2-bit dimensions, and b1 is 10100111 and b2
is 10010010, then b2 ⊑C b1. The join (⊔C) and meet (⊓C) of two

confidentiality components are respectively computed by taking

the maximum or the minimum over the corresponding dimensions

of each vector. The integrity lattice ordering is exactly dual to that

for confidentiality, as shown in Figure 2: b1 ⊑C b2 ⇐⇒ b2 ⊑I b1.

We write (c, i) ⊔ (c ′, i ′) ≜ (c ⊔C c ′, i ⊔I i
′) and (c, i) ⊓ (c ′, i ′) ≜

(c⊓C c ′, i⊓I i
′) to denote the join and meet over labels, respectively.

We use ⊤ and ⊥ to denote a sequence of all 1’s and all 0’s, re-
spectively. In the confidentiality ordering, ⊤ and ⊥ are completely

secret and completely public respectively; in the integrity ordering,

⊤ and ⊥ are completely trusted and completely untrusted respec-

tively. Hence, the labels (⊥,⊤) and (⊤,⊥) are the least and most

restrictive labels in the information-flow ordering (⊑).
Other representations of lattices in computer systems have been

studied in the past [27]. Because HyperFlow controls information

flows via timing channels, lattice comparisons and computations

need to be done throughout the implementation, making it particu-

larly important to be able to efficiently update and compare labels

directly in hardware. Some prior representations of lattices, such

as adjacency lists and matrices, are less space-efficient. Approaches

that use opaque identifiers and cache recent operations [20, 68]

require software intervention for lattice operations, potentially cre-

ating timing channels. The hypercube lattice is most similar to the

skeletal representation, also known as the Fidge and Mattern vector

clock [31]. Vector clocks have not been used to represent lattices in

hardware in prior work.

3.3 Nonmalleable downgrading
Systems for information flow control are often intended to enforce

noninterference, which prevents all information flows that vio-

late lattice policies. However, noninterference is too restrictive for

practical systems. For example, data computed using secrets may

eventually need to be released publicly. Noninterference may be

weakened through downgrading, which relaxes information flow la-

bels. Downgrading that weakens confidentiality is said to declassify
whereas downgrading that weakens integrity is said to endorse [66].

Because downgrading weakens noninterference, effort has been

made to constrain downgrading to limit its potential to cause

harm [50]. In this work, we permit communication that weakens

noninterference as long as the downgrading it causes is nonmal-
leable [6]. Nonmalleable information flow subsumes two security

conditions, robust declassification and transparent endorsement.

These security conditions constrain downgrading but have not been

enforced previously by hardware.

Robust declassification [64] only permits information to be down-

graded by parties that have authority over that information. As

in prior work on defining robust declassification [6, 9], authority

(trust, privilege) is represented by integrity; only a principal at least

as trusted as I (p) can declassify data with confidentialityC (p). This
constraint is useful for decentralized systems such as microkernels.

A principal A can declassify its data to a principal B, and as long

as B does not have integrity I (A), B can observe A’s data but is

prevented from releasing it elsewhere.

In HyperFlow, a process with label ℓcur can declassify a label ℓ

to ℓ′ only if the following condition holds:

C (ℓ) ⊑C C (ℓ′) ⊔C
(
I (ℓcur) ⊔I I (ℓ)

)
This condition follows directly from prior work on defining robust

declassification in the context of programming languages [6, 9].

Intuitively, it allows the confidentiality C (ℓ) of the data being de-
classified to be compensated for by the integrity of the data and of

the current process. Hence, only sufficiently trusted processes can

influence whether or not secrets are declassified. When ℓ can be

robustly declassified to ℓ′ by a process with label ℓcur , we write

ℓ
C
−−−−→
ℓcur

ℓ′. Notably, the condition includes a confidentiality join in-

volving an integrity label component; this condition is well-defined

because ⊔C is an operation defined over bit vectors, and regardless

of whether the vectors represent confidentiality or integrity.

The dual of robust declassification is transparent endorsement [6].

It sets a maximum confidentiality on endorsements to prevent

opaque writes that could enable attacks. A write is opaque if a

principal could have written data but not read it. In HyperFlow, a

process with label ℓcur can endorse a label ℓ to ℓ′ if,

I (ℓ) ⊑I I (ℓ
′) ⊔I

(
C (ℓcur) ⊔C C (ℓ)

)
This condition follows directly from prior work on defining trans-

parent endorsement for a functional programming language [6].

When ℓ can be transparently endorsed to ℓ′ by a process with label

ℓcur , we write ℓ
I
−−−−→
ℓcur

ℓ′. When ℓ
I
−−−−→
ℓcur

ℓ′ and ℓ
C
−−−−→
ℓcur

ℓ′ we say

that ℓ can be nonmalleably downgraded to ℓ′ by a process with

label ℓcur and we write ℓ −−−−→
ℓcur

ℓ′.

4 THE HYPERFLOW ARCHITECTURE
Policies in the HyperFlow ISA are defined using the hypercube

labels described in Section 3. HyperFlow is realized as a tagged

architecture in which security labels are explicitly represented as

hardware tags for processes, registers, and memory pages. Hy-

perFlow augments conventional memory protection enforced by

virtual memory with security tags that are associated with each

physical page (or frame) of memory. Tagged physical memory en-

ables static checking of information flow with the security type

system of ChiselFlow. Traditional virtual memory does not ensure

noninterference; it is possible for the same physical page to be

mapped to virtual addresses owned by distrusting processes. Even

if the mapping did ensure noninterference, it would not be possible

to prove noninterference purely by inspecting the hardware design

because the mapping is software-defined. By simultaneously sup-

porting isolation based on both virtual memory and information

flow, HyperFlow supports incremental adoption.

4.1 Security labels
Processes executing in HyperFlow are associated with a security

label, ℓcur . The label C (ℓcur) represents the highest secrecy that

the process can observe, and I (ℓcur) represents the most trusted

information it can affect.

In addition to authorizing explicit data access, ℓcur also con-

strains data leakage through control flow, instruction fetches, and

timing channels. HyperFlow also associates a security label (ℓr)

with each general-purpose register (r). Similarly, a page (m) in

physical memory has a security labelMℓ (m).
The idea of dynamically associating processes with a current

security label that constraining information flow is quite old [5].

In an approach suggested by the Orange Book [18], as well as in

many recent systems (e.g., [21, 29]), processes have floating labels
that change as processes access sensitive information. By contrast,

HyperFlow is a fixed-label system, in which neither the current

process label, nor the labels of registers, change unless the process

explicitly changes them. The fixed-label approach has also been

taken by IFC-based operating systems [33, 67], for the same reason:

labels that change can be an information channel.

HyperFlow uses information-flow security to authorize reads

and writes to memory. In order for the currently executing process

to read a page of memory,m, we requireMℓ (m) ⊑ ℓcur , whereMℓ

is a mapping from pages to their information flow labels. Similarly,

to write tom, we require that ℓcur ⊑ Mℓ (m).
HyperFlow associates security labels with registers to facilitate

two kinds of communication that are needed in processors: 1) com-

munication between user-space applications and the operating

system during system calls, and 2) interprocess communication

in memory. During system calls, arguments and return values are

communicated between the application and system call handler

via registers. HyperFlow permits communication using registers

by associating labels with registers and through instructions that

downgrade registers’ labels. Assuming an application is untrusted,

the trusted call handler can endorse the registers storing the argu-

ments after inspecting them. At the end of the system call, the call

handler can declassify the registers storing the return values before

returning to the application.

Because information flow labels are used to enforce security,

HyperFlow must ensure that the labels accurately reflect the secu-

rity of the data they protect. To store the content of register r to
an address in memory pagem, we require that the precondition

ℓr ⊑ Mℓ (m) hold. Similarly, loading a word fromm into r requires
Mℓ (m) ⊑ ℓr .

However, these security preconditions sometimes interfere with

necessary communication among distrusting principals. To pro-

vide a familiar software interface, HyperFlow permits interprocess

communication among distrusting principals via shared memory.

Shared-memory reads and writes that would violate noninterfer-

ence require downgrading. HyperFlow supports downgrading at

the granularity of an individual word with downgrading load and

store instructions. Theywork just like conventional loads and stores

but downgrade data as it is copied. HyperFlow also supports page

downgrades for zero-copy sharing of entire pages.

The instructions fetched by the current process come from la-

beled memory, which has security implications. A process should

not execute low-integrity instructions because then untrusted ad-

versaries might influence the executed code. Conversely, confiden-

tiality can be violated by code that depends on secrets, including

control decisions based on secrets. Information leaks through con-

trol flow are called implicit flows. HyperFlow prevents implicit flows

because ℓcur includes the security label of the fetched instruction

and any control flow decisions. Branches cannot depend on a regis-

ter r unless ℓr ⊑ ℓcur . For all instructions that write to a register

r , the precondition ℓcur ⊑ ℓr ensures that the label of ℓr securely
reflects its influences.

4.2 Information-flow call gates
The restriction on branch conditions and on writes to registers

together prevent an untrusted or secret process from invoking

code that is trusted or public. However, untrusted applications

need to be able to call trusted code when making system calls, and

secret applications need to be able to call public functions from

libraries. HyperFlow supports control transfers of this form with

an extended form of call gate [51]. Call gates in HyperFlow tightly

couple the entry point (program counter) that initiates the code

with an information-flow label representing the privilege level of

that code. A process at level ℓcur can register a call gate at level ℓ′

as long as ℓcur ⊑ ℓ
′
. Another process can then invoke a call gate,

at which point the program counter is set to the entry point of the

gate, and ℓcur is set to the level at which the gate was registered.

To allow protected returns from call gates, invoking a call gate

also pushes the previous program counter value and level of ℓcur
onto a hardware stack. The executing process can then invoke a

return instruction to pop the stack, jumping to the old pc value and

privilege level.

Uniquely, call gates in HyperFlow replace conventional hierar-

chical privilege levels with lattice-based information-flow labels.

By generalizing privilege levels, HyperFlow securely supports con-

trol transfers with fewer privilege changes than in a conventional

processor while simultaneously providing more fine-grained sepa-

ration of privilege. For example, a network driver might register

a call gate at a security level ℓnet that is incomparable with other

system labels. When an application sends a packet over the net-

work, it can directly invoke the call gate, transferring immediately

to ℓnet . In a conventional processor, the network driver can either

run in supervisor mode, in which case the application implicitly

trusts the entire kernel, or the network driver can run in user space.

In the second case, the application must first make a system call

causing a transition to supervisor mode before the kernel delegates

to the user-space driver. In this case, the application must trust the

kernel to delegate to the driver and also incur performance penalty

because of the extra privilege changes.

4.3 Current label bounds
Using just a single level, ℓcur , for a given process should be sufficient

for many applications — particularly, legacy applications that do not

use information flow labels internally. However, other applications

may require the ability to operate on data at multiple security levels.

To make the label of executed instructions more flexible, HyperFlow

allows the active process to move the level of ℓcur within a space of

labels bounded between ℓlwr and ℓupr . When setting the value of

ℓcur , we require ℓlwr ⊑ ℓcur ⊑ ℓupr . Label C (ℓupr) represents the
most secret information that the process can observe, and I (ℓupr)
is the least trustworthy information it can be influenced by. On

the other hand,C (ℓlwr) and I (ℓlwr) represent the least secrecy the

process can claim it has observed and the most trusted information

that the process can affect. Upper bounds on information flow labels

within process are known as clearance labels [54, 67].

4.4 Instruction set extensions
HyperFlow introduces new instructions as well as new control and

status registers. Security levels in HyperFlow are represented as a

pair of confidentiality and integrity components, as described in

Section 3. Levels ℓlwr , ℓcur , and, ℓupr are each stored in control

and status registers (CSRs) and are accessed with conventional

CSR instructions. To prevent a process from circumventing its own

bounds, the bounds can only be modified when the processor is in

the most public and trusted level, that is ℓcur = (⊥,⊤). However,
ℓcur can be modified by a process as long as ℓlwr ⊑ ℓcur ⊑ ℓupr .

Table 1 shows the new instructions added in HyperFlow. The

first column gives the instruction name and operands, the second

column describes the preconditions for the instruction, and the

third column describes the instruction’s effect.

The instructions DECLREG and ENDOREG downgrade registers. The
DECLREG instruction declassifies the value stored in r1 to the confi-

dentiality level stored in r2, but it permits the declassification only if

it is robust. The first restriction prevents implicit flows by ensuring

that ℓcur can write to the new level of r1. The second restriction

ensures that r1 can be robustly declassified from ℓr1 to (r2, I (ℓr1)).
The third restriction is more subtle — it prevents potential in-

formation flow violations that might be caused by the use of r2
as a label. In general, confidentiality or integrity can be affected

by information flow via labels represented at run time. Inspecting

labels releases information, and if the labels are not trusted, it is

tricky to rely on them for security. Type systems can control such

information flow via labels [41, 71], but we do not assume that Hy-

perFlow programs are statically checked. Hence, as in the Breeze

language [29], we treat register labels and memory labels as fully

public and fully trusted. Thus, because DECLREG allows the value
stored in r2 to influence a label, it must be permitted to influence

fully public and trusted data.

A natural way to ensure this influence is to simply require that

ℓr2 = (⊥,⊤). However, this restriction would often require extra

instructions to first downgrade r2 before downgrading r1. Instead,
we enforce a less restrictive, but equally secure condition — it must

be possible to downgrade r2 to (⊥,⊤) using robust declassifications
and transparent endorsements. This relaxed restriction does not

weaken security because when the restriction on the label of r2
holds, it is always possible to first downgrade the label of r2. The

Instruction Restrictions Behavior

DECLREG R1, R2 ℓcur ⊑ (r2, I (ℓr
1
)) ℓr

1

C
−−−−−→
ℓcur

(r2, I (ℓr
1
)) ℓr

2
−−−−−→
ℓcur

(⊥, ⊤) C (ℓr
1
) ← r2

ENDOREG R1, R2 ℓcur ⊑ (C (ℓr
1
), r2) ℓr

1

I
−−−−−→
ℓcur

(C (ℓr
1
), r2) ℓr

2
−−−−−→
ℓcur

(⊥, ⊤) I (ℓr
1
) ← r2

RSTREG R1 None

ℓr
1
← ℓcur

r1 ← 0

LWDWN R2, IMM(R1)

Mℓ (r1 + IMM) −−−−−→
ℓcur

ℓr
2

Mℓ (r1 + IMM) −−−−−→
ℓcur

ℓcur
r2 ← M (r1 + IMM)

SWDWN R2, IMM(R1) ℓr
2
⊔ℓcur −−−−−→ℓcur

Mℓ (r1 + IMM) M (r1 + IMM) ← r2

SETMEM R2, IMM(R1) ℓcur = (⊥, ⊤)
Mℓ (r1 + IMM) ← r2
M (r1 + IMM) ← 0

DECLMEM R2, IMM(R1)

ℓcur ⊑ (r2, I (Mℓ (r1 + IMM)))

Mℓ (r1 + IMM)
C
−−−−−→
ℓcur

(r2, I (Mℓ (r1 + IMM)))

ℓr
2
−−−−−→
ℓcur

(⊥, ⊤) ℓr
1
−−−−−→
ℓcur

(⊥, ⊤)

C (Mℓ (r1 + IMM)) ← r2

ENDOMEM R2, IMM(R1)

ℓcur ⊑ (C (Mℓ (r1)), r2)

Mℓ (r1 + IMM)
I

−−−−−→
ℓcur

(C (Mℓ (r1 + IMM)), r2)

ℓr
2
−−−−−→
ℓcur

(⊥, ⊤) ℓr
1
−−−−−→
ℓcur

(⊥, ⊤)

I (Mℓ (r1 + IMM)) ← r2

REGLGATE R1, R2 (ℓcur ⊔ ℓr
1
⊔ ℓr

2
) ⊑ r2 ℓr

2
−−−−−→
ℓcur

(⊥, ⊤) ℓr
1
−−−−−→
ℓcur

(⊥, ⊤) T [r1]← r2

LCALL IMM None.

S ← S :: (pc + 4, ℓcur , ℓlwr , ℓupr) pc← pc + IMM
ℓcur ← T [pc + IMM]

LCALLR IMM(R1) ℓr
1
−−−−−→
ℓcur

(⊥, ⊤)
S ← S :: (pc + 4, ℓcur , ℓlwr , ℓupr) pc← r1 + IMM
ℓcur ← T [r1 + IMM]

LRET None. (pc, ℓcur , ℓlwr , ℓupr) ← tail(S) S ← head(S)
SETBOUNDS ℓcur = (⊥, ⊤) ℓcur ← ℓncur ℓlwr ← ℓnlwr ℓupr ← ℓnupr

Table 1: New instructions added in HyperFlow.

ENDOREG instruction works similarly, but it endorses rather than

declassifies the value stored in r1.
The register labels of HyperFlow resemble tags in an information

flow tracking architecture [14, 55], but these processors typically

have floating labels, propagating tags automatically. For example,

following an ADD RS3, RS2, RS1 instruction, we would like to

compute the join of the labels of RS1 and RS2 and store the result

in RS3 without needing explicit instructions to set the tag of RS3.
However, when and whether the labels of general purpose registers

are updated both depend on control signals that are labeled with

ℓcur , but the updated labels are public and trusted. In other words,

the act of dynamically updating security tags causes information

flow from ℓcur to public-and-trusted. Because HyperFlow aims to

eliminate timing channels, tag updates must be done by explicit

instructions such as DECLREG and ENDOREG. Automatic tag updates

can potentially be inserted by the compiler.

The instruction RSTREG allows a process to reclaim a register

without downgrading by setting the level of the register r1 to ℓcur .
In order to avoid possibly downgrading the value stored in r1, r1 is
cleared. Because this instruction takes no arguments other than r1
and it happens unconditionally, it has no preconditions.

The LWDWN instruction works like a normal load-word instruction

but relaxes restrictions on labels. It permits the load if the label of

the source page could be downgraded to the label of the destination

register, and to ℓcur . Similarly, SWDWN works like a store instruc-

tion that permits the store if the register could be downgraded to

the label of the destination page. Both instructions are useful for

interprocess communication via shared memory.

Memory labels can be reset by totally trusted and public soft-

ware via a SETMEM instruction, which takes two arguments: the

page-aligned physical address in register r1 and a new label in r2.
The SETMEM instruction can only be executed when ℓcur = (⊥,⊤).
Trusted software that uses this instruction can clear the contents

of the page to avoid implicit downgrades.

Entire pages can also be declassified/endorsed by user-space

applications through the DECLMEM and ENDOMEM instructions, which
are similar to SETMEM except that they require the changes in mem-

ory labels to be robust/transparent as in DECLREG and ENDOREG. As
with DECLREG and ENDOREG, information flow violations through

labels are also prevented by requiring that the arguments that in-

fluence labels can be downgraded securely.

The REGLGATE instruction registers a new call gate with a pc
value of r1 and a label of r2 by adding it to a table T that records

call gates by mapping pc values to labels. The first restriction,

(ℓcur ⊔ ℓr1 ⊔ ℓr2) ⊑ r2, checks that the process creating the gate

and the arguments from which the gate is constructed are no more

secret and are at least as trusted as the label of the gate. The entries

in the call gate table are public and trusted (though the labels

of individual gates may be more restrictive), because processes

that attempt to use call gates must be able to see whether or not

they exist. Therefore, the last two restrictions check that the active

process can downgrade the register arguments to public and trusted

because they influence the creation of a call gate entry.

The LCALL and LCALLR instructions execute a call gate and have

the same instruction formats as conventional JAL and JALR instruc-
tions. The LCALL instruction specifies the call-gate entry point with

an immediate that is added to the current pc value, whereas the

LCALLR instruction specifies the entry point by adding an immedi-

ate to a register argument. For both instructions, if the specified

entry point is found in the call gate table, the address of the instruc-

tion following the call and the value of ℓcur prior to the call are

pushed onto a hardware stack S . The processor then sets the pc
value to the entry point of the gate and sets ℓcur to the label of

the gate. If the gate does not exist, the instruction is converted to a

NOP. The instruction LRET pops the stack S and returns to the most

recent pc value and label.

When a call gate terminates with an LRET instruction, infor-

mation is potentially leaked — by returning, the gate leaks when

Instruction Type Invariant

Load instructions

ℓra ⊔ Mℓ (m) ⊔ ℓcur ⊑ ℓrd
∧Mℓ (m) ⊑ ℓcur

Store instructions ℓra ⊔ ℓrv ⊔ ℓcur ⊑ Mℓ (m)

Execute unit ℓrs1 ⊔ ℓrs2 ⊔ ℓcur ⊑ ℓrd

Value-dependent branches ℓrs1 ⊔ ℓrs2 ⊑ ℓcur

All instructions Mℓ (mi) ⊑ ℓcur

Table 2: Instruction preconditions

and whether or not it has finished executing. Indeed, this is repre-

sented by a single microarchitectural downgrade, as described in

Section 7.1. To avoid leaks, the execution time of the gate should not

depend on secrets. One way to accomplish this would be for gates to

act as execution leases [56] by forcing a return at a predetermined

time. A less error-prone alternative is for the call gate to use timing

mitigation [53, 69], restricting the set of possible execution time

so that the channel capacity of the leak is acceptably limited. To

implement mitigation, a gate can be begun with a timer read and

delayed until at least a predetermined value before returning. ISA

mitigation support is a natural future extension.

Finally, the SETBOUNDS instruction permits software that is fully

public and fully trusted to set the label bounds by atomically copy-

ing CSRs ℓncur , ℓnlwr , ℓnupr to ℓcur , ℓlwr , and ℓupr . Atomicity

is needed because writing individually to bound registers could

temporarily violate the invariant ℓlwr ⊑ ℓcur ⊑ ℓupr .

4.5 Semantic changes to existing instructions
Existing RISC-V instructions are also modified so that they enforce

information flow restrictions. Several preconditions must hold for

each instruction that is executed, depending on the instruction. Ta-

ble 2 summarizes these preconditions, which serve two purposes: 1)

to implement memory protection, and 2) to ensure that the labels of

registers and memory pages accurately capture the confidentiality

and integrity of their data.

Memory protection is enforced by ensuring that when a process

with label ℓcur loads from a pagem, the conditionMℓ (m) ⊑ ℓcur
holds, preventing reads that would violate security. On stores tom,

we require ℓcur ⊑ Mℓ (m), which is subsumed by the precondition

enforced by store instructions, listed in the table.

For all instructions, HyperFlow must enforce the precondition

Mℓ (mi) ⊑ ℓcur , wheremi is the memory page where the instruc-

tion is fetched from. This prevents information from leaking to the

process via fetched instructions and ensures that the integrity of

fetched instructions is sufficiently high.

The rest of the preconditions ensure that the information flow

labels are accurate. For load instructions, the precondition

ℓra ⊔Mℓ (m) ⊔ ℓcur ⊑ ℓrd

must also hold, where ra is the source register that contains the

base address andm is the page that contains the data being loaded.

This precondition ensures that the level of the destination register

accurately reflects the level of the data it stores. Similarly, store

instructions enforce the precondition

ℓra ⊔ ℓrv ⊔ ℓcur ⊑ Mℓ (m)

where rv is the register that contains the value being written, and

m is the page being written to. This precondition ensures that the

policy described by the level of the page being written to is also not

violated by the data being written to the page or by the address.

Computation instructions — arithmetic and logical instructions,

and multiplier unit instructions — write the result of computation

into a destination register. For these instructions, the precondition

ℓrs1 ⊔ ℓrs2 ⊔ ℓcur ⊑ ℓrd

must hold, where rs1 and rs2 are the source registers and rd is the

destination register. The data is influenced by the values of both

the source registers (bounded by ℓrs1 and ℓrs2) as well as by the

process executing the instruction (bounded by ℓcur).

Value-dependent control-flow instructions such as conditional

branches must enforce the precondition

ℓrs1 ⊔ ℓrs2 ⊑ ℓcur

where rs1 and rs2 are the source registers used to determine the

branch condition. Because ℓcur represents the security level of the

current control flow (program counter) as well as the security level

of a process, a change to the program counter can only be affected

by information that can flow into ℓcur . This precondition prevents

branch instructions that would violate the information flow policy.

When the restrictions on the new HyperFlow instructions or the

preconditions on existing instructions are violated, it might seem

natural to raise an exception to be handled by software. However, ex-

ceptions can, in general, also cause information flow violations [17].

Type systems can control exception-based information flow [41, 45],

but HyperFlow code is not statically checked. Hence, to avoid the

possibility of nested exceptions, HyperFlow converts instructions

that would otherwise cause information flow violations into NOP
instructions, a strategy originally proposed by Fenton [22].

Turning instructions into NOPs preserves security but can change
the behavior of programs. However, legacy applications will gener-

ally run at one level, with labels assigned by the operating system,

so their instructions cannot turn into NOPs. Communication among

legacy applications will involve downgrading mediated by trusted

libraries or the operating system. For label-aware applications that

mix information frommultiple security domains, static information-

flow checking can be used to ensure they do not violate security; if

so, their instructions also will not turn into NOPs.
For timing-channel protection, ℓcur also represents the security

level for the timing of the current process execution, and is used

to control the latency of individual instructions. For example, the

latency of an instruction cannot depend on its source operand value

rs1 unless ℓrs1 ⊑ ℓcur . Similarly, the latency of a load/store instruc-

tion cannot depend on memory accesses from another process with

label ℓ′cur unless ℓ
′
cur ⊑ ℓcur .

5 HDL-LEVEL INFORMATION FLOW
CONTROLWITH CHISELFLOW

To provide assurance that the HyperFlow microarchitecture elimi-

nates timing channels, we have implemented it in ChiselFlow, an

HDL for static information flow security. HDL-level information

flow control applies techniques from language-based security [48]

to hardware design [25, 35, 36, 70]. Variables in the code that de-

scribe the hardware design are annotated with security labels, L,

class ExampleIO extends Bundle {

val id = Input(UInt(4.W), L(public, trusted))

val data_in = Input(UInt(32.W), hlvl(id, id))

val data_out = Output(UInt(32.W), hlvl(id, id))

}

class ExampleModule extends Module {

val io = IO(new ExampleIO)

val secretMask = Reg(init = 0x2.U, L(secret, trusted))

val publicMask = Reg(init = 0x1.U, L(public, trusted))

when (secret confFlowsTo id) {

io.data_out := secretMask & io.data_in

}.otherwise {

io.data_out := publicMask & io.data_in

}

}

Figure 3: ChiselFlow example.

which describe static restrictions on where information contained

in that signal can flow. A security type system then enforces these

restrictions.

Type systems for information flow security can enforce nonin-

terference [28], which ensures that a signal with a label L can only

be influenced by signals with labels that are less restrictive than

L. For example, if the label public is less restrictive than the label

secret, then a secret signal cannot influence a public signal.

When a label L is no more restrictive than another label L′, it is
said that L flows to L′, written L ⊑ L′.

HDLs for static information flow security ensure that the hard-

ware is secure for all executions at design time, before hardware

fabrication. HDLs for information flow security can enforce a partic-

ularly strong, timing-safe variation of noninterference [35, 36, 70].

HDLs usually describe hardware at the register transfer level (RTL).

Because HDLs give cycle-level descriptions of changes to hardware

state, the information-flow type system can enforce cycle-level

timing-channel freedom.

ChiselFlow extends Chisel [4], an HDL embedded in Scala. Chis-

elFlow therefore gains much of the expressiveness of Scala, but does

not include this complex language in its trusted computing base.

Like Chisel, ChiselFlow generates a simpler, compiled intermediate

representation (IR) that can then be used to produce hardware de-

signs. The IR for ChiselFlow is called SIRRTL; it extends Chisel’s

IR, FIRRTL, with information-flow annotations. The enforcement

mechanisms of ChiselFlow operate entirely on SIRRTL.

5.1 ChiselFlow Example
Figure 3 shows an example of ChiselFlow code, which looks much

like Chisel code aside from the parts in bold font. As in Chisel, Chis-

elFlow describes hardwaremodules with classes that extend Module.
The example shows a module called ExampleModule, which takes

two inputs: data_in, a data value, and id, a 4-bit signal indicating
the security level of data_in and data_out. The module outputs

data_out, which is data_in masked with a secret value when id
indicates that data_out can observe secrets.

ChiselFlow also controls implicit flows at the HDL level, in the

standard way: the compiler associates an information flow label

with each basic block of the code (i.e., the pc label) and uses the

label of the basic block to constrain side effects.

Signals in ChiselFlow are annotated with security labels that

have confidentiality and integrity components. Here, the label

L(public,trusted)means that id is fully public and fully trusted.

However, ChiselFlow also supports software-defined security poli-

cies that depend on the run-time values of variables. The ability to

express security policies that change at run time enables hardware

implementations with low area overhead, because it allows hard-

ware modules to be shared among security domains over time. For

example, hlvl(id, id) describes the interpretation of the signal

id as a hypercube label. Labels of this form depend on run-time

values of signals, but the type system statically reasons about the

behavior of these run-time types.

The interface for ExampleModule is ExampleIO, which describes
a record type in which id, data_in, and data_out are records with
distinct security labels as described. The register secretMask is a
fully secret, fully trusted register. The body of ExampleModule is

secure because access control ensures that the value of secretMask
does not flow to io.data_out unless secret flows to id. The pro-
gram analysis statically determines that in the branch in which

this access check succeeds, the security label of io.data_out is

secret, so the assignment from the secret value is secure.

5.2 Security results for SIRRTL
We prove that, aside from downgrades, well-typed hardware mod-

ules written in a core subset of SIRRTL enforce a timing-sensitive

variant of observational determinism [46, 65]. Supplementary tech-

nical material formalizes the core of SIRRTL and includes full

proofs [23]. We elide some features from our formalization of SIR-

RTL, such as record labels (i.e., Bundles), arrays, and modules, be-

cause these are either uninteresting or apply techniques studied in

prior work. SIRRTL supports heterogeneous record labels and het-

erogeneously labeled arrays by adopting a proposal by Ferraiuolo

et al. [26]. SIRRTL also constrains downgrades; declassifications

must be robust and endorsements must be transparent [6]. The

language design for downgrades is similar to the NMIFC language

by Cecchetti et al. [6], though the type rules are adapted to a cycle-

directed hardware language as described in the supplementary

material. However, we leave a proof that the language enforces

non-malleable information flow control to future work.

We state the main theorem here. We first define low-equivalence

of states. A state, σ , is a mapping from HDL variables, x ∈ V , to

values, which are bit vectors. Type environments, Γ, map variables

to labels. The syntax of labels in SIRRTL includes functions (from

bit vectors to labels) that are fully applied to variables, written f (x).
Because labels in SIRRTL include functions over program variables,

the valuations of labels depend on the state. We use the metasyntax

T (ℓ,σ) to denote the valuation of label ℓ in state σ .
We use a low-equivalence relation ≈L to relate two states that

appear the same to an attacker that can observe and modify all

variables that flow to L. When two states, σ1 and σ2 are low-

equivalent to an attacker at security level L, we write σ1 ≈L σ2.
Low-equivalence at level L is defined as,

σ1 ≈L σ2 ≜ ∀x ∈ V .(T (Γ(x),σ1) ⊑ L ⇐⇒ T (Γ(x),σ2) ⊑ L)

∧T (Γ(x),σ1) ⊑ L =⇒ σ1 (x) = σ2 (x)

The semantics of SIRRTL emits traces, t , that are sequences of
states, each time-stamped with the clock cycle in which it was

reached. Traces have the syntax

t ::= ϵ | (T ,σ) | t1; t2

where T is a clock cycle counter represented by a positive integer,

and ϵ is the empty trace. Traces are low-equivalent, written t1 ≈L t2,
when for each element of the trace, the corresponding clock cycle

counters are equal, and the states are low-equivalent.

Programs in SIRRTL are single statements s . We give a small-

step semantics of SIRRTL that operates on configurations of the

form ⟨T ,σ , s, t⟩. Transitions between configurations are denoted

by −→S , in which S represents the statement that is the initial

syntactic description of the program.

Theorem 1 (Observational Determinism). If Γ is a type en-
vironment, s is a statement without downgrades, pc is a label, L is a
fully evaluated security label, and σ1 and σ2 are states, then

⊢ Γ ∧ Γ;pc ⊢ s ∧ σ1 ≈L σ2 ∧

⟨0,σ1, s, ϵ⟩ −→S ⟨T ,σ
′
1
, s ′, t1⟩ ∧

⟨0,σ2, s, ϵ⟩ −→S ⟨T ,σ
′
2
, s ′, t2⟩

=⇒ σ ′
1
≈L σ ′

2
∧ t1 ≈L t2

This theorem precludes timing channels because the low-equivalence

relation on traces distinguishes traces that differ in timing.

5.3 ChiselFlow Implementation
ChiselFlow is implemented as a 13K-line extension of the Chisel

HDL, most of which implements information-flow checking in

SIRRTL.

Types that depend on the run-time values of signals are stat-

ically checked by using a program analysis that calls out to the

SMT solver Z3 [15] to dispatch proof obligations. The use of an

SMT solver to handle dependent types is similar to the implemen-

tation of SecVerilog [70]. However, the program analysis of SIRRTL

differs from SecVerilog in that it models the fact that RTL code is

not evaluated in program order; rather, signals are propagated in

parallel. The program analysis generates a set of Z3 constraints that

model the value assigned to each signal — for each signal, a single

expression is generated by unrolling conditional statements. Cases

in which sequential variables retain their value from the previous

cycle are modeled by an auxiliary variable that represents the old

value from the previous cycle. In accompanying supplementary

material, we formalize a core subset of SIRRTL and prove that well-

typed hardware modules do not leak secrets if they do not explicitly

downgrade.

5.4 Heterogeneously labeled data structures
Hardware modules written in Chisel commonly group signals to-

gether in bundles, which are analogous to structs or record types.

Unlike prior HDLs for information flow security including Sap-

per [35], Caisson [36], and SecVerilog [25, 26, 70], ChiselFlow sup-

ports heterogeneously labeled bundles. The syntax of ChiselFlow

allows each signal within a bundle to take an additional argument

that describes the label of that individual field. Bundle labels in

ChiselFlow are similar to the path labels in Jif [10]. Bundle labels

must be represented in Z3; we represent them using Z3’s algebraic

datatype theory.

Chisel also includes the Vec type for describing arrays. In ad-

dition, Chisel has a Mem type for describing memories, which can

either be used to instantiate BRAMs on an FPGA, SRAMs in an

ASIC design, or arrays of registers. To support heterogeneously

labeled Vecs and Mems in ChiselFlow, we adopt a recent proposal

in which arrays in a secure hardware language can be labeled with

functions that map the index of the array to the label of the element

at that index [26].

5.5 Nonmalleable downgrades
Much like the downgrading instructions in HyperFlow, ChiselFlow

supports robust declassification and transparent endorsement with

syntax decl(e, ℓ) and endo(e, ℓ), in which e is an expression and ℓ is
a label. The typing judgments for these expressions closely resemble

those used in a recent NMIFC language [6]. One difference between

the typing judgments of downgrades in ChiselFlow and NMIFC is

that ChiselFlow must use a program analysis to reason about the

run-time valuation of signals mentioned in the labels.

5.6 Label inference
The implementation of the baseline processor implementation that

HyperFlow extends contains many lines of code. To aid in the effort

needed to label HyperFlow, ChiselFlow supports label inference. In

ChiselFlow, only module ports need to be explicitly annotated with

labels whereas labels of internal registers and wires are inferred.

ChiselFlow is the first security-typed hardware language with sup-

port for label inference, though the label inference algorithm is

similar to those of prior security typed languages for software [41].

Initially, all internal signals that are not explicitly labeled are given

variable labelsv ∈ VarLabel that represent unknown labels. Initially,
variable labels have the least restrictive label ⊤. Label inference

then iteratively lowers the estimate of the final label of each vari-

able label, based on the labels of other signals it influences, until a

solution or contradiction is found.

6 MICROARCHITECTURE AND LABELING
Section 4 describes how information flow security policies can

be passed to hardware through an ISA. We now describe how a

microarchitecture can implement this ISA, and in particular, how

it prevents hardware-level timing channels. The HyperFlow in-

struction set architecture can be realized by many implementations

and microarchitectures. Our prototype implementation is based

on a single-core configuration of the RISC-V Rocket Chip proces-

sor. The prototype implementation label-checks with ChiselFlow

and successfully runs all of Rocket Chip’s ISA and application

unit tests. The implementation includes many microarchitecture

features absent from previous information-flow-secured processor

designs [26, 35, 36, 70]: e.g., a pending store buffer, pipelined caches,

branch prediction, virtual memory, and atomic memory operations.

HyperFlow requires microarchitecture extensions that must be

labeled in the secure HDL. Section 8 provides more details on the

design trade-offs we considered to make the implementation pass

the information flow security analysis, and how the process of

implementing hardware with a security-typed HDL differs from

that of conventional hardware designs.

6.1 Prototype processor features
The processor is pipelined, with branch prediction and branch tar-

get prediction. The branch history table has 2 bits of state per entry

and a global history register. The branch target predictor is fully as-

sociative. Execution units include an ALU, a multi-cycle multiplier,

and a floating-point unit (FPU) as an independent coprocessor.

The processor has a 32-bit virtual address space divided into 4KiB

pages. The baseline processor has L1 instruction and data caches,

each with 64 sets and 4 ways and 64B cache blocks. Both L1 caches

have 2 pipeline stages. The data cache has a two-slot pending store

buffer. Both caches are virtually indexed and physically tagged. The

caches include cache controllers. Separate instruction and data TLBs

store level-1 page table entries for each cache. A single hardware

page-table walker refills both TLBs on misses and caches recently

used level-2 page-table entries.

Many of these microarchitectural features are absent in prior

information-flow secured processor implementations. To the best

of our knowledge, HyperFlow is the first to include TLBs, a PTW,

branch and branch target prediction, and a pending store buffer.

Most of these features introduce subtle timing channels that we

needed to address in order to satisfy the type system. HyperFlow is

also the first to include data bypassing with fine-grained informa-

tion flow labels. This necessitates dynamic label bypassing, which

we must also label-check. The prototype implementation of Hy-

perFlow includes all of the aforementioned features as well as the

ISA and the microarchitectural extensions described in Sections 4

and 6. The HyperFlow prototype does not include hardware acceler-

ators and relies on a hard-wired memory controller on an FPGA for

off-chip DRAM accesses. The processor also does not include sup-

port for memory-mapped IO (MMIO). The MMIO support could be

added with an on-chip table that provides information flow labels

for address ranges that are mapped to IO devices.

6.2 Labeling signals
Every signal in the HDL implementation has a label, though many

of them are inferred. The ISA-visible security tags of registers and

memory locations and ℓcur that have already been described in

Section 4 also represent type-level information-flow labels in Chis-

elFlow. The remaining type-level labels that protect other signals in

the implementation must be consistent with the ISA-visible labels.

HDLs for information flow control prevent information flow vi-

olations through explicit changes in data values such as the storage

of a value in a register or memory location, and through the timing

of events such as the assertion of a valid or ready signal. In the

remaining discussion in this section, we coarsely separate labels

in the HDL syntax into data labels that protect values, and timing
labels that protect the timing of events. Examples of data labels

include register labels and bypass value labels. The valid bits of data

cache entries have timing labels. We also note that this is a coarse

characterization; timing flows cannot be cleanly separated from

other kinds of information flows in hardware. For example, the

values of the data operands of a conventional multiplier influence

the time that multiplication takes.

6.3 Labels in the core and label bypassing
In the processing core, the security label of the current process

(ℓcur) is stored in a new control status register. The confidentiality

and integrity components, C (ℓri) and I (ℓri), of general purpose
registers ri are stored in register banks adjacent to the registers.

These label registers can be modified only by the DECLREG and

ENDOREG instructions, which are guarded by logic that checks the

nonmalleability conditions, and the RSTLREG instruction, which

can only set the label of a register to ℓcur .

The HyperFlow core supports data bypassing. To function cor-

rectly, the security labels must be bypassed with the data. For imme-

diate values, the bypassed label is ℓcur . For a value from a register

or the data cache, its label travels with the bypassed data. The by-

passed labels are themselves labeled with ℓcur because they might

be stalled or updated by the current process.

6.4 Memory protection and labels
In our prototype, the memory page labels Mℓ (m) are stored in

an on-chip table that maps page numbers to labels. The current

security label ℓcur is attached to each memory transaction so that

information flow and downgrading can be checked in the memory

system. When returning data from the memory, the label of the

page being read is fetched from the table and appended to the

memory response transaction. The label of the accessed data is

used to enforce the invariants pertaining to load instructions. Write

transactions that modify data in memory are similarly appended

with a label that protects the data being stored. The label of this data

payload is generated from the processing core initiating the request.

The label of the data in a write transaction is compared against

the label of the destination page, which is stored in the memory

label table. Write transactions that would cause information flow

violations are dropped. Initially, every page is mapped to the most

public and trusted labelC (⊥) ∧ I (⊤), but the SETMEM, DECLMEM, and
ENDOMEM instructions can modify the mapping.

Note that our prototype represents one possible implementation

and alternate designs can also be secure. For example, memory

labels could be stored in off-chip memory instead of an on-chip

table. For a system where the initial state of memory cannot be

trusted, the off-chip memory may be initially labeled untrusted

while boot code is placed in a trusted on-chip ROM.

6.5 Cache labels
In the data cache, a data label is added to each cache line to track

the memory label for the physical address stored in the cache line.

The memory label is appended to a cache refill transaction from

memory. The data cache is blocking, so memory tags are always

brought into the cache before any data is modified or returned to the

core. For a load, the cache only returns data if the data label of the

accessed cache line flows to ℓcur . The core updates the destination

register only if the label of the returned cache data flows to the label

of the destination register. The security of a store is enforced by

checking that the label of a pending store buffer entry flows to the

label of the cache line, and that the label of a memory transaction

flows to the memory page label.

6.6 Timing-channel protection
ℓcur is also used as a timing label to prevent timing channels

throughmicroarchitectural state. That is,C (ℓcur) is an upper bound
on the level of secrecy that the process is permitted to observe by

measuring timing. Any microarchitectural state that influences the

timing of instructions is protected by ℓcur . Cache entries, in-flight

instructions and cache transactions, translation-lookaside buffer

(TLB) and page table walker (PTW) entries, and branch predic-

tor state are examples of state that influences instruction timing.

Because the security type system in ChiselFlow enforces timing-

sensitive noninterference, timing channels must be removed for

the hardware to type-check.

When the value of ℓcur moves downwards in the lattice, the level

of secrecy that the process can observe is decreasing. HyperFlow

must prevent secrets owned by the previous level of ℓcur from leak-

ing to the new one. The processor pipeline is drained to prevent high

instructions from stalling low instructions as well as other subtle

timing channels through register bypassing. In-flight transactions

in pipelined caches are also drained when ℓcur is lowered.

The pending store buffer in the data cache also introduced a

subtle and unexpected timing channel. Outstanding cache-write

requests in the pending store buffer are serviced opportunistically

when there is no in-flight read request. The store buffer can cause a

stall either when the content of the buffer might have a read-after-

write hazard or when the buffer is full. To prevent a timing channel,

we enforce that all entries of the pending store buffer have the same

label, and the buffer is drained before lowering ℓcur .

Caches may also cause timing channels when they are shared

among security levels. For instruction caches, the timing channel

can be removed by simply clearing and invalidating cache lines

when lowering ℓcur . However, in the data cache, dirty cache lines

must be written back when they are evicted, and cannot be simply

invalidated. In our implementation, we require software to issue

a cache flush instruction to write-back dirty cache blocks before

executing an instruction to lower ℓcur . When ℓcur is lowered, the

data cache is invalidated in a single clock cycle without writebacks.

We note that the flush is needed for correctness, but not security.

While our prototype implementation uses flushing to remove

cache timing channels, cache partitioning can also be used to lower

the flushing overhead on a label change. With partitioned caches,

each partition can have a register for its own security label. Then,

the logic for a cache read only searches partitions with labels ℓP
such that ℓP ⊑ ℓcur . When the security label of a partition changes

downwards, only that partition will need to be invalidated.

HyperFlow has both branch prediction, which predicts whether

or not branches are taken, and branch target prediction. The branch
target predictor in HyperFlow is fully associative. The branch his-

tory table (BHT) has two-bit states per index and a global history

register. Prior work has demonstrated that both forms of branch

prediction create timing channels capable of leaking secrets from

Intel SGX enclaves [34]. To prevent timing channels, when ℓcur
moves downward, the branch target predictor is invalidated and

cleared, the BHT is cleared, and the global history register is reset.

6.7 Virtual memory
The HyperFlow implementation includes support for virtual mem-

ory. While HyperFlow protects memory using memory labels, the

virtual memory system provides a familiar interface with a view

of private and contiguous memory and permits legacy application

software to run on HyperFlow unmodified. Virtual memory support

includes instruction and data TLBs as well as a hardware page table

walker (PTW). TLBs influence timing because they are caches of

recently used Level-1 (L1) page table entries (PTEs). L1 PTEs store

mappings from virtual to physical addresses. The PTW serves as a

cache of L2 PTEs, which store pointers to L1 PTEs. The TLB and

PTW state are labeled with ℓcur , and the state is cleared when ℓcur
moves downward in the lattice.

Because the TLB and PTW state is labeled with ℓcur , PTEs must

be stored in a memory page with a label that flows to ℓcur , and

managed by software whose integrity is high enough. This restric-

tion must be satisfied by the software that manages the page tables.

One simple option is to label the memory pages for page tables with

the least restrictive information-flow label, (C (⊥), I (⊤)). The page
table could also be compartmentalized, storing different fragments

of the table with different labels to provide finer-grained protection.

7 EVALUATION
We evaluated our HyperFlow prototype in various ways. Because

downgrading and dynamic information-flow checks need special

scrutiny to avoid security or functionality errors, we studied where

and how often these features needed to be used. We also evaluated

the power, performance, and area overhead incurred by the added

information flow security mechanisms. And we evaluated the us-

ability of the architecture by writing information-flow-rich code in

the ISA.

7.1 Uses of downgrades
The RTL code for HyperFlow performs downgrades at various

points. The design of ChiselFlow is intended to ensure that these

downgrades are nonmalleable [6], as described in Section 5.3 and

more fully in the supplementary material. As a result, the potential

for these downgrades to cause harm is limited. Our formal results

in the technical report imply that insecure information flows can

only arise because of these downgrades [49]. A stronger result

would prove that well-typed hardware implementations enforce

a timing-sensitive variant of NMIFC. While we do not prove such

a result, we expect that it should hold, because SIRRTL’s rules

for downgrades closely follow those used in a language proved to

enforce NMIFC [6].

The downgrades are statically checked to be nonmalleable by

the type system. Table 3 summarizes the uses of RTL-level down-

grades. The first column shows the ISA-visible event to which the

downgrade is tied, the second column states the number of down-

graded expressions in the RTL code, and the third gives a brief

description of what is downgraded. For all downgrades other than

downgrades of data caused by explicit downgrade instructions, both

an endorsement and a declassification happen.

We expand upon these descriptions here. When the processor

resets (1), the register file tags are all initialized to (⊥,⊤) and the

registers are initialized to zero. This initialization requires explicit

writes to the tags because the register file labels are implemented

as a sequential memory that can be synthesized as a BRAM on an

FPGA. However, this initialization is secure because the processor

is initially public and trusted and boots public and trusted code.

For convenience, copies from the FPU to the integer register file (2)

are automatically downgraded if the labels of the data coming out

of the FPU can be nonmalleably downgraded. When ℓcur moves

downwards in the lattice (3), it is possible for a single outstanding

When is Information Downgraded Number of Downgrades What is Downgraded

1 On Reset 1 Register tags (for initialization)

2 FPU to Int instructions 1 Values copied from the FPU to integer registers (when nonmalleable)

3 ℓcur lowers 2 Presence of one outstanding finish coherence transaction

4 Memory instructions 1 Address is downgraded to ℓcur
5 CSR file writes 1 Data written to CSR file is downgraded to ℓcur
6 DECLREG, ENDOREG 7 (1 + 3 each) Register contents, control signals, arguments

7 LWDWN 2 RF writeback data, dcache bypass data

8 SWDWN 1 P-store buffer data

9 DECLMEM, ENDOMEM 9 (1 + 4 each) Page contents, control signals, arguments

10 RSTLREG 1 Control signal

11 REGLGATE 8 Control signals, arguments, pipelined data labels

12 LCALL, LCALLR 3 Control signal, arguments, pc value

13 LRET 1 Control signal

Table 3: Uses of Downgrades in HyperFlow.

cache coherence transaction to remain in a pending transaction

buffer, causing timing interference. We resolve this with a down-

grade, but nothing is leaked if the software is written as described in

Section 4; prior to lowering ℓcur , the software should issue a cache

flush to flush any buffered coherence transaction. When a memory

transaction is issued (4), the data used to compute the address is

downgraded to ℓcur because the address affects the timing of the

cache transaction; this downgrade is for convenience because the

address can otherwise be downgraded with an instruction. The

label of the address is still protected by the data label, and so the

store invariant in Table 2 is enforced. To permit use of performance

counters, writes to the CSR file (5) are downgraded to ℓcur .

The downgrading instructions (DECLREG, ENDOREG, LWDWN, SWDWN,
DECLMEM, and ENDOMEM) downgrade the stored data and the argu-

ments to the instructions (6–9). These downgrades are done under a

conditional statement that checks that these values are downgraded

nonmalleably. As described in Section 4, the arguments are also

downgraded to (⊥,⊤) because the arguments influence changes

to public and trusted labels — this downgrade is also guarded by a

nonmalleability check. The labels of the arguments can also be by-

passed, and bypassed labels are labeled ℓcur . Because the bypassed

labels are inspected by the nonmalleability check, which influences

whether or not the downgrade happens, the labels of the bypassed

labels are also downgraded from ℓcur to (⊥,⊤). The control signals
that induce the downgrades are also downgraded to (⊥,⊤) — this

downgrade is always nonmalleable because these control signals

are labeled ℓcur . The LWDWN instruction downgrades the data in two

places in the core: the bypass data from the cache and the register

file writeback data from the cache. The SWDWN instruction down-

grades the stored data from the label in the pending store buffer to

the label indicated by the memory tag in the cache. Neither LWDWN
nor SWDWN changes the value of any label, so these instructions do

not induce downgrades of control signals or arguments.

Similarly, for instructions RSTLREG, REGLGATE, LCALL, LCALLR,
and LRET (10–13), control signals are downgraded because these

instructions affect public and trusted state. The REGLGATE instruc-
tion also includes a nonmalleability check on pipelined labels. The

LCALL and LCALLR instructions store the old pc value in a public

and trusted stack, so the pc is downgraded from ℓcur to (⊥,⊤).

7.2 Uses of dynamic information-flow checks
As an alternative to downgrading, it is possible to use dynamic

label comparisons to prevent information flow violations. These

comparisons, called dynamic checks should never to be violated at

run time, and convert information flow violations into correctness

violations. Although such dynamic checks do not weaken security,

they must be used with care. It is important to note that dynamic

checks differ from the dynamic label comparisons discussed in

Table 1 and Table 2 to enforce information flow security. These

architectural dynamic label comparisons are necessary because the

values of security labels are only known at run time.

Dynamic checks are used in HyperFlow to establish that ℓlwr ⊑

ℓcur . This invariant is established in the control and status register

(CSR) file where those registers are stored. However, the truth of

this invariant is not visible to components outside the CSR file.

Another use of dynamic checks is to convince the type system

that we have prevented timing channels caused by floating-point

computation. Because the FPU computes on register values, and the

time taken to finish a floating-point computation is data-dependent,

stall signals from the FPU are also data-dependent. We prevent

such flows by disallowing floating-point operations on registers

with labels that do not flow to ℓcur . The stall signals are at a later

stage in the pipeline than this check, complicating type-checking

the dependently typed stall signals. The stall signals are (redun-

dantly) modified to hide the stalls whenever operand labels do not

flow to ℓcur . This dynamic check would convert information flow

violations into a correctness bug, but we ensure such violations do

not happen with checks in an earlier pipeline stage.

Another dynamic check is used to convince the type system

that the bypass value from the data cache does not cause timing

channels; this dynamic check forces the bypass value from the cache

to 0 if the timing label from the data cache response does not flow

to ℓcur , but permits the actual data value to be returned otherwise.

In practice, this dynamic check does not cause a functional error

because when ℓcur is lowered, the data cache pipeline is stalled and

cannot emit responses. Both the regular data cache bypass value

and a downgraded bypass value produced by LWDWN are covered by

the dynamic check.

7.3 RTL synthesis results
We synthesized the baseline processor and HyperFlow using Vivado

v2016.2 targeting the 7z020clg484-1 FPGA found on the Zedboard

Zynq 7000 development board. The baseline processor uses 34,508

LUTs (64.9%) on the FPGA, whereas HyperFlow uses 40,205 LUTs

(75.6%), a LUT utilization overhead of 16.7%.

The baseline processor uses 13 (9%) of the block RAM tiles

whereas HyperFlow utilizes 19.5 (14%). The majority of the over-

head is due to the security tags stored with each cache entry, the tag

table that associates tags with memory pages, and dynamic label

comparisons, which are used for either access controls or dynamic

checks. For both the baseline processor and HyperFlow, Vivado is

able to meet a target clock frequency of 25MHz. For both designs,

the critical path is through the FPU multiplier, so we expect that

the minimum clock period is the same for both designs.

7.4 Size of labels
These synthesis results are for 8-bit labels (4-bit confidentiality

and integrity), with 2-bit dimensions. This configuration of labels

was sufficient to implement DIFC applications with system calls

and IPC as described in Section 7.6. Because the OS can virtualize

labels, hardware labels only need different representations for truly
parallel processes that execute at the same time on different cores or

in different SMT threads, and not for active processes not currently

running. Area overhead grows linearly with the label size. Because

our implementation stores memory labels on-chip, label sizes do not

affect performance. If memory labels are in DRAM, granularity does

not affect on-chip area overhead, but finer granularity increases off-

chip storage and bandwidth usage. Performance does not change if

an additional memory transaction is issued to fetch a label on each
last-level cache miss.

7.5 CPI results
Although HyperFlow has no clock frequency overhead, timing

channel protection does add performance overhead. We measured

the cycles per instruction (CPI) for HyperFlow when executing the

RISC-V benchmark suite compared to the baseline Rocket Chip

processor. The results are summarized in Table 4. For the Hyper-

Flow processor, the processor executes with the same security level

during the entire execution of the program. It incurs a performance

penalty because unlike Rocket Chip, the multiplier unit always exe-

cutes in the worst-case number of cycles. This performance penalty

can be removed by disallowing multiplications of operands whose

data labels do not flow to ℓcur . The mm benchmark is matrix-matrix

multiply, spmv is double-precision sparse matrix vector multiply,

median is a median filter, multiply does multiplications, qsort does

quicksort on an array of integers, towers solves a towers of Hanoi

puzzle, vvad adds two vectors, and dhrystone is the classic synthetic

benchmark. The benchmark with the highest overhead is multiply,

naturally, with a geometric mean overhead of 12.4%. HyperFlow

also introduces performance overhead by flushing or invalidating

hardware state on label changes, but this occurs infrequently, at

context switches. The time between context switches is tens of

milliseconds, so this overhead should be amortized over execution.

Benchmark name HyperFlow CPI RISC-V CPI Overhead

mm 1.089 1.063 2.4%

spmv 1.748 1.678 4.2%

median 1.631 1.284 27%

multiply 1.899 1.115 69%

qsort 1.542 1.531 0.7%

towers 1.052 1.030 2.14%

vvad 1.161 1.094 6.12%

dhrystone 1.206 1.187 1.6%

Table 4: Performance (CPI) results.

.7.6 Usability
HyperFlow is designed to support communication among mutually

distrusting principals in an environment managed by an operating

system, while supporting the expressive information-flow label

models that have been proposed for prior operating systems and

languages for information flow control. In this section, we demon-

strate that HyperFlow supports shared memory interprocess com-

munication, communication through registers for system calls, and

enforcement of rich information flow policies.

We demonstrate how labels represented in the flow-limited au-

thorization model (FLAM) [1] model can be enforced as hypercube

labels. FLAM is a recent label model that supports decentralized

information-flow policies. To illustrate the usability of the Hyper-

Flow architecture, we implemented a simple, classic application

based on decentralized information flow control (DIFC) [42].

The application emulates a tax-preparation service in which a

user (“Bob”) sends data to a tax preparer and gets a tax form back.

Both the tax preparer and the user are distrusting. Although the

tax-preparer process is allowed to perform computation on the

user’s data, HyperFlow prevents it from sharing the user’s data

or any values derived from it to any party other than the user. In

our implementation, the tax-preparer process and the user process

communicate through shared memory via IPC. Both processes

are managed by trusted software implemented as a single system

call that manages labels for the two parties. The application is

implemented as assembly code that runs in RTL simulations of our

processor prototype. This result suggests that the HyperFlow ISA

and prototype are sufficient to enforce practical application-defined

information flow control policies with IPC and system calls.

7.6.1 Background: The FLAM label model and downgrading. FLAM
unifies authorization and information flow policies. Principals p can

delegate to each other; given principals p and q, if p acts for q, writ-
ten p ⪰ q, then p trusts q. Compound principals can be constructed

from primitive principals. The conjunctive principal p ∧ q denotes

the combined authority of both p and q. Similarly, the disjunctive

principal p ∨ q represents the authority of either p or q. Principals
with ⪰ form a lattice, and p ∧ q ⪰ p ⪰ p ∨ q for any p and q.

In FLAM, principals are also information flow labels. The confi-

dentiality ofp is writtenp�
, and intuitively represents the authority

to observe secrets owned by p. The integrity of p, written p�
, rep-

resents the authority to affect information owned by p. A second

ordering on principals, defines permitted information flows. The

statement p flows to q, written p ⊑ q, denotes that information

is permitted to flow from p to q. The ordering ⊑ forms another

lattice over principals, which is orthogonal to the authority lattice.

BJpK ≜ (bp ,bp)

BJp�K ≜ (Bc JpK,bmax) BJp�K ≜ (bmin ,Bi JpK)

BJp ∧ qK ≜ (maxb {Bc JpK,Bc JqK},maxb {Bi JpK,Bi JqK})

BJp ∨ qK ≜ (minb {Bc JpK,Bc JqK},minb {Bi JpK,Bi JqK})

BJp ⊔ qK ≜ (maxb {Bc JpK,Bc JqK},minb {Bi JpK,Bi JqK})

BJp ⊓ qK ≜ (minb {Bc JpK,Bc JqK},maxb {Bi JpK,Bi JqK})

Figure 4: Representing FLAM labels with hypercube labels.

The meet and join in the information flow order are written ⊓ and

⊔. Any FLAM principal can be represented as a conjunction of a

confidentiality projection and integrity projection p� ∧ q�
. Labels

of this form are said to be in normal form.

7.6.2 Mapping FLAM labels to hypercube labels. FLAM labels

are easily represented in the hypercube model using bit vectors.

FLAM labels in normal form map directly to confidentiality and

integrity components of hypercube labels. Primitive principalsp are
mapped to numeric constants,bp . For example, if there are four 1-bit

dimensions andp andq aremutually distrusting, onemightmapp to
1000 andq to 0100. Figure 4 shows how compound principals can be

mapped to hypercube labels. Here, BJpK denotes the representation
of p as a pair of its hypercube label components. The confidentiality

component is the first in the pair, and the integrity component

is the second. Bc JpK denotes the confidentiality component of p
and Bi JpK is the integrity component. The values bmin and bmax
are the lowest and greatest bit vectors that can be represented

with the width of a label; they are respectively a sequence of all 1s
and a sequence of all 0s . Here, maxb is a function that computes

the dimension-wise maximum of two hypercube labels, and minb
similarly computes a minimum.

7.6.3 Tax-preparer application. To test the usability of Hyper-

Flow, we implemented the tax-preparer application in assembly

using the HyperFlow ISA. Bob has ℓlwr and ℓupr labels that are B
�

and B�
respectively, and generally operates with a ℓcur label of B.

The tax-preparer generally operates with ℓcur of (B ∧ P)� ∧ P�

because it is an instance of the tax preparation service specifically

for handling Bob’s requests, so it needs to be able to observe Bob’s

data. Its ℓlwr and ℓupr labels are P
�

and (B ∧ P)� respectively.

Before either Bob or the tax-preparer executes, a label man-

ager that is fully trusted and public registers the switch_process
call gate and initializes the memory label. Bob computes his tax

form and sends the message to the preparer using shared memory,

as described in Section 7.7. Bob then yields the processor to the

preparer by calling the switch_process gate. The tax preparer

receives the message and computes the form using its proprietary

data before declassifying the result. The preparer sends the result

back to Bob via IPC and yields the processor back to Bob by calling

switch_process again. Finally, Bob receives the computed form.

7.7 Interprocess Communication
Figure 5 shows an example of how messages are communicated

among processes in the tax-preparer application, and more gener-

ally, shows how shared memory IPC works in HyperFlow. In the

Set Page Labels. cur_lvl: {\bot-> & \top <-}

li x1, 0x84 # {B-> & P<-}

li x2, 0x48 # {P-> & B<-}

la x3, prep_to_bob

la x4, bob_to_prep

setmem x1, 0(x3)

setmem x2, 0(x4)

...

Bob Sends. cur_lvl: {B}

la x5, bob_to_prep

swdwn x6, 0(x5) #decl {B} to {P-> & B<-}

...

TP Receives. cur_lvl: {(B&P)-> & P<-}

la x5, bob_to_prep

lwdwn x6, 0(x5) #endo {P-> & B<-} to {(B&P)-> & P<-}

Figure 5: IPC Example.

example, 0x88 represents the principal Bob (B), and 0x44 represents
the Tax Preparer principal (P). A page of memory is allocated for

Bob to send messages to Preparer with label B� ∧ P�
, and for

Preparer to send messages to Bob with label P� ∧ B�
. Public and

trusted code initializes the labels of the pages used for IPC. In the

code segment shown, Bob has a ℓcur label of B. Because the Tax
Preparer is an instance of the tax preparation service specifically

for handling Bob’s requests, it has a ℓcur label of (B ∧ P)� ∧ P�

so that it can see Bob’s data. For Bob to send a message to Preparer,

it simply performs a SWDWN instruction on a register with label B
which downgrades the register contents to the label of the destina-

tion page (P� ∧ B�
). This downgrade is robust because Bob has

enough integrity to remove the B�
component of the label. The

Preparer receives the message by doing a LWDWN instruction, which

endorses the integrity of the message to P�
.

In some cases, it is possible to receive a message through IPC by

first downgrading a register and then doing a conventional load

instruction to the downgraded register. However, this example

demonstrates that this workaround is not always possible; the

LWDWN instruction is necessary for expressiveness of the ISA. The tax
preparer cannot endorse the integrity of a register to B�

, because

its label does not flow to B�
. However, it can endorse the P� ∧ B�

data to P�
, so it can receive the data with a LWDWN instruction.

This example uses separate pages for communication in each

direction. However, it is conventional for processes to share a single

page that both processes can both read and write. The label model

of HyperFlow is also expressive enough to support bidirectionally

shared pages — a single page could be labeled B∨P . With this label,

both B and P can write to the page, and both process can read from

the page by endorsing it. However, the aforementioned numerical

representations of B and P cannot represent B∨P as a label distinct

from the fully public and fully distrusted label, which any other

process could read and write. By representing B as 0b01001 and P as

0b00101, B ∨ P becomes the more restrictive label, 0b00001. There-
fore, by adding an extra bit, we can distinguish disjunctions from

the bottom label. Other representations are also possible. For ex-

ample, using 2-dimensional rather than 4-dimensional hypercubes

offers a compact encoding while retaining unique disjunctions;

however, it reduces the total number of physical principals that can

be represented simultaneously.

Gate Registration: cur_lvl {\bot-> & \top<-}

la x1, switch_process

li x2, 0x0F # {\bot-> & \top<-}

reglcall x1, x2

Bob. cur_lvl: {B-> & B<-}

... # compute form, store in shared page

li x4, 0x0

la x3, swith_process

declreg x1, x4 # Flag to choose Bob or Preparer

declreg x2, x4 # Address to jump to after call

lcallr 0(x3)

Process Switch Call: cur_lvl {\bot-> & \top<-}

switch_process:

li x4, 0xF

endoreg x1, x4 # Flag to choose Bob or Preparer

endoreg x2, x4 # Address to jump to after call

... # Set labels, jump to target

Figure 6: Syscall Example.

7.8 System Calls
In the tax preparer, a single trusted system call is used to manage

Bob and the Preparer. This system call starts a new process by

initializing the labels for the process and then jumping to the entry

point of the process. This system call is implemented as a call

gate. Figure 6 shows a small segment of the call gate as well as

how the gate is registered and called. More generally, the example

shows how system calls can be implemented in HyperFlow. Initially,

fully trusted and fully public code registers the call gate at address

switch_process and with label ⊥� ∧⊤�
. The call gate takes two

arguments. One describes whether labels should be initialized for

Bob or the Preparer, and the other is the PC value that is the entry

point for the next process. When Bob is done computing, it executes

the call gate. Before doing so, it must declassify the confidentiality

of the two arguments from B�
to ⊥�

. It then simply calls the gate

with an LCALLR instruction.

At the start of the call gate, the handlermust endorse the integrity

of the two arguments from B�
to ⊤�

because the system call

handler is fully trusted, and it takes a conditional branch based

on the value of the argument. The call gate handler then sets the

tags of all registers and the levels of ℓnlwr , ℓncur , and ℓnupr to

values that depend on the next principal to execute. It then does

a SETBOUNDS instruction before jumping to the entry point of the

next process.

In conventional processors, system calls work by first jumping

to trusted code that contains a system call handler table — the

particular call handler to execute is selected by using a register ar-

gument that contains the call number. This model is also supported

by HyperFlow. However, because HyperFlow replaces conventional

privilege modes with lattice model information flow labels, the call

gates of HyperFlow are more general and can both improve perfor-

mance and the precision with which access controls are enforced.

8 DISCUSSION
We now discuss some of the design and implementation trade-offs

we made in order to satisfy the goal of making our HyperFlow

prototype label-check with ChiselFlow. We also discuss how the

process of implementing a processor that label-checks differs from

conventional hardware design.

Labels of labels. In ChiselFlow, wires can be used to represent

information flow labels that can change at run time. Because these

wires are still wires, they are also labeled. Many information flow

systems assume that information flow labels are fully trusted and

fully public. However, at the HDL level, we found it necessary to

give more restrictive labels to some signals that represent data

labels. For example, the per-page data labels are stored in the cache

and used as security types for the data in the cache. Most control

signals in the cache are labeled with ℓcur because they represent

signals that affect timing. Because the values of these control signals

influence the time that per-page data labels are brought into the

cache, the labels themselves must be labeled with ℓcur .

Automatic label propagation. Initially, we expected that security

labels could be propagated automatically. For example, following

an ADD RS3, RS2, RS1 instruction, we would like to compute

the join of the labels of RS1 and RS2 and store the result in RS3
without needing explicit instructions to set the label of RS3. In
fact, this form of dynamic label propagation is common in tagged

hardware architectures [14, 55]. However, whether general purpose

registers are updated depends on control signals that are labeled

with ℓcur , when the labels of the registers are public and trusted. In

other words, dynamically updating the security labels themselves

introduces subtle timing channels. We found it better to allow

register labels to be updated only by explicit instructions. These

label updates could be inserted automatically by the compiler.

Multi-cycle execute unit stall signals. Our HyperFlow prototype

has two execute units that take multiple cycles to perform a com-

putation: the multiplier and the FPU. The time to complete these

computations depends on data values. If the labels of these data

values do not flow to ℓcur , the computation time might create tim-

ing channel vulnerabilities if not controlled. In the HDL code, this

timing channel is visible as a flow from the operands from the reg-

ister file, whose security levels depend on their labels, to the stall

signal, which has the label ℓcur . We address this timing channel for

each of the two execute units in different ways. For the FPU, we do

not permit computations on operands with labels that do not flow

to ℓcur . For the multiplier, we permit computations on operands

that do not flow to ℓcur , but the operations always complete in the

worst-case time. This presents a tradeoff between the expressive-

ness of the ISA and performance. We took different approaches for

each primarily to demonstrate that either can be statically checked

with the information-flow type system.

9 FUTUREWORK
This paper takes a first step toward a new approach to designing

and building secure processors; we now discuss future steps. A

natural next goal for HyperFlow is to obtain end-to-end security

results about software that executes on HyperFlow. In addition, we

expect future work to study software that takes advantage of the

flexible policies enforceable by HyperFlow. We also sketch a few

potential use cases for HyperFlow, which include the enforcement

of enclaves, information flow operating systems, and hardware

support for language-based information flow security. Constructing

these applications is left to future work.

9.1 Security Results
The HyperFlow ISA is designed to enforce timing-safe information

flow security. Ideally, the security guarantees should be formalized,

for example, as a variant of noninterference [28], among secu-

rity levels. One would then show that for all executions of valid

HyperFlow-ISA programs beginning from a reasonable initial state,

that this property is enforced. We leave such an ISA-level proof of

security to future work.

However, to ensure that confidentiality is not violated through

timing channels, we must also consider low-level details about the

hardware implementation that are invisible at the ISA level. As a

step toward ensuring that HyperFlow can eliminate timing chan-

nels, we have constructed HyperFlow in ChiselFlow, an HDL for

information flow security, and proved a timing-safe noninterfer-

ence result. A remaining open problem is to connect this low-level

security guarantee to a future ISA-level security guarantee.

ChiselFlow is designed to ensure that downgrades in the im-

plementation are non-malleable, but we have not yet shown this

formally. We expect that ChiselFlow will support timing-safe vari-

ant of the NMIFC [6] property, though formalizing timing safety

in the presence of downgrades is also an open problem. Similarly,

the ISA is designed to prevent malleable downgrades; an ISA-level

proof about HyperFlow should also offer assurance about this.

9.2 Enclaves
Trusted execution environments (TEEs) such as Intel SGX [7, 11–

13] provide protection for software modules called enclaves, whose
confidentiality and integrity are protected even if the OS is compro-

mised. TEEs employ a reference monitor that allows the operating
system to construct and manage enclaves, but rejects operations

that might violate the confidentiality or integrity of the enclaves.

The reference monitor is typically implemented with instruction

extensions for managing enclaves [11], or in software [13, 24, 39].

At minimum, software implementations of TEEs require hardware

support for storage that is inaccessible to the operating system,

support for attestation, and optionally defense against physical

attacks [24].

However, most prior architectures for TEEs do not defend against

timing channel attacks, which have already been exploited [34, 59].

HyperFlow enforces information flow policies in a timing-safe way,

intending to eliminate microarchitectural timing channel attacks.

Though timing channel attacks are subtle, by implementing Hyper-

Flow in an HDL for information flow control, we provide strong

assurance that we have succeeded in eliminating them. HyperFlow

is designed to provide sufficient support for implementing enclaves.

HyperFlow augments virtual memory protection with informa-

tion flow protection that operates on physical pages of memory.

As a result, a TEE can be implemented in HyperFlow by storing

enclave metadata in a region of memory that is more confiden-

tial and trusted than the set of labels the OS can manipulate. A

TEE executing on HyperFlow would benefit from resilience against

timing-channel attacks.

9.3 Information-flow operating systems
Beyond microarchitectural timing channels, other side channels are

not addressed by enclave systems. For example, they do not address

passive address translation attacks, in which the operating system

correlates the enclave’s page faults usage with secrets [12]. Because

enclave systems do not prevent side channels, the operating system

is ultimately still trusted for confidentiality.

Addressing side channels therefore requires a trustworthy oper-

ating system that can control OS-level side channels and executes

on a processor such as HyperFlow that can control hardware timing

channels. Microkernels for information flow security [8, 21, 67] fur-

ther improve security by replacing authorization mechanisms based

on access controls with information flow control, and can prevent

covert channels in the OS [68]. By propagating the information

flow policies of microkernels down to the hardware, HyperFlow

can provide defense in depth and control side channels. Because

HyperFlow generalizes conventional, hierarchical privilege levels

to lattice-model information flow labels, it offers more fine-grained

separation of privilege compared to conventional implementations.

Constructing an OS for HyperFlow would also provide an op-

portunity for more performance measurements. In this paper, we

provide performance results for applications executing within a

single security level. By constructing an OS, future work can ex-

perimentally evaluate multi-program systems that operate at and

communicate via different security levels.

9.4 Compilers for information-flow security
Hardware and operating system defenses alone do not suffice to pre-

vent timing channels that might violate application confidentiality,

because neither the OS or hardware has complete information about

the application’s security policies. Languages for information flow

security can address implicit flows as well as other security policies

that are internal to a program [48]. Prior work has also shown that

timing channels can be addressed by propagating language-level

security policies down to the hardware [69]. Though many label

models can express DIFC policies [1, 6, 8, 21, 42, 67], prior label

models represent policies as lattices. Hence, HyperFlow can enforce

policies from any of these models.

Security-typed languages typically rely on an assumption that

the compiler and assembler are semantics- and type-preserving. By

enforcing policies in hardware, HyperFlow can potentially reduce

these assumptions and support unsafe languages like C.

10 RELATEDWORK
Gate-level information flow tracking. Gate-level information flow

tracking [30, 43, 44, 56–58] applies information flow control to hard-

ware designs at the gate level. The earliest variations of GLIFT [58]

augment each hardware gate with additional gates to track infor-

mation flow, incurring significant area and energy overhead. Later

GLIFT versions apply gate-level information flow tracking to simu-

lated hardware designs [57], rather than to the implementation. This

reduces overhead, but increases development effort compared to a

conventional processor design flow. Because simulating every state

in large designs is intractable, prior efforts to use simulation-based

GLIFT check either small components [44], or limit the simula-

tion to cover just the state space reachable with software that is

co-designed with the hardware [56, 57].

Security-typed HDLs. Recently, security-typed hardware descrip-

tion languages have been developed to check that information-flow

policies are enforced at design-time. Unlike simulation-based ap-

proaches, type systems can ensure that the entire design is secure

in just seconds. Sapper [35] and Caisson [36] are security-typed

hardware description languages that generate GLIFT logic, but use

a static analysis of the HDL code to minimize the amount of infor-

mation flow tracking logic generated. Sapper and Caisson enforce

security dynamically by adding run-time checks, which convert se-

curity violations to functional correctness errors. SecVerilog [25, 70]

is a security-typed hardware description language that allows secu-

rity policies to depend on run-time values, but checks information

flow security statically by generating type errors at design time.

By enforcing security policies statically, hardware designers can

avoid unexpected functional errors at run time; if dynamic checks

are necessary for security, designers need to explicitly add them

to pass the type check. The design of ChiselFlow closely follows

the design of SecVerilog, and checks security statically. ChiselFlow

ports the security type system to Chisel and extends SecVerilog

with new features: nonmalleable downgrades, type inference, etc.

Processors secured with information flow. HyperFlow provides as-

surance for strong information flow security by statically checking

hardware-level information flow using ChiselFlow. Tiwari et al. [57]

built the first processor with strong information flow security guar-

antees using a simulation-based approach to GLIFT. The processor

supports just two security levels, and communication across trust

domains is not allowed. Similarly, Zhang et al. construct a proces-

sor with two security domains [70]. Xun et al. [35, 36] construct a

processor that supports a diamond lattice. None of these proces-

sors support communication across security domains. Ferraiuolo

et al. [26] implement a processor that permits communication that

weakens information flow security, but it does not constrain down-

grades. HyperFlow provides better assurance with downgrades

because they enforce nonmalleable information flow control [6].

None of these processors provide memory protection or privilege

levels that can be arbitrary lattice-model information flow labels.

Prior information-flow secured processors also do not have mech-

anisms for downgrading registers, or for control-flow transfers

between different security domains; both mechanisms are neces-

sary to support system calls.

Language-based information flow. ChiselFlow applies ideas from

the extensive literature on static language-based information-flow

security, which started with Denning and Denning [17] and is

surveyed by Sabelfeld and Myers [48]. ChiselFlow’s expressive

dependent labels build on previous work that enriched static labels

with expressive run-time labels [25, 38, 41, 70, 71].

On the other hand, the HyperFlow ISA enforces secure infor-

mation flow using dynamic rather than static checking, since the

goal is to support code not generated by a trusted compiler. The

enforcement mechanism for the ISA thus fits into the long his-

tory of work on dynamic information-flow tracking. In ignoring

instructions with illegal information flows, we follow the approach

originally proposed by Fenton [22], analogous to the approach

of DIFC operating systems like HiStar [67], in which processes

ignore messages received from more sensitive contexts. Alterna-

tively, execution can be halted at the point of violation [2, 63],

though information may still leak if halting is observable. Other

approaches to dynamic information-flow control include secure

multi-execution [19], faceted execution [3], andmonads for tracking

information flow [52, 54]. Like HyperFlow, these approaches intro-

duce the possibility that invalid information flows either change

computational results or make them unavailable for use.

11 CONCLUSION
This paper presents HyperFlow, a processor architecture for timing-

safe information flow security and a prototype implementation that

is statically checked with an HDL-level security type system. The

results show that it is feasible to redesign modern microprocessors

to enforce strong information flow security in hardware while sup-

porting rich security policies specified in software. The architecture

enables low-level information flows such as timing channels to be

controlled by software, while the type system provides assurance

about the implementation. As future work, we envision a formal-

ization of the ISA that combines with HDL-level security to ensure

timing-safe information flow for the software. In that sense, we

believe that this work represents a step toward the goal of end-to-

end information flow security for a full system comprising both

hardware and software.

12 ACKNOWLEDGMENTS
We thank Skand Hurkat, Drew Zagieboylo, and Ethan Cecchetti,

along with Cătălin Hriţcu and the reviewers, for their feedback

and suggestions on this work. This work was partly sponsored by

NSF grant CNS-1513797, NASA grant NNX16AB09G, and DARPA

contract HR0011-18-C-0014. Opinions, findings, and conclusions or

recommendations expressed here are those of the authors and do

not necessarily reflect the views of the funding agencies.

REFERENCES
[1] O. Arden and A. C. Myers. A calculus for flow-limited authorization. In 2016

IEEE 29th Computer Security Foundations Symposium (CSF), June 2016.
[2] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information

flow analysis. In 4th Workshop on Programming Languages and Analysis for
Security (PLAS), pages 113–124, 2009.

[3] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information

flow. In 39th ACM Symp. on Principles of Programming Languages (POPL), pages
165–178, January 2012.

[4] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,

and K. Asanović. Chisel: Constructing hardware in a Scala embedded language.

In Design Automation Conf. (DAC), 2012.
[5] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and

Multics interpretation. Technical Report ESD-TR-75-306, MITRE Corp. MTR-2997,

Bedford, MA, 1975. Available as DTIC AD-A023 588.

[6] Ethan Cecchetti, Andrew C. Myers, and Owen Arden. Nonmalleable information

flow control. In ACM Conf. on Computer and Communications Security (CCS),
2017.

[7] David Champagne. Scalable Security Architecture for Trusted Software. PhD thesis,

Princeton University, 2010.

[8] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron Blankstein,

James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. Abstractions

for usable information flow control in Aeolus. In USENIX ATC, 2012.
[9] Stephen Chong and Andrew C. Myers. Decentralized robustness. In IEEE Com-

puter Security Foundations Workshop (CSFW), 2006.
[10] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confidentiality

and integrity in web applications. In 16th USENIX Security Symp., 2007.
[11] Intel Corporation. Intel software guard extensions programming reference, 2014.

[12] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint

Archive, Report 2016/086, February 2016. http://eprint.iacr.org/2016/086.

[13] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware

extensions for strong software isolation. In 25th USENIX Security Symp., 2016.
[14] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: A flexible in-

formation flow architecture for software security. In Int’l Symp. on Computer
Architecture (ISCA), 2007.

[15] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In 14th
Int’l Conf. on Tools and Algorithms for the Construction and Analysis of Systems

http://eprint.iacr.org/2016/086

(TACAS), pages 337–340, March 2008.

[16] Dorothy E. Denning. A lattice model of secure information flow. Communications
of the ACM, 1976.

[17] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure

information flow. Communications of the ACM, 20(7):504–513, July 1977.

[18] Department of Defense. Department of Defense Trusted Computer System Evalua-
tion Criteria, DOD 5200.28-STD (The Orange Book) edition, December 1985.

[19] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In

IEEE Symp. on Security and Privacy, pages 109–124, May 2010.

[20] Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu Chiricescu, Jonathan M.

Smith, Thomas F. Knight, Jr., Benjamin C. Pierce, and André DeHon. Pump: A

programmable unit for metadata processing. In 3rd Int’l Workshop on Hardware
and Architectural Support for Security and Privacy (HASP), June 2014.

[21] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David

Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels

and event processes in the Asbestos operating system. In 20th ACM Symp. on
Operating System Principles (SOSP), 2005.

[22] J. S. Fenton. Memoryless subsystems. Computing J., 17(2):143–147, May 1974.

[23] Andrew Ferraiuolo. Security results for sirrtl, a hardware description language

for information flow security. Technical report, Cornell University, 2017.

[24] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. Ko-

modo: Using verification to disentangle secure-enclave hardware from software.

In 26th ACM Symp. on Operating System Principles (SOSP), 2017.
[25] Andrew Ferraiuolo, Weizhe Hua, Andrew C Myers, and G Edward Suh. Secure

information flow verification with mutable dependent types. In 54th Annual
Design Automation Conference 2017, page 6. ACM, 2017.

[26] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward

Suh. Verification of a practical hardware security architecture through static

information flow analysis. In Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

[27] Vijay K. Garg. Introduction to Lattice Theory with Computer Science Applications.
Wiley Publishing, 2015.

[28] J.A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symp. on Security and Privacy, 1982.

[29] Catalin Hritcu, Michael Greenberg, Ben Karel, Benjamin C Pierce, and Greg

Morrisett. All your IFCException are belong to us. In IEEE Symp. on Security and
Privacy, pages 3–17. IEEE, 2013.

[30] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Tiwari, Timothy Sherwood,

and Ryan Kastner. Gate-level information flow tracking for security lattices.

DAES, 2014.
[31] Colin J. Fidge. Timestamps in message-passing systems that preserve partial

ordering. In Proceedings of the 11th Australian Computer Science Conference, 1988.
[32] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

Spectre attacks: Exploiting speculative execution. ArXiv e-prints, January 2018.

[33] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,

Eddie Kohler, and Robert Morris. Information flow control for standard OS

abstractions. In 21st ACM Symp. on Operating System Principles (SOSP), 2007.
[34] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus

Peinado. Inferring fine-grained control flow inside SGX enclaves with branch

shadowing. In 26th USENIX Security Symp., pages 557–574, 2017.
[35] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-

nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T. Chong.

Sapper: A language for hardware-level security policy enforcement. In ASPLOS,
2014.

[36] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong, Timo-

thy Sherwood, and Ben Hardekopf. Caisson: A hardware description language for

secure information flow. In 32nd ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), 2011.

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

Meltdown. ArXiv e-prints, January 2018.

[38] Luísa Lourenço and Luís Caires. Dependent information flow types. In 42nd
ACM Symp. on Principles of Programming Languages (POPL), 2015.

[39] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and

Hiroshi Isozaki. Flicker: An execution infrastructure for TCB minimization. In

3rd ACM SIGOPS/EuroSys European Conf. on Computer Systems, 2008.
[40] CVE-2017-5691, July 2017.

[41] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In

26th ACM Symp. on Principles of Programming Languages (POPL), 1999.
[42] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized

label model. ACM Trans. Softw. Eng. Methodol., 2000.
[43] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and Ryan

Kastner. Theoretical analysis of gate level information flow tracking. In Design
Automation Conf. (DAC), 2010.

[44] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and Ryan

Kastner. Information flow isolation in I2C and USB. In Design Automation Conf.
(DAC), 2011.

[45] François Pottier and Vincent Simonet. Information flow inference for ML. ACM
Transactions on Programming Languages and Systems, 25(1), January 2003.

[46] A. W. Roscoe. CSP and determinism in security modelling. In IEEE Symp. on
Security and Privacy, pages 114–127, May 1995.

[47] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett

Witchel. Laminar: Practical fine-grained decentralized information flow control.

In ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), 2009.

[48] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-

rity. IEEE Journal on Selected Areas in Communications, 2003.
[49] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information

release. In IEEE Symp. on Security and Privacy, 2004.
[50] Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.

J. Computer Security, 17(5):517–548, 2009.
[51] Jerome H. Saltzer. Protection and the control of information sharing in Multics.

Communications of the ACM, 1974.

[52] Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and

Cormac Flanagan. Faceted dynamic information flow via control and datamonads.

In 5th Int’l Conf. on Principles of Security and Trust (POST), pages 3–23, 2016.
[53] Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and

David Mazières. Addressing covert termination and timing channels in concur-

rent information flow systems. September 2012.

[54] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible

dynamic information flow control in the presence of exceptions. J. Functional
Programming, 2017.

[55] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program

execution via dynamic information flow tracking. In 11th Int’l Conf. on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2004.

[56] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Timothy

Sherwood. Execution leases: A hardware-supported mechanism for enforcing

strong non-interference. In MICRO, 2009.
[57] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin, Ben

Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood. Craft-

ing a usable microkernel, processor, and I/O system with strict and provable

information flow security. In ISCA, 2011.
[58] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.

Chong, and Timothy Sherwood. Complete information flow tracking from the

gates up. In Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009.

[59] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-

order execution. In 27th USENIX Security Symposium, August 2018.

[60] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protec-

tion. In 10th Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002.

[61] Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM memory via Intel CPU

cache poisoning, 2009.

[62] Rafal Wojtczuk and Joanna Rutkowska. Following the white rabbit: Software

attacks against Intel VT-d technology, 2011.

[63] Steve Zdancewic. Programming Languages for Information Security. PhD thesis,

Cornell University Department of Computer Science, August 2002.

[64] Steve Zdancewic and AndrewC.Myers. Robust declassification. In IEEE Computer
Security Foundations Workshop (CSFW), 2001.

[65] Steve Zdancewic and Andrew C. Myers. Observational determinism for concur-

rent program security. In IEEE Computer Security Foundations Workshop (CSFW),
2003.

[66] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.

Secure program partitioning. ACM Transactions on Computer Systems, 20(3):283–
328, August 2002.

[67] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Mak-

ing information flow explicit in HiStar. In 7th USENIX Symp. on Operating Systems
Design and Implementation (OSDI), 2006.

[68] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. Hard-

ware enforcement of application security policies using tagged memory. In 8th
USENIX Symp. on Operating Systems Design and Implementation (OSDI), 2008.

[69] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based control

and mitigation of timing channels. In 33rd ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2012.

[70] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware

design language for timing-sensitive information-flow security. In Int’l Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[71] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static infor-

mation flow control. Int’l J. Information Security, 6(2–3), March 2007.

	Abstract
	1 Introduction
	2 Security Goals and Threat Model
	3 Security Policies in HyperFlow
	3.1 Confidentiality and integrity policies
	3.2 Lattices via bit vectors
	3.3 Nonmalleable downgrading

	4 The HyperFlow Architecture
	4.1 Security labels
	4.2 Information-flow call gates
	4.3 Current label bounds
	4.4 Instruction set extensions
	4.5 Semantic changes to existing instructions

	5 HDL-level Information Flow Control with ChiselFlow
	5.1 ChiselFlow Example
	5.2 Security results for SIRRTL
	5.3 ChiselFlow Implementation
	5.4 Heterogeneously labeled data structures
	5.5 Nonmalleable downgrades
	5.6 Label inference

	6 Microarchitecture and Labeling
	6.1 Prototype processor features
	6.2 Labeling signals
	6.3 Labels in the core and label bypassing
	6.4 Memory protection and labels
	6.5 Cache labels
	6.6 Timing-channel protection
	6.7 Virtual memory

	7 Evaluation
	7.1 Uses of downgrades
	7.2 Uses of dynamic information-flow checks
	7.3 RTL synthesis results
	7.4 Size of labels
	7.5 CPI results
	7.6 Usability
	7.7 Interprocess Communication
	7.8 System Calls

	8 Discussion
	9 Future Work
	9.1 Security Results
	9.2 Enclaves
	9.3 Information-flow operating systems
	9.4 Compilers for information-flow security

	10 Related Work
	11 Conclusion
	12 Acknowledgments
	References

