Securing Nonintrusive Web Encryption
through Information Flow

Lantian Zheng Andrew C. Myers
Google Inc. Computer Science Department
zIt@google.com Cornell University

andru@cs.cornell.edu

Abstract the receiver of encrypted data knows where to get the key. As a
result, end users are spared of the burden of generating, storing
and securing encryption keys. Web applications can encrypt and
decrypt data transparently, without affecting usability.

This nonintrusive encryptiortechnique alone cannot ensure
data confidentiality. We still need to ensure that encryption keys
are not exposed to untrusted sites, that confidential data is not sent
to untrusted sites in cleartext, and that cryptographic primitives do
Categories and Subject DescriptorsD.4.6 [Security and Protec- not introduce implicit flows [9]. These requirements can be satis-
tion]: Cryptographic controls; Information flow controls fied using static information flow control [9, 16, 21], which labels
data with security levels and uses static program analysis to ensure
the absence of insecure information flows: high-confidentiality data
. affecting low-confidentiality data. We imagine that the technique
1. Introduction can be deployed on both the user’s browser and on websites to

People store increasing amounts of personal data (emails, contactscheck web application code at load time. ' _
calendars, documents, photos and more) on the Web. Protecting the This paper combines the nonintrusive encryption technique and
confidentiality of online personal data is critical. It is also challeng- Static information flow control, and presents a sequential security-
ing because many users have a high tolerance for insecurity, buttyped language (called Sweb) with cryptographic primitives. The
a low tolerance for inconvenience. Websites share user-generatedyPe system of Sweb ensures that well-typed code does not explic-
data with business partners and have vulnerabilities that may leaditly or implicitly assign cleartext confidential data to untrusted stor-
to information leaks, yet users ignore these risks and send confi-age locations (sites), satisfying a strong notion of confidentiality—
dential data to untrusted sites in order to use their services. noninterference [11], albeit under some assumptions about the
Our goal is to design a protection mechanism thatdsintru- strength of the encryption algorithm. _
sive in the sense that it does not blindly prevent users from access- _ Previous work [4, 24] has shown that a security-typed language
ing web services that on the surface involve sending confidential With encryption primitives can enforce noninterference. These type
data to untrusted sites, and it requires little user intervention. The Systems have treated the result of encryption as public, which only
solution exploits a simple observation: many websites only need to Makes sense if the encryption key is as confidential as the plaintext.
store and/or forward users’ data without interpreting or processing This constraint may be too strong for the web environment where
the data. For example, an online album service only needs to storekeys are stored online. In reality, a ciphertext is not necessarily
photos on the server side. Therefore, if the album site stores a photomade public. As a result, it is possible to relax the constraint. In
simply as a byte array, it is possible for users to store encrypted the album site example, suppose Alice’s browser connects to the
photos on the album site without affecting usability of the service. album site through SSL. Then the encrypted photo is only readable
When accessing the album site, the user’s browser can retrieve enbY Alice and the album site. As a result, Alice’s browser can store
crypted photos from the site, and decrypt and display the photos tothe encryption key on some keystore even if Alice does not trust the
the user. The challenge is to handle encryption and decryption with keystore site to access her photos, but does trust that the keystore
little user intervention. site and the album site will not collude to leak her photos. The
To address this challenge, we propose a symmetric encryptiontype system of Sweb formalizes this insight and results in more
scheme with transparent key generation and management. Keyg*€rmissive typing than previous work. .
are stored on the Web so that they are world-accessible. Then, The idea of splitting a secret into multiple shares for high con-

encrypted data is augmented with the location of the key so that fidentiality is well known [23, 22]. Our contribution is to apply the
idea to typing the encryption primitive, formalize the confidential-

ity guarantee and prove correctness by showing that the type system
enforces noninterference.
Permission to make digital or hard copies of all or part of this work for personal or The rest of .thIS paper IS Org.amzed "’?S fOHOWS'. SECt.Ion 2 de-
classroom use is granted without fee provided that copies are not made or distributed SCIibes the nonintrusive encryption technique. Section 3 introduces
for profit or commercial advantage and that copies bear this notice and the full citation the Sweb language. Section 4 discusses information flow control
on the first page. To copy otherwise, to republish, to post on servers or to redistribute enhanced with encryption. Section 5 describes the type system of
tolists, requires prior specific permission and/or a fee. Sweb, and shows that it can enforce noninterference. Section 6 cov-

PLAS’08, June 8, 2008, Tucson, Arizona, USA. ;
Copyright(@ 2008 ACM 978-1-50593-936-4/08/06. . . $5.00. ers related work, and section 7 concludes.

This paper proposes a nonintrusive encryption mechanism for pro-
tecting data confidentiality on the Web. The core idea is to encrypt
confidential data before sending it to untrusted sites and use key-
stores on the Web to manage encryption keys without intervention
from users. A formal language-based information flow model is
used to prove the soundness of the mechanism.

General Terms Languages, Security

2. Nonintrusive encryption

References r = m | f | K
We propose the following nonintrusive encryption technique. Values v == n|m|cKi
. . i o |
« Some websites, presumably more trusted than others, provide ~EXPressions e u= v | le | decrypi(e) | e1 +e2

keystoreservices. A keystore maps identifiers to symmetric
encryption keys, and a keystore servicgrovides two APIs:
newkey(KC) returns a pait : £ wherek is a fresh key, and is
the identifier ofk; KC(1) returns the key mapped iadn K. Each -
keystore service is publicly accessible through a néme Figure 1. Syntax of the Sweb language

The encryption primitive has the formmcrypt(d, K), which

obtains a new key with identifieri from keystoreX’, encrypts els accessing the URhttp://foo.com/cgi. The last statement

d with k to obtain the ciphertext and returnsc. K.i as the Of ftoo.con/cgi Should bemn, := e, returning the result page to
encryption result. the user’s browser. Furthermore, the following program models in-
The decryption primitive has the foraecrypt(c.K.1), which voking the CGI program with two arguments (accessing the URL
retrieves the key: from keystoreX with identifieri, decrypts ~ http://foo.com/cgi?al=viga2=v2).

c with k£ and returns the plaintext. Mtoo.a1 := V1;

if e then s; else so

Statements s = e;:=e2 | e1 := encrypt(ez, K)
\
| skip | si1582 | callf

Interestingly, this scheme does not provide a key generation Mioo.a2 = V2;

primitive and every encryption operation implicitly obtains a new call ftoo.con/cgs
key from the keystore being used. The implicit key generation while the code 0ffzqo.con/cq: retrieves the arguments from memory
makes key management transparent and less error-prone. In addilocationsms.o..1 and ms.0..2. Note that Sweb is sequential and
tion, it practically achieves the same effect aslt¥iB-CPA security does not model concurrent accesses to a URL. This treatment
(indistinguishability under chosen-plaintext attack) [7], since an at- of function arguments and results is crude but adequate for our
tacker can encrypt a chosen plaintext with the same key only once.purposes.

On the other hand, the treatment comes with the limitation that Invoking a remote function through a URL can also be used for
keys cannot be reused. But this limitation is bearable in the web communication between websites, and thus Sweb can express web
environment, where storage is never the bottleneck. Suppose Aliceapplications involving multiple websites, as shown in Section 3.3.

makes ten encryptions every day, and each key t&ke8 bytes. In Sweb, a simple dereferencing expresdionmight represent
Then all the keys that Alice needs in her lifetime take less tén reading information from a remote website. Static information flow
megabytes of storage. analysis can prevent a good machine from running code that leaks

In addition, the encryption scheme is easy to deploy. With a confidential information. But a compromised machine might still
secure email service (or other existing secure storage services), dry to read confidential data from a remote host and then leak the
browser extension can implement a keystore service straightfor- data.
wardly. For example, suppose Alice trusts her Gmail account to ~ We assume that a run-time access control mechanism is de-
keep mail confidential. Keystoeel i ce@gmail . com can be imple- ployed so that read requests from untrusted machines for confiden-
mented as follows: tial data would be rejected. In particular, a keystore would not send
keys to untrusted machines, so a compromised machine is not able
to obtain confidential data by corrupting code execution. Therefore,
we can assume that code execution is safe on any server machine.
Note that this assumption would not be valid if data integrity inter-
acted with confidentiality as with robust declassification [27]. How-
ever, Sweb considers neither declassification nor data integrity.

¢ To implementnewkey(alice@gmail.com), her browser gen-
erates a new key and a random identifiet, sends an email
(subject : i, body : k) t0 alice@gmail.com through SSL
(luckily, gmail.com can be accessed throughtps) and re-
turns the paiti : k.

e To implementalice@gmail.com(i), her browser simply re-
trieves Alice’s email with subject from gmail.com and re- 3.1 Syntax

turns the email body. The syntax of the Sweb language is shown in Figure 1. A reference

Note that with session cookies or saved password, Alice’s browser” May be a memory locatiom, a function namef, or a keystore
can access her Gmail account without her intervention, and thus theN@meX’. In Sweb, a value may be an integera memory loca-
encryption and decryption operations can be totally transparent. Astion 7 or an encrypted value K.i wherec is a ciphertext, and

a result, Alice would be able to use an online album site safely, IS @ key identifier. An expression may be a valyea dereference
perhaps not even realizing that her photos are encrypted before€Xpressiorle (only dereferencing memory locations), or a decrypt

being sent to the site and decrypted before being displayed in theeXpressionlecrypt(e). For a technical reason (avoiding expressions
browser. with side effects), the encryption primitive is formalized as a state-

mente; := encrypt(ez, K), which encrypts the value @ using

a key in keystore' and then assigns the encrypted value to the
3. The language memory location that is the result ef.
The Web allows users to store and retrieve data, and invoke com- Other statements of Sweb include the assignment e, the
putations, all through a global name space (URLSs). These core webconditional statementf e then s; else sz, the sequence; sz,
functionalities can be modeled by a simple imperative language the skip statementkip, and the call statemenrtll f. The call
(Sweb) with shared memory and functions. For example, let mem- statement supports recursive function calls, and thus Sweb does not
ory locationm;, represent user's browser output and et con include a loop statement.
represent the web pagectp://foo.com. Then the assignment
statementn, :=!ms.0.con Models a browser access to the URL
http://foo.com. Let W represent a state of the Web, which is a finite map, map-

Suppose function Nnamg.,.con/cg: represents the CGl program ping memory locations to values, function names to programs, and

athttp://foo.com/cgi. Then statementall feoo.con/cgi MOd- keystore names to keystores. A Sweb prograis evaluated in a

3.2 Operational semantics

(E1) W(m) =v
(Im, W) J v
(E2) (v, W)Jw
(e, W) | c.K.i

W(K)i)=k D(c, k)=w

) decrypi(e), W) J o
(er, W) ymni (e2, W) I no

(E4) (e1 + €2, W) | n1 + n2

(s1) (e, W)In n>0

(if e then s; else so, W) —— (s1, W)

Supposenewkey(K) = i: k. Then&(v, K) encryptsv with
key k£ and results in a ciphertext We assume the encryption
algorithm £ is strong enough such that no information abeut
or k can be inferred from the ciphertext Again, to simplify
the noninterference proof, we assume tas$ deterministic. This
assumption does not make the system subject to chosen-plaintext
attacks because each key can be used only once for encryption.

In rule (S6), the new web stat&” is obtained by assigning the
encrypted value. K.i to m, and the keystor&[i— k] to K.

3.3 Example

As simple as it is, Sweb is expressive enough to model some
real-world applications. Suppose Alice wants to buy something
from an on-line storeoo.com. To place the order, she needs to
send her address and her credit card numbefoto. com, which

then contactsrisa.com to charge her card angbs . com to ship

the order. Suppose Alice does not trdsto. com to protect the

(e, W)In n<o0
(if e then s1 else so, W) — (s2, W)

(S2)

confidentiality of her address and card number. Assunajizg com
andvisa.com provide keystore services, the transaction can still

be performed in the following way:

W(f)=s

(S3) (call f, W) — (s, W)

(s1, W) — (s1, W')
(s1582, W) — (s1; 52, W')

(S5 (skip;s, W) — (s, W)

(e, W) ym (e, W)|v W(K)=K
newkey(K) =ik E(v, k) =c
W' = W[Kw— K[ir k]][m— c.K.i]

(e1 := encrypt(es, K), W) — (skip, W)

(S6)

(e, WYydm (e2, m) v
(e1:= ez, W) | (skip, W[m— v])

(S7)

Figure 2. Operational semantics of Sweb

web state, resulting in new web states. Thus, a small evaluation step
is a transition from configuratiofs, W) to another configuration

(s’, W'). Because Sweb expressions have no side effects, we use
the notation(e, W) |} v to mean that evaluatingin web stateV’
results in the value. The operational semantics of Sweb is shown

in Figure 2.

The notationW (r) represents the entity mapped to The
notationW [r — o] (or W[r+— K]) denotes the web state obtained
by assigning value (or keystorefC) to r in .

Most evaluation rules are standard. Rule (E3) evaluates decryp-
tion expressions. The kdyfor decryptinge. K1 is retrieved from
W (K) using identifieri. Applying the decryption functioD to
the ciphertext and keyk results inv.

Rule (S6) is used to evaluate encryption statemant:=
encrypt(e2, K). Suppose the result ef is memory locationm,
and the result oé; is v, andW (K) is the keystoreC, which is a
tuple (i:k, T), wherei:k is a list of new identifier-key pairs that
have not been used for encryption, ahds a key table mapping
identifiers to keys that have been used to encrypt some value. The
auxiliary functionnewkey(kC) returns the first identifier-key pair
ini:k, andK[i — k] returns the keystore obtained by removing
i : k from the new key list and inserting it into the used key table
of K. This keystore formalization avoids introducing a random key
generator that would complicate the proof of noninterference.

o After Alice fills in the order form, her browser gets a new
key k1 with identifier i; from ks.visa.com (the keystore of
visa.com), encrypts her card number (modeled by a memory
location in Sweb) witht;, and then sendS.ara. Kxs.visa.com-11
to foo.com. Similarly, Alice’s address is encrypted with a
key ko from ks.ups.com, and caaar. Kxs.ups.con-12 IS SENt tO
foo.com. Then fro, con/order iS Called to handle the order. The
following code models the process:

mfoo.com/order?ai = eHCIYPt(!mcc, Kksﬂisa.com)
mfcoAcom/order7a2 = encrypt(!maddr7 Kks.ups.com)
call ffoo.com/order

The code 0ffse0.con/oraer Processes an order and is shown as
follows:

mvisa.com/charge?account = !mfoo.com/order?al 5
Myisa.com/charge?amount ‘=!Manount

call fvisacom/charge;

Myps.com/ship?addr ::!mfoo.com/order'?aQ)

call fupsx:om/ship;
mp ::!mtrack-num

The code first sends the encrypted card number and the charge
amount tovisa.com and invokes the charge function. Then
the encrypted address is sentufes . com (perhaps by printing

Caddr - Kks.ups.con-12 ON @ UPS shipping label). The UPS ship-
ping function returns a tracking number:{;acx-num), Which is
returned to Alice’s browsemf,).

Interestingly, the code 0fo.con/oraer CAN remain the same

no matter whether the values storedr@fo,.con/oraerzar @nd
Mioo.com/order?a2 A€ €NCrypted. This is generally the case be-
cause an untrusted site only needs to store and/or forward en-
crypted values. This property could allow an untrusted site to
work regardless of whether encryption is being used.

e The code 0ffyica.con/charge IS @S follows:

Mecard ‘= decrypt(mvisa.com/charge?account) 5
!mcard ::!!mcard+!mvisa.com/charge?amou.nt

This code first decrypts the encrypted memory location repre-
senting Alice’s card number and assigns the memory location
t0 mecara. Then it increments the value bfic.ra by the order
amount.

Note thatf;sa.con/cnarge 'UNS ON the server afisa. com, which
is trusted byks.visa.com, and thus can read keys from the
keystore. It is important that key-retrieving requests from un-

trusted sites would be rejected by keystaee visa.com. As For Sweb, the inputs of a program are just the initial web
discussed later in Section 5, the ability of a keystore to keep state, and any web state resulted from program execution is part
keys confidential is specified by the type of the keystore and of the outputs. Thus, a program satisfies the noninterference
taken into account by type checking. property if evaluatings under two web states with equivalent low-
confidentiality parts results in web states that also have equivalent

e The code Offyps.con/snip IS aS follows: . e S
Fups.con/snip low-confidentiality parts. In other words, low users cannot distin-

Maaar 1= deCrypt(Myps.con/ship?addr) guish the two executions.
call finternal.ups/shipping} Clearly, the key to defining the noninterference property is to de-
Merack-nun :='Mtrack-num 1 1 fine the notion that two web stat&®; andW, arelow-equivalent

. . . - . (written W, =~ Ws, meaning; and W, have equivalent low-
First, it decrypts Alice’s address. Then it invokes an internal .. figentiality parts). Without encryption, the definition is straight-
shipping function to process the shipping order. Finally, it in- forward: W, ~ Wk if for any referencer, label(r) < L implies
crements the tracking number, simulating the creation of a new Wi (r) = Wa(r). Notationlabel(r) denotés the label of Specif-
tracking number. ically, label(m) is the label of the value stored in; label(K) is
the label of keys inK; Iabel(f) is a lower bound of the labels of

4. Information flow control and encryption side effects of the code df.

. .) e . With encryption, we have to consider more scenarios. Suppose
Information flow control prevents high-confidentiality information Wi(m) = crly.g(.il andWa(m) = c2.K.i>. SUPpOS&: # cz.pp

from flowing to Iovy-qonfidentiality !ocations. Th.e concepts (.)f high There are still two cases that a low user cannot distinguish the two
and low confidentiality are determined by labeling information and encrypted values. First, the low user cannot observe keysfore

memory locations with security labels from a latti€eGiven two and thus does not know the encryption key. Then ciphertexts
labels?; and/s, if £1 < 42 in L, thent; represents a confidentiality and e, are just random bits to theylrc))w useryand coulg appoar in

level lower than or equal t6,. Users are labeled too. A user with giiper execution. Second, the low user can observe keyatore
label ¢ can observe any memory location with a label less than or but the decryption results are low-equivalent. Thus, we have the

equal to. Let L represent the confidentiality level of attackdosy following rules that recursively define the low-equivalent relation
user9. Then/ is a low-confidentiality label i# < L, and a high- betweer? values: Y q

confidentiality label if otherwise.

For example, consider a statement= e. Let/,, and/. be the VAL v label(K) £ L

label ofm ande, respectively. Thef. < ¢,, must hold. Otherwise, c1.K.i1 =p c2. K.io

itis possible that. £ L and/¢,, < L, and the statement assigns a

high-confidentiality value to a low-confidentiality location. label(K) < L (decrypt(c;. K.i), W) | v, i € {1,2}
Conventional information flow analysis works reasonably well U1 R U2

for ordinary computation, but applying it to cryptographic opera-

. . . 1. Ki~p e K.i
tions poses some challenges that have not yet been satisfactorily

addressed. More subtly, it is not sufficient to consider the low equivalence
for each individual memory location. Consider two low locations

4.1 Addition and encryption m1 andms. Suppose

Consider an addition expressien- ez with labell, whereé; and Wi(mi) =cK.i Wi(mz) =cK.i

/5 are the labels of; andez, respectively. Because both the values Wa(mi) = c.K.i Wa(mea) = .K.i’

of e; ande; affect the value oé; + ez, we conventionally require

/1 < £ and/; < /to ensure that no information aboeit andes

can be leaked through their sum. Using the lattice join operation
(L), the two constraints can be representedy /> < £.

Encryption makes things a bit more interesting. Consider the
statementn := encrypt(e, K). Let {x be the label of keystore
K, and/ be the label of the value ofi. According to evaluation
rule (S6), a new key is used to encrypt the value ef and k
is known to only users with label as high 4g. Although the
value ofm is affected byk and the value oé, unlike the addition
case, constraintéx < ¢ and/. < ¢ are not needed, because no
information about the value of and & can be inferred from the
encryption result. Instead, the following constraint needed to be Definition 4.1 (W, ~r Ws.). Wi ~p W, if the following
enforced because after encryption, the value cén be computed conditions hold:
from the value ofn andk:

andc # ¢/, andlabel(K) £ L. ThenWi(m1) =~ Wa(m1) and
Wi(me) ~r Wa(m2). However,IW; andW are distinguishable
to low users, because the valuesmaf and m. are created by
the same encryption operation accordingk@, and by different
encryption operations according W-. Furthermore, we need to
consider the case th#lt: (m1) andWi (m2) are different, but they
can be decrypted by low-confidentiality keys, and their decryption
results are the same.

Let W% (m) denote the value obtained by decryptifig(m)
for i times, and each time the decryption key is low-confidentiality.
Then we have the following definition:

e For anym, if label(m) < L, thenWi(m) ~1 Wa(m).
le <ULk e Foranym, andms, if label(m1)Ulabel(m2) < L, thenfor any
iy j, Wit (ma) = W (mo) iff Wy" (m1) = W3t (ma).
e ForanyK, if label(K) < L, thenW; (K) = W2 (K).
e Foranyf, Wi(f) = Wa(f).

As discussed in Section 5, this constraint leads to more precise and
permissive typing than treating the encryption result as public data.

4.2 Noninterference property

To show that information flow control is effective for protecting 5. Security type system

confidentiality, we need to define confidentiality first. A strong no- In Sweb, information flow control is achieved through type check-
tion of confidentiality can be formalized in term of noninterfer- ing. The type system of Sweb ensures that any well-typed program
ence [11], which intuitively means that high-confidentiality inputs satisfies the noninterference property and cannot generate illegal
cannot interfere with low-confidentiality outputs. information flows at run time.

(INT) Fn:int,

'+ K : keystoresref, 7 </U/

CIPHER
() PkeKi:|[r]y

I'Fei:inty, I'Fes:inty,

ADD
() I'Fei+ex:inty e,
REF L) =r
() Dkr:(rref),
I'kFe:Trefy
(DEREF) I'Hle: 70U/
DEC Fke:[r]e
() T+ decrypt(e) : LU £
Phep:[r]yrefy, Dhea:t
I'+ K : keystorey ref |
ENG T<eul (<t L </l
() T ey := encrypt(ez, K) : stmtqp
I'ke;: f, I'hes: <
(ASS) e1: Trefy es:7 £<T
' e :=e2: stmtgper(r)
(SEQ) I'ksi:m7 T'ksa:7

I'kFsi3s2:7
(SKIP) T' I skip : stmty

I'te:inty <7 TI'kFs1:7 Tkso:T

IF

(1F) I'+if ethen s elsess : 7T
'k f:stmtyref,

FUN

() T'Fcall f: stmty
Tt 7<7

(SuUB) —_—

Lkt:7

Figure 3. Type system of Sweb

This paper does not attempt to deal with termination and timing

The typing rules of Sweb are shown in Figure 3. The interesting
rules are (CIPHER), (DEC) and (ENC), while other rules are stan-
dard in terms of static information flow tracking [26, 12, 28, 6, 19].

Notation L represents the bottom label. Suppese 3,. Then
notationT < ¢ representg < ¢/, and notationr Ll ¢’ represents
BZul'-

Rule (CIPHER) checks encrypted values. Suppfsés the
name of a keystore with labél Thenc.K.i has type[r], if
7 < ¢U ¢ holds. The label constraint ensures that a user who is au-
thorized to read the encrypted value and the key is also authorized
to read the plaintext value with type

Rule (DEC) checks decryption expressions. Intuitively, ifas
type [7], then the result oflecrypt(e) should have typer. In
addition, information about the result efcan be inferred from
the decryption result. Thugecrypt(e) has typer LI ¢', ensuring its
label to be as high a&.

Rule (ENC) is used to check encryption statements. Consider
statement; := encrypt(e2, K). The value ofe; is a memory lo-
cation for storing the encrypted value, andhas typer], refy,.

The keystore referend®& has typekeystore, ref | . The premise

T < £ U/ is based on the same reasoning as in rule (CIPHER):
putting the ciphertext and the key together can recover the origi-
nal value with typer. The premise/; < ¢’ is standard, protecting
information about; from being leaked through the assignment to
the memory location that; is evaluated to.

The premise/ < 7 is a superficial constraint, which is based
on the intuition that it is unnecessary to encrypt a value with a
key that is more confidential than the value itself. This constraint
is introduced to simplify the proof of noninterference. It does not
limit the expressiveness of Sweb because we can always assign a
low-confidentiality value to a high-confidentiality location and then
encrypt it using a high-confidentiality keystore.

The encryption statement has laksimt,-,» because both a
memory location of label’ and a keystore of labélare updated by
this statement. This labeling prevents illegal implicit flows arising
from encryption. For example, consider the following code:

if !ms then my := encrypt(ms, K,) else skip

where the contents ofi, and K are secret, and the valuewf, is
public. Because of the encryption, attackers cannot infer the exact
value of ms from the value ofm, after executing the code, but
they are able to infer whether the value1af; is positive. This
statement is not well-typed becausg := encrypt(ms, Ks) has
typestmt,,, andlm, has label,, and/; £ £,. The following code
demonstrates the implicit flow related to updating the keystore:

if Im, then mes := encrypt(ms, Kp) else skip

channels. Control of these channels is largely an orthogonal prob-where the value of., is a secret, but the content Af, is public.

lem, and partially addressed in previous work [3, 20, 29].
The types of Sweb have the following syntax:

Basetypes f := int | [7] | T ref
Types T = f¢ | keystore,; | stmty

A type 7 can be either a labeled base typg a keystore type
keystore, Or a statement typetmt,. A value with types, has
label . A keystore with typekeystore, is trusted to store keys
with label £. A statement with typestmt, has only side effects
with labels higher than or equal fo

Base types include integer typet, encrypted data typle’] and
reference type ref. Valuec.K.i has the encrypted data typed
if and only if it is generated by encrypting a value with type

Therefore, attackers can infer whether, is positive from how
many keys inkK, are used. Again, this statement is not well-typed
becausen. := encrypt(m., K,) has typestmty,,.

Consider the web album example discussed in Section 1. The
following Sweb code implements storing an encrypted photo (using
keystoreKa1ice@gnail.con) ONalbum. com:

T albun.com/ephoto *= encrypt(!mphotm Kalice@gmail.com)

Suppose Alice trusts thaimail.com and album.com will not
collude to leak her photo, but does not wattil . com to be able

to access her photo. Then the valuengf...o has a label such
that ¢ < ggmalecom L Zalbum,com and/ f ngail.com- By rule (ENC),

the above code is well-typed. However, the code would not be well-

Let T" represent a typing assignment, mapping references to typed if the encryption result is treated as public data (with label

types. A typing judgment of Sweb has the foim+ s : 7 (or
T' F e : 7), meaning that statemeat(or expressior) has typer
with respect td".

as in previous work [4, 24].
Rule (SUB) is standard for subtyping. If tert{expression or
statement) has typg andr is a subtype of’, thent has typer’.

The subtyping rules of Sweb are shown below: a language with encryption, decryption and key generation prim-
0y < 0y 0 < 0 itives, and showed_its type system enf_orces possibilis_tic_ no_ninter-
= = ference. In comparison, our work considers a rather distinctive set
of cryptographic primitives that do not manipulate keys explicitly.
Intuitively, it is safe to treat low-confidentiality data as high- Moreover, the type systems in those previous work treat encryption
confidentiality data, and a statement with only high-confidentiality results as public data, and the treatment is too restrictive to handle
side effects as one with low-confidentiality side effects. the case that an encryption key is less confidential than the plain-
The type system of Sweb satisfies subject reduction. The proof text it encrypts. In contrast, the type system of Sweb assigns label
is standard and subsumed by the noninterference proof in Ap- to a ciphertext based on the label of the encryption key, leading to
pendix A, so we simply state the theorem here. more permissive typing. The work of Askarov, Hedin and Sabelfeld
. . . . used possibilistic noninterference to avoid masking implicit flows
E;;Qn;glll Ez)a.r}d(ll;[/’ V}; I“F l_v U T)T \{;LL(;ETU :I'1a[sT/]t32pier;p\|/i\/étg t;wea-t in ciphertexts_. In our wor_k, this i_ssue is dealt with by considering
(decrypt(v), W) Il o/ andT'; W ' : 7. the preservation of equality relation between corresponding cipher-

Be, < Bey stmty, < stmty,

texts.
Definition 5.2 (' = W). W is well-typed with respect td", Other work studied more abstract cryptography-related prim-
written asT" = W, if dom(I") = dom(W), and for anym in itives. Smith and Alfear [24] investigated a random assignment
dom(T"), T'; W = W(m) : I'(m), and for anyf in dom(T), operator and showed a security-typed language with this operator
LE=W(f):D(f). enforces probabilistic noninterference. Their work also considered

the encryption and decryption primitives, but also had the limita-
tion of assigning the lowest label to encryption results. Vaughan
and Zdancewic [25] considered abstract packaging operators that
rely on both static and dynamic checking for information flow con-
5.1 Noninterference theorem tol. _ _

)) o Abadi [1] presented a basic concurrent language (the spi calcu-
Supposes is a program, andV’ is the initial web state. The output ,5) with cryptographic primitives and a type system for enforcing

Theorem 5.1 (Subject reduction). Supposd” - W. If ' e: 7
and(e, W) J v, thenT F v : 7. If T - s : 7 and(s, W) —
(s', W), thenT s’ : 7 andl" - W'.

of 5 is the trace of web states generated from evaluatingV’). secrecy. Rather than modeling an information flow analysis, the
For example, the evaluatiofs, W) +— (s1, W1) — ... — typing rules of the spi calculus formalize the principles and rules
(sn, Wn) generates the trad@ = [W, W1,... ., Wy]. for achieving secrecy properties in security protocols.

The two executiongs, W1) and(s, W>) are indistinguishable Also related is work on connecting formal cryptographic anal-

to low users if any two trace, andT; generated from evaluating yis techniques and computational security models. For example,
the two configurations are low-equivalent. Based on definition 4.1, Apadi and Rogaway [2] proved the computational soundness of
we can define trace low equivalence, which formalizes the notion pjjay-yao analysis. More recently, Backes and Pfitzmann [5] in-

of low-equivalent outputs. Intuitively, two traces are low-equivalent vestigated a Dolev-Yao style cryptographic library and established

if they may be generated by the same execution (one trace appearse relation between symbolic and cryptographic secrecy properties
to be the prefix of the other) from the perspective of low users. For- ¢, cryptographic protocols.

mally, the low-equivalence relation between two traces is defined as j5mmalamadaka et al. [13] presented the gVault system, a cryp-

follows (where notatioiy ~ 7> means thal'y and7: are equal ographic network file system built on the Gmail service. In gVault,

up to stuttering): encryption keys are generated and recomputed using user pass-

Definition 5.3 (U F Ty =~ T). There existl] = [W1,..., W] words, which is susceptible to dictionary attacks anc_;l_requires

andTs = [W1,...,W},] such thatly ~ T, andT, ~ T3, and a password recovery mechanism that may have usability issues.

T =W, ~p W/ foranyiin {1,... min(m,n)}. Moreover, it is not clear that the password-based key management
can be applied to more complex web applications involving multi-

With the notion of low-equivalent traces, it is straightforward to

. . ple sites.

define the noninterference theorem: Declassification constructs have been introduced in a few
Theorem 5.2 (Noninterference). Supposd + s : 7, andI" security-typed languages [17, 15] for intentional information re-
Wi =~ Wa. If T} andT> are the two traces of evaluatidg, W) leases. A typical use of these constructs is to release encryption re-
and(s, W2), respectively, thel® - Ty ~r, Ts. sults of confidential data to low users. However, a declassification

mechanism is generally too powerful to allow any noninterference-
Proof. See Appendix A. O like assertion being made.

The sequential programming model for distributed systems with

6. Related work untrusted components was first used in the secure program parti-

tioning work [30, 31] and later in the Swift system [8]. We use this
model for its simplicity rather than because it makes programming
distributed applications easier.

Using static program analysis to check information flow was first
proposed by Denning and Denning [10]; later work phrased the
analysis as type checking (e.g., [18]). Noninterference was later de-
veloped as a more semantic characterization of security [11], fol- .
|0WEF()1 by many extensions. Volpano, Smith and Irviney[2[6]]first 7. Conclusions
showed that type systems can be used to enforce noninterferenceThis paper presents a nonintrusive encryption mechanism for the
and proved a version of noninterference theorem for a simple im- Web. The core idea is to make key generation and management
perative language, starting a line of research pursuing the nonin-transparent, to achieve high usability. Although it prevents key
terference result for more expressive security-typed languages [12,reuse, transparent key management is practical for the Web envi-
28, 6, 19]. ronment since large number of encryption keys can be easily stored
More recent work looked into security-typed languages with on the Web. This paper also proves the soundness of the encryp-
cryptographic primitives. Laud and Vene [14] presented a type sys- tion mechanism in the context of a security-typed language, which
tem for enforcing computationally secure information flow in the provides a permissive and flexible way of typing the encryption
presence of encryption. Askarov, Hedin and Sabelfeld [4] studied primitive, formalizing the observation that the confidentiality of a

plaintext can be protected by keeping either the ciphertext or the based cryptographic network file system. Rroceedings of 21st
encryption key confidential. Annual IFIP WG 11.3 Working Conference on Data and Applications

In Sweb, each encryption is assumed to take place with a new Security pages 161-176, 2007.
key. At the cost of a more complex dependent type system, one [14] Peeter Laud and Varmo Vene. A type system for computationally

could imagine separating key generation from encryption, which secure information flow. liProceedings of the 15th International
would allow Sweb to be used to describe more sophisticated proto- Symposium on Fundamentals of Computational Theuages 365—
cols. This is worth further investigation. 377, Lilbeck, Germany, 2005.

[15] Peng Li and Steve Zdancewic. Downgrading policies and relaxed
Acknowledgements noninterference. IrProc. 32nd ACM Symp. on Principles of

. . L P ing L POP, Beach, CA, J 2005.
The authors would like to thank Michael Clarkson for his insightful fogramming Languages (hong Beac anuary

suggestions and comments on this work. Thanks also to the anony-[16] ﬁ?g;:;";’ﬁgh ’\f/llg\i/rsc oarn(rjollaalrr?s:gcl_ifl;torY.Aél\jljesc)?;t;;alci)zneg);l;r]e?gﬁllgor
mo#i;e\\f\l,g\rlvke\r;;grstSs;JZZiZ)fgi,fffgl,)\]aactli((;nm Science Foundation System Principles (SOSRrges 129-142, Saint-Malo, France, 1997.
under grants 0430161 and 0627649. The views and conclusions[17] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
contained herein are those of the authors and should not be inter- ~ @nd Nathaniel Nystrom. Jif 3.0: Java information flow. Software
preted as necessarily representing the official policies or endorse- ~ '€leasehttp://www.cs.cornell.edu/jif, July 2006.

ments, either express or implied, of the NSF or the U.S. Govern- [18] Jens Palsberg and Peter @rbaek. Trust indoalculus. InProc. 2nd

ment. The U.S. Government is authorized to reproduce and dis- International Symposium on Static Analysismber 983 in Lecture
tribute reprints for Governmental purposes notwithstanding any Notes in Computer Science, pages 314-329. Springer, September
copyright notation thereon. 1995.

[19] Francois Pottier and Vincent Simonet. Information flow inference
References for ML. In Proc. 29th ACM Symp. on Principles of Programming

Languages (POPLpages 319-330, 2002.

[20] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforce-
ment for distributed programs. IRroc. 9th International Static

i] o -) Analysis Symposiumolume 2477 o NCS Madrid, Spain, Septem-
[2] Martin Abadi and Phillip Rogaway. Reconciling two views of ber 2002. Springer-Verlag.

cryptography (the computational soundness of formal encryption). .
In TCS "00: Proceedings of the International Conference IFIP on [21] Andrei Sabelfeld and Andrew C. Myers. Language-based

Theoretical Computer Sciengeages 3-22, London, UK, 2000. information-flow security. IEEE Journal on Selected Areas in
) O ' T Communications21(1):5-19, January 2003.
[3] Johan Agat. Transforming out timing leaks. Rroc. 27th ACM . . .
Symp. on Principles of Programming Languages (PORages [22] Bruce SchneierApplied Cryptography John Wiley and Sons, New
40-53, Boston, MA, January 2000. York, NY, 1996.
[4] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically- [23] Adi Shamir. How to share a secreCommunications of the ACM
masked flows. IProc. 13th International Static Analysis Symposjum 22(11):612-613, 1979.
Seoul, Korea, August 2006. [24] Geoffrey Smith and Rafael Alpar. Secure information flow with
[5] Michael Backes and Birgit Pfitzmann. Relating symbolic and random assignment and encryption AMSE '06: Proceedings of the

cryptographic secrecylEEE Trans. Dependable Secur. Comput. fourth ACM workshop on Formal methods in securfigges 33-44,
2(2)109_123’ 2005. Alexandrla, Vlrglnla, USA, 2006.

[1] Martin Abadi. Secrecy by typing in security protocols. Fmoc.
Theoretical Aspects of Computer Software: Third International
ConferenceSeptember 1997.

[25] Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic
decentralized label model. IRroceedings of the 2007 IEEE
Symposium on Security and Privapages 192-206, May 2007.

[6] Anindya Banerjee and David A. Naumann. Secure information flow
and pointer confinement in a Java-like languageProc. 15th IEEE
Computer Security Foundations Workshdpne 2002.

[26] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type

[7] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A ! .
concrete security treatment of symmetric encryption: Analysis of DES system for secure flow analysislournal of Computer Security
modes of operation. IRroceedings of the 38th Annual Symposium 4(3):167-187, 1996.
on Foundations of Computer Science (FOCS ;%ashington, DC, [27] Steve Zdancewic and Andrew C. Myers. Robust declassification. In
USA, 1997. Proc. 14th IEEE Computer Security Foundations Workslpames

[8] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, 15-23, June 2001.

Lantian Zheng, and Xin Zheng. Secure web applications via [28] Steve Zdancewic and Andrew C. Myers. Secure information flow
automatic partitioning. IrProc. 21st ACM Symp. on Operating via linear continuationsHigher Order and Symbolic Computation
System Principles (SOSR)ctober 2007. 15(2-3):209-234, September 2002.
[9] Dorothy E. Denning. A lattice model of secure information flow. [29] Steve Zdancewic and Andrew C. Myers. Observational determinism
Comm. of the ACM19(5):236-243, 1976. for concurrent program security. Rroc. 16th IEEE Computer
[10] Dorothy E. Denning and Peter J. Denning. Certification of programs Security Foundations Workshopages 29-43, Pacific Grove,
for secure information flowComm. of the ACM20(7):504-513, July California, June 2003.
1977. [30] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.

[11] Joseph A. Goguen and Jose Meseguer. Security policies and security ~ MY€rs. Secure program partitioninCM Transactions on Computer
models. InProc. IEEE Symposium on Security and Privagsiges Systems20(3):283-328, August 2002.
11-20, April 1982. [31] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve

[12] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming Z_dar_lceWK:. Using replication and partitioning to build secure
with secrecy and integrity. IRroc. 25th ACM Symp. on Principles distributed systems. Iffroc. IEEE Symposium on Security and
of Programming Languages (POPLjages 365-377, San Diego, Privacy, pages 236-250, Oakland, California, May 2003.
California, January 1998. [32] Lantian Zheng and Andrew C. Myers. End-to-end availability

[13] Ravi Chandra Jammalamadaka, Roberto Gamboni, Sharad Mehrotra, policies and noninterference. Rroc. 18th IEEE Computer Security
Kent E. Seamons, and Nalini Venkatasubramanian. gvault: A gmail Foundations Workshopages 272-286, June 2005.

A. Noninterference proof w7 W(m) = v

(E1) v # none

<!m, W)z U v

The noninterference result for Sweb is proved by extending the lan-
guage to a new language XSweb. Each configurafidn XSweb
encodes two Sweb configuratiofs andC. Moreover, the oper- (e1, W) v (e2, W)i dva v=v1 Qw2

ational semantics of XSweb is consistent with that of Sweb in the (E4) (e1 + ez, W) v

sense that the result of evaluatiagis an encoding of the results

of evaluatingCy andC> in Sweb. The type system of XSweb can (e, W) v |v]1# |v]2

guarantee that' is well-typed only if the low-confidentiality parts (decrypt(|v]i), W) J i, 4 € {1,2}

of C; andCs are equivalent. Intuitively, if the result @f is well- (ES) (decrypt(e), W) I (v1 | va)

typed, then the results of evaluatidg and C> should also have

equivalent low-confidentiality parts. Therefore, the preservation of (e1, W) dm (e2, W); yv W(K)=K
type soundness in an XSweb evaluation implies the preservation of newkey(|K];) =ik E(v, k) =c
low-equivalence between two Sweb evaluations. Thus, to prove the W = Wm— W(m)le.K.1/mi]]
noninterference theorem of Sweb, we only need to prove the sub- ¢ W' = WK — K[i—i K]

ject reduction theorem of XSweb. This proof technique was first
used by Pottier and Simonet to prove the noninterference result of
a security-typed ML-like language [19]. (er, Whidm (e2, W)s Y v

(e1 := encrypt(ez2, K), W); — (skip, W');

S7
) (S7) (e1 := ea, W), — (skip, W[m— W (m)[v/m;]])i

A.1 Syntax extensions
The syntax extensions of XSweb include the bracket constructs, (sg) fe, W) ¥ (1 | n2)
which are composed of two Sweb terms and used to capture the (if € then s else sz, W) —
differences between two Sweb configurations. ((if ny then [s1]1 else [s2]1 |

if ng then [s1 |2 else [s2]2), W)

Values v == ... | (v1]|v2)
Statements s == ... | (o1]s2) o SWHT L W s = {53} ={12)

The bracket constructs cannot be nested, so the subterms of a (S9) (511 52), W) — (s} | sb), W)

bracket construct must be Sweb terms. Given an XSweb statement

s, let |s]1 and |s]2 represent the two Sweb statements that (S10 ((skip | skip), W) — (skip, W)
encodes. The projection functions satisfy: | s2)]: = s; and

are homomorphisms on other statement and expression forms. An (e1, W) § (m1 | ma2)

XSweb statd? maps references to XSweb terms that encode two (S11) (e1 1= e, W) — ((m1 = |ea|1 | m2 = lez]2), W)
Sweb terms. Thus, the projection function can be defined on web

states too. Fof € {1,2}, dom(|W ;) = dom(W), and for any (e1, W) I (m1 | ma)

m € dom(W), |W |;(m) = |[W(m)],. 512) Lets; bemy := encrypt(|ez2]1, K), i € {1,2}

Since an XSweb term effectively encodes two Sweb terms,
the evaluation of a XSweb term can be projected into two Sweb
evaluations. An evaluation step of a bracket staterfwrjts2) is an [Auxiliary functions]
evaluation step of either; or sz, ands; or s2 can only access the

(e1 := encrypt(e2, K), W) — ((s1 | s2), W)

corresponding projection of the web state. Thus, the configuration U[U,/W-] = U’/ Te U =1V

of XSweb has an index € {e, 1,2} that indicates whether the v’ /fm] = (v" | [v]2) mwv=|vh

term to be evaluated is a subterm of a bracket expression, and if so, v’ /ma] = ([v]1 | V')) m2 v = [v]2
v[(c1 | e2).K.(i1 | i2)/me] = (c1.K.i1 | c2.K.i2)

which branch of a bracket the term belongs to. For example, the
configuration(s, W) means that belongs to the first branch of a

bracket, ands can only access the first projectiondf. We write Figure 4. The operational semantics of XSweb
“(s, W) for “ (s, W),", which meanss does not belong to any
ket. . .
bracket Proof. By induction on the structure ef O

The operational semantics of XSweb is shown in Figure 4. It
is based on the semantics of Sweb and contains some new eval- T .
uation rules (E5), (S8-S11) for manipulating bracket constructs. Lemma A.2 (Prpjectlon). SupposeW is an XSweb state, _and
Rules (E1), (S6) and (S7) are modified to access the web state pro-LWJi =W fori € {,1’ 2},’ and(s, W;) is an Sweb conﬂlgura/non.
A : A B Then(s, W;) — (s’, W) ifand only if (s, W); — (s', W');
jection corresponding to indexThe rest of the rules in Figure 2 are) ,
adapted to XSweb by indexing each configuration witfihe fol- and|W'}: = W.
lowing adequacy and soundness lemmas state that the operation . .
semantics of XSweb is adequate to encode the execution of tvvoa'!)rom' By induction on the structure of -
Sweb terms.

Letthe notatior{s, W) —7 (s’, W’) denote thafs, W) —
(s1, Wi) +—— ... — (Sn, W) +— (¢, W) and T =
W, Wi,...,W,,W],ors = s andW = W' andT = [W].
In addition, let|T’| denote the length of", and 71 ¢ 7> de-
note the trace obtained by concatenatifig and 7>. Suppose
T = [Wh,...,Wy,]andTy = [Wi,...,W.,]. If W,, = W7, then

/ / H

Lol = [Wh,' s Wa, Wa, oy W] Otherwise 1 & Tz = (si, W;i) —— (s;, W/) is an evaluation in Sweb, and there ex-
Wi, W, Wi, W], ists (s, W) in XSweb such thats|; = s; and| W |; = W;. Then
Lemma A.1 (Projection i). Supposele, W) |} v. Then fori € there existgs’, W') such thats, W) —7 (s’, W’), and one of
{1,2}, (leli, (W]s) J [v]s holds. the following conditions holds:

Lemma A.3 (Expression adequacy)lffor i € {1, 2}, {e;, W) §
v;, and there existge, W) in XSweb such thate|; = e; and
|W i = W;. Then(e, W) | v suchthaiv|; = v;.

Proof. By induction on the structure ef O

Lemma A.4 (One-step adequacy).Suppose fori € {1,2},

i. Fori e {1,2}, |T]: = [W;,W/]and|s'|; = si.
i. For {5,k} = {1,2}, |T]; ~ [W;] and |s']; = s;, and
I_TJk ~ [Wk, W,é] and _S/Jk = S;C.

Proof. By induction on the structure of. The proof is largely

similar to the one in the noninterference proof of Aimp [32]. We

just show some cases here.

®sise := e Inthis case,s; is |e1]: := |ez2]s, and
(le1]i = le2]s, Wi) —— (skip, Wilm; — v;]) where
<_61Ji, Wz> U, m; and(LeJZ-, W~L> ll Vi. By Lemma A.3, we
have(ei, W) | m such thatim|; = m;, and(ez, W) | v
such that{v];, = v;. If m1 = mg, then(e; := ea, W) —
(skip, W[m — wv]). Since|W |; = W;, we have| W [m —
v]|; = Wilm — |v];]. Finally, we have|s'|; = s; = skip
for i € {1,2}. If mi # mg, then(s, W) —— ((le1]1 =
le21 | ler]2 == [e2]2), W) +—— ((skip | [e1]2 :=
le2]2), W[mi — W(maq)[vi/m]]). It is easy to verify that
this execution satisfies condition (ii).

e sise; := encrypt(e2, K). By the same argument as the above

case.
e siscall f.Thens; isalsocall f, and(s;, W;) — (s', W;)
wheres’ = W;(f). Therefore(s, W) — (s, W).

O

Lemma A.5 (Adequacy). Supposes;, W;) —Ti (si, W) for

i € {1,2} are two evaluations in Sweb. Then for an XSweb

configuration(s, W) such that|s|; = s; and |W]; = W; for
i € {1,2}, we have(s, W) 7T (s, W’) such that T|; ~ T
and|T |y ~ Ty, whereTy, is a prefix of Ty, and{k, j} = {1,2}.

Proof. By induction on the sum of the lengths G} and T5:
Ty | + ||

o |T1| + |T>| < 3. Without loss of generality, suppo$g;| = 1.
ThenTy = [Wi]. LetT = [W]. We have(s, W) +—T
(s, W). It is clear that|T'|, = T1, and [T']2 = [W2]is a
prefix of T5.

o 11| + |T2] > 3. If [Ty = 1 or [Tz| = 1, then the

same argument in the above case applies. Otherwise, we have

(s, Wa) = (s, W) w0 (s}, W) and T = [Wi] & T
fori € {1,2}. By Lemma A.4,(s, W) —T" (5", W) such
that

i. Fori € {1,2}, |T"|; ~ [W;,W/] and |s"]; = si.
Since |Ti| + |T3| < |Ti| + |T2|, by induction we have
(s, W"y 1" (s', W) such that for{k, 7} = {1,2},
\T"|; ~ T; and |T" | = T}/, andT} is a prefix of T}.
LetT = T/ @ T”. Then(s, W) T (s, W), and
|T|; ~ Ty, and|T | =~ T}, whereTy, = [Wy, W)'] © T}/
is a prefix ofT}.

i. For {j,k} = {1,2}, |T"|; =~ [W;] and |s]; = s;, and
|T' |k ~ [Wi, W//] and |s|r = s.. Without loss of gen-
erality, supposg = 1 andk = 2. Since(s;, W;) ——T1
(sh, Wiy and(sy, W") —T2 (sh, W3), and|s' |1 = s1
and|s’'|, = s5, and|T3| < |T:|, we can apply the induc-
tion hypothesis tds”, W). By the similar argument in the
above case, this lemma holds for this case.

O

Lemma A.6 (Soundness).Supposes, W) — (s’, W’). Then
(LsJir W]a) —" (Ls']a, [W']a).

Proof. By induction on the derivation ofs, W) —— (s, W').
O

A.2 Typing rules

The type system of XSweb includes all the typing rules in Fig-
ure 3 and has two additional rules for typing bracket constructs.
The bracket constructs captures the differences between two Sweb
configurations. As a result, any effect and result of a bracket con-
struct should have a high labél(¢ £ L) except for a bracket of
two encrypted values. Consider a braclet | v2) with type [7],.

If ¢ < Landr £ L, then low users still cannot differentiate the
two executions from the value. Typeitself may be an encrypted
type [7'],. Then?’ may be low ifr’ has a high label. Let notation
label™ (1) be £ if 7 = B, and 3 is not[r’], or £ U label* (') if

7 = [7']¢. Then a bracket valu@ | v2) has typer if both v, and

v have typer andlabel™ (1) £ L.

F'tovy:7 Thwvy:7 label™ (1) £ L

(V-PAIR) TF (o1 |v2): 7

I'bsy:m T'ksa:m 7LL
TE(s1]s2):7

(S-PAIR)

A.3 Subject reduction

Lemma A.7 (Update). Supposd” - v : 7, andI’ F v’
i € {1,2} implies thatr £ L. Thenl v[v'/7;] : 7.

: 7, and

Proof. If i is e, thenv[v' /m;] = o', and we havd™ - o' : 7. If i is
1, thenv[v' /m;] = (v'||v]2) andT £ L. Sincel’ - v : 7, we have
Tk |[v]e: 7. Byrule (V-PAIR),T (v | [v]2) : 7. Similarly, if ¢
is 2, we also hav& - v[v'/m;] : T. O

Definition A.1 (T' = W). W is well-typed with respect tb, writ-
tenT = W, if dom(I") = dom(W) and the following conditions
hold:

e VYm € dom(I").T'; W F W(m) : I'(m).

e Foranyf,I' - W(f): '(f).

e ForanyK, if label(K) < L, then|W(K)|1 = |[W(K)]2.

 For any mi,mo such thatlabel(mi) U label(mz2) < L,
(WITE (ma) = [W]T" (ma) iff [W 5" (m1) = [W 5" (mo).

Lemma A.8. Supposd’ F e : 7, andl' H W, and(e, W) | v.

Thenl'F v : 7.
Proof. By induction on the structure ef O

Lemma A.9. Supposd” - W, andI" - e : 7 such thatr <
If (e, W) I (v1 | v2), then for anym such thatlabel(m) < L,
LW 7" (m) = (W35 (o) iff (W]5"(m) = W55 (v2).

Proof. By induction on the structure ef O

Theorem A.1 (Subject reduction). Supposel’ + s : 7, and
'+ W, and (s, W); — (s’, W');, andi € {1,2} implies
7« L.Thenl' - s" : 7andl' - W',

Proof. By induction on the evaluation stép, W); — (s’, W'),.
The cases for rules (S5) and (S10) are trivial.

e Case (S1)Inthis cases isif ethens; else so. By the typing
rule (IF), we havd | s; : 7.

¢ Case (S2)By the same argument as case (S1).

e Case (S3)In this cases is call f, ands’ is W(f). By rule
(FUN),T'(f) = 7. Sincel' - W, we havel" |- s : 7.

e Case (S4)By induction.

Case (S6)s is e; := encrypt(es, K), ands’ is skip. Sol" -
s’ : 7 immediately holds. By rule (S6), we have;, W); |
m, and (e2, W); | v. If ¢« € {1,2}, thent £ L, which
implies thatlabel(m) £ L andlabel(K) &« L. Therefore,
I' = W’. Now consider the case thaibel(m) < L. Suppose
I'F ey : 7. If 7« < L, thenwv is not a bracket value, and
label(K) < L. Thus,(i : k) = newkey(K), andc = £(v, k),
andW"” = Wimw— c.K.i]. Itis clear thaf" F c.K.i : [7e]e,
and the decryption result &' (m) is v, which has type-. by
Lemma A.8. Thereforel’ - W”. Furthermore, sincél’ =
W" K~ K'], we havel' - W',

Supposere £ L, andT'(m) = [r¢]e. If label(K) < L, then
¢ £ L, and we havd” + W', Otherwise,label(K) £ L,
and(iq | i2) : (k1 | k2) = newkey(K). Thus,(c1 | c2) =
g(?}, (k}l | k’z)) By rule (V—PAlR),F = (Cl.K.il | CQ.K.iQ)
[Te]e. Since the keys correspondingip andi, are new keys,
there does not existn’ and ¢ and j such thatc;.K.i; #
| W |2"(m'). ThereforeI’ - W',

Case (S7)The interesting scenario is thidts e, ande; has type
[7']¢ such that < L. Supposée;, W) | v, andv = (v1 |v2).
Thenlabel™ (') £ L. By Lemma A9T - W'.

Case (S8)In this cases isif ethens;elsess, andi must bes.
Supposé F e : inty. ByLemmaA.81 - (ni|n2) : int.. By
rule (V-PAIR), ¢ £ L. By rule (IF),I" - s; : 7 fori € {1, 2}.
ThereforeI' - if n; then |s1]; else |s2]; : 7 fori € {1,2}.
By rule (S-PAIR),I"' - s" : 7, because £ L.

e Case (S9) In this cases is (s1 | s2). Without loss of gen-
erality, supposdsi, W)1 —— (s1, W)y, and (s, W) —
{(s1 | s2), W'). By rule (S-PAIR),I" I s; : 7. By induction,
'k sy : 7andl = W’. By rule (S-PAIR),I" - s’ : T since
7L L.

e Case (S11)In this casel' - e; : 7’ ref, and¢ £ L, which
impliesT £ L. By rule (S-PAIR)" - s’ : 7.

e Case (S12)By the same argument as in case (S11).

A.4 Noninterference

Theorem A.2 (Noninterference). If I' I s : 7, thens satisfies the
noninterference property.

Proof. GivenWW; andWs in Sweb, lei?V = W1 WV, be an XSweb
state computed as follows:

Wi(r)
(Wi(r) | Wa(r))

it Wi(r)=Wa(r)

Wi e Wa(r) = { it Wi(r) # Wa(r)

ThenT - Wi ~; W, impliesT W. Supposes;, W;) "
(s, W'y fori € {1,2}. Thenby LemmaA.5, there exists', W')
such that(s, W) —T (s', W), and|T|; ~ T; and| T ~ T},
where{j, k} = {1,2} andT}, is a prefix ofT;. By Theorem A.1,
for eachW’ in T, T' = W', which implies that| W’], =~
|[W']2. Therefore, we hav€ + T; ~p Tj,. Thus,s satisfies the
noninterference property. O

