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When a single unit pathfinds through a map, basic A* search is perfectly adequate. But 
when multiple units are moving at the same time, this approach can break down, often 
with frustrating consequences for the player. Perhaps you have watched in despair as 
your twenty prized samurai all try at once to cross a narrow bridge, and then run in circles 
until they are annihilated. Or maybe your captain has wandered off behind enemy lines 
when two scouts have crossed his intended route. With cooperative pathfinding, these 
problems can be consigned to history. Units will move efficiently through the map, 
avoiding each other’s paths and getting out of the way when necessary. 
 
 

The Problem with A* 
 
Imagine what would happen if you asked everyone in your office to choose a new desk. 
After they’ve had a good look around, you decide to blindfold them. Next, you tell them 
to go to their new desks, in the shortest possible time. Sure, they might already know a 
good route to the new desk, and how to avoid obstacles. But they can still bump into each 
other. Each time they collide, they might replan and select a new route, but this won’t 
prevent further collisions. If your office is spacious and sparsely populated, then 
everyone will quickly find new seats. But with enough people in the office, or narrow 
gaps between the desks, the whole process can degenerate into a never-ending cycle of 
collisions and replanning. 
 
The approach described above is used in most current games. A* search is used to find 
the shortest path to the destination for each unit [Stout00]. This search ignores the 
presence of other units, or perhaps treats them as stationary obstacles. If a collision is 
imminent, the units involved will re-search and select a new path.  
 
In many cases this solution is perfectly adequate. Often, constraints are imposed on the 
level designs to try and avoid the worst-case situation described above. Sometimes, 
however, problems do occur, and the resulting pathfinding behavior can appear odd, 
stupid, or just plain broken. 
 
Cooperative pathfinding attempts to remove the blindfolds, and allows units to know 
each other’s intentions. A* search is still used, but in a way that takes account of other 
units’ movements. At first this will make the search much slower, but later in the article 
we will see ways to regain much of the lost speed. 
 
The only requirement is that units can communicate their planned paths. This is generally 
most appropriate for units on the same side; enemy units will not usually be so 



cooperative. Non-cooperative pathfinding raises the tricky issue of path prediction, and 
isn’t discussed here. 
 
This article assumes familiarity with the basic ideas and terminology of A*. You might 
want to take a look at an introductory A* article [Stout00, Matthews02] to refamiliarize 
yourself before proceeding. 
 
 

The Third Dimension 
 
To tackle the cooperative pathfinding problem, the search algorithm needs to have full 
knowledge of both obstacles and units. However, when units move around there is no 
satisfactory way to represent their routes on a stationary map. To overcome this problem, 
we extend the map to include a third dimension: time. We will call the original map the 
space map and the new, extended map the space-time map. Luckily, you don’t have to be 
Einstein to understand how to use it. The space map consists of a two-dimensional grid of 
locations: Location(x, y). The space-time map consists of a three-dimensional grid 
of cells: Cell(x, y, t). 
 
We will be using a simple 4-connected grid to illustrate the basic ideas, using the actions 
North, East, South, and West. Units also need to have one additional action, to Pause. In 
crowded situations, the best option can sometimes be to remain stationary until a 
bottleneck clears. 
 
Executing North corresponds to moving a unit through the space-time map from 
Cell(x, y, t) to Cell(x, y + 1, t + 1). Similarly, executing Pause moves 
a unit from Cell(x, y, t) to Cell(x, y, t + 1). All five actions have a cost 
of one, corresponding to their duration. An action is legal if there is no obstacle at the 
target location, and no unit using the target cell. The latter is determined by consulting 
the reservation table, explained below.  
 
A* search can now be used on the space-time map. The goal of the unit is to reach the 
destination at any time. A* will find the route that achieves this goal with the lowest cost; 
this is the quickest path to the destination. We will call this procedure space-time A*, to 
distinguish it from the usual application of A*, which we call spatial A*.  
 
In space-time A*, the cost of a path measures the number of actions required to reach the 
destination. The length of the path can be greater than its distance, because of the Pause 
action. Of course, searching an extra dimension increases the amount of work that A* 
will have to do, but we will address this issue later. 
 
 
Reservation Table 
 



Once a unit has chosen a path, it needs to make sure that other units know to avoid the 
cells along its path. This is achieved by marking each cell into a reservation table. This is 
a straightforward data structure containing an entry for every cell of the space-time map. 
Each entry specifies whether the corresponding cell is available or reserved. Once an 
entry is reserved, it is illegal for any other unit to move into that cell. The reservation acts 
like a transient obstacle, blocking off a location for a single time-step in the future. 
  
Using a reservation table and a space-time map, we are able to solve the cooperative 
pathfinding problem. Each unit pathfinds to its destination using space-time A*, and then 
marks the path into the reservation table (Figure 1). Subsequent units will avoid any 
reserved cells, giving exactly the coordinated behavior that we desire. 
 

 
Figure 1 Two units pathfinding cooperatively. (A) The first unit searches for a path and 
marks it into the reservation table. (B) The second unit searches for a path, taking account 
of existing reservations, and also marks it into the reservation table. 
 
Unfortunately, this way of using the reservation table doesn’t prevent two units crossing 
through each other, head to head. If one unit has reserved (x, y, t) and (x + 1, y, t + 1), 
there is nothing to stop a second unit from reserving (x + 1, y, t) and (x, y, t + 1). This 
problem can be avoided by making two reservations for each location involved in the 
action, one at time t and one at time t + 1. Alternatively, head to head collisions can be 
explicitly identified and marked as illegal actions. The figures in this article assume this 
second approach, for clarity. 
 
Space maps are often large (perhaps 256 x 256), and space-time maps will be larger still 
(e.g. 256 x 256 x 256). Fortunately, we know that they are sparse. The number of 
reservations at any time-step should correspond roughly to the number of units in the 
map. This can be implemented efficiently with a hash table, using the space-time index 
(x, y, t) as the key. The std::hash_map class, supplied with certain versions of the 
Standard Template Library, will do just fine. 
 
We now have a complete algorithm for cooperative pathfinding. However, we still have 
plenty of work to do. Naïve application of this algorithm can be very inefficient. Also, 
successful cooperation can depend on the order in which units pathfind, whereas we 



would prefer a more robust algorithm. Finally, units don’t disappear upon reaching their 
destination, so we require some ongoing processing. 
 
 
Choosing a Heuristic  
 
The performance of A* depends upon the choice of heuristic. With the search space 
extended by an extra dimension, the choice of heuristic becomes even more important. 
First, we consider a simple heuristic, and take a look at the problems it causes. We then 
consider a more sophisticated heuristic, before moving on to discuss its implementation. 
 
Manhattan Distance Heuristic 
 
For grid-based maps, the Manhattan distance is often used as a heuristic. It is simply the 
sum of the x and y distances to the destination. It provides a good estimate of the time to 
reach the destination on an open map. However, if the shortest path to the destination is 
circuitous, then the Manhattan distance becomes a poor estimate. To understand this, we 
need to delve into the innards of A*.  
 
During A* search, new locations are kept on the open list and explored locations are kept 
on the closed list. At each step, the most promising location is selected from the open list 
according to its f value. The f value estimates the total distance to the destination, passing 
through that location. It is the sum of g, the distance traveled by A* to reach the location, 
and h, the heuristic distance from the location to the destination.  
 
Using the Manhattan distance heuristic, many locations on the map can have an f value 
that is less than the true distance to the destination. For example, the map in Figure 2A 
shows the f values for all locations visited by spatial A*. Almost the entire map has been 
explored before the destination is found, a phenomenon known as flooding.  
 

 
Figure 2 The Manhattan distance heuristic can be inefficient. (A) Flooding occurs in 
spatial A* when the f values (shown) at many locations are lower than at the destination. 
(B) The number of visits to each location (shown) can be high during space-time A*. (C) 
Using the true distance heuristic, the number of visits to each location (shown) is optimal. 
  



Now consider what happens if we use the Manhattan distance in a space-time map. 
Again, it will work well on an open map. But take a look at the equivalent map in Figure 
2B, which shows the number of times each location is explored by space-time A*. Not 
only will space-time A* explore many more locations at the time of each deviation, it will 
explore those locations at later times too. This is because pausing, or returning to a 
previous location, appears more promising than moving away from the destination. In 
other words, the problem has been magnified many times. 
 
True Distance Heuristic 
 
So, it’s clear that we need a more accurate heuristic for searching space-time. What about 
the shortest distance to the destination, taking account of obstacles, but ignoring units? 
We call this the true distance heuristic, and it is exactly the length of the path given by 
spatial A*. In other words, the true distance heuristic measures the path that a ‘normal’ 
pathfinding algorithm would find to the destination.  
 
If we had access to the true distance heuristic, this would be a great improvement. In fact, 
if no other units get in the way, then space-time A* will proceed directly along the 
shortest path to the destination (Figure 2C). If other units do get in the way, then it will 
explore additional cells. With a crowded map we should expect more deviations from the 
shortest path, and more cells will be explored. The time taken by the search will reflect 
the level of cooperation required. 
 
The heuristic is required at every location explored by space-time A*. If we naïvely 
execute spatial A* from each location, this will be even slower than using a poor 
heuristic. Fortunately, with a little thought we can generate all the heuristics we need 
from a single spatial A* search. We will investigate this idea further after a small detour. 
 
Consistency 
 
An admissible heuristic never overestimates the distance to the goal. A* search with an 
admissible heuristic is guaranteed to find the shortest path. However, there is a stronger 
property, known as consistency [Russell03]. A consistent heuristic maintains the property 
h(A) ≤ cost(A, B) + h(B) between all locations A and B. In other words, the estimated 
distance doesn’t jump around between the locations along a path. 
 
The Manhattan distance is a consistent heuristic. Taking an action will move the unit to 
an adjacent location, reducing its estimated distance by at most one. The true distance 
heuristic is also consistent.  
 
A* has a very useful property when a consistent heuristic is used. As soon as a node is 
put into the closed list, the shortest distance to that node is known. This distance is g, the 
cost from the start to the node. We will make use of this property in the next section. 
 
 



Backwards Search 
 
To efficiently calculate the true distance heuristic, we must make a reverse flip and 
imagine what happens if spatial A* is run backwards. Normally the search begins at the 
unit’s current location, and continues until it reaches the destination. Instead, lets try 
starting at the destination, and searching backwards. 
 
Take a look at Figure 3A, showing the results of running spatial A* backwards, using the 
Manhattan distance heuristic. The search has been completed, and all of the colored 
locations are on the closed list. From the consistency property, we know the shortest 
distance from the ‘start’ to each marked location. But because the search is going 
backwards, we actually know the shortest distance from the destination to the location. In 
other words, the g value for each node contains precisely the quantity we are looking for: 
the true distance to the destination.  
 
Unfortunately, when the backwards search completes, we might not have the true 
distances for all required locations. But this can easily be fixed, by continuing the 
backwards search. A* normally completes when it reaches the goal, but this isn’t a 
requirement. For example, in Figure 3B the shortest path to the unit is of length f = 8. But 
A* can be continued, to find locations on paths which have an estimated length of f = 10, 
f  = 12, and so on. In fact, we can stop it whenever we like. If we discover that we still 
need more locations, we just resume the search until we have them. 
 

 
Figure 3 Backwards A* searches from the goal towards the unit’s current location. (A) 
When the search reaches the unit, the g values on the closed list (shown) give the true 
distance to the destination. (B) The f values at which a location will be explored (shown) 
form a series of contours. 
 
To use this idea in practice, we run two searches side by side. Pathfinding is performed 
by the main search, using space-time A*. At each location explored by the main search, 
the true distance heuristic is requested. This is where the auxiliary search comes in, using 
backwards spatial A*. If the location is already on the closed list, its g value is returned 
immediately. Otherwise, the backwards search is resumed until the requested location is 
put onto the closed list, at which point its g value is returned. 
 



So how much work does the backwards search do? Is it actually saving time, or just 
adding unnecessary computation? It turns out that the backwards search can save a great 
deal of time [Silver05]. Looking again at Figure 3B, we can see a series of contours 
expanded by the backwards search. The innermost contours, f ≤ 8, will contain most of 
the true distances required. If other units interfere with the path, the main search might 
need to look further afield. For example, if a unit needs to wait for three time-steps until a 
choke point clears, then contours up to f ≤ 11 may need to be searched. This will provide 
the true distances for all locations that deviate from the shortest path by up to three steps. 
The amount of work done by the backwards search depends upon the level of cooperation 
required. 
 
 
Limiting the Search Depth 
 
A natural question to ask about cooperative pathfinding is how far ahead in time to look? 
For perfect cooperation long into the future, we would need to look as far ahead as the 
longest path. But this might be hundreds of timesteps, and who knows what could happen 
in that length of time? Most likely, the players will have issued new commands by then 
and all of our hard work will be wasted. There is no point planning for contingencies that 
will never come to pass. 
 
Furthermore, looking far ahead in time has a significant cost, in both time and memory. 
Space-time A* would need to search a larger map, due to the longer time dimension. The 
reservation table would need to store paths for all units, hundreds of steps ahead. Ideally, 
we should have some upper limit on how much cooperation is required – and only search 
ahead that far into the future. This estimate should take account of the nature of the map, 
and the number of units in that locality. A unit crossing a crowded, narrow bridge is 
likely to be delayed considerably longer than a unit passing through a deserted plain.  
 
We will call this limit on cooperation the search depth, denoted by d. For the purpose of 
illustration, we will assume that d is constant for all units, but this need not be the case. 
The depth of space-time A* is limited to d steps. If the destination has not yet been 
reached, then a partial path is returned. The unit begins following the partial path until it 
is necessary to compute a new one. 
 
The idea of a partial path might be ringing alarm bells in your head. Often, following an 
incomplete path can be disastrous – after all, it could turn out to be a dead-end! However, 
space-time A* is using the true distance heuristic to determine its direction; it already has 
perfect knowledge of the shortest path. The purpose of the search is purely for 
cooperation, to determine how to avoid other units’ planned paths. A partial path in this 
context will not normally lead to disaster. Units have a tendency to move around, and so 
most blockages caused by units will be temporary in nature.  
 
Perhaps more importantly, this behavior will still look intelligent to the player – after all, 
this is closer to how humans behave. Remember the thought experiment with the 
blindfolds? Cooperative pathfinding removed the blindfolds. Limiting the search depth 



specifies how far they can see. No one in the office has a detailed description of each 
other’s plans. But by looking around, each person can get a good idea of their nearby 
neighbors’ short term intentions.  
 
Terminal Node 
 
Limiting the search depth to d gives rise to a problem. If the unit doesn’t reach its 
destination, then all partial paths will have a cost of d, so how do we choose between 
them? The answer is to use the true distance heuristic. Consider the partial paths in Figure 
4A. Each partial path has a cost of g = d = 8, because the destination hasn’t been reached. 
However, the true distance from the end of the partial path can be used to estimate the 
total cost of each path. We would like the unit to select the partial path with the smallest 
true distance at the end. 
 
To implement this idea using space-time A*, we introduce a terminal node at the end of 
the search. This node, at depth d + 1, represents the destination. The extra cost to reach 
this node is equal to the true distance from the location at depth d. The terminal node 
effectively summarizes the rest of the search beyond depth d (Figure 4B). The overall 
result of this search is identical to running space-time A* for d steps, and then spatial A* 
until the destination. 
 

 

Figure 4 When the pathfinding depth is limited, the true distance heuristic can 
discriminate between partial paths. (A) All partial paths complete after d = 8 steps. (B) A 
terminal node can represent the remainder of the search in a single step.  
 
 
The Game Must Go On 
 
Games aren’t puzzles. Pathfinding isn’t a single problem that we solve, and then watch 
the solution play out. Units are asked to pathfind intermittently throughout the game. 
They don’t magically disappear at their destination, and other units might still need to 
pass them, for example at a choke point. We need a system that can deal with ongoing 
requests for units to pathfind to a destination, and will continue to cooperate once they’re 
there. 
 



Fixed Depth Search 
 
We already have most of the pieces required for this system. However, we need to make 
some final adjustments to space-time A*. First, it should search to precisely depth d, 
whether or not the destination is reached. Next, we need to modify the cost of actions. 
Normal actions, such as North, should still incur a cost of 1. However, if a unit Pauses on 
its destination, we assign this action a cost of 0.  
 
Using this system, units never stop pathfinding. Each unit plans d time-steps ahead, even 
if they are sitting on the destination. This prevents stationary units from becoming 
permanent obstacles, and means they will try to get out of the way when necessary. If no 
one needs to pass, then the search cost will be minimal – the unit will just select the zero 
cost Pause action at every step.  
 
Interleaving Searches 
 
Each unit searches to depth d, finds a partial path, and starts following it. At some point it 
needs to search again, but when would be best? As it comes to the end of the partial path, 
it becomes less and less cooperative. Eventually it will only have a plan for one step 
ahead – which is no better than the basic A* approach that we are trying to improve 
upon! On the other hand, replanning every time-step would be prohibitively expensive. A 
good compromise is to replan halfway through the partial path. To ensure this will plan 
sufficiently far ahead, the search depth can be set to twice the required level. If we have 
estimated that 8 steps of cooperation are required, then we set d = 16. 
 
Now that units pathfind continually, there will be n units following paths at any given 
time. For performance reasons, we would like an equal number of searches to be 
performed at every time-step. This can be achieved by interleaving the searches, so that 
roughly 2n / d units replan at the same time. If the search depth is constant for all units, 
this is particularly straightforward to achieve. Just stagger each unit’s initial search to 
begin on a different time-step, and they will maintain an even interleave for the whole 
game. 
 
Interleaving searches can also make cooperative pathfinding more robust. Consider the 
paths reserved by two successive units. The first unit selects and reserves a partial path 
from time t to t + d. At the next time-step, the second unit will plan its partial path from 
time t + 1 to t + d + 1. The last step of this path doesn’t overlap with the first unit; it is 
chosen independently. In other words, every unit gets an opportunity to be the top dog, 
making the first reservation at a new time-step. The pecking order rotates around, 
preventing any single unit from hogging the reservation table. In addition, deadlocks can 
often be resolved when the order rotates. We have killed two birds with one stone, 
improving both the performance and the robustness! 
 
Resuming Backwards Search 
 



In our quest to discover true distances, we devised a backwards A* search that can be 
resumed on demand. But now units are following partial paths, and replanning at regular 
intervals. The question is, can the backwards search be reused when units replan? 
Happily, the answer is “yes” – if you have plenty of memory. The drawback is that the 
backwards A* data (open and closed lists) must be stored separately for every unit. 
 
As you will remember, backwards A* begins at the destination and searches towards the 
unit’s current location. Because the Manhattan distance is consistent, the g values on the 
closed list are the true distances to the destination. But by the time the unit replans, it will 
have moved location. If we try to resume the search using the old data, the estimated 
distances could become inconsistent.  
 
To avoid this problem, the unit pretends that it stayed put. It searches backwards towards 
its original location, resuming the search as required. The Manhattan distance remains 
consistent, and the true distances are generated to the destination. The only question is – 
will it find the locations that it needs?  
 
Take another look at the contours in Figure 3B. If the unit is close to the original shortest 
path, then it will quickly generate all required true distances. But if it has been pushed far 
off-course, it could take many contours before the required locations are found – possibly 
most of the map. Test how much work the backwards search is doing. If it grows too 
large, then it is probably worth restarting it from scratch. 
 
 
Unit Priorities 
 
Up until now we have assumed that all units are created equal. However, in many games 
this is not the case. The player’s character, heroes, or arch-enemies could all be 
considered higher priority by the pathfinding system. Ideally, lesser units should be 
giving way to more important ones. 
 
One way to achieve this effect is to sort the pathfinding order according to unit priority. 
But if partial paths and interleaving are used then all units get an approximately equal 
opportunity to reserve their paths. A better approach is to store priorities in the 
reservation table. When a unit of priority p finds a path, it makes its reservations at 
priority p. When another unit with priority q > p plans its path, it will ignore those 
reservations. If it chooses a path that overrides existing reservations, the overridden units 
are flagged. Flagged units must then find an alternative path, taking account of the new 
reservations at priority q. 
 
A simple, binary priority system can also give units a second chance to find a path. 
Despite our best efforts, it is possible that a unit could have no legal path available. In 
this desperate situation the unit can be temporarily promoted to high priority. It can then 
find a way out of trouble, leaving the low priority units to deal with the consequences. If 
any of these units become stuck, they will be promoted too. They will also search for new 
paths, only taking account of the other high priority units. There is no guarantee that this 



will succeed; there are always situations in which no solution exists. But on reasonable 
maps this technique provides additional security, at the cost of some additional searches. 
 
 
Reservation Table Revisited 
 
So far, we have assumed that paths fit neatly into a space-time grid. There was a one-to-
one correspondence between the cells used by space-time A* and the entries of the 
reservation table. However, there is no reason this has to be true. Each unit can structure 
space-time in the most appropriate way for its own search; the cells of space-time can be 
of any size. But the reservation table has a fixed structure; its entries are of fixed size and 
are shared between all units. 
 
For example, two different units might move at different speeds. A slow unit will take 
longer to move to a new location, requiring a space-time grid with long time-steps 
(Figure 5A). In contrast, a fast unit would have much shorter time-steps (Figure 5B). 
Space-time A* pathfinds through the appropriate grid for that unit’s speed. The 
reservation table has its own structure, and is used to communicate availability between 
the different units (Figure 5C). 
 

 
Figure 5 The space-time map can be different from the reservation table. (A) A slow unit 
has deep cells in its space-time map. (B) A fast unit has shallow cells in its space-time 
map. (C) The reservation table is shared between both units, despite their differences. 
 
The footprint of an action determines the set of entries in the reservation table that 
correspond to a single move in space-time. For example, the footprint of a diagonal move 
might include a cube of eight cells (Figure 6A). A large unit’s actions would have a wider 
footprint at each time-step (Figure 6B). Slow actions would have a footprint lasting for 
more time-steps (Figure 5A). Curved actions would include all entries intersected by the 
motion through space-time (Figure 6C).  
 



 
Figure 6 Action footprints for: (A) diagonal movement, (B) a large unit, (C) curved 
movement, d) varying speeds. 
 
At each step of space-time A*, all actions are tested for legality. To be considered legal, 
every entry in the footprint of the action must be available in the reservation table. At the 
end of the search, the resulting path is reserved. All entries in the footprints of the actions 
along the path must be marked into the reservation table. 
 
If footprints become large, then many entries will need to be checked. However, the 
granularity of the reservation table can be initialized to any value, depending on the 
pathfinding requirements. A coarse reservation table will simplify the process of 
cooperation, but prevent coordination at close quarters. A fine-grained reservation table 
will require more lookups, but enable tighter maneuvers. 
 
 
Conclusion 
 
Cooperative pathfinding is a general technique for coordinating the paths of many units. 
It is appropriate whenever there are many units on the same side who are able to 
communicate their paths. By planning ahead in time as well as space, units can get out of 
each other’s way and avoid any conflicting routes. 
 
Implementing a space-time search can be tricky to get right. The techniques presented 
here will get you started, and no doubt you will come up with a few more of your own. 
Many of the usual enhancements to spatial A* can also be applied to space-time A*. 
Moreover, the time dimension gives a whole new set of opportunities for pathfinding 
algorithms to explore. 
 
Try out the ideas in this article. Take the blindfolds off your units. You might be 
surprised at how intelligent they look, and with any luck, so will the player! 
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AIWisdom.com Abstract 
 
Cooperative pathfinding is a general technique for coordinating the movements of 
multiple units. Units communicate their planned paths, enabling other units to avoid their 
intended routes. This article explains how to implement cooperative pathfinding using a 
space-time A* search. Moreover, it provides a number of improvements and 
optimizations, which allow cooperative pathfinding to be implemented both efficiently 
and robustly. 
 


