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Abstract

A mixed-model assembly line requires the solution of a short-term sequencing prob-
lem which decides on the succession of di�erent models launched down the line. A
famous solution approach stemming from the Toyota Production System is the so
called Level Scheduling, which aims at distributing the part consumption induced by
the model sequence evenly over time. Traditional Level Scheduling seeks to closely
approximate target demand rates at every production cycle, however, such a strict
leveling is only required if parts are directly pulled from a connected feeder line. In
real-world assembly lines, parts are predominately delivered in (small) batches at
certain points in time. In such a situation, a Just-in-Time supply is already facili-
tated whenever the cumulative consumption is leveled in accordance with each part's
delivery schedule, while the exact consumption pattern between two delivery points
seems irrelevant. The paper on hand provides new Level Scheduling models, proves
complexity, presents exact and heuristic solution procedures and shows inferiority of
traditional Level Scheduling for such a batched JIT-supply of parts.

Keywords: Mixed-model assembly line; Just-in-Time; Sequencing; Level Scheduling;
Batched part supply

1 Introduction

In a mixed-model assembly line di�erent models of a common base product are assembled in

intermixed production sequences (lot size one). Although (almost) any succession of models is

technically possible, the chosen product sequence very well in�uences di�erent economic values.

In addition to work overloads induced by the direct succession of work intensive models at a

station (see Tsai, 1995), from a supply view, demand peaks for parts need to be avoided. Peaks
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in part consumption resulting from an �unleveled� model sequence hinder a cost e�cient JIT-

supply, because enlarged safety stocks are required to ensure a reliable part supply. Consequently,

the so-called �Level Scheduling� was developed as part of the famous Toyota Production System

to evenly spread the part consumption over the planning horizon (see Monden, 1998). A detailed

discussion of Level Scheduling and alternative sequencing procedures is provided in a latest review

paper by Boysen et al. (2009).

The traditional Level Scheduling, which was initially formalized by Monden (1998), aims at a

leveling of each part's consumption pattern. Kubiak (1993) refers to this case of Level Scheduling

as Output Rate Variation (ORV) problem, because materials constitute the outputs of preceding

production levels, whose actual demand rates are to be leveled. Within the ORV problem each

part type receives a target demand rate, which is determined by distributing the material's overall

demand evenly over the planning horizon. Then, a sequence is sought where actual demand rates

for parts are as close as possible to the ideal target rates in every production cycle. Figure 1

gives a schematic representation of the basic idea of Level Scheduling for a single part.

Figure 1: Schematic representation of Level Scheduling for a single part

As the ORV aims at a steady demand rate in every production cycle, it seems especially

adequate whenever material demands are directly pulled throughout the whole production system

(Boysen et al., 2009). This assumption is generally ful�lled if preceding production levels are

located in immediate vicinity of the �nal assembly and are, e.g., directly coupled via feeder

lines. Today's trend of reducing vertical integration, however, leads to a dramatic decrease in

the number of parts produced in-house.

In automotive industry, �nal assembly lines are typically supplied with parts utilizing the fol-

lowing delivery paths (percentage ranges given represent the situation at di�erent �nal assembly

lines of a major German car manufacturer):

• Especially, bulky parts are delivered directly to the respective line segment in large load

carriers, often by truck via a dock door near to the assembly area (about 10 to 30%).

• Smaller parts are stacked in small load carriers of given capacity which are delivered by

forklifts or automated guided vehicles from the central store (about 30 to 60%).

• An increasing number of parts (15 to 30%) are delivered from decentralized �supermarkets�

where parts are intermediately stored and commissioned in smaller carriers. From the
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supermarket, tugger vehicles supply parts typically on the basis of a �xed delivery schedule

(with cycles of 30 minutes to two hours).

• Some car speci�c parts (especially smaller ones) are pre-packaged in special boxes which

accompany their respective car model directly on the conveyor belt (about 10 to 15%).

• Only several parts are delivered in a continuous manner to the line, e.g., drive chains,

which are pre-assembled in-house (in a factory-in-factory setting) directly connected with

the �nal assembly via a feeder line (see Boysen et al., 2008).

This overview of delivery paths reveals that more than 80% of parts (�rst three paths) are

delivered batch-wise, whereas the fraction of parts delivered in a (quasi-)continuous manner is

much smaller (last two paths). Thus, a modi�cation of Level Scheduling for batched deliveries

seems essential to better support real-world part supply.

Note that even if parts are supplied just-in-sequence (JIS), delivery usually takes place in a

batched manner using some type of JIS-trolley. This situation simpli�es the leveling problem

because it is, from the logistics point of view, not anymore necessary to di�erentiate between

several versions of the same part, because the required part versions are arranged at the JIS-

trolley as de�ned by the �nal model sequence. Instead, product models are only subdivided into

those having the option that requires a version of the part and the others which do not have the

option and, thus, do not need the part at all.

Under batched deliveries, a leveling of part consumption is still a valuable objective for model

sequencing, because demand peaks are avoided and, thus, emergency deliveries and safety stocks

are reduced. However, as the production stages are more loosely coupled, an adjustment towards

an ideal production rate in all cycles seems of minor relevance. Instead, the aggregated part

consumption, cumulated over all production cycles between two delivery points, needs to be

leveled over the whole delivery schedule (all delivery points), whereas the detailed demand pattern

between two delivery points is irrelevant from a JIT point of view.

A leveling of cumulated part consumption over the delivery points can be executed in two

di�erent ways depending on the delivery policy applied. First, if a �xed-schedule-policy is applied,

delivery schedules are determined upfront, so that �xed delivery points are speci�ed for a part,

whereas the delivered part quantity is adjusted according to the actual demand induced by

the model sequence up to the next delivery point. In this case, a leveling of cumulated part

consumption over all delivery points should be aimed at. Alternatively, if part supply is organized

according to a �xed-quantity-policy, the delivered quantity per part is �xed, e.g., by a �xed carrier

capacity, and a replenishment is initiated whenever the inventory near the line is exhausted and

the respective part is needed again. By sequencing, part demands are to be adjusted, so that

batched deliveries per part are evenly distributed over the planning horizon such that a regular

delivery schedule can be derived. It is the aim of the paper to adopt the idea of traditional Level

Scheduling for these two JIT-replenishment policies typical for real-world mixed-model assembly

systems.
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M set of models/products (index m)
T number of production cycles (index t)
P set of parts/materials (index p)
Dp set of �xed delivery points for part p (index τ)
apm demand coe�cient: number of units of part p required for producing

one unit of model m
dm demand for units of model m
rp target demand rate with respect to part p
qp �xed delivery quantity of part p
sp initial inventory of part p at the beginning of the planning horizon
ypt binary variable: 1, if part p is delivered in cycle t; 0, otherwise
xmt binary variable: 1, if model m is scheduled at cycle t; 0, otherwise

Table 1: Notation

The remainder of this paper is organized as follows. Section 2 brie�y summarizes existing

Level Scheduling literature. In Section 3, two novel Level Scheduling models adopted to the

aforementioned replenishment situations are described in detail. Sections 3.1 and 3.2 consider

the �xed-schedule-policy, where the delivery quantities for a given schedule are to be leveled,

and the �xed-quantity-policy, where intervals between part deliveries are to be leveled for given

delivery quantities, respectively. Section 4 presents exact (Dynamic Programming) and heuristic

(Simulated Annealing) solution procedures. A comprehensive computational study in Section

5 investigates algorithmic performance of the solution procedures (Section 5.2) and shows that

traditional Level Scheduling not su�ciently supports batched JIT-supply (Section 5.3). Finally,

Section 6 concludes the paper.

2 Literature review

The traditional ORV problem was �rst formalized by Monden (1998), who also introduced the

famous �Goal Chasing Methods� for solving ORV. Further prominent contributions stem from

Kubiak (1993), Bautista et al. (1996), Kubiak et al. (1997) as well as Zhu and Ding (2000).

Detailed reviews are provided by Kubiak (1993), Dhamala and Kubiak (2005) as well as Boysen

et al. (2009). With the notation of Table 1 the ORV problem can be formalized as follows.

Consider a setM of product models each of which having a demand dm for copies of this model

m to be produced during a speci�c period (e.g. one day or shift) divided into T production cycles,

with
∑

m∈M dm = T . Each model m consists of di�erent parts p (with p ∈ P ). The production
coe�cients apm specify the number of units of part p needed in the assembly of one unit of

product m. The matrix of coe�cients A = (apm) is called �bill of material�. By means of the

total demand for part p required by all copies of all models m throughout the planning horizon,

the target demand rate rp per production cycle is calculated as follows:
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rp =
∑

m∈M dm · apm
T

∀ p ∈ P (1)

Together with the binary variables xmt, which indicate whether productm is produced in cycle

t (xmt = 1) or not (xmt = 0), and the notation of Table 1 the ORV problem can be modeled as

follows (Joo and Wilhelm, 1993; Monden, 1998; Bautista et al., 1996):

(ORV ) Minimize Z =
∑
p∈P

T∑
t=1

(∑
m∈M

t∑
τ=1

xmτ · apm − t · rp

)2

(2)

subject to

T∑
t=1

xmt = dm ∀m ∈M (3)

xmt ∈ {0, 1} ∀m ∈M ; t = 1, . . . , T (4)

Objective function (2) considers deviations of actual from ideal cumulative demands per pro-

duction cycle t and part p. These deviations are weighted by a penalty function (·)2 to quantify

the respective distances. The separate deviations for all t and m are aggregated to a global

objective value by an aggregation function, which is to be minimized. See Boysen et al. (2009)

for a detailed description of this and other penalty and aggregation functions considered in the

literature. We restrict our investigation to the �sum of squared�-deviations case, although models

and algorithms can be easily adopted to alternative formulations. Constraints (3) enforce the

products to be produced in the demanded quantities and (4) de�ne binary variables xmt. Ad-

ditional constraints might be required, if the storage space at the stations of the line is scarce.

This extension is investigated by Boysen et al. (2007a).

Simpli�ed Level Scheduling approaches (labeled �Product Rate Variation Problem� (PRV)),

which only level the di�erent product models over time are discussed, e.g., by Miltenburg (1989),

Kubiak and Sethi (1991), Steiner and Yeomans (1993) as well as Inman and Bul�n (1991).

Recently, Boysen et al. (2007b) showed that these simpli�ed PRV procedures are not su�cient

to cope with the high product variety of modern mixed-model assembly lines.

Some alterations of Level Scheduling required whenever parts are not steadily pulled from

preceding production stages via feeder lines but delivered in batches are already discussed by

Aigbedo (2004). However, Aigbedo investigates the �xed-schedule-policy from a di�erent point

of view. He does not introduce an adopted sequencing approach but three measures (so-called

�variance metrics�), which were developed to asses the suitability of given sequences dor batched

JIT-supply. He generates sequences by a two-stage ORV heuristic and concludes that ORV

sequences are also able to level the part consumption over given delivery points. This conclusion

is not astounding as a sequence which levels part consumption over the complete planning horizon

should also lead to a (more or less) level consumption over a subset of cycles, i.e., the given set of
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delivery points. However, he does not compare the ORV solutions with optimal solutions gained

for the actual (modi�ed Level Scheduling) problem with batched delivery.

Such a comparison is part of our computational study and our results show that ORV solutions

are much less suited than procedures which directly treat the actual problem. Moreover, if part

consumption is leveled in every cycle (ORV) although a leveling is merely required at a few deliv-

ery points, the degrees of freedom for model sequencing are unnecessarily reduced. This property

is especially undesired whenever a multi-objective scheduling approach, e.g., additionally con-

sidering work overloads, is applied like it is often done in real-world sequencing procedures (see

Boysen et al., 2009). In this case, the number of �good� sequences according to the leveling

objective is considerably reduced, because demand rates need to be leveled in each single cycle.

Consequently, solutions also ful�lling the aims of the alternative sequencing objectives, i.e., as a

compromise solution, become more rare in the solution space. Thus, it seems recommendable to

introduce a novel Level Scheduling approach, which levels demand exclusively over those points

in time a balancing is actually aimed at and keeps the degrees of freedom at the desired level.

Moreover, we also investigate the �xed-quantity-policy, which is not yet covered in literature in

spite of its practical importance.

3 Level Scheduling models for batched part deliveries

In this section two novel Level Scheduling problems are described in detail. First, we introduce

the approach designated to a �xed-schedule-policy for part replenishment. Then, Section 3.2

deals with the alternative approach for a �xed-quantity-policy.

3.1 Fixed-schedule-policy

A �xed-schedule-policy assumes a delivery schedule is determined upfront, so that cdelivery

points for each part are �xed, e.g., some part might be delivered every two hours, another twice

a shift. These delivery points are represented by the sets Dp containing the production cycles at

which deliveries are scheduled per part p. In order to get a manageable overall delivery schedule,

delivery points are often arranged equidistantly but might also be given in a less regular manner.

The delivered quantities of parts are variable and amount to the cumulated consumption from

the respective delivery point up to the next (or the last production cycle, if no succeeding delivery

point exists). Consequently, the cumulated part consumption of each part p is to be leveled over

all given delivery points Dp, so that our modi�ed Level Scheduling can be formalized as follows:

(LSS) Minimize Z =
∑
p∈P

∑
τ∈Dp

(∑
m∈M

τ∑
t=1

xmt · apm − τ · rp

)2

(5)

subject to (3)�(4)

Model LSS represents a Level Scheduling where deviations between actual and ideal part
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consumption are merely measured at the given delivery points Dp. This modi�ed version of

Level Scheduling is an NP-hard optimization problem, as can be easily shown on the basis of

Kubiak's (1993) NP-hardness proof for the min-sum ORV. As any ORV-instance corresponds

to an instance of LSS with a part delivery in each cycle, i.e. |Dp| = T ∀ p ∈ P , the reduction
employed in Kubiak (1993) is equally valid for LSS .

3.2 Fixed-quantity-policy

In a �xed-quantity-policy, the delivery quantity qp of each part p ∈ P is given by the capacity of

the container used for this part. Then, we aim at distributing the sequence dependent delivery

points evenly over time, such that a regular delivery scheme can be realized. Consequently, a

modi�ed target rate r′p is to be de�ned, which becomes a so-called target delivery rate by dividing

the overall number of deliveries by the number of cycles T . To compute the number of required

deliveries, the total demand
∑

m∈M dm · apm for part p is reduced by the initial inventory sp and

divided by the delivery quantity qp and rounded up (this might result in an oversupply which

constitutes the initial inventory for the next shift or day, respectively):

r′p =

⌈∑
m∈M dm·apm−sp

qp

⌉
T

(6)

Example: Consider a shift consisting of 400 production cycles, where 175 sunroofs (p = 1) are
to be installed at car models. If these sunroofs are delivered in �xed quantities of q1 = 50 and

the initial inventory s1 is not greater than 24, then four deliveries are required and the target

rate amounts to r′1 = 1
100 . If s1 ∈ [25, 74], then three deliveries are su�cient and the target rate

amounts to r′1 = 3
400 .

With the help of this adopted target rate and additional variables ypt and lpt de�ning whether

a delivery of part p occurs in cycle t (ypt = 1) or not (ypt = 0) and the inventory per part p in

cycle t, respectively, the model LSQ can be formalized as follows:

(LSQ) Minimize Z =
∑
p∈P

T∑
t=1

(
t∑

τ=1

ypt − t · r′p

)2

(7)

subject to (3)�(4) and

lpt =
t∑

τ=1

ypt · qp + sp −
∑
m∈M

t∑
τ=1

xmt · apm ∀ p ∈ P ; t = 1, . . . , T (8)

0 ≤ lpt ≤ qp ∀ p ∈ P ; t = 1, . . . , T (9)

ypt ≤
∑
m∈M

xmt · apm ∀ p ∈ P ; t = 1, . . . , T (10)

ypt ∈ {0, 1} ∀ p ∈ P ; t = 1, . . . , T (11)
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In objective function (7) deviations per part p and cycle t are de�ned as the squared di�er-

ence between the actual and intended number of deliveries up to t. The balance equations (8)

de�ne the inventory lpt of part p at (the end of) cycle t by summing up initial inventory sp and

cumulated delivery up to t and subtracting cumulated part demand including t. Constraints (9)

enforce that deliveries are executed not before a part's inventory is exhausted. Inequalities (10)

assure that deliveries are executed just-in-time, i.e., only in cycles t where the respective part

p is actually required for assembly. Together with constraints (9) this way it is assured that a

delivery is executed exactly in that cycle the inventory level is zero and the part is required again

for assembly. Finally, constraints (11) de�ne binary variables ypt.

Remarks:

• As expected, the problem LSQ is also NP-hard as is proven in the appendix.

• Constraints (9) represent a one-bin-policy usually applied if space is very scarce, i.e., only

(at most) one bin with a part p is located near the line at a time. Another typical setting

is the two-bin-policy which means that always a second full container is available and

exchanged with the �rst whenever the latter has been emptied. At the next delivery point,

the empty one is exchanged by a new full one. The two-bin policy can also be handled in

the model by changing (9) to 0 ≤ lpt ≤ 2 · qp for all p and t.

• The JIT-constraints (10) claim that no delivery should be made before a part is needed

again. In order to ensure that no shortage occurs, actual delivery will usually consider

uncertain lead times in practice.

• Both models could be easily extended by additionally considering space restrictions at the

stations as proposed by Boysen et al. (2007a).

4 Solution procedures

In this section, exact and heuristic algorithms for our novel Level Scheduling problems are pre-

sented. In Section 4.1, we present a Dynamic Programming (DP) approach, which is an adoption

of the procedure of Bautista et al. (1996) for the ORV problem. Then, Section 4.2 presents a sim-

ple heuristic simulated annealing approach, which can be applied to larger instances of real-world

size.

4.1 A Dynamic Programming procedure

The DP approach is based on an acyclic digraph G = (V,E, c) with a node set V divided into

T + 1 stages, a set E of arcs connecting nodes of adjacent stages and a node weighting function

c : V → R. Each sequence position t is represented by a stage which contains a subset Vt ⊂ V
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of nodes representing all possible states of the production system in cycle t. Additionally, a

start level 0 is introduced. Each index i ∈ Vt identi�es a state (t, i) de�ned by the vector Xti of

cumulated quantities Xtim of all models m ∈ M produced up to cycle t. It is su�cient to store

the cumulated quantities instead of the partial sequence up to cycle t, because the objective

function is separable with respect to cycles.

The following conditions de�ne all feasible states to be represented as nodes of the graph:∑
m∈M

Xtim = t ∀ t = 0, . . . , T ; i ∈ Vt (12)

0 ≤ Xtim ≤ dm ∀m ∈M ; t = 0, . . . , T ; i ∈ Vt (13)

Obviously, the node set V0 contains only a single node (initial state (0, 1)) corresponding to the

vector X01 = [0, 0, . . . , 0]. Similarly, the node set VT contains a single node (�nal state (T, 1))
with XT1 = [d1, d2, . . . , d|M |]. The remaining stages have a variable number of nodes depending

on the number of model vectors Xti.

Two nodes (t, i) and (t+ 1, j) of two consecutive stages t and t+ 1 are connected by an arc if

the associated vectors Xti and Xt+1j di�er only in one element, i.e., a copy of exactly one model

is additionally produced in cycle t + 1. This is true if Xtim ≤ Xt+1jm holds for all m ∈ M ,

because both states are feasible according to (12) and (13). The overall arc set is de�ned as

follows:

E = {((t, i), (t+ 1, j)) | t = 0, . . . , T − 1; i ∈ Vt; j ∈ Vt+1 and Xtim ≤ Xt+1jm ∀m ∈M} (14)

The produced quantities of all models up to cycle t in a state (t, i) directly determine the

cumulative demands Dtip for all parts p ∈ P of the respective partial schedule:

Dtip =
∑
m∈M

Xtim · apm ∀ p ∈ P ; t = 0, . . . , T ; i ∈ Vt (15)

Then, to each node corresponding to a state (t, i) a unique node weight cti is assigned, which

depends on the Level Scheduling approach to be solved. For the LSS problem with given delivery

schedules Dp the sum of squared deviations of the actual cumulated demand Dtip from the part-

speci�c target rate are to be added whenever a part delivery is scheduled in production cycle

t ∈ Dp. Consequently, node weight c
S
ti for a �xed-schedule-policy and model LSS amounts to:

cSti =
∑
p∈P

(Dtip − t · rp)2 , if t ∈ Dp

0, otherwise
∀ t = 0, . . . , T ; i ∈ Vt (16)

Alternatively, if a �xed-quantity-policy is applied and model LSQ is to be solved, node weight

cQti is calculated as follows:
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cQti =
∑
p∈P

(⌈
max{0; Dtip − sp}

qp

⌉
− t · r′p

)2

∀ t = 0, . . . , T ; i ∈ Vt (17)

Here, for each part p the actual number of deliveries to satisfy cumulated demand Dtip of the

respective node (minus initial stock sp) is to be calculated, so that the squared deviation from

the intended number of deliveries can be computed.

With this graph on hand, determining optimal solution reduces to �nding the shortest path from

the unique source node at level 0 to the unique sink node at level T , where the length of the

path is given by the sum of weights of the nodes contained. The length of the shortest path is

equal to the minimum sum of squared deviations induced by the optimal model sequence. The

corresponding model sequence π can be deduced by considering each arc ((t, i), (t + 1, j)) with
t = 0, ..., T − 1 on the shortest path SP . The model to be assigned at sequence position t+ 1 is

the only one for which Xt+1jm −Xtim = 1 holds.

4.2 A Simulated Annealing procedure

As both problems were shown to be NP-hard the aforementioned exact DP procedure will not

be able to solve instances of real-world size. Thus, e�cient heuristic procedures are required.

We now present a straight forward Simulated Annealing (SA) procedure for this setting.

SA is a stochastic local search meta-heuristic, which bases the acceptance of a modi�ed neigh-

boring solution on a probabilistic scheme inspired by thermal processes for obtaining low-energy

states in heat baths (e.g., Kirkpatrick et al., 1983; Aarts et al., 1997). Although other meta-

heuristics like tabu search are possible, we decided for SA as it is a quite simple yet powerful

approach, which is successfully applied to real-world sequencing problems, e.g., at the French car

manufacturer Renault (see Solnon et al., 2008). Our SA approach operates on a vector π with

elements πt (with t = 1, . . . , T ), storing the model actually assigned to the respective sequence

position t. As a neighborhood function we apply a simple swapping move, where two models at

randomly determined sequence positions are interchanged.

The initial solution vector is randomly �lled with models m in accordance with their demands

dm. For a given sequence vector π the respective objective function value Z(π) depends on the

Level Scheduling problem to be solved. For model LSS with a given delivery schedule, objective

value ZS(π) can be determined as follows, where πt represents the model scheduled at position

t of sequence π:

ZS(π) =
∑
p∈P

∑
τ∈Dp

(
τ∑
t=1

apπt − τ · rp

)2

(18)

For the alternative problem LSQ and a �xed-quantity-policy objective value ZQ(π) is calcu-
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lated as follows:

ZQ(π) =
∑
p∈P

T∑
t=1

(⌈
max{0;

∑t
τ=1 apπτ − sp}
qp

⌉
− t · r′p

)2

(19)

With these objective values on hand a neighborhood solution π′ obtained by a swap move is

accepted to replace the actual solution π as the starting point for the next iteration on the basis

of the following traditional probability scheme (e.g., Aarts et al., 1997):

Prob(π′ replacing π) =

1, if Z ·(π′) ≤ Z ·(π)

exp
(
Z·(π)−Z·(π′)

C

)
, otherwise

(20)

Our SA is guided by a simple static cooling schedule (see Kirkpatrick et al., 1983). The initial

value for control parameter C = Z ·(π∗) · 10 is chosen, where π∗ is a randomly drawn model

sequence. Control parameter C is continuously decreased in the course of the procedure by mul-

tiplying it with factor 0.9995 in each iteration. A total of 50,000 potential moves to neighboring

solutions are evaluated by our SA approach and a solution with minimum objective function

value Z ·(π) is returned. Within our computational study, we only report results for the values of

the control parameters described above, as preliminary studies indicated that these parameter

values deliver a reasonable compromise between runtime and solution quality.

Remark: Note that the solution value of a neighboring solution remains unchanged if the

swapped positions are not separated by at least one part's delivery point. This fact is considered

when generating neighboring solutions and might considerably reduce the size of the neighbor-

hood in each iteration. As a consequence, search will be accelerated compared to ORV. This

will be particularly useful for developing specialized exact and heuristic solution procedures. For

example, within a branch & bound or bounded DP algorithm dominance relationships can be

used to reduce the number of nodes to be examined. This potential reduction of solution e�ort

comes along with enlarged degrees of freedom and relevance for practice as argued at the end of

Section 2.

5 Computational study

As no established test-bed is available for a computational study, we �rst elaborate on the

instance generation. Then, algorithmic performance of our solution procedures is investigated.

Finally, we compare the results of our novel approaches with traditional Level Scheduling.

5.1 Instance generation

In our computational study, we distinguish between two classes of test instances: case A instances,

which are small enough to be solved to optimality, and case B instances, which represent instances
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of real-world size and, thus, need to be solved heuristically. To generate instances of our modi�ed

Level Scheduling models LSS and LSQ, respectively, the input parameters listed in Table 2 are

used to produce the demand coe�cients for parts apm, model demands dm, delivery schedules

Dp, and delivery quantities qp.

values
symbol description case A case B

T number of production cycles 10, 15, 20 50, 100, 150
|M | number of models 5, 7, 9 5, 10, 15
|P | number of parts 4, 6, 8
PROB probability of a model m con-

taining part p
0.3, 0.5, 0.7

sp initial inventory of part p 0
N number of deliveries per part 2, 3 2, 3, 4, 5

Table 2: Parameters for instance generation

Within each test case, the parameters are combined in a full-factorial design, so that 324 (648)

di�erent case A (case B) instances were obtained. On the basis of a given set of parameters each

single instance is generated as follows:

• Demand coe�cient matrix: For each individual demand coe�cient apm a uniform [0, 1]-
random number rnd is drawn and compared to the probability PROB of a model containing

the respective part, so that coe�cients can be �xed with regard to the following formula:

apm =

{
1, if rnd ≤ PROB
0, otherwise

∀m ∈M ; p ∈ P (21)

• Demand for models: At �rst, each model demand dm is initialized to one unit. Then,

demands of randomly drawn (uniformly distributed) models are increased by one unit,

until the overall model demand
∑

m∈M dm equals the given number of production cycles

T .

• Delivery schedules: For an instance of LSS the sets Dp of delivery points per part p are

determined by dividing the number of cycles T by the number of deliveries N : td =
⌊
T
N

⌋
.

Then, approximately any td cycles a delivery point is added as follows: Dp = {n · td+ rnd :
n = 1, . . . , N − 1} ∀ p ∈ P , where rnd is an equally distributed random integer drawn from

the interval [−1,+1]. Additionally, the �rst production cycle is chosen as a delivery point

for any part due to having set the initial inventory to zero.

• The delivery quantities required for an LSQ-instance are generated by dividing the overall

part demand by the number of deliveries N : qp =
⌈∑

m∈M apm·dm
N

⌉
∀ p ∈ P .

All generated instances can be downloaded from the internet (www.assembly-line-balancing.de

-> data sets).
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LSS (�xed delivery schedule) LSQ (�xed delivery quantity)
DP SA DP SA

T |M | cpu avg gap max gap #opt cpu cpu avg gap max gap #opt cpu
[sec] [%] [%] [sec] [sec] [%] [%] [sec]

10 5 <0.1 0.0 0.0 18 0.177 <0.1 0.0 0.0 18 0.196
7 <0.1 0.0 0.0 18 0.179 <0.1 0.0 0.0 18 0.198
9 <0.1 0.0 0.0 18 0.180 <0.1 0.3 5.4 17 0.200

15 5 <0.1 0.0 0.0 18 0.182 <0.1 0.8 12.1 15 0.208
7 0.1 0.0 0.0 18 0.185 0.1 0.8 7.7 15 0.209
9 0.4 0.5 8.7 17 0.184 0.5 0.3 2.4 15 0.211

20 5 0.1 0.0 0.0 18 0.194 0.1 0.4 3.0 14 0.218
7 1.0 0.0 0.0 18 0.194 1.1 1.3 10.3 14 0.221
9 7.2 1.0 10.3 16 0.194 7.3 1.4 8.1 12 0.223

total 1.0 0.2 10.3 159 0.185 1.0 0.6 12.1 138 0.209

Table 3: Algorithmic performance: Results for case A instances

5.2 Algorithmic performance

The methods described above have been implemented in C#.NET (Visual Studio 2008) and run

on a 2.1 GHz PC, with 2 GB of memory. First, case A instance are evaluated to investigate

the algorithmic performance of exact DP and heuristic SA. Table 3 summarizes the results in

dependency of the number of cycles T and number of model |M |, where �avg gap� and �max gap�

denote the average and maximum deviation of our SA procedure from optimum (DP) with each

single deviation measured by: Z(SA)−Z(DP )
Z(DP ) · 100%. Additionally, �#opt� counts the number of

instances solved to optimality by SA. The solution time is reported by �cpu�, which denotes the

CPU-seconds averaged over all 18 instances per parameter constellation.

The exact solution procedure DP solves all 324 instances to optimality without notable di�er-

ence (with regard to the runtime) whether problem LSS or LSQ is solved. However, the results

indicate an exponential increase of runtime with increasing number of cycles T and number of

models |M |. This raises the question for an upper limit of these parameters up to which DP can

still be reasonably applied. In an additional experiment which increases the number of cycles

stepwise (and leaves any other parameter unchanged) these limits were determined as follows:

with |M | = 5 models all instances with T = 53 could still solved to optimality within a given

time frame of 300 CPU seconds (cpu=241). For |M | = 7 and |M | = 9 this limit of 300 CPU

seconds is reached at T = 31 (cpu=234) and T = 23 (cpu=279) cycles, respectively.

Furthermore the question for the solution performance of SA is to be answered. With regard

to problem LSS and a �xed delivery schedule the performance of SA seems very promising. SA

solves 98% of the 162 case A instances for LSS to optimality with an average gap of merely 0.2%.

Solely a little worse SA performs when solving LSQ instances with �xed order sizes. Here, 85%

of 162 instances are solved to optimality with an average gap of merely 0.6%. Moreover, with

this size of test instances solution times are negligible with less than 1 CPU second solution time
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for any test instance.

Of course, algorithmic performance could be further improved by applying more sophisticated

procedures. However, as our main intention is to adopt Level Scheduling to discrete deliveries

and to question the performance of traditional Level Scheduling in these modi�ed settings, the

solution performance of DP and SA seem satisfactorily enough, so that they can be substantially

applied within the next section to investigate our main research question.

5.3 Comparison with traditional Level Scheduling

To evaluate traditional Level Scheduling (ORV) within our modi�ed setting with batched part

deliveries, we extract the ORV speci�c part of our test instances and solve these instances with

an ORV procedure. As an exact procedure basing on Bounded Dynamic Programming the

approach by Bautista et al. (1996) is utilized. Additionally, we apply the aforementioned SA

procedure with the only adoption of evaluating each solution vector with the traditional ORV

objective function instead of our modi�ed ones to get comparable conditions. The resulting model

sequences of these ORV approaches are then evaluated with the modi�ed objective functions

of LSS and LSQ by utilizing formulas (18) and (19) seen as the more realistic measures in

case of batched deliveries. These solutions gained by traditional Level Scheduling can then be

compared to our procedures DP and SA. This way, the question can be investigated whether or

not traditional Level Scheduling is also suited for batched deliveries.

First, Table 4 lists the aggregated results for case A instances. These instances are small enough

to be solved with the exact DP procedures, so that solution performance of the ORV approaches

can be evaluated against optimal solutions of the problems LSS and LSQ. In addition to the

performance measures mentioned above we report the absolute deviation averaged over all 162

instances per problem (labeled �avg abs�) and the maximum absolute deviation (labeled �max

abs�). These measures in relation to optimal solutions are listed for both problems LSS (left

columns) and LSQ (right columns). For each problem, the solutions gained by the exact ORV

procedure (labeled DP(ORV )) and heuristic ORV procedure (labeled SA(ORV )) are evaluated.

LSS (�xed delivery schedule) LSQ (�xed delivery quantity)
measure DP(ORV ) SA(ORV ) DP(ORV ) SA(ORV )

avg gap [%] 20 24 24 23
max gap [%] 110 90 97 66
avg abs 0.3 0.4 2.1 2.2
max abs 2.7 2 10.5 9.2
# opt 59 47 28 23

Table 4: Comparison with traditional Level Scheduling: Results for case A instances

The results reveal that traditional Level Scheduling produces considerable deviations when

applied to the modi�ed, more realistic problems. With an average gap of 20% and more the ORV

models and procedures show considerably inferior to those directly treating batched deliveries.
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Interestingly, for problem LSQ, the heuristic ORV procedure SA(ORV ) produces even better

results than its exact counterpart DP(ORV ), which highlights the limited suitability of ORV

procedures for batched part deliveries. This is further underlined by considering number of

instances where the optimal solutions of ORV is also optimal for LSS or LSQ. In case of LSS ,

this is achieved for 59 out 162 instances, while the situation is even worse for LSQ with only 28 out

of 162 instances. This shows that the restrictiveness of ORV (considering irrelevant deviations in

non-delivery cycles) reduces solution quality (only depending on deviations in delivery cycles).

Analogously, Table 5 summarizes the aggregated results for case B instances. Here, optimal

solutions can not be gained, so that merely the heuristic SA procedures can be compared. The

performance measures report relative and absolute deviations of the heuristic ORV procedure

(SA(ORV )) from heuristic SA procedures solving the problems LSS (left column) and LSQ

(right column). The �gures show consistent results compared to case A instances (see Table 4)

as the deviations lie in a comparable range with an average gap of more than 20%.

measure SA(LSS) vs. SA(ORV ) SA(LSQ) vs. SA(ORV )

avg gap [%] 25 21
max gap [%] 188 88
avg abs 0.5 12
max abs 4 76

Table 5: Comparison with traditional Level Scheduling: Results for case B instances

Additional conclusions can be drawn from more detailed results. Figure 2 displays the average

gap of the heuristic ORV procedure (SA(ORV )) from the heuristic SA procedures (SA(LSS);

solid line) and SA(LSQ); dashed line) in dependency of the parameters of instance generation.

Whereas parameter PROB, which speci�es the probability of a model containing a speci�c

part, seems to have no special in�uence, from the other four parameters the following conclusions

can be drawn:

• With increasing size of the instances the disadvantage of traditional Level Scheduling in-

creases. This coherency is indicated by an increase of the average gap with the number

of cycles T , models |M | and parts |P |. This seems plausible as with increasing instance

size more parts need to be coordinated which accumulate deviations along an increasing

number of delivery points.

• The more frequently parts are supplied (increasing N), the lower amounts the average gap

for traditional Level Scheduling. This coherency is in line with intuition, because with

an increasing number of deliveries our modi�ed Level Scheduling for discrete deliveries

converges to traditional Level Scheduling. In the last, when deliveries occur in every

production cycle both problem types become identical and no gap occurs.

• There exist no signi�cant di�erences with regard to these two �ndings between the problems

LSS and LSQ and the delivery policies they represent.
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LSS LSQ

number of deliveries N probability PROB

number of cycles T number of models |M| number of parts |P|

Figure 2: Average gap of traditional Level Scheduling per parameter of instance generation (case
B instances)

Thus, it can be stated that traditional Level Scheduling when applied to realistic batched part

deliveries is especially misleading and should be replaced by one of our modi�ed Level Schedul-

ing problems if problems of real-world size with hundreds of cycles, models and parts need to

be solved. Such a replacement of solution procedures becomes the more important the fewer

deliveries are scheduled for JIT part supply.

6 Conclusion

The paper on hand shows how to adopt traditional Level Scheduling to batched deliveries. Two

novel models are introduced where the �rst aims at a part leveling for a given delivery schedule

and the second tries to evenly spread delivery events over the planning horizon for given delivery

quantities (container sizes). For these modi�ed Level Scheduling problems, exact (Dynamic Pro-

gramming) and heuristic (Simulated Annealing) solution procedures are introduced and tested

with regard to their solution performance in a comprehensive computational study. The main

�nding of this paper is that traditional Level Scheduling is not as suited as our novel approaches

if parts are supplied in a batched manner. In such a setting, the solution procedures presented

outperform traditional Level Scheduling. However, there remain plenty challenges for future

research:

• First of all, more sophisticated solution procedures could be developed. For instance,

the best performing exact (Bounded Dynamic Programming; Fliedner et al., 2008) and

heuristic (Beam Search; Sabuncuoglu et al., 2008) procedures for the ORV could be adopted
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to modi�ed Level Scheduling. This would require the introduction of e�cient bounding

procedures.

• There might be a mixture of policies, i.e., for some parts delivery quantities and for others

delivery schedules are given, or even both parameters might be �xed. For such a mixed

situation, an integrating model could be developed.

• The modi�ed Level Scheduling problems for batched part supply are by themselves merely

surrogate models for the underlying economic factors, as a leveled distribution of part

deliveries does not necessarily yield a direct economic value. It is nevertheless said to

facilitate a JIT-supply, as the need for costly safety-stocks and �exible capacities is reduced.

This raises the question for a detailed model of part supply and its related costs. Only

such a model or representative simulation studies of real-world situations could ultimately

answer the question about suitability of the presented Level Scheduling models.

With decreasing vertical integration more and more parts need to be coordinated and delivered

Just-in-Time, so that part supply becomes one of the greatest challenges for operating assembly

systems. Consequently the answer to these research questions would be a valuable contribution

to further streamline modern mixed-model assembly lines.

Appendix: NP-Hardness Proof for LSQ

We prove NP-hardness for LSQ by a reduction from a speci�c Set Partition problem. The Bal-

anced Set Partion problem is NP-Hard (see Garey and Johnson, 1979) and can be stated as

follows:

Balanced Set Partition Problem: Given 2n positive integers ai (i = 1, ..., 2n) with
∑2n

i=1 ai =
2B does there exist a partition of the set {1, 2, ..., 2n} into two sets {A1, A2} of equal cardinality
|A1| = |A2| = n such that

∑
i∈A1

ai =
∑

i∈A2
ai = B ?

Reduction from Balanced Set Partition to LSQ: Consider an instance of LSQ with four

parts P = {1, 2, 3, 4}, T = 2n+ 1 production cycles and models M = {1, 2, . . . , 2n, 2n+ 1} with
demands dm = 1 ∀m ∈ M . Let the delivery quantities be q1 = B, q2 = (n− 1)B, q3 = 2n+ 1
and q4 = 1 and initial inventories be s1 = B, s2 = (n− 1)B, s3 = n and s4 = 2n2 + n. The part

consumption for the �rst 2n models is:

a1m = am

a2m = B − am
a3m = 1
a4m = m

∀m ∈M\{2n+ 1} (22)
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The part coe�cients of the last model are a1,2n+1 = a2,2n+1 = a4,2n+1 = 0 and a3,2n+1 = n+ 1.
Such an LSQ-instance can be derived from any instance of Balanced Set Partition polynomi-

ally in n, where the �rst 2n models correspond to the 2n integer values of Balanced Set Partition.

Notice that due to the de�nition of parameter values the total numbers of deliveries for the

�rst three parts are equal to Y1 = 2B−B
B = Y2 = (2n−2)B−(n−1)B

(n−1)B = Y3 = 3n+1−n
2n+1 = 1, where

Yp =
∑T

t=1 ypt. Part 4 was merely introduced to allow a direct matching of integer values from

Set Partition. Its initial inventory is su�cient for satisfying the total part consumption, so that

Y4 =
∑T

t=1 yt4 = 2n2+n−2n2−n
1 = 0 and no delivery is required. As a consequence, part 4 does

not in�uence the quality of solution sequences and we will concentrate on the �rst three parts in

the following.

Kubiak and Sethi (1991) show for the PRV Problem (Miltenburg, 1989) that a number of

copies of a model family can be evenly distributed in an assembly sequence by computing �ideal

due dates� for each copy. If all copies can be assigned to their respective due date, then the

deviation from the target rate is minimal for this model family. We can use this insight to derive

a su�cient optimality condition for LSQ. Let D∗p denote the set of ideal delivery points for part

p. This set is computed by

D∗p =
{⌈

2k − 1
2r′p

⌉
: k = 1, ..., Yp

}
(23)

As the �rst three parts all require exactly one delivery, ideal due dates according to (23) are all

equal: D∗1 = D∗2 = D∗3 = {n+ 1}. In other words, the delivery should ideally be scheduled at

the middle position of the production sequence for all three parts. Notice that we can use this

insight to compute a lower bound for an LSQ-instance which we will denote as LB. Kubiak

and Sethi (1991) further show that any deviation from this middle position leads to additional

deviation penalties, so that for LSQ-instances of the described form Z = LB only holds if

y1,n+1 = y2,n+1 = y3,n+1 = 1.

We will show that the decision problem which answers the question of whether there exists a

solution to such an LSQ-instance with Z ≤ LB is at least as hard as Balanced Set Partition.

The solution of any YES-instance of Balanced Set Partition can be transformed to a solution

of LSQ by simply arranging the sets A1 and A2 and the additional last model as follows:

π :=< A1 A2 2n+ 1 >,

where the internal order of members in sets A1 and A2 can be determined arbitrarily. It can be

easily veri�ed that such a solution sequence always allows that delivery points are set to their

ideal due date for all relevant parts. As a consequence, the resulting objective value of such a

solution will be LB, so that it provides a certi�cate for a YES-instance of LSQ.

We further established that for any YES-instance of LSQ it has to hold that deliveries occur
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at the ideal middle position for the �rst three parts. Any early or late delivery would lead to

increased deviation penalties. From restrictions (8)-(10) of the LSQ model we can deduce two

necessary conditions which allow such a timely delivery. It has to hold that:

∑n
t=1

∑
m∈M xmtapm ≤ sp ∧

∑n+1
t=1

∑
m∈M xmtapm > sp ∀p ∈ P\{4} (24)

If the �rst condition is violated, part delivery needs to be scheduled earlier than n + 1, if
the second condition is violated, deliveries need to be scheduled later. It immediately fol-

lows from (24) that model 2n + 1 cannot be scheduled in the �rst n slots of the sequence,

since a3,2n+1 = n + 1 > sp = n. Instead, the �rst n slots of the sequence need to con-

sist of a subset of size n of the �rst 2n models. Due to the de�nition of part coe�cients, it

holds for any subset M ′ of M that the cumulated part consumptions of the �rst two parts are∑
m∈M ′ a1m = |M ′| · B −

∑
m∈M ′ a2m ∀M ′ ⊂ M . As a consequence, it holds for a subset M∗

of size n, that if
∑

m∈M∗ a1m < B then
∑

m∈M∗ a2m > (n − 1)B. In other words, if the total

consumption of part 1 up to cycle n is strictly smaller than its initial inventory B, then the total

consumption of part 2 violates (24) and vice versa. It follows for a certi�cate of a YES-instance

of LSQ that
∑n

t=1

∑
m∈M xmtapm = B, which directly yields the required balanced partition.

We can conclude that an instance of Balanced Set Partition is a YES-instance, if and only if the

corresponding LSQ-instance is a YES-instance, which completes the proof. �
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