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Abstract: Metamaterials are mostly designed in the time-
harmonic scenario where wave propagation can be spa-
tially manipulated. Tailoring the electromagnetic response 
of media in time has also gained the attention of the sci-
entific community in order to achieve further control on 
wave-matter interaction both in space and time. In the 
present work, a temporally effective medium concept in 
metamaterial is theoretically investigated as a mechanism 
to create a medium with a desired effective permittivity. 
Similar to spatially subwavelength multilayered metama-
terials, the proposed “temporal multilayered”, or “multi-
stepped” metamaterial, is designed by alternating in time 
the permittivity of the medium between two values. In so 
doing, the temporally periodic medium can be modeled 
as an effective metamaterial in time with an effective per-
mittivity initiated by a step function. The analogy between 
the temporal multistepped and the spatial multilayered 
metamaterials is presented demonstrating the duality 
between both domains. The proposed temporal metama-
terial is analytically and numerically evaluated showing 
an excellent agreement with the designed parameters. 
Moreover, it is shown how the effective permittivity can 
be arbitrarily tailored by changing the duty cycle of the 
periodic temporal metamaterial. This performance is also 
connected to the spatial multilayer scenario in terms of 
the filling fraction of the different materials used to create 
the multilayered structures.

Keywords: temporal metamaterials; effective medium; 
multilayered media; metamaterials.

1  �Introduction
The arbitrary control of wave-matter interaction by spa-
tially designing the electromagnetic properties of media 
has been of great interest within the research commu-
nity for decades [1]. Within this context, metamaterials 
[and metasurfaces as their two-dimensional (2D) version] 
have been studied and demonstrated at different spectral 
ranges such as microwave, terahertz, and optics [2–11] 
achieving extreme parameters of permittivity (ε) and per-
meability (μ) such as near-zero or negative [12–19]. Meta-
materials have opened new paths to tailor and engineer 
wave propagation at will giving rise to new and improved 
applications such as sensors [20–22], antennas [23–27], 
beam shaping, [28–30] and mathematical operators [31], 
to name a few.

Since their conception, metamaterials and metasur-
faces have been mostly studied within the time-harmonic 
scenario (frequency domain). In this realm, wave-matter 
interaction is controlled by properly engineering the 
electromagnetic properties of media in space (i.e. along 
the x, y, z coordinates). However, to further control wave 
propagation at will, there is another dimension, time (t), 
that can be manipulated in addition to these three dimen-
sions. Space-time metamaterials have been studied since 
several decades ago [32, 33] and they have recently been 
used for exciting applications [34, 35] such as inverse 
prism [36], frequency conversion [37], nonreciprocity 
[38–40], temporal band-gap, and time reversal [41–48]. 
The idea of “time crystals” has also been introduced and 
developed [49–52].

Inspired by the broad opportunities offered by 
spatial and temporal modulated metamaterials, in this 
work we investigate (and demonstrate both analytically 
and numerically) a mechanism to achieve a temporally 
effective permittivity using temporal metamaterials. As 
well known in the spatial case (time-harmonic scenario), 
metamaterials with effective permittivity can be designed 
by alternating subwavelength layers of different materi-
als in a periodic fashion [14, 53–56]. Here, the tempo-
ral version of such spatial multilayered metamaterial 
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is considered by modulating the permittivity of the 
medium in time. Similar to the spatial case, the “mul-
tilayered” or multistepped temporal effective medium 
is designed by changing the permittivity of the whole 
medium from ε1 to ε2 and returning to ε1 with a periodic-
ity much smaller than the period of the incident wave. 
By doing so, the multistepped temporal metamaterial is 
able to emulate an effective permittivity as if the permit-
tivity was changed in time following a step function. The 
similarities and differences between the spatial and tem-
poral multilayered effective metamaterials are presented 
here. The effect of the periodicity and duty cycle of the 
time-dependent permittivity for the temporal version of 
multilayered metamaterials is also evaluated, demon-
strating that the resulting effective permittivity can be 
tailored when changing the duty cycle of the temporal 
change. All the designs studied here were numerically 
evaluated using the time-domain solver of the commer-
cial software COMSOL Multiphysics®.

2  �Theory and results

2.1  �Connection between spatial multilayers 
and temporal multisteps

To begin with, let us consider the well-known spatial 
multilayered structure shown in Figure 1A. It consists of 
periodically arranged layers of two different materials 
(with permittivity ε1 and ε2, both assumed to be real posi-
tive quantities) along the propagation z-axis. The differ-
ent layers are considered to be infinitely extent along the 
x and y directions with thicknesses much smaller than the 
incident wavelength in each medium. The resulting struc-
ture is illuminated with a plane wave under normal inci-
dence. As described in the introduction, it is well known 
in the conventional effective medium theory in electro-
magnetics [56] that such spatial multilayered structures 
can be used to create metamaterials with an anisotropic 

Figure 1: Schematic representation of the spatial and temporal multilayered metamaterials and their corresponding effective media. 
Top row: Schematic representation of a well known spatial multilayered structure made with alternating subwavelength layers of two 
media with different permittivity ε1 and ε2 (A), along with the effective medium produced by such spatial multilayered medium (B). Bottom 
row: Schematic representation of the temporal analogue, i.e. the proposed multistepped temporal metamaterial made by alternating in 
time subperiod steps of two different permittivities ε1 and ε2 (C), along with the temporally effective medium produced by such temporal 
multistepped medium (D).
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effective permittivity εeff (εeffxx, εeffyy, εeffzz, for polarization of  
the E field along the x, y and z axis, respectively) as sym-
bolically shown in Figure 1B. In this scenario, the εeff in 
each spatial coordinate depends on the values of ε1 and 
ε2 as well as the thickness of each layer. Based on this, 
the εeff for the spatial multilayered metamaterial can be 
expressed as follows [56–58]:

	
ε εε ∆ ε∆= = − +eff eff 1 2 2 2( )  1xx yy z z � (1a)

	
∆

ε ε
ε

ε ε ∆
=

+ −
1 2

eff
1 2 2 2(1 )zz

z z
� (1b)

where Δz1 = 1–Δz2 and Δz2 are the filling fractions for each 
subwavelength layer (ε1 and ε2, respectively) defined as 
the ratio between the absolute thicknesses of each layer 
with respect to the total thickness of one spatial period 
Δz1,2 = dz1,2/(dz1 + dz2). This spatial multilayered structure 
has been used to create hyperbolic and epsilon near-
zero metamaterials [14, 53] and has been applied to 
different scenarios such as focusing devices [58, 59], 
demonstrating a successful mechanism to achieve tai-
lored electromagnetic parameters. This technique has 
been developed within the frequency domain by using 
different materials in the spatial coordinates. However, 
an interesting question may be asked: would it be pos-
sible to design metamaterials using such techniques in 
the time domain? More specifically, would it be possible 
to achieve an arbitrary tailored effective permittivity by 
simply modulating the permittivity of the entire (spa-
tially unbounded) medium in time, much faster than the 
frequency of the signal?

To answer this question, let us discuss the relation 
and analogy between the spatial multilayered meta-
material and the proposed temporal scenario shown in 
Figure 1A and C, respectively. For the temporal case shown 
in Figure 1C, we have considered a monochromatic wave 
traveling in a spatially unbounded medium with the rela-
tive permeability μ = 1 and a time-dependent relative per-
mittivity ε(t). This ε(t) is temporally changed between ε1 
and ε2 (both positive real quantities) with a period much 
smaller than the period of the incident wave. The aim 
here is to relate this temporal multistepped structure to 
a temporally effective permittivity initiated with a step 
function in time [as shown in Figure 1D]. A single step 
change of permittivity has been a research topic since 
the last century [32, 33]. It has been shown that with 
such temporal change of permittivity the wavenumber k 
is preserved while the frequency is modified from ω1 to 

( )ω ε ε ω=2 1 2 1/  (with μ1 = μ2). Moreover, the temporal 
boundary created at the time of the rapid change1 of ε is 

able to produce a forward and a backward wave with the 
latter traveling with the same angle, but opposite direc-
tion of the incident wave [32]. Interestingly, these exciting 
features have been shown to be equivalent of the “reflec-
tion” and “transmission”, but in the time domain [60, 61]. 
Such temporal metamaterial has been used for different 
applications such as time reversal and frequency conver-
sion [62].

By comparing Figure 1A,B and Figure 1C,D, a rela-
tion between the spatial and temporal multilayered/
multistepped scenarios can be observed. Both cases have 
similar features such as the subwavelength thickness and 
subperiod temporal change of permittivity, respectively. 
The main difference relies on the fact that for the temporal 
case, frequency conversion and unaltered wavelength are 
expected (conservation of k, i.e. the frequency changes 
while the wavelength stays unchanged) while for the 
spatial scenario the frequency remains the same while the 
wavelength is changed. However, as it will be discussed in 
the following, both spatial and temporal multilayers/mul-
tisteps share the analogous feature: the ability to create a 
metamaterial with an effective value of εeff.

To evaluate the performance of the proposed tem-
poral multistepped metamaterial, let us consider a time-
dependent permittivity with a step function, as shown in 
Figure 2A,B. Here, the permittivity of the whole medium 
is rapidly changed (with a rise/fall time much smaller 
than the period of the incident wave) from ε1 = 1 to ε2 = 1.25 
and is kept at this value. With this setup, the numeri-
cal results2 of the electric field for the forward wave at a 
single spatial location within the spatially unbounded 
medium (right-most position of a 20λ1 simulation box 
with λ1 = 0.2 mm [f1 = 1.5 GHz] as the wavelength of the inci-
dent monochromatic wave, see method Section for more 
details of the numerical model) are shown, as the green 
curve in Figure 2C, where it can be seen how the period of 
the signal after the permittivity change, i.e. (1.11T), is dif-
ferent from the one before the change of permittivity, i.e. 
(T), as expected due to the frequency change produced at 
the temporal boundary. Moreover, note that the amplitude 
of the electric field after the permittivity change is reduced 
from 1 to ~0.85. These results are in agreement with the 

1 By “rapid change” we mean for the change not to be instantane-
ous, but fast enough to have the transient rise/fall time less than the 
period of the wave. Moreover, we consider the frequency of opera-
tion to be far from any material resonances and therefore the positive 
permittivity functions can be approximately assumed to be “non-
dispersive”.
2 In the numerical simulations by COMSOL Multiphysics® utilized 
here, the dispersion of the permittivity is justifiably ignored, as ar-
gued in the footnote (1).
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expected change of the E field at the temporal boundary 
in the time domain [33] where an amplitude of the electric 
field of 0.85 is theoretically predicted when the permit-
tivity is modified from 1 to 1.25. Note that in these results 
we are only plotting the field distribution for the forward 
wave, but a backward wave is also excited once inducing 
the temporal boundary. However, since the change of per-
mittivity is small (ε1 = 1 to ε2 = 1.25 for a step function of per-
mittivity) the “temporal equivalent” of Fresnel coefficient 

for this backward wave ( )ε ε ε ε = − 1 2 1 20.5 ( / ) /R  [32, 

33, 63] is almost negligible with a value of −0.047. From 

now on we will show the results of the generated forward 
wave and a discussion regarding the backward waves will 
be presented in Section 2.3.

Now, what if we use a temporally periodic permittiv-
ity, i.e. rapidly alternating it between 1 and 1.25? To eval-
uate this scenario, we can consider the time-dependent 
permittivities shown in Figure 2A,B as blue lines with a 
periodicity of (1/10)T and (1/20)T, respectively. A sche-
matic representation of the periodic change is shown in 
the first row of Figure 2 to guide the eye. With this con-
figuration, the numerical results of the electric field dis-
tribution at the same location as that of the single step 
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Figure 2: E-field using temporal multistepped ε(t) (alternating between ε1 and ε2) and a single step of ε(t) (from ε1 to εeff = ε2). 
(A, B) ε(t) considering a single step function that is changed from 1 to 1.25 (red lines) and a multistepped temporally periodic ε(t) changing 
between 1 and 1.25 with a periodicity of (1/10)T (blue line in A) and (1/20)T (blue line in B). (C, D) Simulation results for the electric field at 
a single location in the spatially unbounded medium for the single step function (green lines) of changing permittivity from 1 to 1.25, and 
a temporally periodic ε(t) changing from 1 to 1.25 with a periodicity of (1/10)T (blue line in C) and (1/20)T (blue line in D). The schematic 
representations of the temporal multistepped metamaterial for each case are shown in the first row.
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function are shown in Figure 2C,D. As observed, the elec-
tric field distribution for the temporally periodic multi-
stepped metamaterial present some “ripples” which can 
be explained as follows: when the permittivity is first 
changed from ε1 = 1 to ε2 = 1.25, the amplitude of the tem-
poral E field is modified to a value that can be calculated 
using the “temporal equivalent” of the Fresnel coefficient 

for the forward wave ( )ε ε ε ε = +  1 1 2 1 20.5 ( / ) /T  [32, 33, 
63]. i.e. the amplitude is reduced because ε2 > ε1. Now, 
when the permittivity is returned to its initial value (from 
ε2 = 1.25 to ε1 = 1) the amplitude of the temporal E field 

will be increased following ( )ε ε ε ε = +  2 2 1 2 10.5 ( / ) / .T  
Hence, the “ripples” are produced due to the fact that 
the temporal E field will experience multiple changes in 
its amplitude, because of the multiple temporal bounda-
ries induced in the periodic scenario. Moreover, such E 
field possesses higher frequency harmonics (as it will 
be further discussed in the following Sections), but our 
interest is mostly on its fundamental frequency. By com-
paring these results with those obtained with the single 
step function, we can see how the period (and hence 
the frequency) of the wave for the temporally periodic 
change of permittivity is different from that of the single 
step change of ε with a clear mismatch between the 
results. Moreover, note that the period of the wave for the 
case with a step function of permittivity is longer (1.11T) 
compared to the temporal multistepped cases (~1.055T). 
This implies that the new frequency of the wave with the 
temporally periodic ε(t) is actually higher than the one 
produced when using a single step change of ε in time 
from 1 to 1.25.

Based on these results, in order to match the converted 
frequency of the temporal multisteps with that of the single 
change of permittivity in time, it is necessary to modify the 
value ε2 for the case of the single step change to a value εeff 
smaller than that used for ε2 in the temporal multistepped 
case. By doing this, the converted frequency of the single 
step change of permittivity will be increased (see previous 
discussion about the frequency conversion at the tempo-
ral boundary) and the period of the converted wave will 
match that of the temporal multistepped metamaterial. 
But, what should be the value of εeff for such single step 
change? The answer to this question can be obtained by 
exploiting the similarities between the spatial multilay-
ered metamaterial Eq. (1) and the temporal multistepped 
scenario: it can be suggested that the temporally effective 
permittivity created by the latter case would be equivalent 
to a step function with a single temporal change of permit-
tivity from ε1 to εeff such that εeff for the step function will 
be an “effective” value between the ε1 and ε2 used for the 

temporal multistepped case. Hence, the temporally effec-
tive permittivity can be expressed as follows (the analytical 
derivation can be found in the methods section below):

	

ε ε
ε

ε ε
=

∆ + ∆
1 2

eff
1 2 2 1t t � (2)

where Δt1 = 1–Δt2 and Δt2 are the filling fractions (in time) 
for each temporal step (times where the permittivity is ε1 
and ε2, respectively).

By comparing Eq. (1b) and Eq. (2) it can be seen how 
the temporal and spatial multistepped/multi-layererd 
metamaterials are connected with a similar expression 
for the effective permittivity in both domains. This duality 
can also be seen in terms of the boundary conditions for 
the spatial and temporal scenarios: in the former case, the 
εeffzz defined by Eq. (1b), the normal component of vector 
D is preserved at each spatial interface between the two 
materials with ε1 and ε2. Similarly, in the temporal sce-
nario, D should be preserved at each temporal boundary 
produced when the permittivity is rapidly changed from ε1 
to ε2 [32, 33, 41, 42].

To evaluate and test Eq. (2), the numerical results of 
the electric field distribution at the same location as Figure 
2 for both temporal multistepped metamaterials with 
period (1/10)T and (1/20)T with Δt1 = Δt2 = 0.5 are shown in 
Figure 3B,D along with the results using a single step func-
tion for εeff following Eq. (2), with ε1 = 1 and εeff = 1.111. Note 
that the results for the temporal multisteps are those also 
shown in Figure 2C,D, but are re-plotted here for a better 
comparison. From these results, it can be clearly seen how 
similarity is achieved between the periodicity of the wave 
for the case of a single step change of permittivity and that 
obtained using the temporally periodic case.

For the sake of completeness, the results of the elec-
tric field at the same location as before considering a tem-
poral multistepped metamaterial with a period of 0.4T are 
shown in Figure 3F and the time-dependent permittivity 
for this case is shown in Figure 3E. By comparing these 
results with those using smaller periods (such as 0.1T and 
0.05T), the good matching with the single step change is 
not achieved. This is expected because the effective per-
mittivity described in Eq. (2) is valid for periods much 
smaller than the period of the incident wave (an analo-
gous feature holds for the spatial scenario where Eq. (1) 
is valid for layers with subwavelength thicknesses [53]). 
These results demonstrate that temporal multistepped 
metamaterials can produce a temporally effective permit-
tivity (similar to the case of a spatial multilayer metama-
terial) which can be modeled as a single step change of 
permittivity in time.
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Figure 3: E-field using temporal multistepped ε(t) (alternating between ε1 and ε2) and a single step of ε(t) using Eq. (2).
(A, C, E) ε(t) considering a single step function that is changed from 1 to εeff = 1.111 (red lines) and a temporally periodic ε(t) changing from 
1 to 1.25 with a periodicity of (1/10)T (blue line in A), (1/20)T (blue line in C) and (0.4)T (blue line in E). (B, D, F) Simulation results for the 
electric field of the forward wave at a single location for the single step function (green lines) and a temporally periodic ε(t) changing 
from 1 to 1.25 (blue lines) considering a periodicity of (1/10)T (B), (1/20)T (D) and (0.4)T (F). The schematic representations of the temporal 
multistepped metamaterial for each case are shown as insets in the first column.



V. Pacheco-Peña and N. Engheta: Effective medium concept in temporal metamaterials      385

2.2  �Tailoring the temporal effective 
permittivity

To further study the performance of the temporal multi-
stepped metamaterial, we put forward the following ques-
tion: would it be possible to tailor the effective permittivity 
to any arbitrary value between the two positive ε1 and ε2? 
As is known, this can be achieved with the spatial multi-
layered case by simply changing the filling fraction of the 
two materials used for each of the layers [14], see Eq. (1a,b). 
Hence, since the proposed temporal multistepped metama-
terial is the dual of the spatial case described by Eq. (1b), 
one can also tailor the effective permittivity in the time 
domain by changing the temporal filling fraction for each 
temporal layer (Δt1 and Δt2) in Eq. (2).

To verify this, the numerical results of the electric 
field using different values of duty cycle (DC) ranging from 
0.2 to 0.8 with a period of (1/10)T for the temporally peri-
odic permittivity of the temporal multisteps are shown in 
the third row of Figure 4. Here, a DC of 0.2 and 0.8 mean 

Δt2 = 0.2 × 0.1T and Δt2 = 0.8 × 0.1T, respectively. The tem-
porally periodic permittivities for each case are shown 
in the first and second rows of Figure 4. As observed, the 
period (and hence the effective permittivity) of each case 
is changed depending on the value of DC used. To better 
observe this performance, the effective permittivity for 
each case can be calculated using Eq. (2) and the resulting 
single step functions for each DC are plotted as red curves 
in the second row of Figure 4. It is shown for a DC of 0.2, 
0.4, 0.6 and 0.8 the effective permittivity is equivalent to 
a single step function that is rapidly changed from 1 to 
εeff of 1.041, 1.087, 1.136 and 1.190, respectively. With these 
parameters, the numerical results for the electric field dis-
tribution using each effective step function of permittivity 
are shown as green curves in the third row of Figure 4. As 
observed, an excellent agreement is obtained between the 
results, demonstrating how the temporal multistepped 
metamaterial can be used to create an arbitrary tempo-
rally effective permittivity between ε1 and ε2 by simply 
changing the DC.

Figure 4: Effect of changing the duty cycle. 
(A, C, E, G) ε(t) considering a single step function (red lines) that is changed from 1 to ε = 1.041 (A), 1.087 (C), 1.136 (E) and 1.190 (G) along 
with the temporally periodic ε(t) (blue lines) changing from 1 to 1.25 with a periodicity of (1/10)T and a duty cycle (DC) of 0.2 (A), 0.4 (C), 0.6 
(E) and 0.8 (G). (B, D, F, H) Simulation results for the electric field of the forward wave at a single location for the single step function (green 
lines) and temporally periodic ε(t) (blue lines) considering the permitivities shown in panels (A, C, E, G) with a duty cycle of 0.2 (B), 0.4 (D), 
0.6 (F) and 0.8 (H). The schematic representations of the temporal multistepped metamaterials for each case are shown in the  
first row.
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2.3  �Results for higher values of ε2

In the previous sections, the temporal multistepped sce-
nario was demonstrated by periodically changing the 
permittivity between the two values of ε1 = 1 to ε2 = 1.25. 
To better appreciate the role of these values, here we give 
another example with higher ε2 = 2 in order to evaluate a 
bigger change of permittivity. The total duration of each 
periodic multistep is the same as in the previous studies 
and two different DCs are considered (0.2 and 0.8) in order 
to further study the effect of the filling fraction in the tem-
poral εeff.

With this configuration the numerical results of the 
electric field distribution considering a time-dependent 
permittivity rapidly changing between ε1 = 1 to ε2 = 2 are 
shown as blue lines in Figure 5B,F considering a DC of 
0.2 and 0.8, respectively. These results are then compared 
with those obtained considering a time-dependent per-
mittivity using a single step with effective permittivity 
calculated using Eq. (2) (εeff = 1.111 for a duty cycle of 0.2 
and εeff = 1.667 for a duty cycle of 0.8). For completeness 

the time-dependent permittivity functions in both cases 
are shown in the Figure 5A,E for both duty cycles.

As observed, a good agreement is achieved between 
the results of the temporal multistepped metamateri-
als and the single steps, demonstrating the capability of 
using such temporal multisteps as an effective medium 
in the time domain. Moreover, note that the amplitude of 
the electric field for the case with a DC of 0.8 (~0.72 in 
Figure 5F) is smaller than the one obtained with a DC of 0.2 
(~0.95 Figure 5B). As explained before, these are expected 
results because of the temporal coefficient for the electric 
field after the temporal change which theoretically pre-
dicts an amplitude of the electric field of ~0.7 and ~0.92 
for a DC of 0.8 and 0.2, respectively. Moreover, we also 
note higher “ripples” in the E field, again expected due 
to the fact that the permittivity undergoes higher changes 
between 1 and 2, as explained in the previous sections. 
For completeness, the results of the normalized spec-
tral contents calculated from the temporal E field from 
Figure 5B,F are shown in Figure 5C,G for DC values of 0.2 
and 0.8, respectively. As it is shown, the ripples observed 

Figure 5: E-field distribution considering larger values of ε2. 
Similar to Figure 4 but with higher ε2: (A, E) ε(t) considering a single step function (red lines) that is changed from 1 to εeff = 1.111 (A) and 1.667 
(E) along with the temporally periodic ε(t) (blue lines) changing from 1 to 2 with a periodicity of (1/10)T and a duty cycle (DC) of 0.2 (A) and 
0.8 (E). (B, F) Simulation results for the electric field at a single location for the single step function (green lines) and temporally periodic 
ε(t) (blue lines) considering the permitivities shown in panels (A, E) with a duty cycle of 0.2 (B) and 0.8 (F). (C, G) Normalized spectral 
response calculated from panels (B, F) considering a DC of 0.2 (C) and 0.8 (G), respectively. (D, H) Zoom-in of the normalized spectral 
response extracted from panels (C, G) showing the frequency change produced by the effective temporal effective medium. The schematic 
representations of the temporal multistepped metamaterials for each case are shown as the insets in the first column where the blue and 
yellow blocks represent ε1 = 1 and ε2 = 2, respectively. The electric field in this figure correspond to that of the forward wave.
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in the time domain (Figure 5B,F) are translated into 
higher-order harmonics, as discussed before. However, 
note that their amplitude is much smaller than that of 
the fundamental frequency demonstrating that the tem-
poral effective medium is still valid (for the fundamental 
frequency) in temporal multistepped metamaterials for 
cases when the change of permittivitty is increased. For 
completeness, a zoom-in of the spectral contents around 
the fundamental harmonic extracted from Figure 5C,G is 
shown in Figure 5D,H, respectively. As observed, a good 
agreement is again noticeable between the results of the 
temporal multisepped metamaterial and the effective 
temporal medium modeled as a single step. From these 
results, the frequency is changed from f1 to f2 ≈ 0.94f1 and 
to f2 ≈ 0.77f1 when using a DC of 0.2 and 0.8, respectively, 
in agreement with theoretical calculations [32] which 
predict a frequency change of f2 ≈ 0.948f1 and f2 ≈ 0.774f1 
for each DC, respectively.

In all the results discussed in the previous section 
(Figures 2–5) we have shown the results of the distribu-
tion of the temporal E field of the forward wave (FW) at 
a single location. However, since we have demonstrated 
how the multistepped temporal metamaterial is able to 
emulate an effective permittivity as if the permittivity was 
changed in time using a single step function, it is impor-
tant to show that a backward wave (BW) is also produced 
for the case when such a multistepped temporal metama-
terial is implemented.

To do this, let us consider a multistepped temporal 
metamaterial with a time-dependent permittivity that 
is initially ε1 = 2 and then it is periodically changing 
between ε1 = 2 and ε2 = 1. The results of the spatial distri-
bution of the electric field at different times are shown 
in Figure  6 considering a DC of 0.2 (Figure 6A,B) and 
0.8 (Figure  6C,D). The field distribution using the mul-
tistepped temporal metamaterials are shown in Figure 
6A,C along with their effective medium using a single 
step of permittivity, Figure 6B,D. From these results a 
good agreement is observed for the field distribution of 
the multistepped temporal metamaterials resembling the 
one generated by their effective version using a single 
step. Moreover, note that the BW wave is created in all 
the cases shown in Figure 6 with their spatial distribu-
tions showing the same wavelength as the FW waves, i.e. 
after the temporal change of permittivity, k remains the 
same while the frequency is changed. Finally, note that 
the BW is more evident for the case with DC = 0.8 which 
is due to the fact that the effective permittivity (εeff = 1.111) 
is smaller than the one produced with a DC of 0.2 
(εeff = 1.667). Hence, it is expected to have a larger ampli-
tude for the BW wave when the permittivity is effectively 

changed in a single step from ε1 to εeff = 1.111  since 

( )ε ε ε ε = − 1 eff 1 eff0.5 ( / ) /R  [32, 33].
Such multistepped temporal metamaterials could be 

realized at microwave frequencies by using circuit ele-
ments loaded in transmission lines [64] in order to change 
the permittivity between two different values. This can 
become more challenging when working at higher fre-
quencies (such as the IR and visible spectrum) due to the 
reduced period of the signal. However, within the past few 
years great efforts have been devoted to rapidly tuning 
the electromagnetic properties of materials at optical fre-
quencies. In this realm, the frequency conversion using 
temporal boundaries has been recently demonstrated 
experimentally at such spectral range [37, 65]. Hence, we 
are optimistic that our concept of multistepped temporal 
metamaterials as a way to produce an effective temporal 
permittivity could be realized not just at microwaves, but 
at higher frequencies in the near future.

3  �Methods

3.1  �Analytical solution for the effective 
permittivity in temporal multisetpped 
metamaterials

As explained in the Introduction, the interaction of 
electromagnetic waves with time-dependent media has 
gained much attention in the scientific community. In this 
realm, time-dependent periodic metamaterials have been 
recently studied demonstrating their capability to achieve 
the temporal version of a photonic band-gap structure by 
using different functions of permittivity and/or perme-
ability [41, 42, 66]. Here, we focused our attention in the 
analytical formulation of the effective permittivity for the 
temporal scenario analogous with the spatial multilay-
ered metamaterial using the transfer matrix method. The 
structure under study is the one shown in Figure 1C,D.

Based on the transfer matrix method, each tempo-
ral step in the multistep scenario from Figure 1C can be 
defined by a characteristic matrix, as follows [67]:

	
τ

 
= = 

  
11 12

21 22

( ;  1,2,)j j

a a
M j

a a � (3)

where j represents each temporal multistep with permit-
tivity ε1 and ε2, respectively. In this realm, because (a) the 
change of permittivity is applied to the whole medium 
where the wave is traveling (unbounded medium) and 
(b)  the wavenumber k is preserved at each temporal 
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Figure 6: Spatial distribution of the electric field at different times considering a time-dependent permittivity with an initial value of ε1 = 2.
The permittivity is then changed periodically (between ε1 = 2 and ε2 = 1) or in a single step (from ε1 = 2 to εeff) at the normalized time t/T = 37.3 
(as in Figures 2–5): (A, C) Using a temporally periodic ε(t) changing from 2 to 1 with a periodicity of (1/10)T and a duty cycle (DC) of 0.2 (A) 
and 0.8 (C). (B, D) A single step function that is changed from 2 to εeff = 1.667 (B) and εeff = 1.111 (D). For these results, the incoming signal is 
switched off once the first temporal boundary is induced in order to better appreciate the FW and BW waves created with both multistepped 
temporal metamaterial and its effective equivalent version using a single step metamaterial. Note that the color bars have been saturated 
from −1 to 1 to better appreciate the BW waves.
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boundary [32] the characteristic matrix for the temporal 
multisteps in Figure 1C can be then calculated as follows:

	

ω τ ω τ
ετ

ε ω τ ω τ

 
− 

=  
 −  

1 1 1 1
11 1

1 1 1 1 1

cos( ) sin( )

sin(
( )

( )) cos

i
M

i
� (4a)

	

ω τ ω τ
ετ

ε ω τ ω τ

 
− 

=  
 −  

2 2 2 2
22 2

2 2 2 2 2

cos( ) sin( )

sin( ) cos( )
( )

i
M

i
� (4b)

where τ1 and τ2 are the absolute temporal duration of 
each multistep. The total period of the multistep is then 
τtotal = τ1 + τ2 << T. As the result, the filling factors (Δt1 and 
Δt2) in Eq. (2) are Δt1 = τ1/τtotal and Δt2 = τ2/τtotal. As observed, 
Eqs. (4a,b) only depend on the frequencies at each tem-
poral step ω1,2 and their absolute temporal duration τ1,2, 
meaning that each induced temporal step does not affect 
the spatial distribution of the wave since its wavelength is 
not modified (conservation of k).

Now, we can calculate an equivalent matrix M(τtotal) 
for the whole period τtotal by simply multiplying Eqs. 
(4a,b). Based on this, M(τtotal) can be expressed in the fol-
lowing manner:

	
τ τ τ

 
= =  

  
11total 12 total

total 1 1 2 2
21total 22 total

( (( ) ))
a a

M M M
a a � (5a)

	

ε
ω τ ω τ ω τ ω τ

ε
= − 2

11total 1 1 2 2 1 1 2 2
1

cos( )cos( ) sin( )sin( )a � (5b)

	

ω τ ω τ ω τ ω τ
ε ε

= − −12 total 1 1 2 2 1 1 2 2
2 1

1 1cos( )sin( ) sin( )cos( )a i i

� (5c)

	
ε ω τ ω τ ε ω τ ω τ= − −21total 1 1 1 2 2 2 1 1 2 2sin( )cos( ) cos( )sin( )a i i

� (5d)

	

ε
ω τ ω τ ω τ ω τ

ε
= − +1

22 total 1 1 2 2 1 1 2 2
2

sin( )sin( ) cos( )cos( )a � (5e)

Now we can define a characteristic matrix for an 
equivalent medium made of an effective permittivity (εeff) 
as follows:

	
τ

 
=  

  
11eff 12eff

eff total
21eff 22eff

( )
a a

M
a a � (6a)

	

ω τ ω τ
ετ

ε ω τ ω τ

 
− 

=  
 −  

eff total eff total
effeff total

eff eff total eff total

cos( ) sin( )

sin( ) cos( )
( )

i
M

i
� (6b)

with ωeff as the effective angular frequency of the equiv-
alent medium. Based on this, the equivalent medium 
described by the equation above will be the same as the 
one defined by Eq. (5) by defining the equalities between 
each element of both matrices: a11total = a11eff, a12total = a12eff, 
a21total = a21eff and a22total = a22eff. After applying these equiva-
lences between Eqs. (5–6), the effective permittivity can 
then be extracted using the following equality between 
both characteristic matrices:

	
=12 total 12effa a � (7a)

	

ω τ ω τ ω τ ω τ
ε ε

ω τ
ε

− −

= −

1 1 2 2 1 1 2 2
2 1

eff total
eff

cos( )sin( ) sin( )cos( )

sin( )

i i

i � (7b)

where = τ1 and τ2 < < T, ω ε ε ω=2 1 2 1( / )  and ω ε ε ω=ef 1 eff 1( / ) .f

ω ε ε ω=ef 1 eff 1( / ) .f
 Based on this, Eq. (7b) is reduced to:

	

ω τ ω τ ω τ
ε ε ε

− − = −2 2 1 1 eff total
2 1 eff

i i i
� (7c)

	

ττ τ

ε ε ε
+ = total2 1

2 1 eff
� (7d)

	

ε ε
ε

ε ∆ ε ∆
=

+
1 2

eff
1 2 2 1t t � (7e)

Retrieving the expression shown in Eq. (2).

3.2  �Simulation setup

The numerical analysis shown in Figures 2–6 was carried 
out using the time-domain solver of the commercial soft-
ware COMSOL Multiphysics®. A simulation box of 20λ1 × 4λ1 
was implemented and the FW waves were recorded at the 
right-most location of this box (x = 20λ1, y = 0). To avoid 
undesirable reflections, top and bottom perfect electric 
conductor (PEC) boundaries were used with the scatter-
ing boundary condition at the right boundary in all the 
simulations. The incident field was applied from the left 
boundary of the simulation box via a scattering bound-
ary condition. A triangular mesh was implemented with 
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a minimum and maximum size of 0.13 × 10−3λ1 to ensure 
accurate results. The rapid changes of ε in all these studies 
were modeled by implementing rectangular analytical 
functions with smooth transitions using two continuous 
derivatives to ensure convergence in the calculations.

4  �Conclusions
In this work, temporal multistepped metamaterials have 
been investigated in order to achieve an effective permit-
tivity in the time domain. It has been shown how temporal 
multisteps can produce a temporally effective permittivity 
modeled and initiated with a single step function of change 
of permittivity in time. The analogy between the spatial 
and temporal multilayered/multistepped metamaterials 
have been presented demonstrating the relation between 
both temporal and spatial domains. Within this context, it 
has been shown how the effective permittivity of the tem-
poral multistepped metamaterial can be arbitrarily engi-
neered by simply changing the duty cycle of the temporally 
periodic permittivity. This performance has been related 
and analogous to the spatial multilayered scenario where 
the effective permittivity can be manipulated by chang-
ing the filling fraction of the two subwavelength materi-
als used as building blocks of the multilayered structure. 
The proposed technique has been analytically derived and 
numerically evaluated demonstrating an excellent agree-
ment with the designed parameters. The results presented 
here may be applied to the design of effective permittivi-
ties in the time domain and may open new paths in the 
study of the exciting phenomena that may be achieved by 
using temporal metamaterials.
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