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Chapter 1

Mathematical Preliminaries

Exercise 1.1 For α ∈ R such that α 6= −1/n and 1n ∈ Rn the vector of all 1s, show that
we have (I + α1n1>n )−1 = I − α

1+nα1n1>n .

Exercise 1.2 (�) Show that we can diagonalize by blocks the matrices M and M−1 as

M =

(
A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 M/A

)(
I A−1B
0 I

)
M−1 =

(
A B
C D

)−1

=

(
I −A−1B
0 I

)(
A−1 0

0 (M/A)−1

)(
I 0

−CA−1 I

)
.

Exercise 1.3 Show that det
((

A B
C D

))
= det(M/A) det(A) = det(M/D) det(D).

Exercise 1.4 (�) Prove the identities µy|x′ = µy + ΣyxΣ−1
xx (x′ − µx) and covariance

matrix Σy|x = Σyy − ΣyxΣ−1
xxΣxy.

Exercise 1.5 Express the eigenvectors of XX> and X>X using the singular vectors
of X.

Exercise 1.6 Express the eigenvectors of
(

0 X
X> 0

)
using the singular vectors of X.

Exercise 1.7 Show that for the logistic regression objective function defined as F (θ) =
1
n

∑n
i=1 log(1 + exp(−yi(Xθ)i) with X ∈ Rn×d and y ∈ {−1, 1}n, then F ′(θ) = 1

nX
>g,

where g ∈ Rn is defined as gi = −yiσ(−yi(Xθ)i), with σ(u) = (1 + e−u)−1 the sig-
moid function. Show that the Hessian is 1

nX
>Diag(h)X, with h ∈ Rn defined as

hi = σ(yi(Xθ)i)σ(−yi(Xθ)i).

Exercise 1.8 (Functions on matrices) Let A be a symmetric matrix. Show that the

1



2 CHAPTER 1. MATHEMATICAL PRELIMINARIES

gradient of the function M 7→ tr(AM−1), defined on invertible symmetric matrices, is
equal to M 7→ −M−1AM−1. Show that the gradient of M 7→ log det(M) is M 7→M−1.

Exercise 1.9 Let Y be a nonnegative random variable with finite expectation, and ε > 0.
Show that ε1Y>ε 6 Y almost surely and prove Markov’s inequality:

P(Y > ε) 6
1

ε
E[Y ].

Exercise 1.10 (Chernoff bound) Let X be a random variable. Show that for any
t ∈ R and s > 0, we have P(X > t) 6 e−stE[esX ].

Exercise 1.11 Let Y be a nonnegative random variable with finite expectation. Show
that E[Y ] =

∫∞
0

P(Y > t)dt.

Exercise 1.12 (�) For X a Gaussian random variable with mean 0 and variance 1,
show that for t > 0, 1

2 exp(−t2) 6 P(X > t) 6 exp(−t2/2).

Exercise 1.13 Show the one-sided inequality: with probability greater than 1−δ, 1
n

∑n
i=1 Zi−

1
n

∑n
i=1 E[Zi] <

|a−b|√
2n

√
log
(

1
δ

)
.

Exercise 1.14 (Azuma’s inequality (�)) Assume that the sequence of random vari-
ables (Zi)i>0, satisfies E(Zi|Fi−1) = 0 for an increasing sequence of increasing “σ-fields”
(Fi)i>0,1 and |Zi| 6 ci almost surely, for i > 1. Then

P
(

1

n

n∑
i=1

Zi > t

)
6 exp

( −n2t2

2(c21 + · · ·+ c2n)

)
.

Exercise 1.15 Show that a Gaussian random variable with variance σ2 is sub-Gaussian
with constant σ2.

Exercise 1.16 If Z1, . . . , Zn are independent random variables which are sub-Gaus-sian

with constant τ2, show that P
(∣∣ 1
n

∑n
i=1 Zi −

1
n

∑n
i=1 E[Zi]

∣∣ > t
)
6 2 exp(−nt2

2τ2 ) for any
t > 0.

Exercise 1.17 (�) Let Z be a random variable that is sub-Gaussian with constant τ2.

Then, by using the tail bound P(|Z − E[Z]| > t) 6 2 exp(− t2

2τ2 ):

∀t > 0, P(|Z − E[Z]| > t) 6 2 exp
(
− t2

2τ2

)
.

Show that for any positive integer q, E[(Z − E[Z])2q] 6 (2q)q!(2τ2)q.

1See more details in https://en.wikipedia.org/wiki/Azuma’s_inequality.

https://en.wikipedia.org/wiki/Azuma's_inequality
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Exercise 1.18 (��) Let Z be a random variable such that for any positive integer q,
E[(Z −E[Z])2q] 6 (2q)q!(2τ2)q. Then show that Z is sub-Gaussian with parameter 24τ2.

Exercise 1.19 Assume that the random variable Z has almost surely nonnegative values
and finite second-order moment. Show that for any s > 0, we have log

(
E[e−sZ ]

)
6

−sE[Z] + s2

2 E[Z2].

Exercise 1.20 (�) Use McDiarmid’s inequality to prove a Hoeffding-type bound for vec-
tors: If Z1, . . . , Zn ∈ Rd are independent centered vectors such that ‖Zi‖2 6 c almost
surely, then with probability greater than 1− δ, we have∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥
2

6
c√
n

(
1 +

√
2 log

1

δ

)
.

Exercise 1.21 (�) Prove the inequality

P
(∣∣∣∣ 1n

n∑
i=1

Zi −
1

n

n∑
i=1

E[Zi]

∣∣∣∣ > t) 6 2 exp
(
− nt2

2σ2 + 2ct/3

)
.

Exercise 1.22 Assume that Z1, . . . , Zn are random variables that are sub-Gaussian with
constant τ2 and have zero means. Show that E

[
max{|Z1|, . . . , |Zn|}

]
6
√

2τ2 log(2n).
Prove the same result up to a universal constant using the tail bounds P(|Zi| > t) 6
2 exp(− t2

2τ2 ) together with the union bound, and the property E[|Y |] =
∫ +∞

0
P(|Y | > t)dt

for any random variable Y such that E[|Y |] exists.

Exercise 1.23 (��) Assume that Z1, . . . , Zn are independent Gaussian random vari-
ables with mean zero and variance σ2. Provide a lower bound for E[max{Z1, . . . , Zn}] of
the form c

√
log n for c > 0.

Exercise 1.24 Assume that Z1, . . . , Zn are sub-Gaussian random variables with common
sub-Gaussianity parameter τ , and potentially different means µ1, . . . , µn. For a fixed set
of nonnegative weights π1, . . . , πn that sum to 1, and δ ∈ (0, 1), show that with probability
greater than 1 − δ, for all i ∈ {1, . . . , n}, |zi − µi| 6 τ

√
2 log(1/πi) + τ

√
2 log(2/δ). If

ı̂ ∈ arg mini∈{1,...,n}
{
zi + τ

√
2 log(1/πi)

}
, show that with probability greater than 1 − δ,

µı̂ 6 mini∈{1,...,n}
{
µi + 2τ

√
2 log(1/πi)

}
+ 2τ

√
2 log(2/δ).

Exercise 1.25 (��) Consider a convex function f : Rd → R such that f(0) = 0 and f
is L-smooth with respect to the norm Ω; that is, f is continuously differentiable and for
all θ, η ∈ Rd, f(θ) 6 f(η) + f ′(η)>(θ − η) + L

2 Ω(θ − η)2. Let Zi ∈ Rd be independent
zero-mean random vectors with E[Ω(Zi)

2] 6 σ2, for i = 1, . . . , n. Show by induction in n

that E[f(Z1 + · · ·+ Zn)] 6 nLσ
2

2 .
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Exercise 1.26 Consider a function g : [0, 1] → R. Show that the piecewise interpolant
based on values at {0, 1} equals g̃ : x 7→ (1 − x)g(0) + xg(1) and that its integral equals
1
2g(0) + 1

2g(1). Assuming g is twice differentiable with second-derivative bounded in mag-

nitude by L, show that for all x ∈ [0, 1], |g(x)− g̃(x)| 6 L
2 x(1− x).

Exercise 1.27 Show that the trapezoidal rule leads to an error in O(1/n) if we assume
only one bounded derivative.

Exercise 1.28 (�) Show that for 1-periodic functions, the trapezoidal rule leads to an
error in O(1/ns) if we assume s bounded derivatives.

Exercise 1.29 Assume that the matrices Mi ∈ Rd1×d2 are independent, have zero mean,
and ‖Mi‖op 6 c almost surely for all i ∈ {1, . . . , n}. Show that

P
(∥∥∥∥ 1

n

n∑
i=1

Mi

∥∥∥∥
op

> t

)
6 (d1 + d2) · exp

(
− nt2

8c2

)
.

Moreover, with σ2 = max
{
λmax

(
1
n

∑n
i=1M

>
i Mi

)
, λmax

(
1
n

∑n
i=1MiM

>
i

)}
, show that

P
(∥∥∥∥ 1

n

n∑
i=1

Mi

∥∥∥∥
op

> t

)
6 (d1 + d2) · exp

(
− nt2/2

σ2 + ct/3

)
.



Chapter 2

Introduction to Supervised
Learning

Exercise 2.1 Consider binary classification with Y = {−1, 1} with the loss function
`(−1,−1) = `(1, 1) = 0 and `(−1, 1) = c− > 0 (cost of a false positive), `(1,−1) = c+ > 0
(cost of a false negative). Compute a Bayes predictor at x as a function of E[y|x].

Solution. Given x ∈ X, we compute

argmin
z∈{−1,1}

E[`(y, z) |x = x′].

We have
E[y|x] = P(y = 1|x)− P(y = −1|x).

Therefore, computing E[`(y, z′) |x = x′] for z′ = −1, we obtain :

E[`(y, z′) |x = x′] = E[l(y,−1)|x = x′] = c−P(y = −1|x = x′) = c−
1− E[y|x = x′]

2
.

With z′ = 1, it yields :

E[`(y, z′) |x = x′] = E[`(y, 1)|x = x′] = c+P(y = 1|x = x′) = c+
1 + E[y|x = x′]

2
.

This gives a choice for a Bayes estimator f : X → R such that, for all x′ ∈ R,

f(x′) = sign
(
E[y|x = x′]− c− − c+

c− + c+

)
.

Exercise 2.2 We consider a learning problem on X × Y, with Y = R and the absolute
loss defined as `(y, z) = |y − z|. Compute a Bayes predictor f∗ : X→ R.

5



6 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

Solution. Let X,Y, l be as defined in the text. We assume that y given x has a density
function p(y, x).

Let x ∈ X, z ∈ R :

e(z) = E(|y − z| |x = x) =

∫ +∞

−∞
|y − z|p(y, x)dy

=

∫ z

−∞
(z − y)p(y, x)dy +

∫ +∞

z

(y − z)p(y, x)dy.

By the Leibnitz rule, the derivative yields: e′(z) =
∫ z
−∞ p(y, x)dy−

∫ +∞
z

p(y, x)dy, which
shows that the minimum of e is reached on the median of y given x. Therefore, the Bayes
predictor f∗ is, in our case, the median of y given x.

Exercise 2.3 We consider a learning problem on X × Y, with Y = R and the “pinball”
loss `(y, z) = α(y − z)+ + (1 − α)(z − y)+, for α ∈ (0, 1). Compute a Bayes predictor
f∗ : X→ R. Provide an interpretation in terms of quantiles.

Solution. For all z, y ∈ Y, the loss function `(z, y) is defined as, for α ∈ (0, 1):

`(z, y) = α(y − z)+ + (1− α)(z − y)+ = α(y − z)1y>z + (1− α)(z − y)1y<z.

The Bayes predictor at x is given by:

f∗(x) ∈ arg min
z∈Y

E[`(y, z)|x]

We have :

E[`(y, z) | x] = E[α(y − z)1y>z + (1− α)(z − y)1y<z|x]

= α

∫
R

(y − z)1y>zp(y|x)dy + (1− α)

∫
R

(z − y)1y<zp(y|x)dy

= α

∫ +∞

z

(y − z)1y>zp(y|x)dy + (1− α)

∫ z

−∞
(z − y)1y<zp(y|x)dy.

Since we want to find the minimum of this with respect to z (and the loss is convex in
z), we compute a subgradient with respect to z and set it to 0. We have:

∂

∂z
E[α(y − z)+ + (1− α)(z − y)+|x] = 0

⇔ (1− α)

∫ z

−∞
p(y|x)dy − α

∫ +∞

z

p(y|x)dy = 0

⇔
∫ z

−∞
p(y|x)dy = α

We thus have a minimizer by taking z as the quantile of order α of the conditional
distribution of y given x.
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Exercise 2.4 (�) Characterize Bayes predictors for regression with the “ε-insensitive”
loss defined as `(y, z) = max{0, |y − z| − ε}. If for each x, y is supported in an interval
of length less than 2ε, what are the Bayes predictors?

Solution. Assume ε > 0. Let x′ ∈ R. Let z ∈ R.

E(`(y, z)|x = x′) =

∫
|y−z|≥ε

(|y − z| − ε)p(y, x)dy

=

∫
y−z≥ε

(y − z − ε)p(y, x)dy +

∫
z−y≥ε

(z − y − ε)p(y, x)dy.

Derivating the expresion w.r.t z yields:∫
y−z≥ε

p(y, x)dy −
∫
z−y≥ε

p(y, x)dy = P(y − z ≥ ε|x = x′)− P(y − z ≤ −ε|x = x′).

Therefore, a Bayes estimator can be interpreted as a balance between the number of
overestimated and underestimated predictions, above a specific threshold (ε).

Let y be supported in an interval of less than 2ε for all x. For a given x, we assume
that (a, b) is the smallest interval supporting y given x (b− a ≤ 2ε). As we cannot have
both P(y − z ≤ −ε|x = x′) > 0 and P(y − z ≥ ε|x = x′) > 0, we need

P(y − z ≤ −ε|x = x′) = P(y − z ≥ ε|x = x′) = 0.

Therefore, f : X → R is a Bayes estimator for this problem if, and only if, for all x,
f(x) ∈ (b− ε, a+ ε), where a and b are x−dependent as defined before.

Exercise 2.5 (Inverting predictions) Consider the binary classification problem with
Y = {−1, 1} and the 0–1 loss. Relate the risk of a prediction f and to that of its oppo-
site −f .

Exercise 2.6 (“Chance” predictions) Consider binary classification problems with
the 0–1 loss. What is the risk of a random prediction rule where we predict the two
classes with equal probabilities independent of input x? Address the same question with
multiple categories.

Exercise 2.7 (�) Consider a random prediction rule where we predict from the proba-
bility distribution of y given x. When is this achieving the Bayes risk?

Exercise 2.8 How would the curve move when n increases (assuming the same balance
between classes)?
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Chapter 3

Linear Least-Squares
Regression

Exercise 3.1 In the Gaussian model given above, show that σ̃2 the maximum likelihood
estimator of σ2 is equal to σ̃2 = 1

n

∑n
i=1(yi − ϕ(xi)

>θ̂)2.

Exercise 3.2 Show that the expected empirical risk is equal to E[R̂(θ̂)] = n−d
n σ2. In

particular, when n > d, deduce that an unbiased estimator of the noise variance σ2 is
given by 1

n−d‖y − Φθ̂‖22.

Solution. We want to compute R̂(θ̂).

nR̂(θ̂) = E(‖y − Φθ̂‖22)

= E(‖y − Φ(Φ>Φ)−1Φ>y‖22), as θ̂ = (Φ>Φ)−1Φ>y

= E(‖(I −Π)y‖22), where Π = Φ(Φ>Φ)−1Φ>

= E(tr(y>(I −Π)y)), as I −Π is symmetric and (I −Π)2 = I −Π

= tr((I −Π)E(yy>))

= σ2 tr((I −Π)), as E(yy>) = Φθ∗θ∗Φ
>σ2I

= σ2(n− d), as I ∈ Rn×n, and Π is a projector on a space of dimension d.

This gives the expected result. Isolating σ2 in the previous equation, we actually compute
σ2 = E( 1

n−d‖y − Φθ̂‖22) which means that 1
n−d‖y − Φθ̂‖22 is an unbiased estimator of σ2.

Exercise 3.3 (General noise) Consider the fixed design regression model y = Φθ∗ + ε
with ε with zero mean and covariance matrix equal to C ∈ Rn×n (not σ2I anymore). Show
that the expected excess risk of the OLS estimator is equal to 1

n tr
[
Φ(Φ>Φ)−1Φ>C

]
.

9



10 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

Exercise 3.4 (Multivariate regression (�)) Consider Y = Rk and the multivariate
regression model y = θ>∗ ϕ(x) + ε ∈ Rk, where θ∗ ∈ Rd×k, and ε has zero-mean with
covariance matrix S ∈ Rk×k. In the fixed regression setting with design matrix Φ ∈ Rn×d
and Y ∈ Rn×k the matrix of responses obtained from i.i.d. εi ∈ Rk, i = 1, . . . , n, derive
the OLS estimator minimizing 1

n‖Y −Φθ‖2F and its excess risk (where ‖M‖F denotes the
Frobenius norm defined as the square root of the sum the squared components of M).

Exercise 3.5 Using the matrix inversion lemma (discussed in section ??), show that the

ridge regression estimator given in proposition ?? can also be written as θ̂λ = (Φ>Φ +
nλI)−1Φ>y = Φ>(ΦΦ> + nλI)−1y. What could be the computational benefits?

Exercise 3.6 Compute the expected risk of the estimators obtained by regularizing by
θ>Λθ instead of λ‖θ‖22, where Λ ∈ Rd×d is a positive-definite matrix.

Solution. Replacing the regularization term λ‖θ‖22 by ‖θ‖2Λ, with Λ positive definite,

we obtain that θ̂Λ = 1
n (Σ + Λ)−1Φ>y. Therefore, E(θ̂Λ) = θ∗ − (I + Λ)−1Λθ∗. As in the

book, we decompose the excess risk in bias B and variance V . The computations yield :

B = ‖E(θ̂Λ)− θ∗‖2Σ̂ = ‖(Σ̂ + Λ)−1Λθ∗‖2Σ̂
B = θ>∗ Λ(Σ̂ + Λ)−1Σ̂(Σ̂ + Λ)−1Λθ∗

V = E(‖ 1

n
(Σ̂ + Λ)−1Φ>ε‖2

Σ̂
)

= E(
1

n2
tr(ε>Φ(Σ̂ + Λ)−1Σ̂(Σ̂ + Λ)−1Φ>ε))

=
1

n2
tr(σ2(Σ̂ + Λ)−1Σ̂(Σ̂ + Λ)−1Σ̂)

V =
σ2

n
tr(((Σ̂ + Λ)−1Σ̂)2).

By summing the preceding terms, we have :

E(R(θ̂)) = R∗ +B + V = σ2 + θ>∗ Λ(Σ̂ + Λ)−1Σ̂(Σ̂ + Λ)−1Λθ∗ +
σ2

n
tr(((Σ̂ + Λ)−1Σ̂)2).

Exercise 3.7 (�) Consider the “leave-one-out” estimator θ−iλ ∈ Rd obtained, for each
i ∈ {1, . . . , n}, by minimizing 1

n

∑
j 6=i(yj − θ>ϕ(xj))

2 + λ‖θ‖22. Given the matrix H =

Φ(Φ>Φ + nλI)−1Φ> ∈ Rn×n, and its diagonal h = diag(H) ∈ Rn, show that

1

n

n∑
i=1

(yi − ϕ(xi)
>θ−iλ )2 =

1

n
‖(I −Diag(h))−1(I −H)y‖22,

where Diag(h) denotes the diagonal matrix with h as its diagonal. Hint: use Woodbury
matrix identities from section ??.
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Exercise 3.8 Show that for the random design setting with the same assumptions as
proposition ??, the expected risk of the ridge regression estimator is

E
[
R(θ̂λ)− R∗

]
= λ2E

[
θ>∗ (Σ̂ + λI)−1Σ(Σ̂ + λI)−1θ∗

]
+
σ2

n
E
[

tr
[
(Σ̂ + λI)−2Σ̂Σ

]]
.

Exercise 3.9 (�) Given Φ ∈ Rn×d, we consider minimizing ‖Φ−AD‖2F with respect to
D ∈ Rk×d and A ∈ Rn×k. Show that the optimal solution is such that AD is the data
matrix after performing PCA. Using the singular value decomposition of Φ, show that
an alternating minimization algorithm that iteratively minimizes ‖Φ−AD‖2F with respect
to A, and then D, converges to the global optimum for almost all initializations of D;
compute the corresponding updates.

Exercise 3.10 (K-means clustering) Given Φ ∈ Rn×d, we consider minimizing the
objective ‖Φ−AD‖2F with respect to D ∈ Rk×d and A ∈ {0, 1}n×k such that each row of A
sums to 1. Compute the updates of an alternating optimization algorithm that minimizes
‖Φ−AD‖2F.
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Chapter 4

Empirical Risk Minimization

Exercise 4.1 (�) On top of the assumptions made in this section, assume that a(0) = 0.
Show that if a∗ is the Fenchel conjugate of a, then for any function g : X → R, we have
a∗
(
R(g)− R∗

)
6 RΦ(g)− R∗Φ.

Exercise 4.2 (��) Consider a convex function Φ : R → R, which is differentiable at
zero with Φ′(0) < 0. Define G(z) = Φ(0)− infu∈R

{
1+z

2 Φ(u) + 1−z
2 Φ(−u)

}
. Show that G

is convex, G(0) = 0, and G
[
R(g) − R∗

]
6 RΦ(g) − R∗Φ for any function g : X → R.

Compute G for the exponential loss.

Exercise 4.3 (�) Assume that |2η(x) − 1| > ε almost surely for some ε ∈ (0, 1]. Show
that for any smooth convex classification-calibrated function Φ : R → R of the form
Φ(v) = a(v) − v as in this section, then we have R(g) − R(g∗) 6 ε

a∗(ε)

[
RΦ(g) − R∗Φ

]
for

any function g : X→ R.

Exercise 4.4 For the logistic loss, show that for data generated with class-conditional
densities of x|y = 1 and x|y = −1, which are Gaussians with the same covariance matrix,
the function g(x) minimizing the expected logistic loss is affine in x. This model is
often referred to as “linear discriminant analysis (LDA).” Provide an extension to the
multicategory setting.

Exercise 4.5 Show that for Θ = {θ ∈ Rd, ‖θ‖1 6 D} (`1-norm instead of the `2-norm),
we have

inf
θ∈Θ

R(fθ)− inf
θ∈Rd

R(fθ) 6 GE
[
‖ϕ(x)‖∞

]
(‖θ∗‖1 −D)+.

Generalize to all norms.

Exercise 4.6 (�) Provide an explicit bound on sup‖θ‖26D |R(f) − R̂(f)|, and compare
it to using Rademacher complexities in section ??. The concentration of averages of
matrices from section ?? can be used.

13



14 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

Exercise 4.7 (�) In terms of expectation, show the following (using the proof of the max
of random variables from section ??, which applies because bounded random variables are
sub-Gaussian):

E
[

sup
f∈F

∣∣R̂(f)− R(f)
∣∣] 6 `∞√ log(2|F|)

2n
.

Exercise 4.8 Let m(ε) be the covering number of a unit ball of Rd by balls of radius ε for

an arbitrary norm. Using comparisons of volumes, show that
(

1
ε

)d
6 m(ε) 6

(
1 + 2

ε

)d
.

Exercise 4.9 Show the following properties of Rademacher complexities (see ?, for more
details):

• If H ⊂ H′, then Rn(H) 6 Rn(H′).

• Rn(H + H′) = Rn(H) + Rn(H′).

• If α ∈ R, Rn(αH) = |α| · Rn(H).

• If h0 : Z→ R, Rn(H + {h0}) = Rn(H).

• Rn(H) = Rn(convex hull(H)).

Solution.

• We define H,H′ s.t H ⊂ H′. Let YH = suph∈H ε>(h(z1), . . . , h(zn)) and YH′

defined similarly. Since YH′ is obtained by maximizing over a larger set, it is larger,
hence the result.

• We define H,H′ and want to compute Rn(H + H′). We have H + H′ = {h +
h′, h ∈ H, h′ ∈ H′}. Therefore, by linearity of the expectation, and additivity of
the evaluated expression w.r.t h (meaning that suph∈H,h′∈H′ · · · = suph∈H · · · +
suph′∈H′ . . . here), we get Rn(H + H′) = Rn(H) + Rn(H′).

• Let α ∈ R. If α > 0, the result is obvious. If α 6 0, let’s consider the expectation
w.r.t the Rademacher variables (ε′1, . . . , ε

′
n) ∼ −(ε1, . . . , εn) (by symmetry). We

therefore have to compute Eε′,D(suph∈H
1
n

∑n
i=1 ε

′
i(−α)h(zi)). As −α = |α| is

positive, we clearly have Rn(αH) = |α|Rn(H). This concludes the proof.

• We have

Rn({h0}) = Eε,D(
1

n

n∑
i=1

εih0(zi)) = ED(
1

n

n∑
i=1

Eε(εi)h0(zi)) = 0,

using that we evaluate the sup on a singleton. The result follows from the second
property shown in this exercise.

• We clearly have Rn(H) 6 Rn(convex hull(H)) by using H ⊂ convex hull(H) and the
first result of this exercise. We therefore want to show Rn(H) > Rn(convex hull(H)).
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Let ε = (ε1, . . . , εn) be a draw of Rademacher variables ; let h̃ ∈ convex hull H.
There exists (αi)i∈{1,...,m} ∈ Rm, which sum to 1, and (hi)i∈{1,...,m} ∈ Hm s.t.

h̃ =
∑m
k=1 αkhk. We have :

n∑
i=1

εih̃(zi) =

n∑
i=1

εi

m∑
k=1

αkhk(zi)

=

m∑
k=1

αk

n∑
i=1

εihk(zi)

6
m∑
k=1

αk sup
h∈H

n∑
i=1

(εih(zi))

6 sup
h∈H

n∑
i=1

εih(zi).

Therefore, suph̃∈convex hull(H)

∑n
i=1 εih̃(zi) 6 suph∈H

∑n
i=1 εih(zi). Taking the ex-

pectancy concludes the proof.

Exercise 4.10 (Massart’s lemma) Assume that H = {h1, . . . , hm}, and almost surely
we have the bound 1

n

∑n
i=1 hj(xi)

2 6 R2 for all j ∈ {1, . . . ,m}. Show that the Rademacher

complexity of the class of functions H satisfies Rn(H) 6
√

2 logm
n R.

Exercise 4.11 (�) The Gaussian complexity of a class of functions H from Z to R is de-
fined as Gn(H) = Eε,D

[
suph∈H

1
n

∑n
i=1 εih(zi)

]
, where ε ∈ Rn is a vector of independent

Gaussian variables with mean zero and variance 1. Show that (1) Rn(H) 6
√

π
2 ·Gn(H)

and (2) Gn(H) 6
√

2 log(2n) · Rn(H).

Exercise 4.12 (`1-norm) Assume that almost surely, ‖ϕ(x)‖∞ 6 R. Show that the
Rademacher complexity Rn(F) for F = {fθ(x) = θ>ϕ(x), Ω(θ) 6 D}, with Ω = ‖ · ‖1, is

upper-bounded by RD
( 2 log(2d)

n

)1/2
.

Solution. We use Rn(F) = D
n E(||Φ>ε||∞) (‖ · ‖∞ is the dual norm of ‖ · ‖1). We want

to upper-bound

E[||Φ>ε||∞] = E
[

max
16i6d

max
{ n∑
j=1

ϕj(xi)εi,−
n∑
j=1

ϕj(xi)εi

}]
,

which is the maximum of 2d random variables.

Since ‖ϕ(x)‖∞ 6 R almost surely, we have |ϕj(x)| 6 R for all j. The random
variables εiϕj(xi) are therefore bounded by R and −R and are sub-Gaussian with a sub-
Gaussian parameter σ2 = R2. The sum

∑n
j=1 ϕj(xi)εi is therefore also sub-Gaussian
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(as the summed random variables are independent) with a parameter τ2 = nR2. So is
−
∑n
j=1 ϕj(xi)εi.

Using the result from section 1.2.4, we can bound the expectation of the maximum of
these 2d variables by

√
2τ2 log d = R

√
2n log 2d.

Combining it to the first result, we obtain :

Rn(F) = RD

√
2 log 2d

n
.

Exercise 4.13 (�) Let p > 1, and q such that 1/p + 1/q = 1. Assume that almost
surely, ‖ϕ(x)‖q 6 R. Show that the Rademacher complexity Rn(F) for F = {fθ(x) =
θ>ϕ(x), Ω(θ) 6 D}, with Ω = ‖ · ‖p, is upper-bounded by RD√

n
1√
p−1

(hint: use exer-

cise 1.25). Recover the result of exercise 4.12 by taking p = 1 + 1
log(2d) .

Exercise 4.14 Consider a learning problem with 1-Lipschitz-continuous loss (with re-
spect to the second variable), a function class fθ(x) = θ>ϕ(x), ‖θ‖1 6 D, and ϕ : X→ Rd,
with ‖ϕ(x)‖∞ almost surely less than R. Given the expected risk R(fθ) and the empirical

risk R̂(fθ). Show that E
[
R(fθ̂)

]
6 inf‖θ‖16D R(fθ) + 4RD

√
2 log(2d)/n, for the con-

strained empirical risk minimizer fθ̂.

Exercise 4.15 (��) Extend the result in proposition ?? to features that are almost surely
bounded in the `p-norm by R, and a regularizer ψ that is strongly convex with respect to
the `p-norm; that is, such that for all θ, η ∈ Rd, ψ(θ) > ψ(η)+ψ′(η)>(θ−η)+ µ

2 ‖θ−η‖
2
p,

for some µ > 0, where ψ′(η) is a subgradient of ψ at η. Hint: use exercise 4.13.

Exercise 4.16 (�) Consider a learning algorithm and a distribution p on (x, y) such that
for all (x, y) ∈ X× Y, and two outputs f, g : X→ Y of the learning algorithm on datasets
of n observations that differ by a single observation, |`(y, f(x)) − `(y, g(x))| 6 βn, an
assumption referred to as “uniform stability.” Show that the expected deviation between
the expected risk and the empirical risk of the algorithm’s output is bounded by βn. With

the same assumptions as in proposition ??, show that we have βn = 2G2R2

λn (see ?, for
more details).



Chapter 5

Optimization for Machine
Learning

Exercise 5.1 Let µ+ be the smallest nonzero eigenvalue of H. Show that GD is linearly
convergent with a convergence rate proportional to (1− µ+/L)t after t iterations.

Solution. We have, for any λ ∈ Λ(H) the eigenvalues of H :∣∣∣∣∣λ
(

1− λ

L

)2t
∣∣∣∣∣ 6 max

λ′∈Λ(H)
λ>0

∣∣∣∣∣λ′
(

1− λ′

L

)2t
∣∣∣∣∣ 6 L max

λ′∈Λ(H)
λ>0

(
1− λ′

L

)2t

,

where we use between the first and second terms that λ = 0 (if it exists) can not be
a maximizer, and between the second and third terms that for a, b positive, max(ab) 6
max(a) max(b).

As Λ(H) ∩ R∗ ⊂ [µ+, L], this gives the expected result directly, having

|F (θt)− F (η∗)| 6
L

2

(
1− µ+

L

)2t

‖θ0 − η∗‖22.

Exercise 5.2 (Exact line search (�)) For the quadratic objective in equation (??),

show that the optimal step size γt in equation (??) is equal to γt =
‖F ′(θt−1)‖22

||F ′(θt−1)>HF ′(θt−1)
.

Show that when F is strongly convex, we have F (θt)−F (η∗) 6
(
κ−1
κ+1

)2[
F (θt−1)−F (η∗)

]
,

and compare the rate with constant step size GD. Hint: prove and use the Kantorovich

inequality sup‖z‖2=1 z
>Hzz>H−1z = (L+µ)2

4µL .

Exercise 5.3 Assume that function F : Rd → R is strictly convex; that is, ∀θ, η ∈ Rd
such that θ 6= η and α ∈ (0, 1), F (αη+ (1−α)θ) < αF (η) + (1−α)F (θ). Show that there

17
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is equality in Jensen’s inequality in equation (??) if and only if the random variable θ is
almost surely constant.

Exercise 5.4 Identify all stationary points in the function in R2 depicted here:

Exercise 5.5 Show that function F : Rd → R is µ-strongly-convex if and only if function
θ 7→ F (θ)− µ

2 ‖θ‖
2
2 is convex.

Exercise 5.6 Show that if function F : Rd → R is µ-strongly-convex, then it has a
unique minimizer.

Exercise 5.7 (�) Show that the differentiable function F : Rd → R is µ-strongly convex
if and only if for all θ, η ∈ Rd, ‖F ′(θ)− F ′(η)‖2 > µ‖θ − η‖2.

Exercise 5.8 (�) Consider angle α between the descent direction −F ′(θ) and the de-

viation to optimum θ − η∗, defined through cosα = F ′(θ)>(θ−η∗)
‖F ′(θ)‖·‖θ−η∗‖2 . Show that for a

µ-strongly-convex, L-smooth quadratic function, cosα > 2
√
µL

L+µ . (Hint: prove and use the

Kantorovich inequality sup‖z‖2=1 z
>Hzz>H−1z = (L+µ)2

4µL .) (��) Show that the same

result holds without the assumption that F is quadratic. (Hint: use the co-coercivity of
the function θ 7→ F (θ)− µ

2 ‖θ‖
2
2 from proposition ??.)

Exercise 5.9 Compute all constants for `2-regularized logistic regression and for ridge
regression.

Solution. For ridge regression with data matrix X ∈ Rn×d, the Hessian of the cost func-
tion is X>X/n+λI, thus the objective function has smoothness constant λmax(X>X/n)+
λ, and strong convexity constant λmin(X>X/n) + λ.

For logistic regression, we define the regularized empirical risk as

R̂(θ) =
1

n

n∑
i=1

log(1 + exp(−yiθ>xi)) +
λ

2
‖θ‖22,

with gradient

R̂′′(θ) = − 1

n

n∑
i=1

exp(−yiθ>xi)
1 + exp(−yiθ>xi)

yixi + λθ = − 1

n

n∑
i=1

1

1 + exp(yiθ>xi)
yixi + λθ,

and Hessian

R̂′′(θ) =
1

n

n∑
i=1

exp(yiθ
>xi)

(1 + exp(−yiθ>xi))2
xix
>
i + λI.

The scalar α
(1+α)2 = α

1+α ×
(
1− α

α+1

)
is always between 0 and 1/4, thus, we have, using

the Löwner ordering between symmetric matrices:

λI 4 R̂′′(θ) 4
1

4n
X>X + λI
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withX ∈ Rn×d the data matrix. Thus, R̂ has a smoothness constant less than 1
4λmax(X>X/n)+

λ and is λ-strongly-convex.

Exercise 5.10 Let F be an L-smooth convex function on Rd. Show that its Fenchel
conjugate is (1/L)-strongly convex.

Exercise 5.11 (Fenchel-Young inequality) Let F be an L-smooth convex function
on Rd and F ∗ be its Fenchel conjugate. Show that for any θ, z ∈ Rd, we have F (θ) +
F ∗(z)− z>θ > 0, if and only if z = F ′(θ). (�) Show in addition that we have the lower
bound F (θ) + F ∗(z)− z>θ > 1

2L‖z − F
′(θ)‖22.

Exercise 5.12 (Alternative convergence proof - I) Consider an L-smooth convex
function with a global minimizer η∗, and GD with step size γt = 1/L:

• Using proposition ??, show that ‖θt−η∗‖22 6 ‖θt−1−η∗‖22− 1
LF
′(θt−1)>(θt−1−η∗).

• Show that F (θt) 6 F (θt−1).

• Using a telescoping sum, show that F (θt)− F (η∗) 6 L
t+1‖θ0 − η∗‖22.

Exercise 5.13 (Alternative convergence proof - II (�)) Consider an L-smooth con-
vex function with a global minimizer η∗, and GD with step size γt = 1/L:

• Show that ‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 for all t > 1.

• Show that F (θt) 6 F (θt−1)− 1
2L‖F

′(θt−1)‖22 for all t > 1.

• Denoting ∆t = F (θt)−F (η∗), show that ∆t 6 ∆t−1− 1
2L‖θ0−η∗‖22

∆2
t−1 for all t > 1.

Conclude that ∆t 6 2L
t+4‖θ0 − η∗‖22.

Exercise 5.14 (��) For the updates in equations (??) and (??), show that for the Lya-

punov function V (θ, η) = f(θ) − f(η∗) + µ
2

∥∥θ − η∗ + (1 +
√
L/µ)(η − θ)

∥∥2

2
, then we

have V (θt, ηt) 6 (1 −
√
µ/L)V (θt−1, ηt−1). Show that this implies a convergence rate

proportional to (1−
√
µ/L)t.

Exercise 5.15 (��) For the updates in equations (??) and (??), show that for the

Lyapunov function Vt(θ, η) =
(
t+1

2

)2[
f(θ) − f(η∗)

]
+ L

2

∥∥η − η∗ + t
2 (η − θ)

∥∥2

2
, then we

have Vt(θt, ηt) 6 Vt−1(θt−1, ηt−1). Show that this implies a convergence rate proportional
to 1/t2.

Exercise 5.16 (�) Assume that function F is µ-strongly convex, twice-differentiable,
and such that the Hessian is Lipschitz-continuous: ‖f ′′(θ)− f ′′(η)‖op 6M‖θ− η‖2. Us-
ing Taylor’s formula with an integral remainder, show that for the iterates of Newton’s
method, ‖∇F (θt)‖2 6 M

2µ2 ‖∇F (θt−1)‖22. Show that this implies local quadratic conver-
gence.

Exercise 5.17 (Convergence of proximal gradient method) Consider a convex L-
smooth function G and a convex function H defined on Rd. We consider the update in
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equation (??) and a minimizer η∗ of G+H.

• Show that G(θt) 6 G(θt−1) +G′(θt−1)>(θt − θt−1) + L
2 ‖θt − θt−1‖22.

• Show that G(θt−1) 6 G(η∗) +G′(θt−1)>(θt−1 − η∗).
• Show that H(θt) 6 H(η∗) + (Lθt−1 − Lθt −G′(θt−1))>(θt − η∗).

• Deduce that G(θt) +H(θt) 6 G(η∗) +H(η∗) + L
2 ‖θt−1 − η∗‖22 − L

2 ‖θt − η∗‖
2
2.

• Conclude that for t > 1, G(θt) +H(θt)−
[
G(η∗) +H(η∗)

]
6 L

2t‖θ0 − η∗‖22.

Exercise 5.18 Show that if F is differentiable, B-Lipschitz-continuity is equivalent to
the assumption ‖F ′(θ)‖2 6 B, ∀θ ∈ Rd.

Exercise 5.19 Compute the subdifferential of θ 7→ |θ| and θ 7→ (1− yθ>x)+ for the label
y ∈ {−1, 1} and the input x ∈ Rd.

Exercise 5.20 Consider the iteration θt = θt−1− γ′t
‖F ′(θt−1)‖2F

′(θt−1). Show that with the

step size γ′t = D/
√
t (independent of B), we get the following guarantee: min06s6t−1 F (θs)−

F (η∗) 6 DB
2+log(t)

2
√
t

.

Exercise 5.21 Let K ⊂ Rd be a convex closed set, and denote as ΠK(θ) the orthogonal
projection of θ onto K, defined as ΠK(θ) = arg minη∈K ‖η− θ‖22. Show that function ΠK

is contractive; that is, for all θ, η ∈ Rd, ‖ΠK(θ)−ΠK(η)‖2 6 ‖θ−η‖2. For the algorithm
θt = ΠK(θt−1 − γtF ′(θt−1)), and with η∗ being a minimizer of F on K, show that the
guarantee of proposition ?? still holds.

Exercise 5.22 (�) Let F : Rd → R be a differentiable function, and ψ : Rd → R a
strictly convex function.

• Show that the minimizer of F (θ) + F ′(θ)>(η − θ) + 1
2γ ‖η − θ‖22 is equal to η =

θ − γF ′(θ).

• Show that the Bregman divergence Dψ(η, θ), defined as Dψ(η, θ) = ψ(η) − ψ(θ) −
ψ′(θ)>(η − θ), is nonnegative and equal to zero if and only if η = θ.

• Show that the minimizer of F (θ) + F ′(θ)>(η − θ) + 1
γDψ(η, θ) satisfies ψ′(η) =

ψ′(θ)−γF ′(θ). Show that the same conclusion holds if ψ is only defined on an open
convex set K ⊂ Rd, and the gradient ψ′ is a bijection from K to Rd.

• Provide an explicit form of the resulting algorithm when ψ(θ) =
∑d
i=1 θi log θi.

Exercise 5.23 (�) Consider the same assumptions as exercise 5.21 and the same algo-
rithm with orthogonal projections. With D being the diameter of K, show that for the
average iterate θ̄t = 1

t

∑t−1
s=0 θs, we have F (θ̄t)− F (θ∗) 6 3BD

2
√
t
.

Exercise 5.24 (Doubling trick for subgradient method) Consider an algorithm

that successively applies the SGD iteration with step size γ = D/(B
√

2k) during 2k itera-



21

tions, for k = 0, 1, . . . . Show that after t subgradient iterations, the observed best expected
value of F is less than a constant times DB/

√
t.

Exercise 5.25 Compute all constants for `2-regularized logistic regression and the sup-
port vector machine (SVM) with linear predictors (section ??).

Exercise 5.26 (High-probability bound for SGD (�)) Using the same assumptions
and notations as in proposition ??, we consider the projected SGD iteration: θt =
ΠD(θt−1 − γtgt), where ΠD is the orthogonal projection on the `2-ball with center 0 and
radius D. Denoting zt = −γt(θt−1 − θ∗)>[gt − F ′(θt−1)], show that E[zt|Ft−1] = 0 and
|zt| 6 4γtBD almost surely, and

γt[F (θt−1)− F (θ∗)] 6
1

2

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+

1

2
γ2
tB

2 + zt.

Using Azuma’s inequality (see exercise 1.14), show that with probability at least 1 − δ,
then, for the weighted average θ̄t defined in proposition ??, for any step sizes γt:

F (θ̄t)− F (θ∗) 6
2D2∑t
s=1 γs

+B2

∑t
s=1 γ

2
s

2
∑t
s=1 γs

+ 4BD

(∑t
s=1 γ

2
s

)1/2∑t
s=1 γs

√
2 log

1

δ
,

and for a constant step size, γt = γ, F (θ̄t)− F (θ∗) 6 2D2

γT + γB2

2 + 4DB√
t

√
2 log 1

δ (for the

uniformly averaged iterate).

Exercise 5.27 (Minibatch SGD) Consider the mini-batch version of SGD, where at
every iteration, we replace gt(θt−1) by the average of m independent samples of stochastic
gradients at θt−1. Show that the convergence result of proposition ?? still holds.
(�) Which assumption on gradients would improve the convergence rate?

Exercise 5.28 (SGD for smooth functions (�)) Consider independent and identi-
cally distributed (i.i.d.) convex L-smooth random functions ft : Rd → R, t > 1, with
expectation F : Rd → R, which has a minimizer θ∗ ∈ Rd. Consider the SGD recursion
θt = θt−1−γtf ′t(θt−1), with γt being a deterministic step-size sequence. Using co-coercivity
(proposition ??), show that

E
[
‖θt−θ∗‖22

]
6 E

[
‖θt−1−θ∗‖22

]
−2γt(1−γtL)E

[
F ′(θt−1)>(θt−1−θ∗)

]
+2γ2

t E
[
‖f ′t(θ∗)‖22

]
.

Extend the proof of proposition ?? to obtain an explicit rate in O(1/
√
t). (�) Show that

the minibatch version leads to an improvement in the rate (as opposed to the nonsmooth
case in exercise 5.27).

Exercise 5.29 (Nonuniform sampling (�)) Consider the function F : Rd × Z → R,
which is convex with respect to the first variable, with a subgradient F ′(θ, z) with respect
to the first variable that is bounded in the `2-norm by a constant B(z) that depends on z.
Consider a distribution p on Z. We aim to minimize Ez∼p[F (θ, z)], but we sample from
a distribution q, with density dq/dp(z) with respect to p to get i.i.d. random zt, t > 1.
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Consider the recursion θt = θt−1 − γ
dq/dp(zt)

F ′(θt−1, zt). Provide a convergence rate for

this algorithm and show how a good choice of q leads to significant improvements over
the choice q = p when B(z) is far from uniform in z. Apply this result to the SVM when
applying SGD to the empirical risk.

Exercise 5.30 (SGD for nonconvex functions) Consider an L-smooth potentially
nonconvex function F , and the SGD recursion with constant step size γ, with unbiased
and bounded gradient estimates (e.g., assumptions (H-1) and (H-2)).

• Show that E
[
F (θt)

]
6 E

[
F (θt−1)

]
− γE

[
‖F ′(θt−1‖22

]
+ LB2γ2

2 .

• Show that 1
t

∑t
s=1 E

[
F (θs−1)

]
6 1

γt

[
F (θ0)− infη∈Rd F (η)

]
+ LB2γ

2 .

Exercise 5.31 (�) Consider the minimization of F (θ) = 1
2θ
>Hθ−c>θ, where H ∈ Rd×

is positive-definite (and thus invertible), and the recursion θt = θt−1 − γ[F ′(θt−1) + εt],
where all εt’s are independent, with zero mean and covariance matrix equal to C. Compute
explicitly E

[
F (θt) − F (θ∗)

]
, and provide an upper bound of E

[
F (θ̄t) − F (θ∗)

]
, where

θ̄t = 1
t

∑t−1
s=0 θs.

Exercise 5.32 With the same assumptions as proposition ??, show that with the step

size γt = 2
µ(t+1) , and with θ̄t = 2

t(t+1)

∑t
s=1 sθs−1, we have E

[
G(θ̄t)−G(θ∗)

]
6 8B2

µ(t+1) .

Exercise 5.33 Consider the minimization of F (θ) = E
[
‖θ − z‖22/2

]
from i.i.d. observa-

tions z1, . . . , zt. Show that the t-th iterate of SGD equals 1
t (z1 + · · ·+ zt).

Exercise 5.34 (��) With the same assumptions as in proposition ??, with step size
γt = 1/(B2

√
t+ µt), provide a convergence rate for the averaged iterate.

Exercise 5.35 (Weaker assumptions) Consider a joint distribution on (x, y) ∈ X×R,
and a feature map ϕ : X → Rd bounded by R in the `2-norm. Denoting θ∗ a minimizer
of E

[
(y − ϕ(x)>θ)2

]
with respect to θ, show that the bound in equation (??) applies

with σ2 = E
[
(y − ϕ(x)>θ∗)

2
]
.

Exercise 5.36 Check the homogeneity of all quantities of this section (step size and
convergence rates).
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Local Averaging Methods

Exercise 6.1 For k-nearest-neighbors and partitioning estimates, what is the pattern of
nonzeros in the smoothing matrix H ∈ Rn×n?

Solution. Common to both cases, we have a sparse pattern of nonzeros in the smoothing
matrix. This comes from the fact that in usual settings, we have either k small compared
to the number of points (k-NN) or J , the number of sets, big enough to capture meaningful
patterns in the data (partitions).

For k-NN, following the book’s notations, we have :

wi(x) =

{
1
k if i ∈ {i1(x), . . . , ik(x)},
0 otherwise

,

where {i1(x), . . . , ik(x)} are the indices of the k-closest elements of (xj)1≤j≤n to x.

Therefore, unless we specify (by convention) that wi(xi) = 0, we have diag(H)i = 1/k.
This means that on each column, k − 1 other cases are equal to 1/k, and the rest equal
to 0, but no specific pattern can be found.

Moreover, the smoothing matrix is not symmetric (the point xi being among the
closest points to a certain xj does not necessarily mean that the opposite stands).

For the partitioning case, unlike k-NN, in the case of partitions, the space segmenta-
tion is the same for all points (whereas it is local for KNN, as explained before). Therefore,
the smoothing matrix H is symmetric.

Moreover, by rearranging the points’ indices s.t, if ϕ is a permutation of {1, . . . , n},
we have (xϕ(1), . . . , xϕ(nA1

) ∈ A1 , (xϕ(nA1
+1), . . . , xϕ(nA1

+nA2
)) ∈ A2, etc. . . , and we

thus obtain a block-diagonal matrix.

Exercise 6.2 For the binary classification problem, with Y = {−1, 1}, assume that
f∗(x) = E[y|x] is B-Lipschitz-continuous. Using section ??, show that the excess risk

23
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of the majority vote is upper-bounded by(
B2

∫
X

E
[ n∑
i=1

ŵi(x)∆(xi, x)2
]
dp(x) + σ2

n∑
i=1

∫
X

E[ŵi(x)2]dp(x)

)1/2

.

Exercise 6.3 Show that if the Bayes rate is 0 (i.e., σ = 0), then the 1-nearest-neighbor
predictor is consistent.

Solution. We note f̂n the 1-NN estimator computed on n samples, and want to show
that (f̂n)n converges in probability to f∗. Using proposition 6.2, we show that having
σ = 0, the expected risk tends to 0 when n tends to infinity. Therefore, as the convergence
in Lp norm (p > 1, here p = 2) implies the convergence in probability, we directly obtain
the expected result.

Exercise 6.4 Assume that the support X of the density p of inputs is bounded and that p
is strictly positive and continuously differentiable on X. Show that for h small enough

(with an explicit upper bound), then Ch =
∫
X

p(x)
[qh∗p](x)dx 6

1
2vol(X).

Exercise 6.5 If Z1, . . . , Zm are i.i.d. Bernoulli random variables with parameter ρ ∈
(0, 1]. Show that E

[
1

1+Z1+···+Zm

]
6 1

(m+1)ρ .

Exercise 6.6 (�) For the Nadaraya Watson estimator, show that when the target func-
tion and the kernel are twice continuously differentiable, then the bias term is bounded by
a constant times h4. Show that the optimal bandwidth selection leads to a rate proportional
to n−4/(4+d).



Chapter 7

Kernel Methods

Exercise 7.1 (��) Let H be a Hilbert space of real-valued functions on X endowed with
a dot product 〈·, ·〉H, such that for any x ∈ X, the linear form f 7→ f(x) is bounded (i.e.,
supf∈H, ‖f‖H61 |f(x)| is finite). Using the Riesz representation theorem, show that this
is an RKHS.

Exercise 7.2 Show that if k : X×X→ R is a positive-definite kernel, so is the function
(x, x′) 7→ ek(x,x′).

Solution. We have ek(x,x′) =
∑+∞
i=0

k(x,x′)i

i! . Each (x, x′) 7→ k(x, x′)i is a positive-
definite kernel as the product of positive-definite kernels. So is their sum, hence the
result. Note that this is different from the matrix exponential.

Exercise 7.3 Show that kernel k(x, x′) = (1+x>x′)s corresponds to the set of all mono-
mials xα1

1 · · ·x
αd
d such that α1 + · · ·+αd 6 s. Also, show that the dimension of the feature

space is
(
d+s
s

)
.

Exercise 7.4 Show that for s = 2, we have for all x, x′ ∈ [0, 1], k(x, x′) = q(x−x′), with

q(t) = 1− (2π)4

24

(
{t}4 − 2{t}3 + {t}2 − 1

30

)
.

Exercise 7.5 (���) Show that we have k(x, x′) =
∑
m∈Z

e2imπ(x−x′)

1+α2|m|2 = q(x − x′) for

q(t) = π
α

∣∣cosh π
α (1−2|{t+1/2}−1/2|)

sinh π
α

. Hint: use the Cauchy residue formula.1

Exercise 7.6 (Mercer kernels) Consider a probability distribution p on a set X, an
orthonormal basis (ϕi)i∈I of the Hilbert space L2(p) of square-integrable functions (with I
countable), and a summable positive sequence (λi)i∈I . Show that the function defined as

1See https://francisbach.com/cauchy-residue-formula/.

25
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k(x, x′) =
∑
i∈I λiϕi(x)ϕi(x

′) is a positive-definite kernel and describe an associated
feature space.

Exercise 7.7 (Mercer decomposition (��)) Consider a probability distribution p on
a set X, a positive-definite kernel k : X×X→ R, and the operator T defined on L2(p) as
Tf(y) =

∫
X
k(x, y)f(x)dp(x).

• Show that if
∣∣∫
X

∫
X
k(x, y)2dp(x)dp(y) is finite, then the operator T is bounded (it is

an instance of Hilbert-Schmidt integral operator2).

• Given an orthonormal basis (ei)i∈I of L2(p) composed of eigenvectors for T (which
is assumed to exist), show that the corresponding eigenvalues (λi)i∈I are nonnegative
and k(x, x′) =

∑
i∈I λiϕi(x)ϕi(x

′) (convergence meant in the norm L2(p)).

Exercise 7.8 (�) Show that column sampling corresponds to approximating optimally
each ϕ(xj), j /∈ I, by a linear combination of ϕ(xi), i ∈ I.

Exercise 7.9 Show that the matrix K − K(V, I)K(I, I)−1K(I, V ) is positive-definite.
If ‖M‖∗ denotes the nuclear norm (sum of absolute values of eigenvalues of symmetric
matrix M), show that the approximation error ‖K −K(V, I)K(I, I)−1K(I, V )‖∗ can be
computed without the need to compute the entire matrix K.

Exercise 7.10 In the setup of exercise 7.6, provide a random feature expansion of Mercer
kernels.

Exercise 7.11 (a) For ridge regression, compute the dual problem and compare the con-
dition number of the primal problem and the condition number of the dual problem; (b)
compare the two formulations to the use of normal equations as in chapter 3, and relate
the two using the matrix inversion lemma (ΦΦ> + nλI)−1Φ = Φ(Φ>Φ + nλI)−1.

Solution. Using the same notations as those of chapter 3, the primal problem of ridge
regression can be expressed as

min
θ∈Rd

y−Φθ=u

1

2n
‖u‖2 +

λ

2
‖θ‖2,

where Φ ∈ Rn×d is the design matrix.

The associated Lagrangian is therefore

L(θ, u, α) =
1

2n
‖u‖2 +

λ

2
‖θ‖2 + λα>(y − Φθ − u).

As our primal optimization problem is convex, using the saddle point theorem, we
can express our minimization problem as the maximization of the dual function

g : α 7→ min
θ∈Rd, u∈Rn

L(θ, r, α).

2See https://en.wikipedia.org/wiki/Hilbert-Schmidt_integral_operator.

https://en.wikipedia.org/wiki/Hilbert-Schmidt_integral_operator
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We compute
∂L

∂θ
= λθ − λΦ>α = 0⇐⇒ θ = Φ>α,

∂L

∂r
= u/n− α⇐⇒ u = αn.

Which yields g(α) = −nλ
2‖α‖2
2 − λ‖Φ>α‖2

2 + λα>y = λα>y − λ
2α
>(ΦΦ> + nλI)α.

Finally, computing g′(α) = 0 gives

α̂ = (ΦΦ> + nλI)−1y,

and therefore
θ̂dual = Φ>(ΦΦ> + nλI)−1y.

For the condition numbers, we are interested in comparing the eigenvalues of the
kernel matrix ΦΦ> ∈ Rn×n and of the rescaled empirical covariance matrix Φ>Φ ∈ Rd×d,
which share the same non-zero eigenvalue. Let nL bet the largest eigenvalue.

If n > d (with ΦΦ> rank-deficient), denoting nµ the smallest eigenvalue of Φ>Φ,
the condition number of the primal problem in θ is L+λ

µ+λ , while the one of the dual

problem in α is L+λ
λ , and the one of the primal problem after having used the representer

theorem to obtain a minimization problem in α is infinite (this is the minimization of
1
n‖y − Kα‖

2
2 + λ

2α
>Kα, where K = ΦΦ>). Thus using the representer theorem is not

advantageous.

If n < d (with Φ>Φ rank-deficient), denoting nµ the smallest eigenvalue of the kernel
matrix ΦΦ>, the condition number of the primal problem in θ is L+λ

λ , while the one of

the dual problem in α is L+λ
µ+λ , and the one of the primal problem after having used the

representer theorem to obtain a minimization problem in α is L2+λL
λµ . Again, using the

representer theorem is not advantageous.

Exercise 7.12 Write down the dual problem in equation (??) for the logistic loss and
the for the hinge loss (compare the results to section ??).

Exercise 7.13 (Unregularized constant term) Consider the minimization problem
minθ∈H,c∈R

1
n

∑n
i=1 `(yi, 〈ϕ(xi), θ〉+c)+ λ

2 ‖θ‖
2. If the loss function is convex with respect

to the second variable, show that the dual problem is the one in equation (??) with the
additional constraint that

∑n
i=1 αi = 0. Without any assumption on the loss function,

show that we can restrict the search space for θ to all combinations
∑n
i=1 αiϕ(xi) with

the same constraint that
∑n
i=1 αi = 0.

Exercise 7.14 (Limit of Gaussian kernel for infinite bandwidth) Consider the
minimization problem minθ∈H,c∈R

1
n

∑n
i=1 `(yi, 〈ϕ(xi), θ〉+c)+ λ

2 ‖θ‖
2 from exercise 7.13.

For the Gaussian kernel k(x, x′) = exp(−‖x−x′‖22/r2), show that when r tends to infinity,
the resulting prediction function is the same as the one obtained by the linear kernel
k(x, x′) = x>x′ with the regularization parameter λr2/2.
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Exercise 7.15 (Optimization of the kernel) Show that for convex loss functions, the
maximal value in equation (??) is a convex function of the kernel matrix K. For the
square loss, show that it is equal to λ

2 y
>(K + nλI)−1y.

Exercise 7.16 (�) Consider the minimization of F (θ) = E
[
`(y, 〈ϕ(x), θ〉)

]
using con-

stant step-size SGD for a convex G-Lipschitz-continuous loss and features almost surely
bounded by R. Show that after t steps (initialized at θ0 = 0 and with step size γ), the

averaged iterate θ̄t satisfies E
[
F (θ̄t)

]
6 infθ∈H

{
F (θ) +

‖θ‖2H
2γt

}
+ γG2R2

2 .

Exercise 7.17 (Kernel PCA) We consider n observations x1, . . . , xn in a set X equip-
ped with a positive-definite kernel and feature map ϕ from X to H. Show that the largest
eigenvector of the empirical noncentered covariance operator 1

n

∑n
i=1 ϕ(xi) ⊗ ϕ(xi) is

proportional to
∑n
i=1 αiϕ(xi), where α ∈ Rn is an eigenvector of the n× n kernel matrix

associated with the largest eigenvalue. Given the RKHS H associated with kernel k, relate
this eigenvalue problem to the maximizer of 1

n

∑n
i=1 f(xi)

2 subject to ‖f‖H = 1.

Exercise 7.18 (Kernel K-means) Show that the K-means clustering algorithm3 can
be expressed only using dot products.

Exercise 7.19 (Kernel quadrature) We consider a probability distribution p on a
set X equipped with a positive-definite kernel k with feature map ϕ : X → H. For a
function f that is linear in ϕ, we want to approximate

∫
X
f(x)dp(x) from a linear com-

bination
∑n
i=1 αif(xi) with α ∈ Rn.

(a) Show that∣∣∣∣ ∫
X

f(x)dp(x)−
n∑
i=1

αif(xi)

∣∣∣∣ 6 ‖f‖ · ∥∥∥∥ ∫
X

ϕ(x)dp(x)−
n∑
i=1

αiϕ(xi)

∥∥∥∥.
(b) Express the square of the right side with the kernel function and show how to minimize
it with respect to α ∈ Rn.
(c) Show that if the points x1, . . . , xn are sampled i.i.d. from p and αi = 1/n for all i,

then E
[∥∥ ∫

X
ϕ(x)dp(x)−

∑n
i=1 αiϕ(xi)

∥∥2
]
6 1

nE[k(x, x)].

Exercise 7.20 Consider a binary classification problems with data (x1, y1), . . . , (xn, yn)
in X × {−1, 1}, with a positive kernel k defined on X with feature map ϕ : X → H. Let
µ+ (µ−) be the mean of all feature vectors for positive (negative) labels. We consider
the classification rule that predicts 1 if ‖ϕ(x) − µ+‖2H < ‖ϕ(x) − µ−‖2H and −1 other-
wise. Compute the classification rule only using kernel functions and compare it to local
averaging methods from chapter 6.

Exercise 7.21 (�) Find an upper bound of Ã(µ, f∗) for the same assumption on f∗, but
with the Gaussian kernel.

3See https://en.wikipedia.org/wiki/K-means_clustering.

https://en.wikipedia.org/wiki/K-means_clustering
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Exercise 7.22 Consider the optimization problem minθ,η
1

2n‖y−Φθ− η1n‖22 + λ
2 ‖θ‖

2
2 in

the variables θ ∈ Rd and η ∈ R, where Φ ∈ Rn×d is the design matrix obtained from
feature map ϕ and data points x1, . . . , xn, y ∈ Rn, and 1n ∈ Rn is the vector of all
1s. Show that the optimal values of θ and η are θ = Φ>α and η = 1

n1>n (y − Φθ), with
α = Πn(ΠnKΠn + nλI)−1Πny, and Πn = I − 1

n1n1>n . Show that the prediction function
f(x) = ϕ(x)>θ + η takes the form

∑n
i=1 ŵi(x)yi with weights that sum to 1.

Exercise 7.23 (�) For x1, . . . , xn equally spaced in [0, 1] and for a translation-invariant
kernel from section ??, compute the eigenvalues of the kernel matrix and the smoothing
matrix.
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Chapter 8

Sparse Methods

Exercise 8.1 (Concentration of chi-squared variables) Consider n independent
standard Gaussian variables z1, . . . , zn and the variables y = z2

1 + · · · + z2
n. Using

lemma ??, show that for any ε > 0, P(y > n(1+ε)) 6
(

1+ε
exp(ε)

)n/2
, and for any ε ∈ (0, 1),

P(y 6 n(1− ε)) 6
(

1−ε
exp(−ε)

)n/2
.

Exercise 8.2 Assume that θ̂ ∈ Θ is such that 1
n‖y−Φθ̂‖22 6 infθ∈Θ

1
n‖y−Φθ‖22+ρ. Show

that ‖Φ(θ̂− θ∗)‖22 6 4 supθ∈Θ

[
ε>
(

Φ(θ−θ∗)
‖Φ(θ−θ∗)‖2

)]2
+ 2nρ (with notations from section ??).

Solution. Let θ̃ ∈ argminθ∈Θ‖y − Φθ‖22. If θ∗ ∈ Θ, we have

‖y − Φθ̂‖22 − nρ ≤ ‖y − Φθ̃‖22 ≤ ‖y − Φθ∗‖22,

using the approximation error on θ̂.

We develop the expressions as in section (8.1.1) and obtain, before taking the square
of the expression,

‖Φ(θ̂ − θ∗)‖22 − nρ ≤ 2‖Φ(θ̂ − θ∗)‖2 sup
θ∈Θ

[
ε>

Φ(θ − θ∗)
‖Φ(θ − θ∗)‖2

]2

.

We divide by ‖Φ(θ − θ∗)‖2 and take the square of the expression. The left term is :(
‖Φ(θ̂ − θ∗)‖2 −

nρ

‖Φ(θ − θ∗)‖2

)2

= ‖Φ(θ̂ − θ∗)‖22 +

(
nρ

‖Φ(θ̂ − θ∗)‖2

)2

− 2nρ

≥ ‖Φ(θ̂ − θ∗)‖22 − 2nρ.

This concludes the proof, as one just needs to rearange the terms.

31
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Exercise 8.3 (�) Consider a linear model f(x) = θ>ϕ(x) with a G-Lipschitz-continuous
loss function and features almost surely bounded in `∞-norm by R. Using section ??,
show that the minimizer of the empirical risk over all θ ∈ Rd, such that ‖θ‖0 6 k and
‖θ‖2 6 D, has an expected risk less than the minimum expected risk over this same set
with an additive term proportional to GRD

√
k log(d)/n.

Exercise 8.4 (��) With a penalty proportional to ‖θ‖0 log d
‖θ‖0 , show the same bound

as for k known.

Exercise 8.5 Provide a closed-form expression for the iteration of the coordinate descent
algorithm described just above.

Exercise 8.6 Assume that λ >
∥∥ 1
nΦ>y

∥∥
∞. Show that θ = 0 is a minimizer of the Lasso

objective function in equation (??).

Solution. Using notations from the book, let H(θ) = 1
2n‖y − Φθ‖22 + λ‖θ‖1. This

function is convex, therefore, one just has to show that all its directional derivatives in 0
are nonnegative to show that 0 is a minimizer.

Let ε > 0 and ∆ ∈ Rd. We have

1

ε
(H(0)−H(ε∆)) =

1

2n

(
ε‖Φ∆‖22 + 2y>Φ∆

)
+ λ‖∆‖1.

Therefore,

lim
ε→0

1

ε
(H(0)−H(ε∆)) = λ‖∆‖1 −

1

n
y>Φ∆

≥ (λ− ‖ 1

n
y>Φ‖∞)‖∆‖1, as

1

n
y>Φ∆ ≤ ‖ 1

n
y>Φ‖∞‖∆‖1

lim
ε→0

1

ε
(H(0)−H(ε∆)) ≥ 0, as λ ≥ ‖ 1

n
y>Φ‖∞.

Exercise 8.7 For p ∈ [1,∞], show that the dual of the `p-norm is the `q-norm for
1
p + 1

q = 1.

Exercise 8.8 (�) With the same assumptions as proposition ??, and with the choice of

the regularization parameter λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, use lemma ?? to provide an upper

bound of E
[

1
n‖Φ(θ̂ − θ∗)‖22

]
.

Exercise 8.9 (��) With the same assumptions as proposition ??, with the choice of

the regularization parameter λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, provide an upper bound on the

expectation of the excess risk E
[

1
n‖Φ(θ̂ − θ∗)‖22

]
.
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Exercise 8.10 (���) If sampling ϕ(x) from a Gaussian with mean zero and covariance
matrix identity, then with large probability, for n greater than a constant times k2 log d

n ,
the mutual incoherence property in equation (??) is satisfied.

Exercise 8.11 With the notations of section ??, show that if µ = 0, from equation (??),

we can recover the slow rate R(θ̂λ)− R(θ∗) 6 4R‖θ∗‖1√
n

(3σ + 2R‖θ∗‖1)
√

2 log 4d2

δ .

Exercise 8.12 Assuming that the design matrix Φ is orthogonal, compute the minimizer
of 1

2n‖y − Φθ‖22 + λ
∑m
i=1 ‖θAi‖2.

Exercise 8.13 Consider the d (overlapping) sets Ai = {1, . . . , i} and the norm
∑d
i=1 ‖θAi‖2.

Show that penalization with this norm will tend to select patterns of nonzeros of the form
{i+ 1, . . . , d}.

Exercise 8.14 Compute the minimizer of 1
2n‖Y − Θ‖2F + λ‖Θ‖∗, where ‖M‖F is the

Frobenius norm and ‖M‖∗ is the nuclear norm.

Exercise 8.15 Show that ‖M‖∗ is the minimum of 1
2‖U‖

2
F + 1

2‖V ‖
2
F over all decompo-

sitions of M = UV >.

Exercise 8.16 (�) Consider m feature vectors ϕj : X → Hj, associated with kernels
kj : X× X→ R for j ∈ {1, . . . ,m}. Show that

inf
θ1,...,θm

1

n

n∑
i=1

`
(
yi, 〈θ1, ϕ1(xi)〉+ · · ·+ 〈θm, ϕm(xi)〉

)
+
λ

2

(
‖θ1‖+ · · ·+ ‖θm‖

)2
is equivalent to inf

η∈∆m

inf
α∈Rn

1

n

n∑
i=1

`(yi, (K(η)α)i) +
λ

2
α>K(η)α, where K(η) ∈ Rn×n is

the kernel matrix associated with the kernel η1k1 + · · ·+ ηmkm and ∆m is the simplex in
dimension m.

Exercise 8.17 Show that for α ∈ (0, 1), 1
αu

α = infη>0
u
η +

(
1
α − 1

)
ηα/(1−α), and derive

both a reweighted `1-minimization and a reweighted `2-minimization algorithm for the
penalty

∑d
i=1 |θi|α.
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Chapter 9

Neural Networks

Exercise 9.1 (�) Provide a bound similar to proposition ?? for the alternative constraint
‖wj‖1 + |bj |/R = 1, where R denotes the supremum of ‖x‖∞ over all x in the support of
its distribution.

Solution. Using the same computations as in the book, we obtain

Rn(G) ≤ 2GDE

[
sup

‖w‖1+|c|=1

∣∣∣∣∣w>
(

1

n

n∑
i=1

εixi

)
+ c

(
R

n

n∑
i=1

εi

)∣∣∣∣∣
]
,

after using η’s bounds, the G-Lipschitz property of the loss function, and the result on
Rademacher complexities defined by a absolute value.

Let’s upper-bound the expression we have to maximize :

|w>z + ct| ≤ |w>z|+ |c||t|
≤ ‖z‖∞‖w‖1 + |c||t|, using Hölder’s inequality,

≤ ‖z‖∞ + |c|(|t| − ‖z‖∞), as ‖w‖1 + |c| = 1.

Therefore,
sup

‖w‖1+|c|=1

∣∣w>z + ct
∣∣ = max (‖z‖∞, |t|) .

Let’s compute each :

E(‖ 1

n

n∑
i=1

εixi‖∞) = E( max
1≤j≤d

| 1
n

n∑
i=1

εixij |) =

√
2R2 log 2d

n

using the results from Chap. 1 on the expectation of maximum; see Exercise 4.12 for a
more detailed explanation ;

R

n
E(|

n∑
i=1

εi|) ≤
R√
n
,
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using Jensen’s inequality.

This leads to an upper bound of the form :

Rn(G) ≤ 2GDR

√
2 log 2d√
n

≤ 4GDR
√

log 2d√
n

.

This leads to a bound whose expression close to the book’s one, but with a dependance
in the log of the number of parameters.

Exercise 9.2 (�) We consider a 1-Lipschitz-continuous activation function σ such that
σ(0) = 0, and the classes of functions defined recursively as F0 = {x 7→ θ>x, ‖θ‖2 6 D0},
and, for i = 1, . . . ,M , Fi = {x 7→

∑mi
j=1 θjσ(fj(x)), fj ∈ Fi−1, ‖θ‖1 6 Di}, corresponding

to a neural network with M layers. Assuming that ‖x‖2 6 R almost surely, show by

recursion that the Rademacher complexity satisfies Rn(FM ) 6 2M R√
n

∏M
i=0Di.

Exercise 9.3 (��) Assume −R = x1 < · · · < xn = R, y1, . . . , yn ∈ R, show that the
piecewise-affine interpolant on [−R,R] is a minimum norm interpolant.

Exercise 9.4 (Step activation function (�)) Consider the step activation function
defined as σ(u) = 1u>0. Show that the corresponding variation norm can be upper-

bounded by a constant times
∫
Rd |f̂(ω)|(1 +R‖ω‖2)dω.

Exercise 9.5 Show that if we replace equation (??) with ft = t−1
t ft−1 + 1

t f̄t, ft is
the uniform convex combination of f̄1, . . . , f̄t, and we have the convergence rate J(ft) −
inff∈K J(f) 6 L

t (1 + log t)diamH(K)2.

Exercise 9.6 (Frank-Wolfe with line search) The update in equation (??) is often
replaced by ft = (1 − ρt)ft−1 + ρtf̄t with ρt = arg minρ∈[0,1] ρ〈J ′(ft−1), f̄t − ft−1〉H +
L
2 ρ

2‖f̄t − ft−1‖2H. Show that we have J(ft)− inff∈K J(f) 6 4L
t+1diamH(K)2.

Exercise 9.7 Extend the bound in equation (??) to all activation functions.

Exercise 9.8 Consider target functions of the form f∗(x) =
∑k
j=1 fj(w

>
j x) for one-

dimensional Lipschitz-continuous functions f1, . . . , fk. Provide an upper bound on excess
risk proportional to k/n1/6.

Exercise 9.9 (Link with kernel learning (�)) With the setup presented in this sec-

tion, show that the infimum of
∫
K

∣∣dν(w,b)
dτ(w,b)

∣∣2dτ(w, b) over probability distributions τ on K is

equal to
( ∫

K
|dν(w, b)|

)2
. Using exercise 8.16, show how the penalty γ1 can be interpreted

as kernel learning.

Exercise 9.10 (Step activation function) Consider, instead of equation (??), the ker-
nel k(x, x′) =

∫
K

1w>x+b>01w>x′+b>0dτ(w, b). Show that it can be expressed in closed form

as k(x, x′) = 1
2 −

1
4R

Γ(1)Γ( d2 )

Γ( 1
2 )Γ( d2 + 1

2 )
‖x− y‖2.


	Mathematical Preliminaries
	Introduction to Supervised Learning
	Linear Least-Squares Regression
	Empirical Risk Minimization
	Optimization for Machine Learning
	Local Averaging Methods
	Kernel Methods
	Sparse Methods
	Neural Networks

