
Plan and incompatibility
toward Embulk v1.0

Dai Mikurube / July 9, 2020

5 years have passed since the first Embulk release

● Embulk is going to introduce lots of plugin incompatibility
through v0.9 → v0.10 → v0.11 → v1.

● This presentation is to explain the plan

○ for users -- which versions to choose in production?
○ for plugin developers -- how to catch up?
○ inside the core -- why? (if time allows)

For Users
(everyone)

Planned versions
For Users(everyone)

v0.10 - "development"

v0.11 - "(pre)stable"

v1.0 ~

v0.9.23 - stable

v1.0.* - stable

We're here: v0.10.5

v0.9(.23)
For Users(everyone)

v0.9.23 - stable

● Stable (as of July 2020)
● Only one production-ready version as of July 2020
● All latest plugins (as of July 2020) should work with it
● No more updates are expected in v0.9

○ Unless a backport is really required

v0.10
For Users(everyone)

v0.9.23 - stable

● "Development" unstable versions -- tries-and-errors
○ Not for your production! (TD uses it, though)

● Introducing several plugin incompatibility
● Deprecating several plugin API/SPI
● Plugins should be able to catch up to work both for

the latest v0.9 (≒ v0.9.23) and the latest v0.10

v0.10 - "development"

How Embulk and plugins would update

When a plugin is updated to catch up with the latest v0.10,
the latest version of the plugin should work with :

● The latest v0.9 (= v0.9.23 if no backports)
● The latest v0.10

v0.10.* is developed to satisfy the condition for plugins
to work both with the latest v0.9 and the latest v0.10

For Users(everyone)

v0.11
For Users(everyone)

● "(Pre-)stable" versions -- should be production-ready
● v0.11.0 will be identical with the last v0.10
● v0.11.0 defines v1-ready API/SPI
● v0.11.1+ removes items deprecated in v0.10.*

○ Many of legacy plugins (for v0.9) stop working (TBD)

v0.11 - "(pre)stable"

v1.0
For Users(everyone)

● Stable!
● v1.0.0 will be identical with the last v0.11

○ Released when v0.11.* settles down, and gets confirmed

v1.0 ~v1.0.* - stable

Plugin would / wouldn't work with vX.Y.Z ?
For Users(everyone)

Catch-up in v0.10

✓ v0.9.23 (or latest)

? v0.10.*

✓ the la(te)st v0.10

✓ v0.11.0

? v0.11.1+

? v1.0

No catch-up

✓ v0.9.23

? v0.10.*

? the la(te)st v0.10

? v0.11.0

✗ v0.11.1+

✗ v1.0

v1-ready (v0.11+)

? v0.9.23

? v0.10.*

✓ the la(te)st v0.10

✓ v0.11.0

✓ v0.11.1+

✓ v1.0

Other decided incompatibility for every user

● JRuby is to be optional (not embedded in the core)

○ Bundler and Liquid: users to install by themselves? (TBD)

● selfupdate never finds the latest

For Users(everyone)

TBD
embulk -X jruby=file:///.../jruby-complete-9.1.15.0.jar run ???.yml

embulk selfupdate # It does not work since v0.10.0.
 # It does not update to v0.10.* from v0.9.

embulk selfupdate X.Y.Z # Specific version is always needed.

https://www.embulk.org/ : Renewed!
For Users(everyone)

Latest versions!

Announcements
(replacing embulk-announce ML)

https://www.embulk.org/

For
Developers

Two choices for plugin development

● Catch up accordingly with the latest Embulk v0.10.*
○ We (manage to) do it for github.com/embulk plugins
○ TD members may post Pull Requests for some other plugins

■ Especially for plugins that TD uses (Thanks!)
○ Helpful for the Embulk core team
○ Feedbacks would be reflected to v0.11 and v1

● Catch up with v1-ready API/SPI when v0.11.0 is out
○ One-shot catch-up

For Developers

https://github.com/embulk

0) Ruby plugins

TBD
● Sorry, but the situation is complicated with Ruby plugins

● I guess most of the existing Ruby plugins would work as-is
○ Not guaranteed... we may see some unavoidable incompatibility

● Tests -- not working fine
○ Helps are welcome

For Developers

1) gradle-embulk-plugins

● https://github.com/embulk/gradle-embulk-plugins
○ Gradle plugin to build Java-based Embulk plugins

● Recommended to apply for all plugins NOW
○ Either catch-up accordingly v0.10.*, or once v0.11.0
○ It helps building and releasing pure-Java plugins (Maven)
○ It enables checking plugin's dependencies explicitly

■ By Gradle "dependency lock"

For Developers

Applicable now immediately

https://github.com/embulk/gradle-embulk-plugins

1) gradle-embulk-plugins
plugins {
 id "java"
 id "checkstyle"
 id "jacoco"
}

version = "X.Y.Z"

For Developers
plugins {
 id "java"
 id "checkstyle"
 id "jacoco"
 id "maven-publish"
 id "org.embulk.embulk-plugins"
 version "0.4.1"
}

group = "<your Maven group name>"

// group = "io.github.your-user-name"
// is typical
// group = "org.embulk"
// is only for github.com/embulk

version = "X.Y.Z"
description "<'description' of Gem>"

Applicable now immediately

1) gradle-embulk-plugins
configurations { provided }

dependencies {
 compile "org.embulk:embulk-core:.."
 provided "org.embulk:embulk-core:.."

 // May have conflict with embulk-core.
 compile "...:...:..."

}

task classpath(...) {
 from (configurations.runtime
 - configurations.provided
 + files(jar.archivePath))
 into "classpath"
}

For Developers

dependencies {
 compileOnly "org.embulk:embulk-core:.."

 // Explicit conflict handling.
 compile("...:...:...") {
 exclude group: "...", module: "..."
 }
}

Applicable now immediately

1) gradle-embulk-plugins
$./gradlew build
...

================================== WARNING ==================================
Following "runtime" dependencies are included also in "compileOnly" dependencies.

 "com.fasterxml...:jackson-core:2.6.7" // <== Conflicting with embulk-core's dependencies.

 "compileOnly" dependencies are used to represent Embulk's core to be "provided" at runtime.
 They should be excluded from "compile" or "runtime" dependencies like the example below.

 dependencies {
 compile("org.glassfish.jersey.core:jersey-client:2.25.1") {
 exclude group: "javax.inject", module: "javax.inject"
 }
 }
===

...

For Developers

Applicable now immediately

1) gradle-embulk-plugins
task gem(type: JRubyExec, ...) {
 jrubyArgs "-S"
 script "gem"
 scriptArgs "build", ".../build/gemspec"
}

task gemspec { doLast {
 file('build').mkdirs()
 file('build/gemspec').write($/
Gem::Specification.new do |spec|
 spec.name = "${project.name}"
 spec.version = "${project.version}"
 spec.author = ["... ..."]
 spec.summary = %[...]
 ...
end
-/$)
} }

For Developers
embulkPlugin {
 mainClass = "..."
 category = "input"
 type = "..."
}

gem {
 authors = ["... ..."]
 email = ["..."]
 summary = "..."
 homepage = "..."
 licenses = ["..."]
}
gemPush {
 host = "https://rubygems.org"
}

// gemspec and .rb are auto-generated.

Applicable now immediately

1) gradle-embulk-plugins
publishing {
 publications {
 // Publish it with "publishEmbulkPluginMavenPublicationToMavenRepository".
 embulkPluginMaven(MavenPublication) {
 from components.java // Must be "components.java".
 }
 }
 repositories {
 maven {
 // Any Maven repository you want to release to!
 name = "mavenCentral"
 url "https://oss.sonatype.org/service/local/staging/deploy/maven2"
 credentials {
 username = project.hasProperty("ossrhUsername") ? ossrhUsername : ""
 password = project.hasProperty("ossrhPassword") ? ossrhPassword : ""
 }
 }
 }
}

For Developers

Applicable now immediately

1) gradle-embulk-plugins
$./gradlew dependencies --write-locks
...

$ cat gradle/dependency-locks/embulkPluginRuntime.lockfile

This is a Gradle generated file for dependency locking.
Manual edits can break the build and are not advised.
This file is expected to be part of source control.
com.fasterxml.jackson.core:jackson-annotations:2.6.7
com.fasterxml.jackson.core:jackson-core:2.6.7
com.fasterxml.jackson.core:jackson-databind:2.6.7
com.fasterxml.jackson.datatype:jackson-datatype-jdk8:2.6.7
com.jcraft:jsch:0.1.55
...

$ git add gradle/dependency-locks/embulkPluginRuntime.lockfile

For Developers

Applicable now immediately

2) Dependencies - source of incompatibility

If your Java plugin is (directly or indirectly) using

● Jackson, Guava, Apache Commons Lang 3, javax.validation
○ Include them explicitly in your plugin's dependencies (if used)

■ Choose versions 100% same with embulk-core till v0.11.0
○ gradle-embulk-plugins will warn, but you can ignore it

■ You can mark "ignored" explicitly in embulkPlugin { }
● JRuby, Joda-Time, Logback, Guice

○ Stop using them -- find an alternative, or give up using it
■ Ex. Joda-Time → java.time classes

For Developers

Applicable now immediately

2) Dependencies - source of incompatibility
embulkPlugin {
 mainClass = "..."
 category = "input"
 type = "..."
 ignoreConflicts = [
 [group: "com.fasterxml.jackson.core", module: "jackson-annotations"],
 [group: "com.fasterxml.jackson.core", module: "jackson-core"],
 ...
]
}

For Developers

Applicable now immediately

================================== WARNING ==================================
Following "runtime" dependencies are included also in "compileOnly" dependencies.

 ([IGNORED] "com.fasterxml.jackson.core:jackson-annotations:2.6.7")
 ([IGNORED] "com.fasterxml.jackson.core:jackson-core:2.6.7")
 ...

2) Dependencies - source of incompatibility

● Dependencies of embulk-core is now visible from plugins
○ Jackson, Guava, Joda-Time, JRuby, ...

● Some of them could be passed from the core to plugins

● It has caused problems between the core and plugins
○ Conflicts, broken when upgrading a library, ...

For Developers

interface PluginTask extends Task {
 @Config("example")
 JsonNode getExample();
}

public ConfigDiff transaction(
 ConfigSource config, ...) {
 ObjectNode object = config.getObjectNode();
}

Applicable now immediately

2) Dependencies - source of incompatibility

● embulk-core will keep using those dependencies internally,
but they will be hidden from plugins during v0.10

For Developers

embulk-core
jackson-annotations:2.6.7

jackson-databind:2.6.7

embulk-input-???

Plugins can access Jackson classes

embulk-core

 embulk-input-???

jackson-annotations:2.6.7

jackson-core:2.6.7

jackson-databind:2.6.7

jackson-core:2.6.7

jackson-core:2.6.7

Applicable now immediately

Plugins to have

2) Dependencies - source of incompatibility

● Dependencies below will stay visible from plugins:
○ slf4j-api (no logger implementation -- Logback)
○ javax.inject (not Guice)
○ msgpack-core -- TBD: maybe only its model classes

For Developers

Applicable now immediately

3) Prepare for Java 9+ (TBD: target → 11?)

● JEP 320: javax.xml (& more) is removed from JRE since 11

● embulk-core will NOT provide it in place of JRE
○ A plugin using javax.xml will need to include them by itself

For Developers

dependencies {
 ...

 compile "javax.activation:javax.activation-api:..."
 compile "javax.xml.bind:jaxb-api:..."
 compile "com.sun.xml.bind:jaxb-core:..."
 compile "com.sun.xml.bind:jaxb-impl:..."
}

Applicable now immediately

http://openjdk.java.net/jeps/320

4) Depend only on embulk-api/spi

● Plugins would NOT depend on embulk-core, but :
○ embulk-api (Started v0.10.1 ~ work-in-progress)
○ embulk-spi (To start v0.10.6 or later)

● Moving API/SPI from embulk-core to them
● embulk-api/spi will be Documented
● Others remaining in embulk-core will be Undocumented

For Developers

Not yet ready unavailable

dependencies {
 compileOnly "...:embulk-core:..."

}

dependencies {
 compileOnly "...:embulk-api:..."
 compileOnly "...:embulk-spi:..."
}

https://docs.embulk.org/embulk-api/0.10.3/javadoc/

5) Core features exported to libraries

Along with embulk-api/spi, utility classes for plugins are
exported out of embulk-core, into external libraries

● TimestampFormatter / TimestampParser
○ ⇨ embulk-util-timestamp (Javadoc)

● ConfigSource#loadConfig / TaskSource#loadTask
○ ⇨ embulk-util-config (Javadoc)

● ... to be continued

For Developers

Partially available

https://search.maven.org/artifact/org.embulk/embulk-util-timestamp
https://dev.embulk.org/embulk-util-timestamp/0.2.0/javadoc/org/embulk/util/timestamp/TimestampFormatter.html
https://search.maven.org/artifact/org.embulk/embulk-util-config
https://dev.embulk.org/embulk-util-config/0.1.1/javadoc/org/embulk/util/config/Task.html

6) Miscellaneous deprecation

● Exec.getLogger → org.slf4j.LoggerFactory.getLogger
● Guava Optional → java.util.Optional
● Guava Throwables → throw RuntimeException (or else)

○ https://github.com/google/guava/wiki/Why-we-deprecated-Throwables.propagate

● Timestamp → java.time.Instant
○ embulk-util-timestamp handles java.time.Instant
○ Timestamp would remain in some interfaces, though

● @ConfigInject → Use Exec.get???() instead
● ModelManager → Build your own ObjectMapper

For Developers

Applicable now immediately

https://github.com/google/guava/wiki/Why-we-deprecated-Throwables.propagate

Join Slack embulk-dev

● No user support
○ Only for plugin (or core) developers

● Announcement, discussion, and Q&A for v0.10+ catch-ups

● To join :
○ Leave a message at: https://github.com/embulk/embulk/issues/1222

■ Nice to leave a note about your plugins
■ I'll invite your GitHub email address (in commits)

○ Or, contact @dmikurube directly in some way

For Developers

https://github.com/embulk/embulk/issues/1222

Inside the
Core

Appendix

What's the problem? (Trivial case)
Inside theCore

embulk-core

embulk-input-???

Using Jackson expecting 2.6.7

jackson-annotations:2.6.7

jackson-core:2.6.7

jackson-databind:2.6.7

What's the problem? (Trivial case)
Inside theCore

embulk-core

embulk-input-???

jackson-annotations:2.11.1

jackson-core:2.11.1

jackson-databind:2.11.1

Using Jackson expecting 2.6.7

What's the problem? (Trivial case)
Inside theCore

embulk-core

 embulk-input-???

Using Jackson expecting 2.11.1

jackson-annotations:2.6.7

jackson-core:2.6.7

jackson-databind:2.6.7

jackson-dataformat-xml:2.11.1

What's the problem? (Trivial case)
Inside theCore

embulk-core

embulk-input-???

Using Jackson expecting 2.6.7

jackson-annotations:2.6.7

jackson-core:2.6.7

jackson-databind:2.6.7
Standoff (deadlock)

What's the problem? (Trivial case)
Inside theCore

embulk-core

jackson-annotations:2.11.1

jackson-core:2.11.1

jackson-databind:2.11.1

embulk-input-???

Unrealistic to test all.

What's wanted to achieve
Inside theCore

embulk-core
jackson-annotations:2.11.1

jackson-core:2.11.1

jackson-databind:2.11.1

Maintain their own dependencies.
⇨ Easier to test each.

 embulk-input-??? jackson-core:3.X.Y

What's wanted to achieve
Inside theCore

embulk-core

Loose coupling.
⇨ Easier to test each.

embulk-api/spi

 embulk-input-??? jackson-core:3.X.Y

What's wanted to achieve
Inside theCore

embulk-core

embulk-api/embulk-spi

utils

 embulk-input-??? utils jackson-core:3.X.Y

Less dependent (to core).
⇨ Easier to test each.

What's wanted to achieve
Inside theCore

embulk-core

Compact!
Maintainable!

embulk-api/embulk-spi

utils

 embulk-input-??? jackson-core:3.X.Yutils

