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Abstract. We present simulation results of a new learning rule for binary perceptrons that
finds the optimal weights, whose properties were predicted by Gardner and Derrida [1]. The
algorithm proceeds by gradient descent on a cost function that measures the mean number of
errors on the learning set, at a given temperature. Simulation results are compared to the
- theoretical predictions.

1.Introduction

The perceptron is the simplest architecture for a neural network. It consists of N input
units labelled i (i=1,2,...,N), all connected to an output unit via synaptic weights of
strenghts Ji. We are concerned here with binary perceptrons, that is, whose units can be
either in state Gi=1 or Gi=-1. If the weights Ji take suitable values, a perceptron can
perform linear separations of the input patterns [2]. Although this is not a very high
performance, perceptrons are important because more involved architectures can be
constructed taking them as building blocks. For example, one of the most promising
approaches to multilayered neural networks are constructivistic algorithms that add
successively new perceptrons to the network in hidden layers until the outputs to all
the patterns of the learning set are correct [3], [4], [5].

Given weights defined by the weight vector J={ Ji,1<isN },and given a learning set of P

patterns, defined by their inputs §u={ & 1<u<P;1<i<N } and the corresponding outputs
™, 1<u<P; the stability of a pattern 1 is:
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Patterns are well learned if their stabilities are positive. Optimal weights are those that
maximise the stabilities of the patterns of the learning set, under the constraint that
their norm remains constant. This restriction ensures that high stabilities are not

produced by simply scaling the synaptic weights. Usually the norm is fixed to YN:

N
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To have a geometrical picture of what the stabilities are, consider the hypercube of side
length 2 centered on the origin, in dimension N. Each apex is one possible input
pattern, and has a sign equal to the corresponding output. Then, any weight vector J
defines a hyperplane normal to J passing through the origin, assigning a positive sign
to the half space into which J points. The stability of a pattern is the distance from the
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corresponding apex to the hyperplane. It is positive if the corner is in the half space
corresponding to its sign, negative otherwise. Therefore, if weights are optimal, the
corresponding hyperplane should be as far as possible from its nearest corners (positive
and negative) belonging to the learning set. The properties of binary perceptrons with
optimal weights have been analysed with methods of Statistical Mechanics [6],{1]
applied to the phase space of the synaptic weights, under the normalisation constraint.
The theoretical results predict the capacity =P/N of an optimal perceptron, that is, the
maximum number of patterns chosen at random that the perceptron is able to classify
correctly, in the limit of a very large number of input units. Beyond the well known

- result a=2 [7], within the statistical mechanical approach it was possible to determine

the capacity when the stabilities are forced to be larger than an imposed value X [6], the
distribution of stabilities[8], the minimum number of errors done by the perceptron
beyond its limit of capacity [1], etc. However, this approach does not give any recipe
of how to determine these optimal weights. :

The weights of a perceptron are usually determined with a learning rule, an algorithm
that gives the values of the J; that hopefully make the stabilities (1.1) positive, or

higher than the imposed stability k, for all the patterns of the learning set. If x=0, the
Perceptron learning rule [2] is able to find a solution to this problem if a solution
exists. Higher performance rules exist in this case, even for x>0, and in particular
Minover [9] gives the optimal weights, which maximise the stabilities (1.1).
However, these rules are unable to detect if there is a solution, and may get stucked in
a loop if a solution does not exist. Other learning rules exist that can handle with the
learning problem even if there is no set of weights making no errors on the learning
set. These rules either detect the absence of a solution, and stop [10], [11], or stop
giving a 'reasonable’ set of weights [12], [13],.but they cannot assure that the set of
weights found minimise the number of errors.

In this paper we present a new learning rule, Minimerror, that finds the optimal
weights with a gradient descent search. If a solution exists, the rule gives the weights
that maximise the stabilities of the learning set. If the problem has no solution, our
algorithm gives the weights that minimise the number of errors on the learning set.
The cost function that has to be minimised may be deduced from statistical mechanics
[14] and is the mean number of errors of the perceptron on the learning set, at a given
temperature T. The optimal perceptron properties have been calculated precisely by
counting the number of errors at T=0, which is a stepped function of the Ji. By the
introduction of a temperature,we can calculate the mean number of errors, which is a
smooth continuous function of the weights, making a gradient descent search possible.
During the gradient descent, this temperature is slowly decreased, like in a simulated
annealing, eventually reaching T=0.
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2.The number of errors at finite temperature

Statistical mechanics may be used as a tool for generating learning rules for
perceptrons [14] and for neural networks of more envolved architectures [15]. Consider
the space of synaptic weights: each point J in this space corresponds to one possible
perceptron, having stabilities (1.1) for the learning set. We associate to each point J a

set of P energy levels, the energy of each level being the stability W of the
corresponding pattern. In order to count the number of errors done by perceptron J, we
suppose that we have a reservoir of particles. If the energy of a level is lower than the
stability ¥ we want to impose to the network, then we put one particle on that level.
Clearly, the number of errors is just the number of particles. The same reasoning can
be made at temperature T by occupying each level with a probability given by the

Boltzmann factor: p = Z! exp[(y” - _x)/ T], where Z is the partition function. In

this case it is easy to show [14] that the total mean number of errors at temperature T
is:

(n) = i{l + e)(p[(y” - ;c)/'r]}_l V)

Therefore, the weights that minimise (2.1) can be determined by gradient descent,
starting from any initial state J:

T <—-f‘i+&i
81, = ¢ d(n) 22)
al;

Introducing (2.1) into (2.2) gives the learning rule:

-2

8, = —f_l:g{cosh[(y“ ~x)/ 2T]} 23)

Each pattern is learnt with an intensity, or weighting factor, that depends on its
stability. Patterns with stabilities within an interval of width 2T close to X have strong
weighting factors, whereas patterns whose stabilities are far apart almost do not
contribute to modify the synaptic weights. Beginning the learning session at high
temperature allows to learn all the patterns with almost the same intensity, like with
Hebb's rule, and cooling down slowly during the learning session increases the
importance of those patterns that are close to the hyperplane, which are then
selectively learned. This seems a clever strategy: not only patterns with stability
slightly less than x are learned, but also those with stability slightly higher than x, to
eventually avoid their destabilisation. Patterns with stabilities far apart from the
hyperplane will not be greatly affected by the small incremental changes (2.3), and the
rule give them low weighting factors on learning.
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3.Implementation and simulation resuits

In order to compare with the theoretical predictions, in all the simulations the learning
sets are composed of random patterns. Preliminary tests of algorithm (2.3) showed that
very frequently it got stacked in local minim® during the annealing procedure. This
happens because there are local minime of (2.1), which corréspond to hyperplanes just
at the barycenter of the patterns within a distance 2T from them. Inspired by works on
spin systems [16], we introduced wo temperatures: T. for negative stability patterns,
and T for positive stability patterns, with T.>T,. That is, non learned patterns are
considered at higher temperature than stable ones. In the simulations, the ratio T-/T4
was kept constant, a value of T/T4=6 was found to give good results. The synaptic
weights were modified according to (2.3) until the number of errors was constant, and

then T+ was decreased following:d (T+)’1 =103 until the number of errors became
again constant. We replaced the prefactor €/4T by a single parameter A, which was

initialized at A=0.2 each time T, was decreased, and then was slowly decreased during
- the search at constant temperature.
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Fig. 1 Fraction of errors versus o: simulation results averaged over 30 samples.

Figure 1 shows the fraction of errors f =(n)/P as-a function of a, for k=0, obtained
on a perceptron of N=50 input units, together with the theoretical prediction {1]. The
difference between theory and simulations may be due to size cffects. Moreover, the
difference decreases for larger N, as is shown on Fig.2 for a=4 as a function of N.
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‘ Fig.2 Fraction of errors versus N for o.=4.
The distribution of stabilities for a=0.5, 2 and 4 are shown on Figure 3. Agreement
with the theoretical predictions is very good [8]. In our numerical simulations,

rounding of the. delta functions predicted by the theory is apparent, because of the finite
size of the samples.
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Fig.3 Stabilities distributions for different o, N=30, averages over 30 samples.

4. Conclusion

We presented simulation results of a new learning algorithm for perceptrons,
~ Minimerror, that finds the optimal weights even when the learning set is not linearly
separable. Comparisons were made with theoretical predictions on learning random
patterns. We are currently testing the performance of the algorithm on generalisation
tasks. Minimerror is useful to generate small feedforward networks by constructivistic
algorithms [5], and results of its performance in this case will be published elsewhere.
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