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Abstract

We propose in this paper a new leamning algorithm using a probabilistic
formalism for topological maps. This algorithm approximates the density
distribution of the input set with a mixture of normal distributions. The
unsupervised leamning is based on the dynamic clustering principle and
optimize the likelihood function. A supervised version of this algorithm is
proposed. We perform numerical experiments on simulated and real data with
“the aim of achieving a classification task. Our results are compared with the
classical SOM (Self organizing Map) algorithm.

1. Introduction

This paper deals with a probabilistic formalism for the Self Organizing Map (SOM)
[Kohonen 94] and proposes a new learning algorithm PRSOM (PRobabilistic Self
Organizing Map) which maximizes the likelihood function. Because of this
probabilistic formalism, each neuron represents a gaussian function, and the learning
algorithm estimates both mean and variance of each gaussian. Under some particular
hypothesis, this algorithm is closely related to the classical SOM.

In the remainder of this paper, we first introduce the algorithm PRSOM that we
prove the convergence to a local minimum. The next section is devoted to simulation
results, it shows how to use PRSOM to solve classification tasks.

2. Probabilistic Self Organizing Map algorithm (PRSOM)

Let us first introduce the notations we used. Let D be the data space (D < %") and
A={zj ; i=1,...,N} the training set (4 c D). We denoted by (C) a map of M neurons,
this map is assumed to have a neighborhood system. The distance &(c,7) between
two neurons (c) and (r) of the map is the length of the shortest path between ¢ and r
on the map. The neighborhood size is controlled by a function
K, (8(c,r)) =[YTIK(6(c,r)/T) where K(.) is a kernel function. K, (.) varies with

respect to the size T of the neighborhood. In the following, the parameter T will be
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called temperature. We associate to each neuron ¢ a gaussian density function f.

4

with mean the weight vector or reference vector W, = (W' W’ ..., W") and

e e

covariance matrix ¢~/ .

2.1. Probabilistic formalism

In the probabilistic formalism proposed by Luttrel [Luttrel 94], the whole network
will be designed as a three layers architecture: the input layer has n neurons
receiving the input vector z. The classical map C is duplicated in two similar maps
C1 and C7 provided with the same topology as C. C] and Cp will be respectively the

second and the third layer .
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Figure 1. Three layers architecture

Each neuron of each layer computes its probable state. This structure is called a
folded Markov chain [Luttrel 94] in which we assume the Markov property given by

ple,/z,¢)=ple, /¢) and p(z/¢.c,) = p(z/c)
We obtain the joint probability :

p@) =Y p&)p., (2) where p, (2) = p(z/¢) =Y. pla /) p(z/¢)

The probability density p(z) is completely defined from the map given the
conditional probability p(c, /¢,) on the map and the conditional probability
p(z/c) ondata. p(z/c) may be any given density, in the following we will deal
with gaussian densities. We assume that

plel¢y) =T, 1K (8(c.c,)) where T, =Y Kp(8(c,.r))

p(zle)= [, (z,W,,Z,) where [, is the gaussian density with mean
vector /¥, and covariance matrix ¥, = crfll . Under these assumptions

P, @) =T, 1Y K(&(¢,, ) /(2. W,,0,) .

rey
and the global density p(z) is a mixture of the density p, (z) whose parameters

have to be estimated. We propose in the following a learning procedure which
maximizes the likelihood function, and estimates the mixture parameters.
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2.2. Parameters estimation

To deal with the maximization of the likelihood function, we use a dynamic clusters
method [Diday 76] [Schroeder 76] and we develop an iterative batch algorithm
operating in tow steps : an assignment step which assigns each observation z to one
cell ¢, using an assignment function y and an optimization step which minimizes the
conditional likelihood function. The purpose of these steps is to optimize the
likelihood. Each step maximizes partially the likelihood. We assume that the
observations are independent, the likelihood of the training set depends on the
gaussian parameters ¥ and o and on the assignment function y:

N
P22, 520, W,0, ) = HP;,(;,.)(Z;)
i=]

We minimize the log-likelihood function E(y,W,o) according to the assignment

functions y and to the parameters W and o :
N

E(x.W,0)=Y ~Ln[Y. KG(x@). N, @ W,.0,)]

i=1
% ,W and o will be noted * , W* and o* at the k™ iteration.
Assignment step :
This step needs to choose a assignment function y, to improve the log-likelihood E.
The dynamic clustering method assumes that each observation z; is generated from
one of the M density functions p, (z) by the most likely cell ¢, which is defined by:

x(2) =argmax p, (2) @

%, depends on the current parameters. The assignment step uses the current function
% to partition the input space,

Minimization step :

The optimization step updates the parameters by setting the derivatives of the
conditional log-likelihood E(W*,c*/ y*) to zero. If we suppose that the initial
estimates of the parameters are sufficiently close to the true values, it yields the
following new parameters :

N k-1 t-t N
3 5K, e G ) St -z k6.2 e
W = i1 sz—l(zi)(z.-) (O’k)z _

r N ] k-1 o_t—l)
K(S(r, ki, f@.W "o,
Z 6r.x (4))7;7,-,@(4)

L& e
pz*"(:.-)(z") @
LW et

P, (@)

niK (6, 2'@))
i=1

PRSOM algorithm

Initialization : Choose randomly the initial parameters W° et c° or .

Tterative step : at the iteration step k ,W*"' et " are known,

Minimization step : Compute the new parameters W* and ¢* according to (2).
Assignment step : Compute the new assignment function y* associated to W* et o
according to (1).

Repeat the iteration step until stabilization.
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We prove that the PRSOM algorithm converges in a finite number of iterations to a
local minimum when the parameter temperature T is fixed.

2.3. Convergence proof
The minimization step at the k™ iteration minimize FE( 7", W,0) according to the
parameters W and o for a fixed assignment function y*' , we obtain the following
inequality :

E(Zk-l,Wk,o_k) < E(Zk-l,Wk—l,o_k—l) .
The assignment step at the k™ iteration minimize E(y,W*,o*) with respect to 3 for
a given parameters W* and o* and gives :

EQt W 6" <E( Wk, 6.
Combining the two inequalities we obtain :

E(zk,Wk,O'k) < E(Zk_l,Wk—l,O'k—l .
The set of partitions is finite and each partition obtained by x* has a unique
associated parameters W* and o*, thus the number of expected values of
E(y*,W*,o") is finite. Since the log-likelihood function E(y,W,s) decreases at

each iteration, the algorithm converges in a limited number of iterations. The limit
point is a local minimum of E(y,W,0) .

3. Supervised PRSOM
The architecture of a supervised PRSOM is composed of three layers. The first and
the second layers represent the PRSOM architecture. The third layer is composed of

k
linear neurons which computes the weighted sum y(z) = 2}“0 [.(2)+ A, where the

e=1
basis function f, are gaussian functions, A, is a threshold and A, are parameters to
be estimated. f, can be presented as radial basis functions.
Learning in the supervised PRSOM uses the PRSOM algorithm to organize the map
and to learn the first layer of parameters (W and o). The second layer of the
parameters A is adapted by a gradient method algorithm which minimize the

quadratic error : E= Y |y(z,) - t,<||2 where y(z,) is the output, z;, the input and ¢, the
i=1

desired output.

4. Applications

4.1 Simulated data

In the following, we first show that, like the classical SOM algorithm, the PRSOM
algorithm preserves the topological order of the map. This topological order is
associated with the gaussian densities formalism assigning to each neuron its
estimated mean and standard deviation.

We simulated two different data sets: the first one has 800 examples generated
according to the uniform density in D=[-12,12][-12,12]; the second data set has 900
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examples and is generated according to a mixture of 9 gaussians. For all the
simulations we use a map with square neighborhood. The kernel function is defined
by: K, (u)=[Y T1e™*/"1 where the parameter T represents the width of the Kernel.

For the first data set the map has 10x10 neurons, and for the second it has 6x6
neurons. For each experience, we display the referents and the resulting maps after
learning:

Figure 1. (a) Represents the final map after learning with PRSOM algorithm for the first data
base (uniform distribution). (b) Displays standard deviation as a circle centered on the
referent. (¢) Represents the final map after learning with PRSOM algorithm for the second
data base (9 Gaussian distributions). (d) Displays standard deviation as a circle centered on
the referent.’

Figures 1(a) and 1(c) show the maps for the two data sets after training. We can
observe the topological order of the map. Figures 1(b) and 1(d) show the estimated
standard deviation for each referent, each one is represented by the radius of a circle
centered on it. One circle represents the "influence region” of the associated referent.
One can see the influence of the ¢ parameters, they fit into the local distribution:
they are small in regions with high density and large in regions with weak density.

4.2 Real data : classification

We studied the coronary data [SAP90] which concerns 101 coronary victims. 51
patients will died and 50 will survived The input have seven variables. Unlike the
supervised classification, the unsupervised classification do not use the desired
information during learning. We will present results in both cases using a binary
states 0 and 1 for the tows classes.

4.2.a Unsupervised Classification

The unsupervised PRSOM algorithm can be used in unsupervised classification
tasks. In that case each referent can be labeled, using the learning set, by the
majority vote procedure. In the SOM algorithm the labeling and the classification
procedure use the Euclidean distance. In PRSOM, the classification is achieved using

the square of a local Mahalanobis distance (z-,)’ /o’ between an observation z

and the referent i. In order to compare these two classifiers we studied the coronary
data. The learning set contains the whole data. Results are presented in the table 1
and show that PRSOM do better than the SOM algorithm on these data.
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PRSOM SOM
9 referents | 86.14% 84.16%
16 referents | 88.11% 86.14%

Table 1: performances of PRSOM and SOM algorithms on coronary data and for tow maps
with different size

4.2.b Supervised classification

We compare performances of the supervised classification using a Multi-Layer
Perceptron (MLP) with the supervissd PRSOM. These results are given in table 2.
The best result of the MLP has been obtained with an architecture with tow neurons
on one hidden layer

MLP Supervised PRSOM
Architecture: 7x2x2 16 referents
Performance 90.009% 93.069%

Table 2 : performances of the MLP and the supervised PRSOM.

5. Conclusion

We have presented a new formalism of topological maps in which each neuron
represents a gaussian function. Under this formalism, we have developed a new
probabilistic unsupervised learning algorithm PRSOM based on the likelihood
estimation. The aim is to approximate the density function of data by a mixture of
densities. Each elementary density of the mixture is related to one neuron of the map
and depends on the gaussian functions defined on his neighborhood. Thus unlike the
SOM algorithm PRSOM optimizes an objective function defined by the likelihood
function. :

We have also develop a supervised version of the PRSOM algorithm. We have
presented an application of the PRSOM algorithm to classification task. We show
that PRSOM does better than the classical SOM. This can be explained by the fact
that PRSOM encloses more general statistical considerations and allows to estimate
the variances which define an influence zone around each neuron. This variances are
used to define a local measure which is more efficient in a classification task than the
classical quadratic error.
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