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Abstract.

This paper shows how the relationship between two arrays of artificial
neurons, representing different cortical regions, can be learned. The
algorithm enables each neural network to self-organise into a topolo-
gical map of the domain it represents at the same time as the relation-
ship between these maps is found. Unlike previous methods learning is
achieved without a separate training phase; the algorithm which learns
the mapping is also that which performs the mapping.

1. Introduction

A prerequisite for the performance of a skill is knowing the relationship between
actions and their effects. For a simple skill this may be achieved by finding the
mapping from the sensor domain to the motor domain. When these domains
are represented by neural networks it is a case of finding appropriate synaptic
weights to connect the motor network to the outputs from the sensor network
(figure 1(a)). Methods of finding the mapping in such an architecture have
previously been presented as models of the cerebral cortex [1, 9].

In the cerebral cortex there is evidence that both sensor and motor regions
are topologically organised and use population coded representations [6, 3, 2,
9]: Representations are distributed over the activity of a whole population of
neurons each of which respond over a range of inputs and have overlapping
receptive fields (RFs) [9, 7] (figure 1(b)). Such coding is efficient for generating
coordinate transformations since it allows interpolation between nodes, and is
robust to node failure and noise in individual neuron activations. Learning
to form appropriate connections from the sensor to motor region is equivalent
to defining the receptive fields of the nodes in the motor region. In a similar
way the nodes in the sensor region must learn appropriate receptive fields to
represent sensory input. Various evidence has been presented to suggest that,
although the cortex forms areas of functional specialisation, regions organise
themselves using similar principles [11, 8, 5]. The model presented here also uses
the same algorithm to learn appropriate receptive fields for both the sensor and
motor region simultaneously (the same algorithm is used throughout space).
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Figure 1: (a) The architecture used to learn simple sensory-motor
mappings consists of two regions: A motor region generating the motor output
and a sensor region receiving inputs in response to the motor actions. These
regions are joined by connections which will learn the required mapping.

(b) An example of population coding. Top: Each curve represents the
change in activation as a function of input value for each neuron in the one-
dimensional array. The extent of these curves defines the receptive field for
the neuron. Bottom: The activation values of the population of neurons when
representing an input value of 0.65.

To learn the transformation between sensor and motor space requires train-
ing data covering the range of possible actions. Thus, most algorithms (e.g.
[1, 9, 7]) go through a distinct training phase during which uniformly distrib-
uted random training data is generated and the inputs to the sensor region and
outputs of the motor region are set to corresponding values from this training
data (as if the data was generated by random motor actions). The algorithm
implemented by the motor region is thus different during the training phase
from that implemented when the resulting mapping is used. It is unlikely that
neurons in the brain switch between behaviours or that motor actions are under
‘external’ control during development. Such a distinct training phase is also a
practical problem since any change in the sensory-motor alignment requires a
new training phase to be performed. The method presented in this paper does
not require any separate training phase; the mapping is learned at the same
time as the motor region generates outputs covering the whole range of actions
(the same algorithm is used throughout time).

2. Implementation

Two arrays of nodes, a sensor and a motor region, are connected such that
the output from the sensor region forms the input to the motor region (figure
1(a)). The output activity of the motor array is treated as a population coded
value and decoded as such! The input to the sensor array is a population coded

L. The simplest means of decoding the population code [9], by taking the weighted sum

DI

of activations, is used: value = T
Yi

where y; is the output activation of node j, and, X;.’Tef is the preferred direction of node j.
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representation of the motor action. To ensure that the motor outputs are asso-
ciated with their sensory consequences the synapses which form the inputs to
the motor layer are modified before the next motor output is calculated. There
are thus two variations of pseudo-Hebbian learning in use: afferent connections
are modified after the activity of the nodes is found, while efferents are updated
before the new node activations are calculated. This allows the regions to be
run sequentially while ensuring that the correct associations are learned.

The nodes in both regions form appropriate receptive fields using a novel,
fully-competitive, self-organising, learning algorithm [10]. Nodes compete, via
lateral inhibition, to represent inputs, and at each iteration a winning node,
which is most strongly activated by the current input, is selected. The lateral
inhibition increases as a function of distance from the winning node. This gener-
ates a topologically ordered map, in which neighbouring nodes have overlapping
receptive fields. Local inhibition is weak so that nodes in the neighbourhood of
the winner remain active. The output of the network is thus the activity of a
population of nodes, centred around the winner. The selection of the winning
node is affected by noise added to the activations and habituation of nodes
which win the competition most frequently. Both habituation and noisy se-
lection are essential for the topological self-organisation of each network [10].
These two mechanisms are also responsible for allowing the mapping between
regions to be learned. All synaptic weights start at zero strength, so that ini-
tially when the connections to the motor region are weak, the output will be
almost entirely random. As the connections become stronger there is a tend-
ency for the current sensor input to re-activate the previous motor output, and
hence produce the same sensor and motor effects continuously. However, ha-
bituation prevents this from occurring for more than a few iterations, allowing
the architecture to continue learning.

3. Results

Two one-dimensional arrays of nodes where used to represent the sensor and
motor regions. Figure 2 shows the synaptic weights learned after 10000 it-
erations with different numbers of nodes in each array. All results have been
generated using identical learning algorithms (including the same values for the
parameters) in both regions. It is clear that the algorithm is fairly robust to
changes in the networks, and that very similar patterns of receptive fields are
generated in all cases (1st column of figure 2). The networks form well ordered
topological maps in which there is monotonic progression in the preferred input
of each node across the array (2nd column of figure 2). The training data is not
random, but is generated by the output of the motor array. Initially, the weight
of lateral inhibition is zero and each node has a similar output activity; the
decoded output is thus the same at each iteration (the mean of the preferred
directions), and hence the mapping error is initially very low (3rd column of
figure 2). As lateral inhibition increases the range of output values generated
also increases, and hence so does the error, but this increased range of output
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Figure 2: Results after 10000 iterations. (a) Both arrays contain 20 nodes.
(b) The sensor array contains 20 nodes and the motor array 80 nodes. (c)
Both arrays contain 80 nodes. 1st column shows the synaptic weights for all
nodes in each region. 2nd column shows how the preferred input (that input
which most strongly activates a node) varies along the array. 3rd column shows
the variation over time of the error between the target position specified by the
sensor input and the subsequent target position generated by the motor output.
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values also provides training data and as the correct connections to implement
the mapping are learned so the error reduces. It can be seen that the residual
mapping error is reduced as the number of nodes increases.

4. Conclusions

Three requirements for a model of the development of cortical mappings are
suggested in section 1.:

1. Uniformity of Algorithm over cortex:
Since physiological evidence suggests that all cortical regions are organ-
ised by the same developmental process, models of different cortical re-
gions should be organised by the same learning algorithm. Various in-
formation processing and organisational requirements provide constraints
as to the nature of this algorithm.

2. Uniformity of Encoding over cortex:
Since the output from one cortical region will form (part of) the input
to other regions there is a need for inputs and outputs to have the same
coding format. Both the requirement for topological organisation and
physiological data support the use of population coding.

3. Uniformity of Algorithm over time:
To learn a skill requires learning the relationship between motor actions
and sensory effects, which requires training examples covering the range
of possible actions. The same algorithm that generates the correct output
for a given input must also be that which learns this mapping.

All of these requirements are met by the model described in this paper.

The architecture proposed here is very similar to that used by Salinas and
Abbott [9] in that it learns the mapping between two population coded arrays.
It has been shown [9] that given an array of motor neurons whose activity has
sensory consequences, and an array of sensor neurons whose receptive fields are
defined, it is possible to learn the mapping between these domains, provided
that training data contains corresponding sensor and motor values and that the
learning rules are such that the magnitude of the resulting synaptic connections
are dependent on the difference between the preferred directions of the pre- and
post-synaptic neurons. This algorithm meets these criteria and so, in common
with their algorithm, it should generalise to networks encoding more than one
variable. However, the architecture presented here improves on their work since
in [9] the receptive fields of the nodes in the sensor region are predefined (fails
requirement 1) and training is by the injection of random data into the motor
region (fails requirement 3).
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