Discover millions of ebooks, audiobooks, and so much more with a free trial

Only €10,99/month after trial. Cancel anytime.

Modelling Transport
Modelling Transport
Modelling Transport
Ebook1,301 pages31 hours

Modelling Transport

Rating: 3 out of 5 stars

3/5

()

Read preview

About this ebook

Already the market leader in the field, Modelling Transport has become still more indispensible following a thorough and detailed update. Enhancements include two entirely new chapters on modelling for private sector projects and on activity-based modelling; a new section on dynamic assignment and micro-simulation; and sizeable updates to sections on disaggregate modelling and stated preference design and analysis. It also tackles topical issues such as valuation of externalities and the role of GPS in travel time surveys.

Providing unrivalled depth and breadth of coverage, each topic is approached as a modelling exercise with discussion of the roles of theory, data, model specification, estimation, validation and application. The authors present the state of the art and its practical application in a pedagogic manner, easily understandable to both students and practitioners.

  • Follows on from the highly successful third edition universally acknowledged as the leading text on transport modelling techniques and applications
  • Includes two new chapters on modelling for private sector projects and activity based modeling, and numerous updates to existing chapters
  • Incorporates treatment of recent issues and concerns like risk analysis and the dynamic interaction between land use and transport
  • Provides comprehensive and rigorous information and guidance, enabling readers to make practical use of every available technique
  • Relates the topics to new external factors and technologies such as global warming, valuation of externalities and global positioning systems (GPS).
LanguageEnglish
PublisherWiley
Release dateMay 3, 2011
ISBN9781119993520
Modelling Transport

Related to Modelling Transport

Related ebooks

Civil Engineering For You

View More

Related articles

Reviews for Modelling Transport

Rating: 3 out of 5 stars
3/5

1 rating0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    Modelling Transport - Juan de Dios Ortúzar

    Preface

    This book is a result of nearly 40 years of collaboration, sometimes at a distance and sometimes working together in Britain and in Chile. Throughout these years we discussed many times what we thought were the strong and weak aspects of transport modelling and planning. We speculated, researched and tested in practice some new and some not so new ideas. We have agreed and disagreed on topics like the level of detail required for modelling or the value of disaggregate or activity based models in forecasting; we took advantage of a period when our views converged to put them in writing; here they are.

    We wish to present the most important (in our view) transport modelling techniques in a form accessible to students and practitioners alike. We attempt this giving particular emphasis to key topics in contemporary modelling and planning:

    the practical importance of theoretical consistency in transport modelling;

    the issues of data and specification errors in modelling, their relative importance and methods to handle them;

    the key role played by the decision-making context in the choice of the most appropriate modelling tool;

    how uncertainty and risk influence the choice of the most appropriate modelling tool;

    the advantages of variable resolution modelling; a simplified background model coupled with a much more detailed one addressing the decision questions in hand;

    the need for a monitoring function relying on regular data collection and updating of forecasts and models so that courses of action can be adapted to a changing environment.

    We have approached the subject from the point of view of a modelling exercise, discussing the role of theory, data, model specification in its widest sense, model estimation, validation and forecasting. Our aim in writing this book was to create both a text for a diploma or Master's course in transport and a reference volume for practitioners; however, the material is presented in such a way as to be useful for undergraduate courses in civil engineering, geography and town planning. The book is based on our lecture notes prepared and improved over several years of teaching at undergraduate and graduate levels; we have also used them to teach practitioners both through in-house training programmes and short skills-updating courses. We have extended and enhanced our lecture notes to cover additional material and to help the reader tackling the book without the support of a supervisor.

    Chapters 3 to 9, 12 and 15 provide all the elements necessary to run a good 30 sessions course on transport demand modelling; in fact, such a course – with different emphasis on certain subjects – has been taught by us at undergraduate level in Chile, and at postgraduate level in Australia, Britain, Colombia, Italy, Mexico, Portugal and Spain; the addition of material from Chapters 10 and 11 would make it a transport modelling course. Chapters 4 to 6 and 10 to 12 provide the basic core for a course on network modelling and equilibrium in transport; a course on transport supply modelling would require more material, particularly relating to important aspects of public transport supply which we do not discuss in enough detail. Chapters 13, 14 and 16 cover material which is getting more important as time goes by, in particular as the shift in interest in the profession is moving from passenger issues to freight and logistics, and to the role models play not only in social evaluation but also in the analysis of private projects. Chapter 1 provides an introduction to transport planning issues and outlines our view on the relationship between planning and modelling. Chapter 2 is there mainly for the benefit of those wishing to brush up their analytical and statistical skills and to make the volume sufficiently self-contained.

    During our professional life we have been fortunate to be able to combine teaching with research and consultancy practice. We have learnt from papers, research, experimentation and mistakes. We are happy to say the latter have not been too expensive in terms of inaccurate advice. This is not just luck; a conscientious analyst pays for mistakes by having to work harder and longer to sort out alternative ways of dealing with a difficult modelling task. We have learnt the importance of choosing appropriate techniques and technologies for each task in hand; the ability to tailor modelling approaches to decision problems is a key skill in our profession. Throughout the book we examine the practical constraints to transport modelling for planning and policy making in general, particularly in view of the limitations of current formal analytical techniques, and the nature and quality of the data likely to be available.

    We have avoided the intricate mathematical detail of every model to concentrate instead on their basic principles, the identification of their strengths and limitations, and a discussion of their use. The level of theory supplied by this book is, we believe, sufficient to select and use the models in practice. We have tried to bridge the gap between the more theoretical publications and the too pragmatic `recipe' books; we do not believe the profession would have been served well by a simplistic `how to' book offering a blueprint to each modelling problem. In this latest edition we have also marked, with a shaded box, material which is more advanced and/or still under development but important enough to be mentioned. There are no single solutions to transport modelling and planning. A recurring theme in the book is the dependence of modelling on context and theory. Our aim is to provide enough information and guidance so that readers can actually go and use each technique in the field; to this end we have striven to look into practical questions about the application of each methodology. Wherever the subject area is still under development we have striven to make extensive references to more theoretical papers and books which the interested reader can consult as necessary. In respect of other, more settled modelling approaches, we have kept the references to those essential for understanding the evolution of the topic or serving as entry points to further research.

    We believe that nobody can aspire to become a qualified practitioner in any area without doing real work in a laboratory or in the field. Therefore, we have gone beyond the sole description of the techniques and have accompanied them with various application examples. These are there to illustrate some of the theoretical or practical issues related to particular models. We provide a few exercises at the end of key chapters; these can be solved with the help of a scientific pocket (or better still, a spreadsheet) calculator and should assist the understanding of the models discussed.

    Although the book is ambitious, in the sense that it covers quite a number of themes, it must be made clear from the outset that we do not intend (nor believe it possible) to be up-to-the-minute in every topic. The book is a good reflection of the state of the art but for leading-edge research the reader should use the references provided as signposts for further investigation.

    We wrote most of the first edition during a sabbatical visit by the first of us to University College London in 1988–89. This was possible thanks to support provided by the UK Science and Engineering Research Council, The Royal Society, Fundación Andes (Chile), The British Council and The Chartered Institute of Transport. We thank them for their support as we acknowledge the funding provided for our research by many institutions and agencies over the past 30 years. The third and this fourth edition benefited greatly from further sabbatical stays at University College London in 1998–99 and 2009; these were possible thanks to the support provided by the UK Engineering and Physical Sciences Research Council. We also wish to acknowledge the support to our research provided by the Chilean Fund for Developing Scientific and Technical Research (FONDECYT) and the Millennium Institute on Complex Engineering Systems (ICM: P05-004F; FONDECYT: FBO16). Steer Davies Gleave also allowed the second author to spend time updating the second and third editions.

    We have managed to maintain an equal intellectual contribution to the contents of this book but in writing and researching material for it we have benefited from numerous discussions with friends and colleagues. Richard Allsop taught us a good deal about methodology and rigour. Huw Williams's ideas are behind many of the theoretical contributions in Chapter 7; Andrew Daly and Hugh Gunn have helped to clarify many issues in Chapters 3, 7–9 and 15. Dirck Van Vliet's emphasis in explaining assignment and equilibrium in simple but rigorous terms inspired Chapters 10 and 11. Tony Fowkes made valuable comments on car ownership forecasting and stated-preference methods. Jim Steer provided a constant reference to practical issues and the need to develop improved approaches to address them.

    Many parts of the first edition of the book also benefited from a free, and sometimes very enthusiastic, exchange of ideas with our colleagues J. Enrique Fernández and Joaquin de Cea at the Pontificia Universidad Católica de Chile, Sergio Jara-Díaz and Jaime Gibson at the Universidad de Chile, Marc Gaudry at the Université de Montréal, Roger Mackett at University College London, Dennis Gilbert and Mike Bell at Imperial College. Many others also contributed, without knowing, to our thoughts.

    Subsequent editions of the book have benefited from comments from a number of friends and readers, apart from those above, who have helped to identify errors and areas for improvement. Among them we should mention Michel Bierlaire from the Ecole Polytechnique Fédérale de Lausanne, Patrick Bonnel from the French Laboratoire d'Economie des Transports, David Boyce at the University of Illinois, Victor Cantillo from Universidad del Norte, Barranquilla, Elisabetta Cherchi from University of Cagliari, Michael Florian from Université de Montréal, Rodrigo Garrido, Luis I. Rizzi and Francisca Yañez from Pontificia Universidad Católica de Chile, Cristián Guevara now at Universidad de Los Andes in Chile, Stephane Hess at Leeds University, Ben Heydecker from University College London, Frank Koppelman from Northwestern University, Mariëtte Kraan at the University of Twente, Francisco J. Martínez and Marcela Munizaga at the Universidad de Chile, Piotr Olszewski from Warsaw University of Technology, Joan L. Walker from University of California at Berkeley, and Sofia Athanassiou, Gloria Hutt, Neil Chadwick, John Swanson, Yaron Hollander and Serbjeet Kohli at Steer Davies Gleave. Special thanks are due to John M. Rose at ITLS, University of Sydney, for his contributions to Chapter 3.

    Our final thanks go to our graduate and undergraduate students in Australia, Britain, Chile, Colombia, México, Italy, Portugal and Spain; they are always sharp critics and provided the challenge to put our money (time) where our mouth was. We have not taken on board all suggestions as we felt some required changing the approach and style of the text; we are satisfied future books will continue to clarify issues and provide greater rigour to many of the topics discussed here; transport is indeed a very dynamic subject. Despite this generous assistance, we are, as before, solely responsible for the errors remaining in this latest edition. We genuinely value the opportunity to learn from our mistakes.

    Juan de Dios Ortúzar and Luis G. Willumsen

    1

    Introduction

    1.1 Transport Planning and Modelling

    1.1.1 Background

    The world, including transport, is changing fast. We still encounter many of the same transport problems of the past: congestion, pollution, accidents, financial deficits and pockets of poor access. We are increasingly becoming money rich and time poor. However, we have learnt a good deal from long periods of weak transport planning, limited investment, emphasis on the short term and mistrust in strategic transport modelling and decision making. We have learnt, for example, that old problems do not fade away under the pressure of attempts to reduce them through better traffic management; old problems reappear in new guises with even greater vigour, pervading wider areas, and in their new forms they seem more complex and difficult to handle.

    We now have greater confidence in technical solutions than in the previous century. This is not the earlier confidence in technology as the magic solution to economic and social problems; we have also learnt that this is a mirage. However, Information Technology has advanced enough to make possible new conceptions of transport infrastructure (e.g. road transport informatics), movement systems (e.g. automated driverless trains) and electronic payment (e.g. smartcards, video tolling). Mobile phones and GPS services are changing the way to deliver useful traveller information, facilitating payment and charging for the use of transport facilities. Of particular interest to the subject of this book is the advent of low-cost and high-speed computing; this has practically eliminated computing power as a bottleneck in transport modelling. The main limitations are now human and technical: contemporary transport planning requires skilled and experienced professionals plus, as we will argue below, theoretically sound modelling techniques with competent implementations in software.

    Emerging countries are becoming more significant in the world stage but they suffer serious transport problems as well. These are no longer just the lack of roads to connect distant rural areas with markets. Indeed, the new transport problems bear some similarities with those prevalent in the post-industrialised world: congestion, pollution, and so on. However, they have a number of very distinctive features deserving a specific treatment: relatively low incomes, fast urbanisation and change, high demand for public transport, scarcity of resources including capital, sound data and skilled personnel.

    The birth of the twenty-first century was dominated by two powerful trends affecting most aspects of life and economic progress. The stronger trend is globalisation, supported and encouraged by the other trend, cheap and high-capacity telecommunications. The combination of the two is changing the way we perceive and tackle many modern issues; their influence in transport planning is starting to be felt. Some of these influences are the role of good transport infrastructure in enhancing the economic competitiveness of modern economies; a wider acceptance of the advantages of involving the private sector more closely in transport supply and operations; the possible role of telecommunications in reducing the need to travel.

    Important technical developments in transport modelling have taken place since the mid-1970s, in particular at major research centres; these developments have been improved and implemented by a small group of resourceful consultants. However, many of these innovations and applications have received limited attention outside the more academic journals. After these years of experimentation there is now a better recognition of the role of modelling in supporting transport planning. This book attempts a review of the best of current practice in transport modelling; in most areas it covers the ‘state of the art’ but we have selected those aspects which have already been implemented successfully in practice. The book does not represent the leading edge of research into modelling. It tries, rather, to provide a survival tool-kit for those interested in improving transport modelling and planning, a kind of bridge or entry-point to the more theoretical papers that will form the basis of transport modelling in the future.

    Transport modelling is not transport planning; it can only support planning, and in a few cases it may have the most important role in the process. We have known many good professionals who have developed sophisticated transport models but are frustrated because their work has apparently been ignored in many key planning decisions. In truth, planning and implementation have the power to change the world and transport modelling can only assist in this if adopted as an effective aid to decision making. This requires wise planners and, above all, better modellers.

    1.1.2 Models and their Role

    A model is a simplified representation of a part of the real world–the system of interest–which focuses on certain elements considered important from a particular point of view. Models are, therefore, problem and viewpoint specific. Such a broad definition allows us to incorporate both physical and abstract models. In the first category we find, for example, those used in architecture or in fluid mechanics which are basically aimed at design. In the latter, the range spans from the mental models all of us use in our daily interactions with the world, to formal and abstract (typically analytical) representations of some theory about the system of interest and how it works. Mental models play an important role in understanding and interpreting the real world and our analytical models. They are enhanced through discussions, training and, above all, experience. Mental models are, however, difficult to communicate and to discuss.

    In this book we are concerned mainly with an important class of abstract models: mathematical models. These models attempt to replicate the system of interest and its behaviour by means of mathematical equations based on certain theoretical statements about it. Although they are still simplified representations, these models may be very complex and often require large amounts of data to be used. However, they are invaluable in offering a ‘common ground’ for discussing policy and examining the inevitable compromises required in practice with a level of objectivity. Another important advantage of mathematical models is that during their formulation, calibration and use the planner can learn much, through experimentation, about the behaviour and internal workings of the system under scrutiny. In this way, we also enrich our mental models thus permitting more intelligent management of the transport system.

    A model is only realistic from a particular perspective or point of view. It may be reasonable to use a knife and fork on a table to model the position of cars before a collision but not to represent their mechanical features, or their route choice patterns. The same is true of analytical models: their value is limited to a range of problems under specific conditions. The appropriateness of a model is, as discussed in the rest of this chapter, dependent on the context where it will be used. The ability to choose and adapt models for particular contexts is one of the most important elements in the complete planner's tool-kit.

    This book is concerned with the contribution transport modelling can make to improved decision making and planning in the transport field. It is argued that the use of models is inevitable and that of formal models highly desirable. However, transport modelling is only one element in transport planning: administrative practices, an institutional framework, skilled professionals and good levels of communication with decision makers, the media and the public are some of the other requisites for an effective planning system. Moreover, transport modelling and decision making can be combined in different ways depending on local experience, traditions and expertise. However, before we discuss how to choose a modelling and planning approach it is worth outlining some of the main characteristics of transport systems and their associated problems. We will also discuss some very important modelling issues which will find application in other chapters of this book.

    1.2 Characteristics of Transport Problems

    Transport problems have become more widespread and severe than ever in both industrialised and developing countries alike. Fuel shortages are (temporarily) not a problem but the general increase in road traffic and transport demand has resulted in congestion, delays, accidents and environmental problems well beyond what has been considered acceptable so far. These problems have not been restricted to roads and car traffic alone. Economic growth seems to have generated levels of demand exceeding the capacity of most transport facilities. Long periods of under-investment in some modes and regions have resulted in fragile supply systems which seem to break down whenever something differs slightly from average conditions.

    These problems are not likely to disappear in the near future. Sufficient time has passed with poor or no transportation planning to ensure that a major effort in improving most forms of transport, in urban and inter-urban contexts, is necessary. Given that resources are not unlimited, this effort will benefit from careful and considered decisions oriented towards maximising the advantages of new transport provision while minimising their money costs and undesirable side-effects.

    1.2.1 Characteristics of Transport Demand

    The demand for transport is derived, it is not an end in itself. With the possible exception of sight-seeing, people travel in order to satisfy a need (work, leisure, health) undertaking an activity at particular locations. This is equally significant for goods movements. In order to understand the demand for transport, we must understand the way in which these activities are distributed over space, in both urban and regional contexts. A good transport system widens the opportunities to satisfy these needs; a heavily congested or poorly connected system restricts options and limits economic and social development.

    The demand for transport services is highly qualitative and differentiated. There is a whole range of specific demands for transport which are differentiated by time of day, day of week, journey purpose, type of cargo, importance of speed and frequency, and so on. A transport service without the attributes matching this differentiated demand may well be useless. This characteristic makes it more difficult to analyse and forecast the demand for transport services: tonne and passenger kilometres are extremely coarse units of performance hiding an immense range of requirements and services.

    Transport demand takes place over space. This seems a trivial statement but it is the distribution of activities over space which makes for transport demand. There are a few transport problems that may be treated, albeit at a very aggregate level, without explicitly considering space. However, in the vast majority of cases, the explicit treatment of space is unavoidable and highly desirable. The most common approach to treat space is to divide study areas into zones and to code them, together with transport networks, in a form suitable for processing with the aid of computer programs. In some cases, study areas can be simplified assuming that the zones of interest form a corridor which can be collapsed into a linear form. However, different methods for treating distance and for allocating origins and destinations (and their attributes) over space are an essential element in transport analysis.

    The spatiality of demand often leads to problems of lack of coordination which may strongly affect the equilibrium between transport supply and demand. For example, a taxi service may be demanded unsuccessfully in a part of a city while in other areas various taxis may be plying for passengers. On the other hand, the concentration of population and economic activity on well-defined corridors may lead to the economic justification of a high-quality mass transit system which would not be viable in a sparser area.

    Finally, transport demand and supply have very strong dynamic elements. A good deal of the demand for transport is concentrated on a few hours of a day, in particular in urban areas where most of the congestion takes place during specific peak periods. This time-variable character of transport demand makes it more difficult–and interesting–to analyse and forecast. It may well be that a transport system could cope well with the average demand for travel in an area but that it breaks down during peak periods. A number of techniques exist to try to spread the peak and average the load on the system: flexible working hours, staggering working times, premium pricing, and so on. However, peak and off-peak variations in demand remain a central, and fascinating, problem in transport modelling and planning.

    1.2.2 Characteristics of Transport Supply

    The first distinctive characteristic of transport supply is that it is a service and not a good. Therefore, it is not possible to stock it, for example, to use it in times of higher demand. A transport service must be consumed when and where it is produced, otherwise its benefit is lost. For this reason it is very important to estimate demand with as much accuracy as possible in order to save resources by tailoring the supply of transport services to it.

    Many of the characteristics of transport systems derive from their nature as a service. In very broad terms a transport system requires a number of fixed assets, the infrastructure, and a number of mobile units, the vehicles. It is the combination of these, together with a set of rules for their operation, that makes possible the movement of people and goods.

    It is often the case that infrastructure and vehicles are not owned nor operated by the same group or company. This is certainly the case of most transport modes, with the notable exception of many rail systems. This separation between supplier of infrastructure and provider of the final transport service generates a rather complex set of interactions between government authorities (central or local), construction companies, developers, transport operators, travellers and shippers, and the general public. The latter plays several roles in the supply of transport services: it represents the residents affected by a new scheme, or the unemployed in an area seeking improved accessibility to foster economic growth; it may even be car owners wishing to travel unhindered through somebody else's residential area.

    The provision of transport infrastructure is particularly important from a supply point of view. Transport infrastructure is ‘lumpy’, one cannot provide half a runway or one-third of a railway station. In certain cases, there may be scope for providing a gradual build-up of infrastructure to match growing demand. For example, one can start providing an unpaved road, upgrade it later to one or two lanes with surface treatment; at a later stage a well-constructed single and dual carriageway road can be built, to culminate perhaps with motorway standards. In this way, the provision of infrastructure can be adjusted to demand and avoid unnecessary early investment in expensive facilities. This is more difficult in other areas such as airports, metro lines, and so on.

    Investments in transport infrastructure are not only lumpy but also take a long time to be carried out. These are usually large projects. The construction of a major facility may take from 5 to 15 years from planning to full implementation. This is even more critical in urban areas where a good deal of disruption is also required to build them. This disruption involves additional costs to users and non-users alike.

    Moreover, transport investment has an important political role. For example, politicians in developing countries often consider a road project a safe bet: it shows they care and is difficult to prove wrong or uneconomic by the popular press. In industrialised nations, transport projects usually carry the risk of alienating large numbers of residents affected by them or travellers suffering from congestion and delay in overcrowded facilities. Political judgement is essential in choices of this kind but when not supported by planning, analysis and research, these decisions result in responses to major problems and crises only; in the case of transport this is, inevitably, too late. Forethought and planning are essential.

    The separation of providers of infrastructure and suppliers of services introduces economic complexities too. For a start, it is not always clear that all travellers and shippers actually perceive the total costs incurred in providing the services they use. The charging for road space, for example, is seldom carried out directly and when it happens the price does not include congestion costs or other external effects, perhaps the nearest approximation to this being toll roads and modern road-pricing schemes. The use of taxes on vehicles and fuels is only a rough approximation to charging for the provision of infrastructure.

    But, why should this matter? Is it not the case that other goods and services like public parks, libraries and the police are often provided without a direct charge for them? What is wrong with providing free road space? According to elementary economic theory it does matter. In a perfect market a good allocation of resources to satisfy human needs is only achieved when the marginal costs of the goods equal their marginal utility. This is why it is often advocated that the price of goods and services, i.e. their perceived cost, should be set at their marginal cost. Of course real markets are not perfect and ability to pay is not a good indication of need; however, this general framework provides the basis for contrasting other ways of arranging pricing systems and their impact on resource allocation.

    Transport is a very important element in the welfare of nations and the well-being of urban and rural dwellers. If those who make use of transport facilities do not perceive the resource implications of their choices, they are likely to generate a balance between supply and demand that is inherently inefficient. Underpriced scarce resources will be squandered whilst other abundant but priced resources may not be used. The fact that overall some sectors of the economy (typically car owners) more than pay for the cost of the road space provided, is not a guarantee of more rational allocation of resources. Car owners probably see these annual taxes as fixed, sunk, costs which at most affect the decision of buying a car but not that of using it.

    An additional element of distortion is provided by the number of concomitant- or side-effects associated with the production of transport services: accidents, pollution and environmental degradation in general. These effects are seldom internalised; the user of the transport service rarely perceives nor pays for the costs of cleaning the environment or looking after the injured in transport related accidents. Internalising these costs could also help to make better decisions and to improve the allocation of demand to alterna-tive modes.

    One of the most important features of transport supply is congestion. This is a term which is difficult to define as we all believe we know exactly what it means. However, most practitioners do know that what is considered congestion in Leeds or Lampang is often accepted as normal in London or Lagos. Congestion arises when demand levels approach the capacity of a facility and the time required to use it (travel through it) increases well above the average under low demand conditions. In the case of transport infrastructure the inclusion of an additional vehicle generates supplementary delay to all other users as well, see for example Figure 1.1. Note that the contribution an additional car makes to the delay of all users is greater at high flows than at low flow levels.

    Figure 1.1 Congestion and its external effects

    ch01fig001.eps

    This is the external effect of congestion, perceived by others but not by the driver originating it. This is a cost which schemes such as electronic road pricing attempt to internalise to help more reasoned decision making by the individual.

    1.2.3 Equilibration of Supply and Demand

    In general terms the role of transport planning is to ensure the satisfaction of a certain demand D for person and goods movements with different trip purposes, at different times of the day and the year, using various modes, given a transport system with a certain operating capacity. The transport system itself can be seen as made up of:

    an infrastructure (e.g. a road network);

    a management system (i.e. a set of rules, for example driving on the right, and control strategies, for example at traffic signals);

    a set of transport modes and their operators.

    Consider a set of volumes on a network V, a corresponding set of speeds S, and an operating capacity Q, under a management system M. In very general terms the speed on the network can be represented by:

    (1.1) Numbered Display Equation

    The speed can be taken as an initial proxy for a more general indicator of the level of service (LOS) provided by the transport system. In more general terms a LOS would be specified by a combination of speeds or travel times, waiting and walking times and price effects; we shall expand on these in subsequent chapters. The management system M may include traffic management schemes, area traffic control and regulations applying to each mode. The capacity Q would depend on the management system M and on the levels of investment I over the years, thus:

    (1.2) Numbered Display Equation

    The management system may also be used to redistribute capacity giving priority to certain types of users over others, either on efficiency (public-transport users, cyclists), environmental (electric vehicles) or equity grounds (pedestrians).

    As in the case of most goods and services, one would expect the level of demand D to be dependent on the level of service provided by the transport system and also on the allocation of activities A over space:

    (1.3) Numbered Display Equation

    Combining equations (1.1) and (1.3) for a fixed activity system one would find the set of equilibrium points between supply and demand for transport. But then again, the activity system itself would probably change as levels of service change over space and time. Therefore one would have two different sets of equilibrium points: short-term and long-term ones. The task of transport planning is to forecast and manage the evolution of these equilibrium points over time so that social welfare is maximised. This is, of course, not a simple task: modelling these equilibrium points should help to understand this evolution better and assist in the development and implementation of management strategies M and investment programmes I.

    Sometimes very simple cause-effect relationships can be depicted graphically to help understand the nature of some transport problems. A typical example is the car/public-transport vicious circle depicted in Figure 1.2.

    Figure 1.2 Car and public-transport vicious circle

    ch01fig002.eps

    Economic growth provides the first impetus to increase car ownership. More car owners means more people wanting to transfer from public transport to car; this in turn means fewer public-transport passengers, to which operators may respond by increasing the fares, reducing the frequency (level of service) or both. These measures make the use of the car even more attractive than before and induce more people to buy cars, thus accelerating the vicious circle. After a few cycles (years) car drivers are facing increased levels of congestion; buses are delayed, are becoming increasingly more expensive and running less frequently; the accumulation of sensible individual decisions results in a final state in which almost everybody is worse off than originally.

    Moreover, there is a more insidious effect in the long term, not depicted in Figure 1.2, as car owners choose their place of work and residence without considering the availability (or otherwise) of public transport. This generates urban sprawl, low density developments that are more difficult and expensive to serve by more efficient public transport modes. This is the ‘development trap’ that leads to further congestion and a higher proportion of our time spent in slow moving cars.

    This simple representation can also help to identify what can be done to slow down or reverse this vicious circle. These ideas are summarised in Figure 1.3. Physical measures like bus lanes or other bus-priority schemes are particularly attractive as they also result in a more efficient allocation of road space. Public transport subsidies have strong advocates and detractors; they may reduce the need for fare increases, at least in the short term, but tend to generate large deficits and to protect poor management from the consequences of their own inefficiency. Car restraint, and in particular congestion charging, can help to internalise externalities and generate a revenue stream that can be distributed to other areas of need in transportation.

    Figure 1.3 Breaking the car/public-transport vicious circle

    ch01fig003.eps

    The type of model behind Figures 1.2 and 1.3 is sometimes called a structural model, as discussed in Chapter 12; these are simple but powerful constructs, in particular because they permit the discussion of key issues in a fairly parsimonious form. However, they are not exempt from dangers when applied to different contexts. Think, for example, of the vicious circle model in the context of developing countries. Population growth will maintain demand for public transport much longer than in industrialised countries. Indeed, some of the bus flows currently experienced in emerging countries are extremely high, reaching 400 to 600 buses per hour one-way along some corridors. The context is also relevant when looking for solutions; it has been argued that one of the main objectives of introducing bus-priority schemes in emerging countries is not to protect buses from car-generated congestion but to organise bus movements (Gibson et al. 1989). High bus volumes often implement a de facto priority, and interference between buses may become a greater source of delay than car-generated congestion. To be of value, the vicious circle model must be revised in this new context.

    It should be clear that it is not possible to characterise all transport problems in a unique, universal form. Transport problems are context dependent and so should be the ways of tackling them. Models can offer a contribution in terms of making the identification of problems and selection of ways of addressing them more solidly based.

    1.3 Modelling and Decision Making

    1.3.1 Decision-making Styles

    Before choosing a modelling framework one needs to identify the general decision-making approach adopted in the country, government or decision unit. It must be recognised that there are several decision-making styles in practice and that not all of them use modelling as a basic building block. Previous editions of this text have characterised decision-making styles following the ideas of Nutt (1981); in practice, no decision-making style fits any of these categories exactly. This time, we would just like to distinguish two different paradigms: ‘substantive rationality’ and ‘muddling through’, following the lines of the very important book by Kay (2010).

    The substantive rationality view of the world assumes that we know what our objectives are and we can envisage all alternative ways of achieving them and, with some luck, quantify the costs and benefits associated to each approach. This would apply to important decisions like choosing a place to live and less important ones like choosing a place to eat. This is the rational or normative decision-making approach implicit in most textbooks about transport planning. It is sometimes referred to as the ‘systems approach’ to planning. Here, quantification is essential. The decision problem is seen as one of choosing options from a complete set of alternatives and scenarios, with estimates on their probability of occurrence; the utility of each alternative is quantified in terms of benefits and costs and other criteria like environmental protection, safety, and so on.

    In some cases it may even be possible to cast a decision problem into a mathematical programming framework. This means that the objective function is well understood and specified, and that the same applies to the constraints defining a solution space. However, for most real problems some elements of the objective function or constraints may be difficult to quantify or to convert into common units of measurement, say money or time. It may also be difficult to include some of the probabilistic elements in each case, but a good deal about the problem is learnt in the process. Modelling is at the core of this approach. The evaluation of plans or projects using Cost Benefit Analysis or a Multi-Criteria Framework is also based on this view of reality.

    Some of the problems of applying normative decision theory are:

    Difficulties in actually specifying what the objectives are beyond generalities like reducing congestion or improving accessibility; as soon as we develop a measure or indicator for that objective, we find that it is actually misleading in respect of the things we want to achieve.

    The accusation of insensitivity to the aspirations of the public; people do not actually care about ‘optimised’ systems, they just want to see progress that is sustained along lines that are difficult to identify: they ask for speed but when it is delivered they are dissatisfied with the associated noise and emissions.

    Its high costs; substantive rationality is expensive to implement, requires advanced models and many runs for alternative arrangements and sensitivity analyses; efforts to apply this approach often overrun in time and budget; and

    The alienation of decision makers who may not understand, nor accept, the analytical treatment of the problem. This is a common complaint in our profession; the recurrent requisite to demonstrate the usefulness of our simulations may be irritating but reflects a real need to make our models and results relevant and communicable.

    Moreover, there is very limited evidence that countries or organisations that do not follow this approach fare worse that those who do. Kay (2010) argues that many of the companies that were once hailed as paragons of good rational decision making failed spectacularly a few years later; there seem to be plenty of examples of this.

    The main alternative approach to substantive rationality is what Lindblom (1959) called muddling through. The name, misleadingly self-deprecating, is not meant to imply that intuitive and unstructured decision making is desirable. On the contrary, in Lindblom's eyes, muddling through is a disciplined process but not one based on the substantive rational handling of defined objectives. The approach uses a combination of high-level (often unquantifiable) objectives, intermediate goals and immediate actions or experiments. Muddling through, or what Kay calls ‘oblique or indirect approach’, is characterised by:

    The use of high level objectives that are only loosely defined with no attempt to quantify them.

    Abandoning any clear distinction between objective, goals and actions; we learn about high-level objectives by adopting goals and implementing actions.

    Recognising that the environment is uncertain and that we cannot even know the range of events that might take place in the future, and

    Accepting that we can never identify, nor describe, all the range of options available; we can only deal with a limited set without aspiring to exhaust the search.

    The following table, adapted from Kay's ideas, identifies additional contrasts between the two basic approaches:

    In practice, no organisation relies on (attempts to) substantive rationality alone. Most apply an eclectic mixture of approaches using models, narratives, political context and sources of evidence. Modelling plays an important role in each of these approaches and the professional modeller should be ready to offer flexibility and capacity for adaptation, including new variables as required and responding quickly in the analysis of innovative policies and designs.

    1.3.2 Choosing Modelling Approaches

    This book assumes that the decision style adopted involves the use of models but it does not advocate a single (i.e. a normative) decision-making approach. The acceptability of modelling, or a particular modelling approach, within a decision style is very important. Models which end up being ignored by decision makers not only represent wasted resources and effort, but result in frustrated analysts and planners. It is further proposed that there are several features of transport problems and models which must be taken into account when specifying an analytical approach:

    1. Precision and accuracy required. These concepts are sometimes confused. Accuracy is the degree to which a measurement or model result matches true or accepted values. Accuracy is an issue pertaining to the quality of data and model. The level of accuracy required for particular applications varies greatly. It is often the case that the accuracy required is just that necessary to discriminate between a good scheme and a less good one. In some cases the best scheme may be quite obvious, thus requiring less accurate modelling. Remember, however, that common sense has been blamed for some very poor transport decisions in the past.

    Precision refers to the level or units of measurement used to collect data and deliver model outputs. One may measure travel times between two points in fractions of a second, but individuals may estimate and state the same much less precisely in five minute intervals. Precision is not accuracy and it is often misleading. Reporting estimates with high precision is often interpreted as confidence in their accuracy, whereas transport modellers often use precise numbers to report uncertain estimates. There is a difference between stating that ‘traffic on link X was measured as 2347 vehicles between 8:00 and 9:00 AM yesterday’ and saying that ‘traffic on link X between 8:00 and 9:00 AM in five years time will be 3148 vehicles’: the first statement may be both precise and accurate where the second is equally precise but certainly inaccurate. It is less misleading to report the second figure as 3150. As in the quote attributed to John Maynard Keynes ‘it is much better to be roughly right than precisely wrong’.

    2. The decision-making context. This involves the adoption of a particular perspective and a choice of a scope or coverage of the system of interest. The choice of perspective defines the type of decisions that will be considered: strategic issues or schemes, tactical (transport management) schemes, or even specific operational problems. The choice of scope involves specifying the level of analysis: is it just transport or does it involve activity location too? In terms of the transport system, are we interested in just demand or also on the supply side at different levels: system or suppliers’ performance, cost minimisation issues within suppliers, and so on? The question of how many options need to be considered to satisfy different interest groups or to develop a single best scheme is also crucial. The decision-making context, therefore, will also help define requirements on the models to be used, the variables to be included in the model, or considered given or exogenous.

    3. Level of detail required. The level of resolution of a model system can be described along four main dimensions: geography, unit of analysis, behavioural responses and the handling of time.

    Space is very important and it can be handled in an aggregate way, as a few zones with area-wide speed flow curves, or at the detailed level of the individual addresses for trips with links described in detail. There is a wide range of options in this field and the choice will depend on the application in hand: if the issue is a detailed design for traffic in a small area, highly disaggregated zones with an accurate account of the physical characteristics of links would be appropriate in a microsimulation model. Strategic planning may call for a more aggregate zoning system with links described in terms of their speed-flow relationships alone.

    The unit of interest for modelling may be the same zone with trips emanating and ending there or, at the other end of the spectrum, sampled or synthesised individuals; somewhere in between there will be different household or person strata as representative of the travelling population.

    The behavioural responses included may vary from fairly simple route choice actions in a traffic model to changes in time of travel, mode, destination, tour frequency and even land use and economic activity impacts.

    Time, in turn, can be treated either as a discrete or a continuous variable. In the first case the model may cover a full day (as in many national models), a peak period or a smaller time interval: all relevant responses will take place in that period although there may be interactions with other periods. Alternatively, time may be considered as a continuous variable which allows for more dynamic handling of traffic and behavioural responses like the choice of time of travel. Considering discrete time slices is a common option as treating time as a continuous variable is much more demanding.

    4. The availability of suitable data, their stability and the difficulties involved in forecasting their future values. In some cases very little data may be available; in others, there may be reasons to suspect the information, or to have less confidence in future forecasts for key planning variables as the system is not sufficiently stable. In many cases the data available will be the key factor in deciding the modelling approach.

    5. The state of the art in modelling for a particular type of intervention in the transport system. This in turn can be subdivided into:

    behavioural richness;

    mathematical and computer tractability;

    availability of good solution algorithms.

    It has to be borne in mind that in practice all models assume that some variables are exogenous to it. Moreover, many other variables are omitted from the modelling framework on the grounds of not being relevant to the task in hand, too difficult to forecast or expected to change little and not influence the system of interest. An explicit consideration of what has been left out of the model may help to decide on its appropriateness for a given problem.

    6. Resources available for the study. These include money, data, computer hardware and software, technical skills, and so on. Two types of resource are, however, worth highlighting here: time and level of communication with decision makers and the public. Time is probably the most crucial one: if little time is available to make a choice between schemes, shortcuts will be needed to provide timely advice. Decision makers are prone to setting up absurdly short timescales for the assessment of projects which will take years to process through multiple decision instances, years to implement and many more years to be confirmed as right or wrong. On the other hand, a good level of communication with decision makers and the public will alleviate this problem: fewer unrealistic expectations about our ability to accurately model transport schemes will arise, and a better understanding of the advantages and limitations of modelling will moderate the extremes of blind acceptance or total rejection of study recommendations.

    7. Data processing requirements. This aspect used to be interpreted as something like ‘how big a computer do you need?’ The answer to that question today is ‘not very big’, as a good microcomputer will do the trick in most cases. The real bottleneck in data processing is the human ability to collect, code, input the data, run the programs and interpret the output. The greater the level of detail, the more difficult all these human tasks will be. The use of computer-assisted data collection and graphics for input–output of programs reduces the burden somewhat.

    8. Levels of training and skills of the analysts. Training costs are usually quite high; so much so that it is sometimes better to use an existing model or software that is well understood, than to embark on acquiring and learning to use a slightly more advanced one. This looks, of course, like a recipe for stifling innovation and progress; however, it should always be possible to spend some time building up strengths in new advanced techniques without rejecting the experience gained with earlier models.

    9. Modelling perspective and scope. Florian et al. (1988) formalise decision-making contexts using a two-dimensional framework: the level of analysis and the perspective. The levels of analysis may include six different groups of procedures, where a procedure centres on one or more models and their specific solution algorithms. These are:

    activity location procedures L;

    demand proceduresD;

    transport system performance procedures P, which produce as output levels of service, expenditure and practical capacities, and depend on demand levels and on transport supply conditions;

    supply actions procedures S, which determine the actions taken by suppliers of transport services and infrastructure; these depend on their objectives (profit maximisation, social welfare), institutional environment, their costs and estimates of future states of the system;

    cost minimisation procedures CM;

    production procedures PR.

    The last two have more to do with the microeconomic issues affecting the suppliers in their choice of input combinations to minimise costs.

    The perspectives dimension considers the six level procedures L, D, P, S, CM, PR and three perspectives: a strategic perspective STR, a tactical perspective TAC and an operational perspective OPE. These are, of course, related to the planning horizons and the levels of investment; however, in this context they must be seen as generic concepts dealing with the capacity:

    to visualise the levels L, D, P, S, CM, PR in their true and relative importance;

    to choose, at any level, what is to be regarded as fixed and what as variable.

    Figure 1.4 summarises the way in which different perspectives and levels usually interact. The largest and most aggregate is, of course, the strategic level; analysis and choice at this level have major system-wide and long-term impacts, and usually involve resource acquisition and network design. Tactical issues have a narrower perspective and concern questions like making the best use of existing facilities and infrastructure. The narrowest perspective, the operational one, is concerned with the short-term problems of suppliers of transport services which fall outside the scope of this book; nevertheless, the actual decisions on, for example, levels of service or vehicle size, are important exogenous input to some of the models discussed in this book, and this is depicted in Figure 1.4.

    Figure 1.4 The two-dimensional conceptual framework

    ch01fig004.eps

    This is, of course, a rather abstract and idealised way of visualising planning problems. However, it helps to clarify the choices the analyst must face in developing a transport modelling approach. In this book we are mainly concerned with strategic and tactical issues at the demand and performance procedure levels. Nevertheless, some of the models discussed here sometimes find application outside these levels and perspectives.

    1.4 Issues in Transport Modelling

    We have already identified the interactions between transport problems, decision-making styles and modelling approaches. We need to discuss now some of the critical modelling issues which are relevant to the choice of model. These issues cover some general points like the roles of theory and data, model specification and calibration. But perhaps the most critical choices are those between the uses of aggregate or disaggregate approaches, cross-section or time-series models, and revealed or stated preference techniques.

    1.4.1 General Modelling Issues

    Wilson (1974) provides an interesting list of questions to be answered by any would-be modeller; they range from broad issues such as the purpose behind the model-building exercise, to detailed aspects such as what techniques are available for building the model. We will discuss some of these below, together with other modelling issues which are particularly relevant to the development of this book.

    1.4.1.1 The Roles of Theory and Data

    Many people tend to associate the word ‘theory’ with endless series of formulae and algebraic manipulations. In the urban transport modelling field this association has been largely correct: it is difficult to understand and replicate the complex interactions between human beings which are an inevitable feature of transport systems.

    Some theoretical developments attempting to overcome these difficulties have resulted in models lacking adequate data and/or computational software for their practical implementation. This has led to the view, held strongly by some practitioners, that the gap between theory and practice is continually widening; this is something we have tried to redress in this book.

    An important consideration on judging the contribution of a new theory is whether it places any meaningful restrictions on, for example, the form of a demand function. There is at least one documented case of a ‘practical’ transport planning study, lasting several years and costing several million dollars, which relied on ‘pragmatic’ demand models with a faulty structure (i.e. some of its elasticities had a wrong sign; see Williams and Senior 1977). Although this could have been diagnosed ex ante by the pragmatic practitioners, had they not despised theory, it was only discovered post hoc by theoreticians.

    Unfortunately (or perhaps fortunately, a pragmatist would say), it is sometimes possible to derive similar functional forms from different theoretical perspectives (this, the equifinality issue, is considered in more detail in Chapter 8). The interpretation of the model output, however, is heavily dependent on the theoretical framework adopted. For example, the same functional form of the gravity model can be derived from analogy with physics, from entropy maximisation and from maximum utility formalisms. The interpretation of the output, however, may depend on the theory adopted. If one is just interested in flows on links it may not matter which theoretical framework underpins the analytical model function. However, if an evaluation measure is required, the situation changes, as only an economically based theory of human behaviour will be helpful in this task. In other cases, phrases like: ‘the gravitational pull of this destination will increase’, or ‘this is the most probable arrangement of trips’ or ‘the most likely trip matrix consistent with our information about the system’ will be used; these provide no help in devising evaluation measures but assist in the interpretation of the nature of the solution found. The theoretical framework will also lend some credence to the ability of the model to forecast future behaviour. In this sense it is interesting to reflect on the influence practice and theory may have on each other. For example, it has been noted that models or analytical forms used in practice have had traditionally a guiding influence on the assumptions employed in the development of subsequent theoretical frameworks. It is also well known that widely implemented forms, like the gravity-logit model we will discuss in Chapters 6 and 7, have been the subject of strong post hoc rationalisation:

    theoretical advances are especially welcome when they fortify existing practice which might be deemed to lack a particularly convincing rationale (Williams and Ortúzar, 1982b).

    The two classical approaches to the development of theory are known as deductive (building a model and testing its predictions against observations) and inductive (starting with data and attempting to infer general laws). The deductive approach has been found more productive in the pure sciences and the inductive approach has been preferred in the analytical social sciences. It is interesting to note that data are central to both; in fact, it is well known that data availability usually leaves little room for negotiation and compromise in the trade-off between modelling relevance and modelling complexity. Indeed, in very many cases the nature of the data restricts the choice of model to a single option.

    The question of data is closely connected with issues such as the type of variables to be represented in the model and this is, of course, closely linked again to questions about theory. Models predict a number of dependent (or endogenous) variables given other independent (or explanatory) variables. To test a model we would normally need data about each variable. Of particular interest are the policy variables, which are those assumed to be under the control of the decision maker, e.g. those the analyst may vary in order to test the value of alternative policies or schemes.

    Another important issue in this context is that of aggregation:

    How many population strata or types of people do we need to achieve a good representation and understanding of a problem?

    In how much detail do we need to measure certain variables to replicate a given phenomenon?

    Space is crucial in transport; at what level of detail do we need to code the origin and destination of travellers to model their trip making behaviour?

    1.4.1.2 Model Specification

    In its widest and more interesting sense this issue considers the following themes.

    Model Structure Is it possible to replicate the

    Enjoying the preview?
    Page 1 of 1