Search results
Found 13183 matches for
A case of disseminated autochthonous Cladophialophora bantiana infection in a renal transplant recipient in the UK.
Disease associated with Cladophialophora bantiana infection is uncommon but can be characterised by severe and life-threatening CNS involvement. Diagnosis is challenging due to both the infection's rarity and non-specific clinical presentation, which can mimic malignancy and infection caused by more common organisms. Transmission can occur via inhalation or inoculation through compromised skin, followed by haematogenous dissemination to the brain and other organs. We report a case of a 42-year-old renal transplant recipient with no travel history presenting with neurological symptoms and skin and lung lesions due to C bantiana infection. An aggressive treatment approach comprising combination antifungal therapy, surgical debridement, and withdrawal of immunosuppression resulted in disease control, although this treatment was complicated by voriconazole-induced skeletal fluorosis. This organism, more commonly encountered in tropical regions, has traditionally been considered imported into the UK by returning travellers, therefore this case of autochthonous infection could reflect an expanding range alongside global climactic shifts.
Asparagine availability controls germinal center B cell homeostasis.
The rapid proliferation of germinal center (GC) B cells requires metabolic reprogramming to meet energy demands, yet these metabolic processes are poorly understood. By integrating metabolomic and transcriptomic profiling of GC B cells, we identified that asparagine (Asn) metabolism was highly up-regulated and essential for B cell function. Asparagine synthetase (ASNS) was up-regulated after B cell activation through the integrated stress response sensor GCN2. Conditional deletion of Asns in B cells impaired survival and proliferation in low Asn conditions. Removal of environmental Asn by asparaginase or dietary restriction compromised the GC reaction, impairing affinity maturation and the humoral response to influenza infection. Furthermore, metabolic adaptation to the absence of Asn required ASNS, and oxidative phosphorylation, mitochondrial homeostasis, and synthesis of nucleotides were particularly sensitive to Asn deprivation. These findings demonstrate that Asn metabolism acts as a key regulator of B cell function and GC homeostasis.
Risk of SARS-CoV-2 reinfection during multiple Omicron variant waves in the UK general population
AbstractSARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited. Here we studied ~45,000 reinfections from the UK’s national COVID-19 Infection Survey and quantified the risk of reinfection in multiple waves, including those driven by BA.1, BA.2, BA.4/5, and BQ.1/CH.1.1/XBB.1.5 variants. Reinfections were associated with lower viral load and lower percentages of self-reporting symptoms compared with first infections. Across multiple Omicron waves, estimated protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Estimated protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year). Those 14–180 days after receiving their most recent vaccination had a lower risk of reinfection than those >180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30–45 years, and with either low or high viral load in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; both viral evolution and waning immunity are independently associated with reinfection.
Optimized use of Oxford Nanopore flowcells for hybrid assemblies
Hybrid assemblies are highly valuable for studies of Enterobacteriaceae due to their ability to fully resolve the structure of mobile genetic elements, such as plasmids, which are involved in the carriage of clinically important genes (e.g. those involved in antimicrobial resistance/virulence). The widespread application of this technique is currently primarily limited by cost. Recent data have suggested that non-inferior, and even superior, hybrid assemblies can be produced using a fraction of the total output from a multiplexed nanopore [Oxford Nanopore Technologies (ONT)] flowcell run. In this study we sought to determine the optimal minimal running time for flowcells when acquiring reads for hybrid assembly. We then evaluated whether the ONT wash kit might allow users to exploit shorter running times by sequencing multiple libraries per flowcell. After 24 h of sequencing, most chromosomes and plasmids had circularized and there was no benefit associated with longer running times. Quality was similar at 12 h, suggesting that shorter running times are likely to be acceptable for certain applications (e.g. plasmid genomics). The ONT wash kit was highly effective in removing DNA between libraries. Contamination between libraries did not appear to affect subsequent hybrid assemblies, even when the same barcodes were used successively on a single flowcell. Utilizing shorter run times in combination with between-library nuclease washes allows at least 36 Enterobacteriaceae isolates to be sequenced per flowcell, significantly reducing the per-isolate sequencing cost. Ultimately this will facilitate large-scale studies utilizing hybrid assembly, advancing our understanding of the genomics of key human pathogens.
The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers
Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. Methods We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. Results Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval [CrI] 91–96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19–31) days post first polymerase chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81–90) days. Higher maximum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. Conclusions SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.
An Observational Cohort Study on the Incidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and B.1.1.7 Variant Infection in Healthcare Workers by Antibody and Vaccination Status
Abstract Background Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. Methods In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI} < .01–.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02–.38]) and 85% (0.15 [95% CI .08–.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21–.52]) and any PCR-positive result by 64% (0.36 [95% CI .26–.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. Conclusions Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.
Molecular epidemiology and antimicrobial resistance phenotype of paediatric bloodstream infections caused by Gram-negative bacteria
Abstract Background Gram-negative organisms are common causes of bloodstream infection (BSI) during the neonatal period and early childhood. Whilst several large studies have characterised these isolates in adults, equivalent data (particularly incorporating whole genome sequencing) is lacking in the paediatric population. Methods We perform an epidemiological and sequencing based analysis of Gram-negative bloodstream infections (327 isolates (296 successfully sequenced) from 287 patients) in children <18 years old between 2008 and 2018 in Oxfordshire, UK. Results Here we show that the burden of infection lies predominantly in neonates and that most infections are caused by Escherichia coli, Klebsiella spp. and Enterobacter hormaechei. There is no evidence in our setting that the proportion of antimicrobial resistant isolates is increasing in the paediatric population although we identify some evidence of sub-breakpoint increases in gentamicin resistance. The population structure of E. coli BSI isolates in neonates and children mirrors that in adults with a predominance of STs 131/95/73/69 and the same proportions of O-antigen serotypes. In most cases in our setting there is no evidence of transmission/point-source acquisition and we demonstrate the utility of whole genome sequencing to refute a previously suspected outbreak. Conclusions Our findings support continued use of current empirical treatment guidelines and suggest that O-antigen targeted vaccines may have a role in reducing the incidence of neonatal sepsis.
Ten Years of Population-Level Genomic Escherichia coli and Klebsiella pneumoniae Serotype Surveillance Informs Vaccine Development for Invasive Infections
Abstract Background The incidence of bloodstream infections (BSIs) caused by Escherichia coli and Klebsiella pneumoniae is increasing, with substantial associated morbidity, mortality, and antimicrobial resistance. Unbiased serotyping studies to guide vaccine target selection are limited. Methods We conducted unselected, population-level genomic surveillance of bloodstream E. coli and Klebsiella pneumoniae isolates from 2008 to 2018 in Oxfordshire, United Kingdom. We supplemented this with an analysis of publicly available global sequencing data (n = 3678). Results We sequenced 3478 E. coli isolates (3278 passed quality control) and 556 K. pneumoniae isolates (535 [K-antigen] and 549 [O-antigen] passed quality control). The 4 most common E. coli O-antigens (O1/O2/O6/O25) were identified in 1499/3278 isolates; the incidence of these O-types increased over time (incidence rate ratio per year [IRRy] = 1.14, 95% confidence interval [CI]: 1.11–1.16). These O-types accounted for 616/1434 multidrug-resistant (MDR) and 173/256 extended-spectrum beta-lactamase (ESBL)-resistant isolates in Oxfordshire but only 19/90 carbapenem-resistant isolates across all studies. For Klebsiella pneumoniae, the most common O-antigens (O2v2/O1v1/O3b/O1v2) accounted for 410/549 isolates; the incidence of BSIs caused by these also increased annually (IRRy = 1.09; 95% CI: 1.05–1.12). These O-types accounted for 122/148 MDR and 106/123 ESBL isolates in Oxfordshire and 557/734 carbapenem-resistant isolates across all studies. Conversely we observed substantial capsular antigen diversity. Analysis of 3678 isolates from global studies demonstrated the generalizability of these findings. For E. coli, based on serotyping, the ExPEC4V and ExPEC10V vaccines under investigation would cover 46% and 72% of Oxfordshire isolates respectively, and 47% and 71% of MDR isolates. Conclusions O-antigen targeted vaccines may be useful in reducing the morbidity, mortality, and antimicrobial resistance associated with E. coli and K. pneumoniae BSIs.
Metrics for Public Health Perspective Surveillance of Bacterial Antibiotic Resistance in Low- and Middle-Income Countries
AbstractAntimicrobial resistance (AMR) is a global health threat, especially in low-/middle-income countries (LMICs), where there is limited surveillance to inform empiric antibiotic treatment guidelines. Enterobacterales are amongst the most important causes of drug-resistant bacterial infections. We developed a novel AMR surveillance approach for Enterobacterales by profiling pooled human faecal metagenomes from three sites (n=563 individuals; Cambodia, Kenya, UK) to derive a taxonomy-adjusted AMR metric (“resistance potential”) which could be used to predict the aggregate percentage of resistant invasive Enterobacterales infections within each setting. Samples were sequenced (Illumina); taxonomic and resistance gene profiling was performed using ResPipe. Data on organisms causing bacteraemia and meningitis and antibiotic susceptibility test results from 2010-2017 were collated for each site. Bayesian generalised linear models with a binomial likelihood were fitted to determine the capacity of the resistance potential to predict AMR in Enterobacterales infections in each setting. The most informative model accurately predicted the numbers of resistant infections in the target populations for 14/14 of antibiotics in the UK, 12/12 in Kenya, and 9/12 in Cambodia. Intermittent metagenomics of pooled human samples could represent a powerful pragmatic and economical approach for determining and monitoring AMR in clinical infections, especially in resource-limited settings.
Protection against SARS-CoV-2 Omicron BA.4/5 variant following booster vaccination or breakthrough infection in the UK
AbstractFollowing primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy.
Genomic surveillance of Escherichia coli and Klebsiella spp. in hospital sink drains and patients
Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.
DNA extraction from primary liquid blood cultures for bloodstream infection diagnosis using whole genome sequencing
Purpose. Speed of bloodstream infection diagnosis is vital to reduce morbidity and mortality. Whole genome sequencing (WGS) performed directly from liquid blood culture could provide single-assay species and antibiotic susceptibility prediction; however, high inhibitor and human cell/DNA concentrations limit pathogen recovery. We develop a method for the preparation of bacterial DNA for WGS-based diagnostics direct from liquid blood culture. Methodology. We evaluate three commercial DNA extraction kits: BiOstic Bacteraemia, Amplex Hyplex and MolYsis Plus. Differential centrifugation, filtration, selective lysis and solid-phase reversible immobilization bead clean-up are tested to improve human cells/DNA and inhibitor removal. Using WGS (Illumina/MinION), we assess human DNA removal, pathogen recovery, and predict species and antibiotic susceptibility inpositive blood cultures of 44 Gram-negative and 54 Staphylococcus species. Results/Key findings. BiOstic kit extractions yield the greatest mean DNA concentration, 94–301 ng µl−1, versus 0–2.5 ng µl−1 using Amplex and MolYsis kits. However, we note higher levels of inhibition (260/280 ratio 0.9–2.1) and human DNA (0.0–4.4×106 copies) in BiOstic extracts. Differential centrifugation (2000 g , 1 min) prior to BiOstic extraction reduces human DNA by 63–89 % with selective lysis minimizing by a further 62 %. Post-extraction bead clean-up lowers inhibition. Overall, 67 % of sequenced samples (Illumina MiSeq) contain <10 % human DNA, with >93 % concordance between WGS-based species and susceptibility predictions and clinical diagnosis. If >60 % of sequencing reads are human (7/98 samples) susceptibility prediction becomes compromised. Novel MinION-based WGS (n=9) currently gives rapid species identification but not susceptibility prediction. Conclusion. Our method for DNA preparation allows WGS-based diagnosis direct from blood culture bottles, providing species and antibiotic susceptibility prediction in a single assay.
Multi-omic surveillance of Escherichia coli and Klebsiella spp. in hospital sink drains and patients
Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonised with diverse populations of E. coli, Klebsiella pneumoniae and Klebsiella oxytoca, including both antimicrobial-resistant and susceptible strains. Using whole genome sequencing (WGS) of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies which may vary as a result of different inputs and selection pressures. WGS of 46 contemporaneous patient isolates identified one (2%; 95% CI 0.05-11%) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10% of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including blaCTX-M, blaSHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention.
High-resolution characterization of short-term temporal variability in the taxonomic and resistome composition of wastewater influent
Wastewater-based epidemiology (WBE) for population-level surveillance of antimicrobial resistance (AMR) is gaining significant traction, but the impact of wastewater sampling methods on results is unclear. In this study, we characterized taxonomic and resistome differences between single-timepoint-grab and 24 h composites of wastewater influent from a large UK-based wastewater treatment work [WWTW (population equivalent: 223 435)]. We autosampled hourly influent grab samples (n=72) over three consecutive weekdays, and prepared additional 24 h composites (n=3) from respective grabs. For taxonomic profiling, metagenomic DNA was extracted from all samples and 16S rRNA gene sequencing was performed. One composite and six grabs from day 1 underwent metagenomic sequencing for metagenomic dissimilarity estimation and resistome profiling. Taxonomic abundances of phyla varied significantly across hourly grab samples but followed a repeating diurnal pattern for all 3 days. Hierarchical clustering grouped grab samples into four time periods dissimilar in both 16S rRNA gene-based profiles and metagenomic distances. 24H-composites resembled mean daily phyla abundances and showed low variability of taxonomic profiles. Of the 122 AMR gene families (AGFs) identified across all day 1 samples, single grab samples identified a median of six (IQR: 5–8) AGFs not seen in the composite. However, 36/36 of these hits were at lateral coverage <0.5 (median: 0.19; interquartile range: 0.16–0.22) and potential false positives. Conversely, the 24H-composite identified three AGFs not seen in any grab with higher lateral coverage (0.82; 0.55–0.84). Additionally, several clinically significant human AGFs (bla VIM, bla IMP, bla KPC) were intermittently or completely missed by grab sampling but captured by the 24 h composite. Wastewater influent undergoes significant taxonomic and resistome changes on short timescales potentially affecting interpretation of results based on sampling strategy. Grab samples are more convenient and potentially capture low-prevalence/transient targets but are less comprehensive and temporally variable. Therefore, we recommend 24H-composite sampling where feasible. Further validation and optimization of WBE methods is vital for its development into a robust AMR surveillance approach.
Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae
The pangenome ofEscherichia colifrom nearby farms shows how livestock host and local geography shape bacterial populations.