numpy.sqrt() in Python Last Updated : 12 Jul, 2025 Comments Improve Suggest changes Like Article Like Report numpy.sqrt() in Python is a function from the NumPy library used to compute the square root of each element in an array or a single number. It returns a new array of the same shape with the square roots of the input values. The function handles both positive and negative numbers, returning NaN for negative inputs when working with real numbers.Example: Python import numpy as np a = np.array([1, 4, 9, 16, 25]) b = np.sqrt(a) print(b) Output[1. 2. 3. 4. 5.] Syntaxnumpy.sqrt() Parameters:array : [array_like] Input values whose square roots have to be determined. out : [ndarray, optional] Alternate array object in which to put the result; if provided, it must have the same shape as arr. Return Type: [ndarray] Returns the square root of the number in an array.Examples of numpy.sqrt()Example 1: Square Root of Positive IntegersThis example demonstrates how to compute the square root of an array of positive integers using numpy.sqrt(). Python import numpy as geek a = geek.sqrt([1, 4, 9, 16]) b = geek.sqrt([6, 10, 18]) print(a) print(b) Output[1. 2. 3. 4.] [2.44948974 3.16227766 4.24264069] Example 2: Square Root of Complex NumbersThis example shows how to compute the square root of complex numbers using numpy.sqrt(). Python import numpy as geek a = geek.sqrt([4, -1, -5 + 9J]) print(a) Output[2. +0.j 0. +1.j 1.62721083+2.76546833j] Example 3: Square Root of Negative Real NumbersThis example illustrates how numpy.sqrt() handles negative real numbers, which results in NaN for real number inputs. Python import numpy as geek a = geek.sqrt([-4, 5, -6]) print(a) Output[ nan 2.23606798 nan]Explanation: The code applies numpy.sqrt() to an array with negative real numbers. Since square roots of negative real numbers are undefined in the real number system, it returns NaN for those values. Comment More infoAdvertise with us S sanjoy_62 Follow Improve Article Tags : Python Python-numpy Practice Tags : python Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 6 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 8 min read Recursion in Python 6 min read Python Lambda Functions 6 min read Python Data StructuresPython String 6 min read Python Lists 6 min read Python Tuples 6 min read Dictionaries in Python 7 min read Python Sets 10 min read Python Arrays 9 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 6 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 11 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 10 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like