Python | Pandas dataframe.mad() Last Updated : 31 Jul, 2024 Comments Improve Suggest changes Like Article Like Report Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas dataframe.mad() function return the mean absolute deviation of the values for the requested axis. The mean absolute deviation of a dataset is the average distance between each data point and the mean. It gives us an idea about the variability in a dataset. Syntax: DataFrame.mad(axis=None, skipna=None, level=None) Parameters : axis : {index (0), columns (1)} skipna : Exclude NA/null values when computing the result level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns : mad : Series or DataFrame (if level specified) Note: This method was removed in pandas version 1.0.0 and later. Example #1: Use mad() function to find the mean absolute deviation of the values over the index axis. Python # importing pandas as pd import pandas as pd # Creating the dataframe df = pd.DataFrame({"A":[12, 4, 5, 44, 1], "B":[5, 2, 54, 3, 2], "C":[20, 16, 7, 3, 8], "D":[14, 3, 17, 2, 6]}) # Print the dataframe df Let’s use the dataframe.mad() function to find the mean absolute deviation. Python3 1== # find the mean absolute deviation # over the index axis df.mad(axis = 0) Output : Example #2: Use mad() function to find the mean absolute deviation of values over the column axis which is having some Na values in it. Python # importing pandas as pd import pandas as pd # Creating the dataframe df = pd.DataFrame({"A":[12, 4, 5, None, 1], "B":[7, 2, 54, 3, None], "C":[20, 16, 11, 3, 8], "D":[14, 3, None, 2, 6]}) # To find the mean absolute deviation # skip the Na values when finding the mad value df.mad(axis = 1, skipna = True) Output : Comment More infoAdvertise with us S Shubham__Ranjan Follow Improve Article Tags : Technical Scripter Python Python-pandas Python pandas-dataFrame Pandas-DataFrame-Methods +1 More Practice Tags : python Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 5 min read Recursion in Python 6 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 5 min read Python Tuples 4 min read Dictionaries in Python 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 10 min read Python Exception Handling 6 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 11 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like