random.gauss() function in Python Last Updated : 15 Jul, 2025 Comments Improve Suggest changes Like Article Like Report random module is used to generate random numbers in Python. Not actually random, rather this is used to generate pseudo-random numbers. That implies that these randomly generated numbers can be determined. gauss() is an inbuilt method of the random module. It is used to return a random floating point number with gaussian distribution.Example: Python import random mu = 100 sigma = 50 print(random.gauss(mu, sigma)) Output :127.80261974806497Explanation: This code generates and prints a random number from a Gaussian distribution with a mean (mu) of 100 and a standard deviation (sigma) of 50 using the random.gauss() function. The result will be a value close to 100 but can vary within a range due to the standard deviation.Syntax random.gauss(mu, sigma)Parametersmu: meansigma: standard deviationReturn ValueReturns a random gaussian distribution floating numberExamples of random.gauss() function1. Gaussian Distribution Plot We can generate the number multiple times and plot a graph to observe the gaussian distribution. Python import random import matplotlib.pyplot as plt # store the random numbers in a list nums = [] mu = 100 sigma = 50 for i in range(100): temp = random.gauss(mu, sigma) nums.append(temp) # plotting a graph plt.plot(nums) plt.show() Output :Gaussian Distribution PlotExplanation: This code generates 100 random numbers following a Gaussian distribution with a mean of 100 and a standard deviation of 50. It stores these numbers in a list and then plots the values using matplotlib to visualize the distribution.2. Gaussian Distribution Histogram We can create a histogram to observe the density of the gaussian distribution. Python import random import matplotlib.pyplot as plt # store the random numbers in a list nums = [] mu = 100 sigma = 50 for i in range(10000): temp = random.gauss(mu, sigma) nums.append(temp) # plotting a graph plt.hist(nums, bins = 200) plt.show() Output :Gaussian Distribution HistogramExplanation: This code generates 10,000 random numbers following a Gaussian distribution with a mean of 100 and a standard deviation of 50. It stores the numbers in a list and then plots a histogram using matplotlib to visualize the distribution with 200 bins. Comment More infoAdvertise with us Y Yash_R Follow Improve Article Tags : Python Python-random Practice Tags : python Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 5 min read Recursion in Python 6 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 5 min read Python Tuples 4 min read Dictionaries in Python 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 10 min read Python Exception Handling 6 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 11 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like