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AUTHOR’S PREFACE — SECOND FRENCH EDITION

The first part of this volume has undergone only slight changes,
while the rather important modifications that have been made
appear only in the last chapters.

In the first edition I was able to devote but a few pages to par-
tial differential equations of the second order and to the calculus
of variations. In order to present in a less summary manner such
broad subjects, I have concluded to defer them to a third volume,
which will contain also a sketch of the recent theory of integral
equations. The suppression of the last chapter has enabled me to
make some additions, of which the most important relate to linear
differential equations and to partial differential equations of the

first order. E. GOURSAT






TRANSLATORS’ PREFACE

As the title indicates, the present vclume is a translation of the
first half of the second volume of Goursat’s *Cours d’Analyse.” The
decision to publish the translation in two parts is due to the evi-
dent adaptation of these two portions to the introductory courses in
American colleges and universities in the theory of functions and
in differential equations, respectively.

After the cordial reception given to the translation of Goursat’s
first volume, the continuation was assured. That it has been
delayed so long was due, in the first instance, to our desire to await
the appearance of the second edition of the second. volume in
French. The advantage in doing so will be obvious to those who
have observed the radical changes made in the second (French)
edition of the second volume. Volume I was not altered so radi-
cally, so that the present English translation of that volume may be
used conveniently as a companion to this; but references are given
here to both editions of the first volume, to avoid any possible
difficulty in this connection.

Our thanks are due to Professor Goursat, who has kindly given
us his permission to make this translation, and has approved of the
plan of publication in two parts. He has also seen all proofs in
English and has approved a few minor alterations made in transla-
tion as well as the translators’ notes. The responsibility for the

latter rests, however, with the translators.
E. R. HEDRICK

OTTO DUNKEL
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THEORY OF FUNCTIONS OF A
COMPLEX VARIABLE

CHAPTER 1
ELEMENTS OF THE THEORY

I. GENERAL PRINCIPLES. ANALYTIC FUNCTIONS

1. Definitions. An imaginary quantity, or complex quantity, is any
expression of the form @ + b¢ where a and 4 are any two real num-
bers whatever and ¢ is a special symbol which has been introduced
in order to generalize algebra. Essentially a complex quantity is
nothing but a system of two real numbers arranged in a certain
order. Although such expressions as @ + ¢ have in themselves no
concrete meaning whatever, we agree to apply to them the ordinary
rules of algebra, with the additional convention that <2 shall be
replaced throughout by — 1.

Two complex quantities ¢ + b7 and a' + 5'% are said to be equal if
a=a'and b =105" The sum of two complex quantities @ + b¢ and
¢+ di is a symbol of the same form a + ¢ + (b + d)i; the differ-
ence a +bi —(c+ di) is equal to a — ¢+ (b — d)i. To find the
product of a + b¢ and ¢ + di we carry out the multiplication accord-
ing to the usual rules for algebraic multiplication, replacing <* by
— 1, obtaining thus

(a + bi) (¢ + di)= ac — bd + (ad + be) .
The quotient obtained by the division of a + bi by ¢+ di is

defined to be a third imaginary symbol « 4 yi, such that when it is
multiplied by ¢ + di, the product is @ + &¢. The equality

a + bi=(c + di) (x + yo)

is equivalent, according to the rules of multiplication, to the two
relations x—dy=a, dz + ¢y = b,
whence we obtain

T =

ac + bd _bc—-ad'
A +ar’ Tt a
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The quotient obtained by the division of a + & by ¢ + di is repre-
sented by the usual notation for fractions in algebra, thus,

a+bi.

THY=a

A convenient way of calculating « and y is to multiply numerator
and -denominator of the fraction by ¢ — di and to develop the
indicated products.

All the properties of the fundamental operations of algebra can be
shown to apply to the operations carried out on these imaginary sym-
bols. Thus, if 4, B, C, --- denote complex numbers, we shall have

A-B=B-A, A-B-C=A-(B-C), A(B4+C)=AB +AC, -

and so on. The two complex quantities @ + . and a — bi are said
to be conjugate imaginaries. The two complex quantities a + &¢ and
— a — bi, whose sum is zero, are said to be negatives of each other
or symmetric to each other.

Given the usual system of rectangular axes in a plane, the complex
quantity a 4 b¢ is represented by the point M of the plane 20y, whose
codrdinates are z =a and y = 6. In this way a concrete representa-
tion is given to these purely symbolic expressions, and to every
proposition established for complex quantities there is a correspond-
ing theorem of plane geometry. But the greatest advantages resulting
from this representation will appear later. Real numbers correspond
to points on the z-axis, which for this reason is also called the axis
of reals. Two conjugate imaginaries @ + b¢ and @ — bi correspond to
two points symmetrically situated with respect to the z-axis. Two
quantities @ + & and — a — bi are represented by a pair of points
symmetric with respect to the origin 0. The quantity e + ¢, which
corresponds to the point Af with the coérdinates (a, &), is sometimes
called its affixz.* When there is no danger of ambiguity, we shall
denote by the same letter a complex quantity and the point which
represents it.

Let us join the origin to the point M with coordinates (a, b) by a
segment of a straight line. The distance OM is called the absolute
value of a + bi, and the angle through which a ray must be turned
from Oz to bring it in coincidence with OM (the angle being measured,
as in trigonometry, from Ox toward Oy) is called the angle of a + bi.

* This term is not much used in English, but the French frequently use the corre-
sponding word qffize. — TRANS.
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Let p and o denote, respectively, the absolute value and the angle of
a + bi; between the real quantities a, §, p, » there exist the two rela-
tions @ = p cos w, b = p sin w, whence we have

a N b
= Va® + b Cos 0 = ———— sinw = ——.
P + o4 T b” oy

The absolute value p, which is an essentially positive number, is
determined without ambiguity ; whereas the angle, being given only
by means of its trigonometric functions, is determined except for an
additive multiple of 2 7, which was evident from the definition itself.
Hence every complex quantity may have an infinite number of
angles, forming an arithmetic progression in which the successive
terms differ by 2. In order that two complex quantities be equal,
their absolute values must be equal, and moreover their angles must
differ only by a multiple of 27, and these conditions are sufficient.
The absolute value of a complex quantity z is represented by the
same symbol |2| which is used for the absolute value of a real
quantity.

Let z =a + bi, 2' = a' 4 b'i be two complex numbers and m, m'
the corresponding points; the sum z + 2' is then represented by the
point m", the vertex of the parallelogram constructed upon Om, Om'.
The three sides of the triangle Om m'"

(Fig. 1) are equal respectively to the y mw
absolute values of the quantities z, 2/,.
z 4+ 2'. From this we conclude that the
absolute value of the sum of two quanti-
ties i3 less than or at most equal to the
sum of the absolute values of the two
quantities, and greater than or at least
equal to their difference. Since two Fio. 1
quantities that are negatives of each

other have the same absolute value, the theorem is also true for
the absolute value of a difference. Finally, we see in the same way
that the absolute value of the sum of any number of complex
quantities is at most equal to the sum of their absolute values, the
equality holding only when all the points representing the different
quantities are on the same ray starting from the origin.

If through the point m we draw the two straight lines ma' and
my' parallel to Ox and to Oy, the cobrdinates of the point m'in this
system of axes will be a' —a and &' — & (Fig. 2). The point m'
then represents z' — z in the new system; the absolute value of
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2' — z is equal to the length mm', and the angle of 2' — z is equal to

the angle 6 which the direction mm' makes with mx'. Draw through

O a segment Om, equal and par-

allel to mm'; the extremity m, of

m this segment represents z' — zin

the system of axes Oz, Oy. But

the figure Om'm, is a parallelo-

3 % gram; the point m, is therefore

— the symmetric point to m with

respect to ¢, the middle point
Fic. 2 of om'. '

Finally, let us obtain the for-

mula which gives the absolute value and angle of the product of any

number of factors. Let

2, = p(COS wy + © 8in w,), k=1,2,...,n),

be the factors; the rules for multiplication, together with the addi-
tion formule of trigonometry, give for the product

Y Y’

By R = PPy Pu[cos(“’l to+---+o)

+ isin(wl +ao, 4.+ w,)],
which shows that the absolute value of a product is equal to the
product of the absolute values, and the angle of a product is equal to
the sum of the angles of the factors. From this follows very easily
the well-known formula of De Moivre :

cos me + ¢ sin me = (COS o 4 i8in m)"',
N

which contains in a very condensed form all the trigonometric for-
mule for the multiplication of angles.

The introduction of imaginary symbols has given complete gener-
ality and symmetry to the theory of algebraic equations. It was in
the treatment of equations of only the second degree that such ex-
pressions appeared for the first time. Complex quantities are equally
important in analysis, and we shall now state precisely what mean-
ing is to be attached to the expression a function of a complex
variable.

2. Continuous functions of a complex variable. A complex quantity
2 =x + yi, where « and y are two real and independent variables,
is a complex variable. If we give to the word fumction its most
general meaning, it would be natural to say that every other complex
quantity « whose- value depends upon that of z is a function of z.
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Certain familiar definitions can be extended directly to these func-
tions. Thus, we shall say that a function u = f(z) is continuous if
the absolute value of the difference f(z + k) — f(#) approaches zero
when the absolute value of A approaches zero, that is, if to every
positive number ¢ we can assign another positive number 5 such that

f+1)—r@)|<e
provided that |%| be less than 4.

A series, uo(z)+ “1(z)+ oo u.(z)+ <oy

whose terms are functions of the complex variable z is uniformly
convergent in a region A4 of the plane if to every positive number e
we can assign a positive integer N such that

IR.|=|u.+l(z)+ Upya(R)+ -+ |<¢

for all the values of z in the region A4, provided that » = N. It
can be shown as before (Vol. I, § 31, 2d ed.; §173, 1st ed.) that if a
series is uniformly convergent in a region 4, and if each of its
terms is a continuous function of z in that region, its sum is itself
a continuous function of the variable # in the same region.

Again, a series is uniformly convergent if, for all the values of 2
considered, the absolute value of each term |u,| is less than the
corresponding term v, of a convergent series of real positive con-
stants. The series is then both absolutely and uniformly convergent.

Every continuous function of the complex variable z is of the
form » = P(x, y)+ Q(x, y)¢, where P and Q are real continuous
functions of the two real variables z, . If we were to impose no
other restrictions, the study of functions of a complex variable
would amount simply to a study of a pair of functions of two real
variables, and the use of the symbol ¢ would introduce only illusory
simplifications. In order to make the theory of functions of a com-
plex variable present some analogy with the theory of functions of a
real variable, we shall adopt the methods of Cauchy to find the con-
ditions which the functions P and @ must satisfy in order that the
expression P 4 Qi shall possess the fundamental properties of func-
tions of a real variable to which the processes of the calculus apply.

3. Analytic functions. If f(x) is a function of a real variable z
which has a derivative, the quotient

[+ h)—f@)
R
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approaches f'(x) when % approaches zero. Let us determine in the
same way under what conditions the guotient

Au AP +iAQ
Az Az +iAy

will approach a definite limit when the absolute value of Az approaches
zero, that is, when Az and Ay approach zero independently. It is
eagy to see that this will not be the case if the functions P (z, y) and
Q(=, y) are any functions whatever, for the limit of the quotient
Au/Az depends in general on the ratio Ay/Az, that is, on the way
in which the point representing the value of z + % approaches the
point representing the value of z.

Let us first suppose y constant, and let us give to z a value z + Az
differing but slightly from x; then

Au _ P(x + Az, )—P(x,y)+_iQ(z+Aw,y)—Q(:c,y)'

Az Ax Ax

In order that this quotient have a limit, it is necessary that the
functions P and Q possess partial derivatives with respect to x, and

in that case
lim &% 9P | ;22
Az ox ox
Next suppose = constant, and let us give to y the value y + Ay; we
have
Au_P@y+8y)—P@y)  Q@my+A8y)—Q®y),

Az 1Ay Ay

and in this case the quotient will have for its limit
o0 _ op
oy oy

if the functions P and Q possess partial derivatives with respect to .
In order that the limit of the quotient be the same in the two cases,

it is necessary that
oP 0Q oP 0Q

@ o oy’ dy  Ox

Suppose that the functions P and Q satisfy these conditions, and
that the partial derivatives oP/dz, 0P /0y, 0Q/ox, 9Q /0y are con-
tinuous functions. If we give to # and y any increments whatever,
Az, Ay, we can write

AP=P(z + Az, y + Ay) — P(z + Az, y) + P (2 + Az, y) — P(z, 9)
. =AyP,(z + Az, y + 0Ay) + AzP, (x + 6'Ax, y)
=Az[P,(z,y)+ ] + Ay[ Py (2, 9) + ¢ ],
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where 6 and #' are positive numbers less than unity; and in the
same way )
AQ=Az[Q(,y) + ]+ Ay[Q (=, 9) + 4],

where ¢, ¢, ¢, ¢ approach zero with Ax and Ay. The difference
Au = AP + {AQ can be written by means of the conditions (1) in

the form,

m aef® 1 29) 4 0y (20 2P
Au—-Am(aw+tam>+Ay 8x+1'3:c + 9Az + 9'Ay

. oP  .0Q
=(Azr + ’&A:I/)(‘a; +1 'a;) + nAz + 9'Ay,
where 7 and 7' are infinitesimals. We have, then,

!
Au_ 0P, ;0Q  whw+ Ay,
Az Ox ox Az 4 iAy
If |9| and |y'| are smaller than a number «, the absolute value of the
complementary term is less than 2a. This term will therefore ap-
proach zero when Az and Ay approach zero, and we shall have

. Au_oP  ,0Q
lim il ™ + 1 P
The conditions (1) are then necessary and sufficient in order that the
quotient Ax/Az have a unique limit for each value of 2, provided that
the partial derivatives of the functions P and Q be continuous. The
function » is then said to be an analytic function * of the variable z,
and if we represent it by f(z), the derivative f'(2) is equal to any
one of the following equivalent expressions :

_op, oa_se_gp_op_op_da, 20
@ fO=gt i %% % i

It is important to notice that neither of the pair of functions
P(z, y), Q(x, y) can be taken arbitrarily. In fact, if P and Q have
derivatives of the second order, and if we differentiate the first of
the relations (1) with respect to &, and the second with respect to y,
we have, adding the two resulting equations,

&#P PP

AP=5x—s+5'y;—0.

* Cadchy made frequent use of the term monogéne, the equivalent of which, mono-
genic, is sometimes used in English. The term synectique is also sometimes used in
French. We shall use by preference the term analytic, and it will be shown later
that this definition agrees with the one which has already been given (I, § 197,
2d ed.; §191, 1st ed.)
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We can show in the same way that AQ=0. The two functions
P(x, y), Q(x, y) must therefore be a pair of solutions of Laplace’s
equation.

Conversely, any solution of Laplace’s equation may be taken for
one of the functions P or Q. For example, let P(x, y) be a solution
of that equation; the two equations (1), where Q is regarded as an
unknown function, are compatible, and the expression

. (=9 oP oP
u=P(w,'y)+’[f (a W=7y >+C]’
e y

»
which is determined except for an arbitrary constant C, is an analytic
function whose real part is P (x, y).

It follows that the study of analytic functions of a complex vari-
able # amounts essentially to the study of a pair of functions
P(x, y), Q(x, y) of two real variables x and y that satisfy the
relations (1). It would be possible to develop the whole theory with-
out making use of the symbol i.*

‘We shall continue, however, to employ the notation of Cauchy, but
it should be noticed that there is no essential difference between the
two methods. Every theorem established for an analytic function
f(2) can be expressed immediately as an equivalent theorem relat-
ing to the pair of functions P and @, and conversely.

Ezamples. The function u = 2 — y2 4 2zyi is an analytic function, for it
satisfies the equations (1), and its derivative is 22 + 2yi = 22; in fact, the func-
tion is simply (z 4 ¥i)2 = 23. On the other hand, the expression v = £ — yi is not
an analytic function, for we have

— &

Av _Azx—ilAy Az
Az Az+sz .Ay'
1 A

+1Az

and it is obvious that the limit of the quotient Av/Az depends upon the limit of
the quotient Ay/Azx.

If we put z = p cosw, y = psinw, and apply the formula for the change of
independent variables (I § 63, 2d ed.; § 38, 1st ed., Ex. II), the relations
(1) become
® 29, 29 or

w op ow op

and the derivative takes the form

@)= ( Q)(cosw—v,smw) 3

* This is the point of view taken by the German mathematicians who follow
Riemann.
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It is easily seen on applying these formula that the function
2™ = p™ (cos mw + i 8in mw)
is an analytic function of z whose derivative is equal to

mp™—1(cos mw + i 8in mw) (co8 w — 1 8in w) = mzm -1,

4. Functions analytic throughout a region. The preceding general
statements are still somewhat vague, for so far nothing has been
said about the limits between which 2 may vary.

A portion 4 of the plane is said to be connected, or to consist of
a single piece, when it is possible to join any two points whatever
of that portion by a continuous path which lies entirely in that
portion of the plane. A connected portion situated entirely at a
finite distance can be bounded by one or several closed curves,
among which there is always one closed curve which forms the
exterior boundary. A portion of the plane extending to infinity may
be composed of all the points exterior to one or more closed curves;
it may also be limited by curves having infinite branches. We shall
employ the term region to denote a connected portion of the plane.

A function f(z) of the complex variable z is said to be analytic *
in a connected region A of the plane if it satisfies the following
conditions :

1) To every point z of 4 corresponds a definite value of f(z);

2) f(2) is a continuous function of # when the point z varies in
4, that is, when the absolute value of f(z + 2)— f(2) approaches
zero with the absolute value of 4 ;

3) At every point z of 4, f(2) has a uniquely determined deriva-
tive f'(2); that is, to every point z corresponds a complex number
J'(2) such that the absolute value of the difference

LEH NSO _ )

approaches zero when |%| approaches zero. Given any positive num-
ber ¢, another positive number 7 can be found such that

® If(z+ 1) = f(2)— hf'()| = ¢ | 4|
if |A| is less than .

For the moment we shall not make any hypothesis as to the values
of f(z) on the curves which limit 4. When we say that a function
is analytic in the interior of a region 4 bounded by a closed curve T

* The adjective holomorphic is also often used. — TRANS.
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and on the boundary curve itself, we shall mean by this that f(z) is
analytic in a region A containing the boundary curve I' and the
region A.

A function f(z) need not necessarily be analytic throughout its
region of existence. It may have, in general, singular points, which
may be of very varied types. It would be out of place at this point
to make a classification of these singular points, the very nature of
which will appear as we proceed with the study of functions which
we are now commencing.

5. Rational functions. Since the rules which give the derivative of
a sum, of a product, and of a quotient are logical consequences of the
definition of a derivative, they apply also to functions of a complex
variable. The same is true of the rule for the derivative of a func-
tion of a function. Let u = f(Z) be an analytic function of the
complex variable Z ; if we substitute for Z another analytic function
¢ () of another complex variable 2, » is still an analytic function of
the variable z. We have, in fact,

Au _ Au AZ,

Az Az Az’
when |Az| approaches zero, |AZ| approaches zero, and each of the

quotients Au/AZ, AZ /Az approaches a definite limit. Therefore the
quotient Au/Az itself approaches a limit:

A :
tim 2% = £(2)$'(2).
'We have already seen (§ 3) that the function

o =(@ + yi)"

is an analytic function of z, and that its derivative is mz™-1. This
can be shown directly as in the case of real variables. In fact, the
binomial formula, which results simply from the properties of multi-
plication, obviously can be extended in the same way to complex
quantities. Therefore we can write

-1
(z+h)"‘=z”‘+%z’""h+ﬂ%2—2z“‘zh’+ ceey

where m is a positive integer; and from this follows

MZ"_—”_”' =ma-1 4} ["_‘ﬁ""_—ll 2= 44 ],,m-fl].

h 1.2
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It is clear that the right-hand side has mz™-! for its limit when the
absolute value of % approaches zero.

It follows that any polynomial with constant coefficients is an
analytic function throughout the whole plane. A rational function
(that is, the quotient of two polynomials P(z), Q(2), which we may
as well suppose prime to each other) is also in general an analytic
function, but it has a certain number of singular points, the roots of
the equation Q(2)= 0. It is analytic in every region of the plane
which does not include any of these points.

6. Certain irrational functions. When a point # describes a continu-
ous curve, the coérdinates « and y, as well as the absolute value p,
vary in a continuous manner, and the same is also true of the angle,

Y v

F16.3a Fi16.3b

provided the curve described does not pass through the origin. If
the point z describes a closed curve, z, y, and p return to their
original values, but for the angle w this is not always the case. If
the origin is outside the region inclosed by the closed curve (Fig. 3 a),
it is evident that the angle will return to its original value; but this
is no longer the case if the point # describes a curve such as M NPM,
or MnpgM, (Fig. 35). In the first case the angle takes on its original
value increased by 2, and in the second case it takes on its original
value increased by 4. It is clear that 2 can be made to describe
closed curves such that, if we follow the continuous variation of the
angle along any one of them, the final value assumed by » will differ
from the initial value by 2 nar, where n is an arbitrary integer, posi-
tive or negative. In general, when z describes a closed curve, the
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angle of z — & returns to it3 initial value if the point « lies outside

of the region bounded by that closed curve, but the curve deseribed

by z can always be chosen so that the final value assumed by the

angle of z — a will be equal to the initial value increased by 2ax-.
Let us now consider the equation

) =z

where m i3 a positive integer. To every value of z, exeept z =0,

there are m distinct values of » which satisfy this equation and
therefore correspond to the given value of 2 In fact, if we put

z2=p(co8 e+ isinw), u=r(cosd+ ising),
the relation (5) becomes equivalent to the following pair:
™=p, me = e + 2km.

From the first we have r = p'™, which means that r is the mth arith-
metic root of the positive number p; from the second we have

¢=(m + 2k1r)/m.

To obtain all the distinct values of » we have only to give to the
arbitrary integer k the m consecutive integral values 0,1,2,---,m—1;
in this way we obtain expressions for the m roots of the equation (5)

1 o
6) "= p" [cos (=E2ET) 4 i sin (%‘3)],
k=0,1,2,---,m —1).

It is usual to represent by 2™ any one of these roots.

When the variable z describes a continuous curve, each of these
roots itself varies in a continuous manner. If z describes a closed
curve to which the origin is exterior, the angle w comes back to its
original value, and each of the roots ug, u, ---, u,_, describes a
closed curve (Fig. 4a). But if the point z describes the curve
M NPM, (Fig. 3 b), w changes to w + 2, and the final value of the root
u; is equal to the initial value of the root w«,,,. Hence the arcs
described by the different roots form a single closed curve (Fig. 4 ).

These m roots therefore undergo a cyclic permutation when the
variable z describes in the positive direction any closed curve with-
out double points that incloses the origin. It is clear that by making
2 describe a suitable closed path, any one of the roots, starting from
the initial value u, for example, can be made to take on for its final
value the value of any of the other roots. If we wish to maintain
continuity, we must then consider these m roots of the equation (5)
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not as so many distinet functions of 2, but as m distinct dranches of the
same function. The point z = 0, about which the permutation of the
m values of u takes place, is called a critical point or a branch point.

Y
Us

U, u,y

Y
o /f(
O | x ! |

Fic.4a Fic. 4b

In order to consider the m values of u as distinct functions of 2,
it will be necessary to disrupt the continuity of these roots along a
line proceeding from the origin to infinity. We can represent this
break in the continuity very concretely as follows: imagine that in
the plane of 2, which we may regard as a thin sheet, a cut is made
along a ray extending from the origin to infinity, for example, along
the ray OL (Fig. 5), and that then the two edges of the cut are
slightly separated so that there is no path along which the variable
# can move directly from one edge to the other. Under these circum-
stances no closed path whatever can inclose the origin; hence to
each value of z corresponds a completely determined value %; of the
m roots, which we can obtain by tak-
ing for the angle o the value included dy
between @ and @ — 2. But it must L
be noticed that the values of u; at two
points m, m' on opposite sides of the m, “
cut do not approach the same limit as * { N -
the points approach the same point of . 0 7
the cut. The limit of the value of u;
at the point m'is equal to the limit of
the value of u; at the point m, multi- Fic. 5
plied by [cos (2 7 /m) + isin (2 7/m)].

Each of the roots of the equation (5) is an analytic function. Let
u, be one of the roots corresponding to a given value z,; to a value
of z near z, corresponds a value of u near u, Instead of trying to
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find the limit of the quotient (v — u;)/(2 — ), we can determine the
limit of its reciprocal

m m
2—2z uU"—ug

u—u, uU—u,
and that limit is equal to mu™~*. We have, then, for the derivative
of u 11 1w

In order to be sure of having the value of the derivative which corre-
sponds to the root considered, it is better to make use of the expres-

sion (1/m) (u/z).

In the interior of a closed curve not containing the origin each
of the determinations of ¥z is an analytic function. The equation
u™ = A (2 — a) has also m roots, which permute themselves cyclically
about the critical point z = a.

Let us consider now the equation

) wW=A(z—e)(z—e)- - (x—¢),

where ¢, ¢, - - -, ¢, are n distinct quantities. We shall denote by
the same letters the points which represent these » quantities. Let

us set A = R(cos @ + isin a),
z_gk=p,;(008mk+’55in“’k): (k=1,2,-..-mn),
° = r(cos 0 + i sin 0);

where o, represents the angle which the straight-line segment e
makes with the direction Ox. From the equation (7) it follows that

73=Rplp2---p”, 20=a+ml+--'+w”+2m‘ﬂ';
hence this equation has two roots that are the negatives of each other,

( et ot e +a
u1=(Rp1P,-..pn)*[cos( 9 2 m)

+«»l+-~+«».)],
2

e+o,+---Fo,+27
uy, = (Rp;py -+ Pu)}[cos (ﬁ ' 2 )

+isin<“+“’l+"2'+“’n+2”'>].

+ i sin (a:
® 9
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‘When the variable 2z describes a closed curve C containing within
it p of the points e, e, ---, ¢,, p of the angles w, w, - -, , will
increase by 27r; the angle of w, and that of u, will therefore in-
crease by pir. If p is even, the two roots return to their initial
values; but if p is odd, they are permuted. In particular, if the
curve incloses a single point e;, the two roots will be permuted. The
n points ¢; are Lranch points. In order that the two roots «, and u,
shall be functions of z that are always uniquely determined, it will
suffice to make a system of cuts such that any closed curve whatever
will always contain an even number of critical points. We might,
for example, make cuts along rays proceeding from each of the
points ¢, to infinity and not cutting each other. But there are many
other possible arrangements. If, for example, there are four criti-
cal points e, e, ¢, ¢,, a cut could be made along the segment of a
straight line e¢,, and a second along the segment ¢.e,.

7. Single-valued and multiple-valued functions. The simple exam-
ples which we have just treated bring to light a very important fact.
The value of a function f() of the variable 2 does not always depend
entirely upon the value of 2 alone, but it may also depend in a cer-
tain measure upon the succession of values assumed by the variable
z in passing from the initial value to the actual value in question,
or, in other words, upon the path followed by the variable z.

Let us return, for example, to the function » = V2. If we pass
from the point M, to the point M by the two paths M NM and M PM
(Fig. 3b), starting in each case with the same initial value for «, we
shall not obtain at M the same value for u, for the two values
obtained for the angle of 2 will differ by 2. We are thus led to
introduce a new distinction.

An analytic function f(2) is said to be single-valued * in a region
A when all the paths in 4 which go from a point 2, to any other point
whatever z lead to the same final value for f(2). When, however,
the final value of f(z) is not the same for all possible paths in 4,
the function is said to be multiple-valued.t A function that is
analytic at every point of a region A4 is necessarily single-valued in
that region. In general, in order that a function f(2) be single-
valued in a given region, it is necessary and sufficient that the funo-
tion return to its original value when the variable makes a circuit of

* In French the term uniforme or the term monodrome is used. — TRANS.
t In French the term multiforme is used. — TRANS.
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any closed path whatever. If, in fact, in going from the fpoint A to
the point B by the two paths AMB (Fig. 6) and ANB, w'e.zp arrive in
the two cases at the point B with the same determinatioh of f(2), it
is obvious that, when the variable is made to describg the closed

curve AMBNA, we shall return, to the point

P A with the initial value of f(z).
Conversely, let us suppose’that, the varia-
4 o1e ble having described the path AMBNA, we
F16.6 return to the point of departure with the

initial value w,; and let «, be the value of the
function at the point B after # has described the path AMB. When
z describes the path BN 4, the function starts with the value », and
arrives at the value u,; then, conversely, the path ANB will lead
from the value u, to the value u,, that is, to the same value as the
path AMB.

It should be noticed that a function which is not single-valued in a
region may yet have no critical points in that region. Consider, for
example, the portion of the plane included between two concentric eir-
cles C, C' having the origin for center. The function » = 2™ has no
critical point in that region ; still it is not single-valued in that region,
for if # is made to describe a concentric circle between C and ', the
function 2™ will be multiplied by cos (2 7 /m) + i sin (2 7 /m).

II. POWER SERIES WITH COMPLEX TERMS. ELEMENTARY
TRANSCENDENTAL FUNCTIONS

8. Circle of convergence. The reasoning employed in the study of
power series (Vol. I, Chap. IX) will apply to power series with
complex terms; we have only to replace in the reasoning the phrase
“absolute value of a real quantity” by the corresponding one,
“absolute value of a complex quantity.” We shall recall briefly the
theorems and results stated there. Let

©) a,+azt+al+.--+a2r4...
be a power series in which the coefficients and the variable may have
any imaginary values whatever. Let us also consider the series of
absolute values,

10) A+ Ar+ AP+ A"+,

where A;=|a;|,r=|z|. We can prove (I, § 181, 2d ed.; §177,
1st ed.) the existence of a positive number R such that the series
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(10) is convergent for every value of » < R, and divergent for every
value of »> R. The number R is equal to the reciprocal of the
greatest limit of the terms of the sequence

n) Y}

A

1

and, as particular cases, it may be zero or infinite.

From these properties of the number R it follows at once that the
series (9) is absolutely convergent when the absolute value of z is
less than R. It cannot be convergent for a value z, of z whose abso-
lute value is greater than R, for the series of absolute values (10)
would then be convergent for values of » gredter than R (I, § 181,
2d ed.; §177, 1st ed.). If, with the origin as center, we describe in
the plane of the variable z a circle C of radius R (Fig. 7), the power
series (9) is absolutely convergent for every value of z inside the
circle C, and divergent for every value of 2 outside; for this reason
the circle is called the circle of convergence. In a point of the circle
itself the series may be convergent or divergent, according to the
particular series.*

In the interior of a circle C' concentric with the first, and with a
radius R' less than R, the series (9) is uniformly convergent. For
at every point within C' we have evidently

|12t 4 o @y 2P <A R e A, R,

and it is possible to choose the integer n so large that the second
member will be less than any given positive number ¢, whatever p
may be. From this we conclude that the sum of the series (9) is a
continuous function f'(z) of the variable z at every point within the
circle of convergence (§ 2).

By differentiating the series (9) repeatedly, we obtain an unlimited
number of power series, f,(2), f;(?), : -+, Ju(?), - - -, which have the
same circle of convergence as the first (I, § 183, 2d ed.; § 179,
1st ed.). We prove in the same way as in §184, 2d ed., that f(2)
is the derivative of f(z), and in general that f,(z) is the derivative

* Let f(z) = Zan 2* be a power series whose radius of convergence R is equal to 1.
If the coefficients ay, a,, a3, -+, are positive decreasing numbers such that an ap-
proaches zero when = increases indefinitely, the series is convergent in every point
of the circle of convergence, except perhaps for z=1. In fact, the series Z2», where
| z| =1, is indeterminate except for z=1, for the absolute value of the sum of the first
7 terms is less than 2/|1— 2| ; it will suffice, then, to apply the reasoning of § 166, Vol. I,
based on the generalized lemma of Abel. Inthe same way the series @y~ a;z+ag22—-- -,
which is obtained from the preceding by replacing z by — 2, is convergent at all the
points of the circle | 2| =1, except perhaps for 2=~1. (Cf. I, §166.)
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of f,_(z). Every power series represents therefore an analytic func-
tion in the interior of its circle of convergence. There is an infinite

sequence of derivatives of the
ud given function, and all of them
are analytic functions in the
same circle. Given a point z

zth inside the circle C, let us

z draw a circle ¢ tangent to

e the circle C in the interior,

0 @ with the given point as cen-

ter, and then let us take a
point 2 + % inside ¢; if » and
p are the absolute values of
z and A, we have r+p<R
(Fig. 7). The sum f(z + &)
Fig. 7 of the series is equal to the
sum of the double series

a+az+ar +--- a2+
+ah+2az2h+ - +na,2""th 4.

(11) +a,k’ +--'+%2a,z“”h’+-~-

et i e e

when we sum by columns. But this series is absolutely convergent,
for if we replace each term by its absolute value, we shall have a
double series of positive terms whose sum is

A +A(r+p)+ - +A4,(r+p)*+ .

We can therefore sum the double series (11) by rows, and we have
then, for every point 2 + % inside the circle ¢, the relation

(12) fle+B)=FE+ M@+ mA@+ -+ LA+

The series of the second member is surely convergent so long as
the absolute value of 4 is less than R — r, but it may be convergent
in a larger circle. Since the functions f,(z), f,(2), - - -, fu(2), - - - are
equal to the successive derivatives of f(z), the formula (12) is
identical with the Taylor development.

If the series (9) is convergent at a point Z of the circle of con-
vergence, the sum f(Z) of the series is the limit approached by the
sum f(x) when the point # approaches the point Z along a radius

. A S - —
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which terminates in that point. We prove this just as in Volume I
(§182, 2d ed.; §178, 1st ed.), by putting 2 = 6Z and letting 6 in-
crease from 0 to 1. The theorem is still true when 2, remaining inside
the circle, approaches Z along a curve which is not tangent at Z to
the circle of convergence.*

When the radius R is infinite, the circle of convergence includes
the whole plane, and the function f(z) is analytic for every value
of 2. We say that this is an integral function; the study of tran-
scendental functions of this kind is one of the most important
objects of Analysis.t We shall study in the following paragraphs
the classic elementary transcendental functions.

9. Double series. Given a power series (9) with any coefficients whatever, we
shall say again that a second power series Za, 2", whose coefficients are all real
and positive, dominates the first series if for every value of n we have |ax|= an.
All the consequences deduced by means of dominant functions (I, §§ 186-189,
2d ed.; §§ 181-184, 1st ed.) follow without modification in the case of complex
variables. We shall now give another application of this theory.

Let

(13 L@+ L@ +f@) + -+ @)+ -

be a series of which each term is itself the sum of a power series that converges

in a circle of radius equal to or greater than the number R > 0,
fi@) =+ anz+ -+ @izt + -

Suppose each term of the series (13) replaced by its development according to
powers of z; we obtain thus a double series in which each column is formed by
the development of a function f;(z). When that series is absolutely convergent
for a value of z of absolute value p, that is, when the double series

gglm-lp"

is convergent, we can sum the first double series by rows for every value of z
whose absolute value does not exceed p. We obtain thus the development of
the sum F(2) of the series (18) in powers of z,

FRy=b, +bz+ ++-+bazr+ ...,
b=+ Gt -+ Wiy + -, (n=0,1,2,---).
This proof is essentially the same as that for the development of f(z + %) in
powers of A. :
Suppose, for example, that the series f;(z) has a dominant function of the
form M;r/(r — z), and that the series ZM; is itself convergent. In the double

* See PICARD, Traité d’Analyse, Vol. II, p. 73.

t The class of integral functions includes polynomials as a special case. If there
are an infinite number of terms in the development, we shall use the expression
integral transcendental function. — TRANS.
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series the absolute value of the general term is less than M;|z|»/m. If |z]| <7,
the series is absolutely convergent, for the series of the absolute values is
convergent and its sum is less than r=My/(r — |z|).

10. Development of an infinite product in power series. Let
F@) =1+ u) (14 ) (L4 ) oo

be an infinite product where each of the functions u; is a continuous function
of the complex variable z in the region D. If the series = Uy, where U; = |u;|,
is uniformly convergent in the region, F(2) is equal to the sum of a series that
is uniformly convergent in .D, and therefore represents a continuous function
(I, §§ 175, 176, 2d ed.). When the functions u; are analytic functions of 2, it fol-
lows, from a general theorem which will be demonstrated later (§ 89), that the
same is true of F(2).
For example, the infinite product

F(z):z(l.__zz)(l_f';)...(1_2)....

represents a function of z analytic throughout the entire plane, for the series
Z|z|3/n? is uniformly convergent within any closed curve whatever. This
product is zero for 2 =0, + 1, + 2, ... and for these values only.

We can prove directly that the product F(z) can be developed in a power
series when each of the functions u; can be developed in a power series

Uy =ap + az+ -+ tawmt + .-y (i=0,1,2,...),
such that the double series
53 louie
i =

is convergent for a suitably chosen positive value of r,
Let us set, as in Volume I (§ 174, 2d ed.),

to=1+u, Ou=(1+%)1+u) 1+ ts1)thn
It is sufficient to show that the sum of the series
(14) Vot 04 oot eee,

which is equal to the infinite product F'(z), can be developed in a power series.
Now, if we set
;= |ap|+ |aa|z+ -+ |am|n 4 -,

it is clear that the product
vh=(1+u) (A +up) - 1+ U _y)u,

is a dominant function for v,. It is therefore possible to arrange the series (14)
according to powers of z if the following auxiliary series

(15) AR A SRR A A A

can be 8o arranged.
If we develop each term of this last series in power series, we obtain a
double series with positive coefficients, and it is sufficient for our purpose to
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prove that the double series converges when 2z is replaced by r. Indicating by
U, and V the values of the functions u, and v, for z = r, we have

Va=(+ U1+ Ty --- 1+ Uy _) Uy,
and therefore
Vo Vit o+ Vi=(1+ Up -1+ U)),
or, Wny
V4 Vid oo +V,<elot 40,

When n increases indefinitely, the sum U + - .. 4 U, approaches a limit, since
the series ZU,, is supposed to be convergent. The double series (165) is then
absolutely convergent if |2|=r; the double series obtained by the development
of each term v, of the series (14) is then a fortiori absolutely convergent within
the circle C of radius r, and we can arrange it according to integral powers of z.

The coefficient b, of 22 in the development of F(z)is equal, from the above, to the
limit, as n becomes infinite, of the coefficient byx0f 2» in the sum vg+ v+« - - 4 vy,
or, what amounts to the same thing, in the development of the product

Po= (14 ug) (14 u) -+ (14 ).

Hence this coefficient can be obtained by applying to infinite products the
ordinary rule which gives the coefficient of a power of z in the product of a
finite number of polynomials. For example, the infinite product

F@)=(1+2)1+2)1+) - (1+2)...

can be developed according to powers of z if |2| <1. Any power of z whatever,
say z¥, will appear in the development with the coefficient unity, for any posi-
tive integer N can be written in one and only one way in the form of a sum of
powers of 2. We have, then, if |2| <1, .

1

(16) Fey=l+z+2'+ -t 22t o=1—,

which can also be very easily obtained by means of the identity

1—23"
1—-2

=(1+2)(1+2)A+28-.- Q4277

11. The exponential function. The arithmetic definition of the ex-
ponential function evidently has no meaning when the exponent is
a complex number. In order to generalize the definition, it will be
necessary to start with some property which is adapted to an exten-
sion to the case of the complex variable. We shall start with the
property expressed by the functional relation

a* X @& = a*+¥,

Let us consider the question of determining a power series f (), con-
vergent in a circle of radius R, such that

@an S +2)=r()f ()
when the absolute values of z, 2!, z 4 2' are less than R, which will
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surely be the case if |z| and |2'| are less than R/2. If we put z'=0
in the above equation, it becomes

f(2) =12 f(0).
Hence we must have f(0) =1, and we shall write the desired series

f@®)= 1+—z+ ’z’+ +:—';z"+---

Let us replace successively in that series # by A¢, then by A", where
A and A’ are two constants and ¢ an auxiliary variable; and let us
then multiply the resulting series. This gives

SO SN =1+ T A+ A)E+- -

+ K(a,,k" +'fa,._lalx'-lx'+ oo a,,,\">+ eeel

nl
On the other hand, we have

FOLHN)=1+FA+N)E+ o+ QAo+

The equality f(At + A't) = f(At) £(A't) is to hold for all values of
A, A, ¢ such that || <1, |A'| <1, [¢| < R/2. The two series must
then be identical, that is, we must have

a(A+ A = e\ + 7 T %10\

ngn—ll

t12

a,,_,a,l"")g" + M + anh'“,

and from this we can deduce the equations
Ay = Ay _1 @, Ay =qy, _4 0y, R )
all of which can be expressed in the single condition
(18) Bp g = Ay,
where p and ¢ are any two positive integers whatever. In order to
find the general solution, let us suppose ¢ =1, and let us put
successively p=1,p=2,p= ; from this we find a; = a}, then

a,=aa =a}, .., and finally @, = a}. The expressions thus obtained
sat\isfy t.he condition (1R), and the series sought is of the form

» ~)8 2\
fw)=1+‘.'i:+ﬁ:§".‘!l+...+g%)—+....
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This series is convergent in the whole plane, and the relation

Sz +2) =f() f()

is true for all values of 2z and 2'.
The above series depends upon an arbitrary constant a,. Taking
a, =1, we shall set
2

z 2"
e’=1+i+§-i+~--+m+---,

so that the general solution of the given problem is e%*. The inte-
gral function e* coincides with the exponential function e® studied in
algebra when z is real, and it always satisfies the relation
ety = et X o
whatever z and z' may be. The derivative of ¢ is equal to the func-
tion itself. Since we may write by the addition formula
etHri= ¢V,

in order to calculate ¢ when 2 has an imaginary value z 4 yi, it is
sufficient to know how to calculate . Now the development of ¥
can be written, grouping together terms of the same kind,
1L ¥ (1L, 7

r=l-ntya— il 3!+5!"">
We recognize in the second member the developments of cos y and
of sin y, and consequently, if y is real,

e =cosy + i 8iny.
Replacing e by this expression in the preceding formula, we have
A9 e ¥ = ¢*(cos y + 4 sin y);

the function e**V' has ¢* for its absolute value and y for its angle.
This formula makes evident an important property of e*; if z
changes to 2z + 2 i, x is not changed while y is increased by 2 ar,
but these changes do not alter the value of the second member of
the formnla (19). We have, then,

el+2l’u' i 6’;
that is, the exponential function ¢* has the period 2 .
Let us consider now the solution of the equation e* = 4, where 4
is any complex quantity whatever different from zero. Let p and o
be the absolute value and the angle of 4 ; we have, then,

e+ = ¢%(cos y + 1 8in y) = p(cos w + ¢ sin w),
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fromn which it follows that
& =p, Y=o+ 2kn.

From the first relation we find » = log p, where the abbreviation log
shall always be used for the natural logarithm of a real positive
number. On the other hand, y is determined except for a multiple
of 27, I A is zero, the equation ¢* = 0 leads to an impossibility.
Henee the equation o = A, where A is not zero, has an infinite num-
ber of roots given by the expression log p + i(w + 2 kw); the equation
¢ 2 0 has no roots, real or imaginary.

Note, We might also define ¢* as the limit approached by the poly-
nomial (1 4+ #/m)™ when m becomes infinite. The method used in
algobra to prove that the limit of this polynomial is the series ¢* can
ho used even when 2 is complex.

13. Trigonometric functions. In order to define sinz and cos z
whon # is complex, we shall extend directly to complex values the
sorios established for these functions when the variable is real.
Thus wo shall have

. r 2 2 .
) smx=i-—é—!+5—l_...’
(20) o
csg=1——~4+——...
2! 4!

Thoso are intogral transcendental functions which have all the
proportios of the trigonometric functions. Thus we see from the
formulw (20) that the derivative of sin # is cos 2, that the derivative
of vos # {8 — sin &, and that sin » becomes — sin 2, while cos z does
nob ohange at all when # is changed to — =.

Those now transcendental functions can be brought into very close
relation with the exponential function. In fact, if we write the ex-
pnmion of ¥, collecting separately the terms with and without the
factor & o

=t N
‘.*‘:*‘Ii*“”*'(I‘s_!*”')’
wo find that that equality can be written, by (20), in the form

oY =cosz 4 ¢sing,

PLFTS

Changing # o — 2, we have again
e V= sz —(sing,

and fromn these two relations we derive
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I R e

(21) csz=—(0—) sinz=-—pr—-
These are the well-known formule of Euler which express the
trigonometric functions in terms of the exponential function. They
show plainly the periodicity of these functions, for the right-hand
sides do not change when we replace z by z + 2. Squaring and
adding them, we have

cos®z 4 sin?z = 1.
Let us take again the addition formula ¢®*+**)¢ = ¢* ¢, or

cos(z + 2') + isin (z + 2')
= (cos z + ¢ sin 2) (cos ' + ¢ 8in 2')
= €08 2 c08 2’ — sin 2 sin 2' 4 ¢(sin 2 cos 2' + sin 2’ cos 2),
and let us change 2 to — 2, 2’ to — 2'. It then becomes
08 (z + z") — isin (2 + 2')
= €08 2 cos 2’ — sin 2 sin 2’ — ¢(sin 2 cos #' 4 sin 2’ cos 2),
and from these two formule we derive
cos (z 4 2") = cos z cos 2' — sin 2 sin 2
sin (# + 2") = sin 2 cos 2' + sin z cos #'.
The addition formule and therefore all their consequences apply for
complex values of the independent variables. Let us determine, for

example, the real part and the coefficient of ¢ in cos (= + y¢) and
sin (x + yi). We have first, by Euler’s formulz,

eVt ' . e V—¢
2 - = coshy, sin yi = —p—

cos yi = =14sinhy;

whence, by the addition formule,

cos (x + yt) = cos & cos yi — sin z sin yi = cos « cosh y — ¢ sin x sinh g,

sin (z 4+ yt) = sin x cos yi + cos x sin yi = sin x cosh y + ¢ cos = sinh y.
The other trigonometric functions can be expressed by means of

the preceding. For example,

sing _1e%— e“‘

cosz tes4 e

which may be written in the form

_le%-1
R=Tan +1
The right-hand side is a rational function of ¢**; the period of the
tangent is therefore or.

tanz =
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13. Logarithms. Given a complex quantity 2, different from zero,
we have already seen (§ 11) that the equation ¢* = z has an infinite
number of roots. Let » = = + yi, and let p and » denote the absolute
value and angle of z, respectively. Then we must have

€* = p, =¢.;+2k1r

Any one of these roots is called the logarithm of z and w1]1 be
denoted by Log (z). We can write, then,

Log (2) =log p + ¢ (w + 2 k),

the symbol log being reserved for the ordinary natural, or Napierian,
logarithm of a real positive number.

Every quantity, real or complex, different from zero, has an
infinite number of logarithms, which form an arithmetic progres-
sion whose consecutive terms differ by 2 #4. In particular, if z is a
real positive number x, we have w = 0. Taking & = 0, we find again
the ordinary logarithm; but there are also an infinite number of
complex values for the logarithm, of the form logz + 2 kwi. If 2 is
real and negative, we can take o = 7; hence all the determinations
of the logarithm are imaginary.

Let 2' be another imaginary quantity with the absolute value p'
and the angle o'. 'We have

Log(2)=logp' + i(w' + 2 k'm).
Adding the two logarithms, we obtain
Log(z) + Log(z'): logpp' + i[m + o' 4 2(/0 + k') 1r].

Since pp' is equal to the absolute value of 22/, and v + ' is equal to
its angle, this formula can be written in the form

Log () + Log (2") = Log (22"),

which shows that, when we add any one whatever of the values of
Log (2) to any one whatever of the values of Log(2'), the sum is one
of the determinations of Log (22").

Let us suppose now that the variable z describes in its plane any
continuous curve whatever not passing through the origin; along
this curve p and o vary continuously, and the same thing is true of
the different determinations of the logarithm. But two quite distinct
cases may present themselves when the variable z traces a closed
curve. When 2 starts from a point 2, and returns to that point after
having described a closed curve not containing the origin within it,
the angle w of 2 takes on again its original value w, and the different




1, § 13] POWER SERIES WITH COMPLEX TERMS 29

determinations of the logarithm come back to their initial values. If
we represent each value of the logarithm by a point, each of these
points traces out a closed curve. On the contrary, if the variable 2
describes a closed curve such as the curve M NMP (Fig. 35), the
angle increases by 2, and each determination of the logarithm
returns to its initial value increased by 2ri¢. In general, when 2
describes any closed curve whatever, the final value of the logarithm
is equal to its initial value increased by 2 ki, where k£ denotes a
positive or negative integer which gives the number of revolutions
and the direction through which the radius vector joining the origin
to the point z has turned. It is, then, impossible to consider the dif-
ferent determinations of Log(z) as so many distinct functions of 2
if we do not place any restriction on the variation of that variable,
since we can pass continuously from one to the other. They are so
many branches of the same function, which are permuted among
themselves about the critical point 2 =0.

In the interior of a region which is bounded by a single closed curve
and which does not contain the origin, each of the determinations of
Log(2) is a continuous single-valued function of 2. To show that it
is an analytic function it is sufficient to show that it possesses a
unique derivative at each point. Let z and 2, be two neighboring
values of the variable, and Log (z), Log(2,) the corresponding values
of the chosen determination of the logarithm. When z, approaches
%, the absolute value of Log (z,) — Log (z) approaches zero. Let us put
Log () = u, Log(2,) = u,; then

Log(z)—TLog(z) _ wm—u

2 —z e — e

When u, approaches u, the quotient

e — e*

ul—u

approaches as its limit the derivative of e¢*; that is, e* or 2. Hence
the logarithm has a uniquely determined derivative at each point,
and that derivative is equal to 1/z. In general, Log(z — @) has an
infinite number of determinations which permute themselves about
the critical point z = a, and its derivative is 1/(z — a).

The function 2™, where m is any number whatever, real or complex,
is defined by means of the equality

™= em Log(:)‘
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Unless m be a real rational number, this function possesses, just as

does the logarithm, an infinite number of determinations, which per-

mute themselves when the variable turns about the point 2 = 0. Itis

sufficient to make an infinite cut along a ray from the origin in °

order to make each branch ananalytic function in the whole plane.
The derivative is given by the expression

T omtos = mz™-1,
z

and it is clear that we ought to take the same value for the angle
of z in the function and in its derivative.

14. Inverse functions: arcsinz, arctanz. The inverse functions
of sin z, cos z, tan z are defined in a similar way. Thus, the function
u = arc 8in z is defined by the equation

, z=sinu.
In order to solve this equation for u, we write
e —e % %1
’

T T 2w
and we are led to an equation of the second degree,
(22) U?—2izU —1=0,

to determine the auxiliary unknown quantity U = e%. We obtain
from this equation

23) U=t Vio 2,
or
24) w=arcsinz = ; Log(ix + VI~ 7).

The equation 2 = sin » has therefore two sequences of roots, which
arise, on the one hand, from the two values of the radical V1 — 22,
and, on the other hand, from the infinite number of determinations
of the logarithm. But if one of these determinations is' known,
all the others can easily be determined from it. Let U’/ = p'¢™ and
U" = p"e™” be the two roots of the equation (22); between these
two roots exists the relation U'U" =—1, and therefore pp" =1,
o'+ o"=(2n+1)m It is clear that we may suppose o" =7 — o',
and we have then

Log (U") =logp' + i(o' + 2k'm),
Log (U"M)=—logp' + ¢ (m — o' + 2k"m).
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Hence all the determinations of arcsinz are given by the two
formule

arcsinz = o' + 2%'w — ¢ log p',

arcsinz = w4+ 2 k'"r — o' + <logp',
and we may write

A) arcsinz = u' + 2 k'm,

®) ) arcsinz = (2" +1)m — o/,
where ' = o' — ¢logp'.

‘When the variable 2z describes a continuous curve, the various
determinations of the logarithm in the formula (24) vary in general
in a continuous manner. The only critical points that are possible
are the points 2 = £+ 1, around which the two values of the radical
V1 — 2 are permuted; there cannot be a value of z that causes
iz  V1— 2? to vanish, for, if there were, on squaring the two sides
of the equation iz = & V1— 2* we should obtain 1= 0.

Let us suppose that two cuts are made along the axis of reals, one
going from — oo to the point — 1, the other from the point 4 1 to
+ oo . If the path described by the variable is not allowed to cross
these cuts, the different determinations of arc sin z are single-valued
functions of z. In fact, when the variable z describes a closed curve
not crossing any of these cuts, the two roots U', U" of equation (22)
also describe closed curves. None of these curves contains the
origin in its interior. If, for example, the curve described by the
root U' contained the origin in its interior, it would cut the axis Oy
in a point above Ox at least once. Corresponding to a value of U of
the form ¢a(a > 0), the relation (22) determines a value (1 + o%)/2 &
for z, and this value is real and >1. The curve described by the
point 2 would therefore have to cross the cut which goes from
+1 to 4 oo.

The different determinations of arc sin z are, moreover, analytic
functions of z.* For let » and u, be two neighboring values of

* If we choose in U=1iz+V1-22 the determination of the radical which reduces to
1 when z=0, the real part of U remains positive when the variable z does not cross
the cuts, and we can put U= Rei®, where $ lies between —7/2 and + /2. The cor-
responding value of (1/i) Log U, namely,

arc sinz=%1.og U=&-iLogR,

is sometimes called the principal value of arc sin z. It reduces to the ordinary deter-
mination when z is real and lies between —1 and +1.
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arc sinz, corresponding to two neighboring values z and 2, of the
variable. We have
Upg—U Uy —
#,—z sinu, —sinu

When the absolute value of u, — u approaches zero, the preceding

quotient has for its limit
1 +1

cosu Vio2

The two values of the derivative correspond to the two sequences-
of values (A) and (B) of arcsin 2.

If we do not impose any restriction on the variation of z, we can
pass from a given initial value of arc sinz to any one of the deter-
minations whatever, by causing the variable z to describe a suitable
closed curve. In fact, we see first that when z describes about the
point z =1 a closed curve to which the point z = ¢- 1 is exterior,
the two values of the radical V1 — 2? are permuted and so we pass
from a determination of the sequence (A) to one of the sequence (B).
Suppose next that we cause z to describe a circle of radius R(R > 1)
about the origin as center; then each of the two points U’, U" describes
a closed curve. To the point z =+ R the equation (22) assigns two
values of U, U'=ia, U" = i@, where a and B are positive; to the
point 2 =— R there correspond by means of the same equation the
values U'=— ia', U" =— i, where &' and B' are again positive.
Hence the closed curves described by these two points U’, U" cut the
axis Oy in two points, one above and the other below the point O;
each of the logarithms Log (U"), Log (U") increases or diminishes
by 2. :

In the same way the function arc tan z is defined by means of
the relation tan » = 2, or

1ot
Tiev41’

whence we have e 1+4dz_it—=2
11—z i+ 2’

and consequently

1 t—2
arc tanz = %3 Log(i T z)
This ez.:pression shows the two logarithmic critical points + ¢ of the
function arc tan z. When the variable z passes around one of these
points, Log [({ — #)/(¢ + #)] increases or diminishes by 2 i, and
arc tan # increases or diminishes by .
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15. Application to the integral calculus. The derivatives of the func-
tions which we have just defined have the same form as when the
variable is real. Conversely, the rules for finding primitive functions
apply also to the elementary functions of complex variables. Thus,
denoting by [f(z)dz a function of the complex variable z whose
derivative is f(z), we have

Adz 4 1
E—ar m—1@—ar"

f Adza =A4 Log(z — a).

(m >1),

These two formul® enable us to find a primitive function of any
rational function whatever, with real or imaginary coefficients, pro-
vided the roots of the denominator are known. Consider as a special
case a rational function of the real variable = with real coefficients.
If the denominator has imaginary roots, they occur in conjugate
pairs, and each root has the same multiplicity as its conjugate.
Let @ + Bi and @ — Bi be two conjugate roots of multiplicity p. In
the decomposition into simple fractions, if we proceed with the
imaginary roots just as with the real roots, the root a 4 8i will
" furnish a sum of simple fractions

M, + N,i Myt Noi L Myt Ny
z—a—Bi  (x—a— pil (a:—ac—- i)"
and the root @ — B¢ will furnish a similar sum, but with numerators
that are conjugates of the former ones. Combining in the primitive

function the terms which come from the corresponding fractions, we
shall have, if p >1,

M, 4+ Nt M,— N,
f(w ey B)"d “t) et hr
M, + N,i M,— N,

VS [(w —a— Bb)"“ Te—ar ﬁi)""‘]

1 (M4 Ni)@—a+piyr—t...
r—1 (@ —a)+ 81"
and the numerator is evidently the sum of two conjugate imaginary
polynomials. If p =1, we have

M, + Ny le
z—a—ﬂtd +f —a+ﬁ
= (M, + N,i) Log[(z — a) — Bi]+ (M, — N3) Log[(x — a) + Bi]

H
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If we replace the logarithms by their developed expressions, there
remains on the right-hand side

. M log[(x — @)’ + B*]+ 2Nlarctanx E
It suffices to replace

@

B T T—a
arctanx__ = by ) arc tan ]
in order to express the result in the form in which it is obtainea
when imaginary symbols are not used.
Again, consider the indefinite integral

dx 1
fVAz’+2B:c+C’

which has two essentially different forms, according to the sign of
A. The introduction of complex variables reduces the two forms to a
single one. In fact, if in the formula

dx
2 _1L Vit #
T og(z + V1+ )

we change « to ix, there results

_\/d%- %Log(w-'_ vV1— )’
and the right-hand side represents precisely arc sin .

The introduction of imaginary symbols in the integral calculus
enables us, then, to reduce one formula to another even when the
relationship between them might not be at all apparent if we were
to remain always in the domain of real numbers.

We shall give another example of the simplification which comes
from the use of imaginaries. If @ and & are real, we have

e@ Mz gy — o _a—bi e (cos bx + ¢ 8in bz
~a+bz A+ 5B ( )-

Equating the real parts and the coefficients of 4, we have at one stroke
two integrals already calculated (I, § 109, 2d ed.; § 119, 1st ed.):

% 008 b dap — e‘"‘(a.cosba:+bst
a? 4 b?

. e** (e 8in bx — b cos bx
fe""smba:dx= ( T ).
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In the same way we may reduce the integrals
fx"e“cosbxdx, fa:"'a“sinbxd:c

to the integral fame@+¥=dy, which can be calculated by a succession
of integrations by parts, where m is any integer.

16. Decomposition of a rational function of sinz and cosz into
simple elements. Given a rational function of sinz and cosz,
F(sin 2, cos 2), if in it we replace sin z and cos z by their expressions
given by Euler’s formula, it becomes a rational function R(¢) of
t = ¢®. This function R (), decomposed into simple elements, will be
made up of an integral part and a sum of fractions coming from
the roots of the denominator of R (). If that denominator has the
root ¢ = 0, we shall combine with the integral part the fractions aris-
ing from that root, which will give a polynomial or a rational function
R, (t)= 3K,t™, where the exponent m may have negative values.

Let ¢t = a be a root of the denominator different from zero. That
root will give rise to a sum of simple fractions

4, A, A,
o= ete-at  Taa

The root @ not being zero, let « be a root of the equation e =a;
then1/(¢ — a) can be expressed very simply by means of ctn [ (z — &) /2].

We have, in fact, 3o @ -
r—a_ e"+e“ ( 26“ )
ctn 2 T eﬁ—'& 1+ =) [IRRERR +
whence it follows that aut edi
1 1 1 . z2—a
t—a e —e _ﬁ‘(l"'”’tn 2 )

Hence the rational fraction f(f) changes to a polynomial of degree

n in ctn [(z — 2)/2],
)+ -+ ot (2 2").

The successive powers of the cotangent up to the nth can be ex-
pressed in turn in terms of its successive derivatives up to the
(n — 1)th; we have first

Aj+ A7 ctn ==2 + Az ctn’(
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which enables us to express ctn’z in terms of d(ctn2)/dz, and it is
easy to show, by mathematical induction, that if the law is true up
to ctn® 2, it will also be true for ctn*+!'z. The preceding polynomial
of degree n in ctn[(z — @)/2] will change to a linear expression in
ctn[ (2 — a)/2] and its derivatives,

—a d*-! z—a
/Io+/llctn +‘A’d (ctn 2 >+ +.ﬂ.d pry ((,tn ) )

Let us proceed in the same way with all the roots b, ¢, - .-, 7 of the
denominator of R (¢) different from zero, and let us add the results
obtained after having replaced ¢ by ¢ in R (¢). The given rational
function F(sinz, cosz) will be composed of two parts,

(25) F(sinz, cos 2) = ®(2) + ¥(2).

The function ®(z), which corresponds to the integral part of a
rational function of the variable, is of the form

(26) ®(?) = C + 3(a, cos mz + B, sin mz),

where m is an integer not zero. On the other hand, ¥ (z), which cor-
responds to the fractional part of a rational function, is an expression
of the form

Y(2)= ,/I‘ctn( >+ﬂ’d ctn( 2“) +ﬂ,j':l—lctn<z; )

' 2 — d 2 — dr-1 _
+$ICtn( 2B>+$250tn( 2B>+"‘+$p;z;):i0tn(7

It is the function ctn[(z — @)/2] which here plays the rdle of the
simple element, just as the fraction 1/(2 — @) does for a rational
function. The result of this decomposition of F(sin z, cos 2) is easily
integrated ; we have, in fact,

(@7 f ctn (z 5 “) dz = 2Log [sin (” = “)] ,

and the other terms are integrable at once. In order that the primi-
tive function may be periodic, it is necessary and sufficient that all
the coefficients C, A,, B,, - - - be zero.

In practice it is not always necessary to go through all these suc-
cessive transformations in order to put the function F(sin #, cos 2) into
its final form (25). Let « be a value of # which makes the function
F infinite. We can always calculate, by a simple division, the
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coefficients of (2 — @)=, (# — a)~? ..., in the part that is infinite
forz=a(1,§188,2d ed.; §183,1st ed.). On the other hand, we have

ctn(z = a): 2 + P(z — a),

2 z2—a

where P(z — a) is a power series; equating the coefficients of the
successive powers of (z — a)~! in the two sides of the equation (25),
we shall then obtain easily 4,, A,, - - -, A,.

Consider, for example, the function 1/(cosz — cos @). Setting
e =t, ¢" = a, it takes the form

2at
a(@+1)—t(@®+1)

The denominator has the two simple roots ¢ = a, ¢ = 1/a, and the
numerator is of lower degree than the denominator. We shall have,
then, a decomposition of the form

1 _ z—a z4+a
cosz—cosa—c_'-"qcm 2 + B ctn

In order to determine 4, let us multiply the two sides by # — «, and
let us then put 2 =a. This gives #=—1/(2sing). In a similar
manner, we find B =1/(2 sin @). Replacing Aand B by these values
and setting # = 0, it is seen that C' = 0, and the formula takes the form

1 1 z4+a z—a)
cosz—cosa_2sina(ctn 2 —otn 2 /)

Let us now apply the general method to the integral powers of sinz and
of cosz. We have, for example,
ezt + e n)m

(cosz)m =( 3

Combining the terms at equal distances from the extremities of the expansion
of the numerator, and then applying Euler’s formule, we find at once
m(m—1)
J 1.2

If m is odd, the last term contains cosz ; if m is even, the term which ends the

expansion is independent of z and is equal to m!/[(m/2)!]2. In the same way,
if m is odd,

(2isinz)™ =2isinmz — 2imsin(m — 2)z + 24

(2 cosz)™ =2 cosmz + 2m cos(m — 2)z 4+ 2 cos(m—4)z+-.-.

I_E(m___l_)sin(m—-4)z...;

and if m is even,

(2isinz)m =2 cosmz — 2mcos(m— 2)z + -+ +(—1)?

m!

G

These formulm show at once that the primitive functions of (sinz)® and of
(cosz)™ are periodic functions of z when m is odd, and only then.
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Note. When the function F(sin 2, cos z) has the period m, we can
express it rationally in terms of ¢** and can take for the simple
elements ctn (z — @), ctn(z — B), - - -.

17. Expansion of Log (1 4 z). The transcendental functions which
we have defined are of two kinds : those which, like ¢?, sin z, cos z, are
analytic in the whole plane, and those which, like Log 2, arc tan 2, - . -,
have singular points and cannot be represented by developments in
power series convergent in the whole plane. Nevertheless, such
functions may have developments holding for certain parts of the
plane. We shall now show this for the logarithmic function.

Simple division leads to the elementary formula

1 = 3 0 2
1+z—1—z+z’-—z + oo (=1 ;};1+

and if |2|] <1, the remainder 2*+!/(1+4 2) approaches zero when n
increases indefinitely. Hence, in the interior of a circle C of radius 1

+1

z’

we have ¢
—_—=] - 3 __ “ee —1)* “ee
1ts 1—z42—-224 + (=Dt -l
Let F(2) be the series obtained by integrating this series term by term:
2 2 2 2 : , 2t
F(z)—i-—§+§—z+---+(—1) n+1+”"

this new series is convergent inside the unit circle and represents
an analytic function whose derivative F'(z) is 1/(1+ #). We know,
however, a function which has the same derivative, Log (14 2). It
follows that the difference Log (14 2z) — F(z) reduces to a constant.*
In order to determine this constant it will be necessary to fix pre-
cisely the determination chosen for the logarithm. If we take the
one which becomes zero for z = 0, we have for every point inside C
z 22 B A
Let us join the point 4 to the point M, which represents = (Fig. 8).
The absolute value of 1+ z is represented by the length » = AM.
For the angle of 1+ 2 we can take the angle @ which AM makes
with 40, an angle which lies between — 7/2 and + 7/2 as long as
the point M remains inside the circle C. That determination of the

* In order that the derivative of an analytic function X+ Yi be zero, it is neces-
sary that we have (§3) 0X/0x=0, 0Y/0z=0, and consequently 0Y/dy=0X/0y=0;
X and Y are therefore constants.




I, § 17] POWER SERIES WITH COMPLEX TERMS 39

logarithm which becomes zero for z = 0 is logr 4 ¢a; hence the
formula (28) is not ambiguous.

Ml

Fic. 8

Changing z to — z in this formula and then subtracting the two
expressions, we obtain

142\ /2, 28 2
Log(l_z>—2<1+3 +2 +>
If we now replace z by iz, we shall obtain again the development of

arc tan z
_ 1 142\ _2 28 2 A
a.rctanz-ziLog(l_iz>_ —a T — e

The series (28) remains convergent at every point on the circle of convergence
except the point 4 (footnote, p. 19), and consequently the two series

cos24d cossﬁ_cos40

cosf — 3 + 3 Y +oeen,
. sin2d  sin84 sindd
sin § — 3 + 3 4 .e

are both convergent except for § = (2k + 1) 7 (cf. I, § 166). By Abel’s theorem
the sum of the series at M’ is the limit approached by the sum of the series at
a point M as M approaches M’ along the radius OM’. If we suppose # always
between — 7 and + m, the angle a will have for its limit 4/2, and the absolute
value 4 M will have for its limit 2 cos (§/2). We can therefore write

cos2f cos8f cos4d
log(2cosg)_.c050— st~ to
e=sin0__sm20+am80_‘”' (~m<b<m.

2 8

If in the last formula we replace @ by § — ur, we obtain again a formula pre-
viously established (T, § 204, 2d ed.; § 198, 1st ed.).



40 ELEMENTS OF THE THEORY : [1,§18

18. Extension of the binomial formula. In a fundamental paper on
power series, Abel set for himself the problem of determining the
sum of the convergent series

sma)=1+"e+2m =D 0,
1 1.2
29

R

for all the values of m and 2, real or imaginary, provided we
have |2| <1. We might accomplish this by means of a differential
equation, in the manner indicated in the case of real variables
(I,§183,2d ed.; § 179, 1st ed.). The following method, which gives
an application of § 11, is more closely related to the method fol-
lowed by Abel. We shall suppose 2z fixed and |2|] <1, and we
shall study the properties of ¢ {m, #) considered as a function of .
If m is a positive integer, the function evidently reduces to the
polynomial (14 2)™. If m and m' are any two values whatever of
the parameter m, we have always

(30) b (m, z)p(m', 2)= p(m + m', z).

In fact, let us multiply the two series ¢ (m, 2), ¢ (w', 2) by the ordi-
nary rule. The coefficient of 2 in the product is equal to

Bl) my,+m,_ymy+m,_ymy+ -+ mym,_y + my,
where we have set for abbreviation
m(m—1)...(m —k+1)
= ! ’

The proposed functional relation will be established if we show
that the expression (31) is identical with the coefficient of 2* in
¢ (m + m', z), that is, with (m + m'),. We could easily verify directly
the identity

(32) (m+m’)p=mp+mp—lm;+"'+m;'

but the computation is unnecessary if we notice that the relation

(30) is always satisfied whenever m and m' are positive integers. -

The two sides of the equation (32) are polynomials in m and m'
which are equal whenever m and m' are positive integers; they
are therefore identical.

On the other hand, ¢ (m, 2) can be expanded in a power series
of increasing powers of m. In fact, if we carry out the indicated
products, ¢ (m, ) can be considered as the sum of a double series

M/""‘
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¢(m,z)=1+%z z’+—z— ..i%zr:p...
+ﬁz.—-..+"£§zl’+...

if we sum it by columns. This double series is absolutely convergent.
For, let |z] = p and [m|=o; if we replace each term by its absolute
value, the sum of the terms of the new series included in the
(p + 1) th column is equal to

glo+1y--.(c+p— 1)
p!
which is the general term of a convergent series. We can therefore

sum the double series by rows, and we thus obtain for ¢(m, 2) a
development in power series

¢(m,z)=1+ + m? + .

From the relation (30) and the results established above (§11),
this series must be identical with that for en™., Now for the coeffi-
cient of m we have

a, ==—

2
-g-—---:Log(l-}-z);

-
NIN

hence
(34) & (m, 2)= emlos(to

where the determination of the logarithm to be understood is that
one which becomes zero when z = 0. We- can again represent the
last expression by (1+ z)"‘ but in order to know without ambiguity
the value in question, it is convenient to make use of the expression
emlog(1+2)

Let m = u + vi; if » and a have the same meanings as in the
preceding paragraph, we have

emlog(+2) — on+ vi)(log r + ia)
= e*1%r=va[cos (ua + v log r) + ¢sin (p.a: + vlogr)].

In conclusion, let us study the series on the circle of convergence. Let U,

be the absolute value of the general term for a point z on the circle. The ratio of

two consecutive terms of the series of absolute values is equal to | (m—n+1)/n|,
that is, if m = u + #i, to

Veti—n 47 s+l e

n n n?
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where the function ¢ (n) remains finite when n increases indefinitely. By a
known rule for convergence (I, § 163) this series is convergent when u +1>1
and divergent in every other case. The series (20) is therefore absolutely con-
vergent at all the points on the circle of convergence when u i3 positive.

If x+ 1 is negative or zero, the absolute value of the general term never
decreases, since the ratio Uy41/U, is never less than unity. The series is diver-
gent at all the points on the circle when p = —1.

It remains to study the case where — 1< u = 0. Let us consider the series
whose general term is U2 ; the ratio of two consecutive terms is equal to

[l— atl, ‘il"]'? 1-2etD 0l
n n n

+n’

and if we choose p large enough so that p (s + 1) > 1, this series will be conver-

gent. It follows that U%, and consequently the absolute value of the general

term U,, approaches zero. This being the case, in the identity
¢p(m2)(1+2)=9p(m+1,2)

let us retain on each side only the terms of degree less than or equal to n;

there remains the relation

S(l+2)=g,+mm=D - m=nt])

zl+l,
n!

where 8, and S,: indicate respectively the sum of the first (n + 1) terms of -
¢ (m, 2z) and of ¢ (m + 1, ). If the real part of m lies between — 1 and 0, the
real part of m 4 1 is positive. Suppose |z| =1; when the number n increases’
indefinitely, S, approaches a limit, and the last term on the right approaches
zero ; it follows that S, also approaches a limit, unless 1 + z = 0. Therefore,
when — 1< u = 0, the series is convergent at all the points on’ the circle ofcmiver-
gence, except at the point z =—1.

III. CONFORMAL REPRESENTATION

19. Geometric interpretation of the derivative. Let u = X 4 Y: be a
function of the complex variable 2, analytic within a closed curve C.
We shall represent the value of « by the point whose cosrdinates are
X, Y with respect to a system of rectangular axes. To simplify the
following statements we shall suppose that the axes 0X, OY are par-
allel respectively to the axes Ox and Oy and arranged in the same order
of rotation in the same plane or in a plane parallel to the plane x0y.

When the point z describes the region 4 bounded by the closed
curve C, the point » with the codrdinates (X, Y) describes in its
plane a region A'; the relation % = f(#) defines then a certain corre-
spondence between the points of the two pla.nes or of two portions of
aplane. On account of the relations which connect the derivatives of
the functions X, ¥, it is clear that this correspondence should possess
special properties. We shall now show that the angles are unchanged.
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Let z and 2, be two neighboring points of the region 4, and » and
u, the corresponding points of the region A'. By the original defini-
tion of the derivative the quotient (u, — «)/(2, — #) has for its limit
S'(z) when the absolute value of z, —z approaches zero in any
manner whatever. Suppose that the point 2, approaches the point
z along a curve C, whose tangent at the point 2 makes an angle a
with the parallel to the direction Ox; the point u, will itself de-
scribe a curve C' passing through w. Let us discard the case in
which f'(z) is zero, and let p and » be the absolute value and the
angle of f'(z) respectively. Likewise let » and »' be the distances
2z and uw, a' the angle which the direction 2z, makes with the
parallel 2z' to Oz, and B’ the angle which' the direction ux, makes
with the parallel X' to 0X. The absolute value of the quotient

) An——
OI EY [7] X

Fi1c.9a Fic. 9b

(u, — u)/(z, — 2) is equal to r /r, and the angle of the quotient is
equal to 8/ — a'. We have then the two relations

(35) lim% =p lim(f—a)=w+2km

Let us consider only the second of these relations. We may sup-
pose k =0, since a change in % simply causes an increase in the
angle v by a multiple of 27. When the point 2, approaches the
point z along the curve C, a' approaches the limit @, 8’ approaches a
limit 8, and we have 8 = @ + w. That is to say, in order to obtain the
direction of the tangent to the curve described by the point u, it suffices
to turn the direction of the tangent to the curve described by z through
a constant angle ». It is naturally understood in this statement that
those directions of the two tangents are made to correspond which
correspond to the same sense of motion of the points z and «.

‘Let D be another curve of the plane 20y passing through the point
2, and let D' be the corresponding curve of the plane XOY. If the
letters y and 8 denote respectively the angles which the corresponding
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directions of the tangents to these two curves make with zz' and
uX' (Figs. 9a and 95), we have

B=a+ o, d=y+o,

and consequently 8 — 8=y —a. The curves C' and D' cut each
other in the same angle as the curves C and D. Moreover, we see that
the sense of rotation is preserved. It should be noticed that if
f'(z) = 0, the demonstration no longer applies.

If, in particular, we consider, in one of the two planes xOy or X0Y,
two families of orthogonal curves, the corresponding curves in the
other plane also will form two families of orthogonal curves. For
example, the two families of curves X = C, Y = C', and the two
families of curves

(36) |f@®)|=C, anglef(z)=C"
form orthogonal nets in the plane x0y, for the corresponding curves
in the plane XOY are, in the first case, two systems of parallels to the
axes of coordinates, and, in the other, circles having the origin for
center and straight lines proceeding from the origin.

Egpample 1. Let 2 = z¢, where a is a real positive number. Indicating by
r and @ the polar codrdinates of z, and by 77 and ¢ the polar cosrdinates of 2/,
the preceding relation becomes equivalent to the tTwo relations »* = 14, §’ = ad.
We pass then from the point z to the point 2’ by Taising theradius vector to
the power a and by multiplying theangle-by a. The angles are preserved, ex-
cept those which have their vertices at the origin, and these are multiplied by
the constant factor a.

Ezample 2. Let us consider the geperal linear tran8formation

(CL)

where a, b, ¢, d are any constants whatever. In certain particular cases it is
easily seen how to pass from the point z to the point 2. Take for example the
transformationz’ =z 4+ b; let z =z + yi, 2’ =’ + ¥'i, b = a + Bi; the preced-
ing relation gives ' =z + a, ¥’ =y + B, which shows that we pass from the
point z to the point 2’ by a translation.
Let now 2= az; if p and w indicate the absolute value and angle of a respec-
tively, then we have v = pr, ¢ = w + §. Hence we pass from the point z to the
pointz’ by multiplying the radius vector by the constant factor p and then turning
this new radius vector through a constant angle w. We obtain then the transfor-
mation defined by the formula 2’ = az by combining-an-expansion with a rotation.
Finally, let us consider the relation ™™

Z'=11
z

where r, 4, v, @ have the same meanings as above. We must have 1’ =1,
o+ 0::\0 The product of the radii vectores is therefore equal to unity, while
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the polar angles are equal and of opposite signs. Given a circle C with center
A and radius R, we shall use the expression inversion with respect to the given
circle to denote the transformation by whIeh thepolar angle is unchanged but
the radius Vector of the new point is R%/r. We obtain then the transformation
defined by the relation 2’z = 1 by carrying out first an inversion with respect to
a circle of unit radius and with the origin as center, and then taking the sym-
metric point to the point obtained with respect to the axis Oz.

The most general transformation of the form (87) can be obtained by com-
bining the transformations which we have just studied. If ¢ = 0, we can replace
the transformation (37) by the succession of transformatfoms

-, b
==z, 2= zl + a-
If c is not zero, we can carry out the indicated division and write
ARt
be — ad
¢ + c’z z+ cd’

and the transformation can be repla.ced by the succession of transformations

—_— 1
z,=z+z. 23 = c¥2, z,:z—.
—— 2
, a
z,=(bc—ad)zy;, =z =z‘+z-
A

All these special transformations leave the angles and the sense of rotation

unchanged, an nd-Change cITores 1o clrcles Hence the e thing is then true
of the general transformatio: ed a circular
tm'?ﬁ ton, In the above statementstraight lines should be regarded as

circles with infinite radii.
Ezample 8.

= (i:.f‘)"’ (z— €)™ (z— ep)™,

where e,, e, - - -, € are any quantities whatever, and where the exponents m,,
my, - -+, mp are any real TUMDbETS, Positive or negat.lve Let M, E, E,,-.., Ep
be the points s:hﬁh_rwm, €300y €p; letalsor, ro ooo,
rp denote the distances ME,, ME,, ..., ME, and 0,, 0,, +, 0p the angles wlnch
E\M, E,M, ..., E,M make with the parallels to Oz. The absolute value and

the angle of 2’ are respectively ™7, -+ 7,7 and m, 6, + my0; + - -+ + my6,,
Then the two families of curves

urre.rp =0, mb, +mb,+ ... +mb=C

form an orthogonal system. When the exponents m,, m,, - - -, m, are rational
numbers, all the curves are algebraic. If, for example, p =2, m, =m,; =1, one
of the families is composed of Cassinian ovals with two foci, and the second
family is a system of equilateral hyperbolas.

20. Conformal transformations in general. The examination of the
converse of the proposition which we have just established leads us to
treat a more general problem. Two surfaces, 3, 3, being given, let
us set up between them any point-to-point correspondence whatever
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(except for certain broad restrictions which will be made later),
and let us examine the cases in which the angles are unaltered in
that transformation. Let z, y, # be the rectangular r_cofirdinates of
a point of 3, and let ', y', ' be the rectangular coordinates of a
point of 3. We shall suppose the six cobrdinates z, y, 2, ', ¥, 2'
expressed as functions of two variable parameters u, v in such a way
that corresponding points of the two surfaces correspond to the same
pair of values of the parameters u, v:

(38) y=¢(u, ), Yy = 4"("0 v),

z = ¢(u, v), 2 =y'(u, v).

Moreover, we shall suppose that the functions f, ¢, - - -, together with
their partial derivatives of the first order, are continuous when the
points (x, y, 2) and (2!, %', 2") remain in certain regions of the two
surfaces 3 and 3. We shall employ the usual notations (I, § 131):

z =f(u, ), z' = f'(u, v),
3 { 3 {

ox\? ox ox ox\*

E—S(@)) F_S%'a_,,;’ G—S(—a—v‘),

‘ ox"\? ,0x' ox' ox"\2
(39) E"—S(%)r F'=b3—u-5;) G'—S(@; ’

ds? = Edu® + 2 Fdu dv 4+ Gdv?,
ds® =E'du® 4+ 2 F'du dv + G'dv®.

Let C and D (Figs.10a and 105) be two curves on the surface 3,
passing through a point m of that surface, and C' and D' the corre-
sponding curves on the surface 3’ passing through the point m'.

Fi1c.10a Fic. 10b

Along the curve C the parameters u, v are functions of a single
auxiliary variable ¢, and we shall indicate their differentials by du
and dv. Likewise, along D, » and v are functions of a variable ¢/, and
we shall denote their differentials here by 8« and 8». In general, we
shall distinguish by the letters d and & the differentials relative to
a displacement on the curve C and to one on the curve D. The
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following total differentials are proportional to the direction cosines
of the tangent to the curve C,
_ Oz ox _ oy oy _ o0z 0z
de = 8udu + avd'v, dy = au(:lu.-{- av(:lv, dz = 3udu +avalv,
and the following are proportional to the direction cosines of the
tangent to the curve D,

=0+ 28, ty=Pout s, so=Lous Lo,
u . Ov ou ov ov

0 0 ou

Let o be the angle between the tangents to the two curves C and
D. The value of cosw is given by the expression

— dx dx + dy 8y + dz 8 ,
Vdz? + dif + d2* V&z® + 8y + 822

which can be written, making use of the notation (39), in the form

COS w

Edu 8u + F(du v + dv du) + Gdv dv .
VEdu* + 2 Fdu dv + Gdv* VE84* + 2 Fdu 8v + G &*
If we let o' denote the angle between the tangents to the two
curves C' and D', we have also

E'du du + F'(du 8v + dv 8u) + G'dv dv .
VE'du?+2 F'du dv+ G'dv* VE' 8u + 2 F'8u 8v + G'8

(40) cos .m =

(41) cos o' =

In order that the transformation considered shall not change the
" value of the angles, it is necessary that cos o' = cos w, whatever du,
dv, du, dv may be. The two sides of the equality

cos? o' = cos?e

are rational functions of the ratios 8v/8u, dv/du, and these functions
must be equal whatever the values of these ratios. Hence the corre-
sponding coefficients of the two fractions must be proportional ; that
is, we must have

(42) L= =Z=

where A is any function whatever of the parameters u, v. These
conditions are evidently also sufficient, for cos w, for example, is a
homogeneous function of E, F, G, of degree zero.

The conditions (42) can be replaced by a single relation ds™ = A%ds? or

(43) ds' = Ads.
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This relation states that the ratio of two corresponding infinitesimal
arcs approach a limit independent of du and of dv, when these two
arcs approach zero. This condition makes the reasoning almost
intuitive. For, let abe be an infinitesimal triangle on the first surface,
and a'd'c’ the corresponding triangle on the second surface. Imagine
these two curvilinear triangles replaced by rectilinear triangles that
approximate them. Since the ratios a'd'/ab, a'c'/ac, b'c’ /bc approach
the same limit A (u, v), these two triangles approach similarity and
the corresponding angles approach equality.

We see that any two corresponding infinitesimal figures on the
two surfaces can be considered as similar, since the lengths of the
arcs are proportional and the angles equal; it is on this account that
the term conformal representation is often given to every correspond-
ence which does not alter the angles. ‘

Given two surfaces 3, 3' and a definite relation which establishes
a point-to-point correspondence between these two surfaces, we can
always determine whether the conditions (42) are satisfied or not,
and therefore whether we have a conformal representation of one
of the surfaces on the other.

But we may consider other problems. For example, given the sur-
faces = and 3/, we may propose the problem of determining all the
correspondences between the points of the two surfaces which pre-
serve the angles. Suppose that the codrdinates (z, y, #) of a point
of 3 are expressed as functions of two parameters (u, v), and that
the codrdinates (', ¥', 2') of a point of 3' are expressed as functions
of two other parameters (u', v"). Let

d*=Edu*+2Fdudv+Gdv?, ds"=E'du"+2F du'dv' + G'dv"?

be the expressions for the squares of the linear elements. The prob-
lem in question amounts to this: o find two functions u' = m (u,v),
v' = my(u, v) such that we have identically

E'dnt 4 2 F'dmw dm, + G'dwi = N(E du® + 2 F dudv 4 G dv?),

A being any function of the variables u, v. The general theory of dif-
ferential equations shows that this problem always admits an infinite
number of solutions; we shall consider only certain special cases.

21. Conformal representation of one plane on another plane. Every
correspondence between the points of two planes is defined by
relations such as

() X=P(@y), Y=Q(xv)
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where the two planes are referred to systems of rectangular coordi-
nates (x, ¥) and (X, ¥). From what we have just seen,in order that this
transformation shall preserve the angles, it is necessary and sufficient

that we have dX? 4 dY? = N (ds? + dy),

where A is any function whatever of x, y independent of the differ-
entials. Developing the differentials dX, dY and comparing the two
sides, we find that the two functions P(x, ¥) and Q(z, y) must
satisfy the two relations

a_P 2 Q (3P) <3Q) oPoP  0Q 3Q

(45) <3:c> + (93:) oy + oy oz 0y ™ ox oy =0
The partial derivatives dP/dy, 0Q/dy cannot both be zero, for the
first of the relations (45) would give also 0Q/dx = 0P /ox = 0, and

the functions P and Q would be constants. Consequently we can
write according to the last relation,

op_ o oq__ op
3x—"ay’ o '“ay’

where p is an auxiliary unknown. Putting these values in the first
condition (45), it becomes

o[+ G]-o.

and from it we derive the result u =+ 1. We must then have
either

: oP _0Q op__2Q
(46) oy P =
or
an op__da 0P _ 0@

ox oy oy ox

The first set of conditions state that P 4 Qi is an analytic func-
tion of # 4+ yi. As for the second set, we can reduce it to the first
by changing Q to — @, that is, by taking the figure symmetric to the
transformed figure with respect to the axis 0X. Thus we see, finally,
that to every conformal representation of a plane on a plane there
corresponds a solution of the system (16), and consequently an
analytic function. If we suppose the axes OX and OY parallel re-
spectively to the axes Ox and Oy, the sense of rotation of the angles
is preserved or not, according as the functions P and Q satisfy the
relations (46) or (47). '
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22. Riemann’s theorem. Given in the plane of the variable z a region A
bounded by a single curve (or simple boundary), and in the plane of the vari-
able ua circle C, Riemann proved that there exists an analytic function u = f(2),
analytic in the region 4, such that to each point of the region 4 corresponds
a point of the circle, and that, conversely, to a point of the circle corresponds
one and only one point of A. The function f(z) depends also upon three
arbitrary real constants, which we can dispose of in such a way that the center
of the circle corresponds to a given point of the region A, while an arbitrarily
chosen point on the circumference corresponds to a given point of the boundary
of A. We shall not give here the demonstration of this theorem, of which we
shall indicate only some examples.

We shall point out only that the circle can be replaced by a half-plane.
Thus, let us suppose that, in the plane of u, the circumference passes through the
origin ; the transformation u’ = 1/u replaces that circumference by a straight
line, and the circle itself by the portion of the u’-plane situated on one side of
the straight line extended indefinitely in both directions.

Ezample 1. Let u =21/2, where a is real and positive. Consider the portion
A of the plane included between the direction Oz and a ray through the origin
making an angle of aw with Oz (o = 2). Let z = re®, u = Reiw ; we have,

1
R =ra, w=—

When the point z describes the portion A of the plane, r varies from 0 to
+ o and @ from 0 to aw; hence R varies from 0 to +  and w from 0 to .

Y]

Fi1c.11

The point u therefore describes the half-plane situated above the axis OX, and
to a point of that half-plane corresponds only one point of 4, for we have,
inversely, r = R4, § = aw.

Let us next take the portion B of the z-plane bounded by two arcs of circles
which intersect. Let z,, 2, be the points of intersection ; if we carry out first the
transformation

7= -z—:fi’-
z2—2

the region B goes over into a portion A of the z’-plane included between two
rays from the origin, for along the arc of a circle passing through the points
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2y, 2,, the angle of (z — z,)/(z — z,) remains constant. Applying now the pre-
ceding transformation u = (2)1/#, we see that the function

1
2 — 2y\a
z— 2

enables us to realize the conformal representation of the region B on a half-
plane by suitably choosing a.

Ezample 2. Let u = cosz. Let us cause z to describe the infinite half-strip
R, or AOBA’ (Fig. 11), defined by the inequalities 0 =z = =, y = 0, and let
us examine the region described by the point u = X 4 Yi. We have here (§ 12)

e+ ey . e—ey
+ ’ Y = —sinz .

(48) X =cosx

"When z varies from 0 to #, Y is always negative and the point » remains in
the half-plane below the axis X’OX. Hence, to every point of the region R
corresponds a point of the u half-plane, and when the point z is on the bound-
ary of R, we have Y = 0, for one of the two factorssinz or (e# — e~¥)/2 is zero.
Conversely, to every point of the u half-plane below OX corresponds one and
only one point of the strip R in the z-plane. In fact, if 2’ is a root of the equa~-
tion u = cosz, all the other roots are included in the expression 2kw + 2/. If
the coefficient of i in 2’ is positive, there cannot be but one of these points in the
strip R, for all the points 2kw — 2’ are below Ox. There is always one of
the points 2 k7 + 2’ situated in R, for there is always one of these points whose
abscissa lies between 0 and 2. That abscissa cannot be included bétween =
and 2w, for the corresponding value of ¥ would then be positive. The point is
therefore located in R.

It is easily seen from the formul® (48) that when the point z describes the
portion of a parallel to Oz in R, the point u describes half of an ellipse. When
the point z describes a parallel to Oy, the point u describes a half-branch of a
hyperbola. All these conics have as foci the points C, C’ of the axis OX, with
the abscissas + 1 and — 1.

Ezample 8. Let =
(49) u=2=1
a1

where a is real and positive. In grder that |u| shall be less than unity, it is
easy to show that it is necessary and sufficient, that cos [(my)/(2@)] > 0. If y
varies from — a to 4 a, we see that to the infinite strip included between the
two straight lines y = — a, ¥ = + a corresponds _in the u-plane the circle C
described about the origin as center with unit radius. Conversely, to every
point of this circle corresponds one and only one.point of the infinite strip, for
the values of z which correspon e of u form .an arithmetical pro-
gression with the constant difference of 4 ai. Hence there cannot be more than
one value of 2z in the strip considered. Moreover, there is always one of these
roots in which the coefficient of i lies between — @and 8 a, and that coefficient
cannot lie between a and 8 a, 0T the corresponding value of |u| would then be
greater than unity. T
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23. Geographic maps. To make a conformal map of a surface
means to make the points of the surface correspond to those of a
plane in such a way that the angles are unaltered. Suppose that the
coordinates of a point of the surface 3 under consideration be ex-
pressed as functions of two variable parameters (u, v), and let

ds® = Edu?® + 2 Fdudv + G dv?

be the square of the linear element for this surface. Let (, 8) be
the rectangular coordinates of the point of the plane P which cor-
responds to the point (u, v) of the surface. The problem here is to .
find two functions
u = m,(a, B), v=m,(x, B)
of such a nature that we have identically
Edu®+ 2 Fdudv + G dv® = A(da?® + df°),

where A is any function whatever of @, 8 not containing the differ-
entials. This problem admits an infinite number of solutions, which
can all be deduced from one of them by means of the conformal
transformations, already studied, of one plane on another. Suppose
that we actually have at the same time

ds® = \(da® + df?), ds® = \'(da" + dB%);
then we shall also have

!
dat + af =% (da® + ap),

so that @ + Bi, or @ — B8, will be an analytic function of a'+ B'i.
The converse is evident.

Example 1. Mercator’s projection. We can always make a map of a
surface of revolution in such a way that the meridians and the paral-
lels of latitude correspond to the parallels to the axes of cosrdinates.
Thus, let

T = p COS w, y = psina, z=f(p)
be the coordinates of a point of a surface of revolution about the
axis Oz; we have .
dsz — dP2[1 +f’2(P)] + P2d0,2 —_ P2[dw2 + 1_+;{_;_££_2dpﬂ]’

which can be written
ds* = p?(dX® + dY?)

X=a Y=f__"1 /%) g,

P

if we set
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In the case of a sphere of radius R we can write the codrdinates in
the form

z = R sin d cos ¢, y = R sin @sin ¢, 2= R cos 6,

2
ds® = R*(d6* + sin*0d¢*) = R? si11‘10(d<[>2 + s;ino; 0),
and we shall set
dé 0
x=¢, v=[g=log(ten )

We obtain thus what is called Mercator’s projection, in which the
meridians are represented by parallels to the axis 0Y, and the paral-
lels of latitude by segments of straight lines parallel to 0X. To
obtain the whole surface of the sphere it is sufficient to let ¢ vary
from 0 to 2, and @ from O to 7 ; then X varies from O to 27 and ¥
from — o to 4 . The map has then the appearance of an infinite
strip of breadth 2 7. The curves on the surface of the sphere which
cut the meridians at a constant angle are called loxodromic curves
or rhumb lines, and are represented on the map by straight lines.

Example 2. Stereographic projection. Again, we may write the
square of the linear element of the sphere in the form

2 2
ds* =4 cos‘g R d00 +R’ta,n’gd¢’ ,
4 cos';
2
or
ds¢=4 cos‘% (dp® + p*do®),
if we set

- p=Rtan g) o =d¢.

But dp® + p*de’® represents the square of the linear element of the
plane in polar coordinates (p, w); hence it is sufficient, in order to
obtain a conformal representation of the sphere, to make a point of
the plane with polar codrdinates (p, ) correspond to the point (6, ¢)
of the surface of the sphere. It is seen immediately, on drawing the
figure, that p and w are the polar codrdinates of the stereographic
projection of the point (6, ¢) of the sphere on the plane of the
equator, the center of projection being one of the poles.*

* The center of projection is the south pole if # is measured from the north pole
to the radius. Using the north pole as the center of projection, the point (R3/p, w),
symmetric to the first point (see Ex. 17, p. 58), would be obtained. — TRANS.
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Ezample 8. Map of an anchor ring. Consider the anchor ring generated by
the revolution of a circle of radius R about an axis situated in its own plane at
a distance a from its center, where @ > R. Taking the axis of revolution for the
axis of z, and the median plane of the anchor ring for the zy-plane, we can
write the codrdinates of a point of the surface in the form

z=(a+ Rcosf)cos¢, y=(a+ Rcosf)sing, 2z=Rsind,
and it is sufficient to let § and ¢ vary from — # to 4+ 7. From these formule

we deduce
R3dg?
ds? = R 6)2 —_——;
(a+ cos ) [d'l”'l' (a+R0050)2]’
and, to obtain a map of the surface, we may set
X=¢, 0 8 9
€ l—e, 6
Y=e = arctan z
ol+ecosd ~1_e ( 1+etan2),
where
e=£’<1.
a

Thus the total surface of the anchor ring corresponds point by point to that
of a rectangle whose sides are 27 and 2we/V1— €2,

24. Isothermal curves. Let U (z, y) be a solution of Laplace’s equation

2U U
AU = g + W =0;
the curves represented by the equation
(50) U, y)=0C,

where C is an arbitrary constant, form a family of isothermal curves. With every
solution U(x, y) of Laplace’s equation we can associate another solution,
V (z, ¥), such that U + Vi is an analytic function of  + yi. The relations

w_ov oU__ov
ox oy oy oz
show that the two families of isothermal curves
U@,p)=C, V@,y=0C
are orthogonal, for the slopes of the tangents to the two curves C and C’ are
respectively oU  oU v oV

W o W

Thus the orthogonal trajectories of a family of isothermal curves form another
family of isothermal curves. We obtain all the conjugate systems of isothermal
curves by considering all analytic functions f(z) and taking the curves for
which the real part of f(2) and the coefficient of { have constant values. The
curves for which the absolute value R and the angle  of f(z) remain constant
also form two conjugate isothermal systems; for the real part of the ahalytic
function Log [f(2)] is log R, and the coefficient of i is Q.

Likewise we obtain conjugate isothermal systems by considering the curves
described by the point whose codrdinates are X, Y, where f(2) = X + Yi, when




1, § 24] CONFORMAL REPRESENTATIONS 55

we give to z and y constant values. This is seen by regarding z + yi as an
analytic function of X 4 Yi. More generally, every transformation of the
points of one plane on the other, which preserves the angles, changes one family
of isothermal curves into a new family of isothermal curves. Let

e=p@,y), v=¢@&,\v)

be equations defining a transformation which preserves angles, and let F(z’, ¥")
be the result obtained on substituting p (z’, ¥’) and ¢ (z’, ') forz and y in U (z, ).
The proof consists in showing that F(z’, ') is a solution of Laplace’s equation,
provided that U (z, y) is a solution. The verification of this fact does not offer
any difficulty (see Vol. I, Chap. III, Ex. 8, 2d ed.; Chap. II, Ex. 9, 1st ed.),
but the theorem can be established without any calculation. Thus, we can sup-
pose that the functions p (¢’, ) and g (z’, ') satisfy the relations

ap = 'a—q—, -@ =-——

ox’ W W o

for a symmetric transformation evidently changes a family of isothermal curves
into a new family of isothermal curves. The function z 4 yi = p + ¢t is then
an analytic function of z’ = 2’ 4 ¥, and, after the substitution, U 4 Vi also
becomes an analytic function F(z’, y’) + i®(2’, ¥") of the same variable 2’
(§ 5). Hence the two families of curves

F,yv)=0C, &@,y)=0C

give a new orthogonal net formed by two conjugate isothermal families,

For example, concentric circles and the rays from the center form two con-
jugate isothermal families, as we see at once by considering the analytic func-
tion Logz. Carrying out an inversion, we have the result that the circles
passing through two fixed points also form an isothermal system. The conjugate
system is also composed of circles.

Likewise, confocal ellipses form an isothermal system. Indeed, we have seen
above that the point u = cos z describes confocal ellipses when the point z is
made to describe parallels to the axis Oz (§ 22). The conjugate system is made
up of confocal and orthogonal hyperbolas.

Note. Inorder that a family of curves represented by an equation P (z,y) = C
may be isothermal, it is not necessary that the function P (z, ) be a solution of
Laplace’s equation. Indeed, these curves are represented also by the equation
¢ [P (z, ¥)] = C, whatever be the function ¢ ; hence it is sufficient to take for
the function ¢ a form such that U(z, y) = ¢ (P) satisfies Laplace’s equation.
Making the calculation, we find that we must have

i Ge) * () 1+ a6 (s + )=

hence it is necessary that the quotient
2P &P
w o

&)+ G

depend only on P, and if that condition is satisfied, the function ¢ can be
obtained by two quadratures. :
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EXERCISES
1. Determine the analytic function f(2) = X + Yi whose real part X is
equal to 2sin2z

eV + e 3 —2c082%Z

Consider the same question, given that X 4+ Y is equal to the preceding
function.

2. Let ¢ (m, p) = 0 be the tangential equation of a real algebraic curve, that
is to say, the condition that the straight line y = mz 4 p be tangent to that
curve. The roots of the equation ¢ (i, — 2¢) = 0 are the real foci of the curve.

3. If p and ¢ are two integers prime to each other, the two expressions
({/;)" and V2P are equivalent. What happens when p and ¢ have a greatest
common divisor d >1?

4. Find the absolute value and the angle of ex+¥ by considering it as
the limit of the polynomial [1+ (z + yi)/m]™ when the integer m increases
indefinitely.

5. Prove the formulae . (n +1
sin

cosa + cos(a+ )+ -+ + cos(a + nb) =

.—2b>cos a+@ »
sin(g) ( 2)
wsin a+@ .
sin(g) ( 2)

6. What is the final value of arc sinz when the variable z describes the seg-
ment of a straight line from the origin to the point 1 4 1, if the initial value of
arcsin z is taken as 0 ?

gsina + sin(a + b) + -+ + sin(a 4 nb) =

7. Prove the continuity of a power series by means of the formula (12) (§ 8)
h? h»
P+ =@ =M@+ 5@+ -+ S+ e

[Take a suitable dominant function for the series of the right-hand side.]
8. Calculate the integrals

f:we“cosba:dm, fz"e“sinbwdz,
fctn(z— a)ctn(z —b) .- ctn(z — l)de.

9. Given in the plane Oy a closed curve C having any number whatever of
double points and described in a determined sense, a numerical coefficient is
assigned to each region of the plane determined by the curve according to the rule
of Volume I (§ 97, 2d ed. ; § 96, 1st ed). Thus, let R, R’ be two contiguous regions
separated by the arc ab of the curve described in the sense of a to b; the coeffi-
cient of the region to the left is greater by unity than the coefficient of the
region to the right, and the region exterior to the curve has the coefficient 0.
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Let z, be a point taken in one of the regions and N the corresponding coeffi-
cient. Prove that 2 N7 represents the variation of the angle of z — z, when
the point z describes the curve C in the sense chosen.

10. By studying the development of Log[(1+ 2)/(1 — z)] on the circle of
convergence, prove that the sum of the series

sin @ sin30+sin50+'” sin(2n 4 1)6

1 3 b 2n+41
isequal to + m/4, according assin § = 0. (Cf. Vol.I, § 204, 2d ed.; § 198, 1st ed.)

11. Study the curves described by the point Z = 22 when the point z describes
a straight line or a circle.

12. The relation 2Z = z 4 ¢3/z effects the conformal representation of the
region inclosed between two confocal ellipses on the ring-shaped region bounded
by two concentric circles. _

[Take, for example, z = Z + VZ2 — c2, make in the Z-plane a straight-line
cut (— ¢, ¢), and choose for the radical a positive value when Z is real and
greater than c.] )

13. Every circular transformation 2’ = (az + b)/(cz + d) can be obtained by
the combination of an even number of inversions. Prove also the converse.

14. Every transformation defined by the relation 2’ = (az, + b)/(cz, + d),
where z, indicates the conjugate of z, results from an odd number of inversions.
Prove also the converse.

15. Fuchsian transformations. Every linear transformation (§19, Ex. 2) '
2 = (az + b)/(cz + d), where a, b, ¢, d are real numbers satisfying the relation
ad — bc =1, is called a Fuchsian transformation. Such a transformation sets
up a correspondence such that to every point z situated above Ox corresponds a
point 2’ situated on the same side of Oz’.

The two definite integrals

f\/d.z’+dy9 ffdzdy
v ’ ¥?

are invariants with respect to all these transformations.

The preceding transformation has two double points which correspond to
the roots a, g of the equation c22 + (d — a)2 — b = 0. If @ and B are real and
distinct, we can write the equation 2’ = (az + b)/(cz + d) in the equivalent form

Z—a_ 2l
Y-8 z—8
where k is real. Such a transformation is called Ayperbolic.
If @ and B are conjugate imaginaries, we can write the gquation

+ ..

Z—a —gw?— @
Z’—B z—B
where w is real. Such a transformation is called elliptic.
If 8 = a, we can write

1 1
z’—a—z—a+k’

where a and k are real. Such a transformation is called parabolic.
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16. Let 2’ = f(2) be a Fuchsian transformation. Put
z, =f(2), 23 =1 (%), ccty 2y = f(Zn-1)-

Prove that all the points z, 2,, 2,, - - -, Z are on the circumference of a circle.
Does the point z, approach a limiting position as n increases indefinitely ?

17. Given a circle C with the center O and radius R, two points M, M’
situated on a ray from the center O are said to be symmetric with respect to
that circle if OM x OM’ = R3.

Let now C, C’ be two circles in the same plane and M any point whatever
in that plane. Take the point M, symmetric to M with respect to the circle C,
then the point M symmetric to M; with respect to C’, then the point M, sym-
metric to M] with respect to C, and so on forever. Study the distribution of the
points M, , My, M,, M, ...

18. Find the analytic function Z =f(z) which enables us to pass from
Mercator’s projection to the stereographic projection.

19#. All the isothermal families composed of circles are made up of circles
passing through two fixed points, distinct or coincident, real or imaginary.

[Setting z = = + i, z, = * — yi, the equation of a family of circles depending
upon a single parameter A may be written in the form

22+ az + b2y + ¢ =0,

where a, b, ¢ are functions of the parameter \. In order that this family be
isothermal, it is necessary that 92\/0zdz, = 0. Making the calculation, the
theorem stated is proved.]

20*. If |q] < 1, we have the identity

. 1
1 (1 2) ... (1 cee = ’
( +Q)( +Q) ( +q") (l—q)(l-—q’)---(l-—q"‘“)---

e s e 2 e e & & & e e o .

[EvLER.]
[In order to prove this, transform the infinite product on the left into an infinite
product with two indices by putting in the first row the factors 1+ ¢, 1+ ¢2,

1+44¢4 -+, 14+ 4%, .--; in the second row the factors 14 ¢3, 148, «-+,
1+ (g%%", - - ; and then apply the formula (16) of the text.]

21. Develop in powers of z the infinite products
F@)=(1+2z2)(1+2%) - (1+am)-..,
) =(A+x2)(1+2%)-.- (14 220+1z)...,
[1t is possible, for example, to make use of the relation
Fe)(1+22)=F(2), (%) (1+ 22) =2(2).]
22*, Supposing || < 1, prove Euler’s formula
(1—2)(1—2)(1—2%)... 1—2")...
’ 8at—n 8at4n
=l—z—2B4+25—2"4a21%2—... 42 3 —z 3 ...,
(8ee J. BErTRAND, Calcul différentiel, p. 828.)
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23*. Given a sphere of unit radius, the stereographic projection of that sphere
is made on the plane of the equator, the center of projection being one of the
poles. To a point M of the sphere is made to correspond the complex number
8 =z + yi, where z and y are the rectangular coérdinates of the projection m of
M with respect to two rectangular axes of the plane of the equator, the origin
being the center of the sphere. To two diametrically opposite points of the
sphere correspond two complex numbers, 8, — 1/3,, where s, is the conjugate
imaginary to s. Every linear transformation of the form

8§ —a s—a
A = ¢lw
(4) P s—8'
where Ba, + 1 = 0, defines a rotation of the sphere about a diameter. To groups
of rotations which make a regular polyhedron coincide with itself correspond
the groups of finite order of linear substitutions of the form (A). (See KLEIN,
Das Ikosaeder.)



CHAPTER II

THE GENERAL THEORY OF ANALYTIC FUNCTIONS
ACCORDING TO CAUCHY

1. DEFINITE INTEGRALS TAKEN BETWEEN
IMAGINARY LIMITS

25. Definitions and general principles. The results presented in the
preceding chapter are independent of the work of Cauchy and, for
the most part, prior to that work. We shall now make a system-
atic study of analytic functions, and determine the logical conse-
quences of the definition of such functions. Let us recall that a
function f(z) is analytic in a region 4 : 1) if to every point taken
in the region A4 corresponds a definite value of f(2); 2) if that
value varies continuously with z; 3) if for every point z taken in 4

the quotient Fe+B)—FE
h
approaches a limit f'(z) when the absolute value of / approaches zero.

The consideration of definite integrals, when the variable passes
through a succession of complex values, is due to Cauchy *; it was
the origin of new and fruitful methods.

Let f(2) be a continuous function of z along the curve AMB
(Fig. 12). Let us mark off on this curve a certain number of points
of division 2,2, 2, - - -, #,_;, #, which follow each other in the order
of increasing indices when the arc is traversed from 4 to B, the
points 2, and #' coinciding with the extremities 4 and B.

Let us take next a second series of points £, {,, - - -, , on the arc
AB, the point {; being situated on the arc 2, _, %, and let us consider
the sum

S =f(c1) (zl - zo)+f(cz) (zs - z1)+ tee
+ (&) R — z)+ - -+ () (' — 2asy)

When the number of points of division 2, - - -, #,_, increases indefi-
nitely in such a way that the absolute values of all the differences

* Mémoire sur les intégrales définies, prises entre des limites imaginaires, 1825,
This memoir is reprinted in Volumes VII and VIII of the Bulletin des Sciences mathé-
matiques (1st series).

60

h— .
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%, — 2, %, — %, -+ - become and remain smaller than any positive
number arbitrarily chosen, the sum S approaches a limit, which is
called the definite integral of f(z) taken along AMB and which is
represented by the symbol

S (2)d=.
(AMB)
To prove this, let us separate the real part and the coefficient of ¢
in S, and let us set
f)=X+Yi 2= Ty + Yit, L= & + i,

t

Fie. 12

where X and Y are continuous functions along AMB. Uniting the
similar terms, we can write the sum S in the form

S =X($17 )@ —x)+ -
+ X (o m) (@ — 1)+ -+ X (6 90) (@ — 2ay)
—[YCm) @ —v)+ -+ Y m) ¥ — %n-0)+ -]
FHi[XEm) @ — Y+ 1+ I[YE ) (2, — )+ -]
When the number of divisions increases indefinitely, the sum of the
terms in the same row has for its limit a line integral taken along
AMB, and the limit of S is equal to the sum of four line integrals:*

f f@de= | (Xdo— Ydy)+i f (Ydx + Xdy).
(AMB) (AMB)

(AMB)

* In order to avojd useless complications in the proofs, we suppose that the coor-
dinates z, ¥ of a point of the arc AMB are continuous functions z=¢ (¢), y=y (¢) of
a parameter ¢, which have only a finite number of maxima and minima between 4
and B. We can then break up the path of integration into a finite number of arcs
which are each represented by an equation of the form y = F' (x), the function ¥ being
continuous between the corresponding limits; or into a finite number of arcs which
are each represented by an equation of the form x= G (y). There is no disadvantage
in making this hypothesis, for in all the applications there is always a certain amount
of freedom in the choice of the path of integration. Moreover, it would suffice to
suppose that ¢ (x) and Y (x) are functions of limited variation. We have seen that
in this case the curve AMB is then rectifiable (I, ftns., §§ 73, 82, 95, 2d ed.).



62 THE GENERAL CAUCHY THEORY [, § 25

From the definition it results immediately that

L F@Et [ feae=o

(BMA)
It is often important to know an upper bound for the absolute value
of an integral. Let s be the length of the arc 4M, L the length of
the arc AB, 8,_;, 8, o, the lengths of the arcs Az,_,, A%,, A, of
the path of integration. Setting F(s) =|f(#)|, we have

|f &) (e — 2-1) | = F(00) |2 — 21| = F(ow) (3 — 8-1)
for |2, — #;,_,| represents the length of the chord, and s, — s, _, the

length of the arc. Hence the absolute value of S is less than or at
most equal to the sum 3 F(o,) (8 — s,_,); whence, passing to the

limit; we find z
JS(@)dz §f F(s)ds.
(4xB) o

Let M be an upper bound for the absolute value of f(z) along the
curve AB. It is clear that the absolute value of the integral on the
right is less than ML, and we have, a fortiori,

F(z)dz| < ML.

(AMB)

26. Change of variables. Let us consider the case that occurs fre-
quently in applications, in which the cobrdinates z, y of a point of
the arc AB are continuous functions of a variable parameter ¢,
z = ¢(2), y = Y (t), possessing continuous derivatives ¢'(¢),y' (£); and
let us suppose that the point (z, y) describes the path of integra-
tion from A to B as ¢ varies from a to 8. Let P(¢) and Q(¢) be the
functions of ¢ obtained by substituting ¢ (¢) and y(¢), respectively,
for « and y in X and Y.

By the formula established for line integrals (I, § 95, 2d ed.; § 93,
1st ed.) we have

B
Xdn - vdy = [ TPO)#0) - 6O ¥ Ol

(4B)
xdy+ vas= [ [POVO+ 00 # O]k
(4B) a

Adding these two relations, after having multiplied the two sides
of the second by ¢, we obtain

@) ’ Ln)f(z)dz =[B[p(g)+ "?Q(t)][¢'(t)+ i (] dt.
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This is precisely the result obtained by applying to the integral
Jf(?)dz the formula established for definite integrals in the case of
real functions of real variables; that is, in order to calculate the
integral [f(z)dz we need only substitute ¢ (£) + w(¢) for 2 and
[¢'(®) + w'(¢)]d¢ for dz in f(2)dz. The evaluation of [f(z)dz is
thus reduced to the evaluation of two ordinary definite integrals. If .
the path AMB is composed of several pieces of distinct curves, the
formula should be applied to each of these pieces separately.

Let us consider, for example, the definite integral

gy
.[1 2

‘We cannot integrate along the axis of reals, since the function to be
integrated becomes infinite for #z = 0, but we can follow any path
whatever which does not pass through the origin. Let 2 describe a
semicircle of unit radius about the origin as center. This path is
given by setting z = ¢ and letting ¢ vary from 7 to 0. Then the
integral takes the form

+ldz 0 () [1]
f = ie"‘dt=if costdt+f sin¢dt =— 2.
-1 ] L 4 L 4

This is precisely the result that would be obtained by substituting
the limits of integration directly in the primitive function —1/z
according to the fundamental formula of the integral calculus
(1, § 78, 2d ed.; § 76, 1st ed.).

More generally, let z = ¢ (u) be a continuous function of a new complex
variable u = § + 9i such that, when u describes in its plane a path CND, the
variable z describes the curve AMB. To the points of division of the curve
AMB correspond on the curve CND the points of division ug, u;, ug, «--, ug_1,
Ug, - -+, . If the function ¢ («) possesses a derivative ¢’(x) along the curve CND,
we can write

Zk — 2k -1 ,
——— Uk €
b ¢ (uk—1) + ex

where ¢ approaches zero when u; approaches u;_; along the curve CND.
Taking {1 = zx—1 and replacing 2 — 2; 1 by the expression derived.from the
preceding equality, the sum S, considered above, becomes

8= f or1) ¢ —1) (e — e 1) + 3 (2 -1) (e — Up-).-

. k=1 k=1
The first part of the right-hand side has for its limit the definite integral

ooy [P # (.
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As for the remaining term, its absolute value is smaller than y ML’, where nisa
positive number greater than each of the absolute values |ez|and where L’ is the
length of the curve CND. If the points of division can be taken so close that
all the absolute values |ex| will be less than an arbitrarily chosen positive num-
ber, the remaining term will approach zero, and the general formula for the
change of variable will be

(2) AI(‘AIB)f (z)dz = A/; ey f[¢ (u)] ¢'(u) du.

This formula is always applicable when ¢ () is an analytic function ; in fact,
it will be shown later that the derivative of an analytic function is also an
analytic function* (see § 34).

27. The formuls of Weierstrass and Darboux. The proof of the law
of the mean for integrals (I, § 76, 2d ed.; § 74, 1st ed.) rests upon
certain inequalities which cease to have a precise meaning when
applied to complex quantities. Weierstrass and Darboux, however,
have obtained some interesting results in this connection by con-
sidering integrals taken along a segment of the axis of reals. We
have seen above that the case of any path whatever can be reduced
to this particular case, provided certain mild restrictions are placed
upon the path of integration.

Let I be a definite integral of the following form :

I= f 1O 16 @)+ (o)) de,

* If this property is admitted, the following proposition can easily be proved.
Let f(2) be an analytic function in a finite region A of the plane. For every posi-
tive number e another positive number y can be found such that

Sf(z+h) -f(2)
3

"'f’ (2)| <e,

when z and z + h are two points of A whose distance from each other |h| is less than .
For, let f(2) =P (x, y) + iQ (%, ¥), h=Ax + iAy. From the calculation madein § 3, to
find the conditions for the existence of a unique derivative, we can write

S+ -f@ ,  [Pi@+6Az,y)-P;(z 1] Az
7 S (@)= Az + Ay ,
[P, (x + Az, y + 6Ay) - P, (z, )] Ay
+ -
Az +iAy

(2)

Since the derivatives P, Pl',, Qs Q; are continuous in the region 4, we can find a num-
ber 7 such that the absolute values of the coefficients of Ax and of Ay are less than ¢/4,
when VAz2+ Ay? is less than 5. Hence the inequality written down above will be
satisfied if we have |k| <. This being the case, if the function ¢ (u) is analytic in
the region 4, all the absolute values | & | will be smaller than a given positive number e,
provided the distance between two consecutive points of division of the curve CND
is less than the corresponding number %, and the formula (2) will be established.
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where f(2), ¢ (), ¢ (2) are three real functions of the real variable ¢
continuous in the interval (a, 8). From the very definition of the
integral we evidently have

B [}
1= [Cros@a+i[ sovomn

Let us suppose, for definiteness, that a < 8; then ¢ — a is the length
of the path of integration measured from «, and the general formula
which gives an upper bound for the absolute value of a definite

_integral becomes '

B
115 [ [0+ Ol
or, supposing that f(¢) is positive between « and B,
B
115 [ rOlO+ ]

Applying the law of the mean to this new integral, and indicating
by ¢ a value of ¢ lying between « and B8, we have also

|| = |¢(f)+W(£)|£ﬂf(t)dt.

Setting F(¢) = ¢ (t) + iy (£), this result may also be written in the
form

3 I=\F(§) f ’ JS(®dt,

where A is a complex number whose absolute value is less than or
equal to unity; this is Darboux’s formula.

To Weierstrass is due a more precise expression, which has a rela-
tion to some elementary facts of statics. When ¢ varies from « to 8,
the point with the codrdinates x = ¢ (¢), ¥ = y (¢) describes a certain
curve L. Let (x,, ¥,), (£, ¥)s - *» (Xe—1, Y-1), - - - be the points of
L which correspond to the values @, ¢,,.--, ¢_,,--- of ¢; and let

us set g 3N Ce) e tey)
3f(te-1) (B — t-1)
Y = 2‘p(tk—-l).f(tl-—l) (G —t_y) .
3f(te-1) (B — ten)
According to a known theorem, X and Y are the coordinates of the
center of gravity of a system of masses placed at the points (z,, y,),
(®, ¥y -y (®e_1y Yx_1), - - - of the curve L, the mass placed at the
point (x;_,, yx_,) being equal to f(t,_,) (b — t._,), where f(¥) is
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still supposed to be positive. It is clear that the center of gravity
lies within every closed convex curve C' that envelops the curve L.
When the number of intervals increases indefinitely, the point (X, ¥)
will have for its limit a point whose codrdinates (%, v) are given by

the equations s
_Prosee_ [Proyod
Lor@yae LPr@at
which is itself within the curve C. We can state these two formule
as one by writing

4) I=(u+ iv) f ’ fOdt=z f ’ F@)dt,

where Z is a point of the complex plane situated within every closed
convex curve enveloping the curve L. It is clear that, in the general
case, the factor Z of Weierstrass is limited to a much more restricted
region than the factor AF(¢) of Darboux.

28. Integrals taken along a closed curve. In the preceding para-
graphs, it suffices to suppose that f(z) is a continuous function of
the complex variable z along the path of integration. We shall now
suppose also that f(2) is an analytic function, and we shall first con-
sider how the value of the definite integral is affected by the path
followed by the variable in going from 4 to B.

If a function f(2) is analytic within a closed curve and also on the
curve itself, the integral [f(z)dz, taken around that curve, is equal
to zero.

In order to demonstrate this fundamental theorem, which is due
to Cauchy, we shall first establish several lemmas: '

1) The integrals fdz, [z dz, taken along any closed curve what-
ever, are zero. In fact, by definition, the integral fdz, taken along
any path whatever between the two points e, 3, is equal to b — a,
and the integral is zero if the path is closed, since then b = a. As
for the integral [z dz, taken along any curve whatever joining two
points a, b, if we take successively {, = z,_,, then {, =z, (§ 25),
we see that the integral is also the limit of the sum

Ezi(zl'+l —2) + 2y 1 (Rigs — %) =23f+1 — 2 =bs—' a"
2 n 2 2

7
hence it is equal to zero if the curve is closed.

2) If the region bounded by any curve C whatever be divided
into smaller parts by transversal curves drawn arbitrarily, the sum
of the integrals [ f(2)dz taken in the same sense along the boundary
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of each of these parts is equal to the integral ff(2)dz taken along
the complete boundary C. It is clear that each portion of the auxil-
iary curves separates two contiguous regions and must be described
twice in integration in opposite senses. Adding all these inte-
grals, there will remain then only the integrals taken along the
boundary curve, whose sum is the integral [ f(2)dz.

Let us now suppose that the region A4 is divided up, partly in
smaller regular parts, which shall be squares having their sides
parallel to the axes Oz, Oy; partly in irregular parts, which shall be
portions of squares of which the remaining part lies beyond the
boundary C. These squares need not necessarily be equal. For ex-
ample, we might suppose that two sets of parallels to Ox and Oy
have been drawn, the distance between two neighboring parallels
being constant and equal to /; then some of the squares thus obtained
might be divided up into smaller squares by new parallels to the
axes. Whatever may be the manner of subdivision adopted, let us
suppose that there are N regular parts and N' irregular parts; let
us number the regular parts in any order whatever from 1 to N, and
the irregular parts from 1 to N'. Let /; be the length of the side of
the sth square and 7 that of the square to which the kth irregular
part belongs, L the length of the boundary C, and A the area of a
polygon which contains within it the curve C.

Let abed be the ith square (Fig. 13), let 2 be a point taken in its
interior or on one of its sides, and let z be any point on its boundary.
Then we have

®) LO=TE — piay+ o,
- C
// \[\%‘\_e
/ P
( B P q|
\ = 17
\ a7 b/
\ 7/
] P
\k‘ >
Fi6. 13

where |¢;| is small, provided that the side of the square is itself
small. It follows that

S(@) ==z =)+ S =)— S ")+« (z— 2,
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Ff@de=f(z) | 2de+[fz)—=S(2)] ]| dz+ | a(z—2)dz
(<) () (<) (%)
where the integrals are to be taken along the perimeter ¢; of the
square. By the first lemma stated above, this reduces to the form

(6) Sf@)dz= | €(z—2)dz
(@) (%)
Again, let pgrst be the kth irregular part, let z{ be a point taken
in its interior or on its perimeter, and let # be any point of its
perimeter. Then we have, as above,
M LO=LE _ pey+ o,

where ¢ is infinitesimal at the same time as /;; whence we find

©) Sf(@)dz = c‘, c(2 — 2p)dz.
)

Let  be a positive number greater than the absolute values of
all the factors ¢ and ¢/. The absolute value of z — z; is less than
7 V/2; hence, by (6), we find
F()de| <4 V2 =4y V2 w,
()
where w; denotes the area of the ith regular part. From (8) we find,
in the same way,

f(z)dz
()
where o is the area of the square which contains the 4th irregular
part. Adding all these integrals, we obtain, a fortiori, the inequality

<qli V241 +arers)= 47 V2 o} + 7l VZaters,

® f(2)dz|<7[4 V2 (S0 + Z0)) + A V2L],
©

where XA is an upper bound for the sides /. When the number of
squares is increased indefinitely in such a way that all the sides /;
and /; approach zero, the sum Sw; + 3w} finally becomes less than 4.
On the right-hand side of the inequality (9) we have, then, the product
of a factor which remains finite and another factor y which can be
supposed smaller than any given positive number. This can be true
only if the left-hand side is zero; we have then

fw V(&) dz = 0.
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29. In order that the preceding conclusion may be legitimate, we must make
sure that we can take the squares so small that the absolute values of all the
quantities e¢;, e; will be less than a positive number » given in advance, if the
points 2, and z; are suitably chosen.* We shall say for brevity that a region
bounded by a closed curve v, situated in a region of the plane inclosed by the
curve C, satisfies the condition (a) with respect to the number 9 if it is possible
to find in the interior of the curve v or on the curve itself a point 2’ such that
we always have

(a) f@)—f)— (=) =|2—2|n,

when z describes the curve y. The proof depends on showing that we can choose
the squares so small that all the parts considered, regular and irregular, satisfy the
condition (a) with respect to the number 9.

‘We shall establish this new lemma by the well-known process of successive
subdivisions. Suppose that we have first drawn two sets of parallels to the axes
Oz, Oy, the distance between two adjacent parallels being constant and equal
to l. Of the parts obtained, some may satisfy the condition (a), while others
do not. Without changing the parts which do satisfy the condition (a), we shall
divide the others into smaller parts by joining the middle points of the opposite
sides of the squares which form these parts or which inclose them. If, after
this new operation, there are still parts which do not satisfy the condition (a),
we will repeat the operation on those parts, and so on. Continuing in this way,
there can be only two cases: either we shall end by having only regions which
satisfy the condition (a), in which case the lemma is proved ; or, however far
we go in the succession of operations, we shall always find some parts which do
not satisfy that condition.

In the latter case, in at least one of the regular or irregular parts obtained
by the first division, the process of subdivision just described never leads us to
a set of regions all of which satisfy the condition (a); let 4; be such a part.
After the second subdivision, the part 4, contains at least one subdivision 4,
which cannot be subdivided into regions all of which satisfy the condition (a).
Since it is possible to continue this reasoning indefinitely, we shall have a suc-
cession of regions

A Ag Ag ey Ay -ee

which are squares, or portions of squares, such that each is included in the pre-
ceding, and whose dimensions approach zero as n becomes infinite. There is,
therefore, a limit point 2, situated in the interior of the curve or on the curve
itself. Since, by hypothesis, the function f(2) possesses a derivative f(z;) for
2 = 2,, we can find a number p such that

|f(2) =S (20) = (2= 2o) S (z0) | = |2 — 2],

provided that |z — 2,| is less than p. Let ¢ be the circle with radius p described
about the point z, as center. For large enough values of n, the region 4, will
lie within the circle ¢, and we shall have for all the points of the boundary of 4,

|(2) = F(20) = (2 — 20) £ (20) | = |2 — 2] -

* GOURSAT, Transactions of the American Mathematical Society, 1900, Vol. I, p. 14.
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Moreover, it is clear that the point 2 is in the interior of A, or on the boundary;
hence that region must satisfy the condition (a) with respect to . We are
therefore led to a contradiction in supposing that the lemma is not true.

30. By means of a suitable convention as to the sense of integra-
tion the theorem can be extended also to boundaries formed by
several distinct closed curves. Let us consider, for example, a func-
tion f(2) analytic within the region 4 bounded by the closed curve C
and the two interior curves C', C", and on these curves themselves
(Fig. 14). The complete boundary T' of the region 4 is formed by
these three distinct curves, and we shall say that that boundary is
described in the positive sense if the region
4 is on the left hand with respect to this
sense of motion; the arrows on the figure
indicate the positive sense of description
for each of the curves. With this agree-
ment, we have always

j; F@yiz=0,

Fic. 14 - the integral being taken along the complete

boundary in the positive sense. The proof

given for a region with a simple boundary can be applied again

here; we can also reduce this case to the preceding by drawing the

transversals ad, ¢d and by applying the theorem to the closed curve
abmbandepedga (I, § 153).

It is sometimes convenient in the applications to write the preced-

ing formula in the form

f( c)f(z) de = f(; S s+ f( . )f(z) dz,

where the three integrals are now taken in the same sense; that is,
the last two must be taken in the reverse direction to that indicated
by the arrows.

Let us return to the question proposed at the beginning of § 28;
the answer is now very easy. Let f(z) be an analytic function in a
region A of the plane. Given two paths AMB, ANB, having the same
extremities and lying entirely in that region, they will give the same
value for the integral f f(#)dz if the function f(2) is analytic within
the closed curve formed by the path AMB followed by the path
BNA. We shall suppose, for definiteness, that that closed curve
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does not have any double points. Indeed, since the sum of the two
integrals along A MB and along BN A is zero, the two integrals along
AMB and along ANB must be equal. We can state this result again
as follows: Two paths AMB and ANB, having the same extremities,
give the same value for the integral [ f(z)dx if we can pass from one
to the other by a continuous deformation without encountering any
point where the function ceases to be analytic.

This statement holds true even when the two paths have any num-
ber whatever of common points besides the two extremities (I, § 152).
From this we conclude that, when f(z) is analytic in a region
bounded by @ single closed curve, the integral [f(z)dz is equal to
zero when taken along any closed curve whatever situated in that
region. But we must not apply this result to the case of a region
bounded by several distinct closed curves. Let us consider, for exam-
ple, a function f(2) analytic in the ring-shaped region between two
concentric circles C, C'. Let C" be a circle having the same center
and lying between C and C'; the integral ff(z)dz, taken along C",
is not in general zero. Cauchy’s theorem shows only that the value
of that integral remains the same when the radius of the circle C"
is varied.*

* Cauchy’s theorem remains true without any hypothesis upon the existence of
the function f'(z) beyond the region 4 limited by the curve C, or upon the existence
of a derivative at each point of the curve C itself. It is sufficient that the function £ (2)
shall be analytic at every point of the region 4, and continuous on the boundary C,
that is, that the value f(Z) of the function in a point Z of ‘C' varies continuously with
the position of Z on that boundary, and that the difference f(Z) —f (2), where z is an
interior point, approaches zero uniformly with | Z-2|. In fact, let us first suppose
that every straight line from a fixed point a of 4 meets the boundary in a single
point. When the point z describes C, the point a + # (2 — a) (where @ is a real number
between 0 and 1) describes a closed curve C” situated in 4. The difference between
the two integrals, along the curves C and (”, is equal to

8= f( RUCETA LI L

and we can take the difference 1- @ so small that || will be less than any given
positive number, for we can write the function under the integral sign in the form

J@)-flz-(@-a) Q-]+ Q-0 f[2-(2-a) 1-6)].
Since the integral along C” is zero, we have, then, also

\ f f(2)dz=0.
o

In the case of a boundary of any fum whatever, we can replace this boundary by a
succession of closed curves that fulill the preceding condition by drawing suitably
placed transversals.
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31. Generalization of the formule of the integral calculus. Let f(z)
be an analytic function in the region 4 limited by a simple boundary
curve C. The definite integral

2(2)= f f(®)ds,
I

taken from a fixed point #, up to a variable point Z along a path
lying in the region 4, is, from what we have just seen, a definite
function of the upper limit Z. We shall now show that this function
®(Z) is also an analytic function of Z whose derivative is f(Z).
For let Z + & be a point near Z; then we have

Z4+h

¥Z+R)-2)=[ [z

and we may suppose that this last integral is taken along the seg-
ment of a straight line joining the two points Z and Z + 4. If the
two points are very close together, f (z) differs very little from f(Z)
along that path, and we can write

F@=r(2)+3
where | 8| is less than any given positive number v, provided that |A|
is small enough. Hence we have, after dividing by &,

®(Z+h)—d(2Z 1 [Z+
Z+1 ()=f(2)+7bfz 5 de

The absolute value of the last integral is less than y|%|, and there-
fore the left-hand side has for its limit f(Z) when % approaches zero.

If a function F(Z) whose derivative is f(Z) is already known, the
two functions ®(Z) and F(Z) differ only by a constant (footnote,
p. 38), and we see that the fundamental formula of integral calculus
can be extended to the case of complex variables :

(10) [ @ =re) - Fe

This formula, established by supposing that the two functions f(2),
F(z) were analytic in the region 4, is applicable in more general
cases. It may happen that the function F(7), or both f(2) and F(z)
at the same time, are multiple-valued; the integral has a precise
meaning if the path of integration does not pass through any of the
critical points of these functions. In ths; application of the formula
it will be necessary to pick out an nnt ™ determination F(z,) of the
primitive function, and to follow the" continuous variation of that
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function when the variable z describes the path of integration.
Moreover, if f(2) is itself a multiple-valued function, it will be neces-
sary to choose, among the determinations of F(z), that one whose
derivative is equal to the determination chosen for f(2).

‘Whenever the path of integration can be inclosed within a region
with a simple boundary, in which the branches of the two functions
f(?), F(z) under consideration are analytic, the formula may be
regarded as demonstrated. Now in any case, whatever may be the
path of integration, we can break it up into several pieces for which
the preceding condition is satisfied, and apply the formula (10) to
each of them separately. Adding the results, we see that the for-
mula is true in general, provided that we apply it with the necessary
precautions.

Let us, for example, calculate the definite integral j:" 2™ dz, taken
along any path whatever not passing through the origin, where m is
a real or a complex number different from — 1. One primitive func-
tion is 2™ *!/(m + 1), and the general formula (10) gives

_2';'“ _zon+l.
f 2™ dz = Tl

In order to remove the ambiguity present in this formula when m
is not an integer, let us write it in the form:

£ em+1)Log(s)) _ o(m+1)Log(sy)
2™dz = .
A m+41

0
The initial value Log (z,) having been chosen, the value of 2™ is
thereby fixed along the whole path of integration, as is also the final
value Log (?,). The value of the integral depends both upon the
initial value chosen for Log (2,) and upon the path of integration.
Similarly, the formula

“
[ LB s = Log 1)1 - Log 4]
| 7@

does not present any difficulty in interpretation if the function f(2)
is continuous and does not vanish along the path of integration.
The point » = f(z) describes in its plane an arc of a curve not pass-
ing through the origin, and the right-hand side is equal to the vari-
ation of Log(«) along this arc. Finally, we may remark in passing
that the formula for integration by parts, since it is a consequence
of the formula (10), can be extended to integrals of functions of a
complex variable.
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82. Another proof of the preceding results. The properties of the
integral [f(z)dz present a great analogy to the properties of line
integrals when the condition for integrability is fulfilled (I, § 162).
Riemann has shown, in fact, that Cauchy’s theorem results im-
mediately from the analogous theorem relative to line integrals.
Let f(2)=X + Yi be an analytic function of 2 within a region 4
with a simple boundary; the integral taken along a closed curve C
lying in that region is the sum of two line integrals:

f Sf(2)dz =f Xdz — Ydy + if Ydz + Xdy,
) (%) ©)

and, from the relations which connect the derivatives of the func-
tions X, Y, ox _ov ox__ov
oz oy oy oz

we see that both of these line integrals are zero * (I, § 152).

It follows that the integral L: f(2)dz, taken from a fixed point z,
to a variable point #, is a single-valued function ¢ (z) in the region 4.
Let us separate the real part and the coefficient of ¢ in that function :

®()=P(x, y)+ iQ(x, ¥),

¥ (= ¥)

P(z, y)= Xdx — Ydy, Qx, y)= Ydx + Xdy.
(s ¥9) (g ¥)
The functions P and Q have partial derivatives,
|
oP o°P _ Q 0Q _
w Y eV wm—h =%

oy |

which satisfy the conditions

or _9Q oP _ 0Q |

w oy b w |

Consequently, P + Qi is an analytic function of 2 whose derivative ‘

is X + Yi or f(?).

If the function f(2) is discontinuous at a certain number of points
of A, the same thing will be true of one or more of the functions X,

Y, and the line integrals P (z, %), Q(x, ) will in general have periods

that arise from loops described about points of discontinuity (I, § 1563).

The same thing will then be true of the integral f, : S(2)dz. We shall ‘
resume the study of these periods, after having investigated the nature

of the singular points of f(z).

# It should be noted that Riemann’s proof assumes the continuity of the deriva-
tives 0.X/0x, dY/dy, - - -; that is, of f/(2).
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To give at least one example of this, let us consider the integral f*dz/z.
After separating the real part and the coefficient of i, we have

f' f(zv nde 4+ do + Wy _ @nzde 4+ ydy if(& Nedy — yde

1 a0 z+iy Ja,o 2+ a0 P4yl

The real part is equal to [log(z3 + »%)]/2, whatever may be the path followed.
As for the coefficient of i, we have seen that it has the period 2w ; it is equal
to the angle through which the radius vector joining the origin to the point
(2, ¥) has turned. We thus find again the various determinations of Log(z).

II. CAUCHY’S INTEGRAL. TAYLOR’S AND LAURENT’S
SERIES. SINGULAR POINTS. RESIDUES

We shall now present a series of new and important results, which
Cauchy deduced from the consideration of definite integrals taken
between imaginary limits.

33. The fundamental formula. Let f(2) be an analytic function in
the finite region A4 limited by a boundary T, composed of one or of
several distinct closed curves, and continuous on the boundary itself.
If x is a point * of the region 4, the function

PAOX

2—

is analytic in the same region, except at the point z = z.

With the point x as center, let us describe a circle y with the
radius p, lying entirely in the region 4 ; the preceding function is
then analytic in the region of the plane limited by the boundary I'
and the circle y, and we can apply to it the general theorem (§ 28).
Suppose, for definiteness, that the boundary I' is composed of two
closed curves C, C' (Fig. 15). Then we have

f f@dz _ [ f@dz f f@)dz
)

2—X y)z—:c

where the three integrals are taken in the sense indicated by the
arrows. We can write this in the form

f f(z)dz= f(z)dz,
@

e mz—x

* In what follows we shall often have to consider several complex quantities at the
same time. We shall denote them indifferently by the letters , 2, u, - - -. Unless itis
expressly stated, the letter z will no longer be reserved to denote a real variable.
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where the integral [, denotes the integral taken along the total
boundary I in the positive sense. If the radius p of the circle y is
very small, the value of f(z) at any point of this circle differs very

little from f(x):
i F@ =@ +3,
where |8| is very small. Replacing f(2) by this value, we find

(11) f —LL— =f(=) f P m:f’;-

The first integral of the right-hand side is easily evaluated; if we
put 2 = x + pe?*, it becomes

A 0f
ipe® dl
f"—w [ p o

The second integral [ 8dz/(z — ) is therefore independent of the
radius p of the circle y; on the other hand, if |8| remains less than

Fi16. 156

a positive number , the absolute value of this integral is less than
(n/p) 2mp = 2my. Now, since the function f(z) is continuous for
z =z, we can choose the radius p so small that 5 also will be as
small as we wish. Hence this integral must be zero. Dividing the
two sides of the equation (11) by 2 mri, we obtain

12) foy == [ L%

2m. o 2 — @

This is Cauchy’s fundamental formula. It expresses the value of the
function f(2) at any point « whatever within the boundary by means
of the values of the same function taken only along that boundary.
Let  + Az be a point near z, which, for example, we shall suppose
lies in the interior of the circle y of radius p. Then we have also

27rz n?—%— Az

+
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and consequently, subtracting the sides of (12) from the correspond-
ing sides of this equation and dividing by Az, we find

f+an) —flz) 1 _ Sf(®)d= )
Ax 2mi Jiry (2 — %) (2 —x — Az)

When Az approaches zero, the function under the integral sign ap-
proaches the limit f(2)/(2 — )*. In order to prove rigorously that
we have the right to apply the usual formula for differentiation, let
us write the integral in the form

Sf(@)dz _ J(@)dz Az f(2)dz .
@ (2 —2) (2 — 2 — Ax) - m(z—x)’+[r)(z—x)’(z—z—M)

Let M be an upper bound for |f(2)| along T, L the length of the .
boundary, and 8 a lower bound for the distance of any point what-
ever of the circle y to any point whatever of I. The absolute value
of the last integral is less than ML|Axz|/3* and consequently ap-
proaches zero with |Az|. Passing to the limit, we obtain the result

dz
13 2y = [ L&
(13) r@=5m | $ 28

It may be shown in the same way that the usual method of differ-
entiation under the integral sign can be applied to this new integral *
and to all those which can be deduced from it, and we obtain
successively

)= f—i% @ =g [ £ 25

and, in general,
(14) FO@) = o AQLN

(z a;)n +1

Hence, if a function f(2) is analytic in a certain region of the plane,
the sequence of successive derivatives of that function is unlimited,
and all these derivatives are also analytic functions in the same
region. It is to be noticed that we have arrived at this result by
assuming only the existence of the first derivative.

Note. The reasoning of this paragraph leads to more general con-
clusions. Let ¢(z) be a continuous function (but not necessarily

* The general formula for differentiation under the integral sign will be established
later (Chapter V).
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analytic) of the complex variable # along the curve T, closed or not.

The integral
F(w)—f (2)dz

-2

has a definite value for every value of x that does not lie on the
path of integration. The evaluations just made prove that the limit
of the quotient [F(x + Ax)— F(x)]/Ax is the definite integral

F'(x)=fi'ﬁld—z,

a.)(z — )

when |Az|.approaches zero. Hence F(x) is an analytic function for
every value of z, except for the points of the curve I, which are in
general singular points for that function (see § 90). Similarly, we
find that the nth derivative F®™(z) has for its value

F®(z)= ,,gf _$(Rdz_

2 — x)n-l-l

84, Morera’s theorem. A converse of Cauchy’s fundamental theorem which
was first proved by Morera may be stated as follows: If a function f(2) of a
complex variable z i3 continuous in a region A, and if the definite integral j;é)f(z) dz,
taken along any closed curve C lying in A, i8 zero, then f(2) i3 an analytic func-
tion tn A.

For the definite integral F(z) = f JS(¢t) dt, taken between the two points z,, z
of the region A along any path whatever lying in that region, has a definite
value independent of the path. If the point 2, is supposed fixed, the integral
is a function of z. The reasoning of § 31 shows that the quotient AF/Az has
f(2) for its limit when Az approaches zero. Hence the function F(z) is an
analytic function of z having f(z) for its derivative, and that derivative is
therefore also an analytic function.

35. Taylor's series. Let f'(2) be an analytic function in the interior
of a circle with the center a ; the value of that function at any point
x within the circle is equal to the sum of the convergent series

f@=F@+=" 1@
+(’E2:!£".'Xfw(a)+ . +§%§X‘f(~)(a,)+ cee

(1%)

In the demonstration we can suppose that the function f(z) is
analytic on the circumference of the circle itself; in fact, if « is any
point in the interior of the circle C, we can always find a circle C’,
with center ¢ and with a radius less than that of C, which contains
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the point & within it, and we would reason with the circle C' just as
we are about to do with the circle C. With this understanding, «
being an interior point of C, we have, by the fundamental formula,

(12 @)= o fmaﬁ’i dz.

2w z2—x

Let us now write 1/(z — ) in the following way :

1 1 _ 1 1
z—x z—a—(x—a) z—a ]_%*=a ’
2—a
or, carrying out the division up to the remainder of degree n 4+ 1 in
* — a,

1 1 z—a , (x—a)
z—a:—z——a,+(z—a)’+(z—a,)'+”'
+ z— a)* (x — a)* !

G—arn TG DE—ay

Let us replace 1/(z — z) in the formula (12") by this expression,
and let us bring the factors # — a, (z — a)’ - - -, independent of z,
outside of the integral sign. This gives

S@=J,+J(x—a)+ .-+ +J,(z—a)*+ R,

where the coefficients J, J,, - - -, J, and the remainder R, have the
values

J =1 [ @ =1 [ f®d=

16 ° 2miJi,2—a V2 )2 — a)*’ o
R TR U /Y N Wy e TS
2w oz —a)rt? 2w o \r—a z—x

As n becomes infinite the remainder R, approaches zero. For let
M be an upper bound for the absolute value of f(z) along the circle
C, R the radius of that circle, and » the absolute value of x — 2. We
have |# — z| =R — r, and therefore |1/(z — z)| =1/(R — r), when 2
describes the circle C. Hence the absolute value of R, is less than

i(ﬁ)ﬁl_ﬂl_z}g,r_ MR (ﬁ)"“
2#\R/ R—~r “R—r\R/ °’

and the factor (r/R)*+! approaches zero as n becomes infinite. From
this it follows that f(x) is equal to the convergent series

F@ =T+ @ = a)t - T (@— @+
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Now, if we put £ = @ in the formule (12), (13), (14), the boundary
T being here the circle C, we find

J,=f(a), J, =S (a), ) J~=u::!9’

The series obtained is therefore identical with the series (15); that
is, with Taylor’s series.

The circle C is a circle with center a, in the interior of which the
function is analytic; it is clear that we would obtain the greatest
circle satisfying that condition by taking for radius the distance
from the point @ to that singular point of f(2) nearest a. This is
also the circle of convergence for the series on the right.*

This important theorem brings out the identity of the two defini-
tions for analytic functions which we have given (I, § 197, 2d ed.;
§191, 1st ed.; and II, § 3). In fact, every power series represents
an analytic function inside of its circle of convergence (§ 8); and,
conversely, a3 we have just seen, every function analytic in a circle
with the center @ can be developed in a power series proceeding
according to powers of # — a and convergent inside of that circle.
Let us also notice that a certain number of results previously estab-
lished become now almost intuitive; for example, applying the
theorem to the functions Log(1 4 2) and (1 + 2)™, which are ana-

Iytic inside of the circle of unit radius with the origin as center,

we find again the formule of §§17 and 18.

Let us now consider the quotient of two power series f(x)/¢ (),
each convergent in a circle of radius R. If the series ¢(x) does not
vanish for # = 0, since it is continuous we can describe a circle of
radius »= R in the whole interior of which it does not vanish. The
function f(x)/¢ () is therefore analytic in this circle of radius » and
can therefore be developed in a power series in the neighborhood
of the origin (I, § 188, 2d ed.; §183, 1st ed.). In the same way, the
theorem relative to the substitution of one series in another series
can be proved, ete.

Note. Let f() be an analytic function in the interior of a circle C
with the center @ and the radius » and continuous on the circle
itself. The absolute value | f(z)| of the function on the circle is a
continuous function, the maximum value of which we shall indicate
by AC(r). On the other hand, the coefficient a, of (z — @)* in the

* This last conclusion requires some explanation on the nature of singular points,
which will be given in the chapter devoted to analytic extension.

N
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development of f(z) is equal to f™(a)/n!, that is, to
1 f(z)dz .
o ’
2mi (a)(” — a)*t!
we have, then, 1 ®
M(r M (r
an A,‘=|a,,|<'2—7—r r£1)2m= el
so that AL (r) is greater than all the products 4,7.* We could use
M (r) instead of M in the expression for the dominant function
(1, §186, 2d ed.; §181, 1st ed.).

36. Liouville’s theorem. If the function f(x) is analytic for every
finite value of x, then Taylor’s expansion is valid, whatever « may be,
in the whole extent of the plane, and the function considered is called
an tnfegral function. From the expressions obtained for the coeffi-
cients we easily derive the following proposition, due to Liouville:

Every integral function whose absolute value is always less than a
Jized number M s a constant.

For let us develop f(x) in powers of x — a, and let a, be the
coefficient of (z — a)* It is clear that AC(r) is less than M, what-
ever may be the radius », and therefore |a,| is less than M/r*. But
the radius  can be taken just as large as we wish; we have, then,
a,=0if n =1, and f(z) reduces to a constant f(a).

More generally, let f(x) be an integral function such that the
absolute value of f(x)/z™ remains less than a fixed number M for
values of « whose absolute value is greater than a positive number
R; then the function f(x) is a polynomial of degree not greater than
m. For suppose we develop f(x) in powers of z, and let a, be the
coefficient of 2. If the radius » of the circle C is greater than R, we
have M (r) < Mr™, and consequently |e,| < M-, If n>m, we
have then a, = 0, since Mr™—* can be made smaller than any given
number by choosing r large enough.

37. Laurent’s series. The reasoning by which Cauchy derived
Taylor’s series is capable of extended generalizations. Thus, let-
S (z) be an analytic function in the ring-shaped region between the

* The inequalities (17) are interesting, especially since they establish a relation
between the order of magnitude of the coefficients of a power series and the order of
magnitude of the function; AC(r) is not, in general, however, the smallest number
- which satisfies these inequalities, as is seen at once when all the coefficients a, are
real and positive. These inequalities (17) can be established without making use of
Cauchy’sintegral (MErAY, Legons nouvelles sur I'analyse infinitésimale, Vol. I, p. 99).



‘82 THE GENERAL CAUCHY THEORY [, § 37

two concentric circles C, C' having the common center a. We shall
show that the value f(x) of the function at any point x taken in that
region is equal to the sum of two convergent series, one proceeding in
positive powers of x — a, the other in positive powers of 1/(x — a).*

We can suppose, just as before, that the function f(#) is analytic
on the circles ¢, C' themselves. Let R, R' be the radii of these circles
and r the absolute value of z — a;if C' is the interior circle, we have
R' < r < R. About « as center let us describe a small circle y lying
entirely between C and C'. We have the equality

f f@dz_ (" f@dz [ f@)dz,
. nE—T pw? =7

the integrals being taken in a suitable sense; the last integral, taken
along y, is equal to 2 7if (:c), and we can wrlte the preceding relation
in the form

as) f@) = 27ﬂf (z)dz Sz!dz,

z—wx T —%

where the integrals are all taken in the same sense.
Repeating the reasoning of § 35, we find again that we have

1 2)dz
(19) ﬁj(;é(_—}?=.fo+.fl(z—a)+---+J,,(a:—a)'+--~,

where the coefficients J,, J,,---, J,, .- are given by the formulae

(16). In order to develop the second integral in a series, let us
notice that

1 1 1 1 z—a
z—z—z—a( z—a)= (x )’+
(z—a)y! (z —a)
e Te-nE—or
and. that the integral of the complementary term,

L[ (= 2,
((%0]

2mi x—al x—z

. approaches zero when n increases indefinitely. In fact, if M’ is the
maximum of the absolute value of f(#) along C', the absolute value
of this integral is less than

1 (R M , MR <R')"v
27:'(1' r—R’ZWR—'r—R' r /]’

* Comptes rendus de I Académie des Sci 8, Vol. XVII. See (Buvres de Cauchg."
1st series, Vol. VIII, p. 115. '

)

—— . . s
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and the factor R'/r is less than unity. We have, then, also

1 J(®)dz _ K, K, K,
(20) Z—ﬂ—-ij(;,) +(x_a)’+...+-—-——-+...,

z—z =x—a (z — ay
where the coefficient K, is equal to the definite integral

21) K, = ﬁ [ m(z — a)*" f(z)d=.

Adding the two developments (19) and (20), we obtain the proposed
development of f(zx).

In the formule (16) and (21), which give the coefficients J, and K,,
we can take the integrals along any circle I' whatever lying between C
and C' and having the point @ for center, for the functions under the
integral sign are analytic in the ring. Hence, if we agree to let the
index n vary from — o to+ o, we can write the development of
S(x) in the form

. 4o
(22) f@=73, L@z—ay,
where the coefficient J,, whatever the sign of =, is given by the
formula
(23) 7. 1 f(z)d=z

T2 m(z — a)rt!

Ezample. The same function f(z) can have developments which are entirely
different, according to the region considered. Let us take, for example, a
rational fraction f(z), of which the denominator has only simple roots with
different absolute values. Let a,b,c, .-, ! be these roots arranged in the order
of increasing absolute values. Disregarding the integral part, which does not
interest us here, we have

B c L

A
o=t ettt

In the circle of radius ¢ about the origin as center, each of the simple frac-
tions can be developed in positive powers of x, and the development of f(z) is
identical with that given by Maclaurin’s expansion

A L A L A L
f(z)=_(3+ ceed .l_)_(?.;. """F)‘,""‘(W*‘ oo m)zn_
In the ring between the two circles of radii|a| and |b] the fractions 1/(z — b),
1/(z— ¢),-++, 1/(z — 1) can be developed in positive powers of z, but 1/(z — a)
must be developed in positive powers of 1/z, and we have

f(z)=-(—?+"'+_Il:)—(£+"'+l£’)z-"°

b
B L A  Aa Awr—?
—(W—l+"'+l'_+i)z'-'”+?+?+“'+ -

dooe,
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In the next ring we shall have an analogous development, and so on. Finally,
exterior to the circle of radius |{], we shall have only positive powers of 1/z:

A+...+L A oo Ll Aar-14 ... 4+ Lis—1
f@= +z+ + “+z,"' Hoeed "'”“L +

88. Other series. The proofs of Taylor’s series and of Laurent’s series are
based eesentially on a particular development of the simple fraction 1/(z — z)
when the point z remains inside or outside a fixed circle. Appell has shown that
we can again generalize these formulse by considering a function f(z) analytic
in the interior of a region A bounded by any number whatever of arcs of

/ P

Fic. 16

circles or of entire circumferences.* Let us consider, for example, a function
f(z) analytic in the curvilinear triangle PQR (Fig. 16) formed by the three
arcs of circles PQ, QR, RP, belonging respectively to the three circumferences
C, ¢’, C”. Denoting by ¢ any point within this curvilinear triangle, we have

1 dz 1 dz 1 dz
@ se=g [ T00an | f02+an ) 105
(e @m? T __ 52T Jirp)
Along the arc PQ we can write
1 _ 1 z—a (x—a) 1 (z—a)"“
z—z_z—a+(z—a)“+ -'-(z—a)"'*l z—z\z—a) '

where a is the center of C; but when z describes the arc PQ, the absolute value
of (z — a)/(z— a) is less than unity, and therefore the absolute value of the
integral

1 1o (z— a)~+ldz

2mri pg?— % \2— g,
approaches zero as n becomes infinite. We have, therefore,

1 dz
() g—ﬂfm’;"_’z =Tyt @ =) 4+ Ta@— A ey

* Acta mathematica, Vol. I, p. 145.
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where the coefficients are constants whose expressions it would be easy to write
out. Similarly, along the arc QR we can write
1 1 z—b (z—b—1 1 ( —b)"

z—z_z—b+(z—b)’+ + @=br " z—2z\z—0b/’
where b is the center of ¢’. Since the absolute value of (z — b)*/(z — b)* ap-
proaches zero as n becomes infinite, we can deduce from the preceding equation
a development for the second integral of the form
1 f(R)dz _ K, K, K,

: +-0 4
2w Joom2—2% - (z — b)? (z— b

Similarly, we find

) 2_1.f f@dz _ L + L, + et La 4+ .-
™ Jp)

® S+ FI

z—z z—c¢ (z—c)? (z—o)

where c is the center of the circle C”. Adding the three expressions (a), (8),
(7), we obtain for f(z) the sum of three series, proceeding respectively accord-
ing to positive powers of z — a, of 1/(x — b), and of 1/(z — c). It is clear that
we can transform this sum into a series of which all the terms are rational func-
tions of z, for example, by uniting all the terms of the same degree in z — a,
1/(x—1b), 1/(x — c). The preceding reasoning applies whatever may be the
number of arcs of circles.

It is seen in the preceding example that the three series, (a), (8), (v), are
still convergent when the point = is inside the triangle P'@’R’, and the sum of
these three series is again equal to the integral

fz)dz
z—z

taken along the boundary of the triangle PQR in the positive sense. Now, when
the point z is in the triangle P’Q'R’, the function f(z)/(z — z) is analytic in
the interior of the triangle PQR, and the preceding integral is therefore zero.
Hence we obtain in this way a series of rational fractions which is convergent
when z is within one of the two triangles PQR, P’Q'R’, and for which the sum
i3 equal to f(z) or to zero, according as the point x is in the triangle PQR or in the
triangle P'Q'R’.

Painlevé has obtained more general results along the same lines.* Let us con-
sider, in order to limit ourselves to a very simple case, a convex closed curve I'
having a tangent which changes continuously and a radius of curvature which
remains under a certain upper bound. It is easy to see that we can associate
with each point M of T' a circle, C tangent to T' at that point and inclosing that
curve entirely in its interior, and this may be done in such a way that the center
of the circle moves in a continuous manner with M. Let f(z) be a function ana-
Iytic in the interior of the boundary I' and continuous on the boundary itself.
Then, in the fundamental formula

1 [ f@)ée
f(z)—'—z?ij(;)z—z ’

* Sur les lignes singuliéres des fonctions analytiques (Annales de la Faculté de
Toulouse, 1888).




86 THE GENERAL CAUCHY THEORY [11, § 38

where z is an interior point to I, we can write

1 1 z—a $od (x—a) 1 (z-—-a.)"“
z2—z2 z—a (z—a) E—aptl z—z\z—a/ '’

where a denotes the center of the circle C which corresponds to the point z of
the boundary ; a is no longer constant, as in the case already examined, but it
is a continuous function of z when the point M describes the curve I'. Never-
theless, the absolute value of (z — a)/(z — &), which is a continuous function of
2z, remains less than a fixed number p less than unity, since it cannot reach the
value unity, and therefore the integral of the last term approaches zero as n
becomes infinite. Hence we have

@—apr
@) f(z)-— f Lo s

.

and it is clear that the geneml term of this series is a polynomial P,(z) of
degree not greater than n. The function f(z) i3 then developable in a series of
polynomials in the interior of the boundary T.

The theory of conformal transformations enables us to obtain another kind
of series for the development of analytic functions. Let f(z) be an analytic
function in the interior of the region 4, which may extend to infinity. Suppose
that we know how to represent the region 4 conformally on the region inclosed
by a circle C such that to a point of the region A corresponds one and only
one point of the circle, and conversely ; let u = ¢ (2z) be the analytic function
which establishes a correspondence between the region 4 and the circle C hav-
ing the point u = 0 for center in the u-plane. When the variable » describes
this circle, the corresponding value of z is an analytic function of u. The same
is true of f(z), which can therefore be developed in a convergent series of
powers of u, or of ¢(z), when the variable z remains in the interior of 4.

Suppose, for example, that the region 4 consists of the infinite strip included
between the two parallels to the axis of reals y =4 a. We have seen (§ 22)
that by putting u = (e¥2/26 — 1)/(e*2/24 4- 1) this strip is made to correspond to
a circle of unit radius having its center at the point » = 0. Every function
analytic in this strip can therefore be developed in this strip in a convergent
series of the following form :

39. Series of analytic functions. The sum of a uniformly conver-
gent series whose terms are analytic functions of z is a continuous
function of z, but we could not say without further proof that that
sum is also an analytic function. It must be proved that the sum has
a unique derivative at every point, and this is easy to do by means
of Cauchy’s integral.

Let us first notice that a uniformly convergent series whose terms
are continuous functions of a complex variable z can be integrated
term by term, as in the case of a real variable. The proof given in
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the case of the real variable (I, § 114, 2d ed.; § 174, 1st ed.) applies
here without change, provided the path of integration has a finite
length.

The theorem which we wish to prove is evidently included in the
following more general proposition :

Let
26) F@FH@+ - +A@)+ -

be a series all of whose terms are analytic functions in a region A
bounded by a closed curve T and continuous on the boundary. If the
series (26) is uniformly convergent on T, it is convergent in every point
of 4, and its sum 13 an analytic function F(z) whose pth derivative
s represented by the series fm med by the pth derivatives of the terms
of the series (26).

Let ¢ (2) be the sum of (26) in a point of I'; ¢(2) is a continuous
function of 2z along the boundary, and we have seen (§ 33, Note)
that the definite integral

Zf.()
@)  F@)= f r ) e

where « is any point of A, represents an analytic function in the
region 4, whose pth derivative is the expression

5 ()
@28) F®(z)= _¢@dz __ pl 2‘;‘ dz.

27 Jo (e — )P 2 Sy 2 — )P

Since the series (26) is uniformly convergent on T, the same thing
is true of the series obtained by dividing each of its terms by 2 — «,

and we can write 2
f,(z)dz
F(z)= z 2 'rnf 3

R—X

or again, since f,(2) is an analytic function in the interior of T,
we have, by formula (12),

F@=f@+ L@+ +LHE@+--
Similarly, the expression (28) can be written in the form
FO@)=fP @)+ + D@+

Hence, if the series (26) is uniformly convergent in a region 4 of
the plane, 2 being any point of that region, it suffices to apply the
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preceding theorem to a closed curve I lying in 4 and surrounding
the point z. This leads to the following proposition :

Every series uniformly convergent in a region A of the plane, whose
terms are all analytic functions in A, represents an analytic function
F(2) in the same region. The pthderivative of F(2) is equal to the
series obtained by differentiating p times each term of the series
which represents F(z).*

40. Poles. Every function analytic in a circle with the center a is
equal, in the interior of that circle, to the sum of a power series

@)  FE=AF A=)+t A=+
‘We shall say, for brevity, that the function is regular at the point a,
or that a is an ordinary point for the given function. We shall call the
interior of a circle C, described about « as a center with the radius p,
the neighborhood of the point a, when the formula (29) is applicable.
It is, moreover, not necessary that this shall be the largest circle in the
interior of which the formula (29) is true; the radius p of the neigh-
borhood will often be defined by some other particular property.

If the first coefficient 4 is zero, we have f(a) = 0, and the point
a is a zero of the function f(z). The order of a zero is defined in the
same way as for polynomials; if the development of f(z) commences
with a term of degree m in 2 — a,

SR =4 (z—a)"+ 4,z —a)"* ...,  (m>0),
where 4, is not.zero, we have
f(@)=0, fl@=0, -.., f®VY(@)=0, f™(a)+0,

and the point a is said to be a zero of order m. We can also write
the preceding formula in the form

S =(—a)" (),

¢ (2) being a power series which does not vanish when 2z = a. Since
this series is a continuous function of 2, we can choose the radius p
of the neighborhood so small that ¢(z) does not vanish in that
neighborhood, and we see that the function f(z) will not have any
other zero than the point @ in the interior of that neighborhood.
The zeros of an analytic function are therefore isolated points.

Every point which is not an ordinary point for a single-valued
function f(2) is said to be a singular point. A singular point a of the

* This proposition is usually attributed to Weierstrass.




10, § 40] SINGULAR POINTS 89

function f(¢) is a pole if that point is an ordinary point for the re-
ciprocal function 1/£(2). The development of 1/f(z) in powers of
z — a’cannot contain a constant term, for the point ¢ would then be
an ordinary point for the function f(z). Let us suppose that the
development commences with a term of degree m in z — a,

(30) f%z)=<z—a>~¢<z>,

where ¢ (z) denotes a regular function in the neighborhood of the
point @ which is not zero when 2 = a. From this we derive

=1 1 ¥ (2)
(31) J@= (z— o) c[:(z) (= — a)m
where y(2) denotes a regular function in the neighborhood of the
point @ which is not zero when # = ¢. This formula can be written
in the equivalent form

Gl) F&) =Gt st t

where we denote by P(z — a), as we shall often do hereafter, a
regular function for z =ga, and by B,, B,_;,-+, B, certain con-
stants. Some of the coefficient¢ B, B, - - -, B,_, may be zero, but
the coefficient B,, is surely different from zero. The integer m is
called the order of the pole. It is seen that a pole of order m of f(z)
is a zero of order m of 1/f(z), and conversely.

In the neighborhood of a pole a the development of f(z) is com-
posed of a regular part P(2 — a) and of a polynomial in 1/(z — a);
this polynomial is called the principal part of f(z) in the neighbor-
hood of the pole. When the absolute value of 2 — a approaches zero,
the absolute value of f(z) becomes infinite in whatever way the point
z approaches the pole. In fact, since the function y (2) is not zero for
z = a, suppose the radius of the neighborbood so small that the
absolute value of y(2) remains greater than a positive number M in
this neighborhood. Denoting by » the absolute value of 2 — a, we
have | f(2)| > M/r™, and therefore |f(z)| becomes infinite when »
approaches zero. Since the function y (z) is regular for 2z = a, there
exists a circle C' with the center ¢ in the interior of which y(z) is
analytic. The quotient y(2)/(z — @)™ is an analytic function for all
the points of this circle except for the point a itself. In the neigh-
borhood of a pole a, the function f(2) has therefore no other singular
point than the pole itself; in other words, poles are isolated singular
points.
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41. Functions analytic except for poles. Every function which is
analytic at all the points of a region 4, except only for singular
points that are poles, is said to be analytic except for poles in that
region.* A function analytic in the whole plane except for poles
may have an infinite number of poles, but it can have only a finite
number in any finite region of the plane. The proof depends on a
general theorem, which we must now recall: If in a finite region A
of the plane there exist an infinite number of points possessing a
particular property, there exists at least one limit point in the region
A or on its boundary. (We mean by limit point a point in every
neighborhood of which there exist an infinite number of points
‘possessing the given property.) This proposition is proved by the
process of successive subdivisions that we have employed so often.
For brevity, let us indicate by (E) the assemblage of points con-
sidered, and let us suppose that the region 4 is divided into squares,
or portions of squares, by parallels to the axes Oz, 0y. There will
be at least one region A4, containing an infinite number of points of
the assemblage (E). By subdividing the region 4, in the same way,
and by continuing this process indefinitely, we can form an infinite
sequence of regions 4, 4,, .-, 4,, - that become smaller and
smaller, each of which is contained in the preceding and contains
an infinite number of the points of the assemblage. All the points of
A, approach a limit point Z lying in the interior of or on the bound-
ary of 4. The point Z is necessarily a limit point of (E), since there
are always an infinite number of points of (E) in the interior of a
circle having Z for center, however small the radius of that circle
may be.

Let us now suppose that the function f(z) is analytic except for
poles in the interior of a finite region 4 and also on the boundary I’
of that region. If it has an infinite number of poles in the region,
it will have, by the preceding theorem, at least one -point Z situated
in 4 or on T in every neighborhood of which it will have an infinite
number of poles. Hence the point Z can be neither a pole nor an
ordinary point. It is seen in the same way that the function f(z)
can have only a finite number of zeros in the same region. It follows
that we can state the following theorem :

Every JSunetion analytic except for poles in a finite region A and on
its boundary has in that region only a finite number of zeros and only
a finite number of poles.

* Such tu.nctjons are said by some writers to be meromorphéc. — TRANS.
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In the neighborhood of any point a, a function f(z) analytic
except for poles can be put in the form

(32) f(@)=(—a) ¢(),
where ¢ (2) is a regular function not zero for z = a. The exponent
# is called the order of f(#) at the point a. The order is zero if the
point a.is neither a pole nor a zero for f(z); it is equal to m if

the point a is a zero of order m for f(z), and to — = if @ is a pole
of order n for f(2).

42. Essentially singular points. Every singular point of a single-
valued analytic function, which is not a pole, is called an essen-
tially singular point. An essentially singular point a is isolated
if it is possible to describe about @ as a center a circle C in the
interior of which the function f(2) has no other singular point
than the point a itself; we shall limit ourselves for the moment
to such points.

Laurent’s theorem furnishes at once a development of the func-
tion f(2) that holds in the neighborhood of an essentially singular
point. Let C be a circle, with the center @, in the interior of which
the function f(z) has no other singular point than a; also let ¢ be a
circle concentric with and interior to C. In the circular ring included
between the two circles C and ¢ the function f(z) is analytic and
is therefore equal to the sum of a series of positive and negative
powers of z — a,

+o
(33) F@ = Au(z—a)™
This development holds true for all the points interior to the circle
C except the point a, for we can always take the radius of the circle
¢ less than |2 — a| for any point 2 whatever that is different from «
and lies in C. Moreover, the coefficients 4,, do 1ot depend on this
radius (§ 37). The development (33) contains first a part regular
at the point a, say P(# — a), formed by the terms with positive
exponents, and then a series of terms in powers of 1/(2 — a), '

A_, A

Aoy +-.- 4

z—a (z—a)

(34)

Gay

This is the principal part of f(z) in the neighborhood of the singular
point. This principal part does ot reduce to a polynomial in
(# — a)~?, for the point 2 = @ would then be a pole, contrary to the
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hypothesis.* It is an integral transcendental function of 1/(z — a).
In fact, let » be any positive number less than the radius of the
circle C'; the coefficient A_, of the series (34) is given by the
expression (§ 37)

1 m—1
A_m=ﬁﬁ'§z—a) f(2)dz,

the integral being taken along the circle C' with the center a and
the radius ». We have, then,
(35) | 4_m| < AC(r)7™

where AC(r) denotes the maximum of the absolute value of f(2)
along the circle C'. The series is then convergent, provided that
|# — a| is greater than r, and since » is a number which we may
suppose as small as we wish, the series (34) is convergent for every
value of z different from e, and we can write

J@)=P@—a)+ G(zia)’

where P(z — a) is a regular function at the point ¢, and G[1/(z — a)]
an integral transcendental functiont of 1/(z — a).

When the absolute value of = — a approaches zero, the value of
Jf(2) does not approach any definite limit. More precisely, if a circle
C is described with the point a as a center and with an arbitrary
radius p, there always exists in the interior of this circle points z.for
which f(2) differs as little as we please from any number given in
advance (WEIERSTRASS). _

Let us first prove that, given any two positive numbers p and M,
there exist values of z for which both the inequalities, |2 — a| < p,
|f(®)| > M, hold. For, if the absolute value of f(2) were at most
equal to M when we have |z —a| < p, AC(r) would be less than
or equal to M for » < p, and, from the inequality (35), all the coeffi-
cients A_, would be zero, for the product AC(r)r™ = Mr™ would
approach zero with ». '

Let us consider now any value 4 whatever. If the equation
S (2)=A has roots within the circle C, however small the radius p

* To avoid overlooking any hypothesis, it would be necessary to examine also the
case in which the development of f(2) in the interior of C contains only positive
powers of z— a, the value f(a) of the function at the point a being different from the
term independent of z— a in the series. The point z=a would be a point of discon~
tinuity for f(2). We shall disregard this kind of singularity, which is of an entirely
artificial character (see below, Chapter IV).

T We shall frequently denote an integral function of = by G().
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may be, the theorem is proved. If the equation f(2)=4 does not

" have an infinite number of roots in the neighborhood of the point a,
we can take the radius p so small that in the interior of the circle C
with the radius p and the center @ this equation does not have any
roots. The function ¢ (2) =1/[ f(2) — 4] is then analytic for every
point 2 within C except for the point a; this point @ cannot be any-
thing but an essentially singular point for ¢ (), for otherwise the
point would be either a pole or an ordinary point for f(z). There-
fore, from what we have just proved, there exist values of z in the
interior of the circle C for which we have

|¢(z)|>% or |f(x»—4]|<¢

however small the positive number ¢ may be.

This property sharply distinguishes poles from essentially singu-
lar points. While the absolute value of the function f(z) becomes
infinite in the neighborhood of a pole, the value of f(z) is completely
indeterminate for an essentially singular point.

Picard * has demonstrated a more precise proposition by showing
that every equation f(2)=4A has an infinite number of roots in the
neighborhood of an essentially singular point, there being no excep-
tion except for, at most, one particular value of A4.

Ezample. The point z = 0 is an essentially singular point for the function

It is easy to prove that the equation e!/# = 4 has an infinite number of roots
with absolute values less than p, however small p may be, provided that 4 is
not zero. Setting A =r(cos@ + isind), we derive from the preceding equation

;: logr + i(0 + 2kn).

We shall have |z| < p, provided that

(logn3+ (0 + 2km)3 = %

There are evidently an infinite number of values of the integer k which satisfy
this condition. In this example there is one exceptional value of A, that is,
A = 0. But it may also happen that there are no exceptional values; such is
the case, for example, for the function sin (1/z), near z = 0.

# Annales de PEcole Normale supérieure, 1880,
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43. Residues, Let ¢ be a pole or an isolated essentially singular
point of a function f(2). Let us consider the question of evaluating
the integral ff(#)dz along the circle C drawn in the neighborhood
of the point ¢ with the center a. The regular part P(z — a) gives
zero in the integration. As for the principal part G[1/(z — )], we
can integrate it term by term, for, even though the point  is an
essentially singular point, this series is uniformly convergent. The
integral of the general term

is zero if the exponent m is greater than unity, for the primitive
function —A4_,/[(m —1)(z — a)"~'] takes on again its original
value after the variable has described a closed path. If, on the con-
trary, m =1, the definite integral A_, fdz/(#» — ) has the value
2 miA_,, a8 was shown by the previous evaluation made in § 34. We

have then the result
2mid_, =f S (z)dz,
©

which is essentially only a particular case of the formula (23) for
the coefficients of the Laurent development. The coefficient 4_, is
called the residue of the function f(z) with respect to the singular
point a."

Let us consider now a function f(z) continuous on a closed
boundary curve T and having in the interior of that curve T only a
finite number of singular points @, b, ¢,.--,1. Let4,B,C,-.., L be
the corresponding residues; if we surround each of these singular
points with a circle of very small radius, the integral f f(z)dz, taken
along T in the positive sense, is equal to the sum of the integrals
taken along the small curves in the same sense, and we have the
very important formula

(36) Lf(z)dz:Zvri(A+B+C+...+L),

which says that the integral [f(z)dz, taken along T in the positive
sense, is equal to the product of 2 i and the sum of the residues with
respect to the singular points of f(2) within the curve T.

It is clear that the theorem is also applicable to boundaries T com-
posed of several distinct closed curves. The importance of residues
is now evident, and it is useful to’know how to calculate them rapidly.
If a point @ is a pole of order m for f(2), the product (+ — a)™f(2)
is regular at the point @, and the residue of f(z) is evidently the
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coefficient of (2 — a)™~! in the development of that product. The
rule becomes simple in the case of a simple pole; the residue is then
equal to the limit of the product (2 — a) f(#) for z = a. Quite fre-
quently the function f(z) appears under the form

2

P
&=’

where the functions P(z) and Q(z) are regular for 2z = @, and P(a)
is different from zero, while ¢ is a simple zero for Q(z). Let
Q(2)=(z—a)R(2); then the residue is equal to the quotient
P(a)/R (a), or again, as it is easy to show, to P(a)/Q'(a).

III. APPLICATIONS OF THE GENERAL THEOREMS

The applications of the last theorem are innumerable. We shall
now give some of them which are related particularly to the evalua-
tion of definite integrals and to the theory of equations.

44. Introductory remarks. Let f(z) be a function such that the
* product (2 — a) f() approaches zero with |# — a|. The integral of
this function along a circle y, with the center a and the radius p,
approaches zero with the radius of that circle. Indeed, we can write

L FOLE [ e-ar@;Z

If 5 is the maximum of the absolute value of (z — a) f(2) along the
circle y, the absolute value of the integral is less than 2 7y, and con-
sequently approaches zero, since  itself is infinitesimal with p. We
could show in the same way that, when the product (2 — a) f(z)
approaches zero as the absolute value of 2 — a becomes infinite, the
integral [ f(2)dz, taken along a circle C with the center a, ap-
proaches zero as the radius of the circle becomes infinite. These
statements are still true if, instead of integrating along the entire
circumference, we integrate along only a part of it, provided that
the product (2 — @) f(#) approaches zero along that part.

Frequently we have to find an upper bound for the absolute value
of a definite integral of the form [°f(x) dz, taken along the axis of
reals. Let us suppose for definiteness ¢ < b. We have seen above
(§ 25) that the absolute value of that integral is at most equal to the
integral [?|f(x)|dx, and, consequently, is less than M(b — a) if M
is an upper bound of the absolute value of f(x).
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45. Evaluation of elementary definite integrals. The definite inte-
gral [*°F(x)dz, taken along the real axis, where F(x) is a rational
function, has a sense, provided that the denominator does not vanish
for any real value of = and that the degree of the numerator is less
than the degree of the denominator by at least two units. With the
origin as center let us describe a circle C with a radius R large
enough to include all the roots of the denominator of F(2), and let
us consider a path of integration formed by the diameter B4, traced
along the real axis, and the semicircumference €', lying above the
real axis. The only singular points of F(#) lying in the interior of
this path are poles, which come from the roots of the denominator
of F(#) for which the coefficient of ¢ is positive. Indicating by
3R, the sum of the residues relative to these poles, we can then write

+R
f F(z)dz+ | F(2)dz =2mwi3R,
‘J-R ((+9}

As the radius R becomes infinite the integral along C' approaches
zero, since the product zF(2) is zero for z infinite; and, taking the
limit, we obtain.

+o
f F(x)dx = 2 mi3R,.

* We easily reduce to the preceding case the definite integrals

bl g
f F(sin , cos z)dz,
0

where F is a rational function of sinz and cosz that does not
become infinite for any real value of z, and where the integral is to
be taken along the axis of reals. Let us first notice that we do not
change the value of this integral by taking for the limits x, and
x, + 2, where x, is any real number whatever. It follows that we
can take for the limits — 7 and + o, for example. Now the classice
change of variable tan (x/2)= ¢ reduces the given integral to the
integral of a rational function of ¢ taken between the limits — oo
and + oo, for tan (z/2) increases from — o to 4 oo when = increases
from — 7 to + .

We can also proceed in another way. By putting ¢ = z we have
de = dzfiz, and Euler’s formule give

z’;;l, sinz=za_1

cosxr =
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8o that the given integral takes the form

fF(z’—-l’ z’+1)dz
2 2z
As for the new path of integration, when x in‘creases from 0 to 2
the variable z describes in the positive sense the circle of unit radius
about the origin as center. It will suffice, then, to calculate the resi-
dues of the new rational function of » with respect to the poles
whose absolute values are less than unity.

Let us take for example the integral [*"ctn[(z — a — bi)/2]dz,
which has a finite value if 4 is not zero. We have

z—a—0bi z—-a—-bi

ctn(x-—a——bi)=ie( )-I--ei ),

2 Y Y
—a—20 iz+ a—b+m
(=)

Hence the change of variable ¢ = z leads to the integral

z4 e ttudz
or—et® 2

The function to be integrated has two simple poles

z=0, z=e bt

or

and the corresponding residues are —1 and + 2. If b is positive,
the two poles are in the interior of the path of integration, and the
integral is equal to 2 7¢; if b is negative, the pole z = 0 is the only
one within the path, and the integral is equal to — 2#i. The pro-
posed integral is therefore equal to 4 2 7ri, according as b is posi-
tive or negative. We shall now give some examples which are
less elementary.

46, Various definite integrals. Ezample 1. The function eimz/(1 4 22) has the
two poles 4 i and — i, with the residues e~-m/2{ and — em/2i. Let us suppose
for definiteness that m is positive, and let us consider the boundary formed by
a large semicircle of radius R about the origin as center and above the real
axis, and by the diameter which falls along the axis of reals. In the interior of
this boundary the function em#/(1 4 22) has the gingle pole z = i, and the integral
taken along the total boundary is equal to we—™. Now the integral along the
semicircle approaches zero as the radius R becomes infinite, for the absolute
value of the product ze=/(1 4 2%) along that curve approaches zero. Indeed,
if we replace z by R (cos @ + isin §), we have

emis — e—-denC-!-iuReooc’
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and the absolute value e~=Zsin0 remains less than unity when # varies from 0
to w. As for the absolute value of the factor z/(1 + 23), it approaches zero as
z becomes infinite. We have, then, in the limit

+o
f o ‘e = we—™,
w 1423

If we replace emz by cos mx + i sin mz, the coefficient of i on the left-hand side
is evidently zero, for the elements of the integral cancel out in pairs. Since we
have also cos(— mz) = cosmz, we

4 " can write the preceding formula in
M the form
™ +wo CCOBME . T m
@7 f 14 Tra =g ™

, N Ezample 2. The function ez/z is
Bl —= ANA — analytic in the interior of the bound-
0 ary ABMB'A'NA (Fig.17) formed
by the two semicircles BMB’, A’'NA,
described about the origin as center
with the radii R and;r, and the straight lines 4 B, B’A'
‘We have, then, the relation

- e :
f —dz+f —dz+f —dz+f ——dz 0,
(BMPB’) 4N ©

which we can write also in the form

R . N
f i U LT f =0
r z (BMB’) z (A’'NA) z

When r approaches zero, the last integral approaches — #i; we have, in fact,

Fia. 17

ez 1
4P
2z oz + P
where P (2) is a regular function at the origin, so that
“o=[ P&+ dz
arxay ? (@'N4) N1

The integral of the regular part P (z) becomes infinitesimal with the length of

the path of integration; ap for the last integral, it is equal to the variation of -

Log (2) along A’N A, that is, to — i
The integral along BMB’ approaches zero as R becomes infinite. For if we
put z = R(cos # + isind), we find
ay =i [Te-Runo+iRemogy,
BaB) ? °

and the absolute value of this integral is less than

j;'e-mmdo = 2j;§e-3"°0d0.
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When 6 increases from 0 to x/2, the quotient 8in §/6 decreases from 1 to
2/=, and we have

Rsin0>gR0;
™

hence
_3R
e~Rinoce =,

-

= X are 2R87 3
Zg—Rsing i, v dh=— "l I'=" (1~ .
j;e d0<j;e dé .2R[e ] 2R( e™k);

which establishes the proposition stated above.
Passing to the limit, we have, then (see I, § 100, 2d ed.),

+» — p—ix
e =,

or

Ezample 8. The integral of the integral transcendental function e—** along
the boundary 04 BO formed by the two radii 04 and OB, making an angle of
456° and by the arc of a circle AB (Fig. 18), is
equal to zero, and this fact can be expressed v
as follows:

R
e—='de e~dz = —-s*dz.
-l; + (4B) (ox)e /
85

When the radius R of the circle to which
the arc AB belongs becomes infinite, the in- O 4 @
tegral along the arc AB approaches zero. In
fact, if we put z = R[cos(¢/2) + i8in(¢/2)], Fia. 18
that integral becomes

B,

w

iR s
[ 3¢~ ENoord +isind) T dg,

2 Jo
and its absolute value is less than the integral

R rZ
Z [ 2e~Rleosd gy,
‘ g, le Femsde
As in the previous example, we have
R ; Rtcos R (3 R 3 s
- ddep = — [ 2 R*in¢g, 2[s [ .
s e=3 ) p<sf T %

The last integral has the value

and approaches zero when R becomes infinite.
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Along the radius OB we can put z = p [cos(=/4) + isin(x/4)], which gives
e-*' = e— ' and as R becomes infinite we have at the limit (see I, § 185, 2d ed. ;
§ 184, 1st ed.)

+o xr s +o '\/‘;
p? d i gin ¥ = o 7
j; e (cos4+tsm4)dp j; ePdr=—c,

+o
f e—‘P’dp=—\/E(cos1—r—isinI).
° 2 4 4

Equating the real parts and the coefficients of i, we obtain the values of
Fresnel’s integrals,

+w 1 +o 1
(88) j; cos pi3dp = 2 Jg, J; sin p3dp = 3 J‘g-

47. Evaluation of T(p)T'(1— ). The definite integral

‘e zp-1dx

I 1+z L
where the variable z and the exponent p are real, has a finite value, provided
that p is positive and less than one ; it is equal to the product I' (p)I' (1 — p).*
In order to evaluate this integral, let
Y| us consider the function z2-1/(1 + 2),
which has a pole at the point z =—1
d and a branch point at the point
” / z = 0. Let us consider the boundary
abmb’a’na (Fig. 19) formed by the
— two circles C and (’, described about
5 J\g' DE———=— the origin with the radii  and p re-
spectively, and the two straight lines
ab and a’t’, lying as near each other
as we please above and below a cut
along the axis Oz. The function
zP—1/(1 + 2) is single-valued within
this boundary, which contains only
Fig. 19 one singular point, the pole z =—1.
In order to calculate the value of the

or, again,

|

S

integral along this path, we shall agree to take for the angle of z that one °

which lies between 0 and 2#. If R denotes the residue with respect to the
pole z=—1, we have then .

zP-l zP-ldz zr— 1 zp-1dz ,
—— =2inR.
d1+z 1+z [ l+z 0)1+z .

The integrals along the clrcles C and C’ approach zero as r becomes infinite
and as p approaches zero respectively, for the product 27/(1 + z) approaches
zero in either case, since 0 < p <1.

# Replace ¢ by 1/(1+z) in the last formula of §135, Vol. I, 2d ed.; §134, 1at ed.
The formula (39), derived by supposing p to be real, is correct, provided the real part
of p lies between 0 and 1.
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Along ab, z is real. For simplicity let us replace z by z. Since the angle of
Z is zero along ab, zP-1 is equal to the numerical value of zr-1. Along a%’
also z is real, but since its angle is 2, we have

zP—1 = e(p—Dlogx+2w) — @wi(p-lgp-1,

The sum of the two integrals along ab and along b’a’ therefore has for its limit

- eﬂﬂ(p—n]f zP 1
14 a:

The residue R is equal to (— 1)»—1, that is, to e(» -1, if » is taken as the
angle of —1. We have, then,

to g1 2qigp-DF 2w _ -
j:, 14z _1_e8'-'(p—))_e—-(p—l)'i—e(p—l)"'_ain(p—l)w'
or, finally,
+o -1
(89) =T .
o 142 sin pw

48. Application to functions analytic except for poles. Given two
functions, f(z) and ¢(z), let us suppose that one of them, f(z), is
analytic except for poles in the interior of a closed curve C, that the
other, ¢ (z), is everywhere analytic within the same curve, and that the
three functions f(z), f'(z), ¢ (2) are continuous on the curve C'; and
let us try to find the singular points of the function ¢ (2)f'(z)/f(2)
within C. A point @ which is neither a pole nor a zero for f(2) is
evidently an ordinary point for the function f'(2)/f(z) and conse-
quently for the function ¢ (z)f'(z)/f(2). If a point a is a pole or a
zero of f(z), we shall have, in the neighborhood of that point,

f(@)=(—a)*y(2),
where p denotes a positive or negative integer equal to the order of
the function at that point (§ 41), and where y () is a regular funec-
tion which is not zero for z = a. Taking the loganthmxc derivatives
on both sides, we find

f&_ b V@

f) z—a y()

Since, on the other hand, we have, in the neighborhood of the point a,

s()=¢(@)+(E—a)¢' @)+,
it follows that the point @ is a pole of the first order for the product
¢ (2)f'(2)/f (=), and its residue is equal to u¢ (a), that is, to m¢ (a),
if the point @ is a zero of order m for f(z), and to — n¢ (a) if the
point @ is a pole of order n for f(z). Hence, by the general theorem
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of residues, provided there are no roots of f(z) on the curve C, we
have

(40) 2mf $@ L8 a: = 36()- 34 0),

where @ is any one of the zeros of f(z) inside the boundary C, b any
one of the poles of f(z) within C, and where each of the poles and
zeros are counted a number of times equal to its degree of multi-
plicity. The formula (40) furnishes an infinite number of relations,
since we may take for ¢ () any analytic function.

Let us take in particular ¢(2) =1; then the preceding formula
becomes

1) =2 e f J (z)

where N and P denote respectively the number of zeros and the
number of poles of f(2) within the boundary C. This formula leads
to an important theorem. In fact, f'(2)/f(2) is the derivative of
Log[f(2)]; to calculate the definite integral on the right-hand side
of the formula (41) it is therefore sufficient to know the variation of

log|f(2)|+ i angle [f(2)]

when the variable z describes the boundary C in the positive sense.
But | /(2)| returns to its initial value, while the angle of f(z) increases
by 2 K, K being a positive or negative integer. We have, therefore,

that is, the difference N — P is equal to the quotient obtained by the
division of the variation of the angle of f(2) by 2 m when the variable
# describes the boundary C in the positive sense.

Let us separate the real part and the coefficient of ¢ in f(z):

When the point z =z + yi describes the curve C in the positive
sense, the point whose coérdinates are X, ¥, with respect to a system
of rectangular axes with the same orientation as the first system,
describes also a closed curve C,, and we need only draw the curve
C, approximately in order to deduce from it by simple inspection
the integer K. In fact, it is only necessary to count the number of
revolutions which the radius vector joining the origin of cobrdinates
to the point (X, Y) has turned through in one sense or the other.
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'We can also write the formula (42) in the form

1 Y 1 XdY — YdX
43 N—P—-ﬁj(‘mdarctan<i)—2—1; S

Since the function Y/X takes on the same value after # has described
the closed curve C, the definite integral

XdY — YdX
) X4 r*

is equal to 7I(¥/X), where the symbol 7(¥/X) means the index of
the quotient Y/X along the boundary C, that is, the excess of the
number of times that that quotient becomes infinite by passing from
+ o to — o over the number of times that it becomes infinite by
passing from — 0 to 4 o (I, §§ 79, 1564, 2d ed.; §§ 77, 154, 1st ed.).
We can write the formula (43), then, in the equivalent form

()

1 /Y

44) N—P=3 1(})

49. Application to the theory of equations. When the function f(2)
is itself analytic within the curve C, and has neither poles nor zeros
on the curve, the preceding formuls contain only the roots of the
equation f(z) = 0 which lie within the region bounded by C. The
formule (42), (43), and (44) show the number N of these roots by
means of the variation of the angle of f(z) along the curve or by
means of the index of Y/X.

If the function f(z) is a polynomial in 2, with any coefficients
whatever, and when the boundary C is composed of a finite number
of segments of unicursal curves, this index can be calculated by ele-
mentary operations, that is, by multiplications and divisions of
polynomials. In fact, let AB be an arc of the boundary which can be
represented by the expressions

z = (), y=v@),

where ¢ (¢) and y(¢) are rational functions of a parameter ¢ which
varies from « to B as the point (z, y) describes the arc 4B in the
positive sense. Replacing z by ¢ (£) + i (f) in the polynomial f(2),

we have S(#) = R®t)+ iR,(2),

where R (¢) and R, (¢) are rational functions of ¢ with real coefficients.
Hence the index of Y/X along the arc 4B is equal to the index of
the rational function R,/R as ¢ varies from a to 8, which we already
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know haw to calculate (I, § 79, 2d ed.; § 77, 1st ed.). If the bound-
ary C is composed of segments of unicursal curves, we need only
calculate the index for each of these segments and take half of their
sum, in order to have the number of roots of the equation f(z)=0
within the boundary C.

Note. D’Alembert’s theorem is easily deduced from the preceding
results. Let us prove first a lemma which we shall have occasion to
use several times. Let F(z), ®(z) be two functions analytic in the
interior. of the closed curve C, continuous on the curve itself, and
such that along the entire curve C' we have |®(2)| <|F(z)|; under
these conditions the two equations

F(z)=0, F(z)+ 2(2)=0
have the same number of roots in the interior of C. For we have
®(z

As the point 2 describes the boundary C, the point Z =1 + & (2)/F(?)
describes a closed curve lying entirely within the circle of unit radius
about the point Z =1 as center, since |Z — 1| <1 along the entire
curve C. Hence the angle of that factor returns to its initial value
after the variable z has described the boundary C, and the variation
of the angle of F(z)+ ®(2) is equal to the variation of the angle of
F(%). Consequently the two equations have the same number of
roots in the interior of C.

Now let f(2) be a polynomial of degree m with any coefficients
whatever, and let us set

F(z):Aoz"‘, q)(z)=‘412m—l+ ceet 4, f(z):F(z)+ (l)(z).
Let us choose a positive number R so large that we have

Al |41 Aq) 1
b § Pl =2 _4... m
o R R R Y o

Then along the entire circle C, described about the origin as center
with a radius greater than R, it is clear that |®/F|<1. Hence the
equation f(z) =0 has the same number of roots in the interior of
the circle C as the equation F(2) = 0, that is, m.

50. Jensen’s formula. Let f(z) be an analytic function except for poles in the
interior of the circle C with the radius r about the origin as center, and ana-
lytic and without zeros on C. Let a,, ay, - -, a, be the zeros, and b, b,, - - -, bm
the poles, of f(2) in the interior of this circle, each being counted according to
its degree of multiplicity. We shall suppose, moreover, that the origin is neither
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a pole nor a zero for f(z). Let us evaluate the definite integral

45) I= [ Loglf()]F

taken along C in the positive sense, supposing that the variable z starts, for:
example, from the point 2z = r on the real axis, and that a definite determina-
tion of the angle of f(z) has been selected in advance. Integrating by parts,
we have
fz)

46 I = {Log (2) Log[f(2)1}cc) — Log (2 dz,

8 8@ Log[7@)lkor - f| Los @72
where the first part of the right-hand side denotes the increment of the prpduct
Log (z) Log [f(z)] when the variable z describes the circle C. If we take zero
for the initial value of the angle of z, that increment is equal to

(log r + 2 i) {Log [f(x)] + 2 mi(n — m)} — logr Log [f(r)]
=2wiLog[f(r)] + 27i(n — m)logr — 4 (n — m) =2,

In order to evaluate the new definite integral, let us consider the closed
curve I', formed by the circumference C, by the circumference ¢ described
about the origin with the infinitesimal radius p, and by the two borders ab,
a’t’ of a cut made along the real axis from the point z = p to the pointz = r
(Fig. 19). "We shall suppose for definiteness that f(z) has neither poles nor
zeros on that portion of the axis of reals. If it has, we need only make a cut
making an infinitesimal angle with the axis of reals. The function Logz is
analytic in the interior of TI', and according to the general formula (40) we
have the relation

I (2) £, L@ g
Sl @ 7 et [ Log@ 7 Rdet [ Log ()72 de

EAC) il M)
+ ./('C)Log (2) 7@ dz = 2mi Log( bm)

- The integral along the circle ¢ approaches zero with p, for the product
z Logz is infinitesimal with p. On the other hand, if the angle of 2z is zero
along ab, it is equal to 2 along a’t’, and the sum of the two corresponding
integrals has for limit

— [rmif 8 s =~ 2 miLog (7)) + 2mi Log 7))

The remaining portion is

f JoM ! ‘z) o e =2milog (_—-——‘;:;’: : ".‘b":)+ 9 miLog| L ((3]

and the formula (46) becomes

I=21ri(n—-—m)logr+2n-iLog[f(0)]—2ﬁLog(%‘——Z%")—4(n—-—m)1r’.
by -+ bm

In order to integrate along the circle C, we can put z = re’ and let ¢ vary
from 0 to 2. It follows that dz/z = id¢. Let f(2) = Re'®, where R and & are
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continuous functions of ¢ along C. Equating the coeﬂiclents of i in the preced-
ing relation, we obtain Jensen’s formula ®
1 b, - b
— logRd¢ =] 0 log|rm—=-13"" "=
(47 hj; og Rd¢ = log|f(0)| + ogl P
in which there appear only ordinary Napierian logarithms.
When the function f(z) is analytic in the interior of C, it is clear that the
product bb, - - - b, should be replaced by unity, and the formula becomes
1 3= ™
—_— log Rd¢ =) 0 log | —— —|.
) 55 J, TogBds = logLr)| + log| —T—
This relation is interesting in that it contains only the absolute values of the
roots of f(z) within the circle C, and the absolute value of f(z) along that circle
and for the center of the same circle.

51. Lagrange’sformula. Lagrange’s formula, which we have already
established by Laplace’s method (I, § 195, 2d ed.; § 189, 1st ed.),
can be demonstrated also very easily by means of the general
theorems of Cauchy. The process which we shall use is due to
Hermite.

Let f(2) be an analytic function in a certain region D containing
the point a. The equation

49 F@@)=z—a—af(z)=0,

where «a is a variable parameter, has the root z = a, for a = 0.t Let
us suppose that @ # 0, and let C be a circle with the center a and
the radius r lying entirely in the region D and such that we have
along the entire circumference |af(z)| < |z —a|. By the lemma
proved in § 49 the equation F(z)= 0 has the same number of roots
within the curve C as the equation # — a = 0, that is, a single root.
Let { denote that root, and let II (2) be an analytic function in the
circle C.

The function II(z)/F () has a single pole in the interior of C, at
the point # = {, and the corresponding residue is II ({)/F'({). From
the general theorem we have, then,

IIQQ gzzdz O (=)dz
F@© 21rz ey F(2) 21n ey — a,—af(z)

In order to develop the integral on the right in powers of a, we

shall proceed exactly as we did to derive the Taylor development,

* Acta mathematica, Vol. XXII.

1 It is assumed that £ (a) is not zero, for otherwise F(z) would vanish when z= a for
any value of a and the following developments would not yield any results of
interest. — TRANS.
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and we shall write
1 _ 1 + af(z)
z—a—af(z) z—a (z—a)’
af ()T 1 af ()" +?
+(_z[_£_)2';ﬁ+z—a—af(z)[z—-a] )

Substituting this value in the integral, we ﬁnd

—Q—J +aJ, 4 -+ a, + Ry,

F'({)
where
J0=L-f l](z!dz’ e, J-=§L- Ifgzuullgi!ldz’
2me o ¥—a 7 Jc (z—a)

Rypr= %-,,i./(;)z - f_(_zzlf@ [:/zz‘)l]uﬂdz

Let m be the maximum value of the absolute value of af(2) along
the circumference of the circle C'; then, by hypothesis, m is less
than ». If M is the maximum value of the absolute value of II(2)
along C, we have 1 A 1D e M

Banl <z (2 2T

which shows that R, approaches zero when n increases indeﬁnitely.
Moreover, we have, by the definition of the coefficients J,, J,, - - -, J,,
- and the formula (14),
1 a

Jy=1(@), -y Jo= {Lf@FI(@)

whence we obtain the following development in series:

(50) —Q—-n<>+2 L @@}
F') n! da

We can write this expression in a somewhat different form. If we
take II (z) = ®(2)[1 — af'(z)], where ®(z) is an analytic function in
the same region, the left-hand side of the equation (50) will no longer
contain « and will reduce to ®({). As for the right-hand side, we
observe that it contains two terms of degree n in @, whose sum is

a”

g {Q(a)[f(a)] V- oD @ @] f@)}

=L (P @L@T + @S (@@
e ~ 18 (@) @[F(@]

=l da1 {2'@Lf( )]},
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and we find again Lagrange’s formula in its usual form (see I,
formula (62), §195, 2d ed.; § 189, 1st ed.)

B1) 2O=0@)+ 5@ f@)++ 5 T (@@L DT} +-

We have supposed that we have |af(z)| <~ along the circle C,
which is true if || is small enough. In order to find the maximum
value of ||, let us limit ourselves to the case where f(z) is a poly-
nomial or an integral function. Let AC(r) be the maximum value of
|£(?)| along the circle C described about the point @ as center with the
radius 7. The proof will apply to this circle, provided |a | (r) <.
We are thus led to seek the maximun value of the quotient »/C(r),
as r varies from 0 to 4 . This quotient is zero for » = 0, for if
M (r) were to approach zero with », the point 2 = a would be a zero
for f(z), and F(z) would vanish for 2 = a. The same quotient is
also zero for r = oo, for otherwise f(z) would be a polynomial of the
first degree (§ 36). Aside from these trivial cases, it follows that
/K (r) passes through a maximum value u for a value , of ». The
reasoning shows that the equation (49) has one and only one root {
such that |{ — a|<r,, provided |¢|<pu. Hence the developments
(50) and (51) are applicable so long as |&| does not exceed u, pro-
vided the functions IT(2) and & (z) are themselves analytic in the
circle C, of radius r,.

Ezample. Let f(2) = (22 — 1)/2; the equation (49) has the root
_1—-vV1—2aa+ a?

a

$

which approaches a when a approaches zero. Let us put II(z) =1. Then the
formula (50) takes the form-

+ o . jw
——’—1——= ﬁﬂ (a’—l)n —
) V1i—2aa + a? 1+§n!da~[ on ]—1"'2“"&-(“),

where X, is the nth Legendre’s polynomial (see I, §§ 90, 189, 2d ed.; §§ 88,
184, 1st ed.). In order to find out between what limits the formula is valid, let
us suppose that a is real and greater than unity. On the circle of radius r we
have evidently M (r) = [(¢ + 7)2 — 1]/2, and we are led to seek the maximum
value of 2r/[(a 4+ )3~ 1] as r increases from 0 to + . This maximum is
found for r = Va? —1, and it is equal to @ — Va2 —1. If, however, a lies
between — 1 and + 1, we find by a quite elementary calculation that

124+1-—q?
2V1i—a?

The maximum of 2rV1— a3/(r2 + 1— a%) occurs when r = V1 — a3, and it is
equal to unity.

. M) =
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It is easy to verify these results. In fact, the radical V1— 2aa + a2, con-
sidered as a function of a, has the two critical points ¢ + Va2 —1. If a> 1,
the critical point nearest the origin is @ — Va? — 1. When a lies between — 1
and + 1, the absolute value of each of the two critical points @ + i V11— a? is
unity.

In the fourth lithographed edition of Hermite’s lectures will be found (p. 185)
a very complete discussion of Kepler's equation z — a = sinz by this method.
His process leads to the calculation of the root of the transcendental equation
e (r—1)=e-r(r + 1) which lies between 1 and 2. Stieltjes has obtained the

al
vates r,=1.199678640257734, 4 = 0.6627434193402.

52. Study of functions for infinite values of the variable. In order
to study a function.f(z) for values of the variable for which the
absolute value becomes infinite, we can put z =1/2' and study the
function f(1/2") in the neighborhood of the origin. But it is easy to
avoid this auxiliary transformation. We shall suppose first that we
can find a positive number R such that every finite value of z whose
absolute value is greater than R is an ordinary point for f(2). If we
describe a circle C about the origin as center with a radius R, the
function f(2) will be regular at every point z at a finite distance
lying outside of C. We shall call the region of the plane exterior
to C a neighborhood of the point at infinity.

Let us consider, together with the circle C, a concentric circle ¢’
with a radius R' > R. The function f(z), being analytic in the
circular ring bounded by C and (', is equal, by Laurent’s theorem,
to the sum of a series arranged according to integral positive and
negative powers of z, .

+o

(53) F@&= 3 A
the coefficients 4_,, of this series are independent of the radius R',
and, since this radius can be taken as large as we wish, it follows
that the formula (53) is valid for the entire neighborhood of the point
at infinity, that is, for the whole region exterior to C. We shall now
distinguish several cases :

1) When the development of f(z) contains only negative powers
of z,

1 1 1
B4 FE=A+ A F A G At

the function f(z) approaches 4, when |2| becomes infinite, and we
say that the function f(z) is regular at the point at infinity, or,
again, that the point at infinity is an ordinary point for f(z). If the
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coefficients 4., 4,,---, 4,_, are zero, but 4, is not zero, the point
at infinity is a zero of the mth order for f(z).

2) When the development of f(z) contains a finite number of
positive powers of z,

(B8)  f()=Buz™+ Byt
1 1
+Ba+ A+ A+ 4,5+,

where the first coefficient B,, is not zero, we shall say that the point
at infinity is a pole of the mth order for f(z), and the polynomial
B,z™ + .- -+ Bz is the principal part relative to that pole. When
|#| becomes infinite, the same thing is true of | f(z)|, whatever may
be the manner in which z moves.

3) Finally, when the development of f(z) contains an infinite
number of positive powers of z, the point at infinity is an essentially
singular point for f(z). The series formed by the positive powers of
z represents an integral function G (2), which is the principal part
in the neighborhood of the point at infinity. We see in particular
that an integral transcendental function has the point at infinity as
an essentially singular point.

The preceding definitions were in a way necessitated by those
which have already been adopted for a point at a finite distance.
Indeed, if we put z = 1/2/, the function f(z) changes to a function of
#y ¢(2")=f(1/2"), and it is seen at once that we have only carried
over to the point at infinity the terms adopted for the point z' =0
with respect to the function ¢ (2"). Reasoning by analogy, we might
be tempted to call the coefficient 4_, of z, in the development (53),
the residue, but this would be unfortunate. In order to preserve the
characteristic property, we shall say that the residue with respect to
the point at infinity is the coefficient of 1/z with its sign changed,
that is, — 4,. This number is equal to

5w [ 7O

where the integral is taken in the positive sense along the boundary
of the neighborhood of the point at infinity. But here, the neighbor-
hood of the point at infinity being the part of the plane exterior to
C, the corresponding positive sense is that opposite to the usual
sense. Indeed, this integral reduces to

1 Adz A
Tt fw, = = 2 LO8 2)con
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and, when z describes the circle C in the desired sense, the angle of
# diminishes by 2 o, which gives — 4, as the value of the integral.
It is essential to observe that it is entirely possible for a function
to be regular at the point at infinity without its residue being zero;
for example, the function 1 + 1/2 has this property.
If the point at infinity is a pole or a zero for f(2), we can write,
in the neighborhood of that point,

S@=2$()
where u is a positive or negative integer equal to the order of the
function with its sign changed, and where ¢ (z) is a function which
is regular at the point at infinity and which is not zero for z = w0.
From the preceding equation we deduce

£@_b, #@,
MONEIR 10
where the function ¢'(2)/¢ () is regular at the point at infinity but
has a development commencing with a term of the second or a higher
degree in 1/z. The residue of f'(2)/f(z) is then equal to — u, that
is, to the order of the function f(z) at the point at infinity. The state-
ment is the same as for a pole or a zero at a finite distance.

Let f(=) be a single-valued analytic function having only a finite
number of singular points. The convention which has just been
made for the point at infinity enables us to state in a very simple
form the following general theorem :

The sum of the residues of the function f(z) in the entire plane,
the point at infinity included, is zero.

The demonstration is immediate. Describe with the origin as
center a circle C' containing all the singular points of f(z) (except
the point at infinity). The integral [f(2)dz, taken along this circle
in the ordinary sense, is equal to the product of 2 7i and the sum
of the residues with respect to all the singular points of f(z) at a
finite distance. On the other hand, the same integral, taken along
the same circle in the opposite sense, is equal to the product of 2 ¢
and the residue relative to the point at infinity. The sum of the two
integrals being zero, the same is true of the sum of the residues.

Cauchy applied the term total residue (résidu intégral) of a func-
tion f(z) to the sum of the residues of that function for all the
singular points at a finite distance. When there are only a finite
number of singular points, we see that the total residue is equal to
the residue relative to the point at infinity with its sign changed.
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Ezample. Let Fe)= P(2) ,
Ve

where P(z) and Q(#z) are two polynomials, the first of degree p, the
second of even degree 2¢. If R is a real number greater than the
absolute value of any root of Q(z), the function is single-valued out-
side of a circle C of radius R, and we can write

F@)=#"%(2),
where ¢(2) is a function which is regular at infinity, and which is
not zero for z = 0. The point at infinity is a pole for f(z) if p > ¢,
and an ordinary point if p = ¢. The residue will certainly be zero
if p is less than ¢ — 1.

IV. PERIODS OF DEFINITE INTEGRALS

53. Polar periods. The study of line integrals revealed to us that
such integrals possess periods under certain circumstances. Since
every integral of a function f(%) of a complex variable # is a sum of
line integrals, it is clear that these integrals also may have certain
periods. Let us consider first an analytic function f(2) that has only
a finite number of isolated singular points, poles, or essentially
singular points, within a closed curve C. This case is absolutely
analogous to the one which we studied for line integrals (I, § 153),
and the reasoning applies here without modification. Any path that
can be drawn within the boundary C' between the two points z,, Z
of that region, and not passing through any of the singular points
of f(2), is equivalent to one fixed path joining these two points,
preceded by a succession of loops starting from 2, and surrounding
one or more of the singular points a,, a,, - - -, a, of f(2). Let 4,4,
+++, A, be the corresponding residues of f(2); the integral ff(z)dz,
taken along the loop surrounding the point a,, is equal o + 24 ,
and similarly for the others. The different values of the integral
A f f(#)dz are therefore included in the expression

(56) f lf(z) dz =F(Z)+ 2mi(m A, + mA, + -+ mA,),
%

where F(Z) is one of the values of that integral corresponding to
fthe determined path, and m,, m,, - - . are arbitrary positive or nega-
tive integers; the periods are

2mid,, 2mid, ooy 2mid,.
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In most cases the points a,, a,, ---, a, are poles, and the periods
result from infinitely small circuits described about these poles;
whence the term polar periods, which is ordinarily used to distin-
guish them from periods of another kind mentioned later.

Instead of a region of the plane interior to a closed curve, we may
consider a portion of the plane extending to infinity ; the function
J(2) can then have an infinite number of poles, and the integral an
infinite number of periods. If the residue with respect to a singu-
lar point @ of f(2) is zero, the corresponding period is zero and the
point « is also a pole or an essentially singular point for the integral.
But if the residue is not zero, the point @ is a logarithmic critical
point for the integral. If, for example, the point a is a pole of the
.mth order for f(z), we have in the neighborhood of that point
f(z)=(z—_l_;"&+@—fj;)—‘,—_;+-~-+%5+A°+Al(z—a)+-~-,

and therefore

[ J@dz=0C— m = 1)?;_ o + .-+ + B Log(z — a)

0 —a 9
2
where C is a constant that depends on the lower limit of integration
z, and on the path followed by the variable in integration.

‘When we apply these general considerations to rational functions,
many well-known results are at once apparent. Thus, in order that
the integral of a rational function may be itself a rational function,
it is necessary that that integral shall not have any periods ; that is,
all its residues must be zero. That condition is, moreover, sufficient.

The definite integral * de
[ g—a
0

has a single critical point # = @, and the corresponding period is
2 ri; it is, then, in the integral calculus that the true origin of the
multiple values of Log(z — @) is to be found, as we have already
pointed out in detail in the case of [*dz/z (§ 31).

Let us take, in the same way, the definite integral

= [~
- b 14+ 2

+4,(z—a)+4,% +oen

F(2)

it has the two logarithmic critical points + ¢ and — ¢, but it has only
the single period 7. If we limit ourselves to real values of the
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variable, the different determinations of arc tan 2 appear as so many
distinct functions of the variable z. We see, on the contrary, how
Cauchy’s work leads us to regard them as so many distinet branches
of the same analytic function.

Note. When there are more than three periods, the value of the definite
integral at any point z may be entirely indeterminate. Let us recall first the
following result, taken from the theory of continued fractions®: Given a real
irrational number a, we can always find two integers p and ¢, positive or nega-
tive, such that we have |p + ga| <e, where ¢ is an arbltranly preassigned
positive number.

The numbers p and ¢ having been selected in this way, let us suppose that
the sequence of multiples of p + g« is formed. Any real number 4 is equal to
one of these multiples, or lies between two consecutive multiples. We can
therefore find two integers m and n such that |m + na — 4| shall be less than e.

‘With this in mind, let us now consider the function

f(z)__(z z—b zic+zi—ﬂd)'

where a, b, ¢, d are four distinct poles and a, 8 are real irrational numbers.
The integral f,.'f (2) dz has the four periods 1, a, i, i8. Let I(z) be the value of
the integral taken along a particular path from z, to z, and let M + Ni denote
any complex number whatever. We can always find four mtegers m, n, m’y, v
such that the absolute value of the difference

I@Z)+ m+ na+i(m’ + ng)— (M + Ni)

will be less than any preassigned positive number e. We need only choose
these integers so that

|m+na:—A|<£. ]m’+n’p—B|<%.

where M + Ni— I(2) = A + Bi. Hence we can make the variable describe a
path joining the two points given in advance, z,, z, 80 that the value of the inte-
gral [f(z)dz taken along this path differs as little as we wish from any pre-
assigned number. Thus we see again the decisive influence of the path followed
by the variable on the final value of an analytic function.

54. A study of the integral [*dz/V1 — 2z*. The integral calculus
explains the multiple values of the function are sin # in the simplest
manner by the preceding method. They arise from the different
determinations of the definite integral

7) F(2)= I '%

according to the path followed by the variable. For definiteness we
shall suppose that we start from the origin with the initial value 41

* A little farther on a direct proof will be found (§ 66).
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for the radical, and we shall indicate by I the value of the integral
taken along a determined path (or direct path). For example, the
path shall be along a straight line if the point z is not situated on
the real axis or if it lies upon the real axis within the segment from
—1 to 41; but when z is real and |2| > 1, we shall take for the
direct path a path lying above the real axis.

Now, the points # =+ 1, 2 =— 1 being the only critical points of
V1 — 2% every path leading from the origin to the point z can be
replaced by a succession of loops described about the two critical
points + 1 and — 1, followed by the direct path. We are then led
to study the value of the

z
integral along a loop. Let — /
us consider, for example, @: 0_:@"‘
the loop OamaO, deseribed ~— % = @

about the point z=41; Fia. 20

this loop is composed of the segment Oa passing from the origin to
the point 1 — ¢, of the circle ama of radius e deseribed about z =1
as center, and of the segment 0. Hence the integral along the loop
i8 equal to the sum of the integrals

[ _de e’ _ (° _d=

I Vi—g _[,,,,,wh—zz . V1i—22

The integral along the small circle approaches zero with ¢, for the
product (z — 1) f(2) approaches zero. On the other hand, when =
has described this small circle, the radical has changed sign and in
the integral along the segment a0 the negative value should be
taken for V1 — 2% The integral along the loop is therefore equal to
the limit of 2 [['‘dz/V1 —a? as ¢ approaches zero, that is, to .
It should be observed that the value of this integral does not depend
on the sense in which the loop is described, but we return to the
origin with the value — 1 for the radical.

If we were to describe the same loop around the point 2 =41
with — 1 as the initial value of the radical, the value of the integral
along the loop would be equal to — 7, and we should return to the
origin with 4+ 1 as the value of the radical. In the same way it is
seen that a loop described around the critical point 2 =—1 gives
— @ or + 7 for the integral, according as the initial value 41 or
— 1 is taken for the radical on starting from the origin.

If we let the variable describe two loops in succession, we return
to the origin with 41 for the final value of the radical, and the
value of the integral taken along these two loops will be 4 2 7, 0, or
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— 2, according to the order in which these two loops are described.
An even number of loops will give, then, 2 mm for the value of the
integral, and will bring back the radical to its initial value 4 1.
An odd number of loops will give, on the contrary, the value (2 m 1)
to the integral, and the final value of the radical at the origin will
be — 1. It follows from this that the value of the integral F(z) will
be one of the two forms

I+ 2mm, Cm+1)r—1,

according as the path described by the variable can be replaced by
the direct path preceded by an even number or by an odd number
of loops.

55. Periods of hyperelliptic integrals. We can study, in a similar
manner, the different values of the definite integral

(58) F(”’)—f P z)dz

where P (2) and R (2) are two polynomlals, of which the second, R (2),
of degree n, vanishes for n distinct values of z:

R()=A@z—e)(z—e) - (z—¢,).

We shall suppose that the pomt 2, is distinct from the points e, ¢,,
. ., €,; then the equation v* = R (zo) has two distinet roots + «, and
— u, We shall select %, for the initial value of the radical B (z) If
we let the variable # descl ibe a path of any form whatever not pass-
ing through any of the critical points e, e,, - - -, ¢,, the value of the
radical VR (z) at each point of the path will be determmed by con-
tinuity. Let us suppose that from each of the points ¢, ¢, ---, ¢,
we make an infinite cut in the plane in such a way that these cuts do
not cross each other. The integral, taken from z, up to any point =
along a path that does not cross any of these cuts (which we shall
call a direct path), has a completely determined value () for each
point of the plane. We have now to study the influence of a loop,
described from z, around any one of the critical points e,, on the
value of the integral. Let 2 E; be the value of the integral taken
~'~~g a closed curve that starts from 2  and incloses the single criti-
roint e;, the initial value of the radical being u, The value of
integral does not depend on the sense in which the curve is
ribed, but only on the initial value of the radical at the point z,.

act, let us call 2 E; the value of the integral taken along the same
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curve in the opposite sense, with the same initial value u, of the
radical. If we let the variable z describe the curve twice in succes-
sion and in the opposite senses, it is clear that the sum of the inte-
grals obtained is zero; but the value of the integral for the first turn
is 2 E;, and we return to the point 2, with the value — «, for the radi-
cal. The integral along the curve described in the opposite sense is
then equal to — 2 Ej, and consequently E; = E;. The closed curve
considered may be reduced to a loop formed by the straight line 2,
the circle ¢; of infinitesimal radius about ¢;, and the straight line az,
(Fig. 21) ; the integral along ¢; is infinitesimal, since the product
(= — €) P (2)/ VR (z) approaches zero with the absolute value of z — e‘
If we add together the integrals
along z,a and along az, we find

__f"Pzdz

where the integral is takenalong
the straight line and the initial
value of the radical is u,

This being the case, the inte-
gral taken along a path which
reduces to a succession of two
loops described about the points
€a, g is equal to 2 E, — 2 Eg,
for we return after the first loop ‘Fre. 21
to the point z, with the value
— u, for the radical, and the integral along the second loop is equal
to — 2 Eg. After having described this new loop we return to the
point z, with the original initial value ;. If the path described by
the variable z can be reduced to an even number of loops described
about the points e, eg, ¢, €, - - -, &, e, successively, followed by the
direct path from z, to 2, where the indices a, 8, - - -, x, A are taken
from among the nummbers 1, 2, . - ., n, the value of the integral along
the path is, by what precedes, .

F(x)=TI+2(E«— Eg)+2(E,— E)+ -+ + 2(Bc — E).

If, on the contrary, the path followed by the variable can be reduced
to an odd number of loops described successively around the critical
points e,, e, - - -, €., €,, €,, the value of the integral is

F(#)=2(E,— E)+ -+ + 2(E, — E)+2E, — L
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Hence the integral under consideration has as periods all the expres-
sions 2 (E; — E,), but all these periods reduce to (»n — 1) of them:

o, =2(E,—E,), o,=2(E,—E,) -- w,_,=2(E,_,—E,),
for it is clear that we can write
2(E,-—E,.)=2(E,-—E,,)-—2(E,.— ,)=w,-—w‘.

Since, on the other hand, 2 E, = w, + 2 E,, we see that all the values
of the definite integral F(2) at the point 2 are given by the two
expressions
F()y=I+ M, + - - My _j00,_y,
F)=2E,—I+mo + -+ - +m,_jo,_;,
where m,, m,, - - -, m,_, are arbitrary integers.

This result gives rise to a certain number of important observa-
tions. It is almost self-evident that the periods must be independent
of the point z, chosen for the starting point, and it is easy to verify
this. Consider, for example, the period 2 E; — 2 E, ; this period is
equal to the value of the integral taken along a closed curve I' pass-
ing through the point 2, and containing only the two critical points
e, €,. If, for definiteness, we suppose that there are no other critical
points in the interior of the triangle whose vertices are 2, ¢;, ¢;, this
closed curve can be replaced by the boundary bb'ne'emb (Fig. 21);
whence, making the radii of the two small circles approach zero, we
see that the period is equal to twice the integral

taken along the straight line joining the two critical points ¢, e;.

It may happen that the (» — 1) periods w,, w,, - - -, w,_, are not
independent. This occurs whenever the polynomial R(z) is of even
degree, provided that the degree of P(z) is less than n/2 —1. With
the point 2, as center let us draw a circle C' with a radius so large
that the circle contains all the critical points; and for simplicity let
us suppose that the critical points have been numbered from 1 to »
in the order in which they are encountered by a radius vector as it
turns about 2, in the positive sense.

The integral Pz dz’
f VR (2)

taken along the closed boundary z 4 M Az, formed by the radius z,4,
by the circle €, and by the radius 4z, described in the negative sense,
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is zero. The integrals along #,4 and along Az, cancel, for the circle
C contains an even number of critical points, and after having
described this circle we return to the point 4 with the same value
of the radical. On the other hand, the integral along C approaches
zero as the radius becomes infinite, since the product zP(2)/ VR ()
approaches zero by the hypothesis made on the degree of the poly-
nomial P(#). Since the value of this integral does not depend on the
radius of C, it follows that that value must be zero.

Now the boundary z 4 MAz, considered above can be replaced by
a succession of loops described around the critical points ¢, ¢,, - - -, €,
in the order of these indices. Hence we have the relation

2E,—2E,+2E,—2E,+---+2E,_ ,—2E, =0,
which can be written in the fqrm
o — ot o~ 4 +a_=0;

and we see that the n — 1 periods of the integral reduce to n -2
periods o, wy, - - -, wy_g.

Consider now the more general form of integral

P@Rdz
F
®= f QVE®

where P, @, R are three polynomials of which the last, R(z), has only simple
roots. Among the roots of Q(z) there may be some that belong to R (z); let a,,
ag, + -+, a, be the roots of @ (2) which do not cause R (z) to vanish. The integral
F(2) has, as above, the periods 2 (E; — Ej), where 2 E; denotes always the inte-
gral taken along a closed curve starting from z, and inclosing none of the roots
of either of the polynomials Q(z) and R(z) except e;. But F(z) has also a cer-
tain number of polar periods arising from the loops described about the poles
ay, @g, +++, @, The total number of these periods is again diminished by unity
if R(z) is of even degree n, and if

n
p<g+;-1
where p and g are the degrees of the polynomials P and Q respectively.

Ezample. Let R (z) be a polynomial of the fourth degree having a multiple
root. Let us find the number of periods of the integral

dz .
., VE@)
If R(z) has a double root e, and two simple roots e,, &, the integral

* dz
F(z):f —_—
W E— Q) VA —e)(z—¢)
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has the period 2 E;, — 2 E,, and also a polar period arising from a loop around
the pole ¢,. By the remark made just above, these two periods are equal. If
R (2) has two double roots, it is seen immediately that the mt.egra.l has a single
polar period.

If R (z) has a triple root, the integral

F(z):f' dz
W E— @) V(E—e)(z—e)

has the period 2 E, — 2 E,, but, by the general remark made above, that period
is zero. The same thing is true if R(z) has a quadruple root. In résumé we
have : If R(z) has one or two double roots, the integral has a period; if R(z) has a
triple or quadruple root, the integral does not have periods. All these results are
easily verified by direct integration.

56. Periods of elliptic integrals of the first kind. The elliptic integral

of the first kind,
* odz ,

» VE(?)

where R (2) is a polynomial of the third or the fourth degree, prime to

its derivative, has two periods by the preceding general theory. We

shall now show that the ratio of these two periods is not real.

We can suppose without loss of generality that R (2) is of the
third degree. Indeed, if R, (2) is a polynomial of the fourth degree,
and if e is a root of this polynomial, we may write (I, § 105, note,
2d ed.; §110, 1st ed.)

S

VR, (2) VE()

where 2 =a 4+ 1/y and where R(y) is a polynomial of the third
degree. It is evident that the two integrals have the same periods.
If R (2) is of the third degree, we may suppose that it has the roots
0 and 1, for we need only make a linear substitution z = a 4 By to

reduce any other case to this one. Hence the proof reduces to
showing that the integral

(59) F(z)= f dz )
W YZ(1—2)(a—2)
where a is different from zero and from unity, has two periods whose
ratio is not real.
If a is real, the property is evident. Thus, if a is greater than
unity, for' example, the integral has the two periods

F(z)=

e e B R
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of which the first is real, while the second is a pure imaginary.
Moreover, none of these periods can be zero. :

Suppose now that @ is complex, and, for example, that the coeffi-
cient of ¢ in a is positive. We can again take for one of the periods

1 dz
Q=2 .
t £ ’\/z(l—‘z)(a—z)

We shall apply Weierstrass’s formula (§ 27) to this integral. When
#z varies from 0 to 1, the factor 1/Vz(1 — 2) remains positive, and
the point representing 1/~a — = describes a curve L whose general
nature is easily determined. Let 4
be the point representing ¢ ; when
#z varies from 0 to 1, the point @ — 2
describes the segment 4B parallel
to Ox and of unit length (Fig. 22).
Let Op and Og be the bisectors of
the angles which the straight lines
OA and OB make with Oz, and let
Op' and Og' be straight lines sym-
metrical to them with respect to Oz.
If we select that determination of
Va — z whose angle lies between
0 and /2, the point Va — z de-
scribes an arc B from a point @ on Op to a point 8 on Og ; hence the
point 1/Va — z describes an arc 'S’ from a point ' on Op' to a point
B’ of 0g'. It follows that Weierstrass’s formula gives

Fi6. 22

1 de
0,= 221£ ki
where Z, is the complex number corresponding to a point situated in
the interior of every convex closed curve containing the arc a'g'. It
is clear that this point Z, is situated in the angle p'O¢', and that it
cannot be the origin; hence the angle of Z, lies between — /2 and 0.
We can take for the second period

fon/z(Tz)(a——z fm

or, setting z = at,
dt

A \/t(l —Hd—at)
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In order to apply Weierstrass’s formula to this integral, let us notice
that as ¢ increases from 0 to 1 the point a¢ describes the segment
04 and the point 1 — a¢ describes the equal and parallel segment
from z=1 to the point C. Choosing suitably the value of the
radical, we see, as before, that we may write

1 dt .
0=2Z,| ——==27nZ2
! ’j‘,. Vi1 —-t) »
where Z, is a complex number different from zero whose angle lies

between 0 and /2. The ratid of the two periods 0,/Q, or Z,/Z, is
therefore not a real number.

EXERCISES
1. Develop the function

=lasvEmr 4 LV

in powers of ¢, m being any number.

Find the radius of the circle of convergence.

2. Find the different developments of the function 1/[(z2 + 1) (z — 2)] in posi-
tive or negative powers of z, according to the position of the point z in the plane.

3. Calculate the definite integral [2z3Log[(z + 1)/(z — 1)]dz taken along a
circle of radius 2 about the origin as center, the initial value of the logarithm at
the point z = 2 being taken as real.

Calculate the definite integral

dz
f V34 z+1
taken over the same boundary.

4. Let f(z) be an analytic function in the interior of a closed curve C con-
taining the origin. Calculate the definite integral f,f"(2) Log zdz, taken along
the curve C, starting with an initial value z,.

b. Derive the relation

e @ _1.3.5...@n-1)_
L, (81T 2.4.6...2n

and deduce from it the definite integrals

+ o & tw &
.[., [(‘—a)z+ﬁ’]n+1' f«. (At2+2Bt+C)u+1'

8. Calculate the following definite integrals by means of the theory of residues :

+ o
sin mzde
I z_(m' m and a being rea.l,

** cosax

.__dz’
e 1+

a being real,
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o dz .
f (z’—2ﬂiz—ﬁ'—a’)'+1' a and g being real,

te coszdz
. @+)@+ 9

' ViRa-a), **zlogzdz
—_— e . oia!?
A Q+ap b (L+2)®
** 008 az — cosb
= =" “dz, a and b being real and positive.

2
o &

(To evaluate the last integral, integrate the function (es* — ebit) /22 along the
boundary indicated by Fig. 17.)

7. The definite integral [ "d¢/[4 4 C — (4 — C)cos ¢] is equal, when it
has any finite value, to ew/V AC, where ¢ is equal to + 1 and is chosen in
such a way that the coefficient of i in ei V.AC/A is positive.

8. Let F(z) and G (z) be two analytic functions, and z = a a double root of
G (z) = 0 that is not a root of F(2). Show that the corresponding residue of

F(2)/G (2) is equal to
8F'(a) ¢"(a)—2F(a) @ (a)

3[(¢" (@
In a gimilar manner show that the residue of F(z)/[@ (z)]? for a simple root
a of G(2) = 0 is equal to

F'(a) G'(a) — F(a) G"(a)
[

9. Derive the formula

+ dz _ =
»[1 (z-a)w/l—z"_\/l—a"

the integral being taken along the real axis with the positive value of the
radical, and a being a complex number or a real number whose absolute value
is greater than unity. Determine the value that should be taken for V11— a2.

10. Consider the integrals f4,dz/V1+ 28, ﬁs,)dz/ V1+ 2%, where S and S,
denote two boundaries formed as follows: The boundary S is composed of a
straight-line segment OA4 on Oz (which is made to expand indefinitely), of the
circle of radius OA about O as center, and finally of the straight line 40. The
boundary S, is the succession of three loops which inclose the points a, b, ¢
which represent the roots of the equation 28 +1=0.

Establish the relation that exists between the two integrals

+o dz 1 dt
—_, ’
= [w=
which arise in the course of the preceding consideration.

11. By integrating the function e~+* along the boundary of the rectangle
formed by the straight linesy =0, ¥y = b, z =+ R, 2 =— R, and then making
R become infinite, establish the relation

+
f e cos 2bx dz = VweP',
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12. Integrate the function e-*2»—1, where n is real and positive, along a
boundary formed by a radius OA placed along Oz, by an arc of a circle AB of
radius OA about O as center, and by a radius BO such that the angle a = 40B
lies between 0 and x/2. Making OA4 become infinite, deduce from the preced-
ing tke values of the definite integrals

+o +o
j; wn =l % 0o bu du, j; wr—le— o gin bu du,

where a and b are real and positive. The results obtained are valid for a = #/2,
provided that we have n <1.

13. Let m, m’, n be positive integers (m < n, m’ < n). Establish the formula
4+ AW ,
udt=l[ctn(2m+l1r)— ctn(2m “f)].
o 1-0» 2n 2n 2n
14. Deduce from the preceding result Euler’s formula
to @Bndt w
j; 14 on 2nsin(2m+11r)
2n
15. If the real part of a is positive and less than unity, we have

toewdr 7
f 14 e sinaw

(This can be deduced from the formula (89) (§ 47) or by integrating the
function ea#/(1 + e*) along the boundary of the rectangle formed by the straight
linesy =0,y =2, £ =+ R, ¢ =— R, and then making R become infinite.)

18. Derive in the same way the relation

+o
[ ‘T:;:zdx = = (ctn ar — ctn br),

@

where the real parts of @ and b are positive and less than unity.

(Take for the path of integration the rectangle formed by the straight lines
y=0,y=m =R, z=— R, and make use of the preceding exercise.)

17. From the formula

(lz:-+zl)'dz 2mi nn—=1). k!(n—- k4 l)
©)

where n and k are positive integers, and C is a circle having the origin as
center, deduce the relations

f'(z cosu)s+%cos (n— k)udu:r(n+l)(n+2) celnt )
°

k!
*ainds _ L85 (21.—1)
_y Vi—at~ " 2.4.6...2n
(Put z = €2, then cos u = z, and replace n by n + k, and k by n.)

18*, The definite integral

Q(z):f' d¢ )
o 1— a(z +Vz? —1cosg)
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when it has a finite value, is equal to + w#/V1— 2 az + a?, where the sign
depends upon the relative positions of the two points @ and . Deduce from
this the expression, due to Jacobi, for the nth Legendre’s polynomial,

X,:lf'(z + V2 — 1 cos ¢)ndp.
T xdo

19. Study in the same way the definite integral

* de
f z—at+Vi—lcose
and deduce from the result Laplace’s formula
=< d¢’
o o (:c+\/z_’——lcos¢)~+l’
where ¢ = + 1, according as the real part of z is positive or negative.
20*. Establish the last result by integrating the function
’ 1
2t1V1 22z 4 2
along a circle about the origin as center, whose radius is made to become infinite.

21%. Gauss’s sums. Let T, = e?2™*/» where n and s are integers; and let
Sn denote the sum Ty + T; + --- + T,_y. Derive the formula

S'=(1+i)(21+m)\,;.

(Apply the theorem on residues to the function (z) = e37i*n/(e3wiz — 1), taking
for the boundary of integration the sides of the rectangle formed by the straight
linesz =0,z =n,y =+ R, y =— R, and inserting two semicircumferences of
radius e about the points £ = 0, ¢ = n as centers, in order to avoid the poles
z =0 and z = n of the function ¢ (z); then let R become infinite.)

22. Let f(z) be an analytic function in the interior of a closed curve T' con-
taining the points a, b, ¢,..-, . If a, B, -+, A are positive integers, show that
the sum of the residues of the function

so=30 G G G2

with respect to the poles @, b, ¢, - - -, ! is a polynomial F (z) of degree
a+B+---+2r-1

satisfying the relations
F@=f(@@, F@=rf(@, - Fe-D(@)=se==D(a),
F@)=7(), F@®)=r@), - FE=DE®)=FfE-D(),

............................................

(Make use of the relation F(z) = f(z) + [ Jr, ¢ (2) dz]/2mi.)

23%. Let f(2) be an analytic function in the interior of a circle C with center
a. On the other hand, let a,, a,,+--, @, --- be an infinite sequence of points
within the circle C, the point a, having the center a for limit as n becomes in-
finite. For every point z within C there exists a development of the form

FE=F @)+ ek (= @) e ) - (e Oacs) D Hh 4y
h=
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where :
Fu@)=(—ay) (2~ ) -+ (2 — ).

[Lavrent, Journal de mathématiques, bth series, Vol. VIII, p. 825.]

(Make use of the following formula, which is easily verified,
1 1 z—a,
z—z z—a;, (z—a,)(z—ay)
@—a)@—ay) | 1 @—a). ()
E=a)  E— G )E—0a) 2—% (z—a) - (2 )
and follow the method used in establishing Taylor's formula.)

24. Let z,=a + bi be a root of the equation f(2) = X 4+ Yi =0 of multi-
plicity n, where the function f(2) is analytic in its neighborhood. The point
z=a, y = b is a multiple point of order n for each of the two curves X =0,
Y = 0. The tangents at this point to each of these curves form a set of lines
equally inclined to each other, and each ray of the one bisects the angle between
the two adjacent rays of the other.

25, Let f(2) =X+ Yi=Agz"+ A;z»—14 ... 4+ A, be a polynomial of the
mth degree whose coefficients are numbers of any kind. All the asymptotes of
the two curves X =0, ¥ = 0 pass through the point — A,/mA4, and are
arranged like the tangents in the preceding exercise.

4 oo

26*%. Burman’s series. Given two functions f(z), F(z) of a variable z,
Burman’s formula gives the development of one of them in powers of the other.
To make the problem more definite, let us take a simple root a of the equation
F(x) = 0, and let us suppose that the two functions f(z) and F(z) are analytic
in the neighborhood of the point a. In this neighborhood we have

z—a

¢@’

the function ¢ (z) being regular for z = a if a is a simple root of F(z) =0.
Representing F(z) by y, the preceding relation is equivalent to

F(z) =

z—a—ygp(x) =0,
and we are led to develop f(z) in powers of y (Lagrange’s formula).

27*. Kepler's equation. The equation z — @ — e sin z = 0, where @ and e are
two positive numbers, a < m, e < 1, has one real root lying between 0 and w,
and two roots whose real parts lie between mxr and (m + 1), where m is any
positive even integer or any negative odd integer. If m is positive and odd,
or negative and even, there arc no roots whose real parts lie between mx and
(m + 1),

[Brior ET BouQuET, Théorie des fonctions elliptiques, 2d ed., p. 199.]

(Study the curve described by the point u =z — @ — e sinz when the vari-
able z describes the four sides of the rectangle formed by the straight lines
z=mm, &= (m+1)m y =+ R, y =— R, where R is very large.)

28%. For very large values of m the two roots of the preceding exercise
whose real parts lie between 2mar and (2m + 1) are approximately equal to
2mm + w/2 £ i[log(2/e) + log 2mm 4 m/2)].

[GouRriEr, Annales de I Ecole Normale, 2d series, Vol. VI, p. 78.]




CHAPTER TII

SINGLE-VALUED ANALYTIC FUNCTIONS

The first part of this chapter is devoted to the demonstration of
the general theorems of Weierstrass* and of Mittag-Leffler on inte-
gral functions and on single-valued analytic functions with an
infinite number of singular points. We shall then make an applica-
tion of them to elliptic functions.

Since it seemed impossible to develop the theory of elliptic func-
tions with any degree of completeness in a small number of pages,
the treatment is limited to a general discussion of the fundamental
principles, so as to give the reader some idea of the importance of
these functions. For those who wish to make a thorough study of
elliptic functions and their applications a simple course in Mathe-
matical Analysis would never suffice ; they will always be compelled
to turn to special treatises.

I. WEIERSTRASS’S PRIMARY FUNCTIONS. MITTAG-LEFFLER’S
THEOREM

57. Expression of an integral function as a product of primary
functions. Every polynomial of the mth degree is equal to the prod-
uct of a constant and m equal or unequal factors of the form = — a,
and this decomposition displays the roots of the polynomial. Euler
was the first to obtain for sin z an analogous development in an
infinite product, but the factors of that product, as we shall see far-
ther on, are of the second degree in z. Cauchy had noticed that we
are led in certain cases to adjoin a suitable exponential factor to
each of the binomial factors such as # — a. But Weierstrass was
the first to treat the question with complete generality by showing
that every integral function having an infinite number of roots can
be expressed as the product of an infinite number of factors, each
of which vanishes for onlya single value of the variable.

* The theorems of Weierstrass which ase to be presented here were first published
in a paper entitled Zur Theorie der eindeutigen analytischen Functionen (Berl.
Abhandlungen, 1876, p. 11 = Werke, Vol. II, p. 77). Picard gave a translation of this
paper in the Annales de ? Ecole .Normale supérieure (1879). The collected researches
of Mittag-LefHler are to be found in & memoir in the Acta mathematica, Vol. II.
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128 SINGLE-VALUED ANALYTIC FUNCTIONS  [1,§57

We already know one integral function which does not vanish for
any value of 2, that is, ¢*. The same thing is true of ¢, where g ()
is a polynomial or an integral transcendental function. Conversely,
every integral function which does not vanish for any value of z is
expressible in that form. In fact, if the integral function G () does
not vanish for any value of 2, every point z = @ is an ordinary point
for G'(2)/G (2), which is therefore another integral function g,(2):

G@) _
Integrating both sides between the limits z,, z, we find

Log[a%] f 9,(®)dz = g(2)— g(),

where g (%) is a new integral function of 2z, and we have
G(z)= G(zo) 9@ =92 — g9 @) =0g(z)+Log[G(xp],

The right-hand side is precisely in the desired form.
If an integral function G (z) has only « roots a,, a,, -
or not, the function G () is evidently of the form

GR)=(—a)(@—a) (2 —a,)e"™.

Let us consider now the case where the equation G (2)= 0 has an
infinite number of roots. Since there can be only a finite number of
roots whose absolute values are less than or equal to any given num-
ber R (§ 41), if we arrange these roots in such a way that their
absolute values never diminish as we proceed, each of these roots
appears in a definite position in the sequence

, @, distinct

@ @y Ggy vy By By oo
where |a,| = |, 41|, and where |a | becomes lnﬁmte with the mdex n.
We shall suppose that each root appears in this series as often as is
required by its degree of multiplicity, and that the root z =0 is
omitted from it if G(0)=0. We shall first show how to construct
an integral function G,(z) that has as its roots the numbers in the
sequence (1) and no others.

The product (1 — z/a,)e%®, where Q,(z) denotes a polynomial, is
an integral function which does not vanish except for z = a,. We
shall take for Q,(#) a polynomial of degree v determined in the fol-
lowing manner: write the preceding product in the form

80..(-)+Los(1,-é)’
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and replace Log (1 — z/a,) by its expansion in a power series; then
the development of the exponent will commence with a term of
degree v + 1, provided we take

zZ

2
Qv(z)_ 2a’ ...+-v;’-.

The integer v is still undetermined. We shall show that this number v
can be chosen as a function of » in such a way that the infinite product

@ ﬁ (1 - ai) W ®

a=1 n,
will be absolutely and uniformly convergent in every circle C of
radius R about the origin as center, however large B may be. The
radius R having been chosen, let @ be a positive number less than
unity. Let us consider separately, in the product (2), those factors
corresponding to the roots a, whose absolute values do not exceed
R/a. If there are ¢ roots satisfying this condition, the product of

these ¢ factors v
2
F(®»= I Il (1 ~z )30,,(:)

evidently represents an integral function of z. Consider now the
product of the factors beginning with the (¢ + 1)th:

FE)= ﬁ (1 - ai) ed®,

n=q+1 n,

If ~z remains in the interior of the circle with the radius R, we
have |2| = R; and since we have |e¢,| > R/a when n>g¢, it follows
that we also have |2| <e|a,|. A factor of this product can then be
written, from the manner in which we have taken @, (),

(1 - i)eov@ = @) @

if we denote this factor by 1 + «,, we have

u,=e v+1(a.)v+l'i'i_2 VH I

Hence the proof reduces to showing that by a suitable choice of the
number v the series whose general term is U, = |u,| is uniformly
convergent in the circle of radius R(I, § 176, 2d ed.). In general,
if m is any real or complex number, we have

|e® —1|=e™ =1,
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We have then, a fortiori,

o=l e )
or, noticing that |z| < «|a,|, when |z] is less than R,

41 1

sHila]
U, s Ftlal  Tma_q,

But if z is a real positive number, ¢ —1 is less than z¢*; hence

we have -
1 z|v+l 1 v 1-a
U= 1 |z]+ 1 emla—.' i 1 |z =
*~v+1lla,] 1—a v+1|a,. 1—a

In order that the series whose general term is U, shall be uni-
formly convergent in the circle with the radius R, it is sufficient
that the series whose general term is |2/a,|**! converge uniformly
in the same circle. If there exists an integer p such that the series
3|1/a,|? converges, we need only take v = p — 1. If there exists no
integer p that has this property,* it is sufficient to take v =12 — 1.
For the series whose general term is |2/a,|* is uniformly convergent
in the circle of radius R, since its terms are smaller than those of
the series =|R/a,|" and the nth root of the general term of this last
series, or |R/a,|, approaches zero as » increases indefinitely.t

Therefore we can always choose the integer v so that the infinite
product F,(z) will be absolutely and uniformly convergent in the
circle of radius R. Such a product can be replaced by the sum of a
uniformly convergent series (§ 176, 2d ed.) whose terms are all
analytic. Hence the product F,(z) is itself an analytic function
within this circle (§39). Multiplying F,(z) by the product F,(z),
which contains only a finite number of analytic factors, we see that
the infinite product

©) G,(?) =jj; (1 — i) £%®

is itself absolutely and uniformly convergent in the interior of the
circle C with the radius R, and represents an analytic function within
this circle. Since the radius R can be chosen arbitrarily, and since

* For example, let an=1log » (n=2). The series whose general term is (log n)—»
is divergent, whatever may be the positive number p, for the sum of the first (n - 1)
terms is greater than (n —~1)/(log n) P, an expression which becomes infinite with n.

1 Borel has pointed out that it is sufficient to take for » a number such that »+1
shall be greater than logn. In fact, the series | R/ax|log» is convergent, for the
general term can be written elog»log|R/a,|= plogl R/ay]. After a sufficiently large
value of n, |ax|/R will be greater than e?, and the general term less than 1/z3.
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v does not depend on R, this product is an integral function G,(2)
which has as its roots precisely all the various numbers of the
sequence (1) and no others.
If the integral function G (2) has also the point z = 0 as a root of
the pth order, the quotient
G(z)

2#G\(2)
is an analytic function which has neither poles nor zeros in the
whole plane. Hence this quotient is an integral function of the form
¢#®, where g () is a polynomial or an integral transcendental func-
tion, and we have the following expression for the function G (2):

h) 2
4 G(z)=e'® z"!;_[l(l - Z.) e%®,

The integral function g(z) can in its turn be replaced in an infinite
variety of ways by the sum of a uniformly convergent series of
polynomials
g(z)= gl(z)+ ga(z)+ et yn(z)"' ]
and the preceding formula can be written again
+o

¢@)==I1 (1 - a—z—)eqv")“-(”.

n=1

The factors of this product, each of which vanishes only for one
value of z, are called primary functions.

Since the product (4) is absolutely convergent, we can arrange the
primary functions in an arbitrary order or group them together in
any way that we please. In this product the polynomials Q,(z)
depend only on the roots themselves when we have once made a
choice of the law which determines the number v as a function of .
But the exponential factor ¢#® cannot be determined if we know
only the roots of the function G (z). Take, for example, the function
sin 7z, which has all the positive and negative integers for simple
roots. In this case the series 3'|1/a,[* is convergent; hence we can
take v =1, and the function

G(z)= z]ijj(l - ;’,) ez,

where the accent placed to the right of IT means that we are not to
give the value zero* to the index », has the same roots as sin 7=.

* When this exception is to be made in a formula, we shall call attention to it
by plm_:ing an accent () after the symbol of the product or of the sum.
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We have then sin 7z = G (2), but the reasoning does not tell us
anything about the factor ¢#®. We shall show later that this factor
reduces to the number ar.

58. The class of an integral function. Given an infinite sequence
@, Gy -+, @, -+, Where |a,| becomes infinite with », we have just
seen how to construct an infinite number of integral functions that
have all the terms of that sequence for zeros and no others. When
there exists an integer p such that the series 3|a,|~? is cenvergent,
we can take all the polynomials @, (z) of degree p — 1.

Given an integral function of the form

G(2)= z'eP(z)H<1_a_“> . +3 )+ L (..,)’ -1

where P(z) is a polynomial of degree not higher than p — 1, the
number p — 1 is said to be the class of that function. Thus, the

function e
z
11 (1 - _2)
n=1 "
is of class zero; the function (sin 7z)/7 mentioned above is of class
one. The study of the class of an integral function has given rise in
recent years to a large number of investigations.*

59. Single-valued analytic functions with a finite number of singular
points. When a single-valued analytic function F(2) has only a
finite number of singular points in the whole plane, these singular
points are necessarily isolated; hence they are poles or isolated
essentially singular points. The point z = o0 is itself an ordinary
point or an isolated singular point (§ 52). Conversely, if a single-
valued analytic function has only isolated singular points in the entire
plane (including the point at infinity), there can be only a finite
number of them. In fact, the point at infinity is an ordinary point
for the function or an isolated singular point. In either case we can
describe a circle C with a radius so large that the function will have
no other singular point outside this circle than the point at infinity
itself. Within the circle C the function can have only a finite number
of singular points, for if it had an infinite number of them there
would be at least one limit point (§ 41), and this limit point would
not be an isolated singular point. Thus a single-valued analytic

* See BorEL, Lecons sur les fonctions entiéres (1900), and the recent work of
BLUMENTHAL, Sur les fonctions entiéres de genre infini (1910).
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Junction which has only poles has necessarily only a finite number
of them, for a pole is an isolated singular point.

Every single-valued analytic function which is regular for every
finite value of z, and for 2 =, is a constant. In fact, if the func-
tion were not a constant, since it is regular for every finite value of
2, it would be a polynomial or an integral function, and the point at
infinity would be a pole or an essentially singular point.

Now let F(z) be a single-va.lued analytic function with » distinct
singular points a,, a,, - - ., a, in the finite portion of the plane, and
let G;[1/(z — a,)] be the principa.l part of the development of F(z)
in the neighborhood of the point «;; then G, is a polynomial or an
integral transcendental function in 1/(2 — @;). In either case this
principal part is regular for every value of z (including z = )
except #z = a;. Similarly, let P(2) be the principal part of the devel-
opment of F(z) in the neighborhood of the point at infinity. P(z)
is zero if the point at infinity is an ordma.ry point for F(2). The
difference

1
z— a,,-)

is evidently regular for every value of z including # = o0 ; it is there-
fore 4 constant C, and we have the equality*

D= F(2)— P(z)-—é:lG,(

®) F(z)= P(z)+2G ( )+ c,
which shows that the function F(z) is completely determined, except
for an additive constant, when the principal part in the neighbor-
hood of each of the singular points is known. These principal parts,
as well as the singular points, may be assigned arbitrarily. _
When all the singular points are poles, the principal parts G; are
polynomials; P(z) is also a polynomial, if it is not zero, and the
right-hand side of (5) reduces to a rational fraction. Since, on the
other hand, a single-valued analytic function which has only poles
for its singular points can have only a finite number of them, we
conclude from this that a single-valued analytic function, all of whose
singular points are poles, is a rational fraction.

* We might obtain the same formula by equating to zero the sum of the residues

of the function
1
o (5-75)

where z and 2, are considered as constants and z as the variable (see § 52).
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. 60. Single-valued analytic functions with an infinite number of singu-
lar points. If a single-valued analytic function has an infinite num-
ber of singular points in a finite region, it must have at least one
limit point within or on the boundary of the region. For example,
the function 1/sin(1/z) has as poles all the roots of the equation
sin (1/z) = 0, that is, all the points z = 1/kr, where k is any integer
whatever. The origin is a limit point of these poles. Similarly, the

function 1
sin [—L
.1
sin =

has for singular points all the roots of the equa,tlon sin (1/2) =1/(km),
among which are all the points

= ’

2 k'w 4 arc sin (i)
kn

where % and %' are two arbitrary integers. All the points 1/(2 k')
are limit points, for if, #' remaining fixed, % increases indefinitely,
the preceding expression has 1/(2%'w) for its limit. It would be
easy to construct more and more complicated examples of the same
kind by increasing the number of s¢n symbols. There also exist, as
we shall see a little farther on, functions for which every point of a
certain curve is a singular point.

It may happen that a single-valued analytic function has only a
finite number of singular points in every finite portion of the plane,
although it has an infinite number of them in the entire plane. Then
outside of any circle C, however great its radius may be, there are
always an infinite number of singular points, and we shall say that
the point at infinity is a limit point of these singular points. In the
following paragraphs we shall examine single-valued analytic fune-
tions with an infinite number of isolated singular points which have
the point at infinity as their only limit point.

61. Mittag- 's theorem. If there are only a finite number of
singular points in every finite portion of the plane, we can, as we
have already noticed for the zeros of an integral function, arrange
these singular points in a sequence

(6) ’ @y LY ] Qyy

in such a way that we have |a,|=|a,,| and that |a,| becomes infinite
with n. We may suppose also that all the terms of this sequence
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are different. To each term a; of the sequence (6) let us assign a
polynomial or an' integral function in 1/(z — a;), G;[1/(2z —a,)],
taken in an entirely arbitrary manner. Mittag-Leffler’s theorem may
be stated thus:

There exists a single-valued analytic function which is regular for
every finite value of z that does not occur in the sequence (6), and for
which the principal part in the neighborhood of the point z = a; is

Gi[1/(z — ay)].

We shall prove this by showing that it is possible to assign to
each function G;[1/(z — ;)] a polynomial P;(2) such that the series

& 1
Z|o(==) o)
pn z—a
defines an analytic function that has these properties.

If the point # = 0 occurs in the sequence (6), we shall take the
corresponding polynomial equal to zero. Let us assign a positive
number ¢; to each of the other points a; so that the series S¢; shall be
convergent, and let us denote by « a positive number less than unity.
Let C; be the circle about the origin as center passing through the
point a;, and Cj the circle concentric to the preceding with a radius
equal to @|a;|. Since the function G;[1/(z — ;)] is analytic in the
circle C;, we have for every point within C;

1
G’(z_a>=aio+a‘lz+...+a'.~z“+...,

The power series on the right is uniformly convergent in the circle

C;; hence we can find an integer v so large that we have, in the
interior of the circle ¢},

1
) Gi(z__a')_ Gy —@pz— - — 42| <
Having determined the number v in this manner, we shall take for
P(2) the polynomial — a;, — ayz — - - - — @;, 2"

Now let C be a circle of radius R about the point z=0 as
center. Let us consider separately the singular points @; in the
sequence (6) whose absolute values do not exceed R/a. If there
are ¢ of them, we shall set

F,(2) =§‘ [G. (z _1 a,_) +P, (z)].
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The remaining infinite series,

F,(2)= J'i [Gi (z 1 a‘) +P.(z)],

i=¢g+1

is absolutely and uniformly convergent in the circle C, since for
every point in this circle |2| < R < a|a,| if the index ¢ is greater
than ¢. From the inequality (7), and from the manner in which we
have taken the polynomials P, (z), the absolute value of the general
term of the second series is less than ¢ when # is within the circle C.
Hence the function F,(z) is an analytic function within this circle,
and it is clear that if we add F,(2) to it, the sum

® F() =§[Gf(z_1a..)+”*<">]

will have the same singular points in the circle C, with the same
principal parts, as F,(z). These singular points are precisely the
terms of the sequence (6) whose absolute values are less than R, and
the principal part in the neighborhood of the point ¢; is G[1/(z—a;)].
Since the radius R may be of any magnitude, it follows that the
function F(z) satisfies all the conditions of the theorem stated above.

It is clear that if we add to F(2) a polynomial or any integral
function whatever G (z), the sum F(z) + G (2) will have the same
singular points, with the same principal parts, as the function F(z).
Conversely, we have thus the general expression for single-valued
analytic functions having given singular points with corresponding
given principal parts; for the difference of two such functions, being
regular for every finite value of 2, is a polynomial or a transcendental
integral function. Since it is possible to represent the function G (z)
in turn by the sum of a series of polynomials, the function F(z) 4+ G (2)
can itself be represented by the sum of a series of which each term
is obtained by adding a suitable polynomial to the principal part
Gi[1/(z — )]

If all the principal parts G; are polynomials, the function is
analytic except for poles in the whole finite region of the plane, and
conversely. We see, then, that every function analytic except for
poles can be represented by the sum of a series each of whose terms
is a rational fraction which becomes infinite only for a single finite
value of the variable. This representation is analogous to the decom-
position of a rational fraction into simple elements.

Every function ®(z) that is analytic except for poles can also be
represented by the quotient of two integral functions. For suppose
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that the poles of ®(z) are the terms of the sequence (6), each being
counted according to its degree of multiplicity. Let G () be an
integral function having these zeros; then the product ®(z) G (2)
~ has no poles. It is therefore an integral function G,(2), and we have

the equality o) = 6,(2)
Q)

62. Certain special cases. The preceding demonstration of the
general theorem does not always give the simplest method of con-
structing a single-valued analytic function satisfying the desired
conditions. Suppose, for example, it is required to construct a func-
tion ®(z) having as poles of the first order all the points of the
sequence (6), each residue being equal to unity; we shall suppose
that z = 0 is not a pole. The principal part relative to the pole a; is
1/(z — ;), and we can write

1 1 y—1 1 v
-l = .- )
2 —a; a; . aj a 2— o\
If we take
1 = Pt
P =2+5+ -+

the proof reduces to determining the integer v as a function of the
index ¢ in such a way that the series

+»

=1 z\ zv 1
'.=21z-—-a,<a—,> =—.~§<1_i) af—_“.
a;

shall be absolutely and uniformly convergent in every circle de-
scribed about the origin as center, neglecting a sufficient number of
terms at the beginning. For this it is sufficient that the series
S(z/a,)”+! be itself absolutely and uniformly convergent in the same
region. If there exists a number p such that the series 2|1/a,|? is
convergent, we need only take v = p — 1. If there exists no such
integer, we will take as above (§ 57) v=1¢—1,0orv 41> logi. The
number y having been thus chosen, the function

+o 1 1 P z"“\
® ‘1’(z)=§[z_a‘+;‘+;§+---+ a:]»

which is analytic except for poles, has all the points of the sequence
(6) as poles of the first order with each residue equal to unity.
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It is easy to deduce from this a new proof of Weierstrass’s theorem
on the decomposition of an integral function into primary functions.
In fact, we can integrate the series (9) term by term along any path
whatever not passing through any of the poles; for if the path lies
in a circle C having its center at the origin, the series (9) can be
replaced by a series which is uniformly convergent in this circle,
together with the sum of a finite number of functions analytic except
for poles. This results from the demonstration of formula (9). If
we integrate, taking the point # = 0 for the lower limit, we find

hd 22 2 ‘,
[Q(z)dz:iz [Log(l—;)+ 523 "+7a_:]’

and consequently

2V

z 4o z 28
(10) " =H(1 —~ i) PR M=

i=1 a;

-v

It is easy to verify the fact that the left-hand side of the equation
(10) is an integral function of z. In the neighborhood of a value a
of z that does not occur in the sequence (6) the integral [ * Q(z)dz
is analytic; hence the function

ef,'ou)d.

is also analytic and different from zero for z = a. 1In the neighbor-
hood of the point a; we have

1
®()= zTa,--I-P(z —a),

f ®(2)dz = Log(z — a)) + Q(z — &),
(]
eﬁ)'o(z)dz =(z __ a‘) eo(s—ao’

where the functions P and Q are analytic. It is seen that this inte-
gral function has the terms of the sequence (6) for its roots, and the
formula (10) is identical with the formula (3) established above.
The same demonstration would apply also to integral functions hav-
ing multiple roots. If g, is a multiple root of order », it would suffice
to suppose that ®(z) has the pole z = a; with a residue equal to ».
Let us try again to form a function analytic except for poles of
the second order at all the points of the sequence (6), the princi-
pal part in the neighborhood of the point @; being 1/(z — a;)>. We
shall suppose that z = 0 is an ordinary point, and that the series
3[1/a;|®is convergent ; it is clear that the series 3|1/a,|* will also
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be convergent. Limiting the development of 1/(z — a,)* in powers
of z to its first term, we can write

1 1 2az—2' 2a42—-2
(- “c)g a; _ag(z - a‘)a" a‘(l__z_)”
and the series %
er 1 171 & 2q2— 2
1) ()= [———]= 2oz 2
( ) () |=21 (z—ag)z a} ;ﬂa:(l_i)’
a;

satisfies all the conditions, provided it is uniformly convergent in
every circle C described about the origin as center, neglecting a
sufficient number of terms at the beginning. Now if we take only
those terms of the series coming from the poles e; for which we have
|a;]| > R /e, R being the radius of the circle C and « a positive num-
ber less than unity, the absolute value of (1 — 2/a,)~? will remain
less than an’ upper bound, and the series whose general term is
2 z/a} — #*/a} is absolutely and uniformly convergent in the circle C,
by the hypotheses made concerning the poles a;.

63. Cauchy’s method. If F (=) isa function analytic except for poles,
Mittag-Leffler’s theorem enables us to form a series of rational terms
whose sum F,(z) has the same poles and the same principal parts
as F(z). But it still remains to find the integral function which is
equal to the difference F(z) — F (). Long before Weierstrass’s work,
Cauchy had deduced from the theory of residues a method by which
a function analytic except for poles may, under very general condi-
tions on the function, be decomposed into a sum of an infinite number
of rational terms. It is, moreover, easy to generalize his method.

- Let F(z) be a function analytic except for poles and regular in the
neighborhood of the origin; andlet C,, C,, - - -, C,, - - - be an infinite
succession of closed curves surrounding the point z = 0, not pass-
ing through any of the poles, and such that, beginning with a value
of n sufficiently large, the distance from the origin to any point what-
ever of C, remains greater than any given number. It is clear that
any pole whatever of F(z) will finally be interior to all the curves
Cyy Cpyyy -+, provided the index x is taken large enough. The

definite integral
21 ' F(z) d,
T Jigy? — %

where z is any point within C, different from the poles, is equal
to F(x) increased by the sum of the residues of F(z)/(z — z) with
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relative to the pole a,, we can write the equation (13) in the form

F@=FO+FO+ -+ 5 F0(0)

(14) +2 [GL'( — >+ SO 4+ sPx .-+ 3£p)a,p]
ﬂg}_
21nf z— ,—,;

In order to obtain an upper bound for the last term, let us write
it in the form
xrtd f F(z) dz
R' = - " .
2mi Jo, #* 2(—2x)

Let us suppose that along C, the absolute value of =7 F(z) remains
less than M, and that the absolute value of 2 is greater than 8. Since
the number » is to become infinite, we may suppose that we have
already taken it so large that § may be taken greater than |z|; hence
along C, we shall have

1

g—

_1 .
8 —|=|
If S, is the length of the curve C,, we have then

[2P* oy Sa |
1Bl < S M5 —J=)

‘We shall have proved that this term R, approaches zero as » becomes
infinite if we can find a sequence of closed curves C,,C,,---,C,, -+
and a positive integer p satisfying the following conditions:

1) The absolute value of 22 F(2) remains less than a fixed num-
ber M along each of these curves.

2) The ratio S,/8 of the length of the curve C, to the minimum
distance 3 of the origin to a point of C, remains less than an upper
bound L as n becomes infinite. ’

If these conditions are satisfied, |R,] is less than a fixed number
divided by a number 8 —|#| which becomes infinite with n. The term
R, therefore approaches zero, and we have in the limit

F@)=FO+2F O+ -+ 2 Fo(0)

(15) ‘in3 [Gt (

n=am® Cn

)+ PO+ sPr 4+ si"’w’]-

Thus we have found a development of the function F(z) as a sum
of an infinite series of rational terms. The order in which they occur
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in the series is determined by the arrangement of the curves
Cp Cyg +++y C,, - - in their sequence. If the series obtained is abso-
lutely convergent, we can write the terms in an arbitrary order.

Note. If the point 2 = 0 were a pole for F(z) with the principal
part G(1/%), it would suffice to apply the preceding method to the
function F(z)— G'(1/z).

64. Expansion of c¢tnx and of sinx. Let us apply this method to
the function F(z) =ctn#—1/2, which has only poles of the first order
at the points 2 = ki, where k is any integer different from zero, the
residue at each pole being equal to unity. We shall take for the
curve C, a square, such as BCB'C', having the origin for center and
having sides of length 2nw + o parallel to the axes; none of the
poles are on this boundary, and the ratio of the length S, to the
minimum distance 8 from the origin to a point of the boundary
is constant and equal to 8. The square of the absolute value of

ctn (x + y7) is equal to
v ‘ et e W4 2c082x
B B Mo _2coslx
On the sides BC and B'C' we have
5 (”ﬂ)ta’ cos 2z =— 1, and the absolute value
is less than 1. On the sides BB' and
CC' the square of this absolute value

4 B is less than
EV4e 42 (14 oM\
Fi6. 23 e _2 \1—ew)’

We must replace 2 y in this formula by +(2# + 1), and the ex-
pression thus obtained approaches unity when n becomes infinite.
Since the absolute value of 1/z along C, approaches zero when n
becomes infinite, it follows that the absolute value of the function
ctnz — 1/z on the boundary C, remains less than a fixed number M,
whatever » may be. Hence we can apply to this function the for-
mula (15), taking p = 0. We have here
. (rcosz —sinx
FO)= l:f},( zsinz )= o

and s, which represents the residue of (ctnz —1/%)/z for the pole
kwr, is equal to 1/kmw. We ha.ve, then,

R

== a0
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where the value & = 0 is excluded from the summation. The infinite
series obtained by letting n become infinite is absolutely convergent,
for the general term can be written in the form

1 1 x 1 x

x_k-rr"'k_-rr,—qu(kvr—z)_ﬁ(l_i)'
kr

and the absolute value of the factor /(1 — /&) remains less than
a certain upper bound, provided x is not a multiple of 7. We have,
then, precisely

an cbuz=2 +2 (x —km + kl'lr)

Integrating the two members of this relation along a path start-
ing from the origin and not passing through any of the poles, we find

(o (22
j; (ctnx )dx Lo, ( ) 2 Log(1 — o +k1r’
from which we derive

@8) sine = zH (1 — 2

The factor 7 is here equal to unity. If in the series (17) we combine the
two terms which come from opposite values of k, we obtain the formula

1,8 1
t) ==-42 _— .
17) otng ="+ zz pe p

Combining the two factors of the product-(18) which correspond to opposite
values of k, we have the new formula*

(18) sinz:zl:[(l—w),

or, substituting 7z for z,

Note 1. The last formule show plainly the periodicity of sin z, which does
not appear from the power series development. We see, in fact, that (sin wz)/»
is the limit as n becomes infinite of the polynomial ~

. 'P-(z):(l—?')(l—%)---(l—z)z(l+z)---(l+$)-

* This decomposition of sin z into an infinite product is due to Euler, who obtained
it in an elementary manner (Introductio in Analysin infinitorum).
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Replacing z by z + 1, this formula may be written in the form

1
;e +1) == dule) L,

whence, letting n become infinite, we find sin (w2 + 7) =— sin =z, or
sin(z + ) =—sinz,
and therefore sin (z + 2#) = sinz,

Note 2. In this particular example it is easy to justify the necessity of associ-
ating with each binomial factor of the form 1 — z/a, a suitable exponential factor
if we wish to obtain an absolutely convergent product. For definiteness let us
suppose z real and positive. The series Zz/n being divergent, the product

P,,.=z(l+§)...(l+i)

becomes infinite with m, while the product

Q»=(l—z)(1_§)...(1_z)

approaches zero as n becomes infinite (I, § 177, 2d ed.). If we take m = n, the
product P, Q, has (sin#wx)/x for its limit; but if we make m and n become
infinite independently of each other, the limit of this product is completely in-
determinate. This is easily verified by means of Weierstrass's primary functions,
whatever may be the value of z. Let us note first that the two infinite products

+ o z\ % 4o z\ Z
F@ =[] (1 + —)e s Re=]] (1 - -) -
n=1 n n=1 ,
are both absolutely convergent, and their product F, () F,(z) is equal to (sin#z) /.
With these facts in mind, let us write the product P, Q, in the form

m z\ _Z z\ = x(1+!+...+1_1_1 ..... 1)
P, = - -—— 2 F .
' Qn zH(l-}-”)e 'II(I y)e"e m ",
v=1 v=1
When the two numbers m and n become infinite, the product of all the fac-
tors on the right-hand side, omitting the last, has F(z) F,(z) = (sin mz)/= for its
limit. As for the last factor, we have seen that the expression

has for its limit log w, where w denotes the limit of the quotient m/n (I, § 161).
The product P,,Q, has, therefore,
sin 7z
T

exlogw

for its limit. Hence we see the manner in which that limit depends upon the
law according to which the two numbers m and n become infinite.

Note 3. We can make exactly analogous observations on the expansion of ctnz.
'We shall show only how the periodicity of this function can be deduced from the
series (17). Let us notice first of all that the series whose general term is

11 1
I (k—1)=m kEk-—1)=
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where the index k takes on all the integral values from — o to + o, excepting
k =0, k = 1, is absolutely convergent ; and its sum is — 2/, as is seen on mak-
ing k vary first from 2 to + o, then from — 1 to — . We can therefore write
the development of ctnz in the form

+ o
ctnz=1+ 1 -_-1-+ ”[L 1 ],
z “~ |z x

zT—7T = —k1r+(k—-l)

where the values k = 0, k =1 are excluded from the summation. This results
from subtracting from each term of the series (17) the corresponding term of
the convergent series formed by the preceding series together with the additional
term 2/#. Substituting z + = for z, we find

1, 1 1 33, 1 1
t) = - _—— ]
an@Et+m =t r+§ [z—(k—l)t+(k—l)r]
or, again, '

1 = 1 1
ct.n(z+‘l')=;+§ [z—(k—l)1l'+ (k—l):r]'

where k— 1 takes on all integral values except 0. The right-hand side is
identical with ctnz.

II. DOUBLY PERIODIC FUNCTIONS. ELLIPTIC FUNCTIONS

65. Periodic functions. Expansion in series. A single-valued analytic
function f(z) is said to be periodic if there exists a real or complex
number o such that we have, whatever may be 2, f(z + w)=f(2);
this number  is called
a period. Let us mark
in the plane the point
representing o, and let
us lay off on the unlim-
ited straight line pass-
ing through the origin
and the point w a length
equal to |w| any number
of times in both direc-
tions. We obtain thus
the points o, 20, 3,

vy nw, cee and the
points —w, — 2w, -, ‘
— nw, ---. Through Fic. 24

these different points

and through the origin let us draw parallels to any direction differ-
ent from Ow; the plane is thus divided into an infinite number of
cross strips of equal breadth (Fig. 24).
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If through any point z we draw a parallel to the direction Ow, we
shall obtain all the points of that straight line by allowing the real
parameter A in the expression z + Aw to vary from — oo to + . In
particular, if the point z describes the first strip A4A4'BB', the corre-
sponding point z 4+ o will describe the contiguous strip BB'CC’, the
point 2z 4 2 o will describe the third strip, and so on in this manner.
All the values of the function f(2) in the first strip will be duplicated
at the corresponding points in each of the other strips.

Let LL' and MM' be two unlimited straight lines parallel to the
direction Ow. Let us put v = ¢?**** and let us examine the region
of the u-plane described by the variable » when the point z remains
in the unlimited cross strip contained between the two parallels LL'
and MM'. If a + Bi is a point of LL', we shall obtain all the other
points of that straight line by putting z = ¢ + Bi + Ae and making
A vary from — oo to + . Thus, we have

2im a+Bi

© o =—(a+Bitrw) o 2w
—_— e % — p3WiA 0 .
u==e = € e H

hence, as A varies from — oo to + oo , u describes a circle C, having the
origin for center. Similarly, we see that as z describes the straight line
MM', u remains on a circle C, concentric with the first; as the point
z describes the unlimited strip contained between the two straight
lines LL', MM', the point u describes the ring-shaped region contained
between the two circles C,, C,. But while to any value of z there
corresponds only one value of u, to a value of « there correspond an
infinite number of values of # which form an arithmetic progression,
with the common difference o, extending forever in both directions.

A periodic function f(2), with the period w, that is analytic in the
infinite cross strip between the two straight lines LL', A0, is equal
to a function ¢ (u) of the new variable » which is analytic in the
ring-shaped region between the two circles C, and C,. For although
to a value of u there correspond an infinite number of values of 2,
all these values of 2 give the same value to f(2) on account of its
periodicity. Moreover, if u, is a particular value of «, and z, any
corresponding value of z, that determination of z which approaches
z, as u approaches u, is an analytic function of w in the neighbor-
- hood of u ; hence the same thing is true of ¢ (). We can therefore
apply Laurent’s theorem to this function ¢ («). In the ring-shaped
region contained between the two circles C,, C, this function is
equal to the sum of a series of the following form :

¢(w)= +§3 A u™,

N =—
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Returning to the variable z, we conclude from this that in the in-
terior of the cross strip considered above the periodic function L f(2)
is equal to the sum of the series

Iming

19) f(®)= ZA e . '

If the function S (2) is analytic in the whole plane, we can suppose
that the two straight lines LL', MM, which bound the strip, recede
indefinitely in opposite directions. Every periodic integral function
is therefore developable in a series of positive and negative powers of
2= gonvergent for every finite value of z.

66. Impossibility of a single-valued analytic function with three periods. By a
famous theqrem due to Jacobi, a single-valued analytic function cannot have
more than two independent periods. To prove this we shall show that a single-
valued analytic function cannot have three independent periods.* Let us first
prove the following lemma : ’

Let a, b, ¢ be any three real or complex quantities, and m, n, p three arbi-

Jtrary integers, positive or negative, of which one at least is different from zero.
/ If we give to the integers m, n, p all systems of possible values, except

| m=n=p=0,

the lower limit of |ma + nb + pc| i3 equal to zero.

Consider the set (E‘) of points of the plane which represent quantities of the
form ma + nb + pc. If two points corresponding to two different systems of
integers coincide, we have, for example,

) ma + nb + pc =ma + nd + pic,
and therefore
(m—mp)a+@m—n)b+(p—-p)c=0,
where at least one of the numbers m — m,, n — n,, p — p, is not zero. In this
case the truth of the lemma is evident. If all the points of the set (E) are dis-
tinct, let 25 be the lower limit of |ma + nb 4 pc|; this number 235 is also the
lower limit of the distance between any two points whatever of the set (£). In
fact, the distance between the two points ma + nb + pc and ma + n;b + p,c is
equal to | (m —m)a + (n — n,))b + (p — p,)c|. We are going to show that we
are led to an absurd conclusion by supposing § > 0.

Let N be a positive integer ; let us give to each of the integers m, n, p one
of the values of the sequence — N, — (N—1),...,0,..., N—1, N, and let
us combine these values of m, n, p, in all possible manners. We obtain thus
(2 N + 1) points of the set (E), and these points are all distinct by hypothesis.
Let us suppose |a|Z|b|Z |c|; then the distance from the origin to any one
of the points of (E) just selected is at most equal to 8 N'|a|. These points there-
fore lie in the interior of a circle C of radius 8 Nla| about the origin as center
or on the circle itself. If from each of these points as center we describe a

* Three periods a, b, ¢ are said to be dependent if there exist three integers m, n, p
(not all zero) for which ma + nb + pc=0.—TRANS.
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circle of radius 3, all these circles will be interior to a circle C, of radius equal
to 8 N|a| + & about the origin as center, and no two of them will overlap, since
the distance between the centers of two of them cannot be smaller than 2. The
sum of the areas of all these small circles is therefore less than the area of the

circle C,, and we have :
@ N|a|+ 8> @N + 183,

3N|a| .
eN+ni-1

The right-hand side approaches zero as N becomes infinite ; hence this in-
equality cannot be satisfied for all values of N by any positive number &.
Consequently the lower limit of |ma + nb 4 pc| cannot be a positive number ;
hence that lower limit is zero, and the truth of the |emmi&e%hed.

‘We see, then, that when no systems of integers m, n, p (except m = n=p =0)
exist such that ma + nb 4 pc = 0, we can always find integral values for these
numbers such that |ma + nb 4+ pc| will be less than an arbitrary positive num-
ber e. In this case a single-valued analytic function f(z) cannot have the three
independent periods a, b, ¢. For, let z, be an ordinary point for f(z), and let
us describe a circle of radius e about the point z, as center, where e is so
small that the equation f(2) = f(z,) has no other root than z = z, inside of this
circle (§ 40). If a, b, ¢ are the periods of f(2), it is clear that ma + nb + pc is
also a period for all values of the integers m, n, p ; hence we have

S (zo + ma + nb + pe) =1 (z,)-

If we choose m, n, p in such a manner that |ma + nb+ pc| is less than ¢, the
equation f(z) = f(z,) would have a root z, different from z,, where [z, — 25| <e,
which is impossible.

When there exists between a, b, ¢ a relation of the form

(20)  ma+nb+pc=0,

or
i<

without all the numbers m, n, p being zero, a single-valued analytic function
f(2) may have the periods g, b, ¢, but these periods reduce to two periods or to
a single period. We may suppose that the three integers have no common divisor
other than unity. Let D be the greatest common divisor of the two numbers
m, n; m=Dm’,n=Dn’. Since the two numbers m’, n’ are prime to each other,
we can find two other integers m”, n” such that m’n” — m"n’ =1. Let us put
ma+nb=a, “m’a4 nb=0;
then we shall have, conversely, a = n”a’ — nb’, b = mb’ — m”a’. If a and b are
periods of f(z), a” and b” are also, and conversely. Hence we can replace the
system of two periods a and b by the system of two periods a’ and ¥’. The re-
lation (20) becomes Da’ 4 pc = 0; D and p being prime to each other, let us
take two other integers I’ and p’ such that Dp’— D’p =1, and let us put
Da’ + p’c=c. We obtain from the preceding relations a’ =— pc’, ¢ = D¢,
whence it is obvious that the three periods a, b, ¢ are linear combinations of the
two periods b’ and ¢’.

Note. As a corollary of the preceding lemma we see that if @ and 8 are two
real quantities and m, n two arbitrary integers (of which at least one is not zero),
the lower limit of [ma + nB| is equal to zero. Forif weputa=a,b=g8,¢=1,
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the absolute value of ma + nf + pi can be less than a number e <1 only if we
have p =0, |ma + nB|<e. From this it follows that a single-valued analytic
function f(z) cannot have two real independent periods « and 8. If the quotient
B/« is irrational, it is possible to find two numbers m and n such that |ma + ng|
is less than ¢, and it will be possible to carry through the reasoning just as
before. If the quotient 8/« is rational and equal to the irreducible fraction m/n,
let us choose two integers m’ and n’ such that mn’— m’n =1, and let us put
m’a — n’8 =+v. The number 4 is also a period, and from the two relations
ma —nf =0, m’a — n’g =y we derive «a =— ny, 8§ =— mvy, so that a and g
are multiples of the single period 4. More generally, a single-valued analytic
function f(z) cannot have two independent periods a and b whose ratio is real,
for the function f(az) would have the two real periods 1 and b/a.*

67. Doubly periodic functions. A doubly periodic function is a
single-valued analytic function having two periods whose ratio is
not real. To conform to Weierstrass’s notation, we shall indicate the
independent variable by w, the two periods by 2w and 2 o', and we
shall suppose that the coefficient of ¢ in o'/w is positive. Let us
mark in the plane the points 2w, 4,60, ... and the points 2 o',
40,60, .... Through the points 2 mw let us draw parallels to the

F2w!

Fi1a. 26

direction Oe', and through the points 2m'e' parallels to the direc-
tion Ow. The plane is divided.in this manner into a net of
congruent parallelograms (Fig. 25). Let f(u) be a single-valued
analytic function with the two periods 2w, 2w'; from the two

relations f(u + 2 w)=f(u), f(v + 2o)= f(u) we deduce at once.

* It is now easy to prove that there exists for any periodic single-valued function
at least one pair of periods in terms of which any other period can be expressed as an
integral linear combination ; such a pair is called a primitive pair of periods.—TRANS.
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S+ 2mo + 2m'e") = f(u), so that 2mew + 2m's’ is also a period
for all values of the integers m and m'. We shall represent this
general period by 2w.

The points that represent the various periods are precisely the
vertices of the preceding net of parallelograms. When the point
describes the parallelogram 04 BC whose vertices are 0, 2 w, 2w + 2 o',
2 o', the point u 4+ 2w describes the parallelogram whose vertices
are the points 2w, 2w+ 2w, 2w+ 20+ 20, 2w+ 20/, and the
function f(u) takes on the same value at any pair of corresponding
points of the two parallelograms. Every parallelogram whose ver-
tices are four points of the type u, u + 2w, u,+ 20,4, + 20 + 20’
is called a parallelogram of periods; in general we consider the
parallelogram 04 BC, but we could substitute any point in the plane
for the origin. The period 2 w + 2 ' will be designated for brevity
by 2 o'"; the center of the parallelogram 04 BC is the point o", while
the points w and ' are the middle points of the sides 04 and OC.

Every integral doubly periodic function is a constant. In fact, let
Jf(x) be a doubly periodic function ; if it is integral, it is analytic in
the parallelogram OA4BC, and the absolute value of f(x) remains
always less than a fixed number M in this parallelogram. But on
account of the double periodicity the value of f(«) at any point of the
plane is equal to the value of f(u) at some point of the parallelogram
OABC. Hence the absolute value of f(«) remains less than a fixed
number M. It follows by Liouville’s theorem that f(«) is a constant.

68. Elliptic functions. General properties. It follows from the pre-
ceding theorem that a doubly periodic function has singular points
in the finite portion of the plane, unless it reduces to a constant.

(:‘ehe term elliptic function is applied to functions which are doubly

riodic and analytic except for poles. In any parallelogram of
periods an elliptic function has a certain number of poles; the num-
ber of these poles is called the order of the function, each being
counted according to its degree of multiplicity *. It should be noticed
that if an elliptic function f(«) has a pole u, on the side OC, the
point u, 4+ 2 v, situated on the opposite side 4B, is also a pole; but
we should count only one of these poles in evaluating the number
of poles contained in 04BC. Similarly, if the origin is a pole, all the

*It i3 to be understood that the parallelogram is so chosen that the order is as
small as possible. Otherwise, the number of poles in a parallelogram could be taken to
be any multiple of this least number, since a multiple of a period is a period. — TRANS.
(See also the footnote, p. 149.)
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vertices of the net are also poles of f(), but we should count only
one of them in each parallelogram. If, for example, we move that
vertex of the net which lies at the origin to a suitable point as near
as we please to the origin, the given function f(x) no longer has
any poles on the boundary of the parallelogram. When we have occa-
sion to integrate an elliptic function f(«) along the boundary of the
parallelogram of periods, we shall always suppose, if it is necessary,
that the parallelogram has been displaced in such a way that f(u)
has no longer any poles on its boundary. The application of the
general theorems of the theory of analytic functions leads quite
easily to the fundamental propositions :

1) The sum of the residues of an elliptic function with- respect
to the poles situated in a_pgrallelogram of periods is zero.

Let us suppose for definiteness that f(z) has no poles on the
boundary 04BCO. The sum of the residues with respect to the poles
situated within the bounda.ry is equal to

e O

the integral being taken along 0ABCO. But this integral is zero, for
the sum of the mtegrals taken along two opposite sides of the paral-
lelogram is zero. Thus we have

2w’

S)du= f (u) du, S()du = S(w)duy,

(04) () (BC) 2w+2w

and if we substitute » 4 2 o' for « in the last integral, we have

f(u)du=‘/;of(u+2m')du =j;of(u)du =— S (u)du.

04

(BC)

Similarly, the sum of the integrals along AB and
along CO is zero. In fact, this property is almost
selfevident from the figure (Fig. 26). For let us
consider two corresponding elements of the two inte-
grals along 04 and along BC. At the points m and
m' the values of f(u) are the same, while the values
of du have opposite signs.

The preceding theorem proves that an elliptic func- Fio. 26
tion f(u) cannot have only a single pole of the first
order in a parallelogram of periods. An elliptic function is at least
of the second order.
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2) The number of zeros of an elliptic function in a parallelogram
of periods is equal to the order of that function (each of the zeros
being counted according to its degree of multiplicity).

Let f () be an elliptic function ; the quotient f'(u)/f(v) = ¢ () is
also an elliptic function, and the sum of the residues of ¢ () in a par-
allelogram is equal to the number of zeros of f(x) diminished by the
number of the poles (§ 48). Applying the preceding theorem to the
function ¢ (u), we see the truth of the proposition just stated. In gen-
eral, the number of roots of the equation f(x)= C in a parallelogram
of periods is equal to the order of the function, for the function
JS(u) — C has the same poles as f(u), whatever may be the constant C.

3) The difference between the sum of the zeros and the sum of the
poles of an elliptic function in a parallelogram of periods is equal to
Consider the integral

a period.
1 (L™ 4,
2mi f J(u) d

along the boundary of the parallelogram OABC. This integral is
equal, as we have already seen (§-48), to the sum of the zeros of f(u)
within the boundary, diminished by the sum of the poles of f(u)
within the same boundary. Let us evaluate the sum of the integrals
resulting from the two opposite sides 04 and BC':

2
S() f L@
u du + du.
_/.: S() hrosaw S
If we substitute # + 2 o' for « in the last integral, this sum is equal to

2w f'() o' !u+2wf!
I f()d“+f(“+2 ) Pl 2w)

or, on account of the periodicity of f(«), to

—j; 2w'7§—)2du

2-)
(L@ g,
f O]
is equal to the variation of Log[ f(«)] when « describes the side 04 ;
but since f(u) returns to its initial value, the variation of Log[ f(x)]
is equal to — 2m,mi, where m, is an integer. The sum of the inte-
~ grals along the opposite sides 04 and BC is therefore equal to

The integral
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(4mgrie")/2 i =2m'. Similarly, the sum of the integrals along
AB and along CO is of the form 2mw. The difference considered
above is therefore equal to 2mw + 2 m,'; that is, to a period.

By a similar argument it can be shown that the proposition is
also applicable to the roots of the equation f(x)=C, contained in a
parallelogram of periods, for any value of the constant C.

4) Between any two elliptic functions with the same periods there
exists an algebraic relation.

Let f(u), f,(x) be two elliptic functions with the same periods
2w, 20 In a parallelogram of periods let us take the points a,,
a, -+, a, which are poles for either of the two functions f(u),
Jfi(w) or for both of them; let u; be the higher order of multi-
plicity of the point e, with respect to the two functions, and let
#,+puy+ -« -+ p, = N. Now let F(z, y) be a polynomial of degree n
with constant coefficients. If we replace x and y by f(u) and f, (),
respectively, in this polynomial, there will result a new elliptic func-
tion @ (u) which can have no other poles than the points a,, a,, - - -, a,,
and those which are deducible from them by the addition of a period.
In order that this function ®(z) may reduce to a constant, it is
necessary and sufficient that the principal parts disappear in the
neighborhood of each of the points e, a,, - - -, a,. Now the point a;
is a pole for ® (v) of an order at most equal to nu,, Writing the con-
ditions that all the principal parts shall be zero, we shall have then,

in all, at most
n("’1+”’3+"' +F’m)=Nn

linear homogeneous equations between the coefficients of the poly-
nomial F(z, y) in which the constant term does not appear. There
are n(n + 3)/2 of these coefficients; if we choose n so large that
n(n+3) > 2Nn, or n+ 3 > 2N, we obtain a system of linear
homogeneous equations in which the number of unknowns is greater
than that of the equations. Such equations have always a system of
solutions not all zero. If F(x, ) is a polynomial determined by
these equations, the elliptic functions f(u), f,(u) satisfy the algebraic

relation
FLf(w), fi(w)]= C,
where C denotes a constant.

Notes. Before leaving these general theorems, let us make some
further observations which we shall need later.

A single-valued analytic function f(u) is said to be even if we
have f(— u) = f(u); it is said to be odd if we have f(— u)=— f(u).
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The derivative of an even function is an odd function, and the
derivative of an odd function is an even function. In general, the
derivatives of even order of an even function are themselves even
functions, and the derivatives of odd order are odd functions. On
the contrary, the derivatives of even order of an odd function are
odd functions, and the derivatives of odd order are even functions.

Let f(x) be an odd elliptic function; if w is a half-period, we
must have at the same time f(w)=— f(— w) and f(w)=f(— w),
since w =— w 4 2w. It is necessary, then, that f(w) shall be zero
or infinite, that is, that w must be a zero or a pole for f(u). The order
of multiplicity of the zero or of the pole is necessarily odd; if w
were a zero of even order 2 n for f(«), the derivative f®" (), which
is odd, would be analytic and different from zero for » = w. If w
were a pole of even order for f(u), it would be a zero of even order
for 1/f(«). Hence we may say that every kalf-period is a zero or a
pole of an odd order for any odd elliptic function.

If an even elliptic function f(«) has a half-period w for a pole or
for a zero, the order of multiplicity of the pole or of the zero is an
even number. If, for example, w were a zero of odd order 22 4 1, it
would be a zero of even order for the derivative f'(x), which is an
odd function. The proof is exactly similar for poles. Since twice a
period is also a period, all that we have just said about half-periods
applies also to the periods themselves.

69. The function p(u). We have already seen that every elliptic
function has at least two simple poles, or one pole of the second order,
in a parallelogram of periods. In Jacobi’s notation we take func-
tions having two simple poles for our elements; in Weierstras¥’s
notation, on the contrary, we take for our element an elliptic func-
tion having a single pole of the second order in a parallelogram.
Since the residue must be zero, the principal part in the neighbor-
hood of the pole @ must be of the form 4/(u — @)’ In order to
make the problem completely definite, it suffices to take 4 =1 and
to suppose that the poles of the function are the origin » = 0 and
all the vertices of the network 2w = 2moew + 2m'e’. We are thus
led first to solve the following problem: ’

To form an elliptic function having as poles of the second order all
the points 2w = 2me + 2m'e', where m and m' are any two integers
whatever, and having no other poles, so that the principal part in the
neighborhood of the point 2w shall be 1/(u — 2 w)*
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Before applying to this problem the general method of § 62, we shall
first prove that the double series

1
'
(21) 2 et map’

where m and m' take on all the integral values from — oo to + o
(the combination m = m' = 0 being excepted), is convergent, provided
that the exponent p is a positive number greater than 2. Consider the

triangle having the three pomnts » = 0, ¥ = mo, ¥ = mw 4+ m'e’ for

its vertices ; the lengths of the three sides of the triangle are respec-
tively |mw|, [m's'|, | mw + m'ew'|. We have, then, the relation
|'m¢n + m'm']2 = 2]«)P + m"lm’l2 + 2mm’|wm']cos 0,
where 0 is the angle between the two directions Ow, 0w'(0 < 8 < 7).
For brevity let |w|=a, |0'|= 15, and let us suppose a=5. The pre-
ceding relation can then be written in the form
|me + m'e'[? = m*a® + m"b* £ 2 mm'ad cos @,
where the angle @ is equal to 6 if § = 7/2, and to 7 — 0 if 6> /2.
The angle ® cannot be zero, since the three points 0, o, o' are not in
a straight line, and we have 0 = cos ® <1. We have, then, also
|mw + m'e'[? = (1 — cos @) (m*a® + m"™b%) 4 cos @ (ma + m'b)3,
and consequently
[me + m'e'[? = (1 — cos @) (m*a® + m™b) = (1— cos ®) a®(m? + m"™).
From this it follows that the terms of the series (21) are respectively
less than or equal to those of the series 3'1/(m? + m™)*? multiplied
by a constant factor, and we know that the last series is convergent
if the exponent u/2 is greater than unity (I, §172). Hence the
series (21) is convergent if we put p =3 or u =4. According to a
result derived in § 62, the series

¢(“)=;1i+z' [m—ﬁ] (0= mo +m),

represents a function that is analytic except for poles, and that has
the same poles, with the same principal parts, as the elliptic function
sought. We shall show that this function ¢ () has precisely the two
periods 2 w and 2 o'. Consider first the series

2"[@ w Jlr 2wy (22:)’] ’

where 2w = 2 mw + 2 m'e', the summation being extended to all the
integral values of m and m', except the combinations m = m' =0

/~>Z
#*
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and m =—1, m' = 0. This series is absolutely convergent, for it
results from the series ¢(x) when we substitute — 2w for « and
omit two terms. It is easily seen that the sum of this series is zero
by considering it as a double series and evaluating separately each
of the rows of the rectangular double array. Subtracting this series
from ¢(u), we can then write

1 " 1 1
$= BT T zey 14 +E [(u—Zw)’ (zw+2..,)=]’

the combinations (m =m'=0), (m =—1, m'=0) being always
excluded from the summation. Let us now change « to u — 2 w;
then we have

1., < 1 1
¢(u—20)=;a+2 [(u——2w——2w)2—(2w+2"’)2]’

the combination m = —1, m' = 0 being the only one excluded from
the summation. But the right-hand side of this equality is identical
with ¢ («). This function has therefore the period 2 w, and in like
manner we can prove that it has the period 2 w'. This is the func-
tion which Weierstrass represents by the notation p(«), and which
is thus defined by the equation

(22) p(u) = -,’%2- +2'[m - 1]7,]’ (w =mo + m'w').

If we put » =0 in the difference p(u)— 1/u? all the terms of the
double sum are zero, and that difference is itself zero. The function
p () possesses, then, the following properties:

1) It is doubly periodic and has for poles all the points 2w and
only those.

2) The principal part in the neighborhood of the origin is 1/u%

3) The difference p (u) — 1/u? is zero for u = Q.

These properties characterize the function p («). In fact,any analy-
tic function f(u«) possessing the first two properties differs from p ()
only by a constant, since the difference is a doubly periodic fune-
tion without any poles. If we have also f(u) —1/u*=0 for v =0,
J(u)— p(v) is also zero for v = 0; we have, therefore, f(u) = p(u).

The function p(— u) evidently possesses these three properties;
we have, then, p(— %)= p(u), and the function p () is even, which
is also easily seen from the formula (22).

Let us consider the period of p () whose absolute value is smallest,
and let 8 be its absolute value. Within the circle C; with the radius
8, described about the origin as center, the difference p(x)— 1/u? is
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analytic and can be developed in positive powers of u. The general
term of the series (22), developed in powers of u, gives

1 _i_ 2u + 2 3l +. +gn+1!u"
(vu—2w)® 4w (2 w)8 2w) 2w+t
and it is easy to prove that the function
b u
16|w]8

+oen,

IWI

dominates this series in a circle of radius §/2, and, a fortiori, the
expression obtained from it by replacing 1 — u/|w| by 1 —2u/8
dominates the series. Since the series 3'1/|w|* is convergent, we
have the right to add the resulting series term by term (§9). The
coefficients of the odd powers of « are zero, for the terms resulting
from periods symmetrical with respect to the origin cancel, and we
can write the development of p(u) in the form

(23) p(u)= 1-11’5 Ut 4ot 4 U

where
1 1
02=3E —(Zw)" 0a=52 ——(Zw)cy seey,

e, =0CAr— l)zlﬁxr

Whereas the formula (22) is applicable to the whole plane, the new
development (23) is valid only in the interior of the circle C; hav-
ing its center at the origin and passing through the nearest vertex
of the periodic network.

The derivative p'(x) is itself an elliptic function having all the
points 2w for poles of the third order. It is represented in the
whole plane by the series

(25) O

In general, the nth derivative p®™(u) is an elliptic function having
all the. points 2w for poles of order n + 2, and it is represented by
the series

(24

. Z(nt1 n
@) p20)=(- 0 EE + e )Y g
We leave to the reader the verification of the correctness of these

developments, which does not present any difficulty in view of the
properties established above (§§ 39 and 61).
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70. The algebraic relation between p(u) and p'(u). By the general
theorem of § 68 there exists an algebraic relation between p(u) and
p'(%). It is easily obtained as follows: In the neighborhood of the
origin we have, from the formula (23),

p'(u)=—%+2c,u+4c'u'+---,

[p’(u)]*=%—87';"—160.+---’
P@P=5+22+ 86+

where the terms of the series not written are zero for v = 0. The
difference p”(v)— 4 p’(v) has therefore the origin as a pole of the
second order, and in the neighborhood of this point we have

20 c,

PP W) — 4PN (w)=—— 3 —28¢,+-
where the terms not written are zero for u = 0.

Hence the elliptic function — 20 ¢p (v) — 28 ¢, has the same poles,
with the same principal parts, as the elliptic function p? — 4 p? and
their difference is zero when « = 0. These two elliptic functions are
therefore identical, and we have the desired relation, which we shall
write in the form

27 (P'() T = 49°() — 9P (4) — 9y

where .
of 1\ of 1\
gg=2062=602 (2_’L;>’ ya=2803=1402 (-270)-

The relation (27) is fundamental in the theory of ellipfic func-
tions ; the quantities g, and g, are called the invariants.

All the coefficients ¢, of the development (23) are polynomials in
terms of the invariants g, and g,. In fact, taking the derivative of
the relation (27) and dividing the result by 2 p'(x), we derive the
formula

(28) P'(w)=6p}(w)— 2
On the other hand, we have in the neighborhood of the origin

6
p"(u)=z7+ 2¢,+12c0% + - - +(2A—2)(2A — B) oA+ . . o,
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Replacing p(x) and p”"(u) by their developments in the relation
(28), and remembering that (28) is satisfied 1dentlca.lly, we obtain
the recurrent relation

3
o= mzn v [»=238-:--,(A—2)],

which enables us to calculate step by step all the coefficients ¢, in
terms of ¢, and ¢,, and consequently in terms of g, and g,; we find -
thus
e=_ 9 3 9295
+ 20.3.5° s~ o0 5.7.11°
This computation brings out the remarkable algebraic fact that all
the sums 3'1/(2 w)** are expressible as polynomla.ls in terms of the
first two.

We know a priori the roots of p'(x). This function, being of the
third order, has three roots in each para.llelogram of periods. Since
it is odd, it has the roots v = w, ¥ = o', u = 0" = & + o' (§ 68, notes).
By (27) the roots of the equation 4 p*®— g,p — g, = 0 are precisely
the values of p(«) for ¥ = o, o', o". These three roots are ordinarily
represented by ¢, e, e,:

e, = p (), e, = p (o), e, =p(o").
These three roots are all different ; for if we had, for example, ¢, =¢,,
the equation p(u)= e, would have two double roots » and o' in the .
interior of a parallelogram of periods, which is impossible, since p (%)
is of the second order. Moreover, we have
4P (W) — 9,0 (W) —9, = 4[p(¥) — 6,1 [P(¥) — &1[P(¥) — &,

and between the invariants g,, g, and the roots e, ¢,, ¢, we have the
relations :

e+ e+e,=0 eleg+3,6,+eze,=—%: eleze":%?.

The discriminant (gj — 27 g3)/16 is necessarily different from zero.
71. The function {(u). If we integrate the function p(w)—1/u*

along any path whatever starting from the origin and not passing
through any pole, we have the relation

. 1 ' 1 1 %
[ ["(“)_?]d““z [u—-2w+2w+ (2w)’]'
The series on the right represents a function which is analytic
except for poles, having all the points » = 2w, except v = 0, for
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poles of the first order. Changing the sign and adding the frac-
tion 1/u, we shall put

\ 1 [ 1 1 ©
@) =3+ [u—2w+%+(2w)’].
The preceding relation can be written

- 1 1
(30) j‘; [p(u)—-?]du—-—t(u)+ 7
and, taking the derivatives of the two sides, we find
(81) , {()y=—p().

It is easily seen from either one of these formula that the function
¢{(x) is odd. In the neighborhood of the origin we have by (23)
and (30),

{(u)———-—u —%’u‘-—

The function ¢(«) cannot have the periods 2 w and 2 o', for it would
have only one pole of the first order in a parallelogram of periods.
But since the two functions { (u + 2 w) and { («) have the same deriva-
tive — p(u), these two functions differ only by a constant ; hence the
function {(u) increases by a constant quantity when the argument »
increases by a period. It is easy to obtain an expression for this con-
stant. Let us write, for greater clearness, the formula (30) in the form

[Tpor-5]ew=3-1.

Changing » to « '+ 2 » and subtracting the two formuls, we find

utlw
¢(u+2w)— Z(u)——f p(v)dv.
We shall put

2v=—[“+2up(v)dv: 2y =—fu+wp(v)d”v

Then 5 and %' are constants independent of the lower limit « and of
the path of integration. This last point is evident a priori, since all
the residues of p(v) are zero. The function {(u) satisfies, then, the
two relations

Z(u+2m)=t(u)+2n, L(u+20)=L(u)+ 29"
If we put in these formulee » =— w and u =— ' respectively, we
find 5 = {(w), ' = {(o).
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There exists a very simple relation between the four quantities w,
o'y 9, 9. To establish it we have only to evaluate in two ways the
integral f{(u)du, taken along the parallelogram whose vertices are
Uy Uy + 20, %, + 20 4+ 20, uy+ 2w'. We shall suppose that {(u)
has no poles on the boundary, and that the coefficient of ¢ in v'/w is
positive, so that the vertices will be encountered in the order in
which they are written when the boundary of the parallelogram is
described in the positive sense. There is a single pole of {(u) in the
interior of this boundary, with a residue equal to 4 1; hence the
integral under consideration is equal to 2 7. On the other hand, by
§ 68 the sum of the integrals taken along the side joining the vertices
%y, %, + 2 w and along the opposite side is equal to the expression

[ Rt 21t = .
-o

Similarly, the sum of the integrals coming from the other two sides
is equal to 4 w'p. We have, then,

(32) oy — ' =Z 4,

which is the relation mentioned above.
Let us again calculate the definite integral

v+ 2a
F(u)= f {(v)dv,
taken along any path whatever not passing through any of the poles.
We have Fluy=¢(u 4+ 2w)— L ()= 2y,
so that F(u) is of the form F(u)= 24qu 4 K, the constant K being
determined except for a multiple of 2 7, for we can always modify
the path of integration without changing the extremities in such a

way as to increase the integral by any multiple whatever of 2 ¢,
To find this constant KX let us calculate the definite integral

[ Teor e

along a path very close to the segment of a straight line which joins
the two points w and — w. This integral is zero, for we can replace the
path of integration by the rectilinear path, and the elements of
the new integral cancel in pairs. But, on replacing « by — w in the
expression which gives F(«), we have

f+uZ(’v)d'v =— 290+ K,
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and since we have also

we can take K = 2 yw 4 mi. Hence, without making any supposition
as to the path of integration, we have, in general,

u+ 2
(33) f L()dv =2y (u + w)+ @ m + 1)7i,

‘where m is an integer, and we have an analogous formula for the

integral [**?*'¢(v)dv. v

72. The function o(u). Integrating the function {(x)—1/u along
any path starting from the origin and not passing through any pole,
we have

. 1 ' % u u?
[ [{(u)— ;]du —2 [Log(l - ﬁ>+ 5w + 8_10“]

and consequently

G ek B T (1 L)

w,

The integral function on the right is the simplest of the integral
functions which have all the periods 2w for simple roots; it is the
function o (u):

' w) 2+
(35) e(w=1]] (1 - %)ew i,
The equality (34) can be written

“ 1
(34) o (u) = ush [ser-2e
whence, taking the logarithmic derivative of both sides, we obtain
o) _1 _1_
(36) = H )= =)

The function o(u), being an integral function, cannot be doubly
periodic. When its argument increases by a period, it is multiplied
by an exponential factor, which can be determined as follows :
From the formula (34") we have
%+ 20

ao(u+ 2w) _u +20 e.L"Hﬂ[g(.)—%]d-: ef' Cyds,
o (u) u

This factor was calculated in § 71, whence we find

(37) o'(u + 2 w)= ean(u+u)+(2m+l)~io,(u)= _ e”'"*“"’a(u).
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It is easy to establish in a similar manner the relation

(38) o(u+ 2 0')=— ST g (u).

From either of the formule (35) or (34') it follows that o (u) is
an odd function.

If we expand this function o(u) in powers of u, the expansion
obtained will be valid for the whole plane. It is easy to show that
all the coefficients are polynomials in g, and g, For we have

“ 1 —_ % 4 0 23
j [“")_E]d“""ﬁ““ﬁ“‘”""zx(zx vt
LIV TN EEPYPO
a(u): ue 84 6.6% R
‘We see that there is no term in «* and that any coefficient is a
polynomial in the ¢,’s and therefore in the invariants g, and g,;
the first five terms are as follows:

—ay g ® _ g5’ _ g2’ - 9295%" _
(%) M) =v—o 35~ %.3.5.7 2.90.6.7 Z.3.507.11
The three functions p(u), {(«), o () are the essential elements of
the theory of elliptic functions. The first two can be derived from
o (u) by means of the two relations {(x) = ¢'(v) /o (u), p(u) =— {'(w).

73. General expressions for elliptic functions. Every elliptic function
J(w) can be expressed in terms of the single function o (%), or again
in terms of the function {(w) and of its derivatives, or finally in
terms of the two functions p(%) and p'(x). We shall present con-
cisely the three methods.

Method 1. Expression of f(w) in terms of the function o(u). Let
a, a, - - -, a, be the zeros of the function f(u) in a parallelogram of
periods, a.nd by, by - - -, b, the poles of f(u) in the same parallelogram,
each of the zeros and each of the poles being counted as often as is
required by its degree of multiplicity. Between these zeros and poles

we have the relation

40) a+ae+- - +a,=b+b+---+5+2Q,
where 2 Q is a period.

Let us now consider the function

o(u—a):--o(u—a,)
$0) = =) o b—20)

This function has the same poles and the same zeros as the function
S (w), for the only zeros of the factor o(u — a;) are u = a, and the
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values of « which differ from q; only by a period. On the other hand,
this function ¢ (u) is doubly periodic, for if we change u to u + 2w,
for example, the relation (37) shows that the numerator and the
denominator of ¢ («) are multiplied respectively by the two factors

(_ l)ueiu(n-i»u-—al—a'—...—n,)’ (_ l)aezvl(ul+nu-—bl-b.—...—b.—-zn)’

and these two factors are equal, by (40). Similarly, we find that
¢ + 2 o0')= ¢ (). The quotient f(u)/¢ () is therefore a doubly
periodic function of » having no infinite values; that is, it is a
constant, and we can write

_ o(u —a)o(u—ay)---o(u—a,)

@) SO =C o (a1 - -o(u—b, —20)

To determine the constant C it is sufficient to give to the variable «
any value which is neither a pole nor a zero.

More generally, to express an elliptic function f(u) in terms of
the function o (u), when we know its poles and its zeros, it will suf-
fice to choose n zeros («;, ay, - - -, a;) and n poles (b, b3, - -+, b;) in
such a way that Sa; = 35/ and that each root of f(u) can be obtained
by adding a period to one of the quantities a;, and each pole by
- adding a period to one of the quantities ;. These poles and zeros
may be situated in any way in the plane, provided the preceding
conditions are satisfied.

Method 2. Expression of f(u) in terms of the function { and of its
derivatives. Let us consider & poles a,, a,, - - -, a, of the function f(u)
such that every other pole is obtained by adding a period to one
of them. We could take, for example, the poles lying in the same
parallelogram, but that is not necessary. Let

Ap AP AP
uw—a; (u—-a,-)’+”'+(u — a)™

be the principal part of f(») in the neighborhood of the point a;.
The difference

=3[ 408 - a) = APLw ~ a) -
) = 1)"—1‘45'? (% —1)
Ty )]

is an analytic function in the whole plane. Moreover, it is a doubly
periodic function, for when we change u to « + 2w, this function is
increased by — 2 »=4{", which is zero, since 34{" represents the sum
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of the residues in a parallelogram. That difference is therefore a
constant, and we have

fuy= €+, [ 400 — a) — 4L — a) ---

+ (=1~ (—‘—7 -V (u— a,)]

The preceding formula is due to Hermite. In order to apply it we
must know the poles of the elliptic function f(z) and the corre-
sponding principal parts. Just as formula (41) is the analogon of the
formula which expresses a rational function as a quotient of two
polynomials decomposed into their linear factors, the formula (42)
is the analogon of the formula for the decomposition of a rational
fraction into simple elements. Here the function { (z — a) plays the
part of the simple element.

Method 3. Expression of f(u) in terms of p(x) and of p'(w). Let
us consider first an even elliptic function f(x). The zeros of this
function whick are not periods, are symmetric in pairs. We can
therefore find n zeros (a,, 2 * * *» @) such that all the zeros except
the periods are included in the expressions

(42)

ta, +2w, ta+2w, .-, ta,+2w.

We sha.ll take, for example, the parallelogram whose vertices are
o+ o, ' — 0, — 0 — o, »— o' and the zeros in this parallelogram
lying on the same side of a straight line passing through the origin,
carefully excluding half the boundary in a suitable manner. If a
zero a; is not a half-period, it will be made to appear in the sequence
a, a,---,a, as often as there are units in its degree of multiplicity.
If the zero a,, for example, is a half-period, it will be a zero of even
order 2 r (§ 68, notes) We shall make this zero appear only r times
in the sequence a,, a,, - - -, @,. With this understanding, the product

[p()—p(apIlp ()= P(a)] - - - [P(») — p(an)]
has the same zeros, with the same orders, as f(«), excepting the case
of £(0)=0. Similarly, we shall form another product,

[P@)—p@)1lp(w)—p@)]---[P()— p(bw)]);

having the poles of f(u) for its zeros and with the same orders,
again not considering the end points of any period. Let us put

¢ (w)= M= P@)][p(@)—p(e)]---[P(®)— p(a)],
p()—pG)IlP(®)— p (8] - - - [P(¥)— p(4)]’
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the quotient f(u)/¢(x) is an elliptic function which has a finite
value different from zero for every value of « which is not a period.
This elliptic function reduces to a constant, for it could only have
periods for poles; and if it did, its reciprocal would not have any
poles. We have, then,

fay=cP@—P@)][PM)—p@)] - [p(W) = p(a)],
TP =PI —P@)]- - [P(0)— ()]

If f,(«) is an odd elliptic function, f,(ux)/p'(x) is an even function,
and therefore this quotient is a rational function of p(u). Finally,
any elliptic function F(x) is the sum of an even function and an
odd function :

F(u)=

Applying the preceding results, we see that every elliptic function
can be expressed in the form

(43) F)=Rp@)]+p'(«) B,[p ()],

where R and R, are rational functions.

Fu)4+ F(—u) + Fu)— F(—w)_
2 2

74. Addition formule. The addition formula for the function sin z
enables us to express sin (@ + b) in terms of the values of that func-
tion and of its derivative for * = a and # =& There exists an
analogous formula for the function p («), except that the expression
for p(u + v) in terms of p(u), p(v), p'(»), p'(v) is somewhat more
complicated on account of the presence of a denominator.

Let us first apply the general formula (41), in which the function
o (u) appears, to the elliptic function p(u) — p(v). We see at once
that o (u 4 v) o (v — v)/e?(») is an elliptic function with the same
zeros and the same poles as p(u)— p(v). We have, then,

©) — D () = c(u+v)o(u—1v),
p)—p@)="C () ;

in order to determine the constant C it suffices to multiply the two
sides by ¢*(v) and to let u approach zero. We thus find the relation
1 =— Cd¢’*(v), whence we derive
_ __c(u-{—v)o- u—w).
(44) P (u) P (v) - ] (u) P (’U)
If we take the logarithmic derivative on both sides, regarding v as
a constant and u as the independent variable, we find

_L(UL_ u v uw —v u
s = L L =)= 22,
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or, interchanging » and v in this result,

—p'(v =t + v)— (u — v)— v
O =t 0= L = 0) - 2O

Finally, adding these two results, we obtain the relation

1P -9

45) {(w+v)—{(v) ()= 2 p(w)—p() ’
which constitutes the addition formula for the function {(v).

Differentiating the two sides with respect to », we should obtain
the expression for p(u + v); the right-hand side would contain
the second derivative p"(x), which would have to be replaced by
6 p?(u) — g,/2. This calculation is somewhat long, and we can obtain
the result in a more elegant way by proving first the relation

(46) p(+o)+p(W)+p@)=[(+v)—{()— @]
Let us always regard « as the independent variable ; the two sides
are elliptic functions having for poles of the second order u = 0,

u =— v, and all the points deducible from them by the addition of
a period. In the neighborhood of the origin we have

{+2)— @) —L)=L{E)+w'@)+ - — L) = {@)
=—%+u(’(v)+ a4 ...
and consequently A .
[+ v)—E)—¢@)]= %, —2¢8@®) —2au+ ...
The principal part is 1/u% as also for the left-hand side. Let us

compare similarly the principal parts in the neighborhood of the pole
u =—v. Putting v =— v + %, we have

LB = Lo+ B) = )= 5 = WO)+ Bt -,

[£()— L(h =) — L)'= 35— 2L@) + -~

The principal part of the right-hand side of (46) in the neighbor-
hood of the point u = — v is, then, 1/(x 4 v)? just as for the left-
hand side. Hence the difference between the two sides of (46) is
a constant. To find this constant, let us compare, for instance, the
developments in the neighborhood of the origin. We have in this
neighborhood

Pu+v)+pw)+ pl)= ul“ +2p(v)+ up’(v).{-. cen.
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Comparing this development with that of [{(u+v)—{(x) —¢{(v)T%
we see that the difference is zero for «w = 0. The relation (46) is there-
fore established. Combining the two equalities (45) and (46), we
obtain the addition formula for the function p(u):

(47) P(x+ )+ pu)+ p(v) = i [‘;—'('(%:—%%]a-

75. Integration of elliptic functions. Hermite’s decomposition for-
mula (42) lends itself immediately to the integration of an elliptic
function. Applying it, we find

ff(u)du Cu+ {A“’Log[o-(u—a)] APt (u—a)+ - -

(48) AP
D D w - a |
(m—1)!

We see that the integral of an elliptic function is expressible in
terms of the same transcendentals o, {, p as the functions themselves,
but the function ¢ (%) may appear in the result as the argument of
a logarithm. In order that the integral of an elliptic function may
be itself an elliptic function, it is necessary first that the integral
shall not present any logarithmic critical points; that is, all the
residues A{? must be zero. If this is so, the integral is a function
analytic except for poles. In order that it be elliptic, it will suffice
that it is not changed by the addition of a period to u, that is, that

2c..,—2,,24(0— ) 2Cw—2,,2A<o_

whence we derive C = 0, 24 = 0. If these conditions are satisfied,
the integral will appear in the form indicated by Hermite’s theorem.

When the elliptic function which is to be integrated is expressed in terms
of p(u) and p’(u), it is often advantageous to start from that form instead of
employing the general method. Suppose that we wish to integrate the elliptic
function R [p(u)] + p’(v) B, [p(u)], B and R, being rational functions. We have
only to notice in regard to the integral (R, [p(x)]p’(v) du that the change of
variable p(u) =t reduces it to the integral of a rational function. As for the
integral f R [p («)] du, we could reduce it to a certain number of type forms by
means of rational operations combined with suitably chosen integrations by
parts; but it turns out that this would amount to making in another form the
same reductions that were made in Volume I (§ 105, 2d ed.; § 110, 1st ed.). For,
if we make the change of variable p (u) = ¢, which gives

at dt

P(w)du = dt or vy aiy———————1}
’ P Vas—gi—g,
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the integral [ B [p (x)] du takes the form
R(t)dt
Vath— gt —g,

‘We have seen how this integral decomposes into a rational function of ¢ and
of the radical V48— g,t — g;, a sum of a certain number of integrals of the
form [t*dt/ V418 — g,t — g,, and finally a certain number of integrals of the form

ffi'_@_d‘___,
P(t) V4t — gt —gg
where P (f) is a polynomial prime to its derivative and also to 418 — g,t — g,,
and where (t) is a polynomial prime to P () and of lower degree than P ().
Returning to the variable u, we see that the integral {R[p (u)] du is equal
to a rational function of p(u) and p’(x), plus a certain number of integrals
such as [[p(u)]*du and a certain number of other integrals of the form
Qp(u)]du
9 Plpw]
and this reduction can be accomplished by rational operations (multiplications
and divisions of polynomials) combined with certain integrations by parts.
We can easily obtain a recurrent formula for the calculation of the integrals
I, = f[p(w)]*du. If, in the relation

diu {r@I*-1p’ @)} =@ -1 [PWI*~2p? ) + [p ()]*~1p"(u),

we replace p?(u) and p“(u) by 4p*(u)—g,p(u)—g, and 6p(u)— g,/2
respectively, there results, after arranging with respect to p(u),
P ) |
=@n+PEF*- (=) BP@F-t— (= gy lp ],

and from this we derive, by integrating the two sides,
, 1
60) PO = @nt D= (n=5) g Taor— (= Do Las.

By putting successively n=1, 2, 8, ... in this formula, all the integrals I,
can be calculated successively from the first two, I, = u, I, =— {(u).

To reduce further the integrals of the form (49), it will be necessary to know
the roots of the polynomial P (t). If we know these roots, we can reduce the
calculation to that of a certain number of integrals of the form

f du

p()—p()

where p(v) is different from e,, €,, ¢;, since the polynomial P (¢) is’prime to
418 — gt — gs. The value of v is therefore not a half-period, and p’(v) is not
zero. The formula

—pE tu+ v)— t(u—v)—2¢(v),

p(u)—p(v)
established in § 74, then gives
du =1 . _ o
(51) fm =50 [Loge (u + v) — Loge (& — v) — 2ug (v)] + C.
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76. The function 8. The series by means of which we have defined the func-
tions p(u), {(u), o («) do not easily lend themselves to numerical computation,
including even the power series development of «(u), which is valid for the
whole plane. The founders of the theory of elliptic functions, Abel and Jacobi,
had introduced another remarkable transcendental, which had previously been
encountered by Fourier in his work on the theory of heat, and which can be
developed in a very rapidly convergent series ; it is called the # function. We
shall establish briefly the principal properties of this function, and show how
the Weierstrass ¢ (x) function can be easily deduced from it.

Let T = r 4 8i be a complex quantity in which the coefficient 8 of i is positive.
If v denotes a complex variable, the function 4 (v) is defined by the series

+ow 3
@ 0= o Ve, qaen

which may be regarded as a Laurent series in which e"iv has been substituted
for z. This series is absolutely convergent, for the absolute value U, of the
general term is given by
1\2
U, = e—n(n+§) —@n+1)wB

if v = a + Bi; hence v ﬁ; approaches zero when n becomes infinite through
positive values, and the same is true of ¥/ U_,. It follows that the function
#(v) is an integral transcendental function of the variable ». It is also an odd
function, for if we unite the terms of the series which correspond to the values
n and —n — 1 of the index (where n varies from 0 to 4+ =), the development
(52) can be replaced by the following formula :

+ o 1\8
(58) o) =22 (- 1D sin@n-+ ),
0

which shows that we have
6(—v)=—46(v), 6(0)=0.

‘When v is increased by unity, the general term of the series (52) is multi-
plied by e@»+D®i =_ 1. We have, then, # (v + 1) =— 6 (v). If we change v to
v + 7, no simple relation between thq two series is immediately seen; but if
we write ' )

3
(""'i) +ant lg(?n-l—l)m’u’

1i®
b +m =33 (-1

and then change n to n — 1 in this series, the general term of the new series

(..-1)'+ 21 :
(_ l)n—lq 2 e @2n+1)wiv o— 27iv

is equal to the general term of the series (52) multiplied by — g—1e—27i*, Hence
the function @ (v) satisfies the two relations

(54) Ov4+1)=—0(v), O(v+7)=—qg-le-27vh(v).

Since the origin is a root of #(v), these relations show that § (v) has for zeros all
the points m,; + m,7, where m, and m, are arbitrary positive or negative integers.
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These are the only roots of the equation (v) =0. For, let us consider a
parallelogram whose vertices are the four points vy, v, + 1, v, + 1+ 7, v, + 7,
the first vertex v, being taken in such a way that no root of #(v) lies on the
boundary. We shall show that the equation #(v) = 0 has a single root in this
parallelogram. For this purpose it is sufficient to calculate the integral

AU} dv
6 (v)
along its boundary in the positive sense. By the hypothesis made upon r, we
encounter the vertices in the order in which they are written.
From the relations (54) we derive

0'(,,+1)___m, 0’(‘0-{-1’):&_2
(v+1) 6O(v) Go+71) 6(v)
The first of these relations shows that at the corresponding points n and n’

(Fig. 27) of the sides AD, BC, the function 6’(v)/6 (v) takes on the same value.
Since these two sides are described in

contrary senses, the sum of the cor- D(o+1) o’ C(Vp¥1+7)
responding integrals is zero. On the
contrary, if we take two corresponding / /
points m, m’ on the sides AB, DC, the '
n

value of ¢(v)/f(v) at the point m’ is ™
equal to the value of the same function

at the point m, diminished by 2wi. The A{V)——> B(uo+1)

sum of the two integrals coming from Fie. 27

these two sides is therefore equal to

Jicpy— 2 widp, that is, to 27i. As there is evidently one and only one point
in the parallelogram 4 BCD which is represented by a quantity of the form
m, + m,T, it follows that the function 6 (v) has no other roots than those found
above.

Summing up, the function # (v) is an odd integral function; it has all the
points m, + m,r for simple zeros; it has no other zeros; and it satisfies the
relations (564). Let now 2w, 2w’ be two periods such that the coefficient of i in
«’/w is positive. In @ (v) let us replace the variable v by u/2w and r by w'/w,
and let ¢ (u) be the function

(55) 2 =6()-

Then ¢ (u) is an odd integral function having all the periods 2w = 2mw + 2m'w’
for zeros of the first order, and the relations (54) are replaced by the following:

(e
(56) put20)=—9(@), ou+20)=—c¢ ("’)¢(u)-

These properties are very nearly those of the function ¢ (¥). In order to re-
duce it to & (u), it suffices to multiply ¢ («) by an exponential factor. Let us put
20w Lt
57 u)=——e2w u
67 YW =goe ),
where 5 is the function of w and «” defined as in § 71. This new function y (u)
is an odd integral function having the same zeros as ¢(u). The first of the
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relations (56) becomes
(59) p(u+20)=—

keﬁlnn-)”(l):_csq(--hn)f(l).

)
We have next
Y+ 2a)=— :T;)e’l-"*“"e'g"*”¢(u),
or, since 9o’ — yw = ¥i/2,
(59) YU+ 24)=—VEtNY(u).

The relations (58) and (59) are identical with the relations established above
for the function o (u). Hence the quotient y (¥)/o (4) has the two periods 2w
and 2 «’, for the two terms of this ratio are multiplied by the same factor when
u increases by a period. Since the two functions have the same zeros, this
quotient is constant ; moreover, the coefficient of u in each of the two develop-
ments is equal to unity. We have, then, ¢ (u) = y (u), or

_ 2 2—’:—-' d u
(60) o(u) = 0’(0)e 0(2 w),
and the function o (u) is expressed in terms of the function #, as we proposed.
1f we give the argument v real values, the absolute value of g being less than
unity, the series (63) is rapidly convergent. We shall not further elaborate
these indications, which suffice to suggest the fundamental part taken by the
@ function in the applications of elliptic functions.

III. INVERSE FUNCTIONS. CURVES OF DEFICIENCY ONE

77. Relations between the periods and the invariants. To every
system of two complex numbers w, ', Whose ratio o'/w is not real,
corresponds a completely determined elliptic function p(u), which
has the two periods 2 w, 2 o', and which is regular for all the values
of u that are not of the form 2 mw 4+ 2 m'w', all of which are poles of
the second order. The functions {(«) and o (), which are deducible
from p(«) by one or by two integrations, respectively, are likewise
determined by the system of periods (2w, 2 »'). When there is any
reason for indicating the periods, we shall make use of the notation
p(¢t|w, o), (1|0, o), ¢(¢|w, ©') to denote the three fundamental
functions.

But it is to be noticed that we can replace the system (v, ') by
an infinite number of other systems (Q, Q") without changing the
function p(x). For let m, m', n, n' be any four positive or negative
integers such that we have mn'— m'n =+ 1. If we put

0 = mo + no', Q'=m'v + n'o,
we shall have, conversely,
o =1 (n'Q — »Q'), o' =% (mQ'— n'Q),

|
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and it is clear that all the periods of the elliptic function p(u) are
combinations of the two periods 2Q, 2Q', as well as of the two
periods 2 v, 2 o'. The two systems of periods (2 w, 2 »') and (20, 20"
are said to be equivalent. The function p(u|Q, Q") has the same
periods and the same poles, with the same principal parts, as the
function p(z|w, »'), and their difference is zero for u = 0. They are
therefore identical. This fact results also from the development
(22), for the set of quantities 2mw + 2m'e' is identical with the
set of quantities 2mQ + 2m'Q. For the same reason, we have
{(u|Q, Q)= {(¢|w, ) and ¢ (u|Q, Q)= o (z|w, o).

Similarly, the three functions p («), { (), o («) are completely deter-
mined by the invariants g,, g,. For we have seen that the function
o (u) is represented by a power-series development all of whose coeffi-
cients are polynomials in g,, g,. We have, then, {(x)= o'(u)/o (u),
and finally p(u)=— {'(x). In order to indicate the functions which
correspond to the invariants g, and g,, we shall use the notation

P(; 90 95),  L(15 9y 99,  o(; gy g9)-

Just here an essential question presents itself. While it is evi-
dent, from the very definition of the function p(«), that to a system
(w, o') corresponds an elliptic funétion p(u), provided the ratio
o'/w is not real, there is nothing to prove a priori that to every
system of values for the invariants g,, g, corresponds an elliptic
function. We know, indeed, that the expression ¢g§ — 27 g2 must be
different from zero, but it is not certain that this condition is suffi-
cient. The problem which must be treated here amounts in the end
to solving the transcendental equations established above,

' 1 ' 1
(61) g,= 602 Cmo+2 m'm')" I = 1402 2mo+2 m"‘")o’

for the unknowns o, ', or at least to determining whether or not
these equations have a system of solutions such that o'/ is not real
whenever g3 — 27 g3 is not zero. If there exists a single system of solu-
tions, there exist an infinite number of systems, but there appears
to be no way of approach for a direct study of the preceding equations.
We can arrive at the solution of this problem in an indirect way by
studying the inversion of the elliptic integral of the first kind.

Note. Let w,w’ be two complex numbers such that «’/w is not real. The corre-
sponding function p (u|w, «’) satisfies the differential equation

[

2
au ] =4pd— 9,0 — 95
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where g, and g, are defined by the equations (61). For u = w, p(w) is equal to
one of the roots e, of the equation 4p® — g,p — g; =0. When u varies from 0
to w, p(u) describes a curve L going from infinity to the point ¢,. From the
relation du = dp/V4p® — g,p — g, we conclude that the half-period w is equal
to the definite integral

p

= f‘l d;
® V4pt—g3p—g,
taken along the curve L. An analogous expression for w’ can be obtained by
replacing e, by e, in the preceding integral.

We have thus the two half-periods expressed in terms of the invariants g,, g5.
In order to be able to deduce from this result the solution of the problem before
us, it would be necessary to show that the new system is equivalent to the system
(61), that is, that it defines g, and g, as single-valued functions of w, w’.

78. The inverse function to the elliptic integral of the first kind. Let
R (z) be a polynomial of the third or of the fourth degree which is
prime to its derivative. We shall write this polynomial in the form

R(z)=A4(z = a)(z — a) (z — a) (z — a),
where @, a,, a,, a, denote four different roots if R(z) is of the
fourth degree. On the other hand, if R (2) is of the third degree, we
shall denote its three roots by a,, a,, @,, and we shall also set a,=,
agreeing to replace z — oo by unity in the expression R ().

The elliptic integral of the first kind is of the form

_‘dz’
“= ). VRG@)

where the lower limit z, is supposed, for definiteness, to be different
from any of the roots of R (z) and to be finite, and where the radical
has an assigned initial value. If R(2) is of the fourth degree, the
radical VR (z) has four critical points e, a,, a,, a,, and each of the
determinations of V R (z) has the point z = oo for a pole of the second
order. If R(z) is of the third degree, the radical VR (2) has only
three critical points in the finite plane a,, a, a;; but if the variable
z describes a circle containing the three points @, a,, a,, the two
values of the radical are permuted. The point 2 = oo is therefore a
branch point for the function VR (2).

Let us recall the properties of the elliptic integral » proved in
§ 55. If u(z) denotes one of the values of that integral when we
go from the point z, to the point 2 by a determined path, the same
integral can take on at the same point z an infinite number of deter-
minations which are included in the expressions

(63) u=u(E)+2mo+2m, u=1I—u(@)+2mw+2m's,

(62)

|
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if the path is varied. In these formule m and m'are two entirely
arbitrary integers, 2  and 20' two periods whose ratio is not real,
and I a constant which we may take equal, for example, to the
integral over the loop described about the point a,

Let p(u|w, o') be the elliptic function constructed w1th the perlods
2 0, 2 o' of the elliptic integral (62). Let us substitute in that func-
tion for the variable u the integral (62) itself diminished by 7/2,

and let ®(2) be the function thus obtained :
= dz 1 = _I '
(64) Q(z)—p[ zo'\/R_(z_) B w,w]—p(u 2 w,w).
This function ®(z) is a single-valued function of z. In fact, if we

replace « by any one of the determinations (63), we find always,
whatever m and m' may be,

‘l’(z)=P[Wz)-%|ww']» or q’(z)=P[é_@l"’7“"]7

which shows that @ (z) is single-valued. :

Let us see what points can be singular points for this function
®(%). First let 2z, be any finite value of z different from a branch
point. Let us suppose that we go from the point 2z, to the point z,
by a definite path. We arrive at 2, with a certain value for the
radical and a value u, for the mtegral In the neighborhood of the
point z, 1/VR(2) is an analytic function of z, and we have a
development of the form

1
VR(z)=a0+“1(z_zl)+aa(z—zl)2+"" ao=/—'0,
whence we derive
®)  u=utaE-a)+isE-a)+

If v, —I/2 is not equal to a period, the function p(u — I/2) is
analytic in the neighborhood of the point u, and consequently ® (z)
is analytic in the neighborhood of the point z,. If «, —1/2 is a
period, the point «, is a pole of the second order for p(x — 1/2),and
therefore z, is a pole of the second order for ®(z), for in the neigh-
borkood of the point u,

p(e-3) =5 mat

where P is an analytic function.
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Suppose next that z approaches a critical point @;. In the neigh-
borhood of the point a; we have
[R@] =(z—a) P(e - a),
where P; is analytic for z = a;, or

11
Vi@ Vi-a

whence, integrating term by term, we find

[a, + a,(z —a)+ ay(z —a))* +-- ], a, % 0;

(66) u_—.u,.+x/:fa,.[2ao+§al(z—a,.)+...].

If w,— I/2 is not a period, p(« — I/2) is an analytic function of u
in the neighborhood of the point w;. Substituting in the develop-
ment of this function in powers of u — w, the value of the difference
u — u; obtained from the formula (66), the fractional powers of
(2 — @;) must disappear, since we know that the left-hand side is a
single-valued function of z; hence the function ®(2) is analytic in
the neighborhood of the point a;. Let us notice in passing that this
shows that »; — I/2 must be a half-period. Similarly, if »; — I/2 is
equal to a period, the point a; is a pole of the first order for ®(2).

Finally, let us study the function ®(z) for infinite values of =.
We have to distinguish two cases according as R(z) is of the fourth
degree or of the third degree. If the polynomial R (%) is of the fourth
degree, exterior to a circle ¢ described about the origin as center and
containing the four roots, each of the determinations of 1/VR (z) is
an analytic function of 1/2. For example, we have for one of them

1
VR(z)

and it would suffice to change all the signs to obtain the develop-
ment of the second determination. If the absolute value of z becomes
infinite, the radical 1/v R (2) having the value which we have just
written, the integral approaches a finite value u_, and we have in
the neighborhood of the point at infinity

T 4 X ;
=2+ +=5+--- a, # 0
BT AT ’ () ’

(67) U= Upy—— — - — 2 ..,

If w, — 1/2 is not a period, the function p(u — I/2) is regula,i' for
the point u,_, and consequently the point z = o is an ordinary point
for ®(z). If u, —I/2 is a period, the point «,, is a pole of the second
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order for p(u — I/2), and since we can write, in the neighborhood of

the point 2 = w0,
1
=:(g+B+B4 ),

U — Uy

the point # = oo is also a pole of the second order for the function & (2).

If R(z) is of the third degree, we have a development of the form

1 1, a,m )
which holds exterior to a circle having the origin for center and
containing the three critical points a, a,, a,. It follows that
1 2a,1 )
\/;(2%+ Do)

Reasoning as above, we see that the point at infinity is an ordi-
nary point or a pole of the first order for ®(z). The function ®(z)
has certainly.only poles for singular points; it is therefore a rational
JSunction of z, and the elliptic integral of the first kind (62) satisfies
a relation of the form

(69) p(v—3)=2@),

where & () is a rational function. We do not know as yet the degree
of this function, but we shall show that it is equal to unity. For
that purpose we shall study the inverse function. In other words,
we shall now consider « as the independent variable, and we shall
examine the properties of the upper limit 2 of the integral (62), con-
sidered as a function of that integral «. We shall divide the study,
which requires considerable care, into several parts:

(68) u=u, —

1) To every finite value of wu correspond m values of z if m is the
degree of the rational function ®(z)-

For let u, be a finite value of u. The equation ® () =p (v, — 1/2)
determines m values for z, which are in general distinct and finite,
though it is possible for some of the roots to coincide or become
infinite for particular values of u,. Let z, be one of these values
of z. The values of the elliptic integral « which correspond to this
value of z satisfy the equation

1 I
p(u—3)=2e)=p(n,— )
we have, then, one of the two relations

u=u+2mo+ 2ma, wu=I—1u+2mo+2me'
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In either case we can make the variable z describe a path from 2, to
z, such that the value of the integral taken over this path shall be
precisely «,. If the function ®(2) is of degree m, there are then m
values of z for which the integral (62) takes a given value w.

2) Let u, be a finite value of « to which corresponds a finite value
z, of z; that determination of z which approaches z, when u approaches
u, i8 an analytic function of w in the neighborhood of the point u,.

For if 2 is not a critical point, the values of « and z which ap-
proach respectively «, and z, are connected by the relation (65), where
the coefficient @, is not zero. By the general theorem on implicit
functions (I, § 193, 2d ed.; § 187, 1st ed.) we deduce from it a
development for z — 2, in positive integral powers of © — u,.

If, for the particular value u,;, z were equal to the critical value q;,
we could in the same way consider the right-hand side of (66) as a
development in powers of Vz —a,. Since @, is not zero, we can
solve (66) for Vz — a;, and therefore for z — a,, expressing each of
them as a power series in « — u,.

3) Let u, be one of the values which the integral « takes on when
|2| becomes infinite ; the point u, is a pole for that determination of z
whose absolute value becomes infinite.

In fact, the value of the integral « which approaches u, is repre-
sented in the neighborhood of the point at infinity by one of the
developments (67) and (68). In the first case we obtain for 1/za
development in a series of positive powers of u — u,.

%:ﬁl(u—um)-i-ﬁ,(u—uw)i_'_..., B, +0;

in the second case we have a similar development for 1/V%, and
therefore

L= =B+ By — u) T

The point u,, is therefore a pole of the first or second order for z,
according as the polynomial R(z) is of the fourth or of the third
degree.

4) We are going to show finally that to a value of u there can cor-
respond only one value of z. For let us suppose that as the variable z
describes two paths going from z, to two different points z,, z,, the
two values of the integral taken over these two paths are equal. It
would then be possible to find a path L joining these two points 2, z,

such that the integral
dz

L VR (z)
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would be zero. If we represent the integral « = X + Y7 by the point
with the coordinates (X, Y) in the system of rectangular axes OX,
0Y, we see that the point « would describe a closed curve I' when
the point = describes the open curve L. We shall show that this is
not consistent with the properties which we have just demonstrated.

To each value of » there correspond, by means of the relation
p(u—I/2)=®(), a finite number of values of z, each of which
varies in a continuous manner with «, provided the path described
by « does not pass through any of the points corresponding to the
value #z = o.* According to our supposition, when the variable u
describes in its plane the closed curve I' starting from the point
A (u;) and returning to that point, # describes an open arc of a con-
tinuous curve passing from the point #, to the point z,. Let us take
two points Af and P (Fig. 28) on the curve I'.
Let the initial value of z at 4 be 2, and let
', 2" be the values obtained when we reach
the points Af and P respectively, after » has
described the paths AM and AMNP. Again, F|
let 2)' be the value with which we arrive at
the point P after » has described the arc
AQP. Tt results from the hypothesis that
2" and 2z are different. Let us join the two
points M and P by a transversal MP interior to the curve T, and let
us suppose that the variable » describes the arc AmAM and then the
transversal MP; let 2} be the value with which we arrive at the
point P. This value 23 will be different from 2" or else from z}'. If
it is different from z{, the two paths AmAMP and AQP do not lead
to the same value of z at the point P. If 2" and 2] are different, the
two paths AmMP and AmMNP do not lead to the same value at P;
therefore, if we start from the point M with the value 2' for 2, we
obtain different values for z according as we proceed from M to P
along the path MP or along the path MNP. In either case we see
that we can replace the closed boundary I' by a smaller closed bound-
ary I, partly interior to I, such that, when u describes this closed
boundary, # describes an open arc. Repeating this same operation on
the boundary I, and continuing thus indefinitely, we should obtain
an unlimited sequence of closed boundaries T, '), T,, - - - having the
same property as the closed boundary I. Since we evidently can

N

* We assume the properties of implicit functions which will be established later
(Chapter V).
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make the dimensions of these successive boundaries approach zero,
we may conclude that the boundary T, approaches a limit point A.
From the way in which this point has been defined, there will always
exist in the interior of a circle of radius e described about A as a
center a closed path not leading the variable 2 back to its original
value, however small e may be. Now that is impossible, for the point
A is an ordinary point or a pole for each of the different determina-
tions of z; in both cases z is a single-valued function of « in the
neighborhood of A. We are thus led to a contradiction in supposing
that the integral fdz/V R (z), taken over an open path L, can be zero,
or, what amounts to the same thing, by supposing that to a value of
u correspond two values of z.

We have noticed above that, if for two different values of z we have
®(z,) = ®(z,), we can find a path L from z, to z, such that the integral

dz
1 VR (?)

will be zero. Hence the rational function & (z) cannot take on the same
value for two diffevent values of z; that is, the function & (z) must be
of the first degree: ®(z)=(az + b)/(cz + d). It follows, from the

relation (69), that
. I
o~ ap(—3)

@) | z_—cp<u_%>_a

.and we may state the following important proposition: The upper
limit z of an elliptic integral of the first kind, considered as a function
of that integral, is an elliptic function of the second order.

Elliptic integrals had been studied in a thorough manner by
Legendre, but it was by reversing the problem that Abel and
Jacobi were led to the discovery of elliptic functions.

The actual determination of the elliptic function z = f (%) con-
stitutes the problem of inversion. By the relation (62) we have

dz
du R (),

’

and therefore VR (z) = f'(x). It is clear that the radical VR (z) is
itself an elliptic function of ». We can restate all the preceding
results in geometric language as follows:

Let R (z) be a polynomial of the third or fourth degree, prime to its
derivative ; the coordinates of any point of the curve C,
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(1) y'=R(2),
can be expressed in terms of elliptic functions of the integral of the

Sirst kind, . f’ dar f’ de
= —_— y
Y = VR (x)

in such a way that to a point (x, y) of that curve corresponds only
one value of u, any period being disregarded.

To prove the last part of the proposition, we need only remark
that all the values of » which correspond to a given value of x are
included in the two expressions

u, + 2m 0 + 2m,o, I—u+2moe+2m.

All the values of » included in the first expression come from an
even number of loops described about critical points, followed by
the direct path from x, to x, with the same initial value of the
radical VR (x). The values of u included in the second expression
come from an odd number of loops described about the critical points,
followed by the direct path from , to x, where the corresponding
initial value of the radical VR (x) is the negative of the former. If
we are given both z and y at the same time, the corresponding
values are then included in a single one of the two formule.

From the investigation above, it follows that the elliptic function
x = f(u) has a pole of the second order in a parallelogram if R (x)
is of the third degree, and two simple poles if R (x) is of the fourth
degree ; hence y = f'(») is of the third or of the fourth order, accord-
ing to the degree of the polynomial R (z).

Note. Suppose that, by any means whatever, the codrdinates (z, y)
of a point of the curve 3 = R(x) have been expressed as elliptic
functions of a parameter v, say x = ¢ (v), y = ¢,(v). The integral of
the first kind « becomes, then,

o il Aron

The elliptic function ¢'(v)/$,(v) cannot  have a pole, since » must
always have a finite value for every finite value of v; it reduces,
then, to a constant %, and we have w = kv + . The constant !
evidently depends on the value chosen for the lower limit of the
integral ». The coefficient # can be determined by giving to v a
particular value.
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79. A new definition of p(u) by means of the invariants. It is now
quite easy to answer the question proposed in § 77. Given two num-
bers g,, g, such that g} — 27 g} is not zero, there always exists an
elliptic function p(u) for which g, and g, are the invariants.

For the polynomial

R(z)=42"—g,z—yg,
is prime to its derivative, and the elliptic integral fdz/VR (z) has
two periods, 2 w, 2 o', whose ratio is imaginary. Let p(u|w, ') be the
corresponding elliptic function. We shall substitute for the argu-
ment » in this function the integral

(72)

where H is a constant chosen in such a way that one of the values
of u shall be equal to zero for z = v. We shall take H, for example,
equal to the value of the integral ["dz/VR(z) taken over a ray L
starting at 2. We shall show first that
the function thus obtained is a single-
valued analytic function of z. Let z be
any point of the plane, and let us denote
by » and o' the values of the integrals

v dz
= _—)
(2yme) \/R (z)
) } dz
v = 9
(zgn2) V. R (z)

starting with the same initial value for
VR(z) and taken over the two paths
2 mz, znz, which together form a closed
curve containing the three critical points
e, ¢,, ¢, of the radical. Consider the closed curve z mznz ZMNZz,
formed by the curve z mznz,, the segment z Z, the cucle C of very
large radius, and the segment Zz, The funetlon 1/VR () is analytic
in the interior of this bounda.ry, and we have the relation

Z dz

v4+v —
[ et L) v
which becomes, as the radius of the circle C becomes infinite,

F16. 29

v+ —2H=0.
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The values of u resulting from the two paths z mz, 2 nz therefore
satisfy the relation « 4+ »'=0. From this we conclude that the

function
p(u|¢n, w')= p< '-L - le, m')
A VR ()

is a single-valued function of 2. We have seen that it is a linear
function of the form (az + b)/(cz + d). To determine g, b, ¢, d it
will suffice to study the development of this function in the neigh-
borhood of the point at infinity. We have in this neighborhood

_1_=L(1__9L_£>“*=L+_.%_
VR(E) 2.4 428 42 2.4 162% ’
hence the value of u, which is zero for z infinite, is represented by
the series
1
v=- i(1+40 +e)s
whence

1 "_ 9s

a1t gfut) = ghu
It follows that the difference p(u)— 2 is zero for #z = w. But the
difference (az + b)/(cz + d) — z can be zero for z= w0 only if we
have ¢ = 0,5 =0, a =d; and the function p(u|w, ') reduces to z
when we substitute for « the integral (72). Taking the point at
infinity itself for the lower limit, this integral can also be written in

the form
s dz

(72') u= A @,

and this relation makes p(u) = 2, where the function p () is con-
structed with the periods 2w, 2 o' of the integral fdz/VR ().

Comparing the values of du/dz deduced from these relations, we
have p'(u) =V R(z), or, after squaring both sides,

(™3 PP(W)=R(z)=4p*(w)— g,p () — gy

The numbers g,, g,, therefore, are the invariants of the elliptic func-
tion p(u), constructed with the periods 2 w, 2 »'. This result answers
the question proposed above in § 77. If g8 — 2743 is not zero, the
equations (61) are satisfied by an infinite number of systems of values
for v, o'. If ¢, ¢, ¢, are the three roots of the equation

R(z)=42"—g,z—g,=0,
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one system of solutions is given, for example, by the formulee

(74 f” dz o f“’ dz
o= ’ = H
e VE(2) o VE()
from which all other systems will be deducible, as has been explained.

In the applications of analysis in which elliptic functions occur, the function
p (u) is usually defined by its invariants. In order to carry through the numerical
computations, it is necessary to calculate a pair of periods, knowing g, and g,,
and also to be able to find a root of the equation p(u) = A, where 4 is a given
constant. For the details of the methods to be followed, and for information
regarding the use of tables, we can only refer the reader to special treatises.*®

80. Application to cubics in a plane. When g§ — 27 4} is not zero,
the equation

(75) y=42—g2x—yg,

represents a cubic without double points. This equation is satisfied
by putting x = p (), y = p'(u), where the invariants of the function
p(v) are precisely g, and g,. To each point of the cubic corresponds a
single value of « in a suitable parallelogram of periods. For the equa-
tion p(u)= x has two roots «, and «, in a parallelogram of periods,
the sum u, 4 w, is a period, and the two values p'(x,) and p'(x,) are
the negatives of each other. They are therefore equal respectively
to the two values of y which correspond to the same value of z.
In general, the cobrdinates of a point of a plane cubic without
double points can be expressed by elliptic functions of a parameter.
We know, in fact, that the equation of a cubic can be reduced to
the form (75) by means of a projective transformation, but this
transformation cannot be effected unless we know a point of inflec-
tion of the cubic, and the determination of the points of inflections
depend upon the solution of a ninth-degree equation of a special
form. We shall now show that the parametric representation of a
cubic by means of elliptic functions of a parameter can be obtained
without having to solve any equation, provided that we know the
codrdinates of a point of the cubic. :
Suppose first that the equation of the cubic is of the form  ~

(76) P =082+ 352"+ 3b,z+b,

* The formule (39) which give the development of o (u) in a power series, and
those which result from it by differentiation, enable us, at least theoretically, to
calculate o (u), 0’(u), 0”(u), and consequently {(u) and P (u), for all systems of values
of u, 93, 93-
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in which case the point at infinity is a point of inflection. This
equation can be reduced to the preceding form by putting y = 4y'/6,,
x=—b/b + 4x'/b, which gives

y?=4a"— gz’ — g,
where the invariants g,, g, are given by the formulee

_L2@—bb) B — 28— B,

9a 16 s 16

Hence we obtain for the codrdinates of a point of the cubic (76)
the following formulee :

—_h 2 =4,
x = bo +bop(u)7 y—'bop(u)'

Let us now consider a cubic C,, and let (@, 8) be the codrdinates
of a point of that cubic. The tangent to the cubic at this point (e, B)
meets the cubic at a second point (a!, 8') whose codrdinates can be
obtained rationally. If the point (a', 8') is taken as origin of coor-
dinates, the equation of the cubic is of the form

&5z, ¥)+ b, (x, ¥) + ¢, (2, ¥)= 0,
where ¢,(x, y) denotes a homogeneous polynomial of the ¢th degree
(! =1,2,3). Let us cut the cubic by the secant y = ¢x; then x is
determined by an equation of the second degree,

x2¢.(1’ +zd,(1, )+ ¢,(1, 1)=0,

whence we obtain
_—#LOEVRE

2¢,(1, )

where R () denotes the polynomial ¢}(1, £) — 4 ¢,(1, £) ¢, (1, £), which
is in general of the fourth degree. The roots of this polynomial are
precisely the slopes of the tangents to the cubic which pass through
the origin.* We know a priori one root of this polynomial, the slope ¢,
of the straight line which joins the origin to the point (a, 8). Putting

t=t,+1/¢t', we find
\/ r
\/R(t) =_M,

t'ﬂ

Yy =tx,

where the polynomial R (¢") is now only of the third degree. The
cobrdinates (z, ) of a point of the cubic C, are therefore expressible
rationally in terms of a parameter #' and of the square root of a

* Two roots cannot be equal (see Vol. I, § 103, 2d ed.; § 108, 1st ed.). — TRANS.
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polynomial R (#') of the third degree. We have just seen how to
express ¢' and VR (¢') as elliptic functions of a parameter «; hence
we can express z and y also as elliptic functions of u.

It follows from the nature of the methods used above that to a
point (z, %) of the cubic correspond a single value of ¢ and a definite
value of VR(?), and hence completely determined values of ¢' and
VR (t"). Now to each system of values of ¢' and VR,(¢') corre-
sponds only one value of « in a suitable parallelogram of periods, as
we have already pointed out. The expressions x = f(u), y = f,(u),
obtained for the codrdinates of a point of C,, are therefore such
that all the determinations of » which give the same point of the
cubic can be obtained from any one of .them by adding to it various
periods.

This parametric representation of plane cubics by means of elliptic functions
is very important.* As an example we shall show how it enables us to deter-
mine the points of inflection. Let the expressions for the cotrdinates be
z =[f(u), y =f,(u); the arguments of the points of intersections of the cubic
with the straight line Az + By 4+ C = 0 are the roots of the equation

Af(u) + Bfj(u)+C = 0.

Since to a point (z, ¥) corresponds only one value of u in a parallelogram of
periods, it follows that the elliptic function Af(x) + Bf;(u) + C must be, in
general, of the third order. The poles of that function are evidently independent
of A, B, C; hence if u,, u,, u; are the three arguments corresponding respec-
tively to the three points of intersections of the cubic and the straight line, we
must have, by § 68,

Ut Uyt uy =K+ 2muw+ 2m, o,

where K is the sum of the poles in a parallelogram. Replacing u by K/3 4+ u
in f(«) and f,(u), the relation can be written in the simpler form

ul:|- u, + ug = period.

Conversely, this condition is sufficient to insure that the three points M, (u=u,),
M, (u = u,), My (4 = ug) on the cubic shall lie on a straight line. For let My be
the third point of intersection of the straight line M, M, with the cubic, and ug
the corresponding argument. Since the sum u, + u, + u; is equal to a period,
ug and ug differ only by a period, and consequently M; coincides with M.

If u is the value of the parameter at a point of inflection, the tangent at that
point meets the curve in three coincident points, and 8« must be equal to a
period. We must have, then, u = (2m,w + 2m,w")/8. All the points of inflec-
tion can be obtained by giving to the integers m, and m, the values 0, 1, 2.
Hence there are nine points of inflections. The straight line which passes through

® CLEBscH, Ueber digjenigen Curven, deren Coordinaten sich als elliptische Func-
tionen eines Parameters darstellen lassen (Crelle’s Journal, Vol. LXIV).
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the two points of inflection (2m,w + 2myw)/3 and (2m;w + 2m;w’)/8 meets
the cubic in a third point whose argument,

_2(m+ m)w+2(my + my o’
3
is again one third of a period, that is, in a new point of inflection. The number

of straight lines which meet the cubic in three points of inflection is therefore
equal to (9 - 8)/(8 . 2), that is, to twelve.

Note. The points of intersection of the standard cubic (76) with the straight
line ¥ = mz + n are given by the equation p’(u) — mp (u) — n = 0, the left-hand
side of which has a pole of the third order at the point u = 0. The sum of the
arguments of the points of intersection is then equal to a period. If u, and u,
are the arguments of two of these points, we can take — u; — u, for the argu-
ment of the third point of intersection, and the abscissas of these three points
are respectively p (u,), p (4,), P (4, + u;). We can deduce from this a new proof
of the addition formula for p(v). In fact, the abscissas of the points of inter-
section are roots of the equation

428 — g,z — gy = (mz + n)?;
hence

2
2+ 2+ T =p(uy) + p(ug) + Py + “s)=1%°

On the other hand, from the straight line passing through the two points M, (u,),
M, (u,), we have the two relations p’(u,) =mp (u,) +n, p’(ug) =mp (ug) +n, whence

Plg) = P(y)
P(ug) — P(wy)
and this leads to the relation already found in § 74,

m=

81. General formule for parameter representation. Let R(x) be a
polynomial of the fourth degree prime to its derivative. Consider
the curve C, represented by the equation

) P¥=R@)=ax'+4a2’+ 60,2+ 4a,x+qa,.

We shall show how the coordinates = and y of a point of this curve
can be expressed as elliptic functions of a parameter. If we know a
root @ of the equation R (z)= 0, we have already seen in the treat-
ment of cubics how to proceed. Putting = a + 1/z', the relation

(77) becomes
1 R,(x
ya — R(a +a_:')__. _;(“_'2,

where R (z") is a polynomial of the third degree. Hence the curve C,,
by means of the relations t=a+1/2', y=y'/x'?, corresponds point for
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point to the curve Cjof the third degree whose equation is y"= R (z').
Now z' and ' can be expressed by means of a parameter «, in the form
z' = ap(u) + B, ¥' = ap'(v), by a suitable choice of a, 8 and of the
invariants of p(x). We deduce from these relations the following
expressions for x and y:

I
S S X CO
ap(u)+ B [ep () + B]
whence we find du =— dx/y, so that the parameter » is identi-
cal, except for sign, with the integral of the first kind, fdx/ VR (x),
and the formule (78) constitute a generalization of the results for
the simple case of parametric representation in § 80.

Let us consider now the general case in which we do not know any
root of the equation R(x)= 0. We are going to show that z and y
can be expressed rationally in terms of an elliptic function p(u) with
known invariants, and of its derivative p'(w), without introducing any
other irrationality than a square root. Let us replace for the moment
z and y by ¢ and v respectively, so that the relation (77) becomes

T P*=R{)=at*+4a,+6a,’+4a;it+a,

(78) r=a+

The polynomial R (¢) can be expressed in the form
R(t)=[¢;()] — $,(t) $; (%)

in an infinite number of ways, where ¢,, ¢,, ¢, are polynomials of
the degrees indicated by their subscripts. For let (a, 8) be the codr-
dinates of any point on the curve C,. Let us take a polynomial ¢, (%)
such that ¢, (a) = 8, which can be done in an infinite number of ways;

then the equation
b R®)—[$,(®)]'=0
will have the root ¢ =, and we can put ¢,(¢)=¢— a. The poly-

nomial R (¢) having been put in the preceding form, let us consider
the auxiliary cubic C, represented by the equation

@ el sren)res)-o

If we cut this cubic by the secant y = ¢x, the abscissas of the two
variable points of intersection are roots of the equation

x*, () + 2 zd, () + ¢,(£)=0

and can be expressed in the form

z=_ $: () + v,
$ (%)
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where v is determined by the equation (77"). Conversely, we see that
¢t and v can be expressed rationally in terms of the covrdinates x, y
of a point of C, by the equations

=Y =
R )

X

Now x and y can be expressed as elliptic functions of a parameter «,
since we know a point on the cubic C; that’is the origin. Then ¢
and v can also be expressed as elliptic functions of . The method is
evidently susceptible of a great many variations, and we have intro-
duced only the irrational 8 = VR (a), where « is arbitrary.

We are going to carry through the actual calculation, supposing,
as is always admissible, that we have first made the coefficient a, of ¢*
disappear in R(¢). We can then ‘write

a,R(t)= (2,2) + 6 aya,t’ + 4 aya,t + aya,
and put
o )=—1, ¢,(t)=20,t’, &,(t)=6a,a,’+ 4a,a,t+ aa,
The auxiliary cubic C, has the form
(81) 6a 0,2y’ + 4a,a,2%y + aya,2* + 2a,y —x =0.

Following the general method, let us cut this cubic with the
secant y = ¢z ; the equation obtained can be written in the form
1\? 1
(;) - 2a°t’; —(6a,a,8 + 4aya,t + a,a)=0;

whence we obtain

1
7= at* +Va R (t).
Conversely, we can express ¢ and Ve R (?) in terms of z and y:
y 1 AY
(82) t= -’ aoR(t) = 2 ao(;) .

On the other hand, solving the equation (81) for y, we have

_—2a,a032*+ V4 aladat — x(a,a,2* —1) (6 g,z + 2 a,) .
y= 6ajax + 2a,

The polyromial under the radical has the root # = 0. Applying the
method explained above, we can then express # and y as elliptic
functions of a parameter. Doing so, we obtain the results

I S a,p(1) = a ,
B = epto—a ¥ Iap@+alZep(— 4]
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where the invariants g,, g, of the elliptic function p(x) have the
following values:

(84) g =%a4+3a2’ g ___a,oaza,—ag—a,na,:.
]

P s 3
@ a,

Substituting the preceding values for = and y in the expressions
(82), we find

| N
8= 5| —=|,
p(u)+%
(85) y : 2
a, 1 p'(u)-—%
VER@)=Va,|2p@)~ -3 ——
B LIOR Sy

We can write these results in a somewhat simpler form by noting
that the relations

(86) PO)==3 PO=3

are compatible according to the values (84) of the invariants g, and g,.
On the other hand, we can substitute for

l[plg,‘Q — p’(’”} ]2
1 p()—p)

its equivalent p (v + v) + p(«) 4+ p(v). Combining these results and
replacing ¢ and VR (f) by x and y respectively, we may formulate
the result in the following proposition :

The coirdinates (x, y) of any point on the curve C,, represented by
the equation (77) (where a, = 0), can be expressed in terms of a vari-
able parameter u by the formule

1p'(w)— p'(v)
87 r=; =Va [p)—pu+v
(87 Zp(u)—p(v), y oLP (w) p( +v)],

where the invariants g,and g, have the values given by the relations (84),
and where p (v), p'(v) are determined by the compatible equations (86).

From the formula (45), established above (§ 74), we derive, by
differentiating the two sides of that equality,

1 d[P@=PO_ o oot e
2du[p(u)—p(v)] P =P +);
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that is, da/du = y/ \/— ordu = [\/— a /y]dx. The parameter u, there-
fore, represents the elhptnc integral of the first kind, Va, a,fdz/V R (z),
and the formule (87) furnish the solution of the generalized prob-
lem of parameter representation.

82. Curves of deficiency one. An algebraic plane curve C, of degree
n cannot have more than (n —1)(n — 2)/2 double points without
degenerating into several distinet curves. If the curve C, is not
degenerate and has d double points, the difference

— rn=1DN(n—-2)
P 2 d

is called the deficiency of that curve. Curves of deficiency zero are
called unicursal curves; the codrdinates of a point of such a curve
can be expressed as rational functions of a parameter. The next

simplest curves are those of deficiency one; a curve of deficiency
one has (n —1)(n — 2)/2 — 1= n(n — 3)/2 double points.

The coérdinates of a point of a curve of deficiency one can be
expressed as elliptic functions of a parameter.

In order to prove this theorem, let us consider the adjoint curves
of the (n — 2)th order, that is, the curves C,_, which pass through
the n(n — 3)/2 double points of C,. Since (n — 2)(n + 1)/2 points °
are necessary to determine a curve of the (n — 2)th degree, the
adjoint curves C,_, depend still upon

(”_ 2)(”’ +21)_ ’n(n _é) =(n - 1)

arbitrary parameters. If we also require that these curves pass
through n — 3 other simple points taken at pleasure on C,, we obtain
a system of adjoint curves which have, in common with C,, the
n(n — 3)/2 double points of C, and n — 3 of its simple points. Let
F(z, y)= 0 be the equation of C,, and let

5@ )+ M@ 9) + ufi(x, 9)=0
be the equation of the system of curves C,_,, where A and u are arbi-
trary parameters. Any curve of this system meets C, in only three
variable points, for each double point counts as two simple points,

and we have
n(n—3)+n—-3=n(n—2)—3.

" Let us now put
fa(z, ¥ ﬂxf%?/)
88 = ' = :
) “=r@y YT h@w
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when the point (x, y) describes the curve C,, the point (', ¥') de-
scribes an algebraic curve C' whose equation would be obtained by
the elimination of 2 and y between the equations (88) and F(x, )= 0.
The two curves C' and C, correspond to each other point for point
by means of a birational transformation. This means that, con-
versely, the coordinates (z, y¥) of a point of C, can be expressed
rationally in terms of the coordinates (x', ¥") of the corresponding
point of C'. To prove this we need only show that to a point (', y)
of C' there corresponds only one point of C,, or that the equations
(88), together with F(x, y)= 0, have only a single system of solu-
tions for x and y, which vary with 2’ and ¥

Suppose that to a point of C' there correspond actually two points
(a, b), (a', 8") of C, which are not among the points taken as the
basis of the system of curves C,_,. Then we should have

A V) _ Fi@, V) _ fi(@h B

fi(@ 0 f(a ) fi(ed)
and all the curves of the system which pass through the point (a, &)
would also pass through the point (a',5"). The curves of the system
which pass through these two points would still depend linearly
upon a variable parameter and would meet the curve C, in a single
variable point. The coordinates of this last point of intersection
with C, would then be rational functions of a variable parameter,
and the curve C, would be unicursal. But this is impossible, since
it has only n(n — 3)/2 double points. Hence to a point (', y") of C'
corresponds only one point of C,, and the coovrdinates of this point
are, by the theory of elimination, rational functions of z' and 3':

(89) z = ¢, ¥), y = ¢,(=', ).

In order to obtain the degree of the curve C', let us try to find
the number of points common to this curve and any straight line
ax' 4+ by' + ¢ =0. This amounts to finding the number of points
common to the curve C, and the curve

afy(®, y) + bfy(x, y) + of (=, )= 0,

since to a point of C' corresponds a single point of C,, and conversely.
Now there are only three points of intersection which vary with a, 4, c.
The curve C'is therefore of the third degree. To sum up, the coor-
dinates of a point of the curve C, can be expressed rationally in
terms of the codrdinates of a point of a plane cubic; and since the
codrdinates of a point of a cubic are elliptic functions of a parameter,
the same thing must be true of the codrdinates of a point of C,.
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It results also from the demonstration, and from what has been
seen above for cubics, that the representation can be made in such a
way that to a point (z, y) of C, corresponds only one value of « in
a parallelogram of periods.

Let = ¢ (u), y = ¢,(¥) be the expressions for 2 and y derived
above; then every Abelian integral w = R (x, y)dx associated with
the curve C, (I, § 103, 2d ed.; § 108, 1st ed.) is reduced by this
change of variables to the integral of an elliptic function ; hence this
integral w can be expressed in terms of the transcendentals p, ¢, o
of the theory of elliptic functions. The introduction of these tran-
scendentals in analysis has doubled the scope of the integral calculus.

Ezample. Bicircular quartics. A curve of the fourth degree with two double
points is of deficiency one. If the double points are the circular points at in-
finity, the curve C, is called a bicircular quartic. If we take for the origin a
point of the curve, we can take for the adjoint curves C,_g circles passing

through the origin 24y 4 Az + py = 0.

In order to have a cubic corresponding point for point to the quartic C,, we
need only follow the general method and put &’ = z/(2? + 22), ¥’ = y/(2? + 22).
We have, conversely, z =z'/(z? + y?), y =¥’/(&? + y’?). These formule define
an inversion with respect to a circle of unit radius described with the origin
as center. To obtain the equation of the cubic Cj, it will suffice to replace
and y in the equation of C, by the preceding values. Suppose, for example,
that the equation of the quartic C, is (x? + y2)2— ay = 0; the cubic Cj will
have for its equation ay’(y?+ z?)—1=0.

Note. When a plane curve C, has singular points of a higher order, it is of
deficiency one, provided that all its singular points are equivalent to n(n — 8)/2
ordinary double points. For example, a curve of the fourth degree having a
single double point at which two branches of the curve are tangent to each
other without having any other singularity is of deficiency one; to verify this
it suffices to cut the quartic by a system of conics tangent to the two branches
of the quartic at the double point and passing through another point of the
quartic. The curve 2 = R(z), where R (z) is a polynomial of the fourth degree
prime to its derivative, has a singularity of this kind at the point at infinity.
It is reduced to a cubic by the following birational transformation :

=7, v=v+ '\/a—oz'aa
from which it is easy to obtain the formuls (87).

EXERCISES
1. Prove that an integral doubly periodic function is a constant by means
of the development b Sains

1@ = 2 Ane ® .

(The condition f(z + ") = f(2) requires that we have 4, =0if n £ 0.)
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2. If a is not a multiple of =, we have the formula
sin(z + a) _ z *',( z ).'_
=2 -(1+a)]-:.[ 1+ )~

(Change z to z 4+ a in the expansion for ctnz, then integrate between the
limits 0 and z.)

3. Deduce from the preceding result the pew infinite products

+ =

con(z+ a) _ 2z , 2z =
cos a "(1+2a+r)[[ [”’2.:—(2-—1): -

EP%:M =(l-£) (l+ a:t)ﬁl(l— a +z2n)(l— (2"-:)"—‘1)65.

coRz —cosa 2\ &3, z z £
l—cosa —(1-?)]]. (l—2n‘l'+ a)(l_2n—a)e".

Transform these new products into products of primary functions or into
products that no longer contain exponential factors, such as

mz:(l—%’)(l—g)...[l—ﬁ

4. Derive the relations

1 1 1
=9 — e ——— 4 ...
tanz z pr a+9’a ’+ +(2n+1)2" ’+ »
-2 g e
r 1 1
11 1 1 1
LIS S S SIS | O SR ST |
inz_ z z[z—w“ Zoam Tt DT et ]

Establish analogous relations for
1 1
ginz —sina’  cosz —cosa
5. Establish the relation

sin 7z

12, 2@ 2E@-D(EE-49)

T 212 (312

22(23—1)... (22— n?)
[e+ 112

e

+ (=11 o oeece

8. Decompose the functions
1 1
P’ PR
into simple elements.
7. If g, = 0, we have
plau; 0,95) = ap(u; 0,95),  p'(au; 0,g;) =p'(u; 0, g),

where a i8 one of the cube roots of unity. From this deduce the decomposition
of 1/[p’(u) — p’(v)] into simple elements when g, = 0.
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8. Given the integrals
ar+b ar® + b
f(z-—- Ve =10 f\/1+ i

dz az? + b
o= s
z8Vad —z V(1 —23) (1— k23
it is required to express the variable z and each one of these integrals in terms
of the transcendentals p, ¢, o.

9. Establish Hermite's decomposition formula (§ 78) by equating to zero
the sum of the residues of the function F(z)[{(x — 2) — ¢ (2, — 2)] in a paral-
lelogram .of periods, where F(z) is an elliptic function and where z, z, are
considered as constants.

10. Deduce from the formula (60) the relation » =— 6"/(0)/12 w8’(0).
(It should be noticed that the series for ¢ (u) does not contain any terms
in 43.) .
11*, Express the codrdinates x and y of one of the following curves as
elliptic functions of a parameter:
V=A4[z—a) -0 -0, ¥P=A[z-a) (-],
P=4 @—al@-bP@E—cf, =4 @—ap@E-0),
yt=A(z— a)®(x — b)3,
P=4 @—apE-bte—cf, P=A4 @—ap@E-b}
P=4 (z-ay@—0b), P=A4 @—apE—D)s,
v+ +mzt+n)y2+ A[(x— a)(xz—bd)(x—c)]2=0,

V‘+Azy'+z'(Bz +2 A‘) 0, M+sz’+z’(Bz’+s—'£)’=0,

#1B vy
¢+Azy=+(3z4+3u) 0
w1g) ="
44 A5\2 44 A
_aany 4 B
y‘+Azy4+z‘(Bz 5643) 0, S+ zy‘+(z‘ 5643)

The variable parameter is equal, except for a constant, to the integral [(1/y)dz.
[Brror ET BouQuET, Théorie des fonctions doublement
périodiques, 2d ed., pp. 388-412,]



CHAPTER IV

ANALYTIC EXTENSION

I. DEFINITION OF AN ANALYTIC FUNCTION BY MEANS
OF ONE OF ITS ELEMENTS

83. Introduction to analytic extension. Let f(z) be an analytic func-
tion in a connected portion A of the plane, bounded by one or more
curves, closed or not, where the word curve is to be understood in
the usual elementary sense as heretofore.

If we know the value of the function f(2) and the values of all
its successive derivatives at a definite point @ of the region 4, we
can deduce from them the value of the function at any other point &
of the same region. To prove this, join the points a and 4 by a path L
lying entirely in the region 4 ; for example, by a broken line or by
any form of curve whatever. Let 8 be the lower limit of the dis-
tance from any point of the path L to any point of the boundary of
the region A4, so that a circle with the radius 8 and with its center at
any point of L will lie entirely in that region. By hypothesis we
know the value of the function f(a) and the values of its successive
derivatives f'(a), f"(a), - - -, for z = a. We can therefore write the
power series which represents the function f(2) in the neighborhood
of the point a:

R

W) f@=f@+ 1@+ + E= L 0@,

The radius of convergence of this series is at least equal to §, but
it may be greater than 8. If the point 4 is situated in the-circle of
convergence C, of the preceding series, it will suffice to replace z by
b in order to have f(b). Suppose that the point b lies outside the circle
C,, and let a; be the point where the path L leaves C * (Fig. 30).
Let us take on this path a point z, within C; and near a,, so that the

* Since the value of f(z) at the point b does not depend on the path so long as it
does not leave the region 4, we may suppose that the path cuts the circle Cy in only
one point, as in the figure, and the successive circles Cy, Cj, - - - in at most two points.
This amounts to taking for a;, the last point of intersection of L and Cj, and similarly
for the others.

196
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distance between the two points 2z, and 2, _shall be less than §/2. The
series (1) and those obtained from it by successive differentiations
enable us to calculate the values of the function f(z) and of all its
derivatives, f(z,), f'(2), - - -, S™ (), : : -, for z = z,. The coefficients
of the series which represents the function f(2) in the neighborhood
of the point z, are therefore determined if we know the coefficients of
the first series (1), and we have in the neighborhood of the point 2

1

@ FO=rE+ET2 e+ + ETB poiy 4
The radius of the circle of convergence C, of this series is at least
equal to &; this circle contains, then, the point @, within it, and
there is also a part of it out-
side of the circle C. If the
point b is in this new circle
C,, it will suffice to put 2 =5
in the series (2) in order to
have the value of f(5). Sup-
pose that the point & is again
outside of C,, and let «, be
the point where the path 2,6
leaves the circle. Let us take
on the path L a point 2, * F1q. 80
within C, and such that the
distance between the two points z, and a, shall be less than §/2.
The series (2) and those which we obtain from it by successive dif-
ferentiations will enable us to calculate the values of f(z) and its
derivatives f(z,), f'(2y), S"(2y), - - - at the point z,. We shall then
form a new series,

@) fO=fE)+ T2 e+ + ET B poey .,

which represents the function f(2) in a new circle C; with a radius
greater than or equal to 8. If the point 4 is in this circle Cy, we shall
replace z by b in the preceding equality (3); if not, we shall continue
to apply the same process. At the end of a finite number of such
operations we shall finally have a circle containing the point 4 within
it (in the case of the figure, b is in the interior of C;); for we can
always choose the points 2, z,, #,, - -+ in such a way that the dis-
tance between any two consecutive points shall be greater than §/2.
On the other hand, let S be the length of the path L. The length of
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the broken line azz2, - - - z,_,2, is always less than §; hence we have
28/2 4|2, — b| < 8. Let p be an integer such that (p/2 4-1)8 > S.
The preceding inequality shows that after p operations, at most,
we shall come upon a point 2, of the path L whose distance from
the point & will be less than §; the point 4 will be in the interior
of the circle of convergence C, of the power series which represents
the function f(z) in the neighborhood of the point z,, and it will
suffice to replace z by & in this series in order to have f(b). In the
same way all the derivatives f'(b), f'(d), - - - can be calculated.

The above reasoning proves that it is possible, at least theoretically,
to calculate the value of a function analytic in a region 4, and of
all its derivatives at any point of that region, provided we know
the sequence of values,

(4) f(a’), f(a), f"(a)’ ] f(n)(a)7 S }

of the function and of its successive derivatives at a given point a of
that region. It follows that any function analytic in a region 4 is
completely determined in the whole of that region if it is known in
a region, however small, surrounding any point « taken in A4, or
even if it is known at all points of an arc of a curve, however short,
ending at the point a. For if the function f(z) is determined at
every point on the whole length of an arc of a curve, the same must
be true of its derivative f'(z), since the value f'(z)) at any point of
that arc is equal to the limit of the quotient [ £(2,) — f(2)]/(2, — #,)
when the point 2z, approaches 2, along the arc considered ; the deriv-
ative f"(z) being known, we deduce from it in the same way f"'(z),
and from that we deduce f*"(z), ... All the successive derivatives
of the function f(z) will then be determined for z = a. We shall say
for brevity that the knowledge of the numerical values of all the
terms of the sequence (4) determines an element of the function
J(2). The result reached can now be stated in the following man-
ner: A function analytic in a region A is completely determined if
we know any one of its elements. We can say further that two func-
tions analytic in the same region cannot have a common element
without being identical.

We have supposed for definiteness that the function considered,
JS(2), was analytic in the whole region; but the reasoning ecan be
extended to any function analytic in the region except at certain
singular points, provided the path L, followed by the variable in
going from a to b, does not pass through any singular point of the
function. It suffices for this to break up the path into several arcs,
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as we have already done (§ 31), so that each one can be inclosed
in a closed boundary inside of which the branch of the function f(z)
considered shall be analytic. The knowledge of the initial element
and of the path described by the variable suffices, at least theoreti-
cally, to find the final element, that is, the numerical values of all the
terms of the analogous sequence

® F@), F@)y - SO0

84. New definition of analytic functions. Up to the present we have
studied analytic functions which were defined by expressions which
give their values for all values of the variable in the field in which
they were studied. We now know, from what precedes, that it is
possible to define an analytic function for any value of the variable
as soon as we know a single element of the function; but in order to
present the theory satisfactorily from this new point of view, we must
add to the definition of analytic functions according to Cauchy a new
convention, which seems to be worth stating in considerable detail.

Let £,(2), f,(#) be two functions analytic respectively in the two

regions 4,, 4, having one and only one part
A4' in common (Fig. 31). If in the com-
mon part 4' we have f(2)=f,(z), which
will be the case if these two functions have
a single common element in this region, we
shall regard f,(z) and f,(#) as forming a
single function F(z), analytic in the region
A, + A,, by means of the foHowing equalities: Fio. 81
F(z)=f(?) in 4, and F(z)=f,(?) in 4,.
We shall also say that f,(z) is the analytic extension into the region
A, — A’ of the analytic function f;(z), which is supposed to be defined
only in the region A4,. It is clear that the analytic extension of f,(2)
into the region of 4, exterior to 4, is possible in only one way.*

*In order to show that the preceding convention is distinct from the definition of
functions analytic in general, it suffices to notice that it leads at once to the following
consequence: If a function f(z) is analytic in a region A, every other analytic func-
tion f1(2), under these conventions, which coincides with f (2) in a part of the region A
8 identical with f(z) in A. Now let us consider a function #'(2) defined for all values
of the complex variable z in the following manner:

F(z)=singz, it z5# — , F( ) 0.
However odd this sort of convention may appear, it has nothing in it contra-

dictory to the previous definition of functions in general analytic. The function
thus defined would be analytic for all values of z except for z = #/2, which would
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Let us now consider an infinite sequence of numbers, real or
imaginary,

(6) Qg By By v oy Gy o
subject to the single condition that the series

) o, +az+a2+ - +a+-..

converges for some value of z different from zero. (We take z=0
for the initial value of the variable, which does not in any way
restrict the generality.) The series (7) has, then, by hypothesis, a
circle of convergence C, whose radius R is not zero. If R is infinite,
the series is convergent for every value of z and represents an inte-
gral function of the variable. If the radius R has a finite value dif-
ferent from zero, the sum of the series (7) is an analytic function
Sf(?) in the interior of the circle C;. But since we know only the
sequence of coefficients (6), we cannot say anything a priori regard-
ing the nature of the function outside of the circle C,. We do not
know whether or not it is possible to add to the circle C, an adjoin-
ing region forming with the circle a connected region 4 such that
there exists a function analytic in 4 and coinciding with f(z) in the
interior of C;. The method of the preceding paragraph enables us to
determine whether this is the case or not. Let us take in the circle C,
a point @ different from the origin. By means of the series (7),
and the series obtained from it by term-by-term differentiation we
can calculate the element of the function f(2) which corresponds to
the point a, and consequently we can form the power series

® SO+ r@+ -+ EE L @,

which represents the function f(z) in the neighborhood of the point a.
This series is certainly convergent in a circle about a as center with
a radius R — |a| (§ 8), but it may be convergent in a larger circle
whose radius cannot exceed R 4 |a|. For if it were convergent in

be a singular point of a particular nature. But the properties of this function ¥ (2)
would be in contradiction to the convention which we have just adopted, since the
two functions F'(2) and sin z would be identical for all the values of z except for
z = ®/2, which would be a singular point for only one of the two functions.

Weierstrass, in Germany, and Méray, in France, developed the theory of analytic
functions by starting only with the properties of power series; their investigations
are also entirely independent. Méray’s theory is presented in his large treatise,
Legons nouvelles sur I Analyse infinitésimale. It is shown in the text how we can
define an analytic function step by step, knowing one of its elements but always
supposing known the theorems of Cauchy on analytic functions.
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a circle of radius R + |a| + §, the series (7) would be convergent in
a circle of radius R 4 § about the origin as center, contrary to the
hypothesis. Let us suppose first that the radius of the circle of con-
vergence of the series (8) is always equal to R — |a|, wherever the
point @ may be taken in the circle C,. Then there exists no means
of extending the function f(z) analytically outside of the circle, at
least if we make use of power series only. We can say that there
does not exist any function F(z) analytic in a region 4 of the plane
greater than and containing the circle €, and coinciding with f(z)
in the circle C;, for the method of analytic extension would enable
us to determine the value of that function at a point exterior to the
circle C,, as we have just seen. The circle C, is then said to be a
natural boundary for the function f(z). Further on we shall see
some examples of this.

Suppose, in the second place, that with a suitably chosen point
a in the circle C, the circle of convergence C, of the series (8) has a
radius greater than R —|a|.
This circle €, has a part

C,
exterior to C, (Fig. 32), and ‘ G
the sum of the series (8) is
an analytic function f(2) in »
the circle C,. In the interior
of the circle y with the center ’

a, which is tangent to the
circle C internally, we have
Ji(®) = f(z) (§ 8); hence this
equality must subsist in the
whole of the region common Fro. 82
to the two circles C,, C,. The
series (8) gives us the analytic extension of the function f(z) into
the portion of the circle C, exterior to the circle C,. Let a' be a new
point taken in this region; by proceeding in the same way we shall
form a new power series in powers of z — a', which will be con-
vergent in a circle C,. If the circle C, is not entirely within C,, the
new series will give the extension of f(z) in a more extended region,
and so on in the same way. We see, then, how it is possible to
extend, step by step, the region of existence of the function f(2),
which at first was defined only in the interior of the circle C,.

It is clear that the preceding process can be carried out in an in-
finite number of ways. In order to keep in mind how the extension
was obtained, we must define precisely the path followed by the
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“variable. Let us suppose that we can obtain the analytic extension
of the function defined by the series (7) along a path L, as we have
just explained. Each point z of the path L is the center of a circle of
convergence of radius » in the interior of which the function is rep-
resented by a convergent series arranged in powers of z — x. The
radius r of this circle varies continuously with x. For let x and z' be
two neighboring points of the path L, and » and »'the corresponding
radii. If z'is near enough to « to satisfy the inequality |=' — x| < 7,
the radius »' will lie between » —|x' — | and » 4 |2' — x|, as we have
seen above. Hence the difference ' — r approaches zero with |z’ — z|.
Now let C; be a circle with the radius R/2 described with the origin
as center; if @ is any point on the circle C;, the radius of conver-
gence of the series (8) is at least equal to R/2, but it may be greater.
Since this radius varies in a continuous manner with the position of
the point a, it passes through a minimum value R/2 + r at a point
of the circle C;. We cannot have r > 0, for if » were actually posi-
tive, there would exist a function F(z) analytic in the circle of radius
R + r about the origin as center and coinciding with f(z) in the
interior of C,. For a value of 2 whose absolute value lies between R
and R + r, F(z) would be equal to the sum of any one of the series
(8), where a is a point on Cj such that |2 — «| < R/2 + r. According
to Cauchy’s theorem, F(#) would be equal to the sum of a power
series convergent in the circle of radius R 4 r, and this series would
be identical with the series (7), which is impossible.

There is, therefore, on the circumference of C; at least one point a
such that the circle of convergence of the series (8) has R/2 for its
radius, and this circle is tangent internally to the circle C, at a point
a where the radius Oa meets that circle. The point « is a singular
point of f(z) on the circle C;, In a circle ¢ with the point « for
center, however small the radius may be taken, there cannot exist
an analytic function which is identical with f(2) in the part common
to the two circles C; and ¢. It is also clear that the circle of conver-
gence of the series (8) having any point of the radius Oa for center
is tangent internally to the circle C, at the point a.*

* If all the coefficients an of the series (7) are real and positive, the point z=R is
necessarily a singular point on Cy. In fact, if it were not, the power series

G WG e P

n!

which represents f(2) in the neighborhood of the point z= R/2, would have a radius
of convergence greater than R/2. The same would be true a fortiori of the series
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Let us consider now a path L starting at the origin and ending at
any point Z outside of the circle C,, and let us imagine a moving
point to describe this path, moving always in the same sense from 0
to Z. Let a, be the point where the moving point leaves the circle;
if this point @, were a singular point, it would be impossible to con-
tinue on the path L beyond this point. We shall suppose that it is
not a singular point; we can then form a power series arranged in
powers of z — a, and convergent in a circle C, with the center a,,
whose sum coincides with f(z) in the part common to the twe cir-
cles C, and C,. To calculate f(a), f'(a,), - -- we could employ, for
example, an intermediate point on the radius Oa,. The sum of the
second series would furnish us with the analytic extension of f(z)
along the path L from a,, so long as the moving point does ‘not leave
the circle C;. In particular, if all the path starting from «, lies in
the interior of C,, that series will give the value of the function at the
point Z. If the path leaves the circle C, at the point a,, we shall
form, similarly, a new power series convergent in a circle C, with
the center a,, and so on. We shall suppose first that after a finite
number of operations we arrive at a circle C, with the center a,, con-
taining all the portion of the path L which follows a,, and in partic-
ular the point Z. It will suffice to replace z by Z in the last series
used and in those which we have obtained from it by term-by-term
differentiation in order to find the values of f(2), f(2), f'(2),-- -,
with which we arrive at the point Z, that'is, the final element of the
function.

It is clear that we arrive at any point of the path L with com-
pletely determined values for the function and all its derivatives.
Let us note also that we could replace the circles C,, C,, C,,---, C,
by a sequence of circles similarly defined, having any points z,, 2,
..., z, of the path L as centers, provided that the circle with the
center z; contains the portion of the path L included between 2; and
2;,,- We can also modify the path L, keeping the same extremities,
without changing the final values of f(z), f(2), f"'(2),: - -; for the

Reiw Reiw Retw
s(EE ) (=5 (55) -
whatever the angle w may be, for we have evidently

(e )

since all the coeflicients aa are positive. The minimum of the radius of convergence
of the series (8), when a describes the circle C,’,, would then be greater than R/2.
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circles C,, Cy, - - +, C, cover a portion of the plane forming a kind of
strip in which the path L lies, and we can replace the path L by any
other path L' going from z = 0 to the point Z and situated in that
c strip. Let us suppose, for

definiteness, that we have to

make use of three consecutive

‘ circles C,, C,, C, (Fig. 33).

Let L' be a new path lying

A‘WIQA % i the strip formed by these
qﬁ three circles, and let us join

the two points m and n. If we

go from O to m first by the

Frc. 88 path (.)a?m, then by the p:f,th

Onm, it is clear that we arrive

at m with the same element, since we have an analytic function in
the region formed by C,and C, Similarly, if we go from m to Z
by the path ma,Z or by the path mnZ, we arrive in each case at
the point Z with the same element. The path L is therefore equiv-
alent to the path OnmnZ, that is, to the path L'. The method of
proof is the same, whatever may be the number of the successive

circles. In particular, we can always replace a path of any form
whatever by a broken line.*

85. Singular points. If 'we proceed as we have just explained, it
may happen that we cannot find a circle containing all that part of
the path L which remains to be described, however far we continue
the process. This will be the case when the point a,, is a singular point
on the circle C,_,, for the process will be checked just at that point.
If the process can be continued forever, without arriving at a circle
inclosing all that part of the path L which remains to be described,
the points @, _,, a,, @, ,,, - - - approach a limit point A of the path L,
which may be either the point Z itself or a point lying between O
and Z. The point XA is again a singular point, and it is impossible
to push the analytic extension of the function f(z) along the path L
beyond the point A. But if A is different from Z, it does not follow
that the point Z is itself a singular point, and that we cannot go
from O to Z by some other path. Let us consider, for example, either
of the two functions V1 4 z and Log (1 + z); we could not go from

* The reasoning requires a little more attention when the path L has double points,
since then the strip formed by the successive circles Cy, Cy, Cy, --- may return and
cover part of itself. But there is no essential difficulty.
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the origin to the point 2 =— 2 along the axis of reals, since we could
not pass through the singular point 2 = — 1. But if we cause the vari-
able z to describe a path not going through this point, it is clear that
we shall arrive at the point 2 =— 2 after a finite number of steps,
for all the successive circles will pass through the point 2 =—1.
It should be noticed that the preceding definition of singular points
depends upon the path followed by the variable; a point A may be
a singular point for a certain path, and may not for some other, if
the function has several distinct branches.

When two paths L,, L], going from the origin to Z, lead to dif-
ferent elements at Z, there exists at least one singular point in the
interior of the region which would be swept out by one of the paths,
L,, for example, if we were to deform it in a continuous manner so
as to bring it into coincidence with L{, retaining always the same
extremities during the change. Let us sup-

pose, as is always permissible, that the two Z

paths L, L] are broken lines composed of the . "
same number of segments O0a,bec, ---1,Z and / .
Oajbie;--- L[ Z (Fig.34). Leta, b, ¢, 04, / \

be the middle points of the segments a,aj,
b b, e, - -+, L Y5 the path L, formed by the
broken line 0a,b,c, - -- ,Z cannot be equiva-
lent at the same time to the two paths L,, L]
if it does not contain a singular point. If the
path L, does contain a singular point, the
theorem is established. If the two paths L,
and L, are not equivalent, we can deduce from Fic. 34
them a new path L, lying between L, and L,
by the same process. Continuing in this way, we shall either reach
a path L, containing a singular point or we shall have an infinite
sequence of paths L, L,, L, ... These paths will approach a limit-
ing path A, for the points e, a,, a,, - - - approach a limit point lying
between a, and aj, - - -, and similarly for the others. This limiting
path A must necessarily contain a singular point, since we can
draw two paths as near as we please to A, one on each side of
it, and leading to different elements for the function at Z. This
could not be true if A did not contain any singular points, since
the paths sufficiently close to A must lead to the same elements
at Z as does A.

The preceding definition of singular points is purely negative
and does not tell us anything about the nature of the funection in
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the neighborhood. No hypothesis on these singular points or on
their distribution in the plane can be discarded a priori without
danger of leading to some contradiction. A study of the analytic
extension is required to determine all the possible cases.*

86. General problem. From what precedes, it follows that an analytic
function i8 virtually determined when we know one of its elements,
that is, when we know a sequence of coefficients a, a
such that the series

a,+a(x—a)yt - -+a(x—a)+--.

has a radius of convergence different from zero. These coefficients
being known, we are led to consider the following general problem :
To find the value of the function at any point B of the plane when the
variable 18 made to describe a definitely chosen path from the point a
to the point B. We can also consider the problem of determining
a priori the singular points of the analytic function; it is also
clear that the two problems are closely related to each other. The
method of analytic extension itself furnishes a solution of these two
problems, at least theoretically, but it is practicable only in very
particular cases. For example, as nothing indicates a priori the
number of intermediate series which must be employed to go from
the point @ to the point B, and since we can calculate the sum of
each of these series with only a certain degree of approximation, it
appears impossible to obtain any.idea of the final approximation
which we shall reach. So the investigation of simpler solutions was
necessary, at least in particular cases. Only in recent years, how-
ever, has this problem been the object of thorough investigations,
which have already led to some important results.t

9 Qgy * v oy By v o+

*Let f(2) be a function analytic along the whole length of the segment ab of the
real axis. In the neighborhood of any point @ of this segment the function can be
represented by a power series whose radius of convergence R(Q) is not zero. This
radius R, being a continuous function of a, has a positive minimum . Let p be a
positive number less than r, and E the region of the plane swept out by a circle with
the radius p when its center describes the segment ab. The function f(x) is analytic
in the region E and on its boundary; let M be an upper bound for its absolute value;
. from the general formulse (14) (§ 33) it follows that at any point  of ab we have the
inequality

o @<t
(CL.1,§197, 2d ed.; §191, 1st ed.)

1 For everything regarding this matter we refer the reader to Hadamard’s excel-
lent work, La série de Taylor et son prolongement analytique (Naud, 1901). It con-
tains a very complete bibliography.
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The fact that these researches are so recent must not be attributed
entirely to the difficulty of the question, however great it may be.
The functions which have actually been studied successively by
mathematicians have not been chosen by them arbitrarily; rather,
the study of these functions was forced upon them by the very nature
of the problems which they encountered. Now, aside from a small
number of transcendentals, all these functions, after the explicit
elementary functions, are defined either as the roots of equations
which do not admit a formal solution or as integrals of algebraic
differential equations. It is clear, then, that the study of implicit
functions and of functions defined by differential equations must
logically have preceded the study of the general problem of which
these two problems are essentially only very particular cases.

It is easy to show how the study of algebraic differential equa-
tions leads to the theory of analytic extension. Let us consider, for
concreteness, two power series y(x), 2(x), arranged according to pos-
itive powers of x and convergent in a circle C of radius R described
about the point z = 0 as center. On the other hand, let F(z, y, ¥, y"
<Y P2, 2 - -, 29) bea polynomialinz, y, ', - - -, ¥ P, 2, 2!, - + -, 29,
Let us suppose that we replace y and z in this polynomial by the
preceding series, ¥', ¥, - - -, ¥® by the successive derivatives of the
series y(x), and 2/, 2", - - ., 2@ by the derivatives of the series z(x);
the result is again a power series convergent in the circle C. If all
the coefficients of that series are zero, the analytic functions y(x)
and z(x) satisfy, in the circle C, the relation

®) F(x, ¥, 9y« Py 2, 2", o, 2= 0.,

We are now going to prove that the functions obtained by the analytic
extension of the series y(x) and z(x) satisfy the same relation in the
whole of their domain of existence. More precisely, if we cause the
variable z to describe a path L starting at the origin and proceeding
from the circle C to reach any point « of the plane, and if it is pos-
sible to continue the analytic extension of the two series y(x) and
z(x) along the whole length of this path without meeting any singular
point, the power series Y (x — ) and Z (x — @) with which we arrive
at the point @ represent, in the neighborhood of that point, two ana-
lytic functions which satisfy the relation (9). For let 2, be a point
of the path L within the circle C and near the point where the path L
leaves the circle C. With the point z, as center we can describe a
circle C,, partly exterior to the circle C, and there exist two power
series y(z — x,), #(x — x,) that are convergent in the circle C, and
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whose values are identical with the values of the two series y(x)and
z(x) in the part common to the two circles C, C,. Substituting for y
and z in F the two corresponding series, the result obtained is a power
series P(x — x,) convergent in the circle C,. Now in the part common
to the two circles C, C, we have P(x —x,)=0; the series P(x — )
has therefore all its coefficients zero, and the two new series y (x — )
and z(z — x,) satisfy the relation (9) in the circle C,. Continuing
in this way, we see that the relation never ceases to be satisfied
by the analytic extension of the two series y(x) and z(x), whatever
the path followed by the variable may be; the proposition is thus
demonstrated.

The study of a function defined by a differential equation is, then,
essentially only a particular case of the general problem of analytic
extension. But, on the other hand, it is easy to see how the knowledge
of a particular relation between the analytic function and some of
its derivatives may in certain cases facilitate the solution of the
problem. We shall have to return to this point in the study of
differential equations.

II. NATURAL BOUNDARIES. CUTS

The study of modular elliptic functions furnished Hermite the
first example of an analytic function defined only in a portion of
the plane. We shall point out a very simple method of obtaining
analytic functions having any curve whatever of the plane for a
natural boundary (see § 84), under certain hypotheses of a very
general character concerning the curve.

87. Singular lines. Natural boundaries. We shall first demonstrate
a preliminary proposition.*

Let a, a,--, a,,---and ¢, ¢, -+, ¢, --- be two sequences of
any kind of terms, the second of which is such that 3¢, is absolutely
convergent and has all its terms different from zero. Let C be a
circle with the center z, containing none of the points a; in its interior
and passing through a single one of these points; then the series

+

cl’
a,—z

10) F(z)=

v=1

*POINCARE, Acta Societatis Fennice, Vol. XIII, 1881; GoursaT, Bulletin des
sciences mathématiques, 2d series, Vol. XI, p. 109, and Vol. XVII, p. 247.
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represents an analytic function in the circle C which can be devel-
oped in a series of powers of z — z,. The circle of convergence of this
series is precisely the circle C. '

We can clearly suppose that z = 0, for if we change = to z, — 2/,
a, is replaced by a, — z;, and ¢, does not change. We shall also sup-
pose that we have |a,|= R, where R denotes the radius of the circle C,
and |a;| > R for i>1. In the circle C the general term ¢,/(a, — z) can
be developed in a power series, and that series has (|¢,|/R)/(1 —2/R)
for a dominant function, as is easily verified. By a general theorem
demonstrated above (§ 9), the series 3¢, | being convergent, the fune-
tion F(z) can be developed in a power series in the circle C, and that
series can be obtained by adding term by term the power series which
represent the different terms. We have, then, in the circle C

e
1
art

+o
(10 F(x)=4d,+Az+A4,2+ .- +4,2+--., A.=2
v=1

+o
Let us choose an integer p such thatE]c,] shall be smaller than

s . . v=ptl .
|€,| /2, which is always possible, since ¢, is not zero and since the

series 3|c,| is convergent. Having chosen the integer p in this
way, we can write F(z)= F,(z)+ F,(z), where we have set

.

F _ P c, F(e) = ¢ + + o c,
l(z)'—za"_z’ ?( )_a,l—z 2 a, — 2
V=9 v=p+1

F(z) is a rational function which has only poles exterior to the
circle C; it is therefore developable in a power series in a circle C'
with a radius R' > R. As for F,(z), we have

1) F,(?)=B,+ Bz+---+ B2+ .-,

where

| Cpt1 %p+2
Bu =— + . + u + ...
a1+l (ap+l) +1 (ap+2) +1

‘We can write this coefficient again in the form

1 + o a n+1
B.=$lcl+ pE <a—'> ];

v=p+1 v

but we have, by hypothesis, |a,/a,| <1, and the absolute value of

the sum of the series
+o ntl
()
v=p+1 ay
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is less than |¢,|/2, by the method of choosing the integer p. The
absolute value of the coefficient B, is therefore between |¢,|/2 R**+! and
3|¢,|/2 R**! in magnitude, and the absolute value of the general term
of the series (11) lies between (|¢,|/2 R)|z/R|* and (3|¢,|/2 R)|z/R|";
that series is therefore divergent if |2| > R. By adding to the series
F,(z), convergent in the circle with the radius R, a series F,(=), con-
vergent in a circle of radius R' > R, it is clear that the sum F(z) has
the circle C with the radius R for its circle of convergence; this
proves the proposition which was stated.

Let now L be a curve, closed or not, having at each point a definite
radius of curvature. The series 3¢, being absolutely convergent, let
us suppose that the points of the sequence a,, a,, - - -, a;, - - - are all
on the curve L and are distributed on it in such a way that on a
finite arc of this curve there are always an infinite number of points

of that sequence. The series
+wo

c"
a F()=3, =%
is convergent for every point z, not belonging to the curve Z, and
represents an analytic function in the neighborhood of that point.
To prove this it would suffice to repeat the first part of the preced-
ing proof, taking for the circle C any circle with the center z, and
not containing any of the points a,. If the curve L is not closed,
and does not have any double points, the series (12) represents an
analytic function in the whole extent of the plane except for the
points of the curve L. We cannot conclude from this that the
curve L is a singular line; we have yet to assure ourselves that
the analytic extension of F(z) is not possible across any portion
of L, however small it may be. To prove this it suffices to show that
the circle of convergence of the power series which represents F(z)
in the neighborhood of any point z, not on L can never inclose an
arc of that curve, however small it may be. Suppose that the circle C,
with the center z, actually incloses an arc af of the curve L. Let us
take a point a; on this arc aB, and on the normal to this are at a; let
us take a point 2' so close to the point a; that the circle C;, described
about the point 2’ as center with the radius |2' — a,|, shall lie entirely
in the interior of C and not have any point in common with the
arc af other than the point g, itself. By the theorem which has just
been demonstrated, the circle C; is the circle of convergence for the
power series which represents F(z) in the neighborhood of the point
#'. But this is in contradiction to the general properties of power
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series, for that circle of convergence cannot be smaller than the
circle with the center 2z’ which is tangent internally to the circle C.

If the curve L is closed, the series (12) represents two distinct
analytic functions. One of these exists only in the interior of the
curve L, and for it that curve is a natural boundary; the other
function, on the contrary, exists only in the region exterior to the
curve L and has the same curve as a natural boundary. Thus the
curve L is a natural boundary for each of these functions.

Given several curves, L, L,, - - -, L,, closed or not, it will be pos-
sible to form in this way series of the form (12) having these curves
for natural boundaries; the sum of these series will have all these
curves for natural boundaries.

88, Examples. Let 4B be a segment of a straight line, and a, 8 the complex
quantitiesrepresenting the extremities 4, B. Allthe pointsy =(ma + n8)/(m + n),
where m and n are two positive integers varying from 1to 4 o, are on the seg-
ment 4B, and on a finite portion of this segment there are always an infinite
number of points of that kind, since the point v divides the segment A B in the
ratio m/n. On the other hand, let Cs, » be the general term of an absolutely
convergent double series. The double series

Com.n
F(z)’_'zm_a_-l-ﬂ_—z

m+n

represents an analytic function having the segment A B for a natural boundary.
‘We can, in fact, transform this series into a simple series with a single index
in an infinite number of ways. It is clear that by adding several series of this
kind it will be possible to form an analytic function having the perimeter of
any given polygon as a natural boundary.

Another example, in which the curve L is a circle, may be defined as follows:
Let a be a positive irrational number, and let » be a positive integer. Let us put

a=eﬁt¢' ay = av = edivva,

Then all the points a” are distinct and are situated on the circle C of unit radius
having its center at the origin. Moreover, we know that we can find two inte-
gers m and n such that the difference 2 o (na — m) will be less in absolute value
than a number ¢, however small e be taken.

There exist, then, powers of a whose angle is as near zero as we wish, and
consequently on a finite arc of the circumference there will always be an infinite
number of points a*. Let us next put ¢, = a*/2”; the series

represents, by the general theorem, an analytic function in the circle C
which has the whole circumference of this circle for a natural boundary.
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Developing each term in powers of z, we obtain for the development of F(z) the
power series
z 23 »

F =1 e e
(s @O=1+ T tea 3ttt

1t is easy to prove directly that the function represented by this power series
cannot be extended analytically beyond the circle C ; for if we add to it the
series for 1/(1 — 2), there results

F(z)+——2+z(a +l) +z-( ! +1)+---=2F<az),

v

or

Fl(az) = —F(z)+1 lz.

Changing in this relation z to az, then to a%, . .-, we find the general relation

1 1 1
(14) F(a"z)_ F(z)-l- P(a— z)+2"—1(1—az)+“.+2(l—TIZ)'

which shows that the difference 2#F (arz) — F(z) is a rational function ¢ (2) hav-
ing the n poles of the first order 1, 1/a, ..., 1/a*—1,

The result (14) has been established on the supposition that we have 2| <1
and |a| =1. If the angle of a is commensurable with , the equality (14) shows
that F(2) is a rational function; to show this it would suffice to take for n an
integer such that a» = 1. If the angle of a is incommensurable with ur, it is im-
possible for the function F(z) to be analytic on a finite arc AB of the circum-
ference, however small it may be. For let a—? and a*—? be two points on the
arc AB(n>p). The numbers n and p having been chosen in this way, let us
suppose thatz is made to approach a—»; arz will approach a*—», and the two
functions F(2) and F(arz) would approach finite limits if F(2) were analytic
on the arc AB. Now the relation (14) shows that this is impossible, since the
function ¢ (2) has the pole a-».

An analogous method is applicable, as Hadamard has shown, to the series
considered by Weierstrass, ’

(15) F(z)= zbﬂz“",

where a is a positive integer >1 and b is a constant whose absolute value is less
than one. This series is convergent if |z| is not greater than unity, and diver-
gent if |z| is greater than unity. The circle C with a unit radius is therefore the
circle of convergence. The circumference is a natural boundary for the func-
tion F(z). For suppose that there are no singular points of the function on a
finite arc af of the circumference. If we replace the variable z in F(z) by
ze2kim/* where k and h are two positive integers and ¢ a divisor of a, all the
terms of the series (15) after the term of the rank i are unchanged, and the
difference F(z) — F(ze?¥mi/?*) is a polynomial. Neither would the function F(z)
have any singular points on the arc axg, which is derived from the arc ap by a
rotation through an angle 2 kw/c* around the origin. Let us take A large enough
to make 2 w/ch smaller than the arc af ; taking successively k=1, 2, ..., ch, it
is clear that the arcs a,8;, a,8,, - - - cover the circumference completely. The
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function F(z) would therefore not have any singular points on the circumfer-
ence, which is absurd (§ 84).

This example presents an interesting peculiarity ; the series (15) is absolutely
and uniformly convergent along the circumference of C. It represents, then, a
continuous function of the angle 4 along this circle.*

89. Singularities of analytical expressions. Every analytical expres-
sion (such as a series whose different terms are functions of a vari-
able 2z, or a definite integral in which that variable appears as a
parameter) represents, under certain conditions, an analytic function
in the neighborhood of each of the values of z for which it has a
meaning. If the set of these values of z covers completely a connected
region A of the plane, the expression considered represents an
analytic function of z in that region 4; but if the set of these values
of z forms two or more distinet and separated regions, it may happen
that the analytical expression considered represents entirely distinct
functions in these different regions. We have already met an exam-
ple of this in § 38. There we saw how we could form a series of
rational terms, convergent in two curvilinear triangles PQR, P'Q'R'
(Fig. 16), whose value is equal to a given analytic function f(z) in
the triangle PQR and to zero in the triangle P'Q'R'. By adding two
such series we shall obtain a series of rational terms whose value is
equal to f(z) in the triangle PQR and to another analytic function
¢ (z) in the triangle P'Q'R'. These two functions f(z) and ¢ (z) being

* Fredholm has shown, similarly, that the function represented by the series
iaﬂzﬂ’,
0

where a is a positive quantity less than one, cannot be extended beyond the circle of
convergence (Comptes rendus, March 24, 1890). This example leads to a result which
is worthy of mention. On the circle of unit radius the series is convergent and the
value
F(@) =X an[cos (n3f) + i sin (n26)]
is a continuous function of the angle § which has an infinite number of derivatives.
This function F'(f) cannot, however, be developed in a Taylor’s series in any interval,
however small it may be. Suppose that in the interval (o— a, 6o+ a) we actually
have
F@)=A4g+A;(0-0p)+ -+ An(@-G)n+---.

The series on the right represents an analytic functior of the complex variable § in
the circle ¢ with the radius a described with the point @, for center. To this circle ¢
corresponds, by means of the relation z = e%, a closed region 4 of the plane of the vari-
able z containing the arc 7 of the unit circle extending from the point with the angle
6y — « to the point with the angle §,+ @. There would exist, then, in this region 4
an analytic function of 2 coinciding with the value of the series Sar2»* along ¥ and also
in the part of 4 within the unit circle; this is impossible, since we cannot extend the
sum of the series beyond the circle.
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arbitrary, it is clear that the value of the series in the triangle P'Q'R’
will in general bear no relation to the analytic extension of the value
of that series in the triangle PQR.

The following is another very simple example, analogous to an
example pointed out by Schroder and by Tannery. The expression
(1 —#)/(1 4 2*), where n is a positive integer which increases in-
definitely, approaches the limit + 1 if |2|<1, and the limit —1
if |z|>1. If |2]=1, this expression has no limit except for z =1.
Now the sum of the first n terms of the series

1—2 1—-22 1—2 1—2 1—27?
S(z)_l-;-z+<1+z’_1+z)+"'+(1+z-_1+z--‘)+"'

is equal to the preceding expression. This series is therefore conver-
gent if || is different from unity. Hence it represents 41 in the
interior of the circle C with the radius wnity about the origin as
center, and — 1 at all points outside of this circle. Now let f(z),
¢(z) be any two analytic functions whatever; for example, two
integral functions. Then the expression

V=3 )+ 4]+ 3 SALE) — $()]

is equal to f(z) in the interior of C, and to ¢(z) in the region ex-
terior to C. The circumference itself is a cut for that expression, but
of a quite different nature from the natural boundaries which we
have just mentioned. The function which is equal to ¢(z) in the
interior of C can be extended analytically beyond C; and, similarly,
the function which is equal to y(z) outside of C can be extended
analytically into the interior.

Analogous singularities present themselves in the case of functions
represented by definite integrals. The simplest example is furnished
by Cauchy’s integral; if f2) is a function analytic within a closed
curve I and also on that curve itself, the integral

(_1_) S dz
2wl J o x—x

represents f(x) if the point x is in the interior of I. The same inte-
gral is zero if the point x is outside of the curve T, for the function
J\&) (2 — &) is then analytic inside of the curve. Here again the
ourve I' is not a natural boundary for the definite integral. Similarly,
the definite integral [*=etn [(# — ») 2]dx has the real axis as a cut;
it is equal to + 2 =i or — 2 w4, acvonding as x is above or below that
cut (§ 43).
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90. Hermite’s formula. An interesting result due to Hermite can be brought
into relation with the preceding discussion.* Let F (¢, z), G (¢, z) be two analytic
functions of each of the variables ¢ and z ; for example, two polynomials or two
power series convergent for all the values of these two variables. Then the
definite integral 8, 2)

- ) %

(16) 1’(2) =) G—(t"—zsdt,
taken over the segment of a straight line which joins the two points a and B,
represents, as we shall see later (§ 95), an analytic function of z except for the
values of z which are roots of the equation G (¢, 2) = 0, where ¢ is the complex
quantity corresponding to a point on the segment af. This equation therefore
determines a finite or an infinite number of curves for which the integral & (z)
ceases to have a meaning. Let A B be one of these curves not having any double
points. In order to consider a very precise case, we shall suppose that when ¢
describes the segment aB, one of the roots of the equation G (¢, z) = 0 describes
the arc A B, and that all the other roots of the same equation, if there are any,
remain outside of a suitably chosen closed curve surrounding the arc AB, so
that the segment af and the arc 4B correspond to each other point to point.

_The integral (16) has no meaning when z falls upon the arc AB; we wish to
calculate the difference between the values of the function & (z) at two points
N, N’, lying on opposite sides of the arc A B, whose distances from a fixed point
M of the arc AB are infinitesimal. Let {, {+ ¢, { + ¢ be the three values of 2z
corresponding to the three points M,

N, N’ respectively. To these three X A C
points correspond in the plane of the 8
variable ¢, by means of the equation

G (t, z) = 0, the point m on aB, and

the two points n, n’ on opposite sides R

of af at infinitesimal distances from Fic. 85 B

m. Let 6,0 + 7, 0 + o be the cor- )
responding values of ¢. In the neighborhood of the segment ag let us take
a point y s0 near ap that the equation G({, {+ ¢) =0 has no other root
than t = @ + n in the interior of the triangle afy (Fig. 85). The function
F(t, ¢+ €¢)/G(t, ¢ + ¢) of the variable ¢ has but a single pole § + » in the interior
of the triangle aBy, and, according to the hypotheses made above, this pole
is a simple pole. Applying Cauchy’s theorem, we have, then, the relation

BF(E, ¢+ e YF(tvg-'i")dt
an « G, $+e) B G(t, ¢+
Fl,1+ o FO+n i+
Y G(tv §-+‘) G;(&""h §-+¢)

The two integrals fﬂ”, j;" are of the same form as $(z); they represent re-
spectively two functions, ®,(z), ®,(z), which are analytic so long as the variable
is not situated upon certain curves. Let AC and BC be the curves which cor-
respond to the two segments ay and @y of the ¢ plane, and which are at
infinitesimal distances from the cut 4 B associated with & (z). Let us now give

.* HERMITE, Sur quelques points de la théorie des fonctions (Crelle’s Journal,
Vol..XCI).
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the value { + ¢ to z; the corresponding value of ¢ is § + %’, represented by the
point n’, and the function F(t, { + €)/G (t, { + ¢) of ¢ is analytic in the interior
of the triangle agy. We have, then, the relation

BFGL s+ ) g (PFGS+ D), PP+ )y .

@ [ serra®th sireatt) Gerr =
subtracting the two formule (17) and (18) term by term, we can write the result
as follows :

PE+—SE+ N+ [B(F+)—E+)].
FIBE+ - B+ )] = 2w LI MER D,
' Gl+mntte

But since neither of the functions $,(z), #,(z) has the line A B as a cut, they
are analytic in the neighborhood of the point z = ¢, and by making e and ¢ ap-
proach zero we obtain at the limit the difference of the values of ¢ (2) in two
points infinitely near each other on opposite sides of AB. We shall write the
result in the abridged form
(19) *(N)— eV =2miL G D .

2G4, 9’

o6
this is Hermite's formula. It is seen that it is very simply related to Cauchy’s
theorem.* The demonstration indicates clearly how we must take the points N'
and N’ ; the point N (¢ + ¢) must be such that an observer describing the segment
ap has the corresponding point § 4+ » on his left.

It is to be noticed that the arc AB is not a natural boundary for the
function $(2). In the neighborhood of the point N’ we can replace &(z) by
— [®,(2) + ®,(2)] according to the relation (18). Now the sum &,(2) + @, (2) is
an analytic function in the curvilinear triangle ACB and on the arc A B itself,
a8 well as in the neighborhood of N’. Therefore we can make the variable z
cross the arc AB at any one of its points except the extremities 4 and B
without meeting any obstacle to the analytic extension. The same thing would
be true if we were to make the variable z cross the arc 4 B in the opposite sense.

Ezample. Let us consider the integral

_ B f(t)dt

@) NGRS =
where the integral is to be taken over a segment A B of the real axis, and where
Jf(¢) denotes an analytic function along that segment AB. Let us represent z
on the same plane as {. The function ¢ (z) is an analytic function of z in the
neighborhood of every point not located on the segment A B itself, which is a
cut for the integral. The difference ¢ (N) — ¢ (N’) is here equal to + 2 wif(}),
where ¢ is a point of the segment A B. When the variable z crosses the line 4 B,
the analytic extension of ® (2) is represented by & (z) + 2 7if (2).

This example gives rise to an important observation. The function &(2) is
still an analytic function of 2, even when f(t) is not an analytic function of ¢,
provided that f(f) is continuous between a and g (§ 83). But in this case the
preceding reasoning no longer applies, and the segment AB is in general a
natural boundary for the function & (z).

* GOURSAT, Sur un théoréme de M. Hermite (Acta mathematica, Vol. T).
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EXERCISES

1. Find the lines of diacont.inuity for the definite integrals
zdt b

[ ] =
Fa=J, l+z’t’ @ j.: t+iz

taken along the straight line which joins the points (0, 1) and (a, b) respec-
tively ; determine the value of these integrals for a point z not located on these
boundaries.

2. Consider four circles with radii 1/v2, having for centers the points + 1,
+ i, — 1, — i. The region exterior to these four circles is composed of a finite
region A4, containing the origin, and of an infinite region 4,. Construct, by the
method of § 88, a series of rational functions which converge in these regions,
and whose value in A, is equal to 1 and in 4, t0 0. Verify the result by finding
the sum of the series obtained.

3. Treat the same questions, considering the two regions interior to the circle
of radius 2 with the center for origin, and exterior to the two circles of radius 1
with centers at the points + 1 and — 1 respectively.

[ArPELL, Acta mathematica, Vol. 1.]
4. The definite integral

tw tesinz
®(2) = f 1+2tcosz+t‘dt
taken along the real axis, has for cuts the straight lines z = (2k + 1) 7, where k
is an integer. Let { =(2k + 1) 7 + i be a point on one of these cuts. The dif-
ference in the values of the integral in two points infinitely close to that point
on each side of the cut is equal to  (e* 4 e—af),

[HerM1TE, Crelle’s Journal, Vol. XCI.]
5. The two definite integrals

+ o pi(t—3) + o i(t— l)
J= f e. z % °_f e;—z ?

taken along the real axis, have the axis of reals for a cut in the plane of the
variable z. Above the axis we have J = 2 i, J, = 0, and below we have J = 0,
Jo=—2mi. From these results deduce the values of the definite integrals

two it + cos(t — 2)
f;. = f:, i—z

j:*‘we—_"dt' f_+°°sm(t—z)dt

w L—2 v =2z
[HerMiTE, Crelle’s Journal, Vol. XCI.]
8. Establish by means of cuts the formula (Chap. II, Ex. 15)

+ o 13
f & =T
—o 14+ ¢ sin anw
[HerMITE, Crelle's Journal, Vol. XCI.]

+o ea(t+e)
@)= f., 14 ettn &,

Consider the integral
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which has all the straight lines y = (2% + 1) = for cuts, and which remains con-
stant in the strip included between two consecutive cuts. Then establish the
relations

®(z + 2mi) = (2) + 2wiers, (2 + 27) = AP (2),
where 2 and z + 2 i are two points separated by the cut y = =.)

7*. Let f(2) be an analytic function in the neighborhood of the origin, so that
f(2) =Zanz®. Denote by F(z) =Zas2"/n! the associated integral function. It is
easily proved that we have

) F(az) = 1) 3 g,

) w
where the integral is taken along a closed curve C, including the origin within
it, inside of which f(z) is analytic. From this it follows that

@ [leeFaaa= L ({8, fo'e“(-"'")aa,

where ! denotes a real and positive number.
If the real part of z/u remains less than 1 — e(where e > 0) when u describes

the curve C, the integral
j; 'ea(;-‘— 1) da

approaches u/(u — 2) uniformly as ! becomes infinite, and the formula (2) be-
comes at the limit
to 1 S(u)du
3 —aF (az)da = —
® -/; ¢ (@) 27wiJe) u—z2 =/@.
This result is applicable to all the points within the negative pedal curve of C.
[BorEL, Legons sur les séries divergentes. ]
8%, Let f(z) = Zaaz*, ¢ (z) = Zbaz" be two power series whose radii of conver-
gence are r and p respectively. The series )
¥ (2) = Zaybn2»

has a radius of convergence at least equal to rp, and the function y (2) has no
other singular points than those which are obtained by multiplying the quanti-
ties corresponding to the different singular points of f(z) by those corresponding
to the singular points of ¢ (z).

[HapAMARD, Acta mathematica, Vol. XXIII, p. 65.]




CHAPTER V

ANALYTIC FUNCTIONS OF SEVERAL VARIABLES
I. GENERAL PROPERTIES

In this chapter we shall discuss analytic functions of several
independent complex variables. For simplicity, we shall suppose
that there are two variables only, but it is easy to extend the results
to functions of any number of variables whatever.

91. Definitions. Let z = u 4 vi, 2' = w + ¢i be two independent
complex variables; every other complex quantity Z whose value
depends upon the values of z and 2' can be said to be a function of
the two variables 2 and 2. Let us represent the values of these two
variables z and 2' by the two points with the codrdinates (u, v) and
(w, t) in two systems of rectangular axes situated in two planes P, P',
and let 4, A' be any two portions of these two planes. We shall say
that a function Z = f(z, #') is analytic in the two regions 4, 4' if
to every system of two points z, 2/, taken respectively in the regions
4, A', corresponds a definite value of f(z, #'), varying continuously
with 2 and 2/, and if each of the quotients

S+ 2 zZ"f(z’ z')’ BAC) """'"2"'.70("” z")

approaches a definite limit when, z and 2' remaining fixed, the
absolute values of 2 and % approach zero. These limits are the
partial derivatives of the function f(z, 2'), and they are represented
by the same notation as in the case of real variables.

Let us separate in f(z, ") the real part and the coefficient of ¢,
Sf(2,2"y=X 4+ ¥Y¢; X and Y are real functions of the four independ-

ent real variables u, v, w, ¢, satisfying the four relations
ox_ov  ox_ oy ox_dv  9x__o¥

w o . ow w0t o ow

the significance of which is evident.* We can eliminate ¥ in six

* If z and 2’ are analytic functions of another variable z, these relations enable us
to demonstrate easily that the derivative of f (2, 2*) with respect to z is obtained by the
usual rule which gives the derivative of a function of other functions. The formuls
of the differential calculus, in particular those for the change of variables, apply,
therefore, to analytic functions of complex variables.

219
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different ways by passing to derivatives of the second order, but
the six relations thus obtained reduce to only four:

X 32X X 32X

) duot gwow =" uow Tower = O
@ Px  PX _ X #X_,
T =Y g Tt =0

Up to the present time little use has been made of these relations
for the study of analytic functions of two variables. One reason for
this is that they are too numerous to be convenient.

92. Associated circles of convergence. The properties of power series
in two real variables (I, §§ 190-192, 2d ed.; §§ 185-186, 1st ed.) are
easily extended to the case where the coefficients and the variables
have complex values. Let )

@ F(z, 2")= 3a,,2z"2"
be a double series with coefficients of any kind, and let
A= |a,,,,,,|.

We have seen (I, §190, 2d ed.) that there exist, in general, an
infinite number of systems of two positive numbers R, R'such that
the series of absolute values

16) SApZ" 2"

is convergent if we have at the same time Z < R and Z'< R', and
divergent if we have Z >R and Z'>R'. Let C be the circle de-
scribed in the plane of the variable z about the origin as center with
the radius R; similarly, let C' be the circle described in the plane of
the variable z' about the point 2' = 0 as center with the radius R’
(Fig. 36). The double series (2) is absolutely convergent when the
variables 2 and z' are respectively in the interior of the two circles C
and C', and divergent when these variables are respectively exterior to
these two circles (I, § 191, 2d ed.; § 185, 1st ed.). The circles C, C'
are said to form a system of associated circles of convergence. This
set of two circles plays the same part as the circle of convergence
for a power series in one variable, but in place of a single circle
there is an infinite number of systems of associated circles for a
power series in two variables. For example, the series

ZM amayin

m!n!
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is absolutely convergent if |2|+|2|<1, and in that case only.
Every pair of circles C, C' whose radii R, R' satisfy the relation
R+R =1isa sjfstem of associated circles. It may happen that we
can limit ourselves to the consideration of a single system of asso-
ciated circles; thus, the series 32™z™ is convergent only if we have
at the same time |2| <1 and |2'|<1.

Let C, be a circle of radius R, < R concentric with C'; similarly,
let C] be a circle of radius R{< R' concentric with C'; when the
variables z and z' remain within the circles €y, and Cj respectively,

w
v ¢’
2!

24k

(4 t

NI

Fie. 36

the series (2) is uniformly convergent (see I, § 191, 2d ed.; § 185,
1st ed.) and the sum of the series is therefore a continuous function
F(z, 2") of the two variables z, ' in the interior of the two circles
C and C'.

Differentiating the series (2) term by term with respect to the
variable 2, for example, the new series obtained, 3ma,,,2™ 2", is again
absolutely convergent when 2z and 2’ remain in the two circles C and
C' respectively, and its sum is the derivative 9F/0z of F(z, 2") with
respect to 2. The proof is similar in all respects to the one which has
been given for real variables (I, § 191, 2d ed.; § 185, 1st ed.). Simi-
larly, F(z, 2') has a partial derivative 0F/0z' with respect to 2!, which
is represented by the double series obtained by differentiating the
series (2) term by term with respect to 2'. The function F(z, 2') is
therefore an analytic function of the two variables z, 2’ in the pre-
ceding region. The same thing is evidently true of the two deriva-
tives 0F/0z, 0F /02!, and therefore F(z, 2") can be differentiated term
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by term any number of times; all its partial derivatives are also
analytic functions.

Let us take any point z of absolute value » in the interior of C, and
from this point as center let us describe a circle ¢ with radius R — »
tangent internally to the circle C. In the same way let 2’ be any point
of absolute value »' < R',and ¢' the circle with the point 2' as center
and R' — »' as radius. Finally, let # 4 % and 2' + & be any two points
taken in the circles ¢ and ¢' respectively, so that we have

|2] + || <R, |2'| + | k| < R

If we replace z and 2' in the series (2) by z + % and 2' + &, we can
develop each term in a series proceeding according to powers of %
and k, and the multiple series thus obtained is absolutely convergent.
Arranging the series according to powers of % and %, we obtain the
Taylor expansion

ot "F

ozmoz"

m! n!

4) Flz+h2' +1)=3 Ak,

93. Double integrals. When we undertake to extend to functions
of several complex variables the general theorems which Cauchy
deduced from the consideration of definite integrals taken between
imaginary limits, we encounter difficulties which have been com-
pletely elucidated by Poincaré.* We shall study here only a very

Q| . i
b 4
p =
1
3 14
a ! "
@] u O/ w
Fi6. 87

simple particular case, which will, however, suffice for our subse-
quent developments. Let f'(z, 2") be an analytic function when the
variables 2, 2' remain within the two regions 4, A' respectively.
Let us consider a curve ab lying in 4 (Fig. 37) and a curve a'd’
in 4'; and let us divide each of these curves into smaller arcs by
any number of points of division. Let z, 2y, 2,y + *y Zx—1y 2y "=y &

* POINCARE, Sur les résidus des intégrales doubles (Acta mathematica, Vol. IX).
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be the points of division of ab, where 2z and Z coincide with « and 5,
and let zg, 27, 25, - -, Z4_y, 24y + * *5 Zm_1, Z' be the points of division
of a'd', where z; and Z' coincide with e' and 4’. The sum

" m
6 5= fEron #o) (B — B (5 — # ),
kml Aml
taken with respect to the two indices, approaches a limit, when the
two numbers m and n become infinite, in such a way that the abso-
lute values |z, — 2,_,| and |2y — #,_,| approach zero. Let f(z, 2')
=X+ Yi, where X and Y are real functions of the four variables
u, v, w, t; and let us put z, = u, + v, z; = w, + ¢,i. The general
term of the sum S can be written in the form

(X (Ug—1y Ve—y; Waory taor) + tY (ug_1y Ve—1j Waoyy thon)]
X [up — gy + 1(vp — ve_) ][ — Wiy + 26 — tay)]

and if we carry out the indicated multiplication, we have eight
partial products. Let us show, for example, that the sum of the
partial products,

6) kzl 1\21 X (Ug-1) Veo1; Waoyy tamy) (W — U _y) (104 — Wy _y),
approaches a limit. We shall suppose, as is the case in the figure,
that the curve eb is met in only one point by a parallel to the axis Ov,
and, similarly, that a parallel to the axis O¢ meets the curve a'd' in at
most one point. Let v = ¢ (u), ¢ = ¢ (w) be the equations of these
two curves, u, and U the limits between which w varies, and w, and
W the limits between which w varies. If we replace the variables v
and ¢ in X by ¢ (x) and ¢ (w) respectively, it becomes a continuous
function P (u, w) of the variables « and w, and the sum (6) can again
be written in the form

(6" g g P (g _yy wy_y) (g — wg_y) (W, — wy_y).

As m and n become infinite, this sum has for its limit the double
integral [f7’(u, w)dudw extended over the rectangle bounded by the
straight lines « = u, u = U, w = w,, w = W.

This double mtegml can also be expressed in the form

f duf P(u, w)dw,
) “%o
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or again, by introducing line integrals, in the form

) - f duf X (u, v; w, t)dw.
@)  Jaw)

In this last expression we suppose that » and v are the cosrdinates
of any point of the arc ab, and w, ¢ the codrdinates of any point of
the arc a'®’. The point (u, v) being supposed fixed, the point (w, ¢)
is made to describe the arc a'?’, and the line integral f X dw is taken
along a'%'. The result is a function of u, v, say R (u, v); we then
calculate the line integral f R («, v) du along the arc ab.

The last expression (7) obtained for the limit of the sum (6) is
applicable whatever may be the paths ab and a'd’. It suffices to break
up the ares @b and «'d’' (as we have done repeatedly before) into
arcs small enough to satisfy the previous requirements, to associate
in all possible ways a portion of ab with a portion of a'é', and then
to add the results. Proceeding in this way with all the sums of par-
tial products similar to the sum (6), we see that S has for its limit
the sum of eight double integrals analogous to the integral (7).
Representing that limit by ff F(z, 2")dzdz', we have the equality

(
ffF(z, 2 dzdz' = f du Xdw — dv Xdt
@ Jav @) Jaw

- du f Ydt — dv f Ydw
(8) p (ad) (a'd’) (ad) (a’d’)
+if duf de—'f dvf Ydt
(ab) (a'b") @) J@v)

+if du Xdt +if dv Xdw,
. (ab) (a’d") (ab) (@b’)

which can be written in an abridged form,

ffF(z, 2" dzdz' =L)(du + idv)j(;b,)(X + ¢Y) (dw + idt),

or, again,

() f f F(z, 2")dzdz' = (ab)dz L blf"'(z, 2"y dz'.

The formula (9) is precisely similar to the formula for calculating
an ordinary double integral taken over the area of a rectangle by
means of two successive quadratures (I, § 120, 2d ed.; § 123, 1st ed.).
We calculate first the integral [F(z, 2")dz'along the arc «'0', supposing
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2 constant; the result is a function ®(2) of 2, which we integrate
next along the arc ab. As the two paths ab and a's' enter in
exactly the same way, it is clear that we can interchange the order
of integrations.

Let M be a positive number greater than the absolute value of
F(z, 2') when 2z and 2' describe the arcs ab and o'%'. If L and L'
denote the lengths of the respective arcs, the absolute value of the
double integral is less than MLL' (§ 25). When one of the paths, a'd’
for example, forms a closed curve, the integral [, F(z, #")dz' will
be zero if the function F(z, 2') is analytic for all the values of 2' in
the interior of that curve and for the values of z on ab. The same
thing will then be true of the double integral.

94. Extension of Cauchy’s theorems. Let C, C' be two closed curves
without double points, lying respectively in the planes of the variables
z and 2/, and let F(z, 2") be a function that is analytic when z and 2'
remain in the regions limited by these two curves or on the curves
themselves. Let us consider the double integral

where z is a point inside of the boundary C and where «' is a point
inside of the boundary C'; and let us suppose that these two bound-
aries are described in the positive sense. The integral

F(z, 2" dz'
@ —2) (@ =)’

where z denotes a fixed point of the boundary C, is equal to
2mi F(z, ')/(z —x). We have, then,

I=2m f F(z =) dz,
© &
or, applying Cauchy’s theorem once more,

I=—47F(z, z').
This leads us to the formula

(10) F(z,w>——4waf"”‘j;><zi:3<;izﬂ

which is completely analogous to Cauchy’s fundamental formula, and
from which we can derive similar conclusions. From it we deduce
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the existence of the partial derivatives of all orders of the function
F(z, ') in the regions considered, the derivative o™+* F/dz™dz" hav-
ing a value given by the expression

1 __m!n' F(z, 2 d?' .
1) 33:"3x"‘ (0) (0)(z _ :t)""”(z z')r+1

In order to obtain Taylor’s formula, let us suppose that the
boundaries C and C' are the circumferences of circles. Let a be the
center of C, and R its radius; & the center of C', and R' its radius.
The points « and z' being taken respectively in the interior of these
circles, we have |t —a|=7r <R and |2' — b|=7'<R' Hence the
rational fraction

1 _ 1
G—o)@F —2) [r—e—(@—a)lF—b—( —b)]

can be developed in powers of * — @ and «' — b,

S W R R Cilt )
(z——x)(z —x') g 2=: (2 —a)"+1(z' _b)n+l

where the series on the right is uniformly convergent when z and 2’
describe the circles C and C' respectively, since the absolute value of
the general term is (r/R)™(r'/R')*/RR'. We can therefore replace
1/(z — z)(2' — z") by the preceding series in the relation (10) and
integrate term by term, which gives

F(z, z")=
_1_ AR L AM el T F(z, 2")dz' .
e g g(x a) (= b) f dzfo)(z — a,)"‘“(z'— b)"+1

Making use of the results obtained by replacing x and «' by ¢ and
in the relations (10) and (11), we obtain Taylor’s expansion in the
form

(12) F(z,2')= F(a, b)+ 2’ JZ: Z‘; :;; (=z— j’);(:; -

where the combination m = n = 0 is excluded from the summation.
Note. The coefficient a,,, of (z — a)™(z' — b)* in the .preceding
series is equal to the double integral

_ 1 . F(z, 2")d?'
47:"‘[0)d j‘o)(z—a)"‘“(z —b)"“
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If M is an upper bound for | F(z, 2')| along the circles C and C', we

have, by a previous general remark,

1 M M
laﬂl <715 47,.2 Rm+lRlu+l27rR'27rR' = R"R".
The function

xT—a ' —b
(=50 -%)
is therefore a dominant function for F(x, =) (I, § 192, 2d ed.;
§ 186, 1st ed.).

95. Functions represented by definite integrals. In order to study
certain functions, we often seek to express them as definite integrals
in which the independent variable appears as a parameter under the
integral sign. We have already given sufficient conditions under
which the usual rules of differentiation may be applied when the
variables are real (I, §§ 98, 100, 2d ed.; § 97, 1st ed.). We shall
now reconsider the question for complex variables.

Let F(z, #') be an analytic function of the two variables z and 2’
when these variables remain within the two regions A4 and A' respec-
tively. Let us take a definite path L of finite length in the region 4,
and let us consider the definite integral '

(13) ®(x)= L )F (2, x)dz,

where z is any point of the region 4'. To prove that this function
& (x) is an analytic function of x, let us describe about the point « as
center a circle C with radius R, lying entirely in the region A'. Since
the function F(z, ') is analytic, Cauchy’s fundamental formula gives

F(z, z)=— ng, z")dz'

’
2me © 2 —x

whence the integral (13) can be written in the form

=gy [ oe [ P2,

2 —x

Let « 4 Az be a point near  in the circle C; we have, similarly,

@(x + Az) = —f f:(_”xzdz
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_ and consequently, by repeating the calculation already made (§ 33),

®(x + Ax)— ®(x) _ 'Lfdzf ng,z'zdzl
Az 27 Jay Jo

@~y

Az F(z, 2Nd2'
+5= | dz f .
2m ‘](;) © ' —2)’(z' —x — Ax)

Let M be a positive number greater than the absolute value of
F(z, 2") when the variables z and 2' describe the curves L and C
respectively ; let S be the length of the curve L; and let p denote the
absolute value of Az. The absolute value of the second integral is
less than

P M —__PMS .
2WR,(R_P)27TR.S R(R-—p)’

hence it approaches zero when the point 2 + Az approaches x in-
definitely. It follows that the function ®(x) has a unique derivative
which is given by the expression

!
<I>'(ac)=—1—.f dzf Pz #)de!,
2mi ey Joy &' —2)
But we have also (§ 33)

oF 1 F(z, 2" dz'

= . b
ox 2mi © ' —x)?

and the preceding relation can be again written

(14) @'(x) = j(; )%:— dz.

Thus we obtain again the usual formula for differentiation-under the
integral sign.

The reasoning is no longer valid if the path of integration L
extends to infinity. Let us suppose, for definiteness, that L is a
ray proceeding from a point @, and making an angle § with the
real axis. We shall say that the integral

®(z) = f "F(e, %) de

is uniformly convergent if to every positive number e there can
be made to correspond a positive number N such that we have

|f wF(z, z)dz| <e,
a0+p¢
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provided that p is greater than N, wherever 2 may be in 4. By
dividing the path of integration into an infinite number of recti-
linear segments we prove that every uniformly convergent integral
is equal to the value of a uniformly convergent series whose terms
are the integrals along certain segments of the infinite ray L. All
these integrals are analytic functions of x; therefore the same is
true of the integral [[”F(z, z)dz (§ 39).

It is seen, in the same way, that the ordinary formnula for differen-
tiation can be applied, provided the integral obtained, fa: (0F /ox)dz,
is itself uniformly convergent.

If the function F(z, 2') becomes infinite for a limit e, of the path
of integration, we shall also say that the integral is uniformly con-
vergent in a certain region if to every positive number ¢ a point
@, + 7 on the line L can be made to correspond in such a way that

b
f F(z, x)dz
ay+7

where b is any point of the path L lying between a and a + 4, the
inequality holding for all values of « in the region considered.
The conclusions are the same as in the case where one of the limits
of the integral is moved off to infinity, and they are established in
the same way.

<e

96. Application to the I" function. The definite integral taken along the real axis
+ o
(15) T (2) =j; te-1e-tat,

which we have studied only for real and positive values of z (I, § 94, 2d ed.;
§ 92, 1st ed.), has a finite value, provided the real part of 2, which we will denote
by R(z), is positive. In fact, let z =2 + yi; this gives |tz—le~¢|=tr—1le-¢,
Since the integral to

j; tr—le—tdl

has a finite value if z is positive, it is clear that the same is true of the integral
(15) (I, §§ 91, 92, 2d ed.; §§ 90, 01, 1st ed.). This integral is uniformly con-
vergent in the whole region defined by the conditions N>R (z)>7%, where N
and y are two arbitrary positive numbers. In fact, we can write

1 +w
I‘(z):j; t=-‘e—'dt+j; tz—le—tdt,

and it suffices to prove that each of these integrals on the right is uniformly
convergent. Let us prove this for the second integral, for example. Let { be a
positive number greater than one. If R(z) <N, we have

If+wt=—1e-‘dtl<f+wt”-le-'dt,
1 1
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and a positive number A can be found large enough to make the last integral
less than any positive number ¢ whenever I = A. The function I' (), defined by
the integral (15), is therefore an analytic function in the whole region of the
plane lying .to the right of the y-axis. This function T (z) satisfies again the
relation

(16) L'z +1)=2I'(z),
obtained by integration by parts, and consequently the more general relation
17 I‘(z+n)=z(z+l)---(z+n—1)l‘(z),v

which is an immediate consequence of the other.
This property enables us to extend the definition of the I' function to values
of z whose real part is negative. For consider the function ’

T'(z+n)
zz+1) - @z+n-1)’

(18) Y@=

where n is a positive integer. The numerator T (2 + n) is an analytic function
of z defined for values of z for which R(2) >— n; hence the function y (2) is a
function analytic except for poles, defined for all the values of the variable
whose real part is greater than — n. Now this function y (2) coincides with the
analytic function TI' (2) to the right of the y-axis, by the relation (17); hence it
is identical with the analytic extension of the analytic function I'(z) in the
strip included between the two straight lines R(z) = 0, R(z) =— n. Since the
number n is arbitrary, we may conclude that there exists a function which is
analytic except for the poles of the first order at the points z2=0, z2=—1,
z2=—2,.--,2=—n, ..., and which is equal to the integral (15) at all points to
the right of the y-axis. This function, which is analytic except for poles in the
finite plane, is again represented by T (z); but the formula (15) enables us to
compute its numerical value only if we have R(2)>0. If. R(z) <0, we must also
make use of the relation (17) in order to obtain the numerical value of that
function.

‘We shall now give an expression for the I' function which is valid for all
values of z. Let S(z) be the integral function

+ o 2z
S(z):zH(l-l— TE‘) e n,
n=1

which has the poles of I' (2) for zeros. The product S(z) I (z) must then be
an integral function. It can be shown that this integral function is equal to
e—Cz, where C is Euler’s constant* (I, § 18, Ex., 2d ed. ; § 49, Note, 1st ed.),
and we derive from it the result

1 1 1= 7\ -%
(19)  T®CTEED eC'I=Il(1+;L)e "

which shows that 1/T (z 4 1) is a transcendental integral function.

* HErMITE, Cours d’Analyse, 4th ed., p. 142.
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97. Analytic extension of a function of two variables. Let u = F(z, 2’) be an
analytic function of the two variables z and 2’ when these two variables remain
respectively in two connected regions 4 and 4’ of the two planes in which we
represent them. It is shown, as in the case of a single variable (§ 83), that the
value of this function for any pair of points z, 2’ taken in the regions 4, 4’ is
determined if we know the values of F and of all its partial derivatives for a
pair of points z = a, 2’ = b taken in the same regions. It now appears easy to
extend the notion of analytic extension to functions of two complex variables.
Let us consider a double series Za,, » such that there exist two positive numbers
r, v’ having the following property : the series

(20) F(z,2) =Zampz™ 2’

is convergent if we have at the same time |2| < r, |2’| <, and divergent if we
have at the same time |2|>r, |2'|> ¢, The preceding series defines, then, a
function F(z,2’) which is analytic when the variables z, 2’ remain respectively
in the circles C, C’ of radii r and #; but it does not tell us anything about the
nature of this function when we have |2|>r or |2’| > . Let us suppose for
definiteness that we cause the variable z to move over a path L from the origin
to a point Z exterior to the circle C, and the variable 2’ to travel over another
path L’ from the point 2 = 0 to a point Z’ exterior to the circle C’. Let a and
B be two points taken respectively on the two paths L and L’, a being in the
interior of C and B in the interior of C’. The series (20) and those which are
obtained from it by successive differentiations enable us to form a new power
series,
@) Zbua (2 — @)™ (2" — B

which is absolutely convergent if we have |z — «| < r, and |2’ — 8| < r{, where
r, and r{ are two suitably chosen positive numbers. Let us call C, the circle of
radius r; described about the point a as center in the plane of z, and C{ the
circle of radius r; described in the plane of z” about the point 8 as center. If z
is in the part common to the two circles C and C,, and the point 2’ in the part
common to the two circles €’ and Cj, the value of the series (21) is the same as
the value of the series (20). If it is possible to choose the two numbers r; and r]
in such a way that the circle C, will be partly exterior to the circle C, or the
circle Cj partly exterior to the circle C’, we shall have extended the definition
of the function F(2, 2’) to a region extending beyond the first. Continuing in
this manner, it is easy to see how the function F(z, z’) may be extended step by
step. But there appears here an important new consideration : It i3 necessary
to take into account the way in which the variables move with respect to each other
on their respective paths. The following is a very simple example of this, due to
Sauvage.* Letu =Vz—2’+ 1; for the initial valueslet ustake z =2"=0,u =1,
and let the paths described by the variables z, 2 be defined as follows: 1) The
path described by the variable 2’ is composed of the rectilinear segment from
the origin to the point 2’ =1. 2) The path described by z is composed of three
semicircumferences : the first, OMA (Fig. 88), has its center on the real azis to

* Premiers principes de la théorie générale des fonctions de plusieurs variables
(Annales de la Faculté des Sciences de Marseille, Vol. XIV). This memoir is an
excellent introduction to the study of analytic functions of several variables.
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the left of the origin and a radius less than 1/2 ; the second, AN B, also has its
center on the real axis and is so placed that the point — 1 is on its diameter A B ;
finally, the third, BPC, has for its center the middle point of the segment joining
the point B to the point C(z =1). The first and the third of these semicircum-
ferences are above the real axis, and the second is below, so that the bound-
ary OMANBPCO incloses the point z =— 1. Let us now select the following
movements :

1) 2 remains zero, and z describes the entire path OABC ;

2) z remains equal to 1, and 2’ describes its whole path.

If we consider the auxiliary variable ¢ = z — 2’, it is easily seen that the path
described by the variable ¢, when that variable is represented by a point on the

Fic. 38

z plane, is precisely the closed boundary O4ABCO which surreunds the critical
point ¢ =—1 of the radical V¢ + 1. The final value of u is therefore u =— 1.

On the other hand, let us select the following procedure :

1) z remains zero and 2’ varies from 0 to 1 — e (e being a very small positive
number);

2) 2z’ remains equal to 1 — ¢, and z describes the path 0ABC;

8) z remains equal to 1, and 2’ varies from 1 — e to 1.

‘When 2’ varies from 0 to 1 — e, the auxiliary variable ¢ describes a path 00’
ending in a point O’ very near the point — 1 on the real axis. When 2 describes
next the path 04 BC, t moves over a path 0’A’B'C’ congruent to the preceding
and ending in the point C’(OC’ = ¢) on the real axis. Finally, when 2’ varies
from 1—¢ to 1, ¢ passes from C’ to the origin. Thus the auxiliary variable ¢
describes the closed boundary 00’A’B’C’0O which leaves the point —1 on its
exterior, provided e is taken small enough. The final value of u will therefore
be equal to + 1.

Very much less is known about the nature of the singularities of analytic
functions of several variables than about those of functions of a single variable.
One of the greatest difficulties of the problem lies in the fact that the pairs of
singular values are not isolated.*

*For everything regarding this matter see a memoir by Poincaré in the Acta
mathematica (Vol. XXVI), and P. Cousin’s thesis (Ibid. Vol. XIX).
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II. IMPLICIT FUNCTIONS. ALGEBRAIC FUNCTIONS

98. Weierstrass’s theorem. We have already established (I, § 193,
2d ed.; § 187, 1st ed.) the existence of implicit functions defined by
equations in which the left-hand side can be developed in a power
series proceeding in positive and increasing powers of the two
variables. The arguments which were made supposing the variables
and coefficients real apply without modification when the variables
and the coefficients have any values, real or imaginary, provided we
retain the other hypotheses. We shall establish now a more general
theorem, and we shall preserve the notations previously used in that
study. The complex variables will be denoted by = and y.

Let F(x, y) be an analytic function in the neighborhood of a
pair of values z =a, y =g, and such that we have F(a, 8)=0.
‘We shall suppose that @ = 8 = 0, which is always permissible. The
equation F(0, y)= 0 has the root y = 0 to a certain degree of mul-
tiplicity. The case which we have studied is that in which y = 0 is
a simple root; we shall now study the general case where y =0 is a
multiple root of order n of the equation F(0, y)= 0. If we arrange
the development of F(x, y) in the neighborhood of the pointz =y =0
according to powers of y, that development will be

(22) Fx,y)=A,+4dy+ - -+A4,9+A4, .y + ...,

where the coefficients A4; are power series in «, of which the first n
are zero for x = 0, while 4, does not vanish for « = 0. Let C and C'
be two circles of radii R and R' described in the planes of z and y
respectively about the origin as center. We shall suppose that the
function F(zx, y) is analytic in the region defined by these two circles
and also on the circles themselves ; since A4, is not zero for =0, we
may suppose that the radius R of the circle C is sufficiently small
so that 4, does not vanish in the interior of the circle C nor on the
circle. Let M be an upper bound for | F(x, y)| in the preceding region
and B a lower bound for [4,|. By Cauchy’s fundamental theorem

we have
1 F(x f!d'
F,y)=5 = ( L,
o YUY

where z and y are any two points taken in the circles C' and C';
from this we conclude that the absolute value of the coefficient 4,,
of y™ in the formula (22) is less than M/R'™, whatever may be the
value of z in the circle C.
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We can now write

(23) F(x, y)=4,y"(1+ P + Q),
where
A A
= il ntl
P A y+ A, v+
__Aol Au——ll.
Q_—A,y"+'“+—A,, Y

Let p be the absolute value of y; we have
' P

M (p , p* )_ M R
|P|<BRI-|(RI+R'2+'.' —BR"' P’
1=%
and this absolute value will be less than 1/2 if we have
,__ BR"
(24) P<R BR 420

On the other hand, let u(r) be the maximum value of the absolute
values of the functions 4, 4,,---, 4,_, for all the values of « for
which the absolute value does not exceed a number » < R. Since
these n functions are zero for x = 0, u(r) approaches zero with ,
and we can always take r so small that

1. 1 1 1
(25) %Q<;+?+.+7><§’ B (T<R)’

where p is a definite positive nummber. The numbers » and p having
been determined so as to satisfy the preceding conditions, let us re-
place the circle C by the circle C, described in the z-plane with the
radius » about the point & = 0 as center, and similarly in the y-plane
the circle C' by the concentric circle ¢, with the radius p. If we give
to z a value such that |x|= », and then cause the variable y to
describe the circle C;, along the entire circumference of this circle we
have, from the manner in which the numbers » and p have been chosen,
|P|<1/2,|Q|<1/2, and therefore |P + Q| < 1. If the variable y
describes the circle €} in the positive sense, the angle of 14 P 4 Q
returns to its initial value, whereas the angle of the factor 4,»" in-
creases by 2 nw. The equation F(x, y) = 0, in which |x| = r, therefore
has n roots whose absolute values are less than p, and only n.

All the other roots of the equation F(z, y)= 0, if there are any,
have their absolute values greater than p. Since we can replace the
number p by a number as small as we wish, less than p, if we replace
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at the same time » by a smaller number satisfying always the con-
dition (25), we see that the equation F(x, y)= 0 has n roots and only
n which approach zero with .

If the variable x remains in the interior of the circle C, or on its
circumference, the n TOOtS Yy, Ygy * * *y Uns whose absolute values are less
than p, remain within the circle C;,. These roots are not in general
analytic functions of x in the circle C,, but every symmetric integral
rational function of these n roots is an analytic function of z in this cir-
cle. It evidently suffices to prove this for the sum 3} + % + - - . + 9%,
where k is a positive integer. Let us consider for this purpose the

double integral
& f f F(m,J
dx'
I= dy'
«h Yo F(x’y')x -z’

where we suppose |z| < ». If |y'| = p, the function F(z',y') cannot
vanish for any value of the variable x' within or on C,, and the only
pole of the function under the integral sign in the interior of the
circle C, is the point ' = . We have, then,

OF (', y") OF (%, y")
ayl dx' . ayr

% = e o

([c:)y F(.’E', yl) z —z 2my F(z, yl) 4

and consequently

OF (x, ¥)
'
I=27i | y"‘-—ay—dy'.
«p

F(x,y")
By a general theorem (§ 48) this integral is equal to

— 4w+ s+ ),

where y,, y,, - - -, ¥, are the n roots of the equation F(x, y)= 0 with
absolute values less than p. On the other hand, the integral I is an
analytic function of « in the circle C,, for we can develop 1/(x' — x)
in a uniformly convergent series of powers of «, and then calculate
the integral term by term. The different sums 3y¥ being analytic
functions in the circle C,, the same thing must be true of the sum
of the roots, of the sum of the products taking two at a time, and so
on, and therefore the n roots y,, %,, - - -, ¥, are also roots of an equa-
tion of the nth degree’

28 f@y=y+aytayi+t.-ta,_y+a,=0
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whose coefficients a, a,, - - -, a, are analytic functions of = in the
circle C, vanishing for x = 0.

The two functions F(z, ¥) and f(x, y) vanish for the same pairs
of values of the variables x, y in the interior of the circles C, and Cj.
We shall now show that the quotient F(z, y)/f(x, ) is an analytic
function in this region. Let us take definite values for these vari-
ables such that |x| <7, |y|<p, and let us consider the double

integral

_ (" FEy Y dx' .
= (dey f(c,)f @, y) @' —=2)(y' ~9)

For a value of 3' of absolute value p the function f(a', y') of the
variable z' cannot vanish for any value of #' within or on the circle
C,. The function under the integral sign has therefore the single
pole z' = x within C,, and the corresponding residue is

F(x, )

@y -y
Hence we have also

'
J=27rif F(z,y") dy

/@Yy -y’

but the two analytic functions F(x, "), f(x, ¥') of the variable y'
have the same zeros with the same degrees of multiplicity in the
interior of C,. Their quotient is therefore an analytic function of
¥'in C,, and the only pole of the function to be integrated in this
circle is ' = y; hence we have
J=—4'n'2-—£—2F 5Y),
S )

On the other hand, we can replace 1/(x' — ) (' — y) in the inte-
gral by a uniformly convergent series arranged in positive powers
of # and y. Integrating term by term, we see that the integral is
equal to the value of a power series proceeding according to powers of
z and y and convergent in the circles C,, C;. Hence we may write

or F(x, y)=7(= y) H@ )

(27) F@y)=@+ay "'+ - -+a)d(zy),
where the function H (z, ) is analytic in the circles C,, Cj.

The coefficient 4, of * in F(x, y) contains a constant term dif-
ferent from zero; since @, a,, - - -, @, are zero for x = 0, the develop-
ment of H(x, y) necessarily contains a constant term different from
zero, and the decomposition given by the expression (27) throws
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into relief the fact that the roots of F(x, y)= 0 which approach zero
with z are obtained by putting the first factor equal to zero. The
preceding important theorem is due to Weierstrass.* It generalizes,
at least as far as that is possible for a function of several variables,
the decomposition into factors of functions of a single variable.

99. Critical points. In order to study the n roots of the equation
F(z, y) = 0 which become infinitely small with x, we are thus led to
study the roots of an equation of the form

28 f@y)=y+ayt+ay+---4a,_,y+a,=0

for values of x near zero, where a,, a,, - - -, a, are analytic functions
that vanish for 2 = 0. When # is greater than unity (the only case
which concerns us), the point « = 0 is in general a critical point. Let
us eliminate y between the two equations f'= 0 and 9f/dy = 0; the
resultant A (x) is a polynomial in the coefficients a,, a,, - - -, a,, and
therefore an analytic function in the neighborhood of the origin.
This resultant t is zero for « = 0, and, since the zeros of an analytic
function form a system of isolated points, we may suppose that we
have taken the radius » of the circle C, so small that in the interior
of C, the equation A (x) = 0 has no other root than = 0. For every
point #, taken in that circle other than the origin, the equation
JS(x, ¥)= 0 will have n distinct roots. According to the case already
studied (I, § 194, 2d ed.; § 188, 1st ed.), the n roots of the equation
(28) will be analytic functions of x in the neighborhood of the point
x,. Hence there cannot be any other critical point than the origin
in the interior of the circle C,.

Let y,, ¥, - - +» Ya be the n roots of the equation f(x, y)=0. Let
us cause the variable x to describe a loop around the point z = 0,
starting from the point x,; along the whole loop the n roots of the
equation f(x, )= 0 are distinct and vary in a continuous manner.
If we start from the point x, with the root y,, for example, and fol-
low the continuous variation of that root along the whole loop, we
return to the point of departure with a final value equal to one of the
roots of the equation f(x,, )= 0. If that final value is y,, the root

* Abhandlungen aus der Functionenlehre von K. Weierstrass (Berlin, 1860). The
proposition can also be demonstrated by making use only of the properties of power
series and the existence theorem for implicit functions (Bulletin de la Société
mathématique, Vol. XXXVI, 1908, pp. 209-215).

t We disregard the case where the resultant is identically zero. In this case f(z, ¥)
would be divisible by & factor [f(z, ¥)]¥, where k > 1, f1(z, y) being of the same
form as f(z, y).
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considered is single-valued in the neighborhood of the origin. If
that final value is different from y,, let us suppose that it is equal
to y,, A new loop described in the same sense will lead from the
root y, to one of the roots y,, ,, - - -, ¥,. The final value cannot be
¥, since the reverse path must lead from g, to y,. That final value
must, then, be one of the roots y,, y,, - - -, y,. If it is y,, we see that
the two roots y, and y, are permuted when the variable describes
a loop around the origin. If that final value is not y, it is one
of the remaining (n — 2) roots; let y, be that root. A new loop
described in the same sense will lead from the root y, to one of the
ro0tS ¥, Yy Y Yp * s Ya- 1t cannot be y,, for the same reason as
before ; neither is it y,, since the reverse path leads from g, to z,.
Hence that final value is either y, or one of the remaining (» — 3)
roots y,, ¥, + -, Y- 1f it is y,, the three roots y, y,, y, permute
themselves cyclically when the variable « describes a loop around
the origin. If the final value is different from y,, we shall continue
to cause the variable to turn around the origin, and at the end of
a finite number of operations we shall necessarily come back to a
root already obtained, which will be the root y,. Suppose, for exam-
ple, that this happens after p operations; the p roots obtained,
Yp Yo * **» Yp, permute themselves cyclically when the variable x
describes a loop around the origin. We say that they form a cyclic
system of p roots. If p = n, the n roots form a single cyclic system.
If p is less than n, we shall repeat the’'reasoning, starting with one
of the remaining n — p roots and so on. It is clear that if we con-
tinue in this way we shall end by exhausting all the roots, and we
can state the following proposition: The n roots of the equation
F(z, y)= 0, which are zero for x =20, form one or several cyclic
systems in the neighborhood of the origin.

To render the statement perfectly general, it is sufficient to agree
that a cyclic system can be composed of a single root; that root is
then a single-valued function in the neighborhood of the origin.

" The roots of the same cyclic system can be represensed by a unique
development. Let y,, y,, - - -, ¥, be the p roots of a cyclic system ; let
us put « =z. Each of these roots becomes an analytic function
of «' for all values of ' other than =' = 0; on the other hand, when
x' describes a loop around z'= 0, the point x describes p succes-
sive loops in the same sense around the origin. Each of the roots
Yy Ya»  * 5 Yp returns then to its initial value; they are single-valued
functions in the neighborhood of the origin. Since these roots ap-
proach zero when x' approaches zero, the origin ' = 0 cannot be
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other than an ordinary point, and one of these roots is represented
by a development of the form

(29) -’/=“1x'+a2m"+~--+a,,,a:"'+-..,
or, replacing ' by V>,

1 1\3 1\m

(30) y=az+ofor) 4ot +

‘We may now say that the development (30) represents all the roots
of the same cyclic system, provided that we give to xV? all of its
p determinations. For, let us suppose that, taking for the radical V=
one of its determinations, we havé the development of the root y,.
If the variable = describes a loop around the origin in the positive
sense, y, changes into y,, and z¥? is multiplied by ¢**/». It will be
seen, similarly, that we shall obtain y, by replacing aV/? by x'» 27>
in the equality (30). This unique development for the system shows
up clearly the cyclic permutation of the p roots. It would now remain
to show how we could separate the n roots of the equation F(x, y)=0
into cyclic systems and calculate the coefficients «; of the develop-
ments (30). We have already considered the case where the point
x =1y =0 is a double point (I, § 199, 2d ed.). We shall now treat
another particular case.

If for x =y = 0 the derivative 0F/0x is not zero, the develop-
ment of F(z, y) contains a term of the first degree in z, and we have

31) F(x, y)=Ax +By*+ - - -, 4B+ 0)
where the terms not written are divisible by one of the factors «? xy,
y**1. Let us consider y for a moment as the independent variable ;
the equation F(x, y) = 0 has a single root approaching zero with y,
and that root is analytic in the neighborhood of the origin. The

development which we have already seen how to calculate (I, §§ 35,
193, 2d ed.; §§ 20, 187, 1st ed.) runs as follows:

(32) x = y™(a, + ay+-- ). (ao + 0)
Extracting the nth root of the two sides, we find
1
(33) r=yVa,+ay+--.-.
For y = 0 the auxiliary equation u* = a,+ a,y + --- has n dis-

tinct roots, each of which is developable in a power series according
to powers of y. Since these n roots are deducible from one of them
by multiplying it by the successive powers of ¢?™/*, we can take for
Ya,+ a,;y + - - - in the equality (33) any one of these roots, subject
to the condition of assigning successively to x!/* its n determinations.
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‘We can therefore write the equation (33) in the form
1
>=by+by +---, &, + 0
and from this we derive, conversely, a development of y in powers
of xl»:

(34 y= clx’l‘ + cz(z’l')g-l- .o

This development, if we give successively to z'* its n values,
represents the n roots which approach zero with x. These n roots
form, then, a single cyclic system.

For a study of the general case we refer the reader to treatises
devoted to the theory of algebraic functions.*

100. Algebraic functions. Up to the present time the implicit func-
tions most carefully studied are the algebraic functions, defined by
an equation F(x, y) = 0, in which the left-hand side is an érreducible
polynomial in # and . A polynomial is said to be irreducible when
it is not possible to find two other polynomials of lower degree, F,(z, y)
and F,(x, y), such that we have identically

F(z,y)= Fy(%, y) X Fy(, y).
If the polynomial F(x,y) were equal to a product of that kind, it is
clear that the equation F(x, y)= 0 could be replaced by two distinct
equations F,(x, )= 0, F,(z,y)=0.
Let, then,

(38) Flz,)=(@)y" + (@) y" '+ - - - + du_1(®)y + $u(x)= 0
be the proposed equation of degree = in y, where ¢, ¢,,-- -, ¢, are
polynomials in 2. Eliminating y between the two relations F =0,
0F /0y = 0, we obtain a polynomial A () for the resultant, which can-
not be identically zero, since F(x,y) is supposed to be irreducible.
Let us mark in the plane the points «,, a,, - - -, a;, which represent
the roots of the equation A(z)= 0, and the points 8, B,,-- -, By,
which represent the roots of ¢ (z)= 0. Some of the points a; may
also be among the roots of ¢ (x)=0. For a point e different from
the points a;, 8; the equation F(a,y)= 0 has n distinct and finite
roots, b,, b,, « - -, b,. In the neighborhood of the point a the equation
(35) has therefore » analytic roots which approach b, b, .- -, &

respectively when x approaches a. Let a; be a root of the equation

*See also the noted memoir of Pmseux on algebraic functions (Journal de Mathé-
matiques, Vol. XV, 1850).
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A(x)=0. The equation F(a;, y)= 0 has a certain number of equal
roots; let us suppose,-for example, that it has p roots equal to &.
The p roots which approach & when x approaches a; group themselves
into a certain number of cyclic systems, and the roots of the same
cyclic system are represented by a development in series arranged
according to fractional powers of « — a,. If the value a; does not
cause ¢,(x) to vanish, all the roots of the equation (35) in the neigh-
borhood of the point a; group themselves into a certain number of
cyclic systems, some of which may contain only one root. For a point
B; which makes ¢, (x) zero, some of the roots of the equation (35)
become infinite ; in order to study these roots, we put y =1/y', and
we are led to study the roots of the equation

F(x,y")=y"F(z,1/y")=0,
which become zero for x = 8;. These roots group themselves again
into a certain number of cyclic systems, the roots of the same system
being represented by a development in series of the form
m 1 :

(36) Y =au(@—B) Pt tu (2 —B) P +-- (4, #0)
The corresponding roots of the equation in y will be given by the
development . .

G v=E— ) et ane—gr+]
which can be arranged in increasing powers of (xz — B8,)'7, but there
will be at first a finite number of terms with negative exponents.

To study the values of y for the infinite values of x, we put x = 1/x/,
and we are led to study the roots of an equation of the same form in
the neighborhood of the origin. To sum up, in the neighborhood of
any point & = a the n roots of the equation (35) are represented by
a certain number of series arranged according to increasing powers
of £ — a or of (x — a)'”?, containing perhaps a finite number of terms
with negative exponents, and this statement applies also to infinite
values of z by replacing z — o by 1/z.

It is to be observed that the fractional powers or the negative ex-
ponents present themselves only for the exceptional points. The
only singular points of the roots of the equation are therefore the
critical points around which some of these roots permute themselves
cyclically, and the poles where some of these roots become infinite ;
moreover, a point may be at the same time a pole and a critical
point. These two kinds of singular points are often called algebraic
singular points.
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We have so far studied the roots of the proposed equation only in
the neighborhood of a fixed point. Suppose now that we join two
points # = a, = b, for which the equation (35) has n distinct and
finite roots, by a path 4B not passing through any singular point of
the equation. Let y, be a root of the equation F(a,y)= 0; the root
y = f(x), which reduces to y, for z = @, is represented in the neigh-
borhood of the point @ by a power-series development P(x — a).
We can propose to ourselves the problem of finding its analytic ex-
tension by causing the variable to describe the path 4B. This is a
particular case of the general problem, and we know in advance that
we shall arrive at the point B with a final value which will be a
root of the equation F(b, y)= 0 (§ 86). We shall surely arrive at
the point  at the end of a finite number of operations; in fact, the
radii of the circles of convergence of the series representing the
different roots of the equation F(z, y)= 0, having their centers at
different points of the path 4B, have a lower limit* § > 0, since this
path does not contain any critical points; and it is clear that we
could always take the radii of the different circles which we use for
the analytic extension at least equal to 8.

Among all the paths joining the points 4 and B we can always
find one leading from the root y, to any given one of the roots of
the equation F (b, y) = 0 as the final value. The proof of this can be
made to depend on the following proposition: If an analytic func-
tion z of the variable x has only p distinct values for each value of =,
and if it has in the whole plane (including the point at infinity) only
algebraic singular points, the p determinations of z are roots of an
equation of degree p whose coefficients are rational functions of x.
Let 2, 2, - - -, 2, be the p determinations of z; when the variable
describes a closed curve, these p values z,, z,, - - -, 2, can only change
into each other. The symmetric function u, = 2% 4 2% 4 ... 4 2%,
where % is a positive integer, is therefore single-valued. Moreover,
that function can have only polar singularities, for in the neigh-
borhood of any point in the finite plane = = a the developments
of z, 2, .-+, 2, have only a finite number of terms with negative
exponents. The same thing is therefore true of the development of w,.
Also, the function u, being single-valued, its development cannot con-
tain fractional powers. The point a is therefore a pole or an ordinary
point for u,, and similarly for the point at infinity. The function 2,

* To prove this rigorously it suffices to make use of a form of reasoning analogous
to that of § 84.
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is therefore a rational function of z, whatever may be the integer
k; consequently the same thing is true of the simple symmetric
functions, such as 3z;, 3z;%,, - - -, which proves the theorem stated.

Having shown this, let us now suppose that in going from the
point a to any other point x of the plane by all possible paths we
can obtain as final values only p of the roots of the equation

F(x, 9)=0, (p<m)
These p roots can evidently only be permuted among themselves
when the variable « describes a closed boundary, and they possess
all the properties of the p branches z, z, .-, 2, of the analytic.
function z which we have just studied. We conclude from this that
Y Yp * + +» Y, Would be roots of an equation of degree p, F\(z, y)=0,
with rational coefficients. The equation F(z, y) =0 would have,
then, all the roots of the equation F,(z, y) = 0, whatever = may be,
and the polynomial F(z, y) would not be irreducible, contrary to
hypothesis. If we place no restriction upon the path followed by
the variable z, the » roots of the equation (35) must then be regarded
as the distinct branches of a single analytic function, as we have
already remarked in the case of some simple examples (§ 6).

Let us suppose that from each of the critical points we make an
infinite cut in the plane in such a way that these cuts do not cross
each other. If the path followed by  is required not to cross any
of these cuts, the n roots are single-valued functions in the whole
plane, for two paths having the same extremities will be transform-
able one into the other by a continuous deformation without passing
over any critical point (§ 85). In order to follow the variation of a
root along any path, we need only know the law of the permutation
of these roots when the variable describes a loop around each of the
critical points.

Note. The study of algebraic functions is made relatively easy by the fact
that we can determine a priori by algebraic computation the singular points of
these functions. This is no longer true in general of implicit functions that are
not algebraic, which may have transcendental singular points. As an example,
the implicit function y (x), defined by the equation e — ¢ — 1 = 0, has no algebraic
critical point, but it has the transcendental singular point  =—1.

101. Abelian integrals. Every integral I=fR(x, y)dzx, where R (z, y)
is a rational function of x and y, and where y is an algebraic func-
tion defined by the equation F(x, y)= 0, is called an Abelian integral
attached to that curve. To complete the determination of that inte-
gral, it is necessary to assign a lower limit «, and the corresponding
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value y, chosen among the roots of the equation F(x, y)=0. We
shall now state some of the most important general properties of such
integrals. When we go from the point x, to any point = by all the
possible paths, all the values of the integral I are included in one
of the formule

(38) I=Ik+mlwl+m2m2+.‘..+mrm,, (k=1,2’...,n)

where I, I, .., I, are the values of the integral which correspond
to certain definite paths, m,, m,, - - -, m, are arbitrary integers, and
0, @y -+ -, w, are periods. These periods are of two kinds; one kind
results from loops described about the poles of the function R (x, y);
these are the polar periods. The others come from closed paths
surrounding several critical points, called cycles; these are called
eyclic periods. The number of the distinct cyclic periods depends
only on the algebraic relation considered, F(x, y)= 0; it is equal
to 2p, where p denotes the deficiency of the curve (§ 82). On the
other hand, there may be any number of polar periods. From the
point of view of the singularities three classes of Abelian integrals
are distinguished. Those which remain finite in the neighborhood
of every value of x are called the first kind; if their absolute value
becomes infinite, it can only happen through the addition of an
infinite number of periods. The integrals of the second kind are
those which have a single pole, and the integrals of the third kind
have two logarithmic singular points. Every Abelian integral is a
sum of integrals of the three kinds, and the number of distinct
integrals of the first kind is equal to the deficiency.

The study of these integrals is made very easy by the aid of plane
surfaces composed of several sheets, called Riemann surfaces. We
shall not have occasion to consider them here. We shall only give,
on account of its thoroughly elementary character, the demonstra-
tion of a fundamental theorem, discovered by Abel. '

102. Abel’s theorem. In order to state the results more easily, let us
consider the plane curve C represented by the equation F(z, y)= 0,
and let ®(x, y) be the equation of another plane algebraic curve C'.
These two curves have N points in common, (x,, %,), (€, ¥y, -+,
(zw, ¥x), the number N being equal to the product of the degrees
of the two curves. Let R(x, y) be a rational function, and let us
consider the following sum:

(39) =3 [, pas

i=1 (xg ¥p)
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where

(@ ¥
f R(z, y)dz
(xgr ¥g)

denotes the Abelian integral taken from the fixed point x, to a point
along a path which leads y from the initial value y, to the final value y,,
the initial value y, of y being the same for all these integrals. It is
clear that the sum 7 is determined except for a:period, since this is
the case with each of the integrals. Suppose, now, that some of the
coefficients, a,, a,, - -, a;, of the polynomial ®(x, y) are variable.
When these coefficients vary continuously, the points ; themselves
vary continuously, and if none of these-points pass through a point
of discontinuity of the integral [R(z, y)dw, the sum I itself varies
continuously, provided that we follow the continuous variation of
each of the integrals contained in it along the entire path described
by the corresponding upper limit. The sum I is therefore a function
of the parameters a,, a,, - - -, a;, whose analytic form we shall now
investigate.

Let us denote in general by 8V the total dliferentla.l of any. func-
tion V with respect to the variables a,, o @t

3

14
70, 2

V= Sa +e-ot
By the expression (39) we have
N
8I=> R(x;, y,) .
._=21 (=, 9)

From the two relations F(x;, y,)= 0, ®(x;, y;)= 0 we derive

F oF 0P 0P

3—a:-8w‘+3_-8%=0’ %Mi+@.8fyi+8‘l’s=0’
and consequently &r; = \Il(m,, ¥;)8®;, where ¥(x,,y;) is a rational
function of z;, y;, a ) @, and where &®; is put for &(zx;, ¥;).

We have, then,

8 = ZR(Z., ¥) ¥ (2, 9) 8.

The coefficient of 3a, on the right is a rational symmetric function
of the covrdinates of the N points (x;, ;) common to the two curves
C, C'. The theory of elimination proves that this function is a
rational function of the coefficients of the two polynomials F(z, )
and ®(z, y), and consequently a rational function of a,, a,, - -, a;.
Evidently the same thing is true of the coefficients of 3a,, - - -, 3a,,
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and I will be obtained by the integration of a total differential
I= | wda, 4 mda, + - - - 4 m;day,

where m, m,, ..., m, are rational functions of @, a,, -, a;. Now
the integration cannot introduce any other transcendentals than
logarithms. The sum I is therefore equal to a rational function of
the coefficients a,, a,, - - -, a;, plus a sum of logarithms of rational
JSunctions of the same coefficients, each of these logarithms being
multiplied by a constant factor. This is the statement of Abel’s
theorem in its most general form. In geometric language we can
also say that the sum of the values of any Abelian integral, taken
Srom a common origin to the N points of intersection of the given
curve with a variable curve of degree m, ®(x, y)= 0, is equal to a
rational function of the coefficients of ®(x, y), plus a sum of a finite
number of logarithms of rational functions of the same coefficients,
each logarithm being multiplied by a constant factor.

The second statement appears at first sight the more striking,
but in-applications we must always keep in mind the analytic state-
ment in the evaluation of the continuous variation of the sum 7
which corresponds to a continuous variation of the parameters
a, a,, -+, a,. The theorem has a precise meaning only if we take
into account the paths described by the N points «, x,, .-, zy on
the plane of the variable .

The statement becomes of a remarkable simplicity when the
integral is of the first kind. In fact, if o, m,, ..., m, were not
identically zero, it would be possible to find a system of values
a, = aj, -+, a = a; for which I would become infinite. Let (x7, %7),

++, (%, yy) be the points of intersection of the curve C with the
curve C' which correspond to the values a7, - - -, a; of the parameters.

The integral @
f R(z, y)dx
@ v

w
would become infinite when the upper limit approaches one of the
points (x, ¥;), which is impossible if the integral is of the first kind.
Therefore we have 87 = 0, and, when a,, a,, - - +, @ vary continuously,
I remains constant; Abel’s theorem can then be stated as follows:

Given a fized curve C and a variable curve C' of degree m, the sum
of the increments of an Abelian integral of the first kind attached to
the curve C along the continuous curves described by the points of
tntersection of C with C'is equal to zero.
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Note. We suppose that the degree of the curve C'remains con-
stant and equal to m. If for certain particular values of the coeffi-
cients a, a,, - - -, @, that degree were lowered, some of the points of
intersections of C' with C' should be regarded as thrown off to
infinity, and it would be necessary to take account of this in the
application of the theorem. We mention also the almost evident fact
that if some of the points of intersection of C' with C' are fixed, it
is unnecessary to include the corresponding integrals in the sum 1.

103. Application to hyperelliptic integrals. The applications of
Abel’s theorem to Analysis and to Geometry are extremely numer-
ous and important. We shall calculate &7 exphcltly in the case of
hyperelliptic integrals.

Let us consider the algebraic relations

40) P=R@)=A x4 A 2P ... LA,

where the polynomial R(x) is prime to its derivative. We shall
suppose that 4, may be zero, but that 4, and 4, may not be zero at
the same time, so that R (x) is of degree 2p + 1 or of degree 2p + 2.
Let Q(x) be any polynomial of degree g. We shall take for the
initial value x, a value of 2 which does not make R (x) vanish, and
for y, a root of the equation 3* = R (z;). We shall put

@NQ(x)dx dz
@ ¥ ("')
where the integral is taken along a path going from z, to x, and
where y denotes the final value of the radical VR (x) when we start
from x, with the value y,. In order to study the system of points
of intersection of the curve C represented by the equation (40) with
another algebraic curve C', we may evidently replace in the equation
of the latter curve an even power of y, such as 3°", by [R(x)], and
an odd power y?*"*! by y[R(x)]. These substitutions having been
made, the equation obtained will now contain y only to the first
degree, and we may suppose the equation of the curve C' of the form

(41) Yo @) —Sf(®)=0,
where f(x) and ¢(x) are two polynomials prime to each other, of
degrees A and u respectively, some of the coefficients of which we

shall suppose to be variable. The abscissas of the points of intersec-
tion of the two curves C and C' are roots of the equation

(42) ¥ (@) =R () $'(x) — f*(®)=0,

v(x, )=



[}

\
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of degree N. For special systems of values of the variable coefficients
in the two polynomials f(x) and ¢ (x) the degree of the equation may
turn out to be less than N; some of the points of intersection are
then thrown off to infinity, but the corresponding integrals must
be included in the sum which we are about to study. To each root
x; of the equation (42) corresponds a completely determined value
of y given by y, = f(x;)/$(x;). Let us now consider the sum

—2 (= o Yi) E\[(;(x"mQ(x)dz

=1 Yo)

We have
S Q@) ¥ _ 1 Q@) $(z) o
SVR@) & [l i
for the final value of the radical at the point ; must be equal to
¥, that is, to f(x,)/¢(x;). On the other hand, from the equation
Y(x;)=0 we derive

V' (x) 8x; + 2 R () () 8¢, — 2 f(x)) 8f; = 0,

and therefore

51— 5 Q@) B | 27 Ui = 2R () (),

8 =

A @) ¢'(z)
or, making use of the equation (42),
H2Q 0) (¢:8f: — fi8¢:
9 b1 =3 QNG = 134),

Let us calculate, for example, the coefficient of 8a, in 87, where a, is
the coefficient, supposed variable, of #* in the polynomial f(x). The
term 3a, does not appear in 8¢;, and it is multiplied by =¥ in 8f;. The
desired coefficient of 8a, is therefore equal to

S 2Q(x¢')4’(xi)x?_2 ""(x)

g ¢'(2:) Ay
where 7(x) =Q(x) ¢ (x)2*. The preceding sum must be extended to
all the roots of the equation y (x)= 0; it is a rational and symmetric
function of these roots, and therefore a rational function of the coeffi-
cients of the two polynomials f(x) and ¢(x). The calculation of
this sum can be facilitated by noticing that S (z,)/y'(x;) is equal to
the sum of the residues of the rational function r(x)/y () relative
to the N poles in the finite plane x, z,, - - -, 5. By a general theo-
rem that sum is also equal to the residue at the point at infinity
with its sign changed (§ 52). It will be possible, then, to obtain the
coefficient of 8a, by a simple division.

Y

~
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It is easy to prove that this coefficient is zero if the integral
v(x, y) is of the first kind. We have by supposition ¢ =p —1; the
degree of m(x) is ¢ + p + %, and we have

9+mu+k=p+k+p—1

Let us find the degree of ¢ (x). If there is no cancellation between
the terms of highest degree in R (x) ¢*(x) and in f%(x), we have
2A=N, 2p+142u=N,

whence

Adpp+p+1=N,
and, a fortiori,

k+p+p+1=N.
If there were a cancellation between these two terms, we should have
A=p+p+1;

but since the term a,a*** has no term with which to cancel out, we
- should have A + 2= N, from which the same inequality as before
results. It follows that we always have

g+p+Ek=N-2.

The residue of the rational function m(x)/y (x) with respect to the
point at infinity is therefore zero, for the development will begin
with a term in 1/x® or of higher degree. It will be seen similarly
that the coefficient of b, in 81, 3, being one of the variable coefficients
of the polynomial ¢(x), is zero if the polynomial Q(x) is of degree
p — 1 or of lower degree. This result is completely in accord with
the general theorem. _
Let us take, for example, ¢ (x) =1, and let us put

f@)y=VAzxrt + a,x? + a, 12" '+ .- -+ ax+a,

where a, a,, - - -, a, are p 41 variable coefficients. The two curves

Y¥=R(@), y=f()

cut each other in 2p 4 1 variable points, and the sum of the values
of the integral »(x, ), taken from an initial point to these 2p 41
points of intersection, is an algebraic-logarithmic function of the
coefficients a, a, - - -, a,. Now we can dispose of these p + 1 coeffi-
cients in such a way that p + 1 of the points of intersection are any
previously assigned points of the curve y® =R (x), and the codrdi-
nates of the p remaining points will be algebraic functions of the
codrdinates of the p + 1 given points.
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The sum of the p + 1 integrals

LCHE AR SICNE AL SEEE 3 JCRTTS /A )
taken from a common initial point to p + 1 arbitrary points, -is
therefore equal to the sum of p integrals whose limits are algebraic
functions of the codrdinates

@y 9+ @prv Yp 1)
plus certain algebraic-logarithmic expressions. It is clear that by
successive reductions the proposition can be extended to the sum
of m integrals, where m is any integer greater than p. In particular,
the sum of any number of integrals of the first kind can be reduced

to the sum of only p integrals. This property, which applies to the -

most general Abelian integrals of the first kind, constitutes the
addition theorem for these integrals.

In the case of elliptic integrals of the first kind, Abel’s theorem leads pre-

clsely to the addition formula for the function p(u). Let us consider a cubic in

the normal form

V=42 — 9,2 — g5,
and let M,(z,, ¥,), My(%q, ¥s), My(Zs, ¥5) be the points of intersection of that
cubic with a straight line D. By the general theorem the sum

(@, 9,) dz (xy ¥y dz (xp ¥y dz

J Al e

o Vizb—giz—g, Jo 428 —gz—9g;, Jo 428 — g,z —g,
{8 equal to a period, for the three points M,, M,, M, are carried off to infinity
when the straight line D goes off itself to infinity. Now if we employ the
parametric representation & =p (u), ¥ = p’(u) for the cubic, the parameter u is
precisely equal to the integral

(€37 dz

\Mr.l:"—g,:r,—ga

’

and the preceding formula says that the sum of the arguments u,, Uy, Uy, Which
correspond to the three points M,, M,, My, is equal to a period. We have seen
above how that relation is equivalent to the addition formula for the function

Pp(u) (§ 80).

104, Extension of Lagrange’'s formula. The general theorem on the implicit
functions defined by a simultaneous system of equations (I, § 194, 2d ed.;
§188, 1st ed.) extends also to complex variables, provided that we retain
the other hypotheses of the theorem. Let us consider, for example, the two
simultaneous equations

(49 P@Ey)=r—a—af(z,9)=0, Q@ y)=y—b—ps(z,v)=0,

where r and y are complex variables, and where f(z, ¥) and ¢(z, y) are ana-
Irtic functions of these two variables in the neighborhood of the system of
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values £ =a, y =b. For a =0, 8 =0 these equations (44) have the system of
solutions z = a, ¥ = b, and the determinant D (P, Q)/D(z, y) reduces to unity.
Therefore, by the general theorem, the system of equations (44) has one and
only one system of roots approaching a and b respectively when a and 8 approach
zero, and these roots are analytic functions of a and 8. Laplace was the first
to extend Lagrange's formula (§ 51) to this system of equations.

Let us suppose for definiteness that with the points ¢ and b as centers we
describe two circles C and €’ in the planes of the variables z and y respectively,
with radii r and  so small that the two functions f(z, ) and ¢ (z, ) shall be
analytic when the variables z and y remain within or on the boundaries of
these two circles C, C’. Let M and M’ be the maximum values of |f(z, ¥)| and
of |¢(x, ¥)|, respectively, in this region. We shall suppose further that the
constants « and 8 satisfy the conditions M|a|<r, M’|B|< 7.

Let us now give to £ any value within or on the boundary of the circle C;
the equation Q (z, ¥) = 0 is satisfied by a single value of y in the interior of the
circle C’, for the angle of y — b — 8¢ (z, ¥) increases by 27 when y describes
the circle C” in the positive sense (§ 40). That root is an analytic function

= ¢ () of z in the circle C. If we replace y in P(z, y) by that root y,, the
resulting equation £ — @ — af(z, ¥,) = 0 has one and only one root in the inte-
rior of C, for the reason given a moment ago.

Let z = ¢ be that root, and let 5 be the corresponding value of y, n = ¢ (§).
The object of the generalized Lagrange formula is to develop in powers of a
and B every function F (¢, ) which is analytic in the region just defined.

For this purpose let us consider the double integral

(45) "f f _F@,ydy
@ P,9) Q)
Since z is a point on the circumference of C, P (z, ¥) cannot vanish for any
value of y within C’, for the angle of z — @ — af(z, y) returns necessarily to
its initial value when y describes C’, z being a fixed point of C. The only pole
of the function under the integral sign, considered as a function of the single
variable y, is, then, the point ¥ =y,, given by the root of the equation Q (z, y)=0,
which corresponds to the value of  on the boundary C, and we have, after a
first integration,
f Fa, 9y _g;n F@y)
(C')P(xv U) Q(=, II) P(z, yl) (%_3)1

The right-hand side, if we suppose y, replaced by the analytic function y (z)
defined above, has in turn a single pole of the first order in the interior of C, —
the point z = £, to which corresponds the value y, =#,—and the corresponding

residue is easily shown to be
2inF (¢, 1)

Bl

The double integral I has therefore for its value
[=—4p L&)

[%]::s'
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On the other hand, we can develop 1/PQ in a uniformly convergent series
1 amprf=¢n
@—a—af)y—b—p9) =E(z —aynFiy — o+’
which gives us I =ZJpa am g, where

um [, PO Il 1ty
((%9)

(& — ayn+l(y — hyr+1
This integral has already been calculated (§ 94), and we have found that it is
caual to _ 4w omta[F(a, b)/™(a, ) ¢ (3, )]

m!n! oam obn

Equating the two values of I, we obtain the desired result, which presents an
evident analogy with the formula (50) of § 61 :

_Fé&n amgr om+r[F(a, b) f™(a, D) ¢*(a, b)]
(*49) [D(P Q)] Ezmm oam o )
D(zv U) !l="l

We could also obtain a second result analogous to (51), of § 51, by putting

D, @)
D(z,v)
but the coefficients in this case are not so simple as in the case of one variable.

F,y9)=2(@ )5 —=

EXERCISES

1. Every algebraic curve C, of degree n and of deficiency p can be carried
over by a birational transformation into a curve of degree p + 2.

(Proceed as in § 82, cutting the given curve by a net of curves C,_3, passing
through n(n —1)/2 — 8 points of C,, among which are the (n—1)(n — 2)/2 — p
double points, and put

X = ¢2 Y= & ’
¢1 (21
the equation of the net being ¢,(z, ¥) + A, (2, ¥) + uey (2, ¥) =0.)

2. Deduce from the preceding exercise that the codrdinates of a point of a
curve of deficiency 2 can be expressed as rational functions of a parameter ¢
and of the square root of a polynomial R (¢) of the fifth or of the sixth degree,
prime to its derivative.

(The reader may begin by showing that the curve corresponds point by point
to a curve of the fourth degree having a double point.)

3*. Let y =a,z+ a,z% + - - - be the development in power series of an alge-
braic function, a root of an equation F(z, y) = 0, where F(z, y) is a polynomial
with integral coefficients and where the point with coordinatesz =0,y =0isa
simple point of the curve represented by F(z,y) = 0. All the coefficients a;, v, - - -
are fractions, and it suffices to change z to Kz, K being a suitably chosen integer,
in order that all these coefficients become integers. [E1sENSTEIN.]

(It will be noticed that a transformation of the form z = ¥%z’, y = ky’ suffices

to make the coefficient of " on the left-hand side of the new relation equal to
one, all the other coefficients being integers.)
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Abel: 19, ftn.; 170,76 ; 180, 18 ; 198,
82; 244, 101

Abelian integrals: see Integrals

Abel’s theorem : 244, 102

Addition formulee : 27, 12; for elliptic
functions: 166, 74; 250, 103

Adjoint curves: 191, 82

Affixe: 4, ftn.

Algebraic equations : see Equations

Algebraic functions: see Functions

Algebraic singular points: see Singular
points

Analytic extension : 196,88 ; 199,84
functions of two variables: 231, 97

Analytic functions: 7, 8; 11, 4; ana-
lytic extension: 196, 83; 199, 845
derivative of : 9, 3; 42, 9; 77, 33;
elements of : 798, 83 ; new definition
of : 199, 84 ; series of : 86, 39 ; zeros
of : 88, 40 ; see also Cauchy’s theo-
rems, Functions, Integral functions,
Single-valued analytic functions

Analytic functions of several varia-
bles: 218, 91; analytic extension
of : 231, 97; Cauchy's theorems:
225, 94; 227, 95; Lagrange’s for-
mula: 250, 104; Taylor's formula:
222, 92 ; 226, 94 ; singularities of :
282, 97

Anchor ring: 54, ex. 8

Appell: 84, 38; 217, ex. 8

Associated circles of convergence:
220, 92

Associated intcgral functions: 218,
ex. 7

Bertrand : 58, ex. 22
Bicircular quartics: 193, ex.
Binomial formula: 40, 18

Birational transformations: 192, 82;
252, ex. 1

Blumenthal: 132, ftn.

Borel: 130, ftn.; 132, ftn.; 218, ex. 3

Bouguet : see Briot and Bouquet.

Branch point: see Critical points

Branches of a function: 15, 6; 29, 18

Briot and Bouquet: 126, ex. 27; 195,
ex. 11

Burman: 126, ex. 26

Burman’s series : 126, ex. 26

Cauchy: 7, 2; 9, ftn.; 10, 8; 60, 25;
71, ftn.; 74, 82; 78, 34; 82, ftn.;
106,51 ; 114, 63; 127,67; 139,68 ;
200, ttn.; 215,90 ; 222,93'; 225,94 ;
227, 95; 233, 98

Cauchy-Laurent series: 81, 36

Cauchy’s integral: 75, 83; funda-
mental formula: 76, 33; 227, 95;
fundamental theorem: 233, 98; in-
tegral theorems: 75, 38; method,
Mittag-Leffler's theorem: 139, 63;
theorem: 66, 28 ; 71, ftn.; 74, 32;
75,88; 78,84 ; 216, 90; theorem for
double integrals: 222, 98 ; 225, 94

Cauchy-Taylor series: 79, 35

Change of variables, inintegrals: 62,26

Circle of convergence: 18, 8; 202,
84; 209, 87; 212, 88; associated
circles of convergence: 220, 92;
singular points on: 202, 84 and ftn.

Circular transformation: 45, 19; §7,
ex. 13

Class of an integral function: 132, 58

Clebsch : 186, ftn.

Complex quantity : 8, 1

Complex variable: 6, 2; analytic func-
tion of a: 9, 8; function of a: 6, 2
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Conformal maps: see Maps

Conformal representation : 42, 19 ; 45,
20; 48, 20; 52, 23 ; see also Projec-
tion and Transformations

Conformal transformations: see Trans-
formations

Conjugate imaginaries: 4, 1

Conjugate isothermal systems: 54, 24

Connected region: 11,4

Continuity, of functions : 6, 2; of
power series: 7, 2; 66, ex. 7

Continuous functions: see Functions

Convergence, circle of : see Circle of
convergence

Convergence, uniform: of infinite
products: 22, 10; 129, 57; of inte-
grals: 229,96 ; of series: 7, 2 ; 88, 89

Cousin : 232, ftn.

Critical points: 15, 6; 29, 13; 287,
99; logarithmic: 82, 14; 113, 68

_ Cubics: see Curves

Curves, adjoint: 791, 82; bicircular
quartics: 193, ex.; conjugate iso-
thermal systems: 54, 24 ; deficiency
of : 172,77; 191,82 ; 252, exs. 1 and
2; 244,101 ; of deficiency one : 172,
77; double points: 184,80, 191, 82;
loxodromic: 53, ex. 1; parametric
representation of curves of defi-
ciency one: 187, 81; 191, 82; 198,
ex.; parametric representation of
plane cubics: 180, 78 ; 184,80 ; 187,
81; points of inflection: 186, 80;
quartics: 187, 81; unicursal: 7191,
82; see also Abel's theorem and
Rhumb lines

Cuts: 208, 87

Cycles: 244, 101

Cyclic periods: 244, 101

Cyclic system of roots: 238, 99

D’ Alembert : 104, Note

D’ Alembert’s theorem : 104, Note

Darboux : 64, 27

Darboux’s formula, law of the mean :
64, 27

“Deficiency : see Curves, deficiency of

Definite intégrals: 60, 25; 72, 81;

97, 46; differentiation of : 77, 83;

INDEX

227, 95; evaluation of: 96, 463
Fresnel’s: 100, 46; T function :
100, 47 ; 229, 96 ; law of the mean :
64, 27; periods of: 112, 63; 114,
Note; see also Integrals

De Moivre: 6,1

De Moivre’s formula: 6, 1

Derivative, of analytic functions: 9,
8; 42,19; 77,83; of integrals: 77,
83; 227, 95; of power series: 19,
8; of series of analytic functions:
88, 39

Dominant function: 56, ex. 7; 81,
85; 227, 94

Dominant series: 21, 9; 157, 69

Double integrals: 222, 93; Cauchy’s
theorems: 222, 93 ; 225, 94

Double points: 184, 80; 191, 82

Double series: 21, 9; circles of con-
vergence: 220, 92; Taylor's for-
mula: 222, 92 ; 226, 94

Doubly periodic functions: 145, 65 ;
149, 67 ; see also Elliptic functions

Eisenstein: 252, ex. 3
Elements of analytic functions: 198,
83

-Elliptic functions: 145, 656; 150, 68 ;

addition formule: 166, 74; alge-
‘braic relation between elliptic func-
tions with the same periods: 1563,
68; application to cubics: 180, 78 ;
184, 80; a'.pplica.tion to curves of
deficiency one: 187, 81; 191, 823
application to quartics: 187, 81;
even and odd : 154, 68 ; expansions
for: 154, 69; general expression for:
168, 73; Hermite’s formula: 165,
78; 168,75 ; 195, ex. 9 ; integration
of : 168, 76; invariants of : 158, 70 ;
172,77; 182, 79; order of = 150, 68 5
p(u): 154, 69; p(u) defined by in-
variants: 182, 79; periods of : 152,
68; 172,77 ; 184, 79 ; poles of : 150,
68; 154, 68; relation between p (u)
and p’(u): 158, 70; residues of :
151,683 o (u): 162, 12; O (u): 170,
765 $(u): 159, 71; zeros of :. 158,
68; 154, 68; 159, 70
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Elliptic integrals, of the first kind:
120, 56 ; 174, 78; 250, 108 ; the in-
verse function : 174, 78 ; periodsof :
120, 56

Elliptic transformation: 57, ex. 156

Equations: 233, 98; algebraic: 240,
100; cyclic system of roots of : 238,
99 £41, 1003 D*Alembert’s theo-
rem? 104, Notey Kepler's: 109,
ex. ; 126, ex. 27; Laplace's: 10,8 ;
64, 24; 55, Note; theory of equa-
tionst 108, 49; see also Implicit
functions, Lagrange's formula, and
Weierstrass's theorem

Essentially singular pointt 91, 42 at
infinity : 110, 52 ; isolated: 91, 42}
see also Laurent’s series

Euler: 27, 12; 58, exs. 20 and 22;
96, 46 ; 124, ex. 14 ; 143, ftn.; 230,
96

Euler's constant: 230, 96; formula:
58, ex. 22; 96, 45; 124, ex. 14;
formule: 27, 12

Evaluation of definite integrals: see
Definite integrals

Even functions: 153, Notes

Expansions in infinite products:

194, exs. 2 and 8; of cosz: 194,

ex, 3; of I'(z): 280, 96; of o (u):
162,725 of sin z: 148, 64 ; see also
Functions, primary, and Infinite
products .

Expansions in series: of ctn z: 143,
64; of elliptic functions: 154, 69;
of periodic functions: 145, 65; of
roots of an equation: 238, 99; see
also Series

Exponential function: 23, 11

Fourier: 170, 76

Fredholm : 213, ftn.

Fuchs: 57, ex. 156

Fuchsian transformation: 57, ex. 16

Functions, algebraic: 233, 98; 240,
100; analytic: see Analytic func-
tions and Analytic functions of sev-
eral variables; analytic except for
poles: 90, 41; 101, 48; 136, 61;
branches of ; 15, 6; 29, 18; class
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of integrals 182, 58; of a complex
variable: 6, 2; continuouss 6, 23
defined by differential equationss
208, 86; dominant: 56, ex. 7; 81,
85; 227, 94; doubly periodic: 145,
65; 149, 67; elementary transcer~
dental : 18, 8; elliptic: see Elliptic
functions; even and odd: 158,
Notes; exponential: 23, 11; Gamma:
100, 47 ; 229, 96 ; holomorphic: 11,
. ftn.; implicit: 233, 98; integral:
see Integral functions and Integral
transcendental functions; inverse,
of the elliptic integral : 172, 77; in-
verse sine: 114, b4; inverse trigo-
nometric: 80, 14; irrational s 18,
6; logarithms: 28, 18; meromor-
- phic: 90, ftn.; monodromic: 17,
ftn.; monogenic ¢ 9, ftn.; multiform ¢
17, ftn.; multiple-valueds 17, 7;
p(u): 164, 69; periods of ¢ 145,65 ;
152,68; 172, 77; 184, 79; primary
(Weierstrass's) : 127, 67 ; primitive s
88, 15; rational: 12, 5; 383, 15;
rational, of sin z and ces z: 385, 16;
regular in a neighborhood: 89, 40;
regular at a point: 88, 40; regular
at the point at infinity: 109, 52;
represented by definite integrals:
227, 95 series of analytic: 86, 89;
o(u): 152, 72; single-valued: see
Single-valued functions and Single-
valued analytic functions; 6 (u):
170, 76; ‘trigonometric: 26, 12;
¢(u): 159, 715 see also Expansions
Fundamental formula of the integral
calculus: 63, 26; 72, 81
Fundamental theorem of algebra:
104, Note -

Gamma function : 100, 47 ; 229, 96

Gauss: 125, ex. 21

Gauss’s sums: 125, ex. 21

General linear transformation: 44,
ex. 2

Geographic maps: see Maps

Gourier: 126, ex. 28

Goursat: 208, ftn.; 216, ftn.

Goursat’s theorem: 69, 29 and ftn.
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Hadamard: 206, ftn.; 212, 88; 218,
ex. 8

Hermite: 106, 51 ; 109, ex.; 165,73 ;
168, 15; 195, ex. 9; 215, 90 and
ftn.; 216, ftn.; 217, exs. 4, 5, 6;
230, ftn.

Hermite's formula : 215, 90; for ellip-
tic integrals: 165, 13 ; 168,75 ; 195,
ex. 9

Holomorphic functions: 11, ftn.

Hyperbolic transformations: 57, ex.
15

Hyperelliptic integrals: 116,55; 247,
103 ; periods of : 116, 55

Imaginaries, conjugate: 4, 1

Imaginary quantity: 3, 1

Implicit functions, Weierstrass’s theo-
rem: 233, 98; see also Functions,
inverse, and Lagrange’s formula

Independent periods, Jacobi’s theo-
rem: 147, 66

Index of a quotient: 103, 49

Infinite number, of singular points:
184, 60 ;- see also Mittag-Leffler's
theorem ; of zeros: 26, 11; 93, 42;
128, b7 ; see also Weierstrass’s theo-
rem

Infinite products: 22, 10; 129, 57;
194, exs. 2 and 8; uniform conver-
gence of, 22, 10; 129, 87; see also
Expansions

Infinite series: see Serles

Infinity : see Point at infinity

Inflection, point of : 186, 80

Integral functions: 21, 8; 127, 67;
assoclated : 218, ex. 7; class of:
182, 68 ; with an infinite number of
zeross 127, B7; periodic: 147, 65;
transcendental ¢ 21, ftn,; 92, 42;
136, 61 ; 230, 96

Intogral transcendontal functions: 27,
ftn.; 12, 42; 136, 61; 230, 96

Integrals, Aboliane 103, 82; 243,101;
Abollan, of the first, second, and
third kind: 244, 101; Abel's theo-
roms: ¥44, 1025 Canchy's: 75, 83;
chango of varlablos In: 62, 20; along
a clowed curve: 66, 28; dofinite:

see Definite integrals; differentia-
tion of: 77, 33; 227, 95; double =
see Double integrals; elliptic: 120,
56; 174, 18; 250, 103; of elliptic
functions: 168, 75; fundamental
formula of the integral calculus:
63,26; 72, 31; Hermite's formula =
215, 90; Hermite's formula for el-
liptic: 165,73; 168,75; 195,ex.9 3
hyperelliptic: 116, 55; 247, 1033
law of the mean (Weierstrass, Dar-
boux): 64, 27; line: 61,25; 62, 26;
74, 32; 224, 93; of rational func-
tions: 33, 15; 113, 53; of series:
86, 39; uniform convergence of =
229, 98 ; see also Cauchy’s theorems

Invariants (integrals): 57, ex. 15; of
elliptic functions: 158,70 ; 172, 77;
182,19

Inverse functions: see Functions, in-
verse, implicit

Inversion: 45, 19; 57, exs. 13 and 14

Irrational functions: 13, 6; see also
Functions

Irreducible polynomial : 240, 100 -

Isolated singular points: 89, 40; 132,
659 ; essentially singular: 91, 42

Isothermal curves: 54, 24

Jacobi: 125,ex.18; 147,66; 154,69 ;
170, 76 ; 180, 18

Jacobi’s theorem: 147, 66

Jensen ¢ 104, 50

Jensen’s formula: 104, 50

Kepler: 109, ex.; 126, ex. 26
Kepler'sequation: 109, ex.; 126,ex.27
Klein: 59, ex. 28

Lagrange: 106, b1 ; 126, ex. 26; 251,
104

Lagrange's formula: 106, 51; 126,
ex. 26; extension of : 250, 104

Laplace: 10, 3; 54, 24; 55, Note;
106, 51 ; 125, ex. 19; 251, 104

Laplace'sequation : 10, 8; 54,24; 55,
Note

Laurent: 75, 33; 81, 37; 91, 42; 94,
48; 126, ex. 283; 146, 65
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Laurent's series: 75, 38; 81, 87; 146,
656

Law of the mean for integrals: 64, 27

Legendre: 106, ex.; 125, ex. 18 ; 180,
78

Legendre’s polynomials: 108, ex.;
Jacobi’s form: 125, ex.18; Laplace’s
form: 125, ex. 19

Limit point: 90, 41

Line integrals: 61, 25; 62, 26; 74,
82; 224, 98

Linear transformation: 59, ex. 28;
general : 44, ex. 2

Lines, singular: see Natural bound-
aries, and Cuts

Liouville: 81, 86; 150, 67

Liouville’s theorem : 81, 36 ; 150, 67

Logarithmic critical points: 32, 14;
118, 53

Logarithms: 28,18 ; 113, 53; natural
or Napierian: 28, 13; series for
Log (1 +2): 38,17

Loops: 112, 53; 115, 54 ; 244, 101

Loxodromic curves: 53, ex. 1

Maclaurin: 83, ex.

Maps, conformal : 42,19 ; 45,20; 48,
20; 52, 23 ; geographic: 52, 23 ; see
also Projection

Méray : 81, ftn.; 200, ftn.

Mercator’s projection: 52, ex. 1

Meromorphic functions: 90, ftn.

Mittag-Leffler: 127, 57 and ftn.; 134,
61; 139, 63

Mittag-Leffler’s theorem: 127, b57;
134,61 ; 139,63 ; Cauchy’s method:
139, 63 :

Monodromic functions: 17, ftn.

Monogenic functions: 9, ftn.

Morera: 78, 34

Morera’s theorem: 78, 34

Multiform functions: 17, ftn.

Multiple-valued functions: 17, 7

Napier: 28, 18

Napierian logarithms: 28, 18

Natural boundary: 201, 84; 208, 87;
211, 88

Natural logarithms: 28, 13
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Neighborhood : 88, 40; of the point
at infinity : 109, 52

Odd functions: 154, 68

Order, of elliptic functions: 1750, 68;
of poles: 89, 40; of zeros: 88, 40

Ordinary point: 88, 40

P function, p(u): 154, 68; 182, 79;
defined by invariants: 182, 79; re-
lation between p (u) and p’(u): 158,
70

Painlevé: 85, 38

Parabolic transformation : 57, ex. 15

Parallelogram of periods: 150, 67

Parametric representation: see Curves

Periodic functions: 145, 65; doubly :
145, 65 ; 149, 67 ; see also Elliptic
functions

Periodic integral functions: 147, 65

Periods: of ctnz : 744, Note 8; cyclic:
244,101 ; of definite integrals: 112,
68 ; 114, Note; of elliptic functions:
152,68; 172, 77; 184, 79; of elliptic
integrals: 120, 56; of functions:
145, 65; of hyperelliptic integrals:
116, b65; independent: 147, 66;
parallelogram of : 150, 67; polar:
112, 68 ; 119, 66 ; 244, 101; primi-
tive pair of: 149, ftn.; relation be-
tween periods and invariants: 172,
775 of sin z s 143, Note 1

Picard: 21, ftn.; 98, 42; 127, ftn.

Poincaré: 208, ftn.; 222, ftn.; 232,
ftn. .

Point, critical or branch: see Critical
points; double: 184, 80; 191, 82;
at infinity: 109, 62; of inflection:
186, 80; limit: 90, 41; ordinary:
88, 40; symmetric: 58, ex. 17; see
also Neighborhood, Singular points,
and Zeros

Polar periods: see Periods, polar

Poles: 88, 40; 90, 41; 133, 69; of
elliptic functions: 150, 68; 154,
68 ; infinite number of : 135, 61;
187, 62; atinfinity: 110, 62 ; order
of: 89, 40

Polynomials, irreducible : 240, 100
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